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Abstract 
 
We provide novel evidence of how an innovative market-based solution using remote-sensing 
technology can mitigate conflict. Droughts are a major driver of conflict in Africa, particularly 
between nomadic pastoralists and sedentary farmers, and climate change is predicted to intensify 
this problem. The Index-Based Livestock Insurance (IBLI) scheme piloted in Kenya provides 
automated, preemptive payouts to pastoralists affected by droughts. Combining plausibly 
exogenous variation in rainfall and the staggered roll-out of IBLI in Kenya over the 2001-2020 
period, we find that IBLI strongly reduces drought-induced conflict. One key mechanism is that 
insured pastoralists travel less far away from their ancestral homelands, reducing conflicts over 
scarce resources in contested areas. This suggests that market-based solutions are a promising 
pathway to mitigate conflict beyond difficult institutional reforms and raises the question of how 
governments can support the adoption of such schemes for underprivileged groups through 
subsidies or other campaigns. 
JEL-Codes: D740, G220, G520, O130, Q340, Q540. 
Keywords: conflict, conflict resolution, climate change, droughts, pastoralism, insurance, ICT, 
resources. 
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1. Introduction

Mitigating drought-induced conflict pressure in fragile regions of the world is a crucial public
policy challenge for the next decades. Recent research highlights that tensions between
nomadic pastoralists and sedentary farmers are a root cause of a high share of all violent
conflict, particularly in Africa (Eberle et al., 2020; McGuirk and Nunn, 2023). This type
of conflict erupts because droughts intensify competition for scarce resources and force
pastoralists to migrate further away from their traditional grazing grounds in areas inhabited
by farmers. Such conflicts are amplified by agricultural intensification (more fencing, denser
fields, less open areas (see McGuirk and Nunn, 2022), and by a higher frequency and severity
of droughts linked to climate change (IPCC, 2022). Eberle et al. (2020) estimate that climate-
induced conflict in Africa will increase by up to a third without countervailing measures.

This paper provides the first, to the best of our knowledge, quasi-experimental evidence
that index-based livestock insurance (IBLI) can substantially mitigate drought-induced farmer-
herder conflicts. Market-based mechanisms are crucial complements to reforms of political
institutions, which are highly persistent and unlikely to adapt at the speed necessary to
cope with climate change. IBLI leverages advances in remote sensing techniques to develop
local forage proxies, which allow offering index-based insurance to previously uninsurable
pastoralists. IBLI avoids costly controls by automatically triggering payouts once pre-
determined remotely sensed drought measures are crossed. Moreover, this enables preemptive
payouts before livestock loss occurs (Vrieling et al., 2014) and avoids manipulations of the
payout amount. IBLI was piloted in Northern Kenya, then rolled out through the semi-arid
and arid areas of Kenya, and is now expanding across East Africa (Fava et al., 2021).

Our main specification examines the reduced-form effect of IBLI coverage on drought-
induced violent conflict in Kenya over the 2001-2020 period. Our dependent variable uses
the Armed Conflict Location and Event Dataset (ACLED Raleigh et al., 2020) to measure
the probability of conflict in 0.1 × 0.1-degree grid-cells (roughly 10 x 10 km at the equator).
The treatment variable combines the staggered roll-out of IBLI with exogenous changes in
drought intensity in the neighborhood of a cell. To reflect the declining likelihood of pastoralist
migration from potentially drought-affected neighborhood cells, their weight decreases in
distance. Our main results suggest that the drought-conflict semi-elasticity is reduced by
between 14% and 26% in regions with higher insurance coverage. Quantifying the conflict-
mitigation externality of IBLI is politically important because it is relevant to evaluate the
optimal level of government subsidies of the program.

There are two main concerns when evaluating such an insurance scheme. The first
endogenous payouts manipulated or delayed due to conflict are not a concern because pre-
defined satellite-based drought proxies trigger IBLI payouts. The second concern is that the
insurance’s initial choice and roll-out pattern were linked not just to the likelihood of conflict
but also to the degree to which droughts are likely to trigger conflict in an area. The mere
conflict likelihood – and other time-invariant factors – would be captured by our battery
of fixed effects, but the second concern could introduce a bias. All available information
suggests that improving pastoralist well-being and solving technical challenges were the key
factors influencing the initial IBLI location choice and the roll-out (Fava et al., 2021). We show
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empirically that neither IBLI eligibility, ever receiving coverage, or the timing of receiving
coverage during our sample period depends on the prior drought-conflict sensitivity of an
area. A placebo test further reveals that our treatment variable does not affect the drought-
conflict relationship during the 2001-2009 period, before the initial IBLI pilot.

Our results are robust to varying core assumptions and data. First, while our
main specification uses rainfall deficit as the proxy for drought, we also employ a more
comprehensive Aridity Index that takes temperature variation into account, as well as a
proxy for phytomass availability (the Dry Matter Productivity–DMP) as alternative proxies
for droughts. Second, we show that our results also hold using various distance decays. Third,
our results are robust to using alternative conflict measures. Fourth, we interact the drought
measures with time-invariant characteristics of the cell or the neighborhood cells as additional
controls.

We then turn to the mechanisms. Let us start with an example to illustrate through
which channels droughts lead to conflict. Orma and Wardey pastoralists and the Pokomo
farmers are three groups that all rely in some way on the Tana River Delta, an important
Kenyan wetland.1 Water and grazing grounds are scarce resources that the groups require
access to. Land rights are complex and contested, including rights of passage, and migratory
movements by the pastoral groups do occasionally lead to the destruction of Pokomo crops.
Hence, occasional conflicts among the two pastoralist groups or between pastoralists and
the Pokomo sporadically occurred since the 17th century. During years with sufficient rain,
however, traditional conflict resolution mechanisms such as community-led negotiations and
resource-sharing agreements often avoid or stop conflict from escalating.

Droughts affect this fragile equilibrium and the likelihood of conflict in several ways.
First, both farmers and pastoralists are materially worse off in a drought. Following the
opportunity-cost of fighting hypothesis, reduced material wealth, all else equal, increases
the likelihood of conflict. Second, droughts further reduce the available resources to all
groups, leading to a rapacity effect with groups more aggressively competing for those
resources. Finally, in drought years, the pastoral groups - desperately trying to keep their
cattle alive - migrate into Pokomo areas more deeply and frequently (Andres, 2013), potentially
interrupting growing seasons (McGuirk and Nunn, 2023). In summary, droughts affect conflict
through lower opportunity costs, a stronger rapacity effect, and more frequent and longer
migration movements that increase the possibility of unexpected contact between groups.

We can shed some light on the extent to which IBLI seems to mitigate conflict through
these mechanisms. We provide evidence that less migratory pressure plays a key role. In line
with (Eberle et al., 2020) we match conflict actors to ethnic homelands (Murdock, 1967) and
show that IBLI reduces the distance between the centroid of a group’s homeland and conflict
events involving that group. Moreover, Jensen et al. (2017) finds that IBLI helps to smooth and
increase pastoralists’ incomes, fostering investments in livestock health services and increasing
milk productivity. This increases the opportunity costs of fighting. The higher productivity
per cow can lead to a quantity-quality trade-off and, in equilibrium, smaller herd sizes that

1See https://www.hrw.org/news/2012/09/13/kenya-investigate-all-politicians-tana-river-violence for
details.
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mitigates the rapacity effect.
Many African countries face challenges similar to the problems of pastoralists and

sedentary farmers in Kenya’s semi-arid and arid landscapes. Pastoralism is practiced in
43% of the African landmass, covering 36 countries, and is the livelihood of about 268
million people (FAO, 2018). In Kenya, large areas of land are (traditionally) dedicated to
pastoralism, particularly in the northern and eastern regions. Pastoralists depend on the
natural environment for their livelihoods, primarily raising cattle, sheep, and goats. One
can already observe now that more frequent droughts reduced water availability and forage
quality for their livestock. Climate change is predicted to further amplify those challenges,
particularly in the Sahel and Horn of Africa. Hence, the findings of this study are relevant
for understanding the potential of IBLI as an ICT tool and conflict-mitigating intervention in
many other settings with similar conditions and features.

Our results relate to several strings of related literature. First, understanding the
potential of index-based insurance for drought-induced conflict contributes to recent quasi-
experimental and experimental evidence on the potential of conflict-mitigating interventions
(see overviews in Blattman, 2022; Rohner, 2022). Prior studies exploring mitigating drought-
induced conflict have focused on political solutions such as power sharing and formal land
dispute resolution mechanisms (McGuirk and Nunn, 2023; Eberle et al., 2020, , referred to as
MN and ERT for the remainder of the study). In particular, in settings where distrust among
groups makes political agreements and reforms hard to reach, market-based solutions might
be easier to implement. Key challenges in insuring traditional groups in remote locations are
take-up and affordability. By showing that the insurance has a positive externality in terms
of less conflict that benefits more groups than just the pastoralists themselves, we provide an
argument to foster uptake with further subsidies.

Second, our results highlight that targeted – and potentially subsidized – index-based
insurance has the potential to weaken the link between weather shocks and conflict, even in
fragile conflict-prone settings. This contributes to a large literature linking economic shocks,
resources, and conflict (e.g., Morelli and Rohner, 2015; Dube and Vargas, 2013; Berman and
Couttenier, 2015; Bazzi and Blattman, 2014; Berman et al., 2017; McGuirk and Burke, 2020;
Gehring et al., 2023; Hodler et al., 2023). Land is a key resource, especially if there are
competing claims for land use. Weather shocks, potentially amplified by climate change, often
create or intensify conflict in such settings (Miguel et al., 2004; Couttenier and Soubeyran, 2014;
Koubi, 2019). Moreover, farmer-herder conflicts in Africa usually pit members of different
ethnic groups against one another, adding an ethnic dimension to the violence that creates its
own conflict dynamics (Michalopoulos and Papaioannou, 2016; Moscona et al., 2020; Cao et al.,
2021).

