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Differential games of public investment: Markovian
best responses in the general case ∗

Niko Jaakkola and Florian Wagener

July 21, 2023

1 Introduction

The dynamic public goods game is an important economic problem which shows up in
different settings, including joint investment projects between firms, allocation of effort
among members of a team, harvesting renewable resources under common access, and
non-cooperative mitigation of climate change. As with infinite-horizon dynamic games
in general, these games typically admit the possibility of multiple equilibria—even under
Markovian strategies, which condition each player’s investment flow on the current state of
the accumulating capital stock only. A natural question, with both positive and normative
implications, is to ask what the entire set of Markov-perfect Nash equilibria (MPE) is.
Except for special cases, the extant literature has not been able to address this issue.

We develop methods which enable progress on this question. We leverage the tractability
of a continuous-time framework, which allows us to focus on the local properties of value

∗We thank W.A. Brock, F. van der Ploeg, G. Sorger, D. Spiro, G. Zaccour, A. de Zeeuw, and
especially L. Karp and C. Rowat for helpful comments, as well as seminar audiences at ifo Institute, the
Swedish University of Agricultural Sciences, the University of Bologna, the University of Grenoble and
the University of Amsterdam.
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functions, without having to know the global properties.1 We study a differential game,2

making two contributions. First, we extend the space of Markovian strategies to include
strategies that are discontinuous in the state variable, and show that this yields a well-
defined best response correspondence, putting differential games on a conceptually sound
foundation. Second, we give a concrete necessary and sufficient condition which can be
used to construct a best response.

We restrict the players to use Markovian strategies, or policy rules, so that the control
a(t) is given as a function ϕ of the scalar state variable y(t), that is a(t) = ϕ(y(t)). The
appropriate choice of strategy space—the set from which ϕ can be chosen—has long been
an open question in differential games (Başar and Olsder, 1982; Fudenberg and Tirole,
1991; Dockner et al., 2000). To understand why, note that computing the payoffs in a
differential game requires the determination of a trajectory which is a solution to the state
dynamics ẏ(t) = f(y(t), a(t)). Under Markovian strategies, if the function f(x, q) and
the strategies ϕ(x) are Lipschitz-continuous, then a unique classical solution trajectory
exists. However, for a large class of models the optimal response to Lipschitz-continuous
dynamics feature indifference initial states, often called Skiba points, at which there are
multiple optimal solutions. In such a situation, the best response cannot be described
as a Lipschitz-continuous function of the state (Skiba, 1978; Wagener, 2003), and the
best-response correspondence does not map the space of Lipschitz-continuous functions
back to itself.

We therefore allow the players to use discontinuous Markovian strategies: player i’s
policy rule ϕi is selected from a space Si of functions with a finite number of kinks
or discontinuities. We cannot apply to the Picard-Lindelöf theorem on existence and
uniqueness of solutions to differential equations. Hence, following Barles et al. (2013,
2014), we use a generalised solution concept to discontinuous dynamics, adapting the
payoffs accordingly.

Our Theorem 1 shows that the differential game is well-formed: the optimal control
chosen by player i to any profile of other players’ strategies ϕ−i ∈ S−i\E exists and can
be described as a Markovian policy rule ϕi ∈ Si. The exceptional set E , for which the
best response does not map to Si, is small: loosely speaking, it is shown to be a ‘shy’
set, that is, an infinite-dimensional analogue of a zero-measure set. We give a sufficient
condition for identifying combinations of the other players’ strategies that belong to E .

The best-response correspondence thus maps S−i into Si so that, modulo exceptional
cases, the static game of choosing Markovian policy rules has a complete payoff matrix,
in that all strategy profiles induce a vector of payoffs; each player has a best response in
Si; and each player can choose any strategy in Si independently of the strategies chosen
simultaneously by the other players.3

1These benefits mirror recent advances in continuous-time macroeconomics (Achdou et al., 2014, 2022;
Brunnermeier and Sannikov, 2016), or in the literature on dynamic games and contracts (e.g. Sannikov,
2008; Faingold and Sannikov, 2011).

2Dockner et al. (2000) and Başar and Zaccour (2018) contain extensive overviews of differential games.
3The existing literature has often used an admissibility criterion on strategy profiles, which implies
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Our Theorem 2 is practical, as it gives a user-friendly necessary and sufficient condition
for a best response. While its proof is technical, this condition is easy to use in ap-
plied settings. We provide the result under general conditions, not requiring the use of
particular functional forms.

In a companion paper, we use these results to analyse the fixed points of the best response
correspondence, the Nash equilibria in Markovian strategies. In particular, we show how
our methods can be used to construct the entire set of symmetric equilibria with finitely
many discontinuities to the canonical problem of noncooperative mitigation of climate
change (van der Ploeg and de Zeeuw, 1992; Dockner and Long, 1993) under a general
functional specification. The main result of this companion paper is that the type of
equilibrium most commonly discussed in the literature is Pareto-dominated by all other
symmetric equilibria.4 This raises questions about the importance of this equilibrium—
a focal point in the literature—from both positive and normative perspectives. In the
paper, we also construct the Pareto-dominant equilibria and obtain meaningful intuition
for them. There is a large literature of other applications; we believe it is worthwhile to
also take a second look at these, using our methods. Moreover, these methods can also
shed light on asymmetric equilibria, something the existing literature has largely ignored
(but see De Frutos and Mart́ın-Herrán (2018)).

We use two primary tools in our analysis. The first is dynamic programming in the
guise of the theory of viscosity solutions (Bardi and Capuzzo-Dolcetta, 2008). We apply
viscosity theory to optimal control under discontinuous dynamics, building on the results
by Barles et al. (2013, 2014), who consider exogenous discontinuities in dynamics. These
methods allow us to construct the value function to a player’s problem. We also rely on
the theory of nonlinear dynamical systems to show that the best response is Markovian.
Crucially, our ultimate goal is to understand equilibria, in which strategies—including
any discontinuities—are endogenous. This means we cannot rule out complicated cases
a priori, but have to deal with them in our analysis.

The present paper makes two contributions. First, we put the theory of Markov-perfect
equilibria in differential games on a sound theoretical footing, as our specification makes
the best-response correspondence well-behaved (at least when the state variable is a
scalar). This issue has been an open problem for decades (Başar and Olsder, 1982;
see also Fudenberg and Tirole 1991; Dockner et al. 2000). Our results demonstrate the
usefulness of continuous-time methods in deriving novel and general results in the analysis
of dynamic strategic interactions. Multiplicity of Markovian equilibria is also present in
discrete-time dynamic games, but their analysis in general is typically quite difficult. Our
results flow from the fact that, in continuous time, the value function can be analysed
and constructed using local information only.

that the set of allowed strategies depends on strategies chosen by other players. See e.g. Dockner et al.
(2000).

4In a linear-quadratic framework, this would be the linear strategy obtained by the guess-and-verify
method.
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Second, our paper helps consolidate and clarify the long literature on multiple MPE in
differential games, starting with Tsutsui and Mino (1990) and Dockner and Long (1993),
and subsequently continued by e.g. Dockner and Sorger (1996), Sorger (1998), Rubio and
Casino (2002), Rowat (2007), and Dockner and Wagener (2014).

The rest of the paper proceeds as follows. Section 2 sets up the basic model. Section 3
gives an example of the kind of situations our methods are designed to handle. Section
4 develops the conceptual framework of the paper. The main results, existence of the
best response and its characterisation, are given in Section 5. Proofs are relegated to the
Appendix.

2 Model

Time is continuous and runs to infinity: t ∈ [0,∞). The state space X = [xmin, xmax] is a
compact interval in R. There are N players, indexed by i ∈ {1, . . . , N}. The interior of
a set S is denoted S̊; its boundary is ∂S = S\S̊.

Player i has access to an action variable qi ∈ Qi ⊂ R through an action schedule ai :
[0,∞) → Qi. We assume the control set Qi = [qi,ℓ, qi,u] to be nonempty, convex and
compact,5 and action schedules to be measurable functions. We collect actions and
action schedules into vectors q = (q1, . . . , qN) and a(t) = (a1(t), . . . , aN(t)). We use the
notation q−i = (q1, . . . , qi−1, qi+1, . . . , qN) and we write q = (qi, q−i). Similarly, we write
Q−i = Q1 × . . . × Qi−1 × Qi+1 × . . . × QN . A Markovian strategy for player i is a map
ϕi : X → Qi.

The state evolution depends on the current state, but not on calendar time: given a
vector of action schedules a, the differential equation governing the state evolution is

ẏ(t) = f(y(t), a(t)). (1)

A function y : [0,∞) → X satisfying y(0) = x and (1) almost everywhere is a classical
trajectory, and (y, a) a classical trajectory–action pair : these notions will be extended
below. We distinguish between state and action variables x and q, and state trajectories
y and action schedules a.

A function defined on an open set is real analytic if for any point in the set it can be
represented, in a nonempty neighbourhood of the point, as a convergent power series with
real coefficients. In this article we say that a function ψ(x) is piecewise real analytic, if it
is real analytic at all points, excepting a finite number of discontinuities, and such that
the function and its derivative have finite limits as x approaches a discontinuity.

5We could allow multivariate controls as in Dockner and Wagener (2014); our results would follow,
given additional assumptions along the way. Our key insights are best conveyed without such complica-
tions.
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Assumption 1. The function f(x, q) is continuous, real analytic in x and q, and satisfies
fqi

> 0 everywhere.

The state variable is a public good, or public bad, in that the players’ action variables
reflect their contributions to investing in or disinvesting from it. In what follows, we focus
on the latter case. The primitive of the payoffs is the flow felicity function:

Definition 1. The felicity of player i when playing qi at state x is ui(x, qi).

Assumption 2. The felicity ui is real analytic in x and qi and satisfies (ui)x < 0 every-
where. Over time, felicity is exponentially discounted at a positive rate ρi > 0. For all x
and q−i, the set {(η0, η1) : η0 ≤ ui(x, qi), η1 = f(x, qi, q−i), qi ∈ Qi} is convex.
There is a unique maximiser qi = q∗

i (x, p, q−i) of ui(x, qi)+pf(x, qi, q−i) in Qi. Moreover,
there are real analytic functions pi,ℓ(x, q−i) and pi,u(x, q−i), such that q∗

i = qi,ℓ if p ≤ pi,ℓ,
q∗
i = qi,u if p ≥ pi,u, and q∗

i is a real analytic function of (x, p, q−i) if pi,ℓ < p < pi,u.

The assumption of piecewise real analyticity covers the vast majority of parametrised
models in the literature, which are usually specified using polynomial, rational, algebraic
or elementary transcendental functions. We could allow f or the ui to have singularities
in their domain of definition: but such singularities are as a rule only included for reasons
of analytical convenience, which do not apply in our context.
To be able to work with a compact state space, we have to specify the boundary behaviour.
If f(xmin, a(t)) < 0 or f(xmax, a(t)) > 0, the state leaves the state space, the system is
stopped, and player i receives a boundary value payoff βi.

Assumption 3. The boundary payoffs satisfy βi(xmin) ≥ maxqi
ui(xmin, qi)/ρi as well as

βi(xmax) ≤ minqi
ui(xmax, qi)/ρi.

This assumption is used to derive that the state variable is a public bad: to see its
necessity, note that if, for instance, the boundary payoff βi(xmax) is large, close to xmax

the state might be a public good, as it allows the players to reach a high boundary payoff.
Let Θ denote the infimum of the set {t > 0 : y(t) ̸∈ X} if that quantity is finite and ∞
otherwise, and introduce T = [0,Θ]. In the absence of discontinuities, the overall payoff
is given by the sum of future discounted felicity, or

∫ Θ

0
exp(−ρit)ui(y(t), ai(t)) dt+ exp(−ρiΘ)βi(y(Θ)). (2)

For the payoffs to be consistent with the fundamentals of the model when strategies can
be discontinuous, we will require a richer description of the payoffs for situations in which
there is no classical solution to the dynamics given by equation (1). We thus postpone
the full payoff specification until Section 4.3.
The basic set-up is one of dynamic public investment. Adjusting the signs of the par-
tial derivatives of the felicity function, or modifying the dynamics, will allow the model
to be interpreted, for instance, as one of joint investment into a common project with
depreciating capital, or as a model of renewable resource exploitation.
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Figure 1:

3 Discontinuous strategies

We now discuss a simple example to motivate the contribution of this paper.

Consider the model of the previous section with N = 2, specifying ui(x, qi) = α0qi −
α1q

2
i /2 − γx2/2 and f(x, q) = q1 + q2 − δx. This is the canonical transboundary pollution

model (van der Ploeg and de Zeeuw, 1992; Dockner and Long, 1993).

We are interested in Markovian strategies, which determine players’ action schedules
according to ai(t) = ϕi(y(t)) for policy rules ϕi. A Markov-perfect Nash equilibrium is a
pair (ϕ1, ϕ2) such that each ϕi is a best response to ϕ−i, starting from any initial state
x ∈ X.6

Consider the situation that ϕ1 is the best response to ϕ2. To compute the payoffs given
by equation (2), we need to determine the trajectory y(t) induced by equation (1) and
the pair (ϕ1, ϕ2); that is, the solution to

ẏ(t) = ϕ1(y(t)) + ϕ2(y(t)) − δy(t), y(0) = x (3)

for any x ∈ X. By the Picard-Lindelöf theorem, a unique classical solution is guaranteed
to exist if the right-hand side fϕ(x) = f(x, ϕ1(x), ϕ2(x)) is Lipschitz continuous in x.

Lipschitz continuity of the best response ϕ1 however fails to obtain in general. Take for
instance ϕ2(x) = βx − x2/(1 + x2), which is clearly Lipschitz-continuous. Then player
1 faces an optimisation problem with concave-convex dynamics, the solution of which is
known, for an open set of parameters, to feature an “indifference” or “Skiba” point x̄
(Wagener, 2003). This is a discontinuity of the optimal policy function q1 = ϕ1(x) of
player 1, see Figure 1(a). The resulting dynamics have two locally stable steady states xs1
and xs2: which is optimally reached depends on the initial state. For x ≤ x̄, the optimal
trajectory satisfies y(t) → xs1, and for x ≥ x̄, y(t) → xs2. The Markovian best response
does not give rise to a unique solution trajectory at the initial point x = x̄. In other
words, there exist perfectly standard optimisation problems such that the best response

6We will be more precise in defining the equilibrium in the next section.
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to Lipschitz-continuous strategies does not exist in the space of Lipschitz-continuous
functions, and such that there are for some initial states multiple solution trajectories.

In the following we allow the players to use discontinuous strategies. More precisely, the
strategies can have a finite number of jump discontinuities. Everywhere else, they are
real analytic, and the strategies and their first derivatives have finite one-sided limits
when approaching a discontinuity. Both existence and uniqueness of solutions are now
problematic.

Two new situations arise. First, the ‘push-push’ situation, when fϕ− ≡ limx↑x̄ f
ϕ(x) > 0,

fϕ+ ≡ limx↓x̄ f
ϕ(x) < 0 and fϕ(x̄) ̸= 0. The natural solution in the neighbourhood of

x̄ is for the solution to reach x̄ in finite time t1 and remain there. However, there is
no classical solution which satisfies the dynamics (3) for almost all t > t1. This is for
instance realised by the strategies ϕi(x) = 1

2δ(x+ 1) for x ≤ 1 and ϕi(x) = 1
2δ(x− 1) for

x > 1, i = 1, 2.

The second new situation is ‘pull-pull’, for which fϕ− < 0 and fϕ+ > 0. This arises in
the situation of Figure 1(a). There are two classical solutions with initial state x̄. As
pull-pull is the mirror image of push-push, there is moreover a continuum of ‘irregular’
natural solutions, indexed by a parameter t1 ≥ 0, such that y(t) = x̄ for 0 ≤ t ≤ t1 and
y(t) ̸= x̄ for t > t1. These are illustrated in Figure 1(b).

In what follows, we specify strategy spaces Si, extend the notion of a solution to the
dynamics, adapting payoffs accordingly, so that best responses to opponents’ strategies
in S−i almost always exist and belong to Si.

Başar and Olsder (1982, Section 5.3) note that “non-Lipschitz strategies cannot easily be
put into a rigorous mathematical framework”. Typically, the complications arising from
the possibility of non-Lipschitz strategies are assumed away by either requiring strategies
to be Lipschitz continuous, or with an admissibility requirement that strategy profiles
which lead to pull-pull or push-push dynamics are not admitted. The latter approach
implies that the strategies player i can choose depend on the strategies chosen by the
other players. Our approach allows the space of admissible strategy profiles to simply
be the product set of individual strategy spaces, as is standard in game theory, while
allowing for non-Lipschitz strategies.

4 Markov-perfect Nash equilibrium

In this section, we describe the strategy spaces, set up an individual player’s optimisa-
tion problem and define Markovian best responses. Finally, we present the equilibrium
concept.
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4.1 Markovian strategies

The players use Markovian strategies ϕi : X → Qi, conditioning their actions on the cur-
rent state variable only, in the following precise sense. To every strategy is associated an
adapted covering X of X by a finite number of closed intervals that have non-empty and
mutually disjunct interiors; restricted to one of these covering intervals, the function ϕi is
real analytic on the interior of the interval. The restricted function and its derivative can
be continuously extended to the covering interval. Informally, a function ϕi is constructed
of sections of real analytic functions, but with the possibility of discontinuities where two
adjacent sections are pieced together; at such an interface the value of ϕi is not defined,
but one-sided derivatives exist. The set of such strategies is denoted Si.

In the remainder of this subsection, we fix an (N − 1)-tuple ϕ−i of Markovian strategies.
When using Markovian strategies, players set their actions as ai(t) = ϕi(y(t)). Given an
action schedule ai, and a strategy profile ϕ−i, the system evolves according to

ẏ(t) = fi(y(t), ai(t)) = f(y(t), ai(t), ϕ−i(y(t))), (4)

where we introduced the dynamics fi(x, qi) = f(x, qi, ϕ−i(x)) facing player i. In optimal
control problems, it can occur that the optimal policy is described by a discontinuous
Markovian policy rule. Hence, when there are several players present, the best response of
a player may be a discontinuous Markovian strategy. A description of the game therefore
has to take into account the possibility that discontinuous strategies are being played.

When Markovian strategies are not required to be continuous, fi may have discontinu-
ities, so that the evolution equation (4) may not have classical solutions, or may have
a multiplicity of solutions. In the remainder of this section we generalise our notion of
solution and describe how payoffs are adapted to that notion.

