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Abstract 
 
We have studied the relationship between Receiver Operating Characteristics (ROC) and 
Precision-Recall Curve (PRC) both analytically and using a real-life empirical example of yield 
spread as a predictor of recessions. We show that false alarm rate in ROC and inverted precision 
in PRC are analogous concepts, and their difference is determined by the interaction of sample 
imbalance and forecast bias. We found that in cases of severe class imbalance, the forecasts need 
to be adequately biased to mitigate the effect of imbalancedness. The mix of values of precision 
and recall over six sub-samples show that the predictive power of the spread has not deteriorated 
in recent decades, provided the optimum values of threshold are used. Using PRC, we quantify 
the extent to which ROC could be exaggerating the true predictive value of the yield curve in 
predicting recessions. 
JEL-Codes: C180, C220, C250, C530, E170, E370, E470. 
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1 Introduction

The Receiver Operating Characteristic (ROC) curve, originally used by mili-
tary radar receivers during the second World War, was further developed in
medical diagnostics in the 1970’s and since then has become the most common
binary assessment tool worldwide in almost any scientific field. In economic
forecasting, even though a late comer, ROC has now become a standard eval-
uation metric over the last few years. Given a continuous predictive index,
a decision threshold (or cut off) determines whether a particular value of the
index belongs to a positive (recession) or a negative (non-recession) state, and
by varying the cut off value over the complete range of the predictive index the
ROC defines the Pareto front of attainable true and false positive predictions
as a convex hull. The area under the ROC curve (AUROC) is commonly re-
ported as a scalar measure of the overall predictive skill and is related to the
Mann-Whitney U statistic. AUROC gives the probability of a randomly cho-
sen positive sample observation to be associated with a higher predictive index
than a randomly chosen negative sample. Compared to conventional accuracy
measures like the concordance index or Brier’s score, Fawcett (2006) attributes
to a number of well understood properties and inherent flexibility of the ROC
approach for its popularity.1 Facing the trade-off in multi-object optimization,
ROC enables the user to delay the trade off as long as possible in order to
satisfy the relative net utilities associate with alternative outcomes.

However, in recent years many authors from diverse fields including ecology,
bioinformatics, information retrieval and subfields of machine learning have
found that ROC analysis tends to overstate the true predictive value of a clas-
sifier in predicting rare or uncommon events in which the data sets are highly
imbalanced, see for example, Davis and Goadrich (2006), Ozenn et al. (2015),
Saito and Rehmsmeier (2015) and Sofaer et al. (2019). In economics the typi-
cal binary events like recessions, bank failures, and unemployment are almost
always relatively rare. The intuitive reason for ROC’s failure is because AU-
ROC can be interpreted as a measure of overlap between the two conditional
distributions of the predictive index in the positive vs the negative state. If
the two conditional distributions have a lot of overlap, it will be very difficult
to discriminate between the two classes. If the object of interest has a low
prevalence rate of say 5%, it is possible that the right tail of the distribution of
the dominant event can overlap most of the distribution of the rare event. The
performance metrics under ROC get overwhelmed by the success in predicting
the dominant event, even when the rare object interest is not predicted well.
Additionally, Yang et al. (2023) have shown that the weight distribution over

1Currently, Google Scholar lists over a million scientific articles under “ROC curve”.
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thresholds implicitly used in the calculation of AUROC is hard to justify from
a decision theoretic prospective.

Under the rare event scenarios, an alternative approach of Precision-Recall
Curve (PRC) is to ignore the true negatives altogether and focus on true posi-
tive rate (i.e., recall) and the success rate of positive predictions (i.e. precision).
PRC only concentrates on the correct predictions of the minority class. Mo-
tivated by AUROC, the area under PRC (AUPRC) has also been suggested
that supposedly presents a more nuanced view of the overall predictive power
of a predictive index in identifying the event of interest in imbalanced data sets.

Most of the studies that considered ROC or PRC used them independently
as distinct alternatives without trying to connect them. The main purpose of
our paper is to compare the ROC and PRC approaches to understand under
what circumstances ROC approach tends to overstate the predictive power of an
index. We try to synthesize the two approaches and show the conditions on the
trade off between biasedness of the forecasts and the balancedness of the sam-
ple under which the two approaches would converge. Since the latter is given
for a sample, the biasedness of forecasts becomes the key choice parameter,
which in turn is determined by the choice of the decision threshold. We show
that it is the forecast user’s relative net utility of making correct predictions of
the rare event compared with that of the dominant event that determines the
final choice of the threshold, and how much the forecasts need to be biased.
Certain threshold-dependent measures are widely used in the PRC framework,
whereas Kuipers score is commonly used in the ROC framework as a predictive
score. Applicable in both frameworks, Matthews (1975) correlation coefficient
(MCC), is another measure that has been recommended in recent years. We
have established certain relations between these diverse measures.

In order to illustrate the differences in the ROC and PRC approaches, we
use daily interest rate spread as the predictive index to forecast U.S. recessions
over 1962-2021. We could characterize the overoptimism in ROC evaluation
compared with PRC. Most of the research on the predictive power of yield
spread is based on probabilities estimated from econometric models.2 By us-
ing the raw data directly, we could avoid the problems of structural breaks,
instability and model mis-specifications, and focus only on the differences in
the two approaches in predicting recessions. In addition, Lieli and Hsu (2019)
have shown that the tests based on the estimated probabilities would induce
severe size distortions. Using our empirical strategy and both ROC and PRC

2See Choi et al. (2023) for a recent reference.
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approaches, we find no evidence that yield spread has deteriorated in its capac-
ity to predict recessions in the U.S. provided the appropriate threshold values
are chosen. However, for a reasonably high hit rate (recall) of around 90%,
the precision associated with PRC is so low that the use of yield spread as a
predictor of recessions becomes rather unattractive. This explains the unre-
solved puzzle first pointed out by Rudebusch and Williams (2009) regarding
the apparently irrational behavior of the professional forecasters in not using
the information embedded in yield spread despite the overwhelming evidence
of its predictive power provided by usual probit regressions, cf. Estrella and
Mishkin (1996) and Lahiri et al. (2013). These regressions do not adequately
evaluate the predictive power for recessions without being affected by the supe-
rior predictive success during non-recessions. Also, most of the thresholds that
give reasonable recession forecasts are usually associated with biased forecasts,
which contributes to the wedge between ROC and PRC and the discordance
between different performance measures used in ROC and PRC approaches.

Rest of the paper is organized as follows: In section 2, we introduce the
forecast evaluation methods and discuss the relationship between different mea-
sures. In section 3, we use daily yield spread as the predictor to forecast re-
cessions, and evaluate the forecasts with ROC, PRC and different measures.
Section 4 checks the robustness with other data frequencies and forecast hori-
zons. Finally, conclusions are summarized in section 5.

2 Forecast Evaluation Methods: ROC vs PRC

Let yt be the object to be forecasted at time t. Given a particular threshold δ

and corresponding forecasts ŷt, there are four possibilities for the joint distri-
bution of the binary forecasts and outcomes: (a) forecast is positive (recession)
and outcome is positive (ŷt = 1, yt = 1); (b) forecast is negative (not recession)
and outcome is positive (ŷt = 0, yt = 1); (c) forecast is positive and outcome is
negative (ŷt = 1, yt = 0); and (d) forecast is negative and outcome is negative
(ŷt = 0, yt = 0). These four forecast outcomes are called true positive (TP ),
false negative (FN), false positive (FP ) and true negative (TN). The four cases
are summarized in a 2×2 contingency Table 1, often called a Confusion matrix.

