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Abstract 
 
This paper investigates the impact of the largest rail strikes in German history on intercity buses 
– a then newly liberalised market. Using unique booking data of bus services, we exploit variation 
in rail service cancellations across routes to show that the disruption in rail transport increases bus 
ticket sales. Crucially, the effect persists beyond the strike, indicating that travellers do not return 
to their originally preferred mode of transport. It is particularly pronounced for passengers 
travelling on weekends. The findings suggest that customers were previously under-
experimenting. Beyond transportation, our results highlight the importance of service reliability, 
as temporary disruptions can cause customers to permanently switch to competitors. 
JEL-Codes: C810, D830, L920, R410. 
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1 Introduction

Once settled on a product, consumers do not usually revisit their choice for every purchase.
After all, you do not evaluate whether your preferred e-mail provider, regular hairdresser, or
favourite restaurant constitutes the optimal choice every time you make use of their services.
Such behaviour might be a rational response to search costs and informational frictions, or it
could be driven by inertia. Incumbent firms benefit from those habits, as they constitute a bar-
rier to entry for new firms. Service interruptions, however, may force customers to experiment
with substitutes, inducing some of them to permanently switch to competitors. For example,
if a specific streaming service suddenly becomes unavailable, customers might switch to a rival
and do not return even after the interruption has ended.

Persistent service reliability would consequently be an important factor for companies in
maintaining their customer base. We test this hypothesis by exploiting a major strike in the
German railway network as a natural experiment to investigate whether the resulting service
disruptions caused customers to permanently switch from rail to bus travel. This study is, to the
best of our knowledge, the first to present systematic evidence of this mode-of-transport-switch.

The railway strike is particularly well suited to investigate the impact of service disruptions
on product switching because passenger transport is an experience good, which can only be
properly evaluated during or after consumption. Barriers to switching transport mode may thus
be especially high. In the fall of 2014, labour disputes shut down nearly all German long-distance
trains for days, forcing train travellers to use alternative transport modes. For some travellers,
this led to a first encounter with intercity buses. In introducing new customers to the railway’s
key rival, the strike potentially resulted in new, long-term customers for buses.1 The German
railway strike of 2014 provides several desirable features for a quasi-natural experimental setting:
It was unprecedented in extent, announced in the short term, and exogenous to transport
services in its geographic dispersion. In addition, it was the first German railway strike in
which buses were available as a viable alternative.

We employ a unique data set: detailed booking data provided by one of the major intercity
bus providers, MeinFernbus (MFB). The data set contains the universe of MFB ticket sales
between any combination of 33 large German cities over a period of four months. We match
this data with web-crawled rail itineraries and emergency timetables. For any of the 33 cities,
we know how they are connected by rail at each hour of the day. This includes information
on the length of the trip, the required changeovers, and the frequency of departures - both in
normal times and during strikes.

1Intercity buses are defined as regularly scheduled services exceeding a distance of 50 km. In the literature,
they are often interchangeably referred to as ‘inter-urban’ or ‘long-distance’ buses.
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In a difference-in-differences setting, we estimate the effect of the railway strike on intercity
bus use. In doing so, we exploit the fact that not all routes are affected equally by the strike. We
show that bus ticket sales indeed increase during the strike (by 32% on average during the first
wave). This is primarily driven by first-time customers who did not use the bus before the strike.
Crucially, the effect persists beyond the strike, implying that several passengers permanently
switched to bus travel after having been forced to experiment with new modes of transport.
After the strike, ticket sales on affected routes are on average 8% higher. The post-strike effect
is particularly pronounced for customers travelling over the weekend, indicating that buses are
mostly an alternative for passengers travelling for leisure. Positive price effects suggest that the
increase in ticket sales is the result of an increase in demand due to the strike and not driven
by a positive supply shock (i.e. capacity expansion linked to a price offensive). Finally, we
show that switching mainly occurs on relatively short routes, where buses are arguably a better
substitute for trains.

The paper contributes to several strands of literature. First, we add to the classic literature
relating to the way in which individuals decide between alternatives. There is a long-standing
debate on rational decision-making (Simon, 1955; Weitzman, 1979; Morgan and Manning, 1985)
and constraints such as search costs (Baumol and Quandt, 1964; Ben-Akiva and Morikawa,
1990), information imperfections or simply habits, specifically when it comes to the choice of
transport mode (Moser et al., 2018; Donna, 2021). A permanent increase in demand for intercity
bus services could also be explained by learning. Travellers may learn about the service and
quality of buses by actually testing and experiencing them. Bus travel may thus be seen as an
experience good, the quality of which is underestimated, by consumers ex-ante (Riordan, 1986;
Bergemann and Välimäki, 2006).

Klemperer (1987c) observes that welfare may be reduced in the presence of switching costs.
Consequently, Porter (1996) argues that exogenous shocks may help individuals to their optimal
choice by triggering a period of experimentation. The underlying idea of experimentation due
to exogenously-imposed constraints, such as the non-availability of rail services, applies to the
setting in this paper. After all, bus services were available before the strikes and the availability
of online bookings - the primary booking channel - remedied some of the search costs. Public
transport strikes are typically considered to be highly economically damaging (Kennan, 1986).
However, if the rail strike reveals information, it may actually be welfare-improving.

Shapiro (1983) and Villas-Boas (2006) argue that firms can address under-experimentation
by customers through low introductory prices. We show that temporary service disruptions
of rivals can have a similarly positive impact on sales. Our paper thus also adds to the
industrial organisation literature surrounding competition in the presence of switching costs
(Von Weizsäcker, 1984; Klemperer, 1987a,b,c, 1995). These are relevant in many industries,
including the markets for pay-TV (Weeds, 2016), pharmaceuticals (Janssen, 2023) and even
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the deposit market (Zephirin, 1994). Switching costs are also relevant for effective policy de-
sign (Giulietti et al., 2005). We add to this literature by showing that service disruptions of
incumbent firms can have pro-competitive effects, as rivals can permanently lure away some
of the incumbent’s customers. McDonald and Bloch (1999) study the impact of strikes on the
profitability of competing firms. They show that firms can benefit from industrial action that
disrupts a competitor’s production, although effects decline with industry concentration. We
show that such effects are present in an industry that is highly concentrated and dominated by
a single company.

Our paper also relates to the literature investigating determinants of the choice of transport
mode. This is a classical research subject in transport research going back to Train (1978).2

Several studies have investigated how mode choice changes when one transport option is tem-
porarily unavailable during a strike. A survey by van Exel and Rietveld (2001) reviews 13 such
works and finds that a switch to the car is the most common, and that sometimes a permanent
mode switch occurs that persists after the strike. More recently, Bauernschuster et al. (2017)
exploit public transport strikes as a quasi-experimental shock to assess the negative externalities
of increased car traffic.3

Anderson (2014) shows that a strike in Los Angeles increased road traffic congestion. Adler
and van Ommeren (2016) and Adler et al. (2021) confirm this effect for Rotterdam and Rome,
respectively. The authors conclude that public transport plays a major role in avoiding road
overcrowding. Yang et al. (2022) provide evidence that the use of bike-sharing schemes in
London increased during Tube strikes. These studies focus on urban transport and commuter
mode choice and mostly investigate contemporary effects. One of the few studies investigating
intercity travel is Yeung and Zhu (2022). The authors show that the number of booked seats
with BlaBlaCar - an intercity ride-sharing app - increased by 33% during a railway strike in
France. Our paper contributes to the literature by providing an estimate for the extent of the
strike-driven modal switch from rail to bus in intercity transport during as well as after a strike.