4.2 Coverings and dynamics

Fix an integer J > 0 and points xmin = x̄0 < x̄1 < x̄2 < . . . < x̄J−1 < x̄J = xmax:
the x̄j are the possible locations of the discontinuities. Introduce a covering X =
X (x̄0, x̄1, . . . , x̄J) = {Xj}Jj=1 of X, where the Xj are the closed intervals [x̄j−1, x̄j]. Then
the state space is the union of the Xj as X = ⋃J

j=1 Xj. For j ∈ {1, . . . , J−1}, the interface
Ij between Xj and Xj+1 is the intersection Xj ∩ Xj+1 = {x̄j}. The set I = ⋃J−1

j=1 Ij is the
union of all interfaces.

Let F n
X be the space of functions ϕ : X → Rn with interface points given by X . Precisely

ϕ ∈ F n
X if for each j, the restriction ϕj of ϕ to X̊j is a real analytic function and ϕj and

its derivative ϕ′
j can be extended continuously to the closed interval Xj. Two functions

ϕ, ψ ∈ F n
X are considered to be identical if they coincide on all open intervals X̊j. The

8



space F n is the union of all the F n
X for different number and locations of interfaces

F n =
∞⋃
J=1

⋃
x̄0<...<x̄J

F n
X (x̄0,...,x̄J ).

In terms of these spaces, the set of full strategy profiles is given as

S =
{
ϕ ∈ FN : ϕ(x) ∈ Q1 × . . .× QN for all x ∈ X

}
.

The strategy spaces Si for player i and S−i for all players except player i are defined
analogously, with Qi respectively Q−i replacing Q1 × . . .× QN . We also declare strategy
spaces SX = S ∩ FN

X with given interface points.

Definition 2. A Markovian strategy of player i is a function ϕi ∈ Si. A (full) strategy
profile is an N-tuple of Markovian strategies ϕ ≡ (ϕ1, . . . , ϕN) ∈ S . The strategy profile
of all players except player i is denoted ϕ−i = (ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕN) ∈ S−i.

The local dynamics for player i are given, for j ∈ {1, . . . , J} and x ∈ Xj, by

fi,j(x, qi,j) = f(x, qi,j, ϕ−i,j(x)),

where qi,j is the local action. Note that fi,j is conditional on ϕ−i,j; we do not explicitly
indicate this in order to avoid notational clutter.

We introduce Fi,j(x) = fi,j(x,Qi) for x ∈ Xj and Fi,j(x) = ∅ for x ∈ X\Xj. Then we
define the set-valued map Fi : X⇝ R in terms of the Fi,j(x) as

Fi(x) = co
 J⋃
j=1

Fi,j(x)
 .

Using Fi we can formulate the announced extension of our original notion of trajectory.

Definition 3. Given a strategy profile ϕ−i ∈ S−i and an state x ∈ X, a (state) trajectory
of Fi with initial state x is an absolutely continuous function y : T → X such that y(0) = x

and ẏ(t) ∈ Fi(y(t)) for almost all t ∈ T.

Formulating the dynamics in terms of Fi hides the actions. We give an equivalent for-
mulation that shows them. The indicator function 1S of a set S is given as 1S(x) = 1 if
x ∈ S and 1S(x) = 0 if x ̸∈ S.

Definition 4. The dynamics for player i are a function fi : X × QJi → R given as

fi(x, qi) =


∑J
j=1 1Xj

(x)fi,j(x, qi,j) if x ∈ X\I,
µi,j(qi)fi,j,− + (1 − µi,j(qi))fi,j,+ if x = x̄j ∈ I,

where (fi,j,−, fi,j,+) = (fi,j(x̄j, qi,j), fi,j+1(x̄j, qi,j+1)) and µi,j(qi) = fi,j,+/(fi,j,+ − fi,j,−) if
fi,j,+fi,j,− ≤ 0 and (fi,j,+, fi,j,−) ̸= (0, 0), and µi,j(qi) = 0 otherwise.
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Note that µi,j(qi) is chosen such that fi(x̄j, qi) = 0 for the push-push situation fi,j,− ≥ 0
and fi,j,+ ≤ 0 as well as for the pull-pull situation fi,j,− ≤ 0 and fi,j,+ ≥ 0.

Definition 5. An action schedule of player i is a vector-valued function

ai(t) = (ai,1(t), . . . , ai,J(t)),

with ai,j ∈ L∞(0,∞;Qi) the local action schedules. The set of action schedules of player
i is denoted Ai. If y is a state trajectory such that

ẏ(t) = fi(y(t), ai(t)) (5)

for almost all t ∈ T, then (y, ai) is called a trajectory–action pair.

The local action schedule ai,j is the active action schedule if the trajectory y is in the
relevant part Xj of the state space.

The next proposition is a selection result stating that every state trajectory is generated
by some action schedule. It is a direct corollary of Barles et al. (2013, Theorem 2.1).

Proposition 4.1. If y is a state trajectory, there exists an action schedule ai such that
(y, ai) is a trajectory–action pair.

The following result is a converse to Proposition 4.1: every action schedule generates a
trajectory. The argument is straightforward and therefore omitted.

Proposition 4.2. For every ϕ−i ∈ S−i, x ∈ X, and ai ∈ Ai, there is a state trajectory
y with initial state x such that (y, ai) is a trajectory–action pair.

Specifying an action schedule and an initial state does not uniquely determine a state
evolution: if the initial state is at an interface, and the two active actions are pulling
the state away from the interface, then both a trajectory that remains at the interface
for a positive amount of time and a trajectory that veers away immediately are valid
state trajectories. Such a pull-pull situation that goes on for a positive amount of time
is inherently unstable and would be immediately resolved by the slightest perturbation.
We call trajectories that do not display this behaviour ‘regular’.

Definition 6. Let (y, ai) be a trajectory–action pair. If for almost all t ∈ T such that
y(t) ∈ Ij for some j ∈ {1, . . . , J − 1} we have

fi,j(y(t), ai,j(t)) ≥ 0 and fi,j+1(y(t), ai,j+1(t)) ≤ 0, (6)

then the trajectory–action pair is called regular.

Given x, ai and ϕ−i, the set of all trajectories y such that (y, ai) is a trajectory–action
pair, respectively a regular trajectory–action pair, is denoted Yx,ai,ϕ−i

, respectively Y
reg
x,ai,ϕ−i

.
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4.3 Payoffs and boundary conditions

Analogously to the local dynamics, we define for j ∈ {1, . . . , J} and x ∈ Xj the local
flow payoffs ui,j(x, qi,j) = ui(x, qi,j), which are equal to the flow payoffs if x ∈ X̊j. At an
interface, the payoffs are given by a weighted average of the left hand and the right hand
payoff, where the weights are the same as for the dynamics.

Definition 7. The flow payoff for player i is a function ui : X × QJi → R defined as

ui(x, qi) =


∑J
j=1 1Xj

(x)ui,j(x, qi,j) if x ∈ X\I,
µi,j(qi)ui,j(x, qi,j) + (1 − µi,j(qi))ui,j+1(x, qi,j+1) if x = x̄j ∈ I.

Total welfare is integrated discounted felicity:

Definition 8. Given a trajectory–action pair (y, ai) with initial state x, the total payoff
from the pair for player i is given by

Ui(y, ai) =
∫ Θ

0
exp(−ρit)ui(y(t), ai(t)) dt+ exp(−ρiΘ)βi(y(Θ)).

The value at the initial state x of the profile ϕ−i to player i is

Vi(x) = sup
Ai

sup
Yx,ai,ϕ−i

Ui(y, ai)

where the first supremum is taken over the action schedules ai, and the second over the
set of trajectories y for player i, given x, ai, and ϕ−i.

The regular value V reg
i is defined analogously, with the set Yx,ai,ϕ−i

of trajectories replaced
by the set Yreg

x,ai,ϕ−i
of regular trajectories.

An action schedule ai for which the supremum is realised is called a best response of player
i. The set of all trajectories, respectively all regular trajectories, that are associated to a
best response is denoted Y∗

x,ϕ−i
, respectively Y

reg,∗
x,ϕ−i

.

As a consequence of Proposition 4.2, the value Vi is finite for all x. An important technical
result will be to show that the condition (ui)x < 0 implies that Vi and V reg

i are identical.

4.4 Markovian best responses and MPE

We next consider which trajectory–action pairs are compatible with Markov strategy
profiles. Let therefore a full strategy profile ϕ be given, as well as a covering X adapted
to it. The evolution equation reads then as

ẏ(t) = f(y(t), ϕ(y(t))) ≡ fϕ(y(t)). (7)
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As before, solutions are not well-defined at discontinuities of fϕ. A solution, or state tra-
jectory, of (7) is therefore defined as an absolutely continuous function y(t) that satisfies
the differential inclusion

ẏ(t) ∈ F ϕ(y(t)) (8)

almost everywhere, where the set-valued map F ϕ is given as F ϕ(x) = {fϕ(x)} if x is
not an interface and F ϕ(x) = co{fϕj (x), fϕj+1(x)} for x = x̄j. The differential inclusion
reduces to (7) if y(t) is not at an interface point, whereas at an interface x = x̄j we have

ẏ(t) = µϕi,j(x)f(y(t), ϕ1,j(x), . . . , ϕN,j(x))
+ (1 − µϕi,j(x))f(y(t), ϕ1,j+1(x), . . . , ϕN,j+1(x)),

where we have introduced the feedback weights µϕi,j(x) = µi,j(ϕi(x)).

The standard feedback requirement

ai,j(t) = ϕi,j(y(t)) (9)

for all j ∈ {1, . . . , J}, and for almost all t ∈ T such that y(t) ∈ Xj, is sufficient to ensure
that a trajectory–action (y, ai) pair of (5) has the property that y is a state trajectory of
(7).

Definition 9. Given an initial state x, a full strategy profile ϕ, and a state trajectory
y of (7) with y(0) = x, a Markovian action schedule ai = aϕi induced by ϕ is an action
schedule such that (9) holds almost everywhere. The set of Markovian action schedules
for player i, initial state x, and induced by ϕ is denoted MAi,x,ϕ.

A full strategy profile ϕ and an initial state x uniquely specify the resulting state trajec-
tory, except at pull-pull interfaces Ij where fi,j(x, ϕi,j(x)) ≤ 0 and fi,j+1(x, ϕi,j+1(x)) ≥ 0,
with at least one of the inequalities strict. At such points, there are infinitely many tra-
jectories that remain at the interface for an initial time interval of positive length, before
moving either to the right or to the left. Even restricting to regular trajectories does
not fully eliminate the multiplicity: if both inequalities are strict, there is one regular
trajectory that moves immediately to the right, and another that moves immediately to
the left.

We now define player i’s payoffs and optimal trajectories when restricted to Markovian
action schedules.

Definition 10. Given an initial state x ∈ X and a strategy profile ϕ−i ∈ S−i of the
remaining players, the value of the strategy ϕi to player i is

V ϕ
i (x) = sup

MAi,x,ϕ

sup
Y

x,a
ϕ
i

,ϕ−i

U(y, aϕi ). (10)
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Player i’s best response is Markovian if, for any initial state x, the player cannot do better
than choose a Markovian action schedule:

Definition 11. A Markovian best response by player i to a strategy profile ϕ−i is a
strategy ϕi such that Vi(x) = V ϕ

i (x) for all x ∈ X.

Given an initial state x, a strategy profile ϕ−i, and a Markovian best response ϕi, a
Markovian best response trajectory for player i is a trajectory y with y(0) = x, such that,
if aϕi is the action schedule induced by ϕ, the pair (y, aϕi ) realises the supremum in (10).
The set of Markovian best response trajectories for player i is denoted by MT∗

i,x,ϕ.

Finally, we define the game and our equilibrium concept.

Definition 12. The tuple Γ = (N,X,Q1, . . . ,QN , f, u1, . . . , uN , ρ1, . . . , ρN) defines a dif-
ferential game. If Qi = Qj, ui = uj and ρi = ρj for all i, j, the game is symmetric.

Definition 13. A stationary Markov-perfect Nash equilibrium, or MPE, of the differ-
ential game Γ is a strategy profile ϕ ∈ S such that, first, for any player i, the strategy
ϕi is a Markovian best response to ϕ−i and, second, the set of Markovian equilibrium
trajectories Y∗

x,ϕ = ⋂N
i=1 Y

∗
i,x,ϕ−i

∩ MT∗
i,x,ϕ is nonempty for every x ∈ X.

An MPE is continuous if all ϕi are continuous; otherwise it is discontinuous. A symmet-
ric MPE is an MPE of a symmetric differential game such that ϕi = ϕj for all i, j.

The set of equilibrium trajectories Y∗
x,ϕ may contain multiple elements. This gives rise

to a problem of trajectory selection, akin to equilibrium selection: different players could
choose different trajectories that are consistent with the same strategy profile ϕ. We
sidestep this question by assuming that the players are able to coordinate on a joint best
response trajectory, which indeed always exists for a symmetric MPE.

5 Results

This section states the main results of our article. The first result shows the well-
behavedness of the best-response correspondence for almost all strategy profiles. We
start by making precise what we mean “almost all”.

Let S be a subset of a complete metric linear space V 7. The set S is nowhere dense if its
complement is open and dense; it is shy if there exists a Borel set S ′ containing S and a

7The space F n
X is a complete metric linear space: a metric is constructed as follows. For a compact

set K ⊂ Xj , let |ϕ|K = inf
{
C : maxx∈K |ϕ(k)(x)| ≤ C1+kk!

}
. Let moreover |ϕ|j,∞ = maxx∈Xj

|ϕj(x)|
be the max-norm on Xj , where ϕj is the extension to Xj of the restriction of ϕ to X̊j . Let Kn,j =
[x̄j−1 + 1/n, x̄j − 1/n]. Introduce the distance

dj(ϕ, ψ) = max
{

|ϕ− ψ|j,∞, |ϕ′ − ψ′|j,∞,

∞∑
n=1

2−n |ϕ− ψ|Kn,j

1 + |ϕ− ψ|Kn,j

}
.

Then d(ϕ, ψ) = max1≤j≤J dj(ϕ, ψ) is a metric on F n
X , and F n

X is complete with respect to d.
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measure on V that takes a finite value on some compact set, such that meas(S ′ − v) = 0
for all v ∈ V . Shy sets generalise measure zero sets: if V is finite dimensional, a set is
shy if and only if its Lebesgue measure is 0 (Hunt et al., 1992).

Theorem 1. Let Γ be a differential game for which Assumptions 1, 2, and 3 hold. For
every covering X there is a nowhere dense and shy set E ⊂ SX ,−i such that Markovian
best response mapping Bi : SX ,−i\E → Si is well-defined: for every strategy profile
ϕ−i ∈ SX ,−i\E , there is exactly one Markovian best response ϕi ∈ Si by player i.

The theorem is proved in Appendices A–D. Appendix A shows that the value function
Vi of player i is non-increasing. Appendix B introduces the notion of viscosity solution
to the Hamilton–Jacobi–Bellman equation of player i. In Appendix C, we show first that
the value function satisfies a number of additional properties: it is left continuous and
continuous everywhere except for a finite number of points which we characterise. Then
we show that the value function is the unique viscosity solution to the Hamilton–Jacobi–
Bellman equation in the class of functions with these properties. Appendix D shows that
Vi is differentiable on a dense set; using centre manifold theory, we strengthen this to
piecewise real analytic. From this the result follows.

The theorem shows that our specification of a differential game, and the Markovian
strategy space SX ,−i, are well-formed in the sense that each player will have a best
response in Si to any profile of the other players’ strategies in the complement of the
shy set E . Our specification thus connects the literature on differential games to the
standard notion of pure-strategy Nash equilibria in static games, with the ‘actions’ being
policy rules ϕi. The payoffs for each player are then defined for all initial states x—this
is just the value function—and, for any i, a strategy is preferred if it yields a higher
payoff for every initial state. The payoffs and best responses in this policy rule game are
well-defined, except in the shy set E .

Another implication of the theorem is that, while we had to set up in Section 4 the
rather convoluted technical apparatus for dealing with potentially non-Markovian best
responses, ultimately the best responses turn out to be Markovian, so that for applications
it suffices to rely on the simpler Markovian best responses and the associated Filippov
dynamics (8).

Explicit conditions can be formulated for a strategy profile ϕ−i to be in the domain
SX ,−i\E of the best response map: these are of evident importance for applying Theorem
1. One such condition is given in Appendix D as Corollary 1.

As the best response is piecewise analytic, it can be characterised by classical conditions
in the regions of analyticity, and by compatibility conditions at the interfaces. The second
main result of this article, Theorem 2, formulates such conditions in terms of the value
V ϕ
i of strategy ϕi to player i, which is the payoff to player i if the strategy profile ϕ is

played. Similarly fϕj (x) are the local dynamics under the profile ϕ.
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Theorem 2. Assume the same conditions hold as for Theorem 1, and let E be the shy
sets given by that theorem. Let ϕ ∈ S be such that, for X a covering adapted to ϕ−i, we
have ϕ−i ∈ SX ,−i\E .

Then ϕi = B(ϕ−i) if and only if the following hold.

(i) Maximum principle: If x ∈ X̊j and V ϕ
i is differentiable at x, then ϕi(x) maximises

qi 7→ ui(x, qi) + (V ϕ
i )′(x)fi,j(x, qi) on Q.

(ii) Monotonicity: V ϕ
i is decreasing and left-continuous.

(iii) Boundary values: If x = x̄0, either V ϕ
i (x) ≥ βi(x) or fi,1(x, q) ≥ 0 for all q ∈ Q; if

x = x̄J , either V ϕ
i (x) ≥ βi(x) or fi,J(x, q) ≤ 0 for all q ∈ Q.

(iv) Value discontinuities: If V ϕ
i is not continuous at x, then x = x̄j ∈ I, fϕj (x) ≤ 0 and

fi,j+1(x, q) ≥ 0 for all q ∈ Q.
(v) Value at interface steady states: For x = x̄j ∈ I, let

C0,j = {(qi,j, qi,j+1) : µi,j(qi)fi,j(x, qi,j) + (1 − µi,j(qi))fi,j+1(x, qi,j+1) = 0} .

Then ρV ϕ
i (x) ≥ maxC0,j

[µi,j(qi)ui(x, qi,j) + (1 − µi,j(qi))ui(x, qi,j+1)].
(vi) Regularity at strong push–push steady states: If x = x̄j ∈ I is such that

lim
z↑x

fϕi,j(z) > 0 > lim
z↓x

fϕi,j+1(z),

then V ϕ
i is differentiable at x.