Finally, by demonstrating the potential of remote-sensing-based insurances with
automated payouts, we contribute to a growing literature studying technology for
development (ICT) (Blumenstock, 2016; Fabregas et al., 2019). ICT ranges from simple
tools like SMS messaging that help farmers increase yields (Casaburi et al., 2019) to hotline
services that solve free-riding problems (Casaburi et al., 2019), and the use of remote-sensing
technology for insurance design (Benami et al., 2021). Our results most directly relate to and
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complement Jensen et al. (2017), who show the direct positive effect of IBLI on pastoralist
groups. One big challenge is insufficient demand for insurance, which could be partly
explained by high upfront costs in settings with liquidity constraints and present bias (see
Casaburi and Willis, 2018). Incomplete land markets pose another challenge, but (Acampora
et al., 2022) show that subsidies can help to cope with these frictions. Our results further justify
well-designed subsidies and other measures to foster insurance adaption.

The remainder of the paper is structured as follows. Section 2 introduces our setting, study
setup, and main variables. Section 3 discusses our identification strategy. Section 4 presents
our results. Section 5 concludes and discusses implications for public policy.

2. Setting and data

2.1. Setting and data sources

Our units of analysis are grid cells of 0.1 × 0.1 degree (roughly 10 x 10 km at the equator)
covering the entire landmass of Kenya.2 The temporal dimension comprises 12-month periods
starting in October and ending in September of the following year, covering March 2001
until February 2020. In Kenya, the short rains and dry season (SRSD), lasts from October
to February, and the long rains and dry season (LRLD), from March to September. Defining
periods this way ensures that each period reflects both seasons, which is important to mimic
the timing of insurance availability and payouts within our temporal units.3 Moreover, it
makes sure that we capture a full migratory cycle of pastoralists (see panel A of Figure I for
a sketch of some routes). The combination of cells and periods results in 94300 cell periods,
which are our units of observation. Summary stats and sources for all variables are provided
in Online Appendix A.

Conflicts constitute a key challenge for development in Kenya, and the frequency of recorded
conflict events has increased over the last two decades. The three most relevant types
of conflicts are political violence between different ethnic groups, terrorism related to the
Somalia-based Al-Shabab militia, and conflicts involving farmers and pastoralists (often
having an ethnic component). Depending on the definition, Kenya is home to over 40 ethnic
groups, and ethnic tensions are often linked to conflict.

To ensure comparability to the most closely related literature, our main conflict data
source is the Armed Conflict Location and Event Data (ACLED, Raleigh et al., 2020), as in
ERT and MN and the wider literature (e.g., Berman and Couttenier, 2015; Berman et al., 2017).
ACLED is the most comprehensive source of conflict event data in Africa and does not bottom
censor events compared to other sources. Thus, ACLED is ideal for capturing both high- and
low-intensity clashes between pastoralists (and farmers) during droughts.4 ACLED contains

2We chose the native resolution of our precipitation data as a grid, which is much more granular compared to
other studies which rely on grid-cells of 0.5 or 0.25-degree grid-cells (e.g., Eberle et al., 2020; Berman et al., 2021).
The more granular grid allows us to be flexible with our drought exposure definition.

3When we refer to the year 2001, we mean the period from March 2001 until February 2002.
4Comparable sources such as UCDP/PRIO (Sundberg and Melander, 2013) operate with fatality (battle-related

death threshold) events need to pass to be included in the database, resulting in only one-seventh of event coverage
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information on the date and type of conflict events, the involved actors (e.g., government,
tribal groups, civilians), and the geolocation. We follow MN and use the information on all
conflict events as our baseline measure, but also construct sub-indicators focusing on specific
conflict types and actors as in Mn and ERT.

Index-based livestock insurance (IBLI) was piloted in Marsabit county in Kenya.
Leveraging remotely sensed information on pasture availability using the Normalized
Difference in Vegetation Index (NDVI), IBLI automatically triggers payouts, proportional to
the estimated loss function, to insured pastoralists when a threshold is crossed within an
insurance area (see Fava et al., 2021, for a detailed program description). Improvements in
forage predictions allow for early payouts (Vrieling et al., 2014; Fava and Vrieling, 2021) that are
preemptive, designed to avoid loss of assets like cattle rather than compensating for damages
(Chantarat et al., 2013). The automated triggering of payouts to all insured households
within an insurance area ensures cost-effective monitoring and transparent distribution.
The International Livestock Research Institute (ILRI) independently calculates the index and
communicates insurance triggering, while private Kenyan insurance agencies offer insurance
plans and disburse payouts primarily through mobile banking (MPesa).5

In 2015, the Kenyan Government began to subsidize IBLI, and labeled it domestically
the Kenyan Livestock Insurance Program (KLIP) (Fava et al., 2021). As part of a private-
public arrangement, the government fully subsidizes coverage for up to five tropical livestock
units (TLUs), with a TLU corresponding to one cattle or 10 goats/sheeps. Panel B of
Figure I provides information on the spatial-temporal roll-out of IBLI availability across the
145 insurance districts, with an average size of 2817km2 (about 9/10 the size of a PRIO grid-
cell).6 As of 2019, IBLI cover around 18000 households in eight arid and semi-arid counties
that host substantial pastoral populations (roughly 60% of the pastoral counties).7 A further
expansion into the other pastoral counties is planned but not concluded as of 2022.8

Droughts occur regularly in Kenya (although they become more frequent) and are usually
concentrated in arid and semi-arid regions, predominantly hosting the country’s pastoral
populations. Our main proxy for drought intensity is the reduction in rainfall (rainfall deficit)
across grid-cells in millimeters over a year. The data comes from NASA’s GMP product
(Huffman et al., 2017). It provides monthly rainfall sums at a spatial resolution of 0.1 degrees.
In robustness test we also use a phytomass proxy built on Dry Matter Productivity (DMP)
(Copernicus Global Land Service, 2019), which is more directly related to the availability of

for Kenya.
5Those companies include UAP Insurance Company, Oromia Insurance Company (OIC), APA Insurance Ltd.,

and Takaful Insurance of Africa (see https://ibli.ilri.org/index/.)
6Borders highlighted with the black dashed lines in Figure I. The areas are designed based on local knowledge

of pastoralists’ migration and camp settlement patterns (see Chelanga, Khalai, Fava, and Mude, Chelanga et al.).
7We define pastoral areas based on their counties membership in the “Pastoral Parliamentary Group” (PPG)

(highlighted as green borders in panel B of Figure I, see https://dlci-hoa.org/ppg/overview(09/26/2022). Panels
A and B of Figure A-1 in Online Appendix A show that pastoral classified counties correlate positively with the
rangeland share of a county and negatively with the agricultural share.

8Data for the time-varying insurance availability has been kindly shared with us by the International Livestock
Research Institute (ILRI).
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forage, and an aridity index (Abatzoglou et al., 2018), which also reflects temperature, soil,
and wind conditions.9

We chose a rainfall-based measure over more complex measures attempting to proxy
directly for available forage-based because it is (i.) readily available with high spatial and
temporal resolution, (ii.) widely employed in the literature and easily interpreted, and (iii.)
not influenced by local human behavior that might also be related to conflict, e.g., continuous
overgrazing that depresses forage availability over time.

2.2. Variable construction

As evident in the example of the Orma pastoralists, we need to create variables at different
levels to capture the situation’s complexity in the best possible way. We first create variables
at the level of the cell itself, e.g., to capture conflict in that cell as our main outcome. MN show
that droughts in surrounding areas are the most important driver of farmer-herder conflict.
Hence, we must also create neighborhood-level variables that capture the detrimental effect of
droughts and the potentially conflict-mitigating effect of IBLI coverage on conflict in the cell
itself.

The logic of our approach is simple: The further away a neighborhood cell j is from
cell i, the less likely it is that a drought in cell j will affect conflict in cell i, on average.
Panel A of Figure I highlights three important insights. First, maximum travel distances
differ substantially between regions and pastoralist groups, ranging from around 50km to
over 250km. Second, migration routes are not fixed, but rather rough corridors that alter in
response to region- and year specific circumstances (see Flintan et al., 2013). Third, traveling
further away from traditional pastoralist land is costly and risky, so pastoralists undertake
such journeys only when necessary.

We define a tractable probabilistic measure that captures the decreasing influence of
droughts in neighborhood cells j further away from cell i. Specifically, we use inverse-distance
weighting to compute the weighted average of our treatment variables x of all surrounding
cells !i for a cell i as follows

x neighborhoodi =
∑j ̸=i xj · d−1

i,j

∑j ̸=i d−1
i,j

, (1)

where xj is the value of the variable in cell j, di,j is the distance between cells i and j, and
x neighborhoodi is the inverse distance weighted average of the variable for cell i. In contrast
to alternatives like fixed buffer zones or uniform cut-offs for defining a neighborhood, inverse
distance weighting allows us to accommodate the considerable heterogeneity in pastoralist
migration routes across Kenya. For our main measures, we employ a decay of d−1

i,j , but also
use a variety of lower and higher inverse distance weights for robustness tests.

9Both measures are rather strongly correlated with the rainfall deficit, as can be seen in Table A-2).
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FIGURE I
Conflict, insurance (IBLI) coverage in space

(A) Migration routes sketch (B) Conflict and insurance across space

(C) IBLI coverage (2019) (D) IBLI coverage neighborhood (2019)

Notes: Panel A sketches some of the migration routes during the long rain and dry season of 2013 within Kenya
as depicted in figure 2 of Flintan et al. (2013). Panel B plots the frequency of conflict events across cells (red
squares) and the roll-out of IBLI coverage across locations in Kenya. Black lines highlight insurance district
borders. Green lines indicate counties with sizable pastoral populations (defined as a member county of the
Pastoralist Parliamentary Group (PPG)). Panel C plots the IBLI coverage in 2019 (blue border encompassing
already covered areas and green borders not yet covered areas) and the neighborhood weights based on the
1/distance decay for three example cells (i,j, and z). Brighter shades of blue indicate smaller weights, while
darker shades indicate higher weights. Panel D plots our standardized neighborhood IBLI coverage measure
in 2019 across cells. The different variables are processed at a 0.1◦ × 0.1◦ grid-cell level. Index-Based Livestock
Insurance (IBLI) coverage is given by the International Livestock Research Institute (ILRI) and conflict data
from ACLED (Raleigh et al., 2020).
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Panel C of Figure I illustrates the neighborhood weights for three example cells (i,j, and z)
and IBLI coverage in 2019. To provide one example of how the linear decay maps the weights,
compare a direct neighbor cell with a cell 150km away. Cells with a distance of 150km each
receive a weight of 0.025 percentage points. That means we account for the possibility that
a faraway drought might cause pastoralists to move into an area, but the influence of each
neighborhood cell becomes considerably smaller. However, even cells further away from
example cell j will still have a positive but small impact on the neighborhood exposure of
cell i.