For perfectly informed consumers, a strike should be just a temporary disruption, after
which they return to their optimal mode of transport. However, Larcom et al. (2017) find that
after a 2014 strike on the London Underground, up to 5% of travellers permanently changed
their commuting route. These commuters seem to have been stuck with a suboptimal route
before the strike forced them to experiment and discover a better option. Their results touch
on Goodwin (1977), who states that “the traveller does not carefully and deliberately calculate

2See for example Small and Verhoef (2007) for an overview on urban transportation.
3In contrast, Chen and Whalley (2012) investigate a positive shock on the transport network, showing that

the opening of a new rail transit system in Taipei reduced local air pollution. On the negative side, expanding
transportation networks may contribute to the spread of viral diseases (Adda, 2016). Allen and Arkolakis
(2022) analyse the welfare impacts of improvements in transportation infrastructure against the backdrop of
traffic congestion.
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each morning anew whether to go to work by car or by bus”. While Larcom et al. (2017) provide
evidence for permanent route switching within the London Transport Network, we show that
customers even switch to competing transport networks (from rail, serviced by Deutsche Bahn
to bus, serviced by MFB). Our findings thus also relate to Fung et al. (2021), who show that
the number of bike-sharing trips in Glasgow persistently increased following temporary closure
of the subway. We show that there is persistence of strike-induced modal switches also in
intercity transport, suggesting that there had been under-experimentation between rail and
bus on long-distance routes.

Finally, this paper is among the first of a small but growing literature studying the German
market for long-distance buses. The primary concern of this literature has been to study the
impact of the market liberalisation of German buses on rail ticket prices and services. Böckers
et al. (2015) and Evangelinos et al. (2015) find that the effect on the rail network was larger
at the periphery of the network. Bataille and Steinmetz (2013) provide theoretical models on
the effect of liberalisation. These studies of inter-modal competition relate to a slightly older
literature on the entry of low-cost airlines into Germany in the early 2000s (Friebel and Niffka,
2009). Durr et al. (2015) study competition within the intercity bus market, and estimate the
price effect of a large merger of MFB and Flixbus (see also Gagnepain et al. (2011) for a more
general review of bus market competition). Neither of these studies pays attention to the recent
German railway strikes. The empirical literature relies on data from price comparison websites
and usually offers few time-series observations. The descriptive statistics from MFB booking
data presented here, therefore, contribute a much-improved insight into this young market and
its dynamics.

The remainder of this paper is structured as follows: Section 2 sketches a model that
motivates our empirical work. Section 3 describes the railway strikes in 2014 in more detail.
Section 4 introduces the data sets and provides new descriptive statistics on the intercity bus
market. Section 5 presents our empirical strategy and discusses estimation challenges. Section
6 provides the main results, while Section 7 reports robustness tests. Section 8 concludes.

2 Conceptual framework

The conceptual framework guiding our investigation is based on Donna (2021), who models
the role of switching costs in the choice of transport mode. Preferences of passengers can be
represented with the following equation:4

4This is a simplified and slightly altered version of Equation (1) in Donna (2021). Note that Donna (2021)
models the use of public transport and car use, whereas we focus on two different types of public transport,
namely rail and bus services.
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Virt(m) = Uirt(m)− pmrt − ϕm1{mirt−1 ̸= mirt} (1)

with m ∈ {rail, bus}, where Virt(m) is the net utility derived by passenger i from travelling
with transport mode m on route r at time t. Uirt(m) is the gross utility of travelling with
mode m and captures travel time (and thus traveller specific time cost) of mode m and other
individual preferences such as utility derived from the existence of dining cars or wifi. We
allow Uirt(m) to vary over time to capture the fact that characteristics such as travel time and
frequency of service change during the strike, thus affecting a traveller’s gross utility derived
from using rail services.

pmrt is the price of travelling with mode m on route r at time t. ϕm > 0 captures switching
costs to mode m and 1{·} is an indicator function, ensuring that switching costs are only
incurred if a passenger switches transport mode between periods t − 1 and t. Switching costs
include search costs such as having to look up information on bus schedules, routes or transfers.

In the model, passengers who travelled by rail in period t − 1 will only switch to buses if
E[Virt(bus)] > Virt(rail), i.e. the expected value of switching (net of switching costs) is larger
than the value of sticking to the current mode. We add an expectation term to capture the fact
that transportation is an experience good. If a passenger has not used bus services before (i.e.
mirt−1 ̸= mirt), he or she forms an expectation over Uirt(bus). The true Uirt(bus) is, however,
only revealed once travelling by bus is experienced. Formally, passengers who previously used
rail services will switch mode iff:

E[Uirt(bus)]− pbusrt − ϕbus > Uirt(rail)− prailrt (2)

A switch can occur either through a change in relative prices (not the focus of our paper) or
by a change in Uirt(m).5 During the strike, the gross utility derived from using rail, Uirt(rail),
diminishes. Ceteris paribus, this means that the expected value of using buses for some pas-
sengers now exceeds the value of rail transportation, inducing them to switch modes. After the
strike, we assume that Uirt(rail) returns to its original value. Passengers who switched to buses
during the strike now face a new decision problem. They will continue using the bus iff:

Uirt(bus)− pbusrt > Uirt(rail)− prailrt − ϕrail (3)

Inequality (3) differs from Inequality (2) in two important aspects. First, in Inequality
(2), switching costs are incurred if a passenger chooses to travel by bus for the first time. In
Inequality (3), switching costs occur if passengers choose to travel by train. The net utility of
travelling by bus is thus higher in Inequality (3) than in Inequality (2). Note that this is true

5In Section 7, we show that bus ticket prices on routes affected by the strike increased during the strike. Our
findings are thus not driven by a fall in prices for bus tickets.

5



even if ϕrail is close to zero, which probably is the case for those passengers who had used the
train before. For some passengers, in the absence of switching costs, the value of using buses
starts to exceed the value of using trains, leading them to permanently use bus services.

Second, in light of the literature on inertia and experience goods discussed above, it is
also possible that Uirt(bus) > E[Uirt(bus)]. During the strike, passengers who are forced to
experiment with buses, realise that they are a better substitute for rail transport than previously
expected. The true utility from using buses (captured by Inequality 3) is thus higher than the
expected utility from using buses (Inequality 2). There will thus be passengers for whom
Inequality (2) does not hold, while Inequality (3) holds. These are passengers that used to
travel by train, switched to buses during the strike (assuming a sufficient temporary drop in
Uirt(rail)) and continue using buses also in its aftermath.

To sum up, two predictions can be derived from the model: First, the number of passengers
using bus services increases during the strike following the temporary decline in Uirt(rail).
Second, some of this change persists even after the strike because ϕbus disappears once a switch
occurred and because Uirt(bus) > E[Uirt(bus)], at least for some passengers. In the remainder
of the paper, we show that passenger numbers for bus services on affected routes indeed increase
during the strike and that some of this change persists even after rail services resumed.

3 The German railway strikes of 2014-2015

High-speed railway services in Germany are predominantly provided by one publicly-owned
firm: Deutsche Bahn AG (DB). The company controls the railway infrastructure and is legally
shielded from competition. In the year 2013, it became legal to offer bus services in direct
competition with existing railway connections.6 Private bus operators entered the passenger
transport market, offering intercity connections on routes more than 50 km apart.

The locomotive drivers’ union (Gewerkschaft Deutscher Lokomotivführer ; hereafter referred
to as GDL) is relatively small but powerful and has a long history of disputes with DB. The
2014-2015 negotiations, however, constituted the most ferocious industrial action in the history
of DB. Two factors contributed to the ferocity of the dispute: GDL was in a power struggle with
a rival union, and new legislation was under review which threatened GDL’s right to represent
service personnel in future wage negotiations. Between September 2014 and May 2015, the
dispute resulted in nine strike waves and 22 days affected by strikes – 354 hours of service

6The market was liberalised by law as of January 2013. Previously, the Passenger Transport Act only
permitted intercity bus services if the state-owned railway company was unable to provide an acceptable service.
Durr et al. (2015) provide more details on the liberalisation.
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disruptions. Because of the importance of the rail network to the economy, the dispute was
followed closely by the German media and the public.7

We study the effects of two major waves in October and November 2014.8 We disregard
strikes after January 2015 as this is when MFB merged with rival competitor Flixbus. In addi-
tion, we disregard minor warning strikes, as they only lasted a few hours and were announced
with many days advance warning. Our data suggest that those strikes were too short to have
any measurable impact on the bus market. Figure 1 shows the timeline of disruptions caused
by the three strike waves relevant to our study. In the week between October 13th and October
19th of 2014, strikes disrupted rail services on Wednesday and Thursday, as well as on Saturday
and Sunday. In the week between November 3rd and November 9th, rail services were cancelled
due to the strike from Thursday, November 6th, onwards for three consecutive days.