We define recall R as R = TP/(TP +FN), which is the proportion of actual
recession periods (yt = 1) that are correctly predicted. Recall is called hit rate
or true positive rate (TPR) in ROC parlance. False alarm rate is denoted as
FA, which is the proportion of non-recession periods (yt = 0) that are mistak-
enly predicted to be recessions (ŷt = 1), that is FA = FP/(FP + TN). FA
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is also called false positive rate, or one minus specificity: 1− TN/(FP + TN).
Precision P , a key concept in PRC, is defined as P = TP/(TP + FP ), which
is the proportion of correct hits out of all the positive (recessionary) forecasts.
The conditionality is interchanged in the definitions of R and P . The Confusion
matrix for the four possible outcomes and the definitions of R, P and FA are
listed in Table 1. Note that since δ can change, R, FA and P are functions of
threshold δ. Thus we denote them as R(δ), FA(δ) and P (δ) from now on.

Table 1: Confusion Matrix with Definitions of Precision, Recall, and False Alarm Rate
recession no recession
(yt = 1 ) (yt = 0)

predict recession TP FP P = TP
TP+FP

(ŷt = 1)

predict no recession FN TN
(ŷt = 0)

R = TP
TP+FN FA = FP

FP+TN

By plotting FA(δ) against R(δ) for all possible spread thresholds δ, we have
the ROC curve. The ROC curve is monotonically increasing from left to right,
and gives a complete summary of the trade-offs between hit rate and false alarm
rate. Better forecasts have ROC curves closer to the upper-left corner since
upper-left points represent low levels of false alarm and high levels of recall.
Points on the 45◦ line represent thresholds whose forecasts are same as random
guesses. Points below the 45◦ line represent thresholds whose forecasts are worse
than random guesses. In case of recession forecasts, ROC curve evaluates how
well a forecasting system performs during both recession and expansion periods,
and has been used extensively in existing literature. The most commonly used
measure of forecast performance in terms of ROC is AUROC, which can be
computed as

AUROC =
1

2

M∑
j=1

(R(δj) +R(δj−1))(FA(δj) + FA(δj−1)), (1)

where M is the number of thresholds. AUROC evaluates the overall perfor-
mance across all thresholds. It gives the probability that a randomly selected
observation from the recession periods will have a higher score than a randomly
selected observation from the non-recession periods, and is independent of the
prevalence rate. Kuipers score (KS), originally proposed by Peirce (1884), is a
threshold-dependent measure related to ROC. KS is defined as

KS(δ) = R(δ)− FA(δ). (2)
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KS puts equal weights on recall and false alarm rate. Larger KS implies better
forecast performance. Further, we also explore the maximized values of KS

max
δ

KS(δ), (3)

and the optimal thresholds δ that maximizeKS. The reason is practitioners are
not necessarily interested in all of points on the ROC curve. For instance, people
may not be interested in points with extremely low recalls, where almost no
recessions are hit. Additionally, we also compute average Kuipers score (AKS)
suggested by Yang et al. (2023), who proposed global measures of the degree
of conformity based on expected utility of a forecast user. AKS is defined as

AKS =
1

M

M∑
j=1

KS(δj), (4)

where a = δ0 < δ1 < · · · < δM = b, a and b are lower and upper bounds of the
spread, and M is the number of thresholds. The measure is average over δ.

By plotting R(δ) on the horizontal axis and P (δ) on the vertical axis for all
possible spread thresholds δ, we have the PRC. Each point on the PRC pro-
vides an analyst important information about a threshold value: the fraction
of observations predicted to be in recessions and the fraction of this positive
predictions that are actually in recessions. PRC is not necessarily monotonic
or uniformly convex. Since higher R(δ) and P (δ) are preferred, better forecasts
have PRC closer to the upper-right corner. Rather than a 45◦ line, the baseline
for PRC is a horizontal line with the value of the fraction of positives. Similar
to AUROC, the area under PRC (AUPRC) can be computed to evaluate the
overall performance. The computation of AUPRC needs nonlinear interpola-
tion if there are points far away from each other. Davis and Goadrich (2006)
discussed how to deal with this issue: A local skew as a function of TP and
FP of point A and point B (potentially far away from each other) is defined
first; Then new points of TP between A and B are created; Finally, precision,
as a function of TP and FP , is computed by linearly increasing FP for each
new point. AUPRC can be interpreted as expected precision obtained over
uniformly varying recall. Many programs such as the R package PRROC (Keil-
wagen et al. (2014) and Grau et al. (2015)) can perform this task. As we are
using daily data in our empirical application, the data points are very close to
each other. As a result, the PRC and AUPRC remain almost the same when
different interpolation and area-computation techniques are applied.

Unlike ROC, PRC focuses only on periods in which recessions are coming
or periods in which recessions are signaled by a predictor, which are directly
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relevant for practitioners. Further, PRC is more informative for imbalanced
datasets (Saito and Rehmsmeier (2015)), which is true for us since recession is
a rare event.

Since the distinguishing feature of PRC is its focus on precision in place of
false alarm rate in ROC, we derive the relationship between FA and P below.
With the forecasting rule being ŷt(xt; δ) = 1(xt ≤ δ),3 precision, false alarm
rate and recall (i.e., hit rate) are given by

P (δ) = Prob(yt = 1|xt ≤ δ),

FA(δ) = Prob(xt ≤ δ|yt = 0),

and
R(δ) = Prob(xt ≤ δ|yt = 1).

False alarm rate can be written as

FA(δ) =
Prob(xt ≤ δ, yt = 0)

Prob(yt = 0)

=
Prob(yt = 0|xt ≤ δ)Prob(xt ≤ δ)

Prob(yt = 0)

=
(1− Prob(yt = 1|xt ≤ δ))Prob(xt ≤ δ)

Prob(yt = 0)

=
(1− P (δ))Prob(ŷt = 1)

1− Prob(yt = 1)

=
(1− P (δ))µŷ(δ)

1− µy
,

(5)

where µŷ(δ) is the proportion of recessionary forecasts, which is a function of
threshold, and µy is the proportion of periods with yt = 1. It can be seen that
FA(δ) and 1− P (δ) are positively related through µŷ(δ)/(1− µy), which is the
ratio of the proportion of positive forecasts to the proportion of actual negative
cases on ground.