Conflict is an indicator variable equal to one if at least one conflict event is recorded in a cell-
year, and zero otherwise. The conflict data comes from the Armed Conflict Location and Event
Data (ACLED Raleigh et al., 2020). We follow MN and use all conflict event types from ACLED
as our baseline measure, but also construct sub-indicators focusing on conflict involving the
government or specific event types and other actors (as in ERT). Conflict in our analysis is
measured at the level of the cell itself. Panel B of Figure I plots the share of years in which a
cell experiences at least one conflict incident between 2001 and 2020 as red dots.

IBLI is an indicator variable that equals one if the centroid of a grid-cell is located within an
insurance district that already offers IBLI in a year, and zero otherwise.

IBLI neighborhood weighs IBLI coverage for cells j surrounding cell i by (distance−1
i,j ). We z-

standardize the IBLI neighborhood measure to allow for an easier interpretation of the inverse
distance weighted values. The resulting neighborhood IBLI coverage intensity across cells in
2019 is plotted in panel D of Figure I.

Rain deficit is the log of average rainfall in the cell during a year, provided by the
corresponding raster cell from NASA GMP, multiplied by minus one to obtain a deficit
interpretation.

Rain deficit neighborhood employs the same inverse distance weights approach described
for IBLI neighborhood. The weighted average rainfall is logged and multiplied by minus one,
similar to the cell level measure.

3. Empirical strategy

3.1. Main specification

Our empirical strategy builds on the approach used by MN to analyze the probability of
conflict (Conflicti,t) in a location/cell (i) during the period (t) using the following linear-
probability model:
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Conflicti,t =β1Rain deficiti,t + β2IBLIi,t + β3(Rain deficiti,t × IBLIi,t)

+ δ1Rain deficit neighborhoodi,t + δ2IBLI neighborhoodi,t

+ δ3(Rain deficit neighborhoodi,t × IBLI cover neighborhoodi,t)

+ X
′
i,tξ + ηi + γt + ϵi,t

(2)

where ηi are cell fixed-effects, absorbing the time-invariant climate zone (e.g., arid or
semi-arid) or the historical presence of pastoralists, γt are period-fixed effects absorbing
country-wide shocks (which we replace in some specification with IBLI-area-period fixed
effects)10, Rain deficiti,t is the log of rainfall multiplied by minus one. IBLIi,t is a proxy for
livestock insurance coverage of a cell during a period. Our coefficients of interest are δ1 to δ3,
capturing the spatial spillover (neighborhood) effects of drought, insurance availability, and
the interaction thereof in the neighborhood of a grid-cell on the probability of conflict within
it. Xi,t is a vector of time-variant exogenous cell controls with respect to conflict.

We thus estimate the semi-elasticity of a percentage point decrease in rainfall on the
probability of conflict in a cell. Our quantity of interest is how IBLI coverage in the
neighborhood affects the semi-elasticity of a percentage point decrease in rainfall on the
probability of conflict. Ex-ante, we expect higher coverage to translate to a smaller semi-
elasticity, i.e., insurance reducing the conflict effect of droughts.

3.2. Identifying variation and assumptions

In this subsection, we illustrate the quantities compared in our analysis and discuss the
assumptions required for a causal interpretation. Panel A of Figure II plots the share of conflict
events across cells with below and above median 2019 IBLI coverage in their neighborhood for
the comparable drought years 2009 and 2019. The figure clearly shows that the relative share
of events that occurs in areas with an above-median IBLI coverage in 2019 has significantly
fallen (by about 50%) by the time roll-out is maximized in our sample, compared to the last
year before the start of the rollout, i.e., in absence of insurance.

To causally interpret the differences and our coefficients of interest, we require some
assumptions. A first key assumption is that rainfall changes should be orthogonal to IBLI
coverage, i.e., rainfall trends should be similar between cells receiving IBLI coverage and those
that do not. Second, there should be no secular trend that explains the mitigating effect of IBLI
on the drought conflict semi-elasticity. Third, the IBLI roll-out and the following coverage in
the neighborhood of cells should not be selective on the drought-conflict elasticity because
both scenarios could potentially bias our effects.11

Panel B of Figure II shows that the rainfall trends seem to be parallel between those cells
that never receive IBLI coverage, those that are not eligible for IBLI coverage, and those that

10IBLI-area fixed effects allow us to account for the differential impact of rainfall deficits on forage shortages
on arid- and semi-arid areas compared to others, as well as for differential rainfall impacts within years, e.g., the
drought in north-eastern Kenya and floods in the west of the country in 2022. Moreover, they account for static
differences that determine the eligibility of a location for coverage.

11For example, if IBLI is targeted to save locations (i.e., locations that exhibit a low drought conflict semi-
elasticity) would underestimate the effect.
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FIGURE II
Placebo results & IBLI selection on conflict-rainfall semi-elasticity
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Notes: Panel A plots the share of conflict occurring in areas with above and below median IBLI coverage
(in 2019) in their neighborhood for the drought years 2009 and 2019. Panel B plots the avg. rainfall for
areas that are never eligible for IBLI (black dashed line), eligible areas (bright blue dashed line), and areas
that receive IBLI coverage (dark blue line) over our sample period. In addition, we plot the log level of
available pythomass (Dry Matter Producitivy) in pastoral areas as a proxy for forage scarcity in pastoral areas.
Panel C reports the results from a placebo regression covering the period 2001 to 2009 (based on eq. 2) in
we which we use IBLI eligibility (or ever IBLI coverage) instead of the time-varying coverage measure. We
report the interaction coefficient of the neighborhood rainfall deficit with either insurance proxy and their
95% confidence intervals. Panel D plots the coefficient and 95% confidence intervals from regressing the IBLI
eligibility dummy, the ever IBLI coverage dummy, and a time until IBLI coverage count (for those cells that
receive IBLI) on the average conflict probability predicted by rainfall on the cell and its neighborhood (2001-
2009). The 95% CI in panels C and D are based on Conley standard errors are implemented using the acreg
package in Stata (Colella et al., 2019), with a distance cutoff of 200km. The different variables are processed at
a 0.1◦ × 0.1◦ grid-cell level. Data on rainfall comes from NASA’s GMP product (Huffman et al., 2017). Index-
Based Livestock Insurance (IBLI) coverage is given by the International Livestock Research Institute (ILRI)
and conflict events from ACLED (Raleigh et al., 2020).

are eligible but do not receive it in our sample, and cells that obtain IBLI coverage sometime
between 2010 and 2020. Despite the parallel trends, there are substantial level differences in
the rainfall, which can be attributed to the location of pastoralists in semi-arid and arid areas in
Kenya. The level differences are, however, not an issue for our empirical specification because
our set of fixed effects leverages exclusively variation in cells over time, of which there is
plenty (see panel B). In addition, panel B plots the log level of available pythomass in pastoral
areas (semi-arid and arid cells). We are reassured that the rainfall correlates positively with
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the amount of forage in pastoral areas, providing descriptive evidence favoring the forage
shortage channel that induces migration deviations during droughts (see MN).

To test for potential underlying secular trends or potential anticipation effects of IBLI
coverage, we use our main specification and run placebos tests. Specifically, we replace
the time-variant IBLI variable with the IBLI eligible (or ever IBLI) equivalent and limit the
estimation sample to the 2001 to 2009 period, i.e., before IBLI was available anywhere in Kenya.
Panel C of Figure II plots the neighborhood interaction coefficients of those IBLI coverage
proxies and the rainfall deficit (triangles representing specifications in which we add pastoral-
area × year FE), and we obtain statistically insignificant point estimates that are also close to
zero in terms of magnitude. Hence, locations that are more likely to receive IBLI coverage
are not systematically selected based on their prior drought-conflict semi-elasticity. As an
additional test for problematic selection into the treatment, we provide evidence that insurance
payouts in a IBLI area are not predicted by current, past, or future conflict (see Table B-1).

Finally, we find no evidence in favor of IBLI selection with respect to the drought-conflict
semi-elasticity. We test for the possibility by first regressing conflict on the rainfall deficit (in the
cell and neighborhood) and the usual fixed effects, from which we obtain the predicted conflict.
Panel D of Figure II clearly shows that the rainfall-predicted conflict does not predict IBLI
coverage in cells. Instead, naturally, IBLI is specifically targeted toward pastoral communities,
which inhabit different areas. Figure B-1 in the appendix highlights that IBLI coverage and the
time until IBLI is offered are correlated with various factors that lead groups to adopt mobile
herding practices in the first place.12 We will show in robustness tests that those factors do not
bias our estimates.

4. Results

4.1. Main results

Table I displays our main results, adding the respective rain deficit and IBLI variables at the
cell and neighborhood level sequentially. We refrain from interpreting the cell-level variables
causally and focus on the neighborhood measures. Column 1 shows that a higher rain deficit
in the neighborhood, as indicated by our descriptive statistics, is indeed linked to significantly
more conflict in the cell itself. Column 2 shows that, on average, more IBLI coverage in the
neighborhood is associated with less conflict. Column 3 adds our main treatment variable,
rain deficit interacted with IBLI in the neighborhood. The interaction coefficient is negative and
statistically significant, showing that IBLI coverage reduces the conflict-inducing effect of less
rainfall. While this is our preferred specification, column 4 shows that this effect holds when
using IBLI-area times year fixed effects to control for the possibility that IBLI-eligible areas
experience differential shocks that might be correlated with conflict and the rainfall shortage
within a year.13

12There is a negative correlation with the share of farmland and a positive correlation with the share of
rangeland, arid climate zones, less fertile soil, and water scarcity.