Figure 1: Timeline of rail strike in weeks October 13-20 and November 03-10, 2014

Note: Grey dashed lines indicate strike-related service disruptions. Disruptions started before the first strike
wave because DB adopted its emergency timetables at the beginning of the departure day to minimise the
overall impact of the strike. Disruptions lasted beyond the duration of each strike wave as it took time to return
to normal timetable operations. The third rail strike wave ended prematurely on Saturday, although it had
initially been announced to last until Sunday. Following public pressure, GDL announced it would return to
work on Sunday, November 9th to allow travellers to reach the anniversary festivities of the Fall of the Berlin
Wall around the country.

The timing of the strikes was arguably exogenous. Strikes result from a breakdown of
negotiations, the exact timing of which is unpredictable, as negotiations often collapse quickly
and unexpectedly. Once negotiations have broken down, the exact timing of a strike remains
unclear. It could be delayed by days, weeks, or months if the parties were hopeful of making
progress or political pressure was exerted. The trade union centrally decides to go on strike

7This paper is concerned with passenger transport. Note, however, that the railway strikes affected both
passenger and freight services by DB.

8Table A.3 provides a detailed account of the 2014/2015 public transport strikes.
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after consulting its members. Importantly, there is no evidence to suggest that competition
from buses played any role in the occurrence, timing, or length of the strikes. The strikes can
be considered an exogenous positive demand shock to the German bus market. Having reached
a decision, GDL usually announced strikes at short notice to maximise their impact. Each
strike was announced no more than two days in advance.

GDL called for a strike nationwide. However, neither did GDL shut the network down
entirely, nor were rail routes exposed to the same degree. GDL membership strength is weaker
in West Germany because many West German train drivers have civil servant status – a relic of
DB’s historical status as a state company.9 The emergency timetables operated during the rail
strike reflect the varying power of GDL across Germany. The regional disparity in the change
of service frequency specified in the emergency timetables was arguably exogenous to the bus
market. DB did not strategically focus rail services on routes which were under particular
threat of competition from buses. The emergency timetables were the same in all strike waves
in 2014-2015, and they are almost identical to those employed by DB in the last railway strikes
of 2007-2008; i.e. long before the liberalisation of the intercity bus market in 2013.

Switching between rail and bus is rather easy.10 Bus terminals are located directly next to
the rail station in most cities (Guihéry et al., 2016). Tickets can be bought online or on the
bus. Travellers could arrive at the rail station and easily transfer to intercity buses when the
implications of the rail strike became clear to them.

4 Data and descriptive statistics

This paper combines data from three sources: detailed booking data for intercity buses provided
by MFB, DB emergency timetables, and a data set of all rail itineraries. The latter data are
collected using a web crawler linked to the website of a leading price comparison website.
We combine the emergency timetables and travel itineraries to create a data set of service
cancellations and expected delays caused by the rail strike.

MFB booking data

MFB is Germany’s largest bus provider in the sample period, with a market share of then
roughly 50%. In addition to being the key player in the German intercity bus market, MFB’s

9German civil servants have by law no right to strike or unionise.
10DB does not offer season passes on specific routes. It offers the BahnCard which grants fixed price reductions

to cardholders. BahnCard subscriptions can be cancelled annually. This may have locked travellers in to DB
services, in which case any lasting effect beyond the strike would not be visible until the medium or long term.
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service quality as well as strategic use of local bus partners are representative of the entire
intercity bus industry.11

Figure 2: Map and list of German cities in the sample

Cities:

Augsburg Heidelberg

Berlin Karlsruhe

Bonn Kassel

Braunschweig Kiel

Bremen Leipzig

Cologne Mainz

Dortmund Magdeburg

Dresden Mannheim

Duesseldorf Munich

Erfurt Muenster

Essen Nuremberg

Frankfurt (Main) Rostock

Freiburg Saarbruecken

Goettingen Stuttgart

Hamburg Ulm

Halle (Saale) Wuerzburg

Hanover

The data set provided by MFB contains the universe of MFB ticket sales between any
combination of 33 large German cities for departure dates from August 27th to December 16th

2014. Figure 2 lists and maps all 33 cities in the sample. Any booking for a departure between
these 33 cities is included, regardless of when the booking was made. The original data set
contains about 2.2 million observations. Not all possible combinations of the 33 cities are
actually routes served by bus services. Some routes are only served on weekdays or not at all.
We restrict our sample to routes that were served by MFB during the strike.

A booking observation includes detailed information on the bus service such as the route,
price, departure date, and time as well as an anonymised e-mail address under which the
booking was made. The e-mail address identifies first-time and repeat bookings by the same
account, and thus allows following a customer over time. The key variable of interest is the

11For example, free wifi, luggage allowance, and legroom are almost identical across the industry. See Dürr
et al. (2015) for a detailed introduction and comparison of players in the intercity bus market.
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natural logarithm of the number of tickets sold at the route and departure day level.12 We
aggregate the individual bookings at the route and departure day level – the unit of analysis
in this paper.13 A route is the combination of an origin- and destination-city, meaning that
different routes may be served by the same bus journey. For example, a bus ride from Munich
to Berlin with a stop in Dresden serves three routes: Munich–Dresden, Munich–Berlin, and
Dresden–Berlin.

While rail strikes continued beyond the sample period to May 2015, we restrict the sample
period to 2014. This is because MFB unexpectedly merged with rival bus provider Flixbus in
January 2015. Any changes after this date may be driven by the effects of the merger and not
the rail strike. The final panel contains 312 routes and roughly 35,000 observations at the route
and departure day level. The data set is balanced in the sense that all routes are observed
over the entire sample period and through all strike waves.14 MFB entered the market with
an aggressive pricing strategy, where the cheapest tickets sell at only e4.39 for a one-way trip.
The average ticket price is e14.5 (median: e12). The maximum price is e63, but only 1% of
tickets sell at a price higher than e46. An average bus ticket costs e3.5 per scheduled hour of
travel.15

The 2.29 million individual ticket sales we observe in the MFB data correspond to roughly
1.5 million ticket orders. In some cases, the order is made several months before the actual
departure. On average, an order precedes a departure by around eight days. During the railway
strike, we would expect an increase in tickets bought on short notice. Figure 3 compares
cumulative bookings before departure for a day affected by a railway strike with a typical
booking curve. The dashed vertical line indicates the moment of the strike announcement for
the third strike wave on November 07, 2014.16 As is apparent, ticket sales only diverge from their
usual trend after the rail strike was announced. The small sales departure from the usual trend
before the announcement suggests that a few travellers booked bus tickets after negotiations
had broken down, but before the strike was announced; i.e. very few travellers anticipated
the strike. If travellers book bus tickets for departure days before the strike in anticipation,
our results would be downward biased. Figure 3 provides strong descriptive evidence that rail
strikes drove the peak in ticket sales on striking days.

12The dependent variable is computed as ln(1+ tickets sold) at the route departure day level. This approach
allows us to keep route-day observations with zero tickets sold. In the data set, zero observations only account
for 0.3% of tickets sold and 7% of tickets sold to new customers.

13Note that there are two time dimensions to each individual booking: the date of booking and the date of
departure. We aggregate ticket sales to the route and departure date dimension. 95% of bus travellers arrive
on the same date as they depart.

14Note that, as a consequence, there are route-day combinations with zero ticket sales in our panel.
15A back of the envelope calculation: A DB Sparpreis (saver ticket) at e19 for the maximum travel distance

of 250km at 200km/h travel speed would yield a per hour price of e15.2.
16See Figure 1.
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Figure 3: Mean cumulative bookings for Friday departures
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Note: Data are split into bookings for Friday departures in September, the month just preceding the rail strike,
and bookings for departures for strike day November 07th, 2014. The strike was announced three days prior to
the strike (as indicated by the dashed line). Note that ticket sales are not in log scale here.