Since µŷ(δ) = (TP (δ) + FP (δ))/(TP (δ) + FP (δ) + FN(δ) + TN(δ)) and
1/(1−µy) = (TP (δ)+FP (δ)+FN(δ)+TN(δ))/(FP (δ)+TN(δ)), µŷ(δ)/(1−µy)

3The forecasting rule can be ŷt(xt; δ) = 1(xt ≥ δ) if xt is probability forecast. We define the rule as 1(xt ≤ δ)
here since we will directly use the value of the yield spread as the threshold later in our empirical application.
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in Equation (5) can be written as

µŷ(δ)

1− µy
=

TP (δ) + FP (δ)

FP (δ) + TN(δ)

=
TP (δ) + FP (δ)

FP (δ) + TN(δ)
× TP (δ) + FN(δ)

TP (δ) + FN(δ)
× TP (δ)

TP (δ)

=
rR(δ)

P (δ)
,

(6)

where r = (TP (δ) + FN(δ))/(FP (δ) + TN(δ)) is the ratio of the number of
positive cases to the number of negative cases, which measures how imbalanced
the data is. Thus Equation (5) is equivalent to

FA(δ) =
rR(δ)

P (δ)
(1− P (δ)), (7)

which is equivalent to Equation (2) in Williams (2021), who showed the role of
sample imbalance on PRC. Again, FA(δ) and 1− P (δ) are linked through the
ratio rR(δ)/P (δ). Note that µŷ(δ)/(1− µy) can also be written as

µŷ(δ)

1− µy
=

TP (δ) + FP (δ)

FP (δ) + TN(δ)
× TP (δ) + FN(δ)

TP (δ) + FN(δ)

= r
TP (δ) + FP (δ)

TP (δ) + FN(δ)

= r
µŷ(δ)

µy
.

(8)

µŷ(δ)/µy is a measure of the biasedness of the forecasts. Thus the link between
FA(δ) and 1 − P (δ) is determined jointly by the balancedness of the sample
and the biasedness of forecasts. With imbalanced data when r is sufficiently
small, FA(δ) tends to be lower than 1 − P (δ) as long as the forecasts are not
extremely upward biased. Further, combining with Table 1 we can see FA(δ)
and 1 − P (δ) are equal if TP = TN (there are same number of true positives
and true negatives). Also, 1 − P (δ) can be thought of as the false alarm rate
F̃A(δ) with TN replaced by TP in Table 1.

SinceKS is extensively used in ROC analysis and R and P in PRC, it will be
interesting to see their relation. Plugging Equation (7) in Equation (2), KS(δ)
can be written as a function of P (δ), R(δ) and r:

KS(δ) = R(δ)− rR(δ)

P (δ)
(1− P (δ)). (9)

The second term in Equation (9) is the false alarm rate FA(δ) as defined before.
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For evaluating PRC, F statistics are commonly used threshold-dependent
measures, which are harmonic means of P (δ) and R(δ) and are defined as

Fβ(δ) =
(1 + β2)P (δ)R(δ)

β2P (δ) +R(δ)
, (10)

where β defines the relative importance of recall over precision; see van Rijs-
bergen (1979) and Chinchor and Sundheim (1993). Using Equation (7), Fβ(δ)
can be written as

Fβ(δ) =
(1 + β2)R(δ)

R(δ) + 1
rFA(δ) + β2

, (11)

which depends positively on class imbalance r. Thus everything else unchanged,
data with lower fraction of positive cases tends to give worse forecast perfor-
mance evaluation in terms of F measures. Following the literature, we will
consider F0.5, F1 and F2 in Equation (10):

F0.5(δ) =
1.5P (δ)R(δ)

0.25P (δ) +R(δ)
, (12)

F1(δ) =
2P (δ)R(δ)

P (δ) +R(δ)
, (13)

F2(δ) =
5P (δ)R(δ)

4P (δ) +R(δ)
. (14)

Higher values of F0.5, F1 and F2 would suggest better forecast performance.
The F measures originated in statistical ecology, cf. Dice (1945) and Sorensen
(1948). Chinchor (1992) and Chinchor and Sundheim (1993) gave the final no-
tations that have been used in recent literature. Note that Chicco and Jurman
(2020) criticized F1 measure as it may provide misleading information about
the overall forecast performance when a prediction has many true positives but
not enough true negatives (or reverse), since F measures like PRC are indepen-
dent from true negatives (TN).4 We still choose to report F measures since 1)
they are integral part of PRC methodology and use exclusively P (δ) and R(δ)
; and 2) in our particular application to recession forecasting, correctly predict-
ing recessions is usually more important than correctly predicting expansions.
Similar to maximizing KS, F measure can also be maximized (maxδ F0.5(δ),
maxδ F1(δ) and maxδ F2(δ)).

Finally, a less well-known Matthews correlation coefficient (MCC), which
uses all four elements of the Confusion matrix including TN , is also considered:

MCC(δ) = TP (δ)TN(δ)−FP (δ)FN(δ)√
(TP (δ)+FP (δ))(TP (δ)+FN(δ))(TN(δ)+FP (δ))(TN(δ)+FN(δ))

.

(15)
4See also Flach and Kull (2015) and Yedidia (2016).
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The value of MCC ranges from -1 to 1, the same range as the range of KS.
Larger MCC represents better forecast performance, and the MCC of no-skill
forecasts is 0. Chicco and Jurman (2020) argued that MCC is a better measure
than F1 as it considers all the four forecast outcomes in Table 1 and invariant
to data swapping. It generates high score only if a classifier scores high values
in all four basic rates - hit rate, false alarm rate, precision and negative pre-
dictive value defined as TN(δ)/(TN(δ) + FN(δ)). Chicco and Jurman (2023)
also argued for MCC in place of ROC. However, if forecast user wants to put
more weight on positive outcomes compared to the negative ones, then MCC
may not be the most appropriate evaluation statistic.

Using the definitions of µy and µŷ, TP + FP = µŷ(TP + TN + FP + FN),
TP+FN = µy(TP+TN+FP+FN), TN+FP = (1−µy)(TP+TN+FP+FN)
and TN + FN = (1 − µŷ)(TP + TN + FP + FN), the relationship between
MCC and KS can be derived in the following steps (dropping δ temporarily):

MCC =
(TP × TN − FP × FN)√

µyµŷ(1− µy)(1− µŷ)(TP + TN + FP + FN)2

=
( TP
TP+FNTN(TP + FN)− FP

FP+TNFN(FP + TN))√
µyµŷ(1− µy)(1− µŷ)(TP + TN + FP + FN)2

=
(R TP

FP+TN − FA FP
TP+FN ) (TP+FN)(FP+TN)

(TP+TN+FP+FN)2√
µyµŷ(1− µy)(1− µŷ)

=
(R(1− FA)− FA(1−R))µy(1− µy)√

µyµŷ(1− µy)(1− µŷ)

=

(
R(1− FA)− FA(1−R)

)√
µy(1− µy)

µŷ(1− µŷ)

=

(
R− FA

)√
µy(1− µy)

µŷ(1− µŷ)

= KS

√
µy(1− µy)

µŷ(1− µŷ)
.

(16)

Putting δ back,

MCC(δ) = KS(δ)

√
µy(1− µy)

µŷ(δ)(1− µŷ(δ))
. (17)

Thus, MCC can be written in terms of KS, scaled by the square root of ratio of
the standard deviation of the actual values y to that of the binary predictions.
This ratio can also be treated as a function of forecast biasedness. MCC and
KS are equal if the forecasts are unbiased (µŷ(δ) = µy). They can also be equal
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under a less natural condition if µŷ(δ) = 1− µy. In case of rare event forecasts,
µy is small and the variance of y also tends to be small. If correctly forecasting
positive cases is important, people may tend to make more positive forecasts
and get a relatively larger µŷ(δ) and larger µŷ(δ)(1−µŷ(δ)). As a result, it is more
likely to get a ratio smaller than 1, hence an MCC smaller than KS.