13The effects are stronger in fringe areas where both pastoralism and farming are practiced, echoing the findings
of ERT (see Table B-2).
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The magnitude of the main effect in our preferred specification in column 3 has a
straightforward interpretation, given the log transformation of the rainfall deficit and the
standardization of IBLI coverage at the neighborhood level. A one percentage point increase in
the rainfall deficit is associated with a 6.76 percentage point increase in the conflict probability
for the average IBLI coverage in the neighborhood.14 If IBLI coverage increases by one
standard deviation, the same rain deficit only leads to a 6.76 - 1.74 = 5.02 percentage point
increase. Compared to the baseline likelihood of conflict in a cell (roughly 2.5%), a reduction
of 1.74 percentage points is an economically relevant effect. Another way of interpreting the
effect is that one standard deviation higher IBLI coverage reduces the rainfall-conflict semi-
elasticity of about 26% (14% based on the results in column 4).

TABLE I
Baseline results: ITT effect

Dependent variable: Conflicti,t

(1) (2) (3) (4)

NEIGHBORHOOD

Rain deficit (δ1) 0.0781** 0.0676** 0.0798***
(0.0341) (0.0294) (0.0263)

IBLI (δ2) -0.0190*** -0.0278*** -0.0177***
(0.0044) (0.0052) (0.0043)

Rain deficit × IBLI (δ3) -0.0174*** -0.0113**
(0.0053) (0.0048)

CELL

Rain deficit (β1) -0.0075 -0.0087 -0.0081
(0.0059) (0.0059) (0.0053)

IBLI (β2) -0.0076* -0.0412*** -0.0193
(0.0046) (0.0144) (0.0141)

Rain deficit × IBLI (β3) 0.0144*** 0.0067
(0.0049) (0.0045)

Dep. var. mean 0.0245 0.0245 0.0245 0.0245
Cell-fixed effects ✓ ✓ ✓ ✓
Time-fixed effects ✓ ✓ ✓ ✓
IBLI-areas-year-fixed effects – – – ✓
Obs 93400 93400 93400 93400

Notes: The table reports the results of regressing the probability of conflict at the cell level on the rain deficit
(log(rainfall)×-1), Index-Based Livestock Insurance (IBLI) coverage, and the respective interaction at the cell
and neighborhood level. The neighborhood variables are based on the 1/distance weighting scheme. Rainfall
data comes from NASA’s GMP product (Huffman et al., 2017). Data on IBLI coverage was provided by the
International Livestock Research Institute (ILRI) and conflict data from ACLED (Raleigh et al., 2020). The
different variables are processed at a 0.1◦ × 0.1◦ grid-cell level. Conley standard errors are implemented
using the acreg package in Stata (Colella et al., 2019), with a distance cutoff of 200km. ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01

The coefficients of the cell-level covariates, which serve mostly as control variables for
us, align with the previous literature. MN find a negative correlation of the rain deficit at a
location itself with conflict. Their interpretation is that pastoralists are driven by the search for

14This effect is about 1.5 times the size of the average effect for all of Africa that MN find in their study for
rainfall changes on neighboring pastoral homelands.
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forage and are thus less likely to move to a location that cannot provide it due to less rainfall.
In contrast, following the opportunity cost argument, less rain could lead to less income and,
therefore, more conflict in the cell itself. Like MN, we find a negative coefficient of rain deficit
in the cell itself, but it is small and not statistically significant. IBLI coverage in the cell itself,
which buffers against income shocks and raises the opportunity costs of fighting, shows a
negative and statistically significant coefficient. Without attaching a causal interpretation to
this, it is reassuring for the interpretation of our main results that there are at least no adverse
effects of IBLI in the cell itself.

In addition to the ITT effect, we can use an instrumental variable specification to
approximate the effect of actual IBLI payouts. This is interesting to validate if the conflict-
mitigating effect of IBLI runs through its exogenously determined payouts. Note that there
is an important limitation to this analysis. We only have information on the occurrence of
payouts in IBLI insurance areas during a period, not the payout amount. We assign a value of
one for each cell located in an insurance area that received IBLI payouts and zero otherwise.
Hence, this reflects only the extensive margin of insurance payouts and assumes a uniform
distribution of payouts within the IBLI area.

In our first stage, we instrument the inverse-distance weighted IBLI payouts in the
neighborhood IBLI payout neighborhoodi,t (z-standardized to ease interpretation) with the
interaction of Rain deficit neighborhoodi,t with IBLI cover neighborhoodi,t.

Column 1 of Table II shows that both IBLI coverage in the neighborhood and the
interaction with the rainfall deficit are positively correlated, but we only rely on the interaction
as a plausibly exogenous instrument. The relevancy assumption is that the interaction affects
payouts, and the exclusion restriction is that it only affects conflict through the payouts. The
F-statistics in the first stage is 45.8, well above the common thresholds. This first stage result is
again robust to including more conservative IBLI eligible times year fixed effects.

The second stage results in Table II shows a statistically significant conflict-reducing effect
of IBLI payouts in the neighborhood on the conflict probability within a cell (see column 2).
The result is conditional on controlling for the rain deficit and IBLI coverage as the main effects
forming the interacted instrument. It remains qualitatively and quantitatively similar if we
allow for insurance-area-period fixed effects in columns 3 and 4. Regarding the magnitude of
the effect, a standard deviation increase in IBLI payouts in the neighborhood decreased the
cell-level conflict likelihood by about 150% to 200%.

Robustness tests: To verify how sensitive our main results are to varying key assumptions,
we run various robustness tests. We account for key aspects highlighted by MN and ERT in
their studies on the direct effect of droughts on farmer-herder conflict. In summary, we show
that our results are robust to varying assumptions on the computation of the neighborhood
measures, to defining the ACLED conflict measure and the type of drought proxy differently,
and finally to adding more controls.

First, we address the potential worry that the specific way in which we define the
neighborhood measures drives our results. We test if the results are sensitive to using different
spatial decays or alternative cut-offs for the Conley standard errors. Figure B-2 shows that
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TABLE II
2SLS results: Insurance payouts

2SLS 2SLS 2SLS 2SLS
1st stage 2nd stage 1st stage 2nd stage

Dependent variable:
IBLI Conflicti,t IBLI Conflicti,t

payout payout
(1) (2) (3) (4)

NEIGHBORHOOD

Rain deficit (δ1) 0.0974 0.0726** 0.2713 0.0901***
(0.2551) (0.0304) (0.1958) (0.0269)

IBLI (δ2) 0.9893*** 0.0166 0.9758*** 0.0175
(0.0748) (0.0116) (0.0710) (0.0139)

Rain deficit × IBLI (δ3) 0.3800*** 0.3066***
(0.0559) (0.0518)

IBLI payouts (δ4) -0.0405*** -0.0345**
(0.0134) (0.0158)

Dep. var. mean 0 0.0245 0 0.0245
F-stat 1st stage 45.776 34.682
Cell controls ✓ ✓ ✓ ✓
Cell-fixed effects ✓ ✓ ✓ ✓
Time-fixed effects ✓ ✓ ✓ ✓
IBLI-areas-year-fixed effects – – ✓ ✓
Obs 93400 93400 93400 93400

Notes: The table reports the 1st stage results (columns 1 and 3) of regressing the neighborhood weighted IBLI
payout indicator (z standardized, with mean zero and standard deviation of 1) on the cell level log of rainfall
deficit (log(rainfall)×-1), the IBLI cover indicator, the interaction of the two, as well as the neighborhood level
log of rainfall deficit, the neighborhood level IBLI coverage (standardized), and the interaction of the two.
The neighborhood variables are based on the 1/distance weighting. Columns 2 and 4 report the second stage
results with the probability of conflict (Conflicti,t) as the dependent variable, and where the interaction of
the neighborhood level log of rainfall deficit and the neighborhood IBLI coverage is the excluded instrument.
Cell level controls are reported in Table B-4. Rainfall data comes from NASA’s GMP product (Huffman et al.,
2017). The Index-Based Livestock Insurance (IBLI) coverage is given by the International Livestock Research
Institute (ILRI) and conflict data from ACLED (Raleigh et al., 2020). Cell-level variables are omitted from
the table. The different variables are processed at a 0.1◦ × 0.1◦ grid-cell level. Conley standard errors are
implemented using the acreg package in Stata (Colella et al., 2019), with a distance cutoff of 200km. ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01

our results hold for a wide range of weight functions ranging from small decays to steep
ones (distance−0,5 to distance−1.5). Moreover, we plot the resulting t-stats from varying the
Conley standard errors with cut-offs between 25 and 400km in Figure B-3. We observe that
the interaction effect always keeps a t-stat above two and remains stable when increasing the
cutoff from 200km to up to 400km.

Second, we test if our choice of dependent and independent variables drives our results.
Figure B-4 shows that we obtain similar results for various subcategories of events or actors
included in ACLED, grouping event types following ERT, as well as taking the log of ERT
classified events. However, precision is somewhat reduced in part of the specifications due
to discarding some conflict observations. Table B-3 shows that our results are qualitatively
similar if we use the Aridity Index or Dry Matter Productivity as drought measures.

Third, we show that our interaction coefficient of interest is not driven by some correlation
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with cell characteristics and the neighborhood measure. In Table B-5, we add interaction
between the neighborhood rainfall deficit and several correlates of IBLI coverage (identified
in Figure B-1) such as the log of population, the share of range- and farmland, indicators
for different climate and biome zones, poor soil quality, water scarcity, border proximity, and
national parks. Our coefficient of interest remains stable throughout all of the specifications.
Finally, we replicate the exercise at the neighborhood level, weighing all those covariates with
the identical distance decay as IBLI coverage and the rainfall deficit. Again, our results remain
stable (see Table B-6). Using a single dimension for poor soil quality also does not alter our
results (see Table B-7 and Table B-8).

4.2. Channel: Reduced migratory pressure

Based on the results in Jensen et al. (2017), IBLI has the potential to mitigate drought-induced
conflict in at least three ways. First, IBLI helps to smooth and increase pastoralists’ incomes,
thus increasing the opportunity costs of fighting. Second, IBLI is linked to smaller herd sizes
and higher investments in the health of the remaining cattle during droughts. This means
that when a drought shock hits, there are fewer cattle to feed, and they are, on average, better
equipped to survive the shock. Third, IBLI payouts can enable farmers to buy forage from
markets, conditional on market access and overall supply. All factors reduce the migratory
pressure, i.e., for a given drought shock, pastoralists migrate not as far away from their
traditional routes, reducing the likelihood of conflict.