The conditions can be interpreted. Condition (i) is standard. Condition (ii) follows from
the fact that the stock is a public bad, and says that there are no strategic incentives
so perverse as to make the stock locally a ‘good’ for player i. Suppose this were the
case and, for intuition, consider flow felicity functions without a bliss point in terms of
the control variable. Player i would set the maximal emission rate to grow the stock
as fast as possible, at least until the value peaks. But then their flow utility will have
been decreasing, as emissions have been constant but damages from the stock have been
increasing.

Condition (iii) states that, on the edge of the state space, either a player can exit and
take the associated payoff, or exit is impossible.

The remaining conditions place restrictions on the best response where the other players’
dynamics are discontinuous. Condition (iv) says that a discontinuity in value is only
possible at points where at least one of the other players’ strategies is discontinuous, in
such a way that player i is unable to control the dynamics back to the region of low stock
if they ever end up on the high side of the discontinuity. Condition (ii) then implies the
value can only have a downward (not upward) discontinuity at such a point.

Condition (v) ensures that the value at an interface point is at least the value that can
be obtained by stabilising the dynamics at that point. Finally, Condition (vi) follows
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from the fact that value is continuous. If a player’s best response is to be pushed strictly
towards a stabilisation point, they end up at the same point whether approaching from
the left or the right, and very close to the stabilisation point the continuity of the payoffs
implies that the marginal value of the stock does not depend on the direction of approach.

The proof of Theorem 2 again uses viscosity theory, and is detailed in Appendix E. It
shows that the HJB equation of player i has the player’s value function as unique viscosity
solution. The necessary conditions placed on player i’s strategy ϕi then ensure that the
function V ϕ

i is a viscosity solution of the HJB equation, and therefore equals the value
function Vi. This then establishes that ϕi is a Markovian best response.
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Appendix

A Singular and regular value functions are identical

As the remainder of the article treats the dynamic optimisation problem of a single
player, given the strategic choices of the other players, we drop the index i, unless we are
explicitly referring to the game. Also we assume throughout that Assumptions 1, 2, and
3 hold, without explicitly mentioning the fact.

In this section, we shall show that the value function is decreasing.

A.1 Notation

If S ⊂ R is a measurable subset, |S| denotes the Lebesgue measure of S. For bounded
continuous functions h : S → R, we set ∥h∥∞ = supz∈S |h(z)|.

We have that the local dynamics fj and the local payoffs uj are bounded, real analytic
on X̊j, and can be continuously extended, together with their derivatives, to the closed
interval Xj. The global dynamics f and payoffs u equal their local counterparts fj and
uj on X̊j and appropriately weighted convex combinations of fj and fj+1, respectively uj
and uj+1, on interfaces Ij. We therefore have ∥f∥∞ = ∥f∥∞ and ∥u∥∞ = ∥u∥∞.

A.2 Existence of optimal action schedules

Proposition A.1. For every x ∈ X, there is a trajectory–action pair (y∗, a∗) such that
y∗(0) = x and V (x) = U(y∗, a∗).
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The proof of this proposition is given in Appendix F.1; it follows from Assumption 2.

A.3 Equality of singular and regular value

A sufficient condition for uniqueness of solutions to the Hamilton–Jacobi–Bellman equa-
tion is equality of value and regular value function (Barles et al., 2013, 2014).

The object of this section is to show this equality for our context. Our first result is a
consequence of the assumption ux < 0: given a fixed emission strategy, payoffs decrease
with increasing initial pollution stock levels.

Proposition A.2. Let (y, a) and (ỹ, a) be trajectory–action pairs with the same action
schedule and initial points x, x̃ ∈ X, x̃ < x. If ỹ(t) ≤ y(t) for all t ∈ T, then U(ỹ, a) >
U(y, a).

Proof. This follows from the facts that ỹ(t) < y(t) in a neighbourhood of t = 0 and that
u(x, q, λ) is decreasing in x ∈ X.

This idea is used to show that the value function decreases; details are given in Section
F.2.

Proposition A.3. The value function is decreasing.

To prove equality of value and regular value function, we are going to exhibit for every
trajectory–action pair a regular trajectory–action pair generating an outcome that is at
least as good. First we show that such a regular trajectory either almost never is at its
initial state, or it is there always.

Proposition A.4. Let (y, a) be a trajectory–action pair with initial state x. Then there
is a trajectory–action pair (ỹ, ã) such that U(ỹ, ã) ≥ U(y, a) and either ỹ(t) > x for all
t ∈ T, or ỹ(t) < x for all t ∈ T, or ỹ(t) = x and ã(t) constant for all t ∈ T.

The proof is given in Section F.3.

If a trajectory–action pair is always at an interface steady state where the regularity
condition (6) is not satisfied, that is, at a ‘pull-pull’ steady state in the terminology of
Barles et al. (2013), there is a second trajectory–action pair with the same action schedule
and the same initial condition such that the trajectory is always to the left of that steady
state, and such that the pair has a higher total payoff. This is the heart of the following
result.

Proposition A.5. For every non-regular trajectory–action pair there is a regular trajec-
tory–action pair with a higher total payoff.

The proof consists in replacing all singular pull–pull trajectory segments by regular tra-
jectories going to the left. The details are given in Section F.4.
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Proposition A.6. The value function V and the regular value function V reg are equal.

Proof. Take x ∈ X and find a trajectory–action pair (y, a) such that y(0) = x and
V (x) = U(y, a). By Proposition A.5 there is a regular trajectory–action pair (ỹ, ã) such
that ỹ(0) = x and U(ỹ, ã) ≥ U(y, a). We have that V (x) = U(y, a) ≤ U(ỹ, ã) ≤ V reg(x) ≤
V (x), and hence V (x) = V reg(x).

B Viscosity solutions

The value function of the optimisation problem is the unique viscosity solution of a
Hamilton–Jacobi–Bellman (HJB) equation. We introduce the appropriate notions.

For j ∈ {1, . . . , J}, x ∈ Xj and p ∈ R, the local Hamilton function is

Hj(x, p) = max
q∈Q

[u(x, q) + pfj(x, q)] .

Assumption 2 implies that the function q 7→ u(x, q) + pfj(x, q) has a unique maximiser
q∗ = q∗

j (x, p) in Q. If q∗ ∈ Q̊, then uq(x, q∗) + p(fj)q(x, q∗) = 0.

We also define local Hamilton functions H0 and HJ+1 at the boundary. For this, we
introduce functions f0(x, q), fJ+1(x, q) and n(x) as follows. If x = xmin, we set f0(x, q) =
f1(x, q) and n(x) = −1; if x = xmax, we set fJ+1(x, q) = fJ(x, q) and n(x) = 1. If for
x ∈ ∂X and j ∈ {0, J + 1} we have n(x)fj(x, q) > 0 for some q ∈ Q, then exit from
X is possible at x and we set Hj(x, p) = ρβ(x). If exit is not possible at x, we set
Hj(x, p) = −∞.

The Hamilton function of the optimisation problem is

H(x, p) =

Hj(x, p) x ∈ X̊j, j ∈ {1, . . . , J},
max{Hj(x, p), Hj+1(x, p)} x ∈ Ij, j ∈ {0, . . . , J}.

Let C0,j = {q : f(x̄j, q) = 0} be the set of actions stabilising interface point x̄j ∈ I. The
interface Hamilton function is then given as

HI
j (x̄j) = max

q∈C0,j

[u(x̄j, q)] .

We set HI
j (x̄j) = −∞ if the set C0,j is empty.

Let Z ⊂ R. For a function W : Z → R, the upper semi-continuous envelope is

W ∗(x) = lim
δ↓0

sup{W (z) : z ∈ Z, |z − x| ≤ δ}.

The lower semi-continuous envelope W∗ is defined analogously, with inf replacing sup.
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We have that H∗(x, p) = H(x, p) for all (x, p), while

H∗(x, p) =

Hj(x, p) x ∈ X̊j, j ∈ {1, . . . , J},
min{Hj(x, p), Hj+1(x, p)} x ∈ Ij, j ∈ {0, . . . , J}.

The superdifferential D+W (x) of a bounded upper semicontinuous function W : Z → R
at a point x is the set

D+W (x) =

p ∈ R : lim sup
z→x
z∈Z

W (z) −W (x) − p(z − x)
|x− z|

≤ 0

 .
The subdifferential D−W (x) of a bounded lower semicontinuous function W on Z at x
is defined similarly, with sup replaced by inf and ≤ by ≥ (see e.g. Bardi and Capuzzo-
Dolcetta, 2008, Chapter V). We have that p ∈ D+W (x) if and only if there is a continu-
ously differentiable function ψ such that ψ′(x) = p and W −ψ restricted to X has a local
maximum at x. An analogous characterisation exists for subdifferentials.

Definition 14. The function W : X → R is a viscosity supersolution of the Hamilton–
Jacobi–Bellman equation

ρW (x) − H(x,W ′(x)) = 0 (11)

if for all x ∈ X and all p ∈ D−W∗(x) we have

ρW∗(x) − H∗(x, p) ≥ 0, (12)

and if for all j ∈ {1, . . . , J − 1} and x ∈ Ij, we have

ρW∗(x) −HI(x) ≥ 0. (13)

The function W is a viscosity subsolution of (11) if for all x ∈ X and all p ∈ D+W ∗(x)

ρW ∗(x) − H∗(x, p) ≤ 0. (14)

Finally, W is a viscosity solution of (11) if it is both a supersolution and a subsolution.

Note that (13) is only a condition for being a supersolution, not a subsolution.

Theorem B.1. The value function V is a viscosity solution of the Hamilton–Jacobi–
Bellman equation (11).

Proof. The statement is local, and the proof is a combination of known results. See
Proposition III.2.8 of Bardi and Capuzzo-Dolcetta (2008) for (12) and (14) if x ∈ X̊j;
Theorem 2.5 of Barles et al. (2013) for the case that x ∈ Ij, j ∈ {1, . . . , J − 1}, as well
as for (13); and Theorem V.4.13 of Bardi and Capuzzo-Dolcetta (2008) for the boundary
case x ∈ Ij if j ∈ {0, J}.
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C Unicity of solutions

A central question is whether the dynamics are controllable at an interface.

Definition 15. The dynamics are left (right) controllable at a point x̄j ∈ I∪∂X, if there
is an open interval I containing 0 such that

I ⊂ fj(x̄j,Q)
(
I ⊂ fj+1(x̄j,Q)

)
.

If the dynamics are both left and right controllable at x̄j, they are controllable.

If the dynamics are not controllable at x̄j, we introduce the closed sets Xj,− = {x ∈ X :
x ≤ x̄j} and Xj,+ = {x ∈ X : x ≥ x̄j}, and we decompose the optimisation problem into
two coupled optimisation problems on Xj,− and Xj,+ respectively.

Following Barles et al. (2014), we introduce the state-constrained value function V sc
− and

V sc
+ for, respectively, the optimisation problems where the state restriction y(t) ∈ Xj,−,

respectively y(t) ∈ Xj,+, is required to hold for all t.

Additionally, we introduce V sc
I (x̄j) for the state-constrained value function of the optimi-

sation problem with the restriction y(t) = x̄j for all t, where only action schedules that
satisfy f(x̄j, a) = 0 are admitted. Finally for k ∈ {−, I,+} we set V sc

k = −∞ if there is
no trajectory starting at x that satisfies the particular state constraint.

The following result establishes necessary and sufficient conditions for the continuity of
the value function interfaces. To formulate it, we introduce the notions of one-sided
semi-repellers and semi-attractors.

Definition 16. A point x̄j ∈ I ∪ ∂X is a left semi-repeller if fj(x̄j, q) ≤ 0 for all q ∈ Q,
and a right semi-repeller if fj+1(x̄j, q) ≥ 0 for all q ∈ Q.

Likewise, x̄j ∈ I ∪ ∂X is a left semi-attractor if fj(x̄j, q) ≥ 0 for all q ∈ Q, and a right
semi-attractor if fj+1(x̄j, q) ≤ 0 for all q ∈ Q.

Proposition C.1. Let x̄j ∈ I ∪ ∂X and V the value function. Then the following hold.

(i) V (x̄j) = max{V sc
− (x̄j), V sc

I (x̄j), V sc
+ (x̄j)}.

(ii) If the dynamics are left (right) controllable at x̄j, then V is left (right) Lipschitz
continuous in a left (right) neighbourhood of x̄j.

(iii) If x̄j is a right semi-attractor, then V is right continuous at x̄j and we have V (x̄j) =
max{V sc

− (x̄j), V sc
I (x̄j)}.

(iv) If x̄j is a left semi-attractor, then V is left continuous at x̄j and we have V (x̄j) =
max{V sc

I (x̄j), V sc
+ (x̄j)}.

(v) If x̄j is a left semi-repeller, then V is left continuous at x̄j and V (x̄j) = V sc
− (x̄j).

(vi) The value function V is not continuous at x̄j if and only if x̄j is a right semi-repeller
and V sc

+ (x̄j) < max{V sc
− (x̄j), V sc

I (x̄j)}.
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The asymmetry in the result is a consequence of the fact that ux < 0. The proof of this
result is given in Appendix F.5.

The result motivates the following definition.

Definition 17. Let X be a covering of X, and let f be a dynamics defined on X. The
class G consists of functions W : X → R such that

(i) W is decreasing;
(ii) W is left continuous everywhere;

(iii) W is continuous on X̊j for all j ∈ {1, . . . , J};
(iv) if W is not continuous at x̄j, then j ∈ {1, . . . , J − 1} and this point is a right

semi-repeller under the dynamics f .

The following result is central.

Theorem C.1. The value function V is the unique viscosity solution of the Hamilton–
Jacobi–Bellman equation (11) in the class G .

The theorem is a consequence of the following comparison result.

Proposition C.2. Let v ∈ G and w ∈ G be respectively a supersolution and a subsolution
of (11). Then v(x) ≥ w(x) for all x ∈ X where v and w are continuous.

To prove this proposition, we need a number of technical results. The first gives the
subsolution version of condition (13) for supersolutions. The subsolution version either
holds, or an alternative property must be true. The result is adapted from Barles et al.
(2013, Theorem 3.3): its proof is given in Section F.6.

Proposition C.3. Let w ∈ G be a subsolution of (11) and x̄ = x̄j ∈ I.

Then either of the following two statements holds.

A. ρw(x̄) −HI(x̄) ≤ 0
B. (i) If w is continuous at x̄, then there is a constant η > 0, an index ℓ ∈ {j, j + 1},

and a sequence xk → x̄ such that xk ∈ Xℓ for all k, w(xk) → w(x̄) as k → ∞,
and for each k there is a trajectory–action pair (yk, ak) such that yk(0) = xk,
yk(t) ∈ Xℓ for all t ∈ [0, η] and

w(xk) ≤
∫ η

0
u(yk(t), ak(t)) exp(−ρt) dt+ w(yk(η)) exp(−ρη)

(ii) If w is not continuous at x̄, the previous statement holds with ℓ = j.

The next result, proved in Section F.7, settles the continuous case of Proposition C.2.

Proposition C.4. Let v ∈ G be a continuous viscosity supersolution, and w ∈ G a
continuous viscosity subsolution of the HJB equation (11). Then v ≥ w in X.
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For the discontinuous case, we need the following technical result. Its proof is a standard
viscosity test function argument, given in Section F.8.

Proposition C.5. Let j ∈ {1, . . . , J − 1}, Xj,+ = {x ∈ X : x ≥ x̄j} and v, w ∈ G

such that v and w are respectively a supersolution and a subsolution of (11) on the set
Xj,+\{x̄j}, and either v or w is discontinuous at x̄j. Then v and w are also, respectively,
a supersolution and a subsolution of (11) on Xj,+.

Proof of Proposition C.2. The proof proceeds by induction.

Let xmin ≤ x̂1 < x̂2 < . . . < x̂L−1 < xmax be the right semi-repellers of the dynamics;
then x̂ℓ = x̄iℓ for 0 ≤ i0 < . . . < iℓ < J . Introduce for ℓ = 1, 2, . . . , L the intervals
X(ℓ) = [x̂L−ℓ, xmax], as well as extensions vℓ, wℓ to X(ℓ) of the respective restrictions of
v and w to X(ℓ)\{x̂L−ℓ} such that vℓ and wℓ are right continuous at x̂L−ℓ: as v, w ∈ G

these extensions are well-defined and unique. Proposition C.5 implies that vℓ and wℓ are
respectively a supersolution and a subsolution of (11) on X(ℓ).

The induction hypothesis is that the inequality vℓ(x) ≥ wℓ(x) holds for all x ∈ X(ℓ) where
vℓ and wℓ are continuous.

The functions v1 and w1 are continuous on X(1). Proposition C.4 then implies the induc-
tion hypothesis for ℓ = 1.

Assuming that the hypothesis is true for ℓ ≥ 1, consider ∆ℓ+1 = wℓ+1 − vℓ+1. By
the hypothesis, ∆ℓ+1 ≤ 0 on X(ℓ)\{x̂L−ℓ}. If ∆ℓ+1 ≤ 0 on X(ℓ+1), there is nothing left
to prove. If not, then ∆ℓ+1 takes a positive maximum M = ∆ℓ+1(x̄) > 0 at a point
x̄ ∈ [x̂L−(ℓ+1), x̂L−ℓ], as the interval is compact and ∆ℓ+1 restricted to this interval is
continuous.

If x̄ ̸= x̂L−ℓ, the same arguments used in the proof of Proposition C.4 can be used to
derive a contradiction to the statement that M > 0. Hence we may assume that x̄ = x̂L−ℓ.
As this is an interface point, Proposition C.3, on which Proposition C.4 is based, applies.

If vℓ+1 and wℓ+1 are continuous at x̄, the argument of Proposition C.4 for interface points
again produces a contradiction.

If vℓ+1 is discontinuous at x̄, but wℓ+1 is not, we have that M = wℓ+1(x̄) − vℓ+1(x̄) > 0
and, since ∆ℓ+1 ≤ 0 if x > x̄, also that limx↓x̄(wℓ+1(x) − vℓ+1(x)) ≤ 0, which implies that
vℓ+1(x̄) < limx↓x̄ vℓ+1(x̄). But then vℓ+1 cannot be an element of G .

Finally, if wℓ+1 is discontinuous at x̄, the argument of Proposition C.4 for interface points
holds again, as in Alternative B the sequence elements xk satisfy xk ≤ x̄ for all k.

We conclude that the induction hypothesis also holds for ℓ + 1, and therefore for all
1 ≤ ℓ ≤ L. This completes the proof.