3 The Empirical Set Up with yield spread

In this section we evaluate recession forecasts using ROC, PRC and different
evaluation measures at the optimal thresholds. Saito and Rehmsmeier (2015)
identified a large number of bio-informatics studies on rare biological events that
used almost always ROC analysis, and found that these studies reached decep-
tive conclusions about the reliability of their classification methods. Lahiri and
Yang (2022) examined the predictability of yield spread in recession forecast-
ing using the ROC approach, but without any reference to the PRC approach.
Following Saito and Rehmsmeier (2015) this section will compare and contrast
the two approaches in the context of exactly the same empirical illustration and
data for precise comparison.

3.1 The background

We use the term spread, which is the difference between the yields on the ten-
year Treasury note and the three-month Treasury bill rate, to forecast U.S.
recessions. The spread predicts recessions since it not only reflects current
stance of monetary policy, but also its complex interactions with expected fu-
ture monetary policies. These, in turn, are linked to expectations of future
economy. Cooper et al. (2020) have provided a summary about how the spread
and future recessions are related.

Regardless of the types of spread used, there has also been a parallel body
of research on the hypothesis that the yield spread has lost its predictive power
after the 1980s. The failure of the experimental recession index by Stock and
Watson (1993) was attributed to their reliance on these spread variables at the
6-month horizon, see Dotsey (1998) and Jardet (2004). Many factors, including
unconventional monetary policies, financial innovations, deregulation, deepen-
ing of the commercial paper market, increasing globalization, structural breaks,
and inflation targeting, have been proposed as reasons for the loss in forecasting
power, see Giacomini and Rossi (2006) and Pažickỳ (2021). Chauvet and Pot-
ter (2005) used a number of models to accommodate some of the documented
instabilities in yield curve prediction models. The yield spread is one of the
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ten leading indicators of The Conference Board (TCB) since 1996, see Levanon
et al. (2015). It has the highest AUROC among all other leading indicators and
the value is close to that of the composite LEI, see Lahiri and Yang (2021).

During last few years there have been more than 100 articles published in
two major forecasting journals that used ROC. However, since recession is a rel-
atively rare event covering a little over 10% of the sample, the data is highly im-
balanced. Saito and Rehmsmeier (2015) showed that with imbalanced datasets,
PRC curve can be a more appropriate and informative tool. Since PRC curve
does not count true negative forecasts, it is less likely to exaggerate or inflate
the forecast performance when the data is imbalanced (Sofaer et al. (2019),
Cook and Ramadas (2020)). Pinker (2018) also challenged the reliability of
AUROC when relatively rare events are being predicted. Davis and Goadrich
(2006) showed that when making comparison, best AUROC does not necessar-
ily imply best AUPRC. Analyses based on PRC have been applied extensively
to many different topical areas such as image detection (Liang et al. (2017), pre-
diction of opioid overdose (Lo-Ciganic et al. (2019), crime prediction (Rummens
and Hardyns (2021)), solar forecasting (Lin et al. (2023)) and many more. PRC
is usually used with machine learning techniques. As of now, Google Scholar
lists over half a million citations under it. However, not many studies on reces-
sion forecasts have yet adopted PRC approach. One exception is Pigini (2021),
who emphasized the importance of PRC in the context of early warning sys-
tems using panel logit-based models. Vrontos et al. (2021) also used machine
learning techniques to forecast recession, and used F1 as one of the evaluation
measures, but did not focus on PRC. Puglia and Tucker (2021) also recognized
the usefulness of PRC but did not pursue the approach due to lack of positive
cases in their sample.

The standard workhorse in this sphere has been the probit model, e.g., Es-
trella and Hardouvelis (1991) and Estrella and Mishkin (1996). The probit link
function is symmetric and may not be consistent with the loss function of the
forecast user. Similar to Berge and Jordà (2011), who used ROC, we addition-
ally use PRC approach that directly focuses on the identification of a binary
event, and evaluates the forecast performance in terms of precision and recall.
The commonly used goodness-of-fit criteria such as mean squared forecast er-
rors and Brier’s score tend to get overwhelmed by the dominant event of the
sample, see Stephenson (2000) and Lahiri and Yang (2013).

Like Berge and Jordà (2011) and Bauer and Mertens (2018), we translate the
yields directly into binary predictions without going through an intermediate
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step of estimating the probabilities from a probit or other models, which may
cause problems. For example, Lieli and Hsu (2019) showed that traditional tests
of AUROC can give misleading results if a regression model is used and parame-
ters are estimated in-sample. Also, because the AUROC or AUPRC statistic is
obtained by evaluating over the whole probability space, it may fail to identify
the goodness of a predictor in the region where it matters, cf. Elliott and Lieli
(2013) and Zhou et al. (2011). Note that AUROC and AUPRC are not very
useful for issuing forecasts in real time, they are more like R-square statistic to
gauge the over all fit of a linear regression. Thus we focus on threshold-specific
composite measures under ROC and PRC, which can help determine whether
the forecasting power of the yield curve has been falling over time subject to
appropriate choice of a threshold. Additionally, since financial and market prac-
titioners directly monitor the yield spreads and watch when the inversion of the
yield curve occurs, our approach of generating PRC curves directly from the
spread values will enable them to look at alternative threshold spread values,
and directly interpret them without any intermediary assumption on the link
function.

Finally, and importantly, we use daily data that has important advantages
in our context. (1) Since the market analysts and policy makers monitor indi-
cators like yield spreads on a continuous basis, daily data makes the forecasts
more timely in real time. (2) Daily data provides more observations. This is
important for us, since we focus on recessions that occur infrequently in the
sample. (3) Since daily data is less discrete, the points on the Precision-Recall
space are relatively dense and as a result we will suffer less from interpolation
problem (Davis and Goadrich (2006)).

3.2 Forecasting Rule, Data and Results

Our simple forecasting rule makes a recessionary forecast if the spread value in
day t falls to or below some threshold δ:

ŷt(xt; δ) = 1(xt ≤ δ). (18)

In our application, the left-hand-side variable yt is an indicator that is equal
to 1 if there is an onset of recession anytime during the next h months and
0 otherwise.5 ŷt(xt; δ) is a binary forecast for yt using threshold δ. We take
h = 12 months for our main results because this is the horizon at which the

5This forecast object does not pre-specify a fixed horizon and has been used in a number of recent papers,
cf. Wright (2006), Ergungor (2016), Johansson and Meldrum (2018), Bauer and Mertens (2018), Ajello et al.
(2022) and others. Also see Lahiri and Yang (2023) for a comparison of different forecast objects in recession
forecasting.
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spread has the maximum predictive power. Later we will also report results
with respect to horizons at 18 and 6 months as robustness checks.