During the strike, MFB experienced peaks in the number of bookings made by new cus-
tomers. Panel A of Figure 4 shows the daily average tickets sold per route (bars). Strike days
are indicated by the vertical dashed lines. Panel B shows the development of weekly averages of
daily sales. We differentiate between three groups of tickets: all tickets, the subset of all tickets
bought by first-time customers, and the subset of tickets bought by first-time customers that
were bought no more than three days before departure (the spontaneous first-time customers).
A ticket is marked as a first-time sale when the booking was made with an e-mail address not
yet registered with MFB and a spontaneous sale when, in addition, the booking was made no
more than three days prior to departure.17 Figure 4 suggests that sales increases during the
strike are driven by increases in ticket sales to first-time and spontaneous customers. For all
three groups, there is a weekly pattern in ticket sales. Friday and Sunday departures sell the
most tickets.

17On average 30% of bus passengers are first-time customers, two-thirds of whom undertake at least one more
booking within our sample period.
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Figure 4: Mean ticket sales per route

Note: The graph shows the average number of bus tickets sold per route. The bars (a) indicate daily averages,
and the lines (b) show weekly averages. The vertical dashed lines indicate strike days.

DB Emergency timetables and itineraries

Rail service cancellations varied by route. DB maintained rail services on key routes, partly
with reduced frequency. A route’s exposure to cancellations is exogenous to the MFB service on
this route. To capture the route-varying effect of the strike, we deduce to what extent a route
was affected by the rail strike from DB’s emergency timetables. The DB emergency timetables
list DB services at the line level. For example, ICE line 25 from Hamburg to Munich halved its
operations from once every hour to once every two hours. However, a typical itinerary involves
stopovers and hence uses multiple rail lines. We combine the emergency timetables provided
by DB with DB travel itineraries, which were collected using a web crawler linked to a leading
price comparison website. Using actual itineraries takes into account that some DB routes
are served through different paths in the rail network. We can then recapitulate all possible
railway connections between any of the 33 cities in our sample, including the departure times,
the number and length of stopovers, and the lines used. We deem a connection unfeasible if
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it uses more than five trains or requires a waiting period of more than 120 minutes. To the
remaining connections in our sample, we assign a strike exposure, measuring the fraction of
services cancelled during the strike along all connections that would regularly be available on
this route.

One data limitation remains: the DB emergency timetables do not include information on
regional trains. We disregard connections where more than 10% of itineraries include the use of
regional trains. DB’s Inter-City and Inter-City Express trains connect all 33 cities in our sample.
81% of all connections in our sample use at least one Inter-City Express train. Nonetheless, the
lack of strike data for regional trains might seriously limit our findings if regional trains were
strongly affected by service cancellations or if we drop primarily short routes on which the bus
may be a closer substitute for the train (we address this in Section 6.3).

The average train trip in our sample takes three hours. The median length of a trip is
182 minutes in pure travel time. Trips longer than six hours are uncommon in our data. The
high-speed-railway trains can technically reach a speed of up to 300km per hour, yet the railway
infrastructure does not permit a speed above 200km per hour on most routes. Ticket prices
depend on the distance travelled. They regularly would not exceed e139 (business class: e225)
for a one-way trip in 2013. DB also offers tickets at a dynamic price (Sparpreis) that varies
with the expected demand, where a single economy class trip begins at e19 for an economy
class trip below 250km and at e29 above. Typically, a connection between two cities in our
33-city sample uses no more than two trains and requires no more than 14 minutes of waiting
time at changeovers. Of those connections that do require a changeover, 95% do not exceed a
total waiting time of 53 minutes on all stops.

We measure each route’s exposure to the rail strike by the fraction of train connections
cancelled on a given route during the strikes (trains cancelled (%)) for each day of the week for
each route. Where there are several possible connections on one route, the strike exposure is a
weighted average of the connections’ exposure. Trains cancelled (%) captures how many of the
possible departures on all available connections on a route were inoperative during the strike.

Figure 5 plots the variable trains cancelled (%) against the rail travel time under the regular
schedule. There is no visible systematic relationship between normal rail travel time and the
fraction of services cancelled during the strike. Only one route-day combination maintains full
service on all connections under the emergency timetable: Berlin to Hannover on Wednesday. In
this case, trains cancelled (%) equals zero. Since the fraction is aggregated over all connections
of a route, made up of up to five trains per connection, most routes are affected by the strike
at least partially. Note that we can only capture the cancellations according to the emergency
timetable here. Additional delays and cancellations - as are common to occur with DB services
also outside of the strike for all kinds of reasons - are just noise to our analysis. Our treatment
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variable measures strike exposure solely as the discrepancy between the regular and the strike
schedule.

Figure 5: Train travel time without strike and fraction of trains cancelled during strike
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Note: Data from DB itinerary and emergency timetables.

5 Estimation strategy

We test for the effect of a route’s exposure to the rail strikes on MFB ticket sales in an estimation
based on the following baseline specification:18

ln yijt =
Ns∑
s

βs(exposureij × strikest) + µijdow + µiw + µjw +Xitγ
′
+Xjtδ

′
+ ϵijt (4)

with s ∈ {1, 2, 3, post}, where ln yijt is the natural logarithm of the number of bus tickets
sold on a route connecting origin-city i to destination-city j at time t (measured in days).19

Treatment is defined by the interaction term (exposureij × strikest). Exposureij captures the
extent to which a route was affected by the strike, measured by the variable trains cancelled
(%). Strikest is a dummy that equals one on a strike day and zero otherwise. As we want to
know whether the different strike waves affected bus travel to different extents, we include three

18We implement all OLS regressions using reghdfe (Correia, 2016). PPML regressions are performed using
the Stata command ppmlhdfe (Correia et al., 2020).

19ln(ticket sales + 1).
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separate dummies capturing the first, second and third wave respectively.20 A fourth dummy,
strikepostt identifies the post-strike period (dates after November 11th, 2014).21 The coefficient
βs measures the extent to which higher strike exposure of affected routes impacts the number
of bus bookings relative to less affected routes.

µijdow is an interaction of route and day-of-the-week fixed effects. They capture unobserved
time-invariant route-specific characteristics (such as the fact that some routes are more popular
than others) that may or may not correlate with the degree of exposure to the strike. They
also capture route-specific differences that vary across different days of the week. For example,
some routes might be more popular during weekdays, while others may be frequented more
often during weekends. As shown in Figure 4, Fridays and Sundays are particularly popular
travel days. µijdow also captures such variation in ticket sales that is common over all routes.

µiw and µjw are origin-week and destination-week fixed effects, respectively. They capture
variation in temporal factors common to all departures from or arrivals in each city, such as
national holidays, MFB marketing campaigns, origin and destination-specific changes in ticket
prices or seasonal fluctuations. Finally, the specification includes vectors of control variables
for city-specific daily events, such as holidays or soccer games Xit and Xjt.22 ϵijt is an error
term. To address potential serial correlation within routes and over time, we cluster standard
errors by route throughout the paper.

Identification relies on the assumption that the trend in log-linearised bus ticket sales on
different routes does not vary systematically with the extent to which these routes are disrupted
by strikes. Selection into strike exposure is not a threat, but must not be specific to a particular
dose. We argue that the level of strike exposure is exogenous to the trend in bus ticket sales.
DB did not strategically focus rail services on routes that were under particular threat of
competition from buses. The emergency timetables were the same in all strike waves in 2014-
2015, and they are almost identical to those employed by DB in the last railway strikes of
2007-2008; i.e. long before the liberalisation of the intercity bus market in 2013.

While we assume that routes follow a common trend, the levels of our dependent variable
vary across routes and time. Some routes sell up to several hundred tickets daily, whereas others
sell no more than two on some days. Furthermore, we know that ticket sales are responsive to
major holidays. For example, Figure 4 shows that uncommonly many tickets were sold in the
week of October 3rd. October 3rd is Germany’s national holiday, which fell on a Friday in the

20Note that the treatment is not staggered, as all treatment groups are treated at the same time, albeit with
different intensity.