Proof of Theorem C.1. By Theorem B.1, V is a viscosity solution to (11), and according
to Proposition C.1, it is in G .
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Assume W ∈ G is another viscosity solution to (11). As V is a supersolution and W

is a subsolution, by Proposition C.2 we have that V ≥ W at all points in X where V
and W are continuous. Interchanging V and W yields also that V ≤ W at all points of
continuity. As V and W are both left continuous everywhere, this shows that V = W for
all x ∈ X.

D Existence of the best response map

This section shows that the best response map ϕi = Bi(ϕ−i) is well-defined for all profiles
ϕ−i with adapted covering X that are in the complement of a set EX ,−i, and it shows
that the latter set is ‘shy’—small in a topological as well as a measure-theoretical sense.
The map Bi gives the Markovian best response of player i to the strategy profile ϕ−i of
the other players. That is, given the profile ϕ−i, the strategy ϕi is the feedback strategy
such that for every initial state the Markovian action schedule induced by ϕi maximises
the total payoff Ui, given the dynamics fi.

The construction starts with a general profile ϕ−i ∈ S−i. In the first step the value
function of player i is shown to be differentiable on a dense set of points. The second
step improves the regularity: the value function has to be real analytic on non-constant
optimal state orbits, and compact intervals not containing interface points intersect with
only finitely many of these orbits. Restricted to such a compact interval, the set of points
at which the value function is not real analytic is shown to be discrete, hence finite. The
associated strategy can fail to be in Si only if the points of non-analyticity accumulate
on an interface point: the final step of the proof is to show that this only occurs for a shy
set of profiles ϕ−i.

D.1 Notations

In this section we work in a fixed interval Xj. We therefore fix j ∈ {1, . . . , J} and drop
this index for the sake of readability. Hence, in the whole section, unless announced
differently, f(x, q) stands for fj(x, qj), which in turn stands for fi,j(x, qi,j), etc.

We introduce a number of auxiliary quantities. The functions pℓ, pu : X → R are given as

pℓ(x) = −uq(x, qℓ)/fq(x, qℓ), pu(x) = −uq(x, qu)/fq(x, qu).

We have sets

Pℓ = {(x, p) : p ≤ pℓ(x)}, Pu = {(x, p) : p ≥ pu(x)}, and Pint = X × R\(Pℓ ∪ Pu).

With these definitions, the maximiser q = q∗(x, p) of u(x, q)+pf(x, q) equals qℓ if (x, p) ∈
Pℓ, qu if (x, p) ∈ Pu, and it takes a value in Q̊ if (x, p) ∈ Pint.
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The boundaries of these sets are the switching manifolds

Sℓ = {(x, p) : p = pℓ(x)}, Su = {(x, p) : p = pu(x)}, S = Sℓ ∪ Su.

D.2 Differentiability of the value function in a dense set

We partition the interior of X into three sets XL(0), XM and XN , based on whether H(x, p)
has a single minimiser with respect to p or not, and, if not, whether H(x, p) = ρV (x) is
locally solvable for p or not.

Definition 18. Let c ≥ 0 and k = 0, 1, 2 . . .. Introduce the sets

(i) Dx = {x : V is k times differentiable at x};
(ii) XL(c) = {x : Hp(x, p) < −c if p ≤ pℓ(x) and Hp(x, p) > c if p ≥ pu(x)};

(iii) XM = {x : ∃ a unique p s.t. ρV (x) = H(x, p) and Hp(x, p) ̸= 0};
(iv) XN = {x : ∃ p s.t. p ≤ pℓ(x) or p ≥ pu(x), ρV (x) = H(x, p), and Hp(x, p) = 0}.

The sets XL(0), XM and XN are mutually disjoint and satisfy XL(0) ∪ XM ∪ Xn = X̊.

Proposition D.1. The value function V is differentiable almost everywhere on XL(0),
and it is real analytic on XM ∪ X̊N .

Proof. Take c > 0. As V is continuous in X̊ and a supersolution of the Hamilton–Jacobi–
Bellman equation, for x ∈ XL(c) and p ∈ D−V (x), we have for every q ∈ Q that

ρV (x) ≥ H(x, p) ≥ u(x, q) + pf(x, q),

which implies, since |V (x)| ≤ ∥u∥∞/ρ for all x, that

pf(x, q) ≤ ρV (x) − u(x, q) ≤ 2∥u∥∞.

Taking q = qu, and using that f(x, qu) = Hp(x, pu(x)) > c, we find p < 2∥u∥∞/c.
Similarly, for q = qℓ, we have f(x, qℓ) = Hp(x, pℓ(x)) < −c and p > −2∥u∥∞/c. We
conclude that if p ∈ D−V (x), then |p| < 2∥u∥∞/c.

Bardi and Capuzzo-Dolcetta (2008, Remark II.5.16) now implies that V is Lipschitz con-
tinuous on XL(c) with Lipschitz constant 2∥u∥∞/c; Rademacher’s theorem (Clarke et al.,
1998, Chapter 3, Corollary 4.19) subsequently ensures almost everywhere differentiability
of V on XL(c), and hence on XL(0) = ⋃

c>0 XL(c), proving the first part of the statement.

Next, consider x ∈ XM . By the implicit function theorem the solution p = κ(x,w) of
w = H(x, p) is locally real analytic.

Assume that Hp(x, κ(x,w)) > 0, the other situation being similar. As x ∈ XM , this
implies that Hp(x, p) ≥ 0 for all p. If p ∈ D+V (x), the subsolution property of V implies

H(x, κ(x, ρV (x))) = ρV (x) ≤ H(x, p)
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and therefore p ≥ κ(x, ρV (x)), by convexity of H(x, p) in p; similarly, the supersolution
property implies for p ∈ D−V (x) that p ≤ κ(x, ρV (x)). Again using Bardi and Capuzzo-
Dolcetta (2008, Remark II.5.16), it follows that V (x) is a classical solution of V ′(x) =
κ(x, ρV (x)). Since κ is real analytic, it follows that V is a real analytic solution of
ρV = H(x, V ′) in XM .

Finally, for x ∈ X̊N , ρV (x) = u(x, qℓ) or ρV (x) = u(x, qu), and V is again real analytic.
This proves the second part.

As a corollary of this result, we obtain

Proposition D.2. The set D1 is dense in X̊.

Proof. If this were not the case, there is a point x̄ ∈ ∂XN such that V is not differentiable
for any point in an open interval I with positive length containing x̄. As x̄ is a boundary
point of XN , there is a point x̃ ∈ I\XN . Hence the intersection I ∩ (XL(0) ∪ XM) is
nonempty. But this intersection is open, and therefore it contains a positive measure
subset of points where V is differentiable, which is a contradiction.

D.3 Canonical trajectories

To extend the domain of differentiability of the value function, we show that differen-
tiability is carried forward along optimal orbits by the costate dynamics. This result is
closely related to the Pontryagin Maximum Principle in the finite horizon context, the
difference being that we here have initial values rather than terminal values for the costate
equation. The result, whose proof is given in Section F.9, is an adaptation of Cannarsa
and Frankowska (1991, Theorem 3.3) to the present context.

Proposition D.3. Let (y∗, a∗) be an optimal trajectory–action pair with initial point
x ∈ D1 and let T ≥ 0 be such that y∗(t) ∈ X̊ for all 0 ≤ t ≤ T .

Let moreover p∗ be the solution of

ṗ(t) = ρp(t) − ux(y∗(t), a∗(t)) − p(t)fx(y∗(t), a∗(t)), p(0) = V ′(x). (15)

Then for every 0 ≤ t ≤ T we have that y∗(t) ∈ D1, V ′(y∗(t)) = p∗(t), and a∗(t) =
q∗(y∗(t), p∗(t)).

Proposition D.3 can be expressed in the more familiar form that an optimal trajectory
necessarily satisfies the canonical equations

ẏ(t) = Hp(y(t), p(t)), ṗ(t) = ρp(t) −Hx(y(t), p(t)),

with y(0) = x, p(0) = V ′(x). This motivates the following definition:
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Definition 19. The canonical vector field X : X × R → R2 is given as X(x, p) =
(Hp(x, p), ρp−Hx(x, p)). A canonical trajectory is a trajectory of X. An optimal canon-
ical trajectory is a canonical trajectory (y, p) such that y is an optimal trajectory.

The next proposition, proved in Section F.10, states properties of non-constant optimal
trajectories: only at their initial states the value function may be non-differentiable; they
are monotone; and they correspond to optimal canonical trajectories, which moreover
converge to steady states of X in X, or leave the interval X (= Xj).

Proposition D.4. Let (y∗, a∗) be a non-constant optimal trajectory–action pair.

(i) y∗(t) ∈ D1 for all t > 0 such that y∗(t) ∈ X̊;
(ii) there is a unique initial point (x, p0) such that the canonical trajectory (y, p) through

this point satisfies y∗(t) = y(t) for all t ≥ 0;
(iii) either ẏ∗(t) > 0 for all t ≥ 0, or ẏ∗(t) < 0 for all t ≥ 0;
(iv) either T = inf {t > 0 : y∗(t) ̸∈ X} is finite, or there is a point (x̄, p̄) such that

(y∗(t), p∗(t)) → (x̄, p̄) as t → ∞.

D.4 Markovian best responses

This section constructs the piecewise real analytic Markovian best response strategy. For
the remainder of this section, we reinstate the full indexed notation.

Definition 20. An optimal orbit is an interval I ⊂ X such that there is T = [0,∞) or
T = R and a state trajectory y : T → I with the property that for every x ∈ I there is
τ ∈ T such that yτ (t) = y(τ + t) satisfies yτ (0) = x and yτ is an optimal trajectory. If I
consists of a single point, it is an optimal steady state; if I has positive length, it is an
optimal non-constant orbit.

The next two results, proved in Section F.11, give the structure of the set of optimal non-
constant orbits in Xj: there are at most countably many, and they can only accumulate
on the end points of Xj. Moreover, restricted to the interior of a non-constant orbit, a
best response exists and is real analytic.

Proposition D.5. A compact interval C ⊂ X̊j intersects finitely many optimal non-
constant orbits.

Definition 21. Let (y, p) be a canonical trajectory. A switching point of this trajectory
is a point (y(t0), p(t0)) ∈ Sb, b ∈ {ℓ, u}, such that in every neighbourhood of t0 there
are t1, t2 with (y(t1), p(t1)) ∈ Pint and (y(t2), p(t2)) ∈ Pb. Switching points for non-
constant optimal state trajectories and optimal orbits are defined as switching points of
their associated canonical trajectories.

For the remainder of the section, we introduce for an interval I ⊂ X the notation Si(I)
for the strategy space Si with the interval X replaced by I.
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Proposition D.6. If the open interval I ⊂ X is part of a non-constant optimal orbit,
does not contain switching points and satisfies ϕi,j(x) = q∗

i (x, V ′
i (x)) for all x ∈ I, then

Vi is real analytic on J = I ∩ X̊j and ϕi,j ∈ Si(J) for all j.

By piecing together the results for constant and non-constant optimal orbits, we obtain
the existence of Markovian best responses.

Proposition D.7. Let C ⊂ X̊j be a compact interval. Then V is piecewise real analytic
on C, the function defined as ϕi,j(x) = q∗

i (x, V ′
i (x)) for all x ∈ D1 ∩ C can be extended

to a strategy ϕi,j ∈ Si(C), and ϕi,j is the unique Markovian best response to ϕ−i,j on
C. Each point of non-analyticity of ϕi,j is contained in the closure of some non-constant
orbit.

Proof. By Proposition D.5, the interval C intersects only finitely many non-constant
optimal orbits I1, . . . , Im. The complement of the intersection consists of finitely many
compact intervals N1, . . . , Nn containing only optimal steady states.

If x ∈ N̊k, then Vi(x) = ui(x, q̄i(x))/ρ, where q = q̄i(x) solves fi,j(x, q) = 0. By the
implicit function theorem, the function q̄i, and hence Vi and ϕi,j, are real analytic in this
set, showing the last statement of the proposition. Proposition D.6 implies that Vi is real
analytic on I̊k ∩ X̊j and ϕi,j ∈ Si(I̊k ∩ X̊j) for each k. We therefore conclude that Vi is
piecewise real analytic on C and ϕi,j ∈ Si(C).

It is clear that ϕi,j is uniquely determined: it remains to show that it is a best response.
Let Vi be differentiable at a point x ∈ Xj, and let (y∗, a∗) be the optimal trajectory–action
pair with initial point x. Then Proposition D.3 implies that

a∗
i,j(t) = q∗

i,j(y∗(t), V ′
i (y∗(t)))

for all t ≥ 0. This implies the compatibility condition (9).

Proof of Theorem 1. Take ϕ−i ∈ S−i, and let X be a covering adapted to ϕ−i. For the
duration of this proof, we write F = FN−1

X . A profile ϕ−i ∈ SX ,−i = F ∩ S−i then
satisfies ϕ−i,j ∈ S−i(Xj). Let ϕi,j : X̊j → R be the unique Markovian best response to
ϕ−i on compact subsets of X̊j, given by Proposition D.7.

If ϕi,j has infinitely many points of non-analyticity, by Propositions D.6 and D.7 they have
to be either endpoints of non-constant optimal orbits or switching points. Every compact
subinterval of X̊j contains only finitely many of these: hence points of non-analyticity
have to accumulate on a boundary point of Xj. In particular, at such a boundary point
the canonical vector field either is tangent to Pℓ or Pu or vanishes. We shall show that
the set E ⊂ S−i of profiles ϕ−i such that ϕi,j has this latter property for some j is shy.

The space F is a complete metric linear space. Let w(1)(x) = 1 and w(2)(x) = ∏J
j=0(x−x̄j)

and introduce ψ(k) ∈ F as ψ(k)(x) = (w(k)(x), . . . , w(k)(x)), for k = 1, 2. Denote by L
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the two-dimensional subspace of F spanned by the ψ(k), and let meas be the Lebesgue
measure on L . Let Xϕ−i,j

be the canonical vector field on Xj × R associated to ϕ−i,j.

Let S0 =
{
ϕ−i ∈ F : Xϕ−i

= 0 at a boundary point of Xj

}
. For b ∈ {ℓ, u} and nb(x) the

normal vector to Sb at (x, pb(x)) pointing out of Pint, let

SWb =
{
ϕ−i ∈ F : nb ·Xϕ−i

= 0 at a boundary point of Xj

}
.

Note that E ⊂ S0 ∪ SWℓ ∪ SWu ≡ N .

We prove shyness for SWb, the proof for S0 being similar. Take ϕ−i ∈ SX ,−i and
ϕ̂−i ∈ SWb. The point ϕ̂−i − ϕ−i is in L if ϕ̂−i = ϕ−i + λ1ψ

(1) + λ2ψ
(2) for some

λ1, λ2 ∈ R. We have ϕ̂−i ∈ SWb if

0 = nb ·Xϕ̂−i
= nb,1f(x, q∗

i , ϕ̂−i) + nb,2

(
ρpi,b(x) − (ui)x(x, q∗

i )
)

(16)

− nb,2pi,b(x)
(
fx(x, q∗

i , ϕ̂−i) + fq−i
(x, q∗

i , ϕ̂−i)ϕ̂′
−i

)
.

For x̄ ∈ ∂Xj we have (ψ(1))′(x̄) = 0 and ψ(2)(x̄) = 0. Equation (16) reduces to

0 = nb ·Xϕ−i+λ1ψ(1) − λ2nb,2(x̄)pi,b(x̄)w′(x̄)
∑
k ̸=i

∂f

∂qk
(x̄, q∗(x̄, pi, b(x̄)), ϕ−i(x̄)). (17)

Consider first the situation that pi,b(x̄) ̸= 0. Since nb,2(x̄) and w′(x̄) are both nonzero,
and ∂f

∂qk
> 0 for all k by Assumption 1, the solutions (λ1, λ2) of equation (17) are located

on a graph λ2 = λ2(λ1). There are 2J such graphs, one for every endpoint of every Xj.
Hence the set SWb ∩ ϕ−i + L has measure zero in this case.

If pi,b(x̄) = 0, equation (17) reads as nb,1f(x, q∗
i , ϕ−i + λ1w

(1)) − nb,2(ui)x(x, q∗
i ) = 0. If

nb,1 = 0, this has no solution by Assumption 2; if nb,1 ̸= 0, by Assumption 1, this equation
has a unique constant solution λ1 = λ1(λ2). As before, we infer that SWb ∩ ϕ−i + L has
measure zero, and we conclude that SWb is shy.

Unions and subsets of shy sets are shy (Hunt et al., 1992). Hence N and E ⊂ N are shy.
The complement of a shy set is dense. As N is closed, it follows that its complement is
also open, and that N , and therefore E , are nowhere dense.

Take ϕ−i ∈ SX ,−i\N . Then the strategy profile ϕ−i,j has only finitely many points of
non-analyticity on X̊j. It remains to show that the limit of ϕi,j(x) and ϕ′

i,j(x) exist as x
tends to the boundary of Xj.

Let I ⊂ Xj be a maximal open interval on which ϕi,j is real analytic and that contains a
boundary point x̄ of Xj. Set p̄ = limx→x̄,x∈I V

′(x). If (x, V ′(x)) is contained in Pb for all
x ∈ I, b = ℓ, u, the best response ϕi,j(x) equals qb and can be extended to a continuously
differentiable function on the closure of I.

If (x, V ′(x)) ∈ Pint, and if z̄ = (x̄, p̄) is not a steady state, we have, since (Xϕ−i,j
)1(x̄) ̸= 0,

that there is a continuously differentiable extension of the canonical trajectory through
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z̄ to a neighbourhood of z̄, giving rise to a continuously differentiable extension of ϕi,j to
x̄. If z̄ is a steady state, the graph (x, V ′(x)) is tangent to a, necessarily one-dimensional,
eigenspace ofDXϕ−i,j

(z̄) at z̄ and can be extended as a continuously differentiable function
as well. This shows that ϕi ∈ Si.

Corollary 1. Let P ⊂ S−i be the set of profiles ϕ−i such that for every j the canoni-
cal vector field Xϕ−i,j

of player i has only finitely many steady states and finitely many
switching points. Then for every ϕ−i ∈ P there is a unique best response ϕi ∈ Si.

E Characterisation of the best response map

We continue not to indicate the player index i. This section provides the proof of Theorem
2. Before giving this proof, we need to collect information about V ϕ.

Introduce for x ∈ Xj the functions

fϕj (x) = fj(x, ϕj(x)), uϕj (x) = ui(x, ϕj(x)), Hϕ
j (x, p) = uϕj (x) + pfϕj (x).