We use monthly NBER recession indicator as the basis for the left-hand-side
outturn variable. It is turned into daily to match the frequency of the pre-
dictor. The data of the spread is daily 10-Year Treasury Constant Maturity
Minus 3-Month Treasury Constant Maturity, spanning from January 2 1962 to
November 30 2021. Bauer and Mertens (2018) show that the difference between
the 10-year and 3-month rates is the most effective term spread to forecast re-
cessions without any adjustments for term premium or quantitative easing.6

In order to simplify our analysis, we make the number of daily observations
of the spread in each month fixed at 22. If there are fewer than 22 actual obser-
vations or there are holidays on weekdays in a month, we linearly interpolate
them, treating them as missing values. If there are more than 22 values in
a month, following Ghysels et al. (2020), we replace the last several observa-
tions in that month with their average such that every month has 22 values.
In the end, the data is adjusted so that there are 22 observations in each month.7

The causes and mechanisms of recessions are different historically. In ad-
dition, optimal threshold for the spread variable can change due to trends in
financial innovations in the economy. Therefore we work with different sub-
samples. We start every sample from January 1962 and add several years each
time in such a way that one more recession is included in the sample that
ends 12 months before the next recession begins. By doing this cumulatively
and recursively, we are able to explore how the forecast performance and the
optimal threshold changed over time before each recession individually. Specif-
ically, we have six sub-samples: sample 1 (1/2/1962 - 7/31/1980), sample 2
(1/2/1962 - 7/31/1989), sample 3 (1/2/1962 to 3/31/2000), sample 4 (1/2/1962
- 12/29/2006, sample 5 (1/2/1962 - 2/28/2019), and finally sample 6 (1/2/1962
- 11/30/2021) which is full sample. Each of the first 5 sub-sample ends exactly
12 months before the beginning of the 1982, 1990, 2001, 2008 and the 2020
recessions.

We plot ROC curves for all six samples in Figure 1. All of the ROC curves
look good, and the values of AUROC range from 0.866 to 0.913. Chicco and
Jurman (2023) recommend an AUROC value of at least 0.785 to be considered

6Pažickỳ (2021) and Choi et al. (2023) reached the same conclusion on the predictive value of yield spread
as we defined it.

7Our experiments show that the adjustments only account for a negligible fraction of the data, so the results
are not affected.
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as high. Figure 2 shows the PRC for all the corresponding samples together
with AUPRC. It is found that the value of AUPRC is relatively low for sample
1 at 0.502. Starting from sample 2, the AUPRC increases and stays between
0.55 and 0.60. The PRC curves are not strictly monotone in extreme cases
when recall is below 0.2, but gradually become monotonically decreasing af-
terward. Also, no matter how the AUPRC changes, it is always significantly
higher than the area under the baseline, which is at most 0.161 over six sub-
samples, meaning that the predictive power of the spread stayed strong relative
to baseline. AUROC tends to give much better-looking results in terms areas
under the curves. The reason is ROC curves involve false alarm rates, whose
computation is based on the forecast performance during expansions covering
the vast majority of the sample. The huge number of true negatives in the
numerator of the false alarm rate makes even large changes in false positives
to have little effect on FA, see Tables 7-11 in the appendix. Thus the forecast
performance using ROC will not be bad as long as the true-negative forecasts
are tallied and counted in. Since identifying recessions is usually what most
practitioners care about, they may not want to be over-optimistic about the
good-looking ROC results because the forecasts were good during expansions.
PRC approach can be a reasonable alternative since it does not use the true
negatives as part of the evaluation. As Sofaer et al. (2019) quipped, “After all
even a poor model can predict that a desert shrub will not occur in a rain forest”!

In order to directly compare PRC and ROC, we change the way PRC is
conventionally plotted. In Figure 3 the inverted precision (i.e.,1-precision) is
plotted on the horizontal axis against recall (hit rate) on the vertical axis.8 This
way we are able to compare ROC curve and the inverted PRC in one coordinate
system. It is obvious to see that the PRC is uniformly below the ROC curve.
Note that 1 − P (δ) is conceptually an alternative measure of false alarm rate
with the true negatives in FA(δ) replaced by true positives in 1− P (δ). Thus
1−P (δ) is defined over forecasts rather than actual values. The wedge between
1− P (δ) and FA(δ) in this diagram brings out directly the essential difference
between the ROC and PRC approaches. Algebraically, the explanation can
be found in our derivation in section 2, where smaller r tends to make FA(δ)
smaller than 1 − P (δ). The gap between the two curves is driven by the ratio
in Equation (8), where the imbalancedness of data overwhelms the biasedness
of forecasts most of the time. Figure 4 plots the ratio of FA(δ) over 1 − P (δ)
across different thresholds. The ratio is equal to 1 only when δ = 2.91%, which
is a threshold where the false alarm rate is truly “alarming” at 84.7%. Most of
the time the ratio is smaller 1, meaning that PRC would suggest a substantially

8The baseline of the inverted PRC becomes a vertical line on the right.
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worse forecast performance compared to what ROC would suggest.

Table 2 shows AKS, the optimal threshold that maximizes KS, the maxi-
mizedKS, and corresponding FA and R for all sub-samples. Note the standard
errors of KS were computed as

√
R(δ)(1−R(δ))/nH + F (δ)(1− F (δ))/nF ,

where nH = TP + FN and nF = FP + TN ; see Stephenson (2000). The
optimal threshold has increased to 0.91% with maximized KS of 0.67. The
forecast performance in terms of AKS has been stable around 0.20. In the final
sample the recall (hit rate) is high at 0.92 with a false alarm rate of 0.25. If the
forecast user could stomach a smaller recall of 0.80, the false alarm rate could
be reduced further to 0.18, see Figure 3.

Tables 3, 4 and 5 show the optimal thresholds that maximize F0.5, F1 and
F2 respectively. The corresponding precision, recall and maximized F0.5, F1

and F2 are also reported. It is found the thresholds that maximize F0.5 are all
around zero for all sub-samples, meaning that looking at the inversion of the
yield spread is still a good strategy to forecast recessions if F0.5 is believed to
be the appropriate measure. The threshold that maximizes F1 increases from
about 0% to 0.21% after reaching sample 4. The threshold that maximizes F2

increases to 0.91% after reaching sample 3. The values of P/R at maximized
thresholds for F0.5 are higher/lower compared with values of P/R at maximized
thresholds for F1 and F2 since the weights in the nonlinear function of F0.5 favor
precision more relative to recall. Further, it is also found that all three maxi-
mized measures drop a bit after sample 2, but creep back gradually afterward.
This implies that the predictive power of the spread has not deteriorated in
recent few decades. Instead, it has increased slightly.