21As illustrated in Figure 1, rail services remained disrupted on Saturday November 9th and Sunday November
10th. These two dates neither fall in the 3rd wave treatment group, nor are they captured by the post-strike
dummy. They are thus part of the control group, so that β̂post may underestimate the true treatment effect.

22These are school holidays, public holidays, the day before a long weekend, Football World Cup games,
Bundesliga games, Oktoberfest, Stuttgarter Wasn, and Gamescon. Note that German holidays vary at the state
level.
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year 2014, creating a long weekend off for students and many employees. On the Thursday of
this week, in particular, MFB sold more tickets than usual. Further, seasonality might affect
our data: the vacation period ends and travel is less frequent in the winter months. Overall, a
decreasing trend is present in the data. Before the strike, MFB sold on average 14,000 tickets per
day. After the strike, average daily sales were at 12,500 tickets. Sales then drastically increased
again for Christmas (outside of our observational period). We control for these specific events
and aggregate trends using our battery of controls and fixed effects. Consequently, our key
identifying assumption cannot be spoiled by such seasonality, as long as there is no difference in
underlying trends across routes that coincides with our exposure measure. We put the common
trend assumption to the test in an event study estimation, illustrated by Figure 6 in Section
6.2.

We identify treatment effects by relying on the variation in exposure to the strike, measured
by the fraction of rail services cancelled. This strategy captures the impact of the strike itself.
However, the post-strike effect cannot be exactly identified because not all individuals regularly
travel on the same routes. If a route is affected by the strike and causes travellers to switch
to the bus, this is captured by the respective beta coefficient. However, if the strike induces
a person to permanently switch to bus travel after the strike, this is only captured if the
individual uses the same route after the strike. To give an example, say that the route Hamburg-
Munich was strongly affected during the strike, causing people to switch to the bus. If their
experience convinces travellers to permanently switch to intercity buses, they will not only
use them to travel from Hamburg to Munich (which is captured by βpost) but also to travel
to other destinations such as Berlin. If Hamburg-Berlin was unaffected during the strike, this
observation would fall in the control group, leading to an underestimation of the post-strike
treatment effect. Our estimates for the post-strike effects should thus be seen as a lower bound
of the true effect. In Section 6.3, we propose an alternative measure to better capture post-strike
effects.

6 Results

6.1 Baseline results

Column 1 of Table 1 provides the results of our baseline estimation as specified in Equation
4. The railway strike significantly increases bus ticket sales on affected routes during all three
strike waves. Specifically, the coefficient of 0.507 indicates that a one percentage point increase
in the fraction of trains cancelled on a particular route during the first strike wave increases bus
ticket sales on that route by 0.66%.23 On average, about half of the possible train connections

23e0.507 − 1 = 0.66.
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are cancelled on strike-affected routes. Our estimates suggest that moving from no cancellations
to the average cancellation rate of 49% yields an increase of 32% in ticket sales - which would
be around 14 additional tickets with respect to the mean of 45 tickets sold per route per day.

Table 1: The effect of rail strikes on bus ticket sales

(1) (2) (3) (4)
Dependent variable: ln(tickets) all first spont. all
Trains cancelled (%) × strike 1 0.507*** 0.924*** 1.026*** 0.474***

(0.0565) (0.0856) (0.0899) (0.0564)
Trains cancelled (%) × strike 2 0.366*** 0.906*** 1.357*** 0.464***

(0.0480) (0.0740) (0.0783) (0.0480)
Trains cancelled (%) × strike 3 0.367*** 0.725*** 1.357*** 0.396***

(0.0416) (0.0587) (0.0664) (0.0418)
Trains cancelled (%) × post-strike 0.155* 0.110 0.143** 0.0360

(0.0904) (0.0898) (0.0648) (0.0884)
Trains cancelled (%) × post × weekend 0.382***

(0.0276)
R2 0.918 0.824 0.789 0.920

Note: OLS regressions with origin-week, destination-week and route-dow fixed effects as
well as controls. Standard errors clustered by route in parentheses. ***/**/* indicate
significance at the 1%/5%/10% level. 16,336 observations.

The coefficients of 0.366 and 0.367 for the second and third wave imply that bus ticket sales
on affected routes increase by 0.44% following a one percentage point increase in the fraction of
services cancelled. Perhaps most strikingly, the effect persists beyond the duration of the strike.
The significantly positive post-strike coefficient of 0.155 indicates that routes which experience
a one percentage point higher train cancellation rate during the strike see 0.17% higher ticket
sales after the strike. This amounts to a permanent 8% increase in ticket sales on the average
route. As discussed in Section 5, this estimate most likely constitutes a lower bound of the true
treatment effect.

In light of the literature on habit formation and switching costs, our results provide evidence
that rail customers have under-experimented before the strike. After having been forced to
experiment with alternative transport modes during the strike, some passengers continue to
use buses, even after rail services have resumed. Service disruptions of incumbent firms can
thus have pro-competitive effects, as rivals can permanently lure away some of the incumbent’s
customers.24

24Travellers might have booked bus tickets after the November 2014 rail strike, because they were worried
about potential future strikes. The rail strikes lasted beyond the strikes in 2014, and the labour dispute was
only resolved after additional strike waves in April and May 2015. However, immediately after the strike wave
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In order to investigate whether aggregate effects are driven by first-time customers, we
estimate our baseline specification, using the logarithm of the number of tickets sold to first-
time customers as the dependent variable. The effects of the strike are even more pronounced
for first-time ticket sales, as Column (2) of Table 1 shows. A one percentage point increase
in train cancellations during the first strike wave is associated with a 1.52% increase in ticket
sales among first-time customers. Second and third-wave effects are also stronger for first-time
customers. The estimated coefficient for the post-strike effect is not significantly different from
zero. This is to be expected, as routes affected more strongly during the strike should not
attract more first-time customers after the strike (only repeat customers).

Potentially the best proxy for people who first switch to the bus during the strike, is the
logarithm of spontaneous first-time ticket sales. This entails all first-time bookings made no
more than three days prior to departure.25 Estimated coefficients are even larger for spontaneous
sales (Column 3). A one percentage point increase in cancellation on a given route during the
first wave is associated with a 1.79% increase in spontaneous ticket sales.

Perhaps surprisingly, we also find significant post-strike effects, although the effect is only
one tenth of that during the strike. This indicates that MFB continues to gain more new
customers on strike-affected routes. Customers might have had a negative experience with DB
during the strike and make the switch only for their next trip or they might have experienced
MFB already but not have made the booking themselves. The majority of bookings in our data
are made for at least two travellers. In the booking process, only one person registers. If other
members of the group decide to book a ticket in the post-strike period, they would appear as
first-time customers in our data, despite having travelled with MFB before.

As shown in Figure 4, the absolute number of ticket sales varies across days of the week.
Any such variation should be absorbed by day-of-the-week fixed effects in all of our specifica-
tions. However, it is possible that treatment effects vary across different days of the week. In
particular, passengers travelling over the weekend are more likely to travel for leisure than for
work. They might thus be more willing to endure longer travel times using buses in return for
lower ticket prices. We would thus expect the post-strike impact to be stronger for weekend
trips. If treatment effects vary across different days of the week, this could also explain the
relatively large standard error of the estimated post-strike coefficient (about twice as large as
the standard errors of the contemporaneous strike coefficients) observed in Column (1) of Table
1. We therefore re-run our baseline regression adding another regressor, namely the interaction

in November, GDL announced a temporary truce. It would refrain from industrial action until the new year.
Even though some customers may have distrusted the truce, it is unlikely that increased bus ticket sales in this
period are driven by the fear of new strikes.

25We observe ticket sales. We cannot observe whether the ticket was actually used or bought as insurance
against potential rail cancellations.
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of our post-strike treatment variable with a dummy indicating whether the bus departs on a
weekend (i.e. on Friday, Saturday, or Sunday).