Our data allows us to directly test the third mechanism by building on the spread-of-
violence specification employed by ERT for Africa. We follow ERT and match the actors
identified in the geolocalized ACLED conflict events to their ethnic homelands (based on
Murdock, 1967), with details provided in Table A-3. The small map in Figure III, panel A
depicts the homelands in Kenya together with the conflict event locations for all matched
conflict events. We calculate the geographic distance between the event location and the
respective homeland centroid for each ethnic group that was involved. Absent time-varying
representative data on the actual migration routes of pastoralists, we use the logarithm of this
distance as our proxy for migration distance. Finally, we compute the log of the average rain
deficit in a period for each homeland, and the area share of a homeland covered by IBLI.

The main map in panel A of Figure III illustrates this approach using the Turkana
homeland in the northwest of Kenya. We plot all conflict locations involving the Turkana
group within our sample, with different colors indicating the respective severity of the rainfall
shortage in the Turkana homeland at the time of the event. Pluses and dots indicate if there
was IBLI coverage or not. The example illustrates that the frequency of conflict locations
involving the Turkana, on average, decreases in distance to the homeland. If there are more
severe droughts (orange and red icons), conflict events occur further away from the homeland.
However, for droughts of similar intensity, the distance between the conflict event and the
homeland is shorter if there was IBLI coverage (comparing dot- and plus-icons of the same
color). Hence, the example aligns with the hypothesis that IBLI mitigates conflict by reducing
the migratory pressure on pastoralists.

To systematically test for this mechanism, we estimate the following specification:
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Ln DistanceHomeland
k,i,e,t = δ1Rain deficitHomeland

e,t + δ2IBLIHomeland
e,t

+ δ3(Rain deficitHomeland
e,t × IBLIHomeland

e,t ) + ηe + γt + ϵk,i,e,t
(3)

where Ln DistanceHomeland
k,i,e,t is the log of geographic distance between the geolocation of

a conflict event k, involving actor i matched to ethnic homeland e that occurs in period t.
Rain deficitHomeland

e,t is log averaged rainfall in a homeland during period t, which we multiply
by minus one (resulting in the log average rainfall deficit) assigned to all actors i that are
matched to homeland e. IBLIHomeland

e,t is the share of the homeland e that IBLI covers during
period t for actors i matched to homeland e (again z-standardized with mean zero and variance
of one).

ηe are homeland fixed effects that capture time-invariant features of ethnic homelands like
their size, border location, or geographic features, which could bias our results if they correlate
with the likelihood of receiving IBLI and experiencing droughts. γt are time fixed effects that
capture period-specific shocks and standard errors ϵk,i,e,t are clustered at the homeland level,
the level of treatment (Abadie et al., 2023). Our main interest is in δ1, capturing the effect of the
exogenous homeland rainfall shortage, and δ3, capturing again the extent to which IBLI can
mitigate this effect.

Panel B of Figure III plots our coefficients of interest together with a 95% confidence
intervals. The black dots show that with our baseline specification, there is a significant
negative effect of the homeland rainfall deficit on distance. For average homeland IBLI
coverage, this can be translated into a rain deficit-distance elasticity of about 0.39. Increasing
IBLI coverage by one standard deviation significantly reduces the elasticity by more than half
to 0.17.

We find close to identical effect when replacing the homeland fixed effect with more
restrictive actor-type-times-homeland fixed effects. These fixed effects absorb time-invariant
differences between different actor-types (unorganized groups, militias or organized groups)
linked to a homeland. Homelands differ in the composition of actor-types which could bias our
baseline results if it correlates with the reaction to drought and IBLI coverage. Moreover, we
can replicate the results when restricting the sample to only actors associated with homelands
of pastoralist groups (depicted as blue dots and triangles).15

Taken together, this is strong evidence that reducing the migratory pressure on pastoralists
is a main mechanism for how index-based insurance like IBLI, with its immediate shock
absorbance via preemptive payouts, can reduce conflict.

15List A-1 documents which groups are classified as pastoral groups. Our classification roughly corresponds
to a transhumant pastoral value of above 0.5 as in MN, or the nomad/pastoral dummy in ERT. Reassuringly the
homeland of groups not classified as pastoralists in this way do not receive IBLI coverage.
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FIGURE III
Droughts, IBLI, and conflict distance to ethnic homelands in Kenya
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Notes: Panel A of figure plots the conflict locations (ACLED Raleigh et al., 2020) involving Turkana pastoralists
over our sample. Different colors indicate the severity of the rainfall deficit (log(rainfall)×-1) in the Turkana
homeland (highlighted in green). Blue icons refer to years during abundant rainfall in the Turkana homeland,
orange icons refer to locations during moderate droughts in the Turkana homelands, and red icons indicate
conflict locations involving Turkana during severe droughts in their homeland. Moreover, the icon type (+
and ◦) indicates if the Turkana homeland was covered by IBLI at the time of the conflict event. The Turkana
homeland has been covered by IBLI from 2015 onward (homeland area covered at 98% by IBLI since 2015.
See panel B of Figure I). The rings show the 200, 300, and 400km distance from the Turkana homeland
centroid. The small map in panel A depicts the different Murdock homelands within Kenya (Murdock, 1967)
digitized by Nunn (2008). All conflict locations involve actors we could match to members of the ethnic
groups traditionally inhabiting the Murdock homelands. Rainfall data comes from NASA’s GMP product
(Huffman et al., 2017). The Index-Based Livestock Insurance (IBLI) coverage is given by the International
Livestock Research Institute (ILRI). Panel B plots the point estimates from our conflict-location homeland-
level regressions δ1 and δ3 from equation 3. The upper part shows the point estimates and 95% confidence
intervals based on our full sample. The lower part shows the results using pastoralist groups only. In both
parts of the plot, symbols show the results of the same regression using different fixed effects. ◦ represent
point estimates including ethnic FE and △ point estimates including an actor-type-ethnic FE. 95% confidence
intervals are obtained from standard errors clustered at the homeland (treatment) level. See Table A-3 for
details on Actor-Type-Ethnic association and List A-1 for the pastoral classification of ethnic groups.
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5. Conclusion

This study, to the best of our knowledge, provides the first causal evidence that index-
based livestock insurance (IBLI) can significantly mitigate drought-induced conflict. We find
that higher insurance coverage reduces the drought-conflict elasticity between 14% and 26%.
Those results are robust to varying all key parameters and using alternative variables and
measures. This demonstrates the importance of market-based mechanisms, such as IBLI, in
complementing institutional reforms to mitigate the negative effects that climate change is
predicted to have on developing countries.

Our analysis also sheds light on the key mechanisms through which IBLI mitigates
conflict. IBLI can smooth incomes and increase them by setting incentives to invest in livestock
health services and enhanced milk productivity, thus raising the opportunity costs of fighting.
The higher productivity per cow also leads to a quantity-quality trade-off and smaller herd
sizes in equilibrium, mitigating the rapacity effect. Furthermore, we provide evidence that
reduced migratory pressure plays a crucial role. In line with Eberle et al. (2020), we match
conflict actors to ethnic homelands (Murdock, 1967) and show that IBLI reduces the distance
between a group’s homeland centroid and conflict events involving that group. This reduction
is more pronounced when focusing on events outside the group’s homeland, where most
conflicts with farmers occur.

Our findings contribute to the broader literature on conflict-mitigating interventions and
the role of technology in development. They highlight the importance of innovative solutions,
like remote-sensing-based insurance, in addressing the challenges posed by climate change in
conflict-prone settings. By demonstrating the potential of IBLI to reduce conflict and promote
economic development, our study provides a strong case for well-designed subsidies and
other measures to foster insurance adoption in fragile regions, given the additional positive
external effects of IBLI on reducing conflict.

The implications of our analysis extend beyond Kenya to other regions experiencing
similar challenges. As climate change continues to threaten fragile ecosystems and livelihoods,
it is crucial for governments, international organizations, and the private sector to explore
and implement innovative solutions like IBLI. These efforts can help reduce the likelihood of
conflict, promote economic development, and improve the resilience of communities affected
by climate change.
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Appendices

A. Data Appendix

Measures of conflict

• Conflicti,t: Indicator variable that is one if at least one conflict event is recorded in a cell
in a given year.

• I(battle): Indicator that is one if at least one battle event occurs in a given year and cell.

• I(riot): Indicator that is one if at least one riot event occurs in a given year and cell.

• I(civilians): Indicator that is one if at least one violence against civilians occurs in a given
year and cell.

• I(gov): Indicator that is one if at least one conflict involving the State occurs in a given
year and cell.

• I(pastoral): Indicator that is one if at least one event involving a pastoral group is involved
in a given year and cell.

• I(ERT): Indicator that is one if at least one event involving a pastoral group is involved
in a given year and cell, following the method of Eberle et al. (2020).

Source: ACLED (Raleigh et al., 2020)

IBLI

• IBLI coverage: Indicator variable that is one if the centroid of a cell is located within an
insurance district that offers the Index-Based Livestock Insurance (IBLI) in a given year.

• IBLI eligible: Indicator variable that is one if the centroid of a cell is located within an
insurance district that is eligible to the Index-Based Livestock Insurance (IBLI) in a given
year.

• IBLI payouts: Indicator variable that is one if the centroid of a cell is located within an
insurance district that received payouts from the Index-Based Livestock Insurance (IBLI)
in a given year.

• IBLI cover (ever): Indicator variable that is one if the centroid of a cell is located within
an insurance district that is (or will be) covered by the Index-Based Livestock Insurance
(IBLI) over our sample period.

Source: The International Livestock Research Institute (ILRI)

Pastoral area: Indicator variable that is one if the centroid of a cell is located within a
county with a subnational pastoral population defined as a member county of the Pastoralist
Parliamentary Group (PPG).

ii

https://dlci-hoa.org/ppg/
https://dlci-hoa.org/ppg/


Pastoralist: Indicator variable that is one if an ethnic group follows the nomad classification
in (Eberle et al., 2020), roughly a transhumant pastoralists value of 0.5 and higher in McGuirk
and Nunn (2023).