We plot δ against F measures and KS in Figure 5 to help explain Tables
2-5. F0.5 is maximized around zero threshold. As β in Equation (10) increases,
recall (hit rate) becomes more and more weighed relative to precision, and
higher thresholds become more preferred. Tables 7-10 in Appendix A show,
as threshold increases from 0% to 0.91%, the ratio of biasedness µŷ(δ)/µy in-
creases from 0.79 to 2.55, and forecasts get more and more biased because of
forecasting more recessions; see Tables 7-10 in Appendix A. Under the global
accuracy measure like the Brier’s score or RMSE, the results are very similar
to those under F0.5 with almost unbiased forecasts because the bias term is
the dominant part of the RMSE criterion. Interestingly, it is also found that
the thresholds that maximize F2, which prefers recall more compared with F0.5

and F1, coincide with the thresholds that maximize KS(δ) in all sub-samples;
see Tables 2 and 5. The column values under FA and P can be reconciled
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exactly following Equation (5) or (8). At the optimum value of F2, a high hit
rate of 0.92 is attained. The accompanying FA and P would be 0.25 (Table
2) and 0.36 (Table 5) respectively. The PRC approach however would suggest
that the respectable FA of 0.25 can be considered unduly optimistic, because
of its use of TN in its definition. In PRC approach this definition is replaced
by 1− P (δ) = FP (δ)/(FP (δ) + TP (δ)), the PRC analogue of false alarm rate
based on forecasts, which has a much higher value (0.64). Thus, under PRC the
same forecasts would look much less certain in terms of the extra possibility
of getting a positive forecast not materialize. The inverted precision is par-
ticularly intuitive and useful in rare event forecasting because it measures the
fraction of incorrect predictions among the positive predictions. We will focus
on F2 further later in the section on robustness check. Yang et al. (2023) have
sown that KS implies a net utility gain from correctly identifying recessions
(1 − µy)/µy times greater than that from correctly identifying an expansion.
In the current context the ratio turns out to be 6.52. Similarity of KS to F2

would suggest that the latter formula incorporates a similar relative preference
for identifying recessions. In this sense KS and F2 measures are better suited
to evaluate rare-event forecasts.

Note that given a sample of forecasts and actual outcomes, the 2× 2 confu-
sion matrix has 3 degrees of freedom. Two of these are used to define (R, FA)
in ROC and (P , R) in PRC analysis. The third degree of freedom can be used
to calibrate the forecasts. As the confusion matrices in Tables 7-11 show, with
changes in thresholds the elements of ROC and PRC together with the biased-
ness of the forecasts [defined as µŷ(δ)/µy = (TP (δ)+FP (δ))/(TP (δ)+FN(δ))]
change too. The latter ratio changes from 0.79 (δ = 0) to 6.52 (δ = 2.91%).
Forecasts were found to be exactly unbiased only when δ = 0.21%. As we
mentioned before the flexibility of ROC and PRC approaches comes from the
feature that the choice of the threshold comes at the end to comply with the
user’s preferred trade offs between R and FA or P and R. So the most funda-
mental determining criterion in choosing a cut off point is the relative costs and
benefits to the forecast user to identify recessions compared with expansions.
Fundamentally ROC and PRC contain the same amount of information, see
Davis and Goadrich (2006).

Table 6 reports the results for MCC. It is found that the thresholds that
maximize MCC are close to zero initially and rose to 0.21 for the last two sub
samples, giving forecasts with smaller R (hit rate) compared with F2. The rea-
son can be that MCC takes TN into account, which prefers lower thresholds
as they are likely to generate more negative forecasts. Although F1 does not
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take TN into account, the maximizing thresholds for MCC and F1 coincide
exactly for all sub samples in our case; see Tables 4 and 6 and also Figure 6.
Thus even though F1 can give misleading information in some extreme cases
as discussed by Chicco and Jurman (2020), it may not necessarily do so at the
optimal threshold. Figure 7 plots the ratio of the standard deviation of the ac-
tual values of y to the standard deviation of the binary forecasts as a function
of threshold δ.9 The curve is U-shaped as expected due to the nature of the
variance of binary variable, but slightly less than one over meaningful threshold
values, making MCC less than KS. This prediction is borne out well in Tables
2 and 6.

4 Robustness Checks

We regenerated the results for the six separate sub-samples reported in Table
5 using both monthly and quarterly observations. These results are reported
in Tables 12 (monthly) and 13 (quarterly) respectively. In these tables we re-
port the optimal threshold values that maximize F2 and also the corresponding
values of precision and recall. We see that the optimal threshold has increased
away from zero towards one.10 Although there are some differences in terms of
precision and recall, the maximized values of F2 are very close to the F2 val-
ues in our main findings with daily data. Thus the results are consistent with
results using daily data. However, daily data is still preferred due to its addi-
tional number of observations, which benefits us numerically in the calculation
of different rates in skewed samples.

Figures 8 and 9 plot the PRC of 18-month-ahead and 6-month-ahead fore-
casts. It is found that the AUPRC values of the 18-month-ahead forecasts tend
to be higher, with a maximum value of 0.682 in sample 6. The AUPRC values
of the 6-month-ahead forecasts tend to be lower, which are no more than 0.5.
The predictive power for 18-month-ahead forecasts gradually increased since a
drop in sample 3, which is consistent with our main findings with 12-month-
ahead forecasts. The AUPRC values at horizon of 6 months stayed around 0.4
after sample 3. Tables 14 and 15 report the optimal thresholds in terms of F2

for horizons of 18 and 6 months. As expected, forecast performance in terms of
maximized F2 improves as the horizon increases from 6 to 18 months in most

9Some extreme thresholds at both ends are excluded for better demonstration.
10With quarterly data in Table 13, although the optimal threshold is 0.27% for sample 4, the F2 is only

slightly lower (0.68 rather 0.69) when a threshold of 0.93% is chosen as found in adjoining sub-samples 3, 5 and
6. This is because with quarterly data F2 is rather flat between 0.2 and 1.0. At threshold of 0.93%, the recall
is higher (R = 0.92) than that with threshold 0.27% (R = 0.76), but the precision is lower (P = 0.34).
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of the sub-samples, since a recession that starts anytime in the next 18 months
is a wider (thus easier) target to hit compared with a recession that starts
anytime in the next 12 months or next 6 months. What is more important to
notice is that the optimal thresholds have increased to around 1.0% at longer
horizons. Interestingly, at 6-month horizon, the optimal threshold was indeed
very close to zero till post-COVID period. At this horizon, the deterioration in
the forecasting power of yield spread is very clearly seen after the end of sample
2, i.e., after 1990 the maximized F2 and the recall fell substantially. Thus, a
deterioration of predictive power is only found at horizon of 6 months, which
is no longer the best forecast horizon for spreads in recent decades. At longer
horizons the predictive power has even been increasing gradually in terms of
both AUPRC and maximized F2, which is consistent with our main findings.

5 Conclusions

In the context of machine learning, Provost et al. (1998) first pointed out the
inadequacy of conventional accuracy measures that evaluate estimated prob-
abilities and recommended Receiver Operating Characteristic (ROC) analysis
for binary decision making. It is now the most common binary assessment tool
in almost any scientific field. Economic forecasting is no exception. However,
it is now well recognized that ROC presents an overly optimistic picture of a
predictor’s true discriminating power when the sample data is highly imbal-
anced, and Precision-Recall Curve (PRC) has emerged as a more appropriate
evaluation tool for rare event forecasts. Due to ROC’s failure to handle rare
events and many other problems, Chicco and Jurman (2023) have suggested for
its retirement after 80 years of honorable service!

In this paper we have studied the relationship between ROC and PRC both
analytically and using a real-life empirical example of yield spread as a predic-
tor of recessions. In the forecasting literature events are taken to be rare if it
occurs less that 2.5% of the times or less. Recessions in the U.S. are not that un-
common - it occupies 10-15% of the sample in recent decades. So one empirical
question we addressed is whether the inadequacy of ROC that has been demon-
strated with truly rare events carries over to cases occurring at higher rates too.