In terms of these functions, set

uϕ(x) =


∑J
j=1 1Xj

(x)uϕj (x), x ∈ X\I,
µϕj (x)uϕj (x) + (1 − µϕj (x))uϕj+1(x), x = x̄j ∈ I,

and

fϕ(x) =


∑J
j=1 1Xj

(x)fϕj (x), x ∈ X\I,
µϕj (x)fϕj (x) + (1 − µϕj (x))fϕj+1(x), x = x̄j ∈ I.

Then the value V ϕ accruing to player i under the profile ϕ has the following properties,
proved in Appendix F.12.

Proposition E.1. Assume ϕ ∈ S and i ∈ {1, . . . , N}. Then there is a covering X =
{Xj}Jj=1 of X, with Xj = [xj−1, xj], adapted to ϕ, and a finite set E ⊂ X, such that the
following hold.

(i) ∥V ϕ∥∞ ≤ max{∥u∥∞/ρ, ∥β∥∞}.
(ii) If x = x̄0, then either V ϕ(x) = β(x) or fϕ1 (x) ≥ 0.

Likewise, if x = x̄J , then either V ϕ(x) = β(x) or fϕJ (x) ≤ 0.
(iii) If x = x̄j ∈ I, V ϕ is continuous at x, and either fϕj (x) < 0 < fϕj+1(x) or fϕj (x) >

0 > fϕj+1(x), then ρV ϕ(x) = uϕ(x).
(iv) The function V ϕ is continuous in X\I and real analytic in X\(I ∪ E).
(v) If x ∈ Xj\(I ∪ Ej), then ρV ϕ(x) = Hϕ

j (x, (V ϕ)′(x)), while if x ∈ Ej, then fϕj (x) = 0
and ρV ϕ(x) = uϕj (x)/ρ.
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(vi) If x ∈ X and z ↑ x (z ↓ x), there is a value p−, (p+) ∈ R ∪ {−∞,∞}, such that
(V ϕ)′(z) → p− ((V ϕ)′(z) → p+).

Proof of Theorem 2. We have to show that Conditions (i)–(vi) of the theorem imply that
V ϕ is in class G and that it is a viscosity solution of (11). Theorem C.1 then implies that
V ϕ = V , and hence that ϕ = ϕi is a best response to ϕ−i.

Conversely, we have to show that if ϕ is a best response, then Conditions (i)–(vi) hold
true.

E.1 Notations

We recall the notation q∗
j (x, p) for the maximiser of q 7→ u(x, q) + pfj(x, q) over Q, the

local Hamilton functions Hj(x, p) = u(x, q∗
j (x, p)) + pfj(x, q∗

j (x, p)), as well as pj,b(x) =
−uq(x, qb)/(fj)q(x, qb) for b ∈ {ℓ, u}.

For a given x, we write the left and right limits of (V ϕ)′ at x as

p− = lim
z↑x

(V ϕ)′(z) and p+ = lim
z↓x

(V ϕ)′(z).

Proposition E.1(vi) ensures that these limits exist everywhere in X, if we allow the pos-
sibility that the limits take the values −∞ or ∞.

For x ∈ Ij, introduce the further abbreviationsH−(p) = Hj(x, p) andH+(p) = Hj+1(x, p).

E.2 Sufficiency

Assume that Conditions (i)–(vi) hold. Proposition E.1(iv), as well as Conditions (ii) and
(iv) imply that V ϕ ∈ G . We have to show that it is a viscosity solution of (11) for every
x ∈ X.

Subdifferentials and superdifferentials. For any point x ∈ X where V ϕ is continuous,
if p− < p+, then D−V ϕ(x) = [p−, p+] and D+V ϕ(x) = ∅; similarly, if p+ < p−, then
D−V ϕ(x) = ∅ and D+V ϕ(x) = [p+, p−]; finally if p− = p+ = p, then D−V ϕ(x) =
D+V ϕ(x) = {p}. The final situation occurs if and only if V ϕ is differentiable at x.

For a point x ∈ X at which V ϕ is not continuous, Condition (ii) implies that

D−(V ϕ)∗(x) = (−∞, p+] and D+(V ϕ)∗(x) = (−∞, p−].

Interior of Xj. Take first x ∈ X̊j for j ∈ {1, . . . , J}: by Condition (iv) the function V ϕ is
continuous at x.
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If V ϕ is differentiable at x, set p = (V ϕ)′(x): then Condition (i) and Proposition E.1(v)
imply

Hj(x, p) = u(x, ϕ(x)) + pfj(x, ϕ(x)) = Hϕ
j (x, p) = ρV ϕ(x). (18)

If V ϕ is not differentiable at x, then p− ̸= p+. Since ϕ is continuous at x, we have that
ϕ(x) = q∗

j (x, p−) = q∗
j (x, p+), and therefore either p−, p+ ≤ pj,ℓ(x) or p−, p+ ≥ pj,u(x).

Take p ∈ D−V ϕ(x) ∪D+V ϕ(x): one of the two sets is empty. Then q∗
j (x, p) = ϕ(x) = qb,

with b ∈ {ℓ, u}. By Proposition E.1(v) we have fj(x, qb) = 0 and ρV ϕ(x) = u(x, qb).

It follows that

ρV ϕ(x) = u(x, qb) + pfj(x, qb) = u(x, q∗
j (x, p)) + pfj(x, q∗

j (x, p)) = Hj(x, p). (19)

Equations (18) and (19) together show that (12) and (14) hold for all x ∈ X̊j.

Interface points at which V ϕ is continuous. Take x = x̄j ∈ I with V ϕ is continuous at x.

If D−(V ϕ)(x) is nonempty, we have to show that

ρV ϕ(x) ≥ min{H−(p), H+(p)}

for all p ∈ D−(V ϕ)(x). By continuity, ρV ϕ(x) = H−(p−) = H+(p+). Assume there is a
point p̂ ∈ (p−, p+) such that

H−(p−) = ρV ϕ(x) < H−(p̂) and H+(p+) = ρV ϕ(x) < H+(p̂).

By convexity of H− and H+, it follows that f̂− := (H−)p(p̂) > 0 and f̂+ := (H+)p(p̂) < 0.
Hence there are λ−, λ+ > 0 such that λ− + λ+ = 1 and λ−f̂− + λ+f̂+ = 0. Set u− =
uj(x, q∗

j (x, p̂)) and u+ = uj+1(x, q∗
j+1(x, p̂)). Condition (v) then implies that

ρV ϕ(x) ≥ λ−u− + λ+u+ = λ−u− + λ+u+ + p̂(λ−f̂− + λ+f̂+)
= λ−H−(p̂) + λ+H+(p̂) ≥ min{H−(p̂), H+(p̂)} > ρV ϕ(x),

a contradiction, which proves (12) in this situation.

Next, assume that D+V ϕ(x) is nonempty. We have to show that

ρV ϕ(x) ≤ max{H−(p), H+(p)}

for all p ∈ D+(V ϕ)(x) = [p+, p−]. Assume, as before, that the relation does not hold for
some p̂ ∈ (p+, p−), that is

H−(p−) = ρV ϕ(x) > H−(p̂) and H+(p+) = ρV ϕ(x) > H+(p̂).

Convexity now implies that f− := (H−)p(p−) > 0 and f+ := (H+)p(p+) < 0. Since f− =
fj(x, ϕj(x)) and f+ = fj+1(x, ϕj+1(x)), Condition (vi) implies that V ϕ is differentiable at
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x, and we have therefore that p− = p+ and ρV ϕ(x) = H−(p) = H+(p) for all p ∈ D+V ϕ(x).
Hence (14) holds for this case.

Interface points at which V ϕ is not continuous. The next situation to consider is x =
x̄j ∈ I such that V ϕ is not continuous at x.

To show that (12) holds in this case, assume that there is p̂ ∈ D−(V ϕ)∗ = (−∞, p+]
for which ρ(V ϕ)∗(x) < min{H−(p̂), H+(p̂)}. Then we have in particular that p̂ < p+

and H+(p+) = ρ(V ϕ)∗(x) < H+(p̂). Convexity of H+ implies that (H+)p(p̂) < 0. This
however contradicts Condition (iv), which implies that (H+)p(p) ≥ 0 for all p.

Turning to (14), assume there is p̂ ∈ D+(V ϕ)∗ = (−∞, p−] for which

ρ(V ϕ)∗(x) > max{H−(p̂), H+(p̂)}.

Then p̂ < p− and H−(p−) = ρ(V ϕ)∗(x) > H−(p̂). Invoking convexity of H−, we obtain
that (H−)p(p−) = fj(x, ϕj(x)) > 0. Again, this is incompatible with Condition (iv).

Boundary points. We only consider the situation that x = x̄0, the other being entirely
analogous. At x, we have that D+V ϕ(x) = [p+,∞) and D−V ϕ(x) = (−∞, p+]. It follows
from Condition (iv) that V ϕ is continuous at x.

To prove (12) at x, assume that V ϕ(x) < β(x). Condition (iii) then implies that f1(x, q) ≥
0 for all q ∈ Q. In particular f(x, q∗(x, p)) = (H+)p(p) ≥ 0 for all p and H+(p) is non-
decreasing in p. Since ρV ϕ(x) − H+(p+) = 0 by continuity, it follows that ρV ϕ(x) −
H+(p) ≥ 0 for all p ∈ (−∞, p+] = D−V ϕ(x), which implies (12).

To show (14) at x, assume that V ϕ(x) > β(x). By Proposition E.1(ii) and Condition (i),
we have fϕ(x) = f(x, q∗(x, p+)) = (H+)p(p+) ≥ 0, and, by convexity of H+(p), it follows
that H+(p) ≥ H+(p+) for all p > p+, implying that ρV (x)−H+(p) ≤ ρV (x)−H+(p+) = 0
for all p ∈ D+V ϕ(x).

Finally, Condition (v) implies (13). This concludes the proof of the sufficiency part.

E.3 Necessity

To prove the necessity of Conditions (i)–(vi) — reinstating the player index i for a moment
— assume that ϕi is the best response to ϕ−i. Then V ϕ

i = Vi is the viscosity solution of
(11).

Maximum principle. If x ∈ X̊j and V is differentiable at x, then D−V (x) = D+V (x) =
{V ′(x)}, and (12) and (14) imply that ρV (x) = Hj(x, V ′(x)). Moreover, since V = V ϕ,
we also have that V ′(x) = (V ϕ)′(x) =: p and Hj(x, p) = Hϕ

j (x, p), which is equivalent to

u(x, ϕj(x)) + pf(x, ϕj(x), ϕ−j(x)) = max
q

(u(x, q) + pf(x, q, ϕ−j(x))) ,

and therefore implies Condition (i).

Monotonicity. Condition (ii) follows from Proposition A.3.
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Boundary values. We show Condition (iii) for x = x̄0, the other case being analogous.

If ρV (x) < ρβ(x) = H−(p), by (12) we have that ρV (x) − H+(p) ≥ 0 for all p ∈
D−V (x) = (−∞, p+]. By convexity of H+, this implies that (H+)p = f+(x, q∗(x, p)) ≥ 0
for all p ≤ p+, which implies in particular that f+(x, qℓ) ≥ 0, and hence f+(x, q) ≥ 0 for
all q ∈ Q.

Value discontinuities. To show Condition (iv), note that, since V ∈ G , if V fails to be
continuous at x, then x = x̄j ∈ I and f+(x, q) ≥ 0 for all q ∈ Q. It therefore remains to
show that fϕ−(x) = (H−)p(x, p) ≤ 0.

Proposition C.1(vi) implies that V ∗(x) = max{V sc
− (x), V sc

I (x)}. If V ∗(x) = V sc
I (x), then

according to (13), we have ρV∗(x) ≥ HI
j (x) = ρV sc

I (x) = ρV ∗(x), and V is actually
continuous at x, which is ruled out by hypothesis. So assume that V ∗(x) = V sc

− (x), then
for all p ∈ D+V ∗(x) = (−∞, p−] we have that H−(x, p−) = ρV ∗(x) ≤ H−(x, p), and
consequently fϕ(x) = (H−)p(x, p−) ≤ 0, which had to be proved.

Value at interface steady states. Condition (v) is a direct consequence of (13).

Strong push–push steady state. To show Condition (vi), let x be a strong push–push steady
state. By hypothesis, we have fϕ− > 0 > fϕ+. Let λ ∈ (0, 1) be such that λfϕ− +(1−λ)fϕ+ =
0. Then ρV (x) = λu− +(1−λ)u+. We also have ρV (x) = H−(p−) = H+(p+). Combining
these equalities, we see that

0 = λH−(p−) + (1 − λ)H+(p+) − ((1 − λ)u+ + λu−)
= λp−f

ϕ
− + (1 − λ)p+f

ϕ
+ = λ(p− − p+)fϕ−.

As λ ̸= 0 and fϕ− ̸= 0, we infer that p− = p+ = p∗ and V ϕ
i is differentiable at x, proving

Condition (vi). This completes the proof of Theorem 2.

F Technical Appendix

F.1 Proof of Proposition A.1

Proof. Take T > 0 and x ∈ X. According to the Dynamic Programming Principle
(Bardi and Capuzzo-Dolcetta, 2008, Proposition III.2.5: although the assumptions are
not fulfilled in our context, the proof carries over), we have

V (x) = sup
(∫ θ

0
u(y(s), a(s)) exp(−ρs) ds+ V (y(θ)) exp(−ρθ)

)
,

where θ = min{T,Θ} with Θ the exit time of y from X, and where the supremum is taken
over trajectory–action pairs (y, a) with y(0) = x.

35



Let (θk, yk, ak) be a sequence of time–trajectory–action triples with yk(0) = x such that
∫ θk

0
u(yk(s), ak(s)) exp(−ρs) ds+ V (yk(θk)) exp(−ρθk) → V (x)

as k → ∞, where θk = min{T,Θk} and Θk the exit time of yk from X. Introduce

wk(t) =
∫ min{t,θk}

0
u(yk(s), ak(s)) exp(−ρs) ds+ V (yk(θk)) exp(−ρθk).

Then wk(T ) → V (x) as k → ∞ and ẇk(t) is measurable for t ∈ [0, T ]. Extend (yk, ak)
to [0, T ] by setting (yk(t), ak(t)) = (yk(θk), ak(θk)) if θk < t ≤ T . As θk is bounded, after
restricting to a subsequence we may assume that θk → θ̄ as k → ∞.

Introduce set-valued maps Φj : [0, T ] × X⇝ R2 by setting

Φj(t, z) = {(η0, η) : −∥u∥∞ ≤ η0 ≤ uj(z, q) exp(−ρt), η = fj(z, q), q ∈ Q}

if (t, z) ∈ [0, T ] ×Xj and Φj(t, z) = ∅ everywhere else. The sets Φj(t, z) are compact and
convex by Assumption 2. Define Φ : [0, T ] × X⇝ R2 by setting

Φ(t, z) = co
 J⋃
j=1

Φj(t, z)
 .

Then Φ(t, z) is also compact and convex. Moreover, for all (t, z) it satisfies Property (Q)
of Cesari (1983), that is,

Φ(t, z) =
⋂
δ>0

co
 ⋃

∥(t̃,z̃)−(t,z)∥<δ
Φ(t̃, z̃)

 .
We have that (ẇk(t), ẏk(t)) ∈ Φ(t, yk(t)) for all k and almost all t ∈ [0, θk], hence |ẇk(t)| ≤
∥u∥∞ and |ẏk(t)| ≤ ∥f∥∞ almost everywhere on [0, T ]. It follows that the (wk, yk) are
equicontinuous, and a subsequence converges uniformly to a limit (w, y) on [0, T ]. After
relabelling, we may assume that the sequence itself converge uniformly to (w, y). By
Cesari (1983, Theorem 8.6.i), it follows that (ẇ(t), ẏ(t)) ∈ Φ(t, y(t)) for almost all t ∈
[0, θ̄]. Moreover, as the wk converge uniformly, we have w(T ) = V (x). By the Filippov
selection theorem (Vinter, 2000, Theorem 2.3.13), there is a measurable action schedule
a such that ẏ(t) = f(y(t), a(t)) almost everywhere on [0, θ̄] and such that

V (x) =
∫ θ̄

0
u(y(t), a(t)) exp(−ρt) dt+ V (y(θ̄)) exp(−ρθ̄).

Set y∗(t) = y(t) for t ∈ [0, θ̄].

If θ̄ = T , we repeat the argument with x = y∗(T ) and setting (y∗(t), a∗(t)) = (y(t −
T ), a(t − T )) for t ∈ (T, 2T ]. Continuing inductively, we construct a trajectory–action
pair (y∗, a∗) defined on an interval [0,Θ] such that V (x) = U(y∗, a∗).
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F.2 Proof of Proposition A.3

Proof. Take x, x̃ ∈ X such that x̃ < x, and let a be such that V (x) = U(y, a). Let
Θ = inf {t : y(t) ̸∈ X}. Construct a real-valued function ã0(t) such that u(y(t), ã0(t)) =
u(y(t), a(t)) for all 0 ≤ t ≤ Θ: that is, if y(t) ∈ X\I, set ã0(t) = ∑J

j=1 aj(t)1Xj
(y(t)); if

y(t) ∈ Ij, take ã0(t) such that

u(y(t), ã0(t)) = µj(a(t))u(y(t), aj(t)) + (1 − µj(a(t)))u(y(t), aj+1(t));

finally, if t > Θ, set ã0(t) to an arbitrary constant value in Q.

Using ã0, we define an action schedule ã by setting ãj(t) = ã0(t) for all t and all j ∈
{1, . . . , J}. By Proposition 4.2 there is a state trajectory ỹ(t) such that ỹ(0) = x̃ and
(ỹ, ã) is a state–action pair.

Let τ = min {t : ỹ(t) = y(t)} and Θ̃ = inf {t : ỹ(t) ̸∈ X}. If τ ≤ min{Θ, Θ̃}, we have for
all 0 ≤ t < τ that ỹ(t) < y(t) and therefore u(ỹ(t), ã(t)) = u(ỹ(t), ã0(t)) > u(y(t), ã0(t)) =
u(y(t), a(t)), while for t ≥ τ , the trajectory-control pairs and their felicity flows are equal.

Take now τ > min{Θ, Θ̃}. For Θ < t < Θ̃, Assumption 3 implies that u(ỹ(t), ã(t)) >
ρβ(y(Θ)), while for Θ̃ < t < Θ, it implies ρβ(ỹ(Θ̃)) > u(y(t), a(t)). Finally, if t ≥
max{Θ, Θ̃}, we have β(ỹ(Θ̃)) ≥ β(y(Θ)). This proves the result.