Rain: Continuous variable indicating the mean precipitation in millimeters per year for a
given cell. Source: NASA’s GMP product (Huffman et al., 2017).

Rain deficit: Continuous variable constructed by taking minus the logarithm of annual mean
precipitation (Rain) for a given cell. Source: NASA’s GMP product (Huffman et al., 2017)

Dry Matter Productivity (DMP): Continuous variable indicating the overall growth rate or
dry biomass increase of the vegetation (kg/ha/year) for a given cell. Source: Copernicus Global
Land Service (2019)

Aridity index (AI): Continuous variable reconstructed following the definition by the World
Atlas Desertification (WAD). The Aridity Index (AI) is a simple but convenient numerical
indicator of aridity based on long-term climatic water deficits and is calculated as the ratio
of precipitation (P) over Potential Evapotranspiration (PET). The index is computed using
monthly data provided by the TerraClimate dataset and aggregated at cell year level. Source:
World Atlas Desertification (Cherlet, 2018), TerraClimate (Abatzoglou et al., 2018)

Rangeland/Farmland/Fringe: Categorical variable indicating the land use type for a given
cell based on remotely sensed official land use classifications from 1972-1980. Source: Land use
map of Kenya. Government of Kenya 1983.

Climate zones: Categorical variable indicating the Köppen-Geiger climate class associated
to each cell. Source: Present and future Köppen-Geiger climate classification maps at 1-km
resolution. (Beck et al., 2018)

Biomes: Categorical variable indicating the terrestrial ecoregions associated to each cell.
Source: Terrestrial ecoregions of the world: a new map of life on Earth (Olson et al., 2001)

Protected area: Indicator variable that is one if most of the grid area is covered by a protected
area for a given year. Source: UNEP-WCMC (2022)

River

• primary river: Indicator variable that is one if a cell includes a primary (perennial) river.

• secondary river: Indicator variable that is one if a cell includes a secondary (non
perennial/intermittent/fluctuating) river.

Source: https://geoportal.icpac.net/layers/geonode:ken water lines dcw

iii
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National border: Indicator variable that is one the centroid of a cell is located within 50km
of the National border of Kenya.

Water body: Indicator variable that is one if a cell include water bodies such as lakes,
reservoir, and lagoon. Source: https://datacatalog.worldbank.org/search/dataset/0040797

Soil Quality (SQ1 - SQ7): Dummy variable that takes value 1 if the soil is of poor quality. For
each soil quality (1 to 7), cells associated with classes 3, 4, or 5 (Severe limitations, Very severe
limitations, and Mainly non-soil) are considered as poor soil quality. Source: Harmonized
World Soil Database (HWSD) (Nachtergaele et al., 2009)

Population: Log of population within a cell based on the GHSL population raster data (2000
estimates). Source: https://ghsl.jrc.ec.europa.eu/.

Ethnic (tribal) homelands: Ethnic group associated to a cell according to the Ethnographic
Atlas. Source: Ethnographic Atlas (Murdock, 1967), shapefile (Nunn, 2008)
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TABLE A-1
Summary statistics

Variable Mean SD Min Max N

Cell sample
Conflicti,t 0.02 0.15 0.00 1.00 93,400
I(Gov.) 0.01 0.10 0.00 1.00 93,400
I(NonGov.) 0.02 0.14 0.00 1.00 93,400
I(ERT) 0.02 0.14 0.00 1.00 93,400
Log events (ERT) 0.02 0.16 0.00 4.23 93,400
I(pastoral) 0.00 0.06 0.00 1.00 93,400
I(Battle) 0.01 0.08 0.00 1.00 93,400
I(Riot) 0.01 0.09 0.00 1.00 93,400
I(Civilians) 0.01 0.10 0.00 1.00 93,400
Log rain deficit (cell) -2.72 0.57 -5.05 -1.10 93,400
Log aridity index deficit (cell) 1.08 0.69 -1.56 3.00 93,400
Log dry matter productivity deficit (cell) -3.03 0.94 -4.96 0.08 93,000
IBLI coverage (cell) 0.20 0.40 0.00 1.00 93,400
IBLI, eligible (cell) 0.71 0.45 0.00 1.00 93,400
IBLI (coverage ever) 0.60 0.49 0.00 1.00 93,400
Log of population 5.89 3.15 0.00 13.99 93,400
Mixed landuse (farmland and pastoral) 0.10 0.29 0.00 1.00 93,400
Rangeland share (cell) 64.96 37.55 0.00 100.00 93,400
Farmland share (cell) 21.50 32.43 0.00 100.00 93,400
Arid climate 0.70 0.46 0.00 1.00 93,400
Tropical climate 0.17 0.38 0.00 1.00 93,400
Grassland (biome) zone 0.69 0.46 0.00 1.00 93,400
Desert & shrubland (biomes) 0.17 0.37 0.00 1.00 93,400
Poor soil quality 0.41 0.49 0.00 1.00 93,400
Primary river 0.30 0.46 0.00 1.00 93,400
Secondary river 0.49 0.50 0.00 1.00 93,400
Water body 0.04 0.20 0.00 1.00 93,400
National border 0.29 0.46 0.00 1.00 93,400
National park 0.13 0.34 0.00 1.00 93,400
Poor nutrient availability 0.12 0.33 0.00 1.00 93,400
Poor retention capacity 0.03 0.16 0.00 1.00 93,400
Poor rooting condition 0.05 0.23 0.00 1.00 93,400
Poor oxygen availability 0.09 0.29 0.00 1.00 93,400
High excess of salt 0.16 0.36 0.00 1.00 93,400
High toxicity 0.00 0.04 0.00 1.00 93,400
Poor workability condition 0.17 0.38 0.00 1.00 93,400
IBLI coverage (Neighborhood) -0.00 1.00 -0.75 2.61 93,400
IBLI payouts (Neighborhood) 0.00 1.00 -0.49 4.20 93,400
Log rain deficit (neighborhood) 0.25 0.33 -0.95 1.19 93,400
Log aridity index deficit (neighborhood) -1.95 0.39 -3.11 -0.75 93,400
Log dry matter productivity deficit (neighborhood) -6.16 0.36 -6.92 -4.74 93,400
Actor-homeland (Murdock) sample
Ln distance Actor-location to homeland (conflict) 4.63 0.95 1.55 6.58 1,003
Avg. log rain deficit (homeland) 2.50 0.57 1.43 4.27 1,003
IBLI coverage (homeland) 0.00 1.00 -0.36 3.53 1,003
Pastoral group (homeland) 0.56 0.50 0.00 1.00 1,003

Notes: The table reports the summary statistics of our variables of interests across samples. See Data
Appendix A for more details on the variables.
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TABLE A-2
Correlation of drought proxies

Panel (A): Cell level cross-correlations
Log Rain deficit Log Aridity index Log DMP

Log Rain deficit 1
Log Aridity index -0.839 1
Log DMP -0.811 0.807 1

Panel (B): Neighborhood level cross-correlations
Log Rain deficit Log Aridity index Log DMP

Log rain deficit 1
Log Aridity index -0.906 1
Log DMP -0.537 0.567 1

Notes: The table reports the correlations between our different drought proxies. Rain deficit (log(rainfall × -1))
as been computed using rainfall data from NASA’s GMP product (Huffman et al., 2017). The aridity index is
the ratio of precipitation over potential evapotranspiration (Abatzoglou et al., 2018). Dry Matter Productivity
(DMP) is a phytomass indicator measured by the dry biomass increase of the vegetation (in kg/ha/year, from
the Copernicus Global Land Service 2019).

vii



TABLE A-3
ACLED actor, actor type, ethnic group matches

Murdock group Actor Actor type

Bararetta Ajuran Ethnic Militia Semi-organized
Bararetta Auliyan Ethnic Militia Semi-organized
Bararetta Degodia Ethnic Militia Semi-organized
Bararetta Garre Ethnic Militia Semi-organized
Bararetta Jibril Clan Militia Semi-organized
Bararetta Matan Clan Militia Semi-organized
Bararetta Somali Ethnic Militia Semi-organized
Bararetta Unidentified Ethnic Militia (Bararetta) Semi-organized
Bararetta Unorganized group members (Bararetta) Unorganized
Bararetta Wardei Ethnic Militia Semi-organized
Boni Abduwak Ethnic Militia Semi-organized
Boni Unorganized group members (Boni) Unorganized
Boran Borana Ethnic Militia Semi-organized
Boran Gabra Ethnic Militia Semi-organized
Boran OLF: Oromo Liberation Front OLF: Oromo Liberation Front
Boran Orma Ethnic Militia Semi-organized
Boran Oromo Ethnic Militia Semi-organized
Boran Unorganized group members (Boran) Unorganized
Dorobo Kapshoi Clan Militia Semi-organized
Dorobo Ndorobo Ethnic Militia Semi-organized
Dorobo Ogiek Ethnic Militia Semi-organized
Dorobo Unorganized group members (Dorobo) Unorganized
Gusii Kisii Communal Militia Semi-organized
Gusii Kisii Ethnic Militia Semi-organized
Gusii Unorganized group members (Gusii) Unorganized
Kikuyu Akorino Sect Militia Semi-organized
Kikuyu Kiambu Ethnic Militia Semi-organized
Kikuyu Kieleweke Semi-organized
Kikuyu Kikuyu Ethnic Militia Semi-organized
Kikuyu Mau Mau War Veterans Semi-organized
Kikuyu Mungiki Militia Mungiki Militia
Kikuyu Unorganized group members (Kikuyu) Unorganized
Kipsigi Kipsigi Ethnic Militia Semi-organized
Kipsigi Unorganized group members (Kipsigi) Unorganized
Luo Luo Ethnic Militia Semi-organized
Luo Unorganized group members (Luo) Unorganized
Masai Maasai Ethnic Militia Semi-organized
Masai Moran Ethnic Militia Semi-organized
Masai Siria Clan Militia Semi-organized
Masai Unorganized group members (Masai) Unorganized
Meru Imenti Ethnic Militia Semi-organized
Meru Meru Ethnic Militia Semi-organized
Meru Tharaka Ethnic Militia Semi-organized
Meru Unorganized group members (Meru) Unorganized
Nandi Marakwet Ethnic Militia Semi-organized
Nandi Nandi Ethnic Militia Semi-organized
Nandi Unorganized group members (Nandi) Unorganized
Pokomo Pokomo Ethnic Militia Semi-organized
Pokomo Unorganized group members (Pokomo) Unorganized
Samburu Isiolo Communal Militia (Samburu) Semi-organized
Samburu Pokot Ethnic Militia (Samburu) Semi-organized
Samburu Samburu Ethnic Militia Semi-organized