Regression results including this triple interaction are presented in Column (4) of Table
1. The post-strike interaction with the strike exposure measure, trains cancelled (%), turns
insignificant in this specification. However, the triple interaction term is highly significant and
about twice as large as the post-strike coefficient in our baseline specification (Column 1). The
results imply that the increase in ticket sales on strike-affected routes after the strike is driven
by weekend sales. Bus travel thus seems a useful substitute for train travel mostly for leisure
passengers, travelling on weekends (Friday to Sunday).

6.2 Effects over time

To further illustrate the impact of the strike over time, we regress ln ticket sales on our strike
exposure variable, interacted with a dummy for each day in our sample period.26 Estimated
coefficients are depicted graphically in Figure 6. The event study serves two objectives. First,
estimated coefficients are mostly insignificant before the first strike, indicating no difference in
pre-treatment trends between treatment and control group. Second, the graph clearly shows
that the post-strike effect is always significantly positive for Fridays, Saturdays and Sundays. It
also shows significant positive effects for the two days following the third strike wave (Sunday,
November 9th and Monday, November 10th). This is to be expected for two reasons: First, the
strike was originally planned to last until Sunday but ended prematurely on Saturday following
public pressure. Second, as indicated by Figure 1, service disruptions continued until Monday,
November 10th as it took DB two days to return to its normal schedule.

6.3 Duration of trip effects

Travelling by bus between cities in Germany typically takes longer than travelling by train.
The relative trip duration further increases with the length of the travelled route. For each
additional stop on a bus journey, the bus has to leave the highway and enter the city centre
to reach the bus terminal. Figure 7 illustrates the increasing divergence in travel time. The
longer the trip, the slower bus travel is compared to the train. If customers dislike travel with
an increasing margin, then a modal switch from rail to bus might be more attractive on short
routes. Travelling by train offers the comfort of getting up to walk around or take a meal
onboard, a comfort that might increase in value with the length of the trip. When the travel

26We estimate the following equation: ln yijt =
∑D

d βd(exposureij × daydt ) + µijdow + µiw + µjw +Xitγ
′
+

Xjtδ
′
+ϵijt. daydt is a dummy identifying each day in the sample period. We omit the week before the beginning

of the strike in order to interpret the coefficient relative to a baseline.
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time exceeds several hours, bus travel might simply not be a good substitute for a train trip,
and rail customers might have switched to travel by car or plane instead.

Figure 6: The effect of rail strikes on bus ticket sales, by day of departure
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Note: Estimated coefficients on the vertical axis, days from August 27 to December 16 on the horizontal axis.
The dashed vertical lines indicate strike days. The plots show point estimates with 95% confidence intervals,
indicating significant effects during and after the strikes. Ticks on the x-axis indicate Sundays.

We hence introduce the duration of the bus trip as an alternative treatment variable to test
the hypothesis that shorter bus routes experienced an increase in bus ticket sales during and
after the strike. We define a bus ride to be bivariate relatively short if the scheduled time of
travel is below the median of 265 minutes (a little over 4.5 hours). Note that shorter bus routes
were not systematically more affected by the strike.27

Using relative trip duration as the treatment variable has another advantage compared to
the fraction of services cancelled. Short routes remain relatively more attractive than long
routes after the strike. As discussed in Section 5, passengers do not always travel along the
same route. Customers who were affected by the strike by having travelled on a route with
a high fraction of services cancelled and who decide to also travel by bus after the strike will
probably do so on different (untreated) routes, too. Consequently, the estimated post-strike
coefficient underestimates the treatment effect.

27The correlation between the duration of the bus ride and the fraction of trains cancelled on a route is 0.06.
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Relatively short bus routes, however, offer a more attractive alternative to travelling by
train both during and after the strike. Consequently, one would expect post-strike bus travel
to increase more strongly on shorter routes. Even during the strike, decisions by passengers
to switch transport modes may partly be driven by uncertainty regarding the reliability of the
emergency timetable, so passengers switched to buses even on routes less strongly affected by
the strike. As we show in the robustness section, there is indeed some evidence for a general
increase in bus use during the strike, even on less affected routes. Faced with this uncertainty,
passengers may switch from train to bus if they perceive the bus to be a decent substitute.
Finally, not having to rely on information on service cancellations means that we can include
routes that are only served by regional trains (recall that for regional trains we do not have
information on service cancellations). This almost doubles the sample size.

Figure 7: Travel time bus vs. rail
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Table 2 presents the results. Column (1) shows that the number of tickets sold indeed
increases more strongly on short routes. This is true during as well as after the strike. During
the first wave, ticket sales increase by 37% on short routes. In the weeks after the strike,
short bus routes sell up to 24% more tickets. Sales to first-time customers even increase by
69% during the first wave (Column 2).28 In Column (4), the post-strike coefficient is now
significantly positive, although effects remain stronger during the weekend. All in all, results
are qualitatively similar to those presented in Table 1. Given that strike-effects are indeed
stronger on shorter routes and that many short routes are excluded in the baseline regression

28The positive post-strike effect for first-time customers could once again be driven by group members who
first travelled during the strike but did not make the booking. As in Column 3 of Table 1, the coefficient is
much smaller in magnitude than the contemporaneous strike coefficients.
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due to data limitations, the results imply that the baseline specification underestimates the
true treatment effect.

Table 2: The effect of rail strikes on bus ticket sales, duration of trip

(1) (2) (3) (4)
Dependent variable: ln(tickets) all first spont. all
Bus ride short × strike 1 0.312*** 0.527*** 0.585*** 0.283***

(0.0317) (0.0470) (0.0454) (0.0316)
Bus ride short × strike 2 0.225*** 0.542*** 0.721*** 0.290***

(0.0238) (0.0388) (0.0410) (0.0243)
Bus ride short × strike 3 0.319*** 0.545*** 0.722*** 0.339***

(0.0221) (0.0322) (0.0343) (0.0223)
Bus ride short × post-strike 0.218*** 0.150*** 0.00842 0.106***

(0.0169) (0.0188) (0.0173) (0.0174)
Bus ride short × post × weekend 0.280***

(0.0123)
R2 0.906 0.783 0.739 0.908

Note: OLS regressions with origin-week, destination-week and route-dow fixed ef-
fects. Standard errors clustered by route in parentheses. ***/**/* indicate signifi-
cance at the 1%/5%/10% level. 34,818 observations.

7 Extensions and Robustness

In the following, we explore the dynamics of ticket prices and capacity during the strike. If ticket
prices at MFB were exceptionally low during the strike, this could indicate that MFB used the
increased public attention during the railway strike to attract new customers with extremely
competitive price offers. In this case, the estimated strike effect would be supply-side driven
rather than the result of a shift in demand. We test this hypothesis by regressing the logarithm
of average ticket prices at the route-day level ln(priceijt) on our strike exposure variables, as
well as time dummies identifying the different strike waves. The results, provided by Column
(1) of Table 3, indicate no such supply shock. Average ticket prices are significantly higher
during the second and third strike wave. This is true for all routes, not just those affected by
the strike (although prices are even higher on affected routes). We are hence confident that
our results mirror an increase in demand.29 As an additional robustness check, we re-run our
baseline regression but include average prices as an additional control (Column (2) of Table
3). The price coefficient is significantly positive, while all other coefficients remain similar to

29Generally, MFB bus fares dynamically increase as capacity fills up.
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the baseline in both magnitude and significance. The post-strike effect even increases in both
magnitude and statistical significance.