F.3 Proof of Proposition A.4

Proof. Let σ = exp(−ρt) dt be the Borel measure on [0,∞) defined by σ([t1, t2]) =
(exp(−ρt1) − exp(−ρt2))/ρ. The set {t ∈ T : y(t) ̸= x} can be written as the union of at
most countably many intervals Ik = (t1,k, t2,k) such that σ(Ik) > 0 and y(t1,k) = y(t2,k) =
x, where K is the number of such intervals, and one interval Î = (t̂,∞) such that y(t̂) = x,
which may be empty. Let I0 = [0,∞)\

(⋃K
k=1 Ik ∪ Î

)
: this set is measurable, possibly of

measure 0.

For 0 ≤ k ≤ K such that σ(Ik) > 0, introduce

vk ≡ 1
σ(Ik)

∫
Ik

u(y(t), a(t)) exp(−ρt) dt;

if σ(Î) > 0, set v̂ ≡ (1/σ(Î))
∫
Î w(t) exp(−ρt) dt with w(t) = u(y(t), a(t)) if t̂ < t ≤ Θ

and w(t) = β(y(Θ)) if t > Θ; finally v0 = 0 if σ(I0) = 0. Then

Ū ≡
∫ Θ

0
u(y(t), a(t)) exp(−ρt) dt+ exp(−ρΘ)β(y(Θ)) = v̂σ(Î) +

K∑
k=0

vkσ(Ik).

As σ([0,∞)) = 1/ρ, either there exists k ∈ {0, . . .} such that vk ≥ ρŪ and σ(Ik) > 0, or
v̂ ≥ ρŪ and σ(Î) > 0.
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Assume first that the first alternative holds for k > 0, and y(t) > x for t ∈ Ik. Set
∆ = t2,k − t1,k > 0 and construct a trajectory-action pair by setting for ℓ = 0, 1, 2, . . .

(ỹ(t), ã(t)) = (y(t1,k + t− ℓ∆), a(t1,k + t− ℓ∆)), if ℓ∆ ≤ t < (ℓ+ 1)∆

We have

U(ỹ, ã) =
∫ ∞

0
u(ỹ(t), ã(t)) exp(−ρt) dt

=
∞∑
ℓ=0

∫ (ℓ+1)∆

ℓ∆
u(y(t1,k + t− ℓ∆), a(t1,k + t− ℓ∆)) exp(−ρt) dt

= exp(ρt1,k)
∫ t2,k

t1,k

u(y(s), a(s)) exp(−ρs) ds
∞∑
ℓ=0

exp(−ρℓ∆)

= 1 − exp(−ρ∆)
ρ

vk
1

1 − exp(−ρ∆) = vk/ρ ≥ Ū .

Moreover ỹ(t) > x for almost all t ≥ 0. Hence we have constructed the required trajectory.
The argument for the situation that y(t) < x for t ∈ Ik is entirely analogous.

If the first alternative holds for k = 0, then the set C0 of constant actions q such that
f(x, q) = 0 is non-empty. As C0 is compact, there is a maximiser q̄ of u(x, q) restricted
to C0. Let (ỹ, ã) be the trajectory–action pair ỹ(t) = x, ã(t) = q̄ for all t. Then
u(y, a) ≤ u(ỹ, ã) for all t ∈ I0, and

ρŪ ≤ v0 = 1
σ(I0)

∫
I0

u(ỹ(t), ã(t)) exp(−ρt) dt = 1
σ(I0)

∫
I0

u(x, q̄) exp(−ρt) dt

= u(x, q̄) = ρU(ỹ, ã),

completing the construction of the trajectory also in this situation.

Finally, if v̂ ≥ ρŪ and σ(Î) > 0, then (ỹ(t), ã(t)) = (y(t̂ + t), a(t̂ + t)) achieves a higher
payoff than Ū .

F.4 Proof of Proposition A.5

Proof. Let ∆ = minj ̸=k |x̄j − x̄k|, and let M = ∥f∥∞ > 0. Introduce for a trajectory–
action pair π = (y, a) the exit time Θ(π) = inf {t ≥ 0 : y(t) ̸∈ X}, the time interval
T(π) = [0,Θ(π)], and the set Sj(π) of singular pull-pull events as

Sj(π) ≡ {t ∈ T(π) : y(t) = x̄j, fj(y(t), aj(t)) < 0 , fj+1(y(t), aj+1(t)) > 0} .

If π is not regular, the union ⋃j Sj(π) has positive Lebesgue measure.

Let π be a given trajectory–control pair. For ℓ = 1, 2, . . ., we shall inductively construct
a sequence π(ℓ) = (y(ℓ), a(ℓ)) of trajectory–action pairs such that π(0) = π, Sj(π(ℓ)) ∩
[0, ℓ∆/M) has measure zero for every j, and U(π(ℓ+1)) ≥ U(π(ℓ)) for all ℓ ≥ 0.
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Assume that π(ℓ) has already been constructed. Let

τ = inf
{
t1 ∈ T(π(ℓ)) : Sj(π(ℓ)) ∩ [0, t1] has positive measure for some j

}
.

If τ ≥ (ℓ+ 1)M/∆, then we set π(ℓ+1) = π(ℓ) and the induction step is completed.

If τ < (ℓ+ 1)M/∆, then y(ℓ)(τ) = x̄j for some j, and we set πτ (t) = π(ℓ)(t− τ).

By Proposition A.4, there is a trajectory–action pair π̃ = (ỹ, ã) such that either ỹ(t) < x̄j
for all t ≥ 0, or ỹ(t) > x̄j for all t ≥ 0, or ỹ(t) = x̄j for all t ≥ 0, as well as U(π̃) ≥ U(πτ ).
In the first two cases, ỹ(t) ̸∈ I\Ij for all 0 ≤ t < ∆/M , as for those values of t we have
|y(t) − y(0)| ≤ Mt < ∆. In these situations we set π(ℓ+1)(t) = π(ℓ)(t) for 0 ≤ t ≤ τ and
π(ℓ+1)(t) = π̃(t− τ) for t ≥ τ . Then

U(π(ℓ+1)) =
∫ τ

0
u(y(ℓ)(t), a(ℓ)(t)) exp(−ρt) dt+ exp(−ρτ)U(π̃)

≥
∫ τ

0
u(y(ℓ)(t), a(ℓ)(t)) exp(−ρt) dt+ exp(−ρτ)U(π(ℓ)) = U(π(ℓ)).

In the third case, according to Proposition A.4, we may assume that π̃ is generated by
a constant action schedule ã(t) = q for all t ≥ 0. If π̃ is a regular trajectory, then we
define π(ℓ+1) as in the first two cases. If π̃ is singular, then in particular fj(x̄j, qj) < 0.
Consider the trajectory–action pair (z, ã) that satisfies z(0) = x̄j and ż(t) = fj(z(t), qj) for
0 ≤ t < M/∆. As before, we have that z(t) ̸∈ I for 0 < t < M/∆ and, as fj(x̄j, qj) < 0, we
also have that z(t) < x̄j = y(t) for all t > 0. By Proposition A.2, it follows that U(z, ã) >
U(y, ã). Setting π(ℓ+1)(t) = π(ℓ)(t) for 0 ≤ t ≤ τ and π(ℓ+1)(t) = (z(t − τ), ã(t − τ)) for
t ≥ τ , and noting that also in this case U(π(ℓ+1)) ≥ U(π(ℓ)) finishes the inductive step.

The induction either breaks off at the ℓ’th step and produces a regular trajectory, as
indicated, or it continuous indefinitely. In the latter case, we set π̄(t) = limℓ→∞ π(ℓ)(t).
Then Sj(π̄) has measure zero for all j and ȳ is regular also in this case.

F.5 Proof of Proposition C.1

Proof of Proposition C.1. Throughout the proof, we write x̄ for x̄j, f− for fj and f+ for
fj+1 etc. In particular X+ denotes Xj+1 and not Xj,+. We fix q̄ such that u(x̄, q̄) ≥ u(x̄, q)
for all q ∈ Q.

Statement (i) is a direct corollary of Proposition A.4.

To prove (ii), assume that the dynamics are right controllable at x̄: the argument for left
controllability is analogous.

By controllability and continuity of f+, there are δ,m > 0 such that [x̄, x̄+ δ] ∈ X+ and
[−m,m] ⊂ f+(x̄,Q) for all x̄ ≤ x ≤ x̄+ δ. Take x1, x2 ∈ [x̄, x̄+ δ] as well as σ ∈ {−m,m}
such that y(t) = x1 + σt satisfies y(0) = x1 and y(τ) = x2 if τ = |x2 − x1|/m.
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As |ẏ(t)| = m and y(t) ∈ [x̄, x̄+δ] for 0 ≤ t ≤ τ there is a(t) such that ẏ(t) = f(y(t), a(t))
for all 0 ≤ t ≤ τ . Then

V (x1) ≥
∫ τ

0
u+(y(t), a(t)) exp(−ρt) dt+ V (x2) exp(−ρτ).

As |V (x)| ≤ ∥u∥∞/ρ for all x, we obtain

V (x1) − V (x2) ≥ −| exp(−ρτ) − 1|∥u∥∞/ρ− ∥u∥∞τ ≥ −2∥u∥∞τ.

Interchanging the roles of x1 and x2, and using the definition of τ , then gives

|V (x1) − V (x2)| ≤ 2∥u∥∞

m
|x1 − x2|.

For (iii), let x̄ be a right semi-attractor: then f+(x̄, q) ≤ 0 for all q ∈ Q.

Choosing (y, c) such that y(0) = x̄ and a−(t) = a+(t) = q̄ for all t ∈ T implies first that
y(t) ≤ x̄ for all t ∈ T, as x̄ is a right semi-attractor. Since ux(x, q̄) < 0 for all x, we then
have u(y(t), q̄) ≥ u(x̄, q̄) for all t ≥ 0 and hence V (x̄) ≥ u(x̄, q̄)/ρ.

Take x ≥ x̄, and let now the pair (y, c) be such that y(0) = x and V (x) = U(y, c).

Introduce θ = inf
{
t ∈ T : y(t) ̸∈ X̊j,+

}
. We have

V (x) =
∫ min{θ,Θ}

0
u(y(t), a+(t)) exp(−ρt) dt

+ V (x̄) exp(−ρθ)1{t : t≤Θ}(θ) + V (y(Θ)) exp(−ρΘ)1{t : t>Θ}(θ)

≤
∫ min{θ,Θ}

0
u(x̄, a+(t)) exp(−ρt) dt

+ V (x̄) exp(−ρθ)1{t : t≤Θ}(θ) + V (y(Θ)) exp(−ρΘ)1{t : t>Θ}(θ)

≤
∫ min{θ,Θ}

0
u(x̄, q̄) exp(−ρt) dt+ V (x̄) exp(−ρmin{θ,Θ}) ≤ V (x̄).

This shows right upper semi-continuity of V at x̄.

Proposition IV.3.4 of Bardi and Capuzzo-Dolcetta (2008) implies that the value function
is also lower semi-continuous at x̄. This then establishes right continuity.

Finally, if there is a trajectory starts at x̄ and remains in Xj,+ for all t ≥ 0, it must be
equal to y(t) = x̄. Hence V sc

+ (x̄) ≤ V sc
I (x̄), which shows the second part of the statement.

For (iv), let x̄ be a left semi-attractor.

If f−(x̄, qℓ) > 0, then there are m > 0 and δ > 0 such that f−(z, q) > m for all z ∈ [x̄−δ, x̄]
and all q ∈ Q. Fix x ∈ [x̄ − δ, x̄], and let (y, a) be a trajectory–action pair such that
y(0) = x and V (x) = U(y, a). Then there is 0 < τ < |x− x̄|/m such that y(t) < x̄ for all
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0 < t < τ and y(τ) = x̄. This implies

V (x) − V (x̄) =
(∫ τ

0
u(y(t), a(t)) exp(−ρt) dt+ (exp(−ρτ) − 1)V (x̄)

)
≤ 2∥u∥∞τ = 2∥u∥∞

m
|x− x̄|,

which shows that V is left upper semi-continuous at x̄. Proposition IV.3.4 of Bardi and
Capuzzo-Dolcetta (2008) again ensures left continuity.

If f−(x̄, qℓ) = 0, take ε > 0 and δ > 0. Let T be the unique solution of exp(−ρT )∥u∥∞/ρ =
ε/2; this solution is positive if ε > 0 is sufficiently small. Let Lf > 0 be such that
|f−(z, qℓ)| ≤ Lf |z − x̄| for all −δ < z − x̄ < 0, and let δ1 = exp(−LfT )δ.

Take x ∈ (x̄ − δ1, x̄), and let y be any state trajectory with y(0) = x. Set τ = inf{t ≥
0 : y(t) ∈ X+}, and let θ = min{τ, T}. Using the Gronwall inequality, we have that
−δ < − exp(Lf t)|x− x̄| ≤ y(t) − x̄ ≤ 0 for all 0 ≤ t ≤ θ.

Let now (y, a) be a trajectory–action pair such that y(0) = x and V (x) = U(y, a). To
obtain an estimate for the payoff on the time interval [0, θ], we split it in a part T1 where
the state moves quickly to the right, which restricts the amount of time it can spend in
this set, and a part T2 ∪ T3 where it moves slowly to the right, or not at all, restricting
the value of a−(t) from above, and hence the payoff.

Take η > 0 and form the partition T1 ∪ T2 ∪ T3 ∪ T4 of the interval [0, θ], where T1 =
{t : ẏ(t) > η}, T2 = {t : 0 ≤ ẏ(t) ≤ η}, T3 = {t : ẏ(t) < 0}, and T4 = {t :
y is not differentiable at t}. Note that T4 is a set of measure zero.

Clearly

y(θ) − x =
∫ θ

0
ẏ(t) dt =

∫
T1

+
∫
T2

+
∫
T3
ẏ(t) dt.

Since − exp(Lfθ)|x − x̄| ≤ y(θ) − x̄ ≤ 0, the measure |T1| of the first partitioning set
satisfies

η|T1| ≤
∫
T1
ẏ(t) dt ≤

∫
T1
ẏ(t) dt+

∫
T2
ẏ(t) dt = y(θ) − x−

∫
T3
ẏ(t) dt

≤ |y(θ) − x| −
∫
T3
ẏ(t) dt ≤ |y(θ) − x̄| + |x̄− x| −

∫
T3
f−(y(t), qℓ) dt

≤ (1 + exp(Lfθ))|x− x̄| +
∫
T3
Lf |y(t) − x̄| dt

≤ (1 + exp(Lfθ) + Lfθ exp(Lfθ)) |x− x̄| =: C1|x− x̄|.

Consequently, the integral of the discounted flow payoff evaluated over T1 is bounded by
∫
T1
u(y(t), a(t)) exp(−ρt) dt ≤ ∥u∥∞|T1| ≤ C1∥u∥∞

η
|x− x̄|.

To estimate the payoff evaluated over T2 ∪ T3, we need an upper bound on a−(t). Let
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Lu, ℓf > 0 be such that |u(z, q) − u(x̄, qℓ)| ≤ Lu(|z − x̄| + |q − qℓ|) for all (z, q), and
0 < ℓf <

∂f−
∂q

(x̄, q) for all q ∈ Q: such constants exist as a consequence of Assumptions 1
and 2 and the compactness of Q. We have for t ∈ T2 ∪ T3 that

η ≥ ẏ(t) = f−(y(t), a−(t)) ≥ f−(y(t), qℓ) + ℓf (a−(t) − qℓ)
≥ −Lf |y(t) − x̄| + ℓf (a−(t) − qℓ);

in the last inequality we used that f(x̄, qℓ) = 0. Hence

a−(t) − qℓ ≤ (η/ℓf ) + (Lf/ℓf )|y(t) − x̄|

and

|u(y(t), a−(t)) − u(x̄, qℓ)| ≤ Lu (|y(t) − x̄| + |a−(t) − qℓ|)

≤ Lu

(
1 + Lf

ℓf

)
|y(t) − x̄| + Lu

ℓf
η.

This implies∫
T2∪T3

u(y(t), a(t)) exp(−ρt) dt

≤
∫ θ

0

(
u(x̄, qℓ) + Lu(1 + Lf/ℓf )|y(t) − x̄| + Luη/ℓf

)
exp(−ρt) dt

≤ (1 − exp(−ρθ))u(x̄, qℓ)/ρ+ C2|x− x̄| + C3η,

where C2 = Lu(1 + Lf/ℓf ) exp(LfT ) and C3 = TLu/ℓf .

Combining these estimates yields

V (x) ≤
∫
T1

+
∫
T2

+
∫
T3
u(y(t), a(t)) dt+ exp(−ρθ)V (y(θ))

≤ (1 − exp(−ρθ))u(x̄, qℓ)/ρ+ exp(−ρθ)V (y(θ))

+ C1∥u∥∞

η
|x− x̄| + C2|x− x̄| + C3η.

Choose η = ε/(6C3) and |x − x̄| < min{δ1, ε
2/(36C1C3∥u∥∞), ε/(6C2)}, and recall that

V sc
− (x̄) = u(x̄, qℓ)/ρ ≤ V (x̄), to obtain

V (x) ≤ (1 − exp(−ρθ))V (x̄) + exp(−ρθ)V (y(θ)) + ε/2.

If θ = T , then exp(−ρθ)V (y(θ)) ≤ ε/2 and V (x) ≤ V (x̄) + ε, showing that V is left
upper semi-continuous at x̄. If θ = τ , then V (y(θ)) = V (x̄) and V (x) ≤ V (x̄) + ε/2,
again showing that V is left upper semi-continuous at x̄. As lower semi-continuity is
assured, it follows that V is left continuous at x̄.

A trajectory starting at x̄ and remaining in X− for all t ≥ 0 must satisfy y(t) = x̄ for all
t: therefore V sc

− (x̄) ≤ V sc
I (x̄).
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Proceeding to (v), let x̄ be a left semi-repeller, and let (y, a) be a trajectory–action pair
such that y(0) = x̄, a−(t) = a+(t) = q̄ and y(t) ∈ X− for all t ≥ 0. Then V sc

− (x̄) ≥
U(y, a) ≥ u(x̄, q̄)/ρ ≥ V sc

I (x̄). Let (ỹ, ã) be any trajectory–action pair such that ỹ(0) = x̄

and ỹ(t) ∈ X+ for all t ≥ 0. Then

u(x̄, q̄) − u(ỹ(t), ã+(t)) ≥ u(x̄, q̄) − u(x̄, ã+(t)) + u(x̄, ã+(t)) − u(ỹ(t), ã+(t)) ≥ 0,

as q̄ maximises u(x̄, ·) and as u(x, q) is decreasing in x. This implies V sc
− (x̄) ≥ u(x̄, q̄)/ρ ≥

V sc
+ (x̄). We conclude that V (x̄) = V sc

− (x̄), and hence that V is left continuous at x̄.