The essential difference between ROC and PRC is the way each defines false
alarm rates. We show that false alarm rate in ROC and inverted precision in
PRC are analogous and their difference is determined by the interaction of sam-
ple imbalance and forecast bias. By inverting the PRC and replacing precision
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with one minus precision, we are able to plot it on ROC space for direct compar-
isons. We found that in cases of severe imbalance in the sample, the forecasts
need to be adequately biased to mitigate the effect of imbalancedness. This
relationship is confirmed in our empirical example and shows that for plausible
values of preference parameters, even in recession forecasting where it occurs
little over 10% of the sample, ROC severely overstates the true predictive per-
formance.

To aid real-time forecasting, our forecasts are evaluated more in terms of
maximized F0.5, F1, F2, MCC and KS measures than on global measures like
AUROC or AUPRC. We derived few relationships between these statistics and
focused on their thresholds that can be used optimally to make forecasts. By
extending the sample gradually and recursively, we find that the optimal thresh-
old varies depending on the used measures, that reflect their relative preference
for making correct recession forecasts compared to non-recessions. The optimal
threshold stays around 0 if F0.5, F1 or MCC are used. But at these values,
the hit rate or recall will be unacceptably low to many. The optimal threshold
has increased to about 0.91% in recent decades if KS or F2 is used, which are
more recall-weighted. Importantly, the mix of values of precision and recall
over six sub-samples show that the predictive power of the spread has not de-
teriorated in recent decades, provided the optimum values of threshold are used.

Our analysis also finds that most of the meaningful thresholds for reces-
sion forecasts are upward biased, generating much smaller FA than 1 − P for
comparable hit rates or recalls. We underscore the importance of deliberate
forecast bias in order to attain acceptable levels of hit rate, false alarm rate and
precision by choosing appropriate thresholds. For example, at hit rate 92%,
the associated false alarm rate with ROC will be 25%. But at the same hit
rate, [1-Precision], which is the analogous false alarm rate with PRC, will be
64%. This quantifies the extent to which ROC could be exaggerating the true
predictive value of the yield curve. Our results are robust even when we worked
with monthly or quarterly data and with alternative forecast horizons.
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Figure 1: ROC Curves with Daily Spread as Threshold: 12-Month-Ahead Forecasts
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Figure 2: PRC with Daily Spread as Threshold: 12-Month-Ahead Forecasts
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The dashed line in each graph is for the baseline no-skill forecasts, which is a horizontal line at the

level of the fraction of recession periods. The proportions are 0.161, 0.144, 0.130, 0.133, 0.122, and

0.133 from sample 1 to sample 6.
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Figure 3: ROC Curve and Inverted PRC: 12-Month-Ahead Forecasts (1/2/1962 - 11/30/2021)
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Figure 5: KS and F measures as functions of δ (1/2/1962 - 11/30/2021)
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Figure 6: MCC and F1 as functions of δ (1/2/1962 - 11/30/2021)
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Figure 7:
√
(µy(1− µy))/(µŷ(δ)(1− µŷ(δ))) as a function of δ (1/2/1962 - 11/30/2021)
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The horizontal dashed line at 1 shows that the ratio of the standard deviation of actuals and the

standard deviation of binary forecasts are equal at delta = 0.15% and δ = 2.91%. By Equation (16),

MCC is smaller than KS below the dashed horizontal line. Note that the forecasts are unbiased at

δ = 0.15% but not at δ = 2.91%. The ratio is equal to 1 at δ = 2.91% since µŷ(2.91) = 0.867 = 1−µy.
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Table 2: Optimal Interest Rate Spread Thresholds KS: 12-Month-Ahead Forecasts with Daily
Data

Sample FA R Maximized KS Maximizing Threshold AKS

1 0.17 0.77 0.60 0.20 0.21
2 0.13 0.77 0.64 0.21 0.20
3 0.30 0.90 0.60 0.91 0.19
4 0.30 0.92 0.62 0.91 0.20
5 0.24 0.91 0.67 0.91 0.20
6 0.25 0.92 0.67 0.91 0.20

Sample 1: 1/2/1962 to 7/31/1980; Sample 2: 1/2/1962 to 7/31/1989; Sample 3: 1/2/1962 to
3/31/2000; Sample 4: 1/2/1962 to 12/29/2006; Sample 5: 1/2/1962 to 2/28/2019; Each sub-sample

ended 12 months before the beginning of the recessions of 1981, 1990, 2001, 2008 and 2020,
respectively. Sample 6 is our full sample. The standard errors of KS are all smaller than 0.018.

Table 3: Optimal Interest Rate Spread Thresholds for F0.5: 12-Month-Ahead Forecasts with
Daily Data

Sample P R Maximized F0.5 Maximizing Threshold
1 0.55 0.63 0.68 -0.05
2 0.64 0.56 0.74 -0.17
3 0.61 0.51 0.71 -0.06
4 0.64 0.43 0.70 -0.19
5 0.63 0.48 0.71 -0.06
6 0.63 0.52 0.73 0.03

See Table 2 for definition of sub-samples.

Table 4: Optimal Interest Rate Spread Thresholds for F1: 12-Month-Ahead Forecasts with
Daily Data

Sample P R Maximized F1 Maximizing Threshold
1 0.54 0.70 0.61 0.03
2 0.59 0.70 0.64 0.03
3 0.57 0.58 0.58 0.08
4 0.51 0.65 0.57 0.21
5 0.53 0.62 0.58 0.21
6 0.57 0.65 0.61 0.23

See Table 3 for definition of sub-samples.
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Table 5: Optimal Interest Rate Spread Thresholds for F2: 12-Month-Ahead Forecasts with
Daily Data

Sample P R Maximized F2 Maximizing Threshold
1 0.46 0.77 0.68 0.20
2 0.50 0.77 0.70 0.21
3 0.31 0.90 0.65 0.91
4 0.32 0.92 0.67 0.91
5 0.34 0.91 0.68 0.91
6 0.36 0.92 0.70 0.91

See Table 3 for definition of sub-samples.

Table 6: Optimal Interest Rate Spread Thresholds for MCC: 12-Month-Ahead Forecasts with
Daily Data

Sample P R FA Maximized MCC Maximizing Threshold
1 0.54 0.70 0.12 0.53 0.03
2 0.59 0.70 0.08 0.58 0.03
3 0.59 0.56 0.06 0.51 0.03
4 0.58 0.55 0.06 0.50 0.03
5 0.53 0.62 0.08 0.51 0.21
6 0.57 0.65 0.08 0.54 0.23

See Table 3 for definition of sub-samples.
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Appendix

A Confusion Matrices for Different Thresholds

Table 7: Contingency Matrix When δ = 0% (1/2/1962 - 11/30/2021)
recession no recession
(yt = 1 ) (yt = 0)

predict recession TP=1048 FP=604 P = 0.63
(ŷt = 1)

predict no recession FN=1056 TN =13110
(ŷt = 0)

R = 0.50 FA = 0.04

µŷ/µy = (TP + FP )/(TP + FN) = 0.79. The forecasts are downward biased.

Table 8: Confusion Matrix When Forecasts are Unbiased at δ = 0.15% (1/2/1962 - 11/30/2021)
recession no recession
(yt = 1 ) (yt = 0)

predict recession TP=1237 FP=853 P = 0.59
(ŷt = 1)

predict no recession FN=867 TN =12861
(ŷt = 0)

R = 0.59 FA = 0.06

µŷ/µy = (TP + FP )/(TP + FN) = 0.99. The forecasts are unbiased with the ratio close to 1.
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Table 9: Confusion Matrix When δ = 0.50% (1/2/1962 - 11/30/2021)
recession no recession
(yt = 1 ) (yt = 0)

predict recession TP=1677 FP=1980 P = 0.46
(ŷt = 1)

predict no recession FN=427 TN =11734
(ŷt = 0)

R = 0.80 FA = 0.14

µŷ/µy = (TP + FP )/(TP + FN) = 1.74. The forecasts are upward biased.

Table 10: Confusion Matrix When δ = 0.91% (1/2/1962 - 11/30/2021)
recession no recession
(yt = 1 ) (yt = 0)

predict recession TP=1939 FP=3425 P = 0.36
(ŷt = 1)

predict no recession FN=165 TN =10289
(ŷt = 0)

R = 0.92 FA = 0.25

µŷ/µy = (TP + FP )/(TP + FN) = 2.55. The forecasts are upward biased.

Table 11: Confusion Matrix When δ = 2.91% (1/2/1962 - 11/30/2021)
recession no recession
(yt = 1 ) (yt = 0)

predict recession TP=2104 FP=11612 P = 0.15
(ŷt = 1)

predict no recession FN=0 TN =2102
(ŷt = 0)

R = 1.00 FA = 0.85

µŷ/µy = (TP + FP )/(TP + FN) = 6.52. The forecasts are upward biased.
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B Tables and Figures for Robustness Checks

Table 12: Optimal Interest Rate Spread Thresholds for F2: 12-Month-Ahead Forecasts with
Monthly Data

Sample P R Maximized F2 Maximizing Threshold
1 0.53 0.78 0.71 0.14
2 0.58 0.79 0.74 0.14
3 0.41 0.78 0.66 0.49
4 0.42 0.81 0.68 0.49
5 0.39 0.85 0.69 0.65
6 0.42 0.86 0.71 0.65

See Table 3 for definition of sub-samples.

Table 13: Optimal Interest Rate Spread Thresholds for F2: 12-Month-Ahead Forecasts with
Quarterly Data

Sample P R Maximized F2 Maximizing Threshold
1 0.45 0.77 0.68 0.21
2 0.47 0.82 0.71 0.27
3 0.33 0.90 0.67 0.93
4 0.50 0.76 0.69 0.27
5 0.36 0.93 0.71 0.93
6 0.37 0.94 0.72 0.93

See Table 3 for definition of sub-samples.

Table 14: Optimal Interest Rate Spread Thresholds for F2: 18-Month-Ahead Forecasts with
Daily Data

Sample P R Maximized F2 Maximizing Threshold
1 0.30 0.98 0.68 2.38
2 0.46 0.82 0.71 0.89
3 0.36 0.88 0.68 1.31
4 0.44 0.84 0.71 1.00
5 0.48 0.85 0.74 1.00
6 0.48 0.87 0.75 1.00

See Table 3 for definition of sub-samples.
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Table 15: Optimal Interest Rate Spread Thresholds for F2: 6-Month-Ahead Forecasts with
Daily Data

Sample P R Maximized F2 Maximizing Threshold
1 0.36 0.95 0.72 0.03
2 0.39 0.93 0.72 0.03
3 0.39 0.74 0.63 0.03
4 0.37 0.72 0.61 0.04
5 0.35 0.63 0.54 0.06
6 0.25 0.76 0.54 0.37

See Table 3 for definition of sub-samples.
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Figure 8: PRC with Daily Spread as Threshold: 18-Month-Ahead Forecasts
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The dashed line in each graph is for the baseline no-skill forecasts, which is a horizontal line at the

level of the fraction of recession periods. The baselines here differ from the baselines for

12-month-ahead forecasts since the definition of the left-hand-side variable depends on forecast

horizon, and the fractions of observations with yt = 1 differ.
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Figure 9: PRC with Daily Spread as Threshold: 6-Month-Ahead Forecasts
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See Figure 8 for explanations of baseline forecasts.
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Pažickỳ, M. (2021). Predicting recessions in germany using the german and the
us yield curve. Journal of Business Cycle Research 17 (3), 263–291.

Peirce, C. S. (1884). The numerical measure of the success of predictions.
Science (93), 453–454.

Pigini, C. (2021). Penalized maximum likelihood estimation of logit-based early
warning systems. International Journal of Forecasting 37 (3), 1156–1172.

Pinker, E. (2018). Reporting accuracy of rare event classifiers. npj Digital
Medicine 1 (56).

Provost, F. J., T. Fawcett, and R. Kohavi (1998). The Case against Accuracy
Estimation for Comparing Induction Algorithms. In International Conference
on Machine Learning, Volume 98, pp. 445–453.

Puglia, M. and A. Tucker (2021). Neural Networks, the Treasury Yield Curve,
and Recession Forecasting. The Journal of Financial Data Science 3 (2),
149–175.

Rudebusch, G. D. and J. C. Williams (2009). Forecasting recessions: the puzzle
of the enduring power of the yield curve. Journal of Business & Economic
Statistics 27 (4), 492–503.

Rummens, A. and W. Hardyns (2021). The effect of spatiotemporal resolution
on predictive policing model performance. International Journal of Forecast-
ing 37 (1), 125–133.

Saito, T. and M. Rehmsmeier (2015). The precision-recall plot is more infor-
mative than the roc plot when evaluating binary classifiers on imbalanced
datasets. PloS one 10 (3), e0118432.

Sofaer, H. R., J. A. Hoeting, and C. S. Jarnevich (2019). The area under the
precision-recall curve as a performance metric for rare binary events. Methods
in Ecology and Evolution 10 (4), 565–577.

Sorensen, T. A. (1948). A method of establishing groups of equal amplitude in
plant sociology based on similarity of species content and its application to
analyses of the vegetation on Danish commons. Biol. Skar. 5, 1–34.

Stephenson, D. B. (2000). Use of the “odds ratio” for diagnosing forecast skill.
Weather and Forecasting 15 (2), 221–232.

37



Stock, J. H. and M. W. Watson (1993). Introduction to” business cycles, indi-
cators and forecasting”. In Business Cycles, Indicators, and Forecasting, pp.
1–10. University of Chicago Press.

van Rijsbergen, C. J. (1979). Information Retrieval (Second ed.). Butterworth-
Heinemann Newton, MA, USA.

Vrontos, S. D., J. Galakis, and I. D. Vrontos (2021). Modeling and predicting
US recessions using machine learning techniques. International Journal of
Forecasting 37 (2), 647–671.

Williams, C. K. (2021). The effect of class imbalance on Precision-Recall Curves.
Neural Computation 33 (4), 853–857.

Wright, J. H. (2006). The yield curve and predicting recessions. Finance and
Economics Discussion Series 2006-07, Federal Reserve Board.

Yang, L., K. Lahiri, and A. Pagan (2023). Getting the ROC into Sync. Journal
of Business & Economic Statistics , 1–13.

Yedidia, A. (2016). Against the F-score.

Zhou, X.-H., N. A. Obuchowski, and D. K. McClish (2011). Statistical Methods
in Diagnostic Medicine, Second Edition, Chapter 2. Inc: New York: John
Wiley & Sons.

38


	10449abstract.pdf
	Abstract