Table 3: Ticket prices, bus capacity, and alternative treatments

(1) (2) (3) (4) (5)
Dependent variable:
Treatment variable:

ln(price)
Trains

cancelled

ln(tickets)
Trains

cancelled

ln(seats)
Trains

cancelled

ln(tickets)
Above
median

ln(tickets)
Train
delay

Treatment × strike 1 0.0448 0.489*** 0.0285 0.229*** 0.00125***
(0.0508) (0.0571) (0.0854) (0.0419) (0.000170)

Treatment × strike 2 0.163*** 0.314*** 0.0630 0.183*** 0.000944***
(0.0509) (0.0527) (0.0642) (0.0341) (0.000141)

Treatment × strike 3 0.117** 0.280*** 0.0403 0.172*** 0.000981***
(0.0516) (0.0459) (0.0793) (0.0316) (0.000138)

Treatment × post-strike 0.0194 0.169** 0.110* 0.0853** -0.0000479
(0.0235) (0.0831) (0.0596) (0.0368) (0.000143)

Strike 1 0.0362 0.0889**
(0.0267) (0.0421)

Strike 2 0.134*** 0.00825
(0.0249) (0.0299)

Strike 2 0.220*** 0.00890
(0.0268) (0.0425)

Post-strike -0.0952*** -0.105***
(0.0135) (0.0380)

ln(price) 0.137***
(0.0431)

Observations 16,282 16,282 16,282 16,336 18,592
R2 0.969 0.922 0.917 0.917 0.912

Note: OLS regressions with origin-week, destination-week and route-dow fixed effects as well
as controls. Standard errors in parentheses, clustered at the route level. ***/**/* indicate
significance at the 1%/5%/10% level.

An increase in ticket sales might not directly reflect an increase in demand to an equal extent
if sales were capped when MFB’s offer reached short-term capacity peaks. MFB did increase
the number of buses running on a route, thereby the number of seats available for booking, on
departure days with high travel activity. In our data, we observe capacity increases parallel to
sales increases during the strike, but also on weekends and national holidays. On average during
our observation period, 0.3% of all bus connections were fully booked, meaning that there were
no more tickets available for this specific connection at one specific departure time. However,
occasionally, several - or even all - connections are booked out on a certain day on a certain
route. During the strike, the total number of fully-booked connections increases. Yet, no route
exceeds a share of 37% in fully booked connections during the strike. Within the same day on
the same route, there were always options for departure at a different time. It seems that while
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MFB was used to adjusting capacities to demand, the strike did not present an exceptional
challenge in this regard.

We re-estimate our baseline specification with the logarithm of the number of available
seats per day per route as the dependent variable. As can be seen from Column (3) of Table
3, capacity increases during the strike were mostly insignificant and did not specifically affect
strike-exposed routes. After the strike, at a time when overall capacities were in decline along
with the seasonal trend, we observe a significant increase in capacity on strike-affected routes.
This falls in line with expectations given the increase in post-strike ticket sales on these routes.

In Columns (4) and (5) of Table 3, we explore alternative measures for a route’s exposure
to the strike. The effect of service cancellations on passenger numbers may be non-linear. For
example, passengers might not mind if a small fraction of rail services is cancelled as long
as alternative connections are offered. However, if the fraction of services cancelled exceeds
a certain level, passengers might switch to alternative modes of transport. Instead of using
the fraction of services cancelled directly as a regressor, we thus construct a dummy that
equals one if the fractions of services cancelled on a particular route is above the median (and
zero otherwise). This variable is then interacted with the four strike dummies. The results,
reported in Column (4) of Table 3, are qualitatively similar to the baseline, indicating increasing
passenger numbers on affected routes both during and after the strike. Specifically, routes with
above median exposure to the strike experience a 9% increase in ticket sales in its aftermath.

Next, we create an alternative treatment variable, train travel delay, that captures the
additional waiting time travellers would on average have to incur to take the next train if their
service is cancelled. Unlike trains cancelled (%), this measure takes into account the frequency
of connections on a given route. The routes Berlin–Munich and Hamburg–Berlin, for example,
both experienced service cancellations (trains cancelled (%)) of about 75%. Yet, a customer on
average had to wait for 450 minutes for the next train during the strike on the route Berlin–
Munich, whereas for Hamburg–Berlin another departure was on average available within 114
minutes. This is because Hamburg–Berlin operated at a much higher frequency even in times
of the strike. The average waiting time - the minutes until the next uncancelled departure -
constitutes our treatment variable train delay. Customers who knew about the cancellation
might have chosen to arrive at the train station later and take the next departure according to
the emergency timetable. Hence, train delay is not so much a measure of actual waiting time,
but rather the loss of flexibility during the strike.

Column (5) of Table 3 shows the regression results when exposure is measured as train
delay. The independent variable runs from 0 minutes to 557 minutes of additional waiting time
for potential travellers caused by rail service disruptions. An additional minute of waiting time
yields 0.12% more tickets sold during the first strike wave. According to the regular schedule,
the average waiting time across all our routes is 45 minutes. During the strike, the average wait
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increases to 116 minutes. We estimate that this average 71-minute train delay corresponds to
8.52% more tickets sold for MFB. Unlike in the case of trains cancelled, the additional waiting
time did not induce a long-term increase in ticket sales beyond the strike. An explanation
might be that the ticket sales increase in response to train delay is driven by customers with a
preference for flexibility. They will be keen to switch to the bus if it is the next available travel
option but will revert to the train as soon as it is frequently available again.

In our baseline estimation, we exploit variation across routes as well as across strike and non-
strike days to estimate a treatment effect. Origin-week and destination-week effects control for
overall time trends. A conventional difference-in-differences set-up would require time dummies
that capture exactly the treatment period. As a robustness check, we extend the regressions
shown in Table 1 with four time-variant dummies that identify the three strike periods as well
as the post-strike period. The results are provided in Table A.1 in the appendix. Estimated
coefficients of the three strike dummies are significantly positive in Columns (2) and (3), indi-
cating that more first-time as well as spontaneous users travel by bus during the strike. This
is not surprising, as many people were probably either not aware of the emergency timetables
or did not trust them, leading them to travel by bus on unaffected routes, too. The post-strike
dummy is significantly negative in almost all specifications. This is in line with our descriptive
evidence that the overall number of bookings declined over the sample period. Our treatment
variables remain qualitatively similar to the baseline estimates, indicating an increase in the
number of passengers travelling by bus on affected routes both during and after the strike.

We perform the same exercise using our distance variable (analogous to Table 2). The
results, reported in Table A.2 in the appendix, point towards the same direction. They show an
overall increase in the number of bus passengers during the three strike waves and a decline in
the post-strike period. Shorter bus routes experience a stronger increase in passenger numbers
during the strike, which also persists in its aftermath.

An even more conservative approach would be the additional use of day fixed effects. We
choose not to do this in our baseline specification as they might absorb too much variation
needed to identify treatment effects. As discussed above, estimating differential effects for
weekends in the post-treatment period becomes problematic because the exposure variable
does not explicitly vary in the post-treatment period any more. However, we do run our main
regressions including day fixed effects as a robustness check. The results are reported in Table
4. Estimated coefficients for our preferred strike and post-strike variables (fraction of services
cancelled) remain qualitatively similar (Column 1). The post-strike effect even increases in
magnitude and significance, probably because day fixed effects better capture the overall decline
in ticket sales in the post-strike period than origin- and destination-week fixed effects employed
in the baseline. The weekend coefficient indeed becomes statistically insignificant, although the
post-strike coefficients now turn significantly positive (Column 2). When using short distance as
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the treatment variable, the significance of the estimated coefficients remains extremely robust,
although they become smaller in magnitude (Columns 3 and 4).

In an alternative specification, we estimate Equation 4 with PPML instead of OLS. The
results, reported in Columns (5) and (6) of Table 4, are qualitatively similar to the baseline
results.

Table 4: Day fixed effects and ppml

(1) (2) (3) (4) (5) (6)
Dependent variable: ln(tickets)
Treatment variable:

OLS
Trains

cancelled

OLS
Trains

cancelled

OLS
Bus ride

short

OLS
Bus ride

short

PPML
Trains

cancelled

PPML
Trains

cancelled
Treatment × strike 1 0.243 0.236 0.151*** 0.134*** 0.393*** 0.358***

(0.156) (0.155) (0.0426) (0.0424) (0.0513) (0.0502)
Treatment × strike 2 0.374*** 0.388*** 0.117*** 0.147*** 0.247*** 0.315***

(0.141) (0.142) (0.0315) (0.0315) (0.0401) (0.0437)
Treatment × strike 3 0.261* 0.266** 0.237*** 0.249*** 0.245*** 0.258***

(0.133) (0.134) (0.0302) (0.0304) (0.0296) (0.0291)
Treatment × post-strike 0.327** 0.304** 0.235*** 0.176*** 0.203*** 0.0443

(0.132) (0.131) (0.0171) (0.0184) (0.0661) (0.0599)
Treatment × post × weekend 0.0617 0.144*** 0.348***

(0.0951) (0.0194) (0.0291)
Day fixed effects YES YES YES YES NO NO
Observations 16,336 16,336 34,818 34,818 16,336 16,336
R2 0.923 0.923 0.913 0.913

Note: All regressions include origin-week, destination-week and route-dow fixed effects as well as controls.
Standard errors clustered by route in parentheses. ***/**/* indicate significance at the 1%/5%/10% level.