Finally, we prove (vi) The sufficiency of the condition is clear. To show necessity, we
combine (ii), (iv) and (v) to infer that V is always left-continuous. Statements (ii) and
(iii) imply that it can only fail to be right-continuous if x̄ is a right semi-repeller and
V sc

+ (x̄) < V (x̄).

F.6 Proof of Proposition C.3

First, we formulate superoptimality and suboptimality principles at interfaces.

Lemma F.1. Let x̄ = x̄j be an interface point, v : X → R a supersolution and w : X → R
a subsolution of (11), such that v, w ∈ G . Choose ξ1 ∈ X̊j, and let τj = inf{t ≥ 0 : y(t) ̸∈
(ξ1, x̄)} be the exit time from (ξ1, x̄). Then for all t ≥ 0 and all x ∈ (ξ1, x̄), we have for
θj = min{t, τj} that

v(x) ≥ sup
a

(∫ θj

0
u(y(s), a(s)) exp(−ρs) ds+ exp(−ρθj)v(y(θj))

)
(20)

and

w(x) ≤ sup
a

(∫ θj

0
u(y(s), a(s)) exp(−ρs) ds+ exp(−ρθj)w(y(θj))

)
. (21)

If v or w are, respectively, continuous at x̄, ξ2 ∈ X̊j+1 and τj+1 = inf{t ≥ 0 : y(t) ̸∈
(x̄, ξ2)}, then for all t ≥ 0 and x ∈ (x̄, ξ2), the inequalities (20) or (21) hold, respectively,
with θj replaced by θj+1 = min{t, τj+1}.

Proof. As the hypotheses imply that v and w restricted to [ξ1, x̄] and [x̄, ξ2] are continuous,
equation (20) is implied by Bardi and Capuzzo-Dolcetta (2008, Remark III.2.34), and (21)
by Bardi and Capuzzo-Dolcetta (2008, Remark IV.3.16).

Proof of Proposition C.3. Write H− for Hj and H+ for Hj+1; then we have that H(x̄, p) =
max{H−(x̄, p), H+(x̄, p)}. Introduce φ(p) = ρw(x̄) − H(x̄, p).

Examine first the situation that φ(p) ≤ 0 for all p. As φ(p) is an affine function of p if
p < pℓ(x̄) or p > pu(x̄), a maximiser p̄ of φ exists. The function φ is concave and maximal
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at p̄, hence 0 is an element of the subgradient of −φ(p̄), which is the closed convex hull
of the derivatives (H−)p(x̄, p̄) and (H+)p(x̄, p̄) (Aubin, 1993, Corollary 4.4). Using the
fact that (H±)p(x, p) = f±(x, q∗(x, p)), and setting q̄∗ = q∗(x̄, p̄), this implies that there
is 0 ≤ λ ≤ 1 such that

H(x̄, p̄) = λH−(x̄, p̄) + (1 − λ)H+(x̄, p̄), λf−(x̄, q̄∗) + (1 − λ)f+(x̄, q̄∗) = 0, (22)

λ = µ(q̄∗, . . . , q̄∗) and (q̄∗, q̄∗) ∈ C0, where C0 is the set of controls stabilising x̄. Using
(22), as well as the definition of HI, we obtain

0 ≥ φ(p̄) = ρw(x̄) − (λH−(x̄, p̄) + (1 − λ)H+(x̄, p̄))
= ρw(x̄) − λu(x̄, q̄∗) − (1 − λ)u(x̄, q̄∗) − p̄(λf−(x̄, q̄∗) + (1 − λ)f+(x̄, q̄∗))
≥ ρw(x̄) −HI(x̄).

In this case the alternative A holds true.

Consider now the second situation, that there is p̄ such that φ(p̄) > 0. Let ε > 0 and set

ψε(x) = w(x̄) + p̄(x− x̄) + (x− x̄)2

2ε2 .

Now x̄ cannot maximise w − ψε for any ε > 0, for if it did, ψ′
ε(x̄) = p̄ ∈ D+w(x̄), which

would imply, as w is a subsolution, that φ(p̄) ≤ 0.

For every ε > 0 let xε denote a maximiser of w − ψε. Necessarily xε ̸= x̄ and 0 =
w(x̄) − ψε(x̄) ≤ w(xε) − ψε(xε), which implies, first, with σ = (xε − x̄)/|xε − x̄|, that

(xε − x̄)2 + 2σε2p̄|xε − x̄| ≤ 2ε2(w(xε) − w(x̄)) ≤ 4ε2∥w∥∞;

then (|xε − x̄| + σε2p̄)2 ≤ ε2 (4∥w∥∞ + ε2p̄2); and finally |xε − x̄| ≤ Cε, where C =
(4∥w∥∞ + ε2p̄2)

1
2 − εσp̄. So xε → x̄ as ε → 0. In particular, if ε > 0 is sufficiently small,

xε is in a neighbourhood of x̄ containing only a single interface point, namely x̄.

We can say more about xε if w is discontinuous at x̄. As w is left continuous and non-
increasing, there is ζ > 0 such that w(x) ≤ w(x̄) − ζ if x > x̄. Since w is non-increasing,
for x̄ < x ≤ x̄+ Cε, with C defined as above, we have that

w(x) − ψε(x) ≤ −ζ − p̄(x− x̄) − (x− x̄)2

2ε2 ≤ −ζ + C|p̄|ε < 0

if ε > 0 is sufficiently small. Since w(xε) − ψε(xε) ≥ 0, it follows that xε ≤ x̄ if ε > 0 is
sufficiently small.

We select a sequence εk > 0 such that εk → 0, an index ℓ ∈ {j, j + 1}, and a sequence of
maximisers xk of w−ψεk

such that xk ∈ Xℓ for all k; by the previous remark, xk ∈ Xj for
all k if w is discontinuous at x̄. Actually, we can pick ξ1 ∈ X̊j and ξ2 ∈ X̊j+1 such that
either xk ∈ Ij ≡ (ξ1, x̄) or xk ∈ Ij+1 ≡ (x̄, ξ2) for all k, if necessary by discarding a finite
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number of the initial xk.

Let t > 0 be sufficiently small such that any trajectory y starting at xk satisfies ξ1 <

y(s) < ξ2 for all 0 ≤ s ≤ t. Let τℓ(y) = inf{s ≥ 0 : y(s) ̸∈ Iℓ}. By Lemma F.1, we have
for θℓ(y) = min{t, τℓ(y)} that

w(xk) ≤ sup
a

(∫ θℓ(y)

0
u(y(s), a(s)) exp(−ρs) ds+ exp(−ρθℓ)w(y(θℓ))

)
. (23)

For every k, let (yk, ak) be a trajectory–action pair starting at xk that realises the supre-
mum on the right hand side of (23), and let θ(k)

ℓ = θℓ(yk).

If the alternative B holds, we are done. So assume that it does not hold. Then θ
(k)
ℓ → 0

as k → ∞ and min{t, θ(k)
ℓ } = θ

(k)
ℓ for k sufficiently large.

Note that yk(θ(k)
ℓ ) = x̄. From the fact that w(xε) − ψε(xε) ≥ 0, we derive w(xk) ≥

ψεk
(xk) ≥ w(x̄) + p̄(xk − x̄). Combining this with (23) then yields

0 ≤
∫ θ

(k)
ℓ

0
u(yk(s), ak(s)) exp(−ρs) ds+ (exp(−ρθ(k)

ℓ ) − 1)w(x̄) − p̄(xk − x̄)

=
∫ θ

(k)
ℓ

0
u(yk(s), ak(s)) exp(−ρs) ds+ (exp(−ρθ(k)

ℓ ) − 1)w(x̄)

+ p̄
∫ θ

(k)
ℓ

0
f(yk(s), ak(s)) ds

≤
∫ θ

(k)
ℓ

0
max
q∈Q

[u(yk(s), q) exp(−ρs) + p̄f(yk(s), q)] ds+ (exp(−ρθ(k)
ℓ ) − 1)w(x̄).

Dividing by θ(k)
ℓ and taking the limit k → ∞ then yields 0 ≤ Hℓ(x̄, p̄) − ρw(x̄), implying

that φ(p̄) = ρw(x̄) − max{Hj(x̄, p̄), Hj+1(x̄, p̄)} ≤ 0, contradicting the choice of p̄.

F.7 Proof of Proposition C.4

Proof. The continuous function w − v takes on the compact set X a maximum M at a
point x̄. Assume that M > 0, as otherwise the lemma is proved.

If x̄ is neither an interface point nor a boundary point of X, the proof uses the classi-
cal “doubling of variables” technique, (see Bardi and Capuzzo-Dolcetta, 2008, Theorem
II.3.1) to derive a contradiction.

If x̄ ∈ ∂X, say x̄ = x̄0, the case x̄ = x̄J being similar, then (12) and (14) imply ei-
ther w(x̄) ≤ β(x̄) ≤ v(x̄), contradicting M > 0, or that one of the following holds:
ρw(x̄) − H1(x̄, p) ≤ 0 for all p ∈ D+w(x̄), or ρv(x̄) − H1(x̄, p) ≥ 0 for all p ∈ D−w(x̄).
The argumentation proceeds then as in the proof of Bardi and Capuzzo-Dolcetta (2008,
Theorem V.4.16).

Hence we only have to consider the situation that x̄ is an interface point. According to
Proposition C.3, one of two alternatives can obtain. If Alternative A is true, then we
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have ρw(x̄) ≤ HI(x̄) ≤ ρv(x̄), as the second inequality is implied by (13). This implies
that w(x̄) − v(x̄) = M ≤ 0, a contradiction.

If Alternative B holds, there is η > 0, ℓ ∈ {j, j + 1}, and a sequence xk → x̄, such
that xk ∈ Xℓ for all k, and for each k there is a trajectory–action pair (yk, ak) such that
yk(0) = xk, yk(t) ∈ Xj for all t ∈ [0, η], and

w(xk) ≤
∫ η

0
u(yk(t), ak(t)) exp(−ρt) dt+ w(yk(η)) exp(−ρη). (24)

Moreover, from (20) we obtain that for k sufficiently large

v(xk) ≥
∫ η

0
u(yk(t), ak(t)) exp(−ρt) dt+ v(yk(η)) exp(−ρη). (25)

Combining (24) and (25) yields

w(xk) − v(xk) ≤ (w(yk(η)) − v(yk(η))) exp(−ρη) ≤ M exp(−ρη).

Taking the limit k → ∞ yields then M ≤ M exp(−ρη) < M , again a contradiction. We
conclude that necessarily M ≤ 0.

F.8 Proof of Proposition C.5

Proof. We give the proof for the subsolution case; the supersolution case is similar.

Set x̄ = x̄j. By hypothesis, the subsolution property holds for all x ∈ Xj,+\{x̄}. Assuming
that the statement of the proposition is false, there is a C1 function ψ such that, firstly,
ψ(x̄) = w̄(x̄), secondly w̄(x) − ψ(x) restricted to Xj,+ is maximal at x̄, and finally

ρw̄(x̄) −H+(x̄, ψ′(x̄)) > 0, (26)

where H+ = Hj+1. Introduce ∆(y) = w̄(x̄ + y) − ψ(x̄ + y) − y2. Then ∆ is continuous
for y ≥ 0, maximal at y = 0, and ∆(0) = 0. Continuity implies that for every n > 0
there is ξn > 0 such that ∆(ξn) > −1/n. On the other hand, if y ≥ 2/

√
n, then

∆(y) ≤ −y2 ≤ −4/n. It follows that 0 < ξn < 2/
√
n.

Set εn = ξn/n. The function

∆(y) − εn/y = w̄(x̄+ y) −
(
ψ(x̄+ y) + y2 + εn/y

)
satisfies ∆(ξn) − εn/ξn ≥ −2/n and ∆(y) − εn/y ≤ −4/n if y ≥ 2/

√
n. Hence it takes its

maximum at a point 0 < yn < 2/
√
n, and, setting xn = x̄+ yn, we have

pn ≡ ψ′(xn) + 2yn − εn/y
2
n ∈ D+w̄(xn).

As yn maximises ∆(y)−ε/y, we have, first, that ∆(yn)−εn/yn ≥ ∆(ξn)−εn/ξn ≥ −2/n,
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and, second, that 0 < εn/yn ≤ ∆(yn) + 2/n ≤ 2/n. Consequently, if n → ∞ we obtain

pnyn = ψ′(xn)yn + 2y2
n − εn/yn → 0. (27)

Since v, w ∈ G and one of these functions is discontinuous at x̄, the point x̄ is a right
semi-repeller. In particular this implies that (H+)p(x̄, p) = f+(x̄, p) ≥ 0 for all p.

Writing qn = q∗(xn, pn), there are 0 < θ(1)
n , θ(2)

n < 1 such that

H+(xn, pn) = u(x̄, qn) + ux(x̄+ θ(1)
n yn, qn)yn + pn[f+(x̄, qn) + (f+)x(x̄+ θ(2)

n yn, qn)yn]
= H+(x̄, pn) + rn ≤ H+(x̄, ψ′(xn) + 2yn) + rn,

where we have set rn = ux(x̄+θ(1)
n yn, qn)yn+(f+)x(x̄+θ(2)

n yn, qn)pnyn, and where we have
used that pn ≤ ψ′(xn) + 2yn as well as the fact that H+(x̄, p) is nondecreasing in p. As
ux and (f+)x are bounded, equation (27) implies that rn → 0 as n → ∞.

Since w is a subsolution, we have ρw(xn) ≤ H+(xn, pn) ≤ H+(x̄, ψ′(xn) + 2yn) + rn.
Taking the limit n → ∞ then yields ρw̄(x̄) ≤ H+(x̄, ψ′(x̄)), contradicting (26).

F.9 Proof of Proposition D.3

We need a technical result about linearisations (e.g. Cannarsa et al., 2015, Lemma 2.3).

Lemma F.2. Let g(t, x) be measurable in t and continuously differentiable in x. For
x ∈ X̊, denote by y(t;x) the solution to ẏ(t) = g(t, y(t)), y(0) = x. Assume that for
x0 ∈ X̊ there is T > 0 such that y(t;x0) ∈ X̊ for all t ∈ [0, T ]. Let Φ be the absolutely
continuous solution of the linear system

Φ̇(t) = gx(t, y(t;x0))Φ(t), Φ(0) = 1.

Then for all x in a neighbourhood of x0 in X̊, we have for t ∈ [0, T ]

y(t;x) = y(t;x0) + Φ(t)(x− x0) + ot(|x− x0|),

with ot(|x− x0|)/|x− x0| → 0 as x → x0, uniformly in t.

In the proof below, the lower Dini directional derivative is used, which for a continuous
function W (x) is defined as ∂−W (x; ξ) = lim infh↓0(W (x + hξ) − W (x))/h. Unlike an
ordinary derivative, this derivative exists for all x and ξ. Clearly, if W is differentiable
at x, then ∂−W (x; ξ) = W ′(x)ξ for all ξ.

Proof of Proposition D.3. Let I = y∗([0, T ]) be the orbit of the optimal trajectory. If y∗

is constant, then I consists of a single point and V is differentiable on all of I. If y∗ is
nonconstant, then I has positive length and by Proposition D.2 the value function V is
differentiable on a dense subset S ⊂ I.
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We first establish a relation between the derivatives V ′ on different points in S using a
linearisation argument. Then we show that V ′ restricted to S is continuous, which will
finally imply that V ′ exists everywhere in I.

For z ∈ X̊, let y(t; z) and Φ(t) be, respectively, the solutions of ẏ(t; z) = f(y(t; z), a∗(t))
and y(0; z) = z, and of

Φ̇(t) = fx(y(t; z), a∗(t))Φ(t), Φ(0) = 1.

Choose ξ ∈ R arbitrarily, and take h > 0 such that y(t;x+ hξ) ∈ X̊ for all t ∈ [0, T ]. By
the optimality principle,

V (x+ hξ) ≥
∫ t

0
exp(−ρs)u(y(s;x+ hξ), a∗(s)) ds+ V (y(t;x+ hξ)) exp(−ρt).

For the optimal pair (y∗, c∗), we have

V (x) =
∫ t

0
exp(−ρs)u(y∗(s), a∗(s)) ds+ V (y∗(t)) exp(−ρt).

Differentiability of V at x implies

V ′(x)ξ = lim inf
h↓0

(V (x+ hξ) − V (x))/h

≥ lim inf
h↓0

(
h−1

∫ t

0
exp(−ρs)

(
u(y(s;x+ hξ), a∗(s)) − u(y∗(s), a∗(s))

)
ds

+ exp(−ρt)V (y(t;x+ hξ)) − V (y∗(t))
h

)

=
∫ t

0
exp(−ρs)ux(y∗(s), a∗(s))Φ(s)ξ ds+ exp(−ρt)∂−V (y∗(t); Φ(t)ξ),

where in the last equality Lemma F.2 has been used.

For t ∈ [0, T ] such that y∗(t) ∈ S, we find

V ′(x)ξ ≥
∫ t

0
exp(−ρs)ux(y∗(s), a∗(s))Φ(s)ξ ds+ exp(−ρt)V ′(y∗(t))Φ(t)ξ.

Taking successively ξ = 1 and ξ = −1 yields

V ′(x) =
∫ t

0
exp(−ρs)ux(y∗(s), a∗(s))Φ(s) ds+ exp(−ρt)V ′(y∗(t))Φ(t). (28)

As Φ(t) ̸= 0, for all t ∈ [0, T ] we define a function p̂(t) by the relation

V ′(x) =
∫ t

0
exp(−ρs)ux(y∗(s), a∗(s))Φ(s) ds+ exp(−ρt)p̂(t)Φ(t).

Clearly p̂(0) = V ′(x). Differentiating this relation with respect to t shows moreover that
p̂ satisfies (15), and consequently that p̂(t) = p∗(t) for all t. We then infer from (28) that
p∗(t) = V ′(y∗(t)) whenever y∗(t) ∈ S.
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Take z ∈ S, and consider a sequence zn ∈ S such that zn → z as n → ∞. Find a sequence
tn such that zn = y∗(tn). If necessary after passing to a subsequence we may assume—as
[0, T ] is compact—that tn → τ , and therefore V ′(zn) = V ′(y∗(tn)) = p(tn) → p(τ) = V ′(z)
as n → ∞. Hence V ′ is continuous on S, and can uniquely be extended to a continuous
function on I, which implies that V is continuously differentiable on I.