Continued on next page
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Table A-3 – Continued from previous page
Murdock group Actor Actor type

Samburu Unorganized group members (Samburu) Unorganized
Sonjo Sonjo Ethnic Militia Semi-organized
Suk Unorganized group members (Suk) Unorganized
Topotha Toposa Ethnic Militia Semi-organized
Turkana Turkana Ethnic Militia Semi-organized
Turkana Unidentified Ethnic Militia (Turkana) Semi-organized
Turkana Unorganized group members (Turkana) Unorganized
Wanga Kabasiran Clan Militia Semi-organized
Wanga Luhya Ethnic Militia Semi-organized
Wanga Unorganized group members (Wanga) Unorganized

Notes: The table reports the Murdock groups in our sample (Murdock, 1967), the actors reported in
ACLED (Raleigh et al., 2020) matched by the association between actor and Murdock groups, and the
actor type classification we employ. We classify actors as “unorganized” if they are just members of an
ethnic group/tribe but are not organized as a militia. Militias are classified as “semi-organized” because
multiple smaller village- or regional militias can be encompassed by the actor name. Actors with an
individual name and a formal organization are classified as an individual actor-type (e.g. The Oromo
Liberation Front).

LIST A-1
Murdock homelands pastoral/non-pastoral classification

Bajun, Bararetta (P), Boni, Boran (P), Chaga, Didinga (P), Digo, Dorobo (P), Duruma, Gusii, Gyriama,
Jie, Kamba, Karamojong (P), Keyu, Kikuyu, Kipsigi, Luo, Masai (P), Meru, Nandi, Pare, Pokomo,
Rendile (P), Reshiat (P), Sabei (P), Samburu (P), Sanye (P), Segeju, Shambala, Shashi, Sonjo, Suk (P),
Teita, Topotha, Turkana (P), Wanga,

Notes: The list reports our classification of Murdock groups into pastoral and non-pastoral. Groups that are
classified as pastoral groups have a (P) next to their name. Our classification corresponds to the nomad
classification in (Eberle et al., 2020), roughly a transhumant pastoralists value of 0.5 and higher in McGuirk and
Nunn (2023).
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B. Additional results

B-1. Additional figures

FIGURE B-1
Balancing results
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Notes: The figure reports the results from bi-variate balancing tests. We regress the average of a set of variables
(depicted on the -axis) between 2001 and 2009 on the probability that a cell is designated to potentially receive
IBLI (Panel A). Panel (B) uses a ever-received IBLI coverage indicator, and panel (C) uses a year until coverage
received count (from 2010 onward) for the set of cells that are ever covered during our sample period. Index-
Based Livestock Insurance (IBLI) coverage is given by the International Livestock Research Institute (ILRI).
The average probability of conflict is based on the probability that a conflict event is recorded in a cell during
our sample period from ACLED (Raleigh et al., 2020). The log rain deficit is defined as (log(rainfall)×− 1) with
rainfall data from NASA’s GMP product GES DISC (Huffman et al., 2017). The pastoral indicator indicates
the presence of pastoralists following the definition of McGuirk and Nunn (2023). Climate zones are defined
according to the Köppen-Geiger climate class from Beck et al. (2018). Biomes indicate the terrestrial ecoregions
associated to each cell from Olson et al. (2001). Cells with poor soil quality are defined according to the
Harmonized World Soil Database (Nachtergaele et al., 2009) (soil characteristics are associated to classes 3, 4
or 5). Primary (perennial) and secondary (non-perennial/intermittent/fluctuating) rivers are from the ICPAC
geoportal. Water bodies indicate the presence of lakes, reservoirs, and lagoons based on the World Bank data
catalog. National borders are cells with a centroid located within 50km of the border. National Parks are
from the world database on protected areas (UNEP-WCMC, 2022). The different variables are processed at a
0.1◦ × 0.1◦ grid-cell level. The 95% confidence intervals are based on Conley standard errors, implemented
using the acreg package in Stata (Colella et al., 2019), with a distance cutoff of 200km.
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FIGURE B-2
Main results: Alternative distance decay neighborhood effects
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(B) Rain deficit × IBLI (Neighborhood)
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Notes: The figure plots the point estimates and 95% confidence intervals of the log of neighborhood rainfall
deficit (log(rainfall) ×− 1 ) (panel A), and its interaction with the standardized neighborhood IBLI coverage
(panel B) for varying distance decays. The blue circles indicate estimates from replicating column (3) of Table I,
and red circles indicate estimates from replicating column 4 of Table I–including klip-area-period fixed effects.
Index-Based Livestock Insurance (IBLI) coverage is given by the International Livestock Research Institute
(ILRI). Rainfall data comes from NASA’s GMP product (Huffman et al., 2017). The different variables are
processed at a 0.1◦ × 0.1◦ grid-cell level. The confidence intervals in grey are based on Conley standard
errors, implemented using the acreg package in Stata (Colella et al., 2019), with a distance cutoff of 200km.
p < 0.1, p < 0.05, p < 0.01

FIGURE B-3
Main results: Spatial cutoffs
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(B) Cell & pastoral-area-year FE
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Notes: Panel (A) of the figure plots the t-statistics for our coefficients of interest (δ1, δ2, and δ3) based on our
baseline specification (column 3 of Table I for varying distance cutoffs in the spatial clustering. Panel (B)
replicates panel (A) but adds IBLI-area-period fixed effects, corresponding to the specification reported in
column 4 of Table I. Index-Based Livestock Insurance (IBLI) coverage is given by the International Livestock
Research Institute (ILRI). Rainfall data comes from NASA’s GMP product (Huffman et al., 2017).
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FIGURE B-4
Main results: Alternative conflict measures
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(B) Rain deficit × IBLI (δ3)
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Notes: The figure reports our point estimates of interest (δ1 and δ3) and 95% confidence intervals for alternative
conflict measures from the ACLED dataset (Raleigh et al., 2020) regressed on the specification in column
3 of Table I. All considers all associated actors and types of incidents. Gov. are incidents that involve
the government (Non-Gov when it does not). ERT are incidents following the definition of ”conflict” by
Eberle et al. (2020); an indicator that takes unity when an event is categorized as ”Battle”, ”Violence against
civilians”, or ”Riots”. Riots are only riots incidents. Civilians are incidents involving violent events against
civilians. Pastoral are incidents that involve an ethnic group defined as pastoralist following the classification
by McGuirk and Nunn (2023). Panel (A) reports the obtained δ1. Panel (B) reports the corresponding δ3.
Index-Based Livestock Insurance (IBLI) coverage is given by the International Livestock Research Institute
(ILRI). Rainfall data comes from NASA’s GMP product (Huffman et al., 2017). The different variables are
processed at a 0.1◦ × 0.1◦ grid-cell level. The 95% confidence intervals are based on Conley standard errors,
implemented using the acreg package in Stata (Colella et al., 2019), with a distance cutoff of 200km.

xii



B-2. Additional tables

TABLE B-1
IBLI payout in insurance district

Dependent variable: IBLI payout in insurance area
(1) (2) (3) (4)

IBLI 0.4032 1.1732 0.0853 1.4769
(0.0548) (0.1085) (0.0770) (0.1817)

DROUGHT PROXY

Rain deficit 0.3147 0.7397
(0.3116) (0.3594)

DMP deficit 0.0857 0.0369
(0.0997) (0.0807)

AI deficit -0.3236 -0.1344
(0.0553) (0.0664)

DROUGHT PROXY × KLIP AVAILABILITY

Rain deficit 0.5092 0.3978
(0.0835) (0.1127)

DMP deficit 0.2900 0.3029
(0.0303) (0.0474)

AI deficit 0.2324 -0.1766
(0.0464) (0.0564)

Conflicti,t+1 0.0098 0.0020 0.0086 0.0035
(0.0339) (0.0330) (0.0344) (0.0306)

Conflicti,t 0.0040 -0.0090 -0.0016 -0.0057
(0.0297) (0.0310) (0.0287) (0.0286)

Conflicti,t−1 -0.0015 -0.0169 -0.0010 -0.0011
(0.0348) (0.0334) (0.0340) (0.0334)

Unit-fixed effects ✓ ✓ ✓ ✓
Period-fixed effects ✓ ✓ ✓ ✓
Adj. R2 0.6982 0.7038 0.6913 0.7221
Obs 765 765 765 765

Notes: The table reports the regression results of regressing an indicator for IBLI payouts on different drought
proxies; rainfall deficit (log(rainfall) × − 1) from NASA’s GMP product (Huffman et al., 2017), Dry Matter
Productivity deficit (log(DMP) ×− 1) from the Copernicus Land Service (2019), and the aridity index deficit
(ratio of precipitation over potential evapotranspiration, (log(AI) × − 1)) from Abatzoglou et al. (2018), as
well as their interaction with KLIP availability within insurance districts (or Unit Insurance Area UIA, see
Fava et al., 2021) over our periods. Index-Based Livestock Insurance (IBLI) coverage and payouts are given
by the International Livestock Research Institute (ILRI) and conflict events from ACLED (Raleigh et al., 2020).
The different variables are processed at a 0.1◦ × 0.1◦ grid-cell level. Unit-fixed effects are UIA fixed effects.
Standard errors are clustered at the IBLI-unit level.
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TABLE B-2
Fringe: ITT effect

Dependent variable: Conflicti,t

(1) (2) (3) (4)

NEIGHBORHOOD

Rain deficit (δ1) 0.0721 0.0643 0.0761
(0.0309) (0.0264) (0.0240)

IBLI (δ2) -0.0148 -0.0211 -0.0155
(0.0043) (0.0050) (0.0043)

Rain deficit × IBLI (δ3) -0.0121 -0.0085
(0.0050) (0.0046)

NEIGHBORHOOD × FRINGE

Rain deficit (ψ1) -0.0330 -0.0228 -0.0321
(0.0491) (0.0444) (0.0379)

IBLI (ψ2) 0.0201 0.0057 -0.0032
(0.0064) (0.0083) (0.0077)

Rain deficit × IBLI (ψ3) -0.0219 -0.0311
(0.0128) (0.0119)

Cell-fixed effects ✓ ✓ ✓ ✓
Time-fixed effects ✓ ✓ ✓ ✓
IBLI-areas-year-fixed effect – ✓ – ✓
Obs 93160 93160 93160 93160

Notes: The table reports the results of regressing our indicator for any conflict event on the log of rainfall
deficit (log(rainfall)×-1) at the cell and neighborhood level, the insurance cover indicator at the cell level,
the standardized insurance coverage neighborhood measure, and the respective interactions at the cell and
neighborhood level. Rainfall data comes from NASA’s GMP product (Huffman et al., 2017). The Index-
Based Livestock Insurance (IBLI) coverage is given by the International Livestock Research Institute (ILRI)
and conflict events from ACLED (Raleigh et al., 2020). In addition, we add interactions of the cell and
neighborhood level variables of interest with an indicator variable indicating that a cell is located in the fringe
area (defined as mixed land use of farmland and rangeland, similar to Eberle et al. (2020) based on landsat
landuse data). The neighborhood variables are based on the 1/distance weighting. The different variables
are processed at a 0.1◦ × 0.1◦ grid-cell level. Cell-level variables are omitted from the table. Conley standard
errors, implemented using the acreg package in Stata (Colella et al., 2019), with a distance cutoff of 200km.
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TABLE B-3
ITT effect: Alternative drought proxies

Dependent variable: Conflicti,t

(1) (2) (3) (4)

NEIGHBORHOOD

DMP deficit (δ1) 0.0218 0.0237
(0.0308) (0.0267)

DMP deficit × IBLI (δ3) -0.0119 -0.0099
(0.0042) (0.0040)

AI deficit (δ1) 0.0944 0.1013
(0.0287) (0.0260)

AI deficit × IBLI (δ3) -0.0124 -0.0075
(0.0041) (0.0039)

IBLI (δ2) -0.0876 -0.0714 -0.0450 -0.0283
(0.0262) (0.0245) (0.0099) (0.0086)

Dep. var. mean 0.0245 0.0245 0.0245 0.0245
Cell-fixed effects ✓ ✓ ✓ ✓
Time-fixed effects ✓ – ✓ –
IBLI-areas-year-fixed effects – ✓ – ✓
Obs 93000 93000 93400 93400

Notes: The table replicates columns 3 and 4 of Table I, switching the rain deficit (log(rainfall)×-1) for alternative
drought proxies. In columns 1 and 2, we use a phytomass measure (the Dry Matter Productivity–DMP form
the Copernicus Global Land Sevice, 2019). In columns 3 and 4, we leverage the Aridity Index (AI) which is
the ratio of precipitation over potential evapotranspiration (with data from Abatzoglou et al. (2018)). As with
our rain deficit measure, we log both measures and multiply them by -1 to mimic the scaling of our main
specification. The Index-Based Livestock Insurance (IBLI) coverage is given by the International Livestock
Research Institute (ILRI) and conflict events from ACLED (Raleigh et al., 2020). The different variables are
processed at a 0.1◦ × 0.1◦ grid-cell level. Cell level variables are omitted from the output. Conley standard
errors are implemented using the acreg package in Stata (Colella et al., 2019), with a distance cutoff of 200km.
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TABLE B-4
2SLS results: Cell level controls

2SLS 2SLS 2SLS 2SLS
1st stage 2nd stage 1st stage 2nd stage

Dependent variable:
IBLI Conflicti,t IBLI Conflicti,t

payout payout
(1) (2) (3) (4)

CELL

Rain deficit (β1) -0.0240 -0.0095 -0.0220 -0.0090
(0.0579) (0.0064) (0.0436) (0.0057)

IBLI (β2) -0.3409 -0.0536 -0.3056 -0.0289
(0.2226) (0.0185) (0.1951) (0.0173)

Rain deficit × IBLI (β3) -0.0315 0.0115 -0.0654 0.0039
(0.0796) (0.0052) (0.0647) (0.0045)

Dep. var. mean 0 0.0245 0 0.0245
F-stat 1st stage 45.776 34.682
Cell-fixed effects ✓ ✓ ✓ ✓
Time-fixed effects ✓ ✓ ✓ ✓
IBLI-areas-year-fixed effects – – ✓ ✓
Obs 93400 93400 93400 93400

Notes: The table reports the cell level controls of Table II. Rainfall data comes from NASA’s GMP product
(Huffman et al., 2017). The Index-Based Livestock Insurance (IBLI) coverage and payout data are given by the
International Livestock Research Institute (ILRI). Conflict events are from ACLED (Raleigh et al., 2020). The
different variables are processed at a 0.1◦ × 0.1◦ grid-cell level. Cell-level variables are omitted from the table.
Conley standard errors are implemented using the acreg package in Stata (Colella et al., 2019), with a distance
cutoff of 200km.
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TABLE B-5
ITT: Further controls (cell level)

Dependent variable: Conflicti,t

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

NEIGHBORHOOD

Rain deficit (δ1) 0.0718 0.0622 0.0664 0.0544 0.0544 0.0697 0.0665 0.0703 0.0784 0.0686
(0.0298) (0.0309) (0.0292) (0.0357) (0.0322) (0.0297) (0.0295) (0.0295) (0.0296) (0.0295)

IBLI (δ2) -0.0233 -0.0235 -0.0233 -0.0234 -0.0234 -0.0235 -0.0234 -0.0235 -0.0238 -0.0235
(0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053)

Rain deficit × IBLI (δ3) -0.0157 -0.0158 -0.0162 -0.0160 -0.0166 -0.0153 -0.0155 -0.0152 -0.0173 -0.0153
(0.0053) (0.0053) (0.0054) (0.0053) (0.0053) (0.0052) (0.0053) (0.0052) (0.0053) (0.0053)

NEIGHBORHOOD RAIN DEFICIT × CELL CHARACTERISTICS

Ln population -0.0018
(0.0013)

Share rangeland 0.0001
(0.0001)

Share farmland -0.0001
(0.0001)

Arid climate zone 0.0104
(0.0147)

Tropical climate zone -0.0005
(0.0147)

Grassland biome zone 0.0122
(0.0104)

Desert biome zone 0.0219
(0.0115)

Poor soil -0.0086
(0.0088)

Primary river -0.0057
(0.0073)

Secondary river -0.0008
(0.0039)

Water body 0.0236
(0.0130)

Within 50km of border -0.0150
(0.0061)

National park 0.0045
(0.0066)

Cell-fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time-fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Obs 93400 93400 93400 93400 93400 93400 93400 93400 93400 93400

Notes: The table reports the results of regressing our indicator for any conflict event (ACLED Raleigh et al.,
2020) on the log of rainfall deficit (log(rainfall)×-1) at the cell and neighborhood level, the insurance cover
indicator at the cell level, the standardized insurance coverage neighborhood measure, and the respective
interactions at the cell and neighborhood level. Rainfall data comes from NASA’s GMP product (Huffman
et al., 2017). The Index-Based Livestock Insurance (IBLI) coverage is given by the International Livestock
Research Institute (ILRI). Throughout columns 1 to 10, we add interactions of the rainfall deficit at the
neighborhood level with cell level controls shown as potentially correlated with IBLI coverage (see Figure B-
1). Log of population from the GHSL population raster data (2000 estimates). Climate zones follow the
Köppen-Geiger climate classification from Beck et al. (2018). Biomes indicate the terrestrial ecoregions from
Olson et al. (2001). Poor soil is an indicator variable built using a combination of soil characteristics from the
Harmonized World Soil Database (Nachtergaele et al., 2009) where locations associated with class 3, 4, or 5
(severe limitations, very severe limitations, and mainly non-soil) are considered as poor soil quality. Primary
rivers (perennial) and secondary (non-perennial/intermittent/fluctuating) rivers are taken from the ICPAC
geoportal. Water bodies indicate the presence of lakes, reservoirs, and lagoons from the World Bank database.
National parks are taken from the world database on protected area UNEP-WCMC (2022). The neighborhood
variables are based on the 1/distance weighting. The different variables are processed at a 0.1◦ × 0.1◦ grid-cell
level. Cell-level variables are omitted from the table. Conley standard errors are implemented using the acreg
package in Stata (Colella et al., 2019), with a distance cutoff of 200km.
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TABLE B-6
ITT: Further controls (Neighborhood level)

Dependent variable: Conflicti,t

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

NEIGHBORHOOD

Rain deficit (δ1) 0.0715 0.0634 0.0714 0.0634 0.0682 0.0700 0.0758 0.0841 0.0760 0.0746
(0.0305) (0.0295) (0.0302) (0.0298) (0.0294) (0.0298) (0.0305) (0.0295) (0.0298) (0.0302)

IBLI (δ2) -0.0236 -0.0236 -0.0236 -0.0237 -0.0237 -0.0235 -0.0239 -0.0236 -0.0239 -0.0238
(0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0052) (0.0053) (0.0053)

Rain deficit × IBLI (δ3) -0.0154 -0.0176 -0.0152 -0.0178 -0.0187 -0.0152 -0.0174 -0.0153 -0.0171 -0.0154
(0.0052) (0.0058) (0.0053) (0.0057) (0.0058) (0.0053) (0.0056) (0.0052) (0.0054) (0.0052)

NEIGHBORHOOD RAIN DEFICIT × NEIGHBORHOOD CHARACTERISTICS

Ln population 0.0012
(0.0049)

Share rangeland 0.0051
(0.0038)

Share farmland 0.0016
(0.0039)

Arid climate zone 0.0067
(0.0041)

Tropical climate zone 0.0026
(0.0033)

Grassland biome zone 0.0048
(0.0031)

Desert biome zone 0.0063
(0.0031)

Poor soil -0.0009
(0.0020)

Primary river 0.0050
(0.0042)

Secondary river 0.0050
(0.0036)

Water body 0.0062
(0.0039)

Within 