8 Conclusion

This paper exploits a novel and rich dataset to investigate the effects of the 2014 German
railway strikes – the largest in German history – on the use of intercity buses. The railway
strikes provide a quasi-natural experimental setting to analyse the general question of whether
a temporary service disruption can have lasting effects on demand for competing products.

We find a route-specific effect of railway cancellations leading to more bus travel. More
specifically, the number of bus tickets sold increases during the strike on routes that are more
strongly affected (on average by 32% during the first strike wave). Most strikingly, we show that
the effect persists beyond the duration of the strike, with ticket sales on affected routes being
on average 8% higher. Passengers continue using the bus even when trains become regularly
available again. The effect is driven by weekend travellers, implying that more price-sensitive
leisure travellers continue to use the bus after having been introduced to this new mode of
transport during the railway strikes. Since passengers who permanently switch to buses most
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likely do so not only on routes that were strongly affected by the strike, our estimates for the
post-strike effect constitute a lower bound of the true treatment effect. Even during strike times,
our results indicate that some customers divert from DB services regardless of whether their
planned travel is covered by the DB emergency timetables. In this case, our estimates, which
rely on a route-based identification, present the lower bound of contemporary strike effects.

Shorter bus routes also see an increase in passenger numbers. Since both absolute and
relative travel time differences between bus and train increase with distance, we interpret this
as evidence that switching is more prominent on routes where buses are closer substitutes for
train travel. The advantage of this measure is that it remains the same even after the strike.
The post-strike effects, which are highly statistically significant, therefore do not suffer the
downward bias that might plague our baseline estimation. They provide further evidence for
a persistent switch in transport mode. Positive price effects suggest that the increase in ticket
sales is the result of an increase in demand due to the disruption of rail services, not driven by
a positive supply shock induced by MFB in response to the strike.

Our results demonstrate that the strike at the German railway company DB had a positive
and lasting effect on the number of passengers travelling with DB’s rival MFB. Service disrup-
tions may thus cause passengers to persistently switch transport modes (in our case, from rail
to intercity buses). Mobility transition away from fossil-fuel-powered individual transport is
among the central challenges in combating the global climate crisis. From a policy perspective,
our findings imply that carbon-neutral forms of transport need to be reliable in order to persis-
tently attract passengers. In addition, as habit and search costs prevent people from switching
transport modes, governments may need to find ways to lower the barriers to experimenting
with sustainable modes of transport.

Beyond transportation, our findings provide evidence that persistent service reliability is
an essential part of maintaining a customer base. Even relatively short outages can make
customers experiment with rivalling products, overcoming search costs and other frictions that
may previously have stopped them from making optimal choices. Temporary disruptions can
thus have lasting impacts on both the affected company and its rivals. This result is applicable
to many industries, from hairdressers to streaming providers. While interruptions may have
surprisingly positive welfare effects for consumers by encouraging them to experiment with
alternatives, companies interested in keeping their customers should do everything they can to
avoid them.
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Appendix

Table A.1: Difference-in-differences: Trains cancelled

(1) (2) (3) (4)
Dependent variable: ln(tickets) all first spont. all
Strike 1 0.144* 0.322*** 0.356*** 0.150*

(0.0808) (0.114) (0.123) (0.0809)
Strike 2 0.00329 0.214* 0.427*** 0.00815

(0.0744) (0.123) (0.131) (0.0746)
Strike 3 0.0223 0.187** 0.672*** 0.0257

(0.0735) (0.0916) (0.0922) (0.0735)
Post-strike period -0.288*** -0.285*** -0.115 -0.228***

(0.0774) (0.0896) (0.0715) (0.0752)
Trains cancelled (%) × strike 1 0.250 0.346 0.384 0.206

(0.155) (0.217) (0.235) (0.155)
Trains cancelled (%) × strike 2 0.375*** 0.544** 0.611*** 0.460***

(0.140) (0.216) (0.232) (0.141)
Trains cancelled (%) × strike 3 0.257* 0.320* 0.134 0.293**

(0.131) (0.166) (0.163) (0.132)
Trains cancelled (%) × post-strike 0.370*** 0.312** 0.205** 0.209

(0.133) (0.136) (0.0958) (0.130)
Trains cancelled (%) × post × weekend 0.371***

(0.0272)
R2 0.919 0.825 0.790 0.920

Note: OLS regressions with origin-week, destination-week and route-dow fixed effects as well
as controls. Standard errors clustered by route in parentheses. ***/**/* indicate significance
at the 1%/5%/10% level. 16,336 observations.
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Table A.2: Difference-in-differences: Duration of trip

(1) (2) (3) (4)
Dep. variable: ln(tickets) all first spont. all
Strike 1 0.199*** 0.380*** 0.432*** 0.204***

(0.0301) (0.0466) (0.0514) (0.0301)
Strike 2 0.149*** 0.397*** 0.636*** 0.157***

(0.0237) (0.0369) (0.0439) (0.0236)
Strike 3 0.0340 0.254*** 0.643*** 0.0405*

(0.0221) (0.0293) (0.0313) (0.0221)
Post-strike period -0.293*** -0.256*** -0.0954** -0.254***

(0.0286) (0.0399) (0.0382) (0.0275)
Bus ride short × strike 1 0.153*** 0.226*** 0.255*** 0.120***

(0.0425) (0.0636) (0.0664) (0.0424)
Bus ride short × strike 2 0.117*** 0.230*** 0.200*** 0.173***

(0.0314) (0.0505) (0.0574) (0.0317)
Bus ride short × strike 3 0.238*** 0.292*** 0.185*** 0.259***

(0.0301) (0.0408) (0.0425) (0.0303)
Bus ride short × post-strike 0.236*** 0.157*** -0.00520 0.123***

(0.0171) (0.0191) (0.0177) (0.0176)
Bus ride short × post × weekend 0.272***

(0.0123)
R2 0.907 0.785 0.746 0.909

Note: OLS regressions with origin-week, destination-week and route-dow fixed effects
as well as controls. Standard errors clustered by route in parentheses. ***/**/* indi-
cate significance at the 1%/5%/10% level. 34.818 observations.
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Table A.3: Dates and duration of railway strike waves in 2014-2015

Duration
Nr. Strike Begin: — Strike End: (in hours):

1 Mon. 01/09/2014, 18:00 — Mon. 01/09/2014, 21:00 3*
2 Sat. 06/09/2014, 06:00 — Sat. 06/09/2014, 09:00 3*
3 Tue. 07.10.2014, 21:00 — Wed. 08.10.2014, 06:00 9*
4 Wed. 15/10/2014, 14:00 — Thu. 16/10/2014, 04:00 14
5 Sat. 18/10/2014, 02:00 — Mon. 20/10/2014, 04:00 50
6 Thu. 06/11/2014, 02:00 — Sat. 08/11/2014, 18:00 64
7 Wed. 22/04/2015, 02:00 — Thu. 23/07/2015, 21:00 43
8 Tue. 05/05/2015, 02:00 — Sun. 10/05/2015, 09:00 127
9 Wed. 20./05/2015, 02:00 — Thu. 21./05/2015, 19:00 41

Note: Bold rows indicate waves studied in this paper. Strikes in 2015 are disregarded, because they coincide
with the merger of MFB and rival competitor Flixbus in January 2015. * indicates warning strikes. Warning
strikes are ignored because they only lasted a few hours and were announced with many days’ advance warning.
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