To prove the last statement, differentiate the equality

V (x) =
∫ t

0
exp(−ρs)u(y∗(s), a∗(s)) ds+ exp(−ρt)V (y∗(t))

with respect to t and divide by exp(−ρt) to obtain

ρV (y∗(t)) = u(y∗(t), a∗(t)) + V ′(y∗(t))f(y∗(t), a∗(t)).

Since V is a supersolution and p∗(t) = V ′(y∗(t)), we have ρV (y∗(t)) ≥ H(y∗(t), p∗(t)),
which reads as

u(y∗(t), a∗(t)) + V ′(y∗(t))f(y∗(t), a∗(t)) ≥ max
q

(u(y∗(t), q) + p∗(t)f(y∗(t), q)),

the last statement of the proposition.

F.10 Proof of Proposition D.4

We begin by proving the first three statements of Proposition D.4.

Proof of Proposition D.4, Statements (i)–(iii).

(i) If y∗ is not constant, then ẏ∗(0) ̸= 0 and y∗ is locally invertible on an interval [0, ε0).
Consequently for every 0 < ε < ε0 there is 0 < t1 < ε such that y∗(t1) ∈ D1, as D1 is
dense. But then y∗(t) ∈ D1 for all t ≥ t1 by Proposition D.3. As ε > 0 was arbitrary,
this shows that y∗(t) ∈ D1 for all t > 0 such that y∗(t) ∈ X̊.

(ii) Let τ > 0 be such that y∗(τ) ∈ D1. The trajectory (yτ , pτ ) starting at the point
(y∗(τ), V ′(y∗(τ))) satisfies yτ (t) = y∗(τ + t): in particular, we have y∗(0) = yτ (−τ) and
p0 = pτ (−τ).

(iii) Monotonicity of y∗ has been shown in, e.g., Wagener (2003).

In the proof of the last statement of Proposition D.4, and several other results, we shall
use the invariant manifold theorem (Hirsch et al., 1977; Takens and Vanderbauwhede,
2010), which for a planar vector field ensures the existence of invariant curves that are
tangent to the eigenspaces of a steady state.

More precisely, let ζ̄ be a steady state of a real analytic planar vector field Y : R2 → R2,
whose linearisation DY (ζ̄) has eigenvalues λ1 and λ2. If λ1 < 0 < λ2, there are unique and
real analytic invariant manifolds W s and W u tangent, respectively, to the eigenspace E1
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of λ1 and E2 of λ2 at the steady state, the stable and unstable manifolds. If λ1 = 0 < λ2,
there exists a, not necessarily unique, C∞ invariant manifold W cs tangent to E1 at the
steady state, the centre-stable manifold, and a unique real analytic unstable manifold W u

tangent to E2. If 0 < λ1 < λ2, then there exists a unique and real analytic invariant
manifold W uu tangent to E2 at the steady state, called the strongly unstable manifold. If
0 < λ1 < λ2, all trajectories not on W uu are tangent to E1 and can be parametrised as
the graph of a C1 function w : E1 → E2.

The eigenvalues and eigenspaces that correspond to a given invariant manifold are denoted
by the same superscript: e.g. the centre-stable manifold W cs is tangent to the centre-
stable eigenspace Ecs of λcs.

We are mostly concerned with centre-stable manifolds. These manifolds are in general not
unique and only infinitely often differentiable, not real analytic. However, the following
result provides a condition for unicity and analyticity of the centre-manifold.

Theorem F.1 (Aulbach (1986)). Let ζ̄ be a steady state of a real analytic vector field
Y : N → R2, where N is a neighbourhood of ζ̄ in R2. Let λ1 = 0 and λ2 > 0 be the
eigenvalues of DY (ζ̄), and let E1 and E2 be the corresponding eigenspaces.

If every neighbourhood of ζ̄ contains a fixed point of Y different from ζ̄, then there is
a disk D ⊂ N of positive radius, centred at ζ̄, and a unique analytic local centre–stable
manifold W cs ⊂ D, tangent to E1, such that all points on W cs are steady states of Y .

The next result solves the Hamilton–Jacobi–Bellman equation if the action schedule takes
a corner value qb, b ∈ {ℓ, u}, if we set g(x) = f(x, qb) and v(x) = u(x, qb).

Proposition F.1. Let g(x) and v(x) be real analytic, and let x̄ be such that g(x̄) = 0.
Consider for ρ > 0 the differential equation

ρV (x) − v(x) − V ′(x)g(x) = 0. (29)

(i) Equation (29) has bounded solutions V , all of which satisfy V (x̄) = v(x̄)/ρ.
(ii) If g′(x̄) < ρ, each solution is continuously differentiable and V ′(x̄) = v′(x̄)/(ρ −

g′(x̄)).
(iii) If g′(x̄) < 0, the solution V is unique and real analytic.

Proof. For g identically zero V (x) = v(x)/ρ is the unique real analytic solution of (29).

Otherwise x̄ is an isolated zero of g. Let N = (x1, x2) be an open interval containing x̄.
Restricted to N × R, the graph of a differentiable solution V of (29) is a union of orbits
of

ẏ = g(y), ẇ = ρw − v(y)

as w(t) = V (y(t)). This system has a unique steady state (x̄, w̄) = (x̄, v(x̄)/ρ). The
linearisation

(
g′(x̄) 0

−v′(x̄) ρ

)
at steady state has eigenvalues λ1 = g′(x̄) and λ2 = ρ > 0, and

corresponding eigenspaces E1 = R
(
ρ−g′(x̄)
v′(x̄)

)
and E2 = R ( 0

1 ).
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If λ1 > 0, the steady state is a repeller. For N sufficiently small there are two trajectories
(yi(t), wi(t)), i = 1, 2, converging to the steady state as t → −∞, with yi(ti) = xi for
some ti. As ẏi(t) ̸= 0 if t < ti, these trajectories yield a continuous solution on N by
setting V (yi(t)) = wi(t) and V (x̄) = v(x̄)/ρ. If λ1 ≤ 0, the centre-stable manifold W cs of
the steady state is tangent to E1 and the graph of a bounded solution. This shows (i).

If λ1 < ρ, the manifold E2 is invariant, and any bounded solution trajectory not on E2 is
on a manifold W1 tangent to E1 at the steady state, which is the graph of a C1 solution
V to (29). The gradient of V at the steady state is the inclination of the eigenspace E1,
which evaluates to V ′(x̄) = v′(x̄)/(ρ− g′(x̄)), showing (ii).

If λ1 < 0, the manifold W 1 is the stable manifold of the steady state, which is unique
and real analytic, completing the proof.

Lemma F.3. Let (y, p) be a canonical trajectory such that y(t) → x̄± as t → ±∞. Then
p(t) → p̄± as t → ±∞, with p̄± ∈ R ∪ {−∞,∞}.

Proof. We have to show that the set {t ≥ 0 : p(t)} has at most one accumulation point.

Assume that p̄1 < p̄2 are two distinct accumulation points. Then for all n > 0 there
are t1,n < t2,n < t1,n+1 such that t1,n, t2,n → ∞ and p(t1,n) → p̄1, p(t2,n) → p̄2 as
n → ∞. Taking p ∈ (p̄1, p̄2), for all n > 0 there are t1,n < t3,n < t2,n < t4,n < t1,n+1

such that p(t3,n) = p(t4,n) = p and ṗ(t3,n) > 0 and ṗ(t4,n) < 0. We conclude that the
second component X2 of the canonical vector field, and hence X itself, must vanish for
all (x̄, p) with p ∈ [p̄1, p̄2]. As ∂X1/∂p ̸= 0 on Pint, we must have that p̄1 ≥ pu(x̄) or
p̄2 ≤ pℓ(x̄). But for (x̄, p) ∈ Pℓ ∪ Pu, the conditions X2 = (ρ − fx)p − ux = 0 and
∂X2/∂p = (ρ − fx) = 0 imply ux = 0, contradicting Assumption 2. The argument for
{t ≤ 0 : p(t)} is analogous.

Proof of Proposition D.4, Statement (iv). If the first alternative does not hold, we have
y∗(t) ∈ X for all t ≥ 0. Let (y, p) be the canonical trajectory such that y∗ = y, whose
existence is guaranteed by (ii). Then (iii) implies that y(t) → x̄ ∈ X as t → ∞.

Lemma F.3 implies that p(t) converges to a limit as t → ∞, or diverges to ∞, or to −∞.
Proposition A.3 rules out the second possibility. We prove the result by showing that the
third possibility cannot occur either.

If p(t) → −∞ as t → ∞, there is t1 such that (y(t), p(t)) ∈ Pℓ for all t ≥ t1. Introduce
v(x) = u(x, qℓ) and g(x) = f(x, qℓ). Then H(x, p) = v(x) + pg(x) and ẏ(t) = g(y(t)) for
all t ≥ t1. In particular g(x̄) = 0 and g′(x̄) ≤ 0.

Set I = y((t1,∞)). By (i), on I the value function is differentiable and satisfies (29).
Proposition F.1 implies that V ′(x̄) = v′(x̄)/(ρ − g′(x̄)) ≥ v′(x̄)/ρ. As p(t) → V ′(x̄) for
t → ∞, we have reached the desired contradiction.
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F.11 Proofs of Propositions D.5 and D.6

First we note an implication of real analyticity. For b ∈ {ℓ, u} and z ∈ Sb, let nb(z) be the
unit normal vector to Sb pointing out of Pint at z, and let ωb(x) = nb(x, pb(x))·X(x, pb(x)).

Lemma F.4. Let b ∈ {ℓ, u} and let C ⊂ X̊ be a compact set.

(i) If the cardinality of {x ∈ C : f(x, qb) = 0} is infinite, then f(x, qb) = 0 for all
x ∈ X.

(ii) If the cardinality of {x ∈ C : ωb(x) = 0} is infinite, then Sb is invariant under X.

Proof. Both assertions follow from the fact that a real analytic function whose zeros have
an accumulation point vanishes identically.

Proof of Proposition D.5. Assume the statement is false. Then for every n > 0 there are
initial points x̃n located in different non-constant optimal orbits. We may assume that
they are ordered in an increasing or decreasing sequence: we prove the result for the
increasing case, the other being similar. By Proposition D.4.(ii) there are p̃n,0 such that
the non-constant trajectory starting at x̃n is the state component of the optimal canonical
trajectory (ỹn, p̃n) starting at (x̃n, p̃n,0). Proposition D.4.(iv) implies that this canonical
trajectory converges to a point (x̄n, p̄n) with x̄n ∈ (x̃n, x̃n+1); necessarily p̄n ≤ 0.

Introduce Tn = min {τ ≥ 0 : (ỹn(t), p̃n(t)) ∈ Pb for all t ≥ τ}. If 0 < Tn < ∞ infinitely
often, or after relabelling, for all n > 0, then the points (x̄n, p̄n) are steady states of
X in Pb and f(x̄n, qb) = 0; applying Lemma F.4, it follows that f(x, qb) = 0 for all x.
But then fx(x, qb) = 0 for all x as well, and X2(x, p) = ρp − ux(x, qb) if (x, p) ∈ Pb. As
X2(x̄n, p̄n) = 0, it follows that ωb(x̄n) < 0. On the other hand, for x̂n = ỹn(Tn), we have
ωb(x̂n) ≥ 0. Hence ωb vanishes in the interval (x̃n, x̃n+1); Lemma F.4 then implies that
Sb is invariant. This however contradicts that Tn > 0.

If Tn = 0 infinitely often, it follows as above that f(x, qb) = 0 for all x and ỹn(t) = x̃n for
all t, contradicting that x̃n is located in a non-constant optimal orbit.

Consider next the situation that Tn = ∞ for all n sufficiently large and (x̄n, p̄n) ̸∈ Pint.
This implies that (x̄n, p̄n) ∈ Sb. Since these points are steady states, ωb(x̄n) = 0, and
by Lemma F.4 the set Sb is invariant and f(x, qb) = 0 for all x. But then Sb is the
centre–stable manifold for (x̄n, p̄n), and there is no non-constant trajectory that tends to
(x̄n, p̄n) as t → ∞, which contradicts the choice of (ỹn, p̃n).

We are left with the situation that (x̄n, p̄n) ∈ Pint for n sufficiently large. A subsequence of
these points converges to a steady state (x̄, p̄) ∈ Pint of X. Hence by the Aulbach theorem,
the invariant centre-stable manifold of (x̄, p̄) consists of steady states and contains (x̄n, p̄n)
for n sufficiently large, again contradicting the fact that (ỹn, p̃n) is non-constant.

Proposition F.2. A compact set C ⊂ X̊ contains only finitely many switching points of
any optimal orbit.
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Proof. Let I be a non-constant optimal orbit, b ∈ {ℓ, u}, y : T → I a state trajectory
parametrising I, and p such that (y, p) is the canonical trajectory associated to y.

Assume that there are infinitely many switching points in I. There is an increasing
sequence t1 < t2 < . . . in T such that (y(t2k−1), p(t2k−1)) ∈ Pint and (y(t2k), p(t2k)) ∈
Pb for all k > 0. Consequently, there are times t1 < t̂1 < t2 < t̂2 < . . . such that
(y(t̂n), p(t̂n)) = (x̂n, pb(x̂n)) ∈ Sb, and such that ωb(x̂2k−1) ≥ 0 and ωb(x̂2k) ≤ 0 for all k.
Hence ωb vanishes in the interval (x̂n, x̂n+1) for every n ≥ 0. By Lemma F.4, the set Sb
is invariant, which contradicts the existence of switching points.

Proof of Proposition D.6. If x0 ∈ I̊ ∩ X̊j, then there is a non-constant optimal trajectory
y : T → I, with T = R or T = [0,∞), such that x0 = y(t0) with t0 ∈ T̊. By Proposition
D.4, V is differentiable in a neighbourhood of x0 and there is a canonical trajectory (y, p)
such that V ′(y(t)) = p(t) for all t > 0 and such that ẏ(t) does not change sign. Moreover,
if x0 is not a switching point, then (y(t), p(t)) is real analytic for t close to t0, since it is
locally the trajectory of a real analytic vector field X. Hence we can solve x = y(t) as
t = y−1(x) around x0, and obtain that V ′(x) = p(t) = p(y−1(x)) is real analytic.

It remains to show that ϕ can be extended to a differentiable function on an open interval
containing I. Let t̄ ∈ ∂T: that is, t̄ ∈ {0,−∞,∞}. Proposition D.4.(ii) and Lemma F.3
imply that (y(t), p(t)) converges either to (x̄,∞), or to (x̄,−∞), or to a finite limit (x̄, p̄),
as t → t̄. In the first and second case we respectively have ϕ(y(t)) = q∗(y(t), p(t))
q∗(y(t), p(t)) = qu and q∗(y(t), p(t)) = qℓ for t in a neighbourhood of t̄, and it is clear that
ϕ can be differentiably extended.

In the third case (y(t), p(t)) tends to a steady state z̄ = (x̄, p̄) of the canonical vector
field as t → t̄. Lemma F.2 implies that there is 0 < t1 < t̄ such that z(t) = (y(t), p(t))
does not pass through a switching point for t ∈ (t1, t̄). If z(t) ∈ Pb for b ∈ {ℓ, u} for
t ∈ N , then ϕ(y(t)) = qb for those values of t, and we conclude as above. If z(t) ∈ Pint

for all t ∈ N , the trajectory is tangent to an eigenspace E of DXI(z̄), where XI is the
real analytic extension to X×R of the restriction of X to Pint. The fact that Hpp(z̄) > 0
implies, first, that none of these eigenspaces is vertical, and, second, if DXI(z̄) has an
eigenvalue with algebraic multiplicity 2, then the geometric multiplicity is 1.

As in all cases the eigenspaces are one-dimensional non-vertical lines, it follows that
V ′′(y(t)) = X2(z(t))/X1(z(t)) converges to the inclination w̄ of E with respect to the
horizontal axis as t → t̄. Consequently ϕ′(y(t)) = q∗

x(y(t), p(t)) + q∗
p(y(t), p(t))V ′′(y(t))

converges to q∗
x(z̄) + q∗

p(z̄)w̄.
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F.12 Proof of Proposition E.1

Proof. The dynamics take the form ẏ(t) = fϕ(y(t)). Given a trajectory y with initial
state x, the payoff at x is

V ϕ
i (x) =

∫ Θ

0
exp(−ρt)uϕ(y(t)) dt+ exp(−ρΘ)β(y(Θ)).

Properties (i), (ii) and (iii) are immediate.

As fϕj is real analytic on X̊j, we either have that fϕj (x) = 0 for all x ∈ Xj, or the set
Ej =

{
x ∈ Xj : fϕj (x) = 0

}
is finite. We set E = ∪jEj. If fϕj is identically zero, then

V ϕ
i (x) = uϕi,j(x)/ρ is real analytic on Xj. If not, take x ∈ Xj\Ej. As fϕj (x) ̸= 0, we have

V ϕ
i (x+ fϕj (x)t+ o(t)) − V ϕ

i (x) = V ϕ
i (y(t)) − V ϕ

i (x)

= (exp(ρt) − 1)V ϕ
i (x) − exp(ρt)

∫ t

0
exp(−ρs)uϕi (y(s)) ds,

which on dividing by t and taking the limit t → 0 yields, first, that the limit of the left
hand expression exists, and, second, that it equals

(
V ϕ
i

)′
(x) fϕj (x) = ρV ϕ

i (x) − uϕi,j(x). (30)

Note that the graph of solutions of (30) consists of trajectories of the dynamical system

ẏ = fϕj (y), v̇ = −uϕi,j(y) + ρv. (31)

Then Proposition F.1 implies that V ϕ
i is continuous on X̊j and real analytic on x ∈ X̊j\E,

showing (iv). Now (v) is also straightforward.

Let x̄ be such that fϕj (x̄) = 0. If (fϕj )′(x̄) < ρ, V ϕ
i is differentiable at x̄ by Proposition F.1.

If (fϕj )′(x̄) ≥ ρ, trajectories of (31) tending to (x̄, uϕi,j(x̄)/ρ) are tangent to an eigenspace
of the linearisation of (31) at the steady state, showing that the limit of (V ϕ

i )′(x) as
x → x̄ exist, even if it is possibly infinite. This shows (vi).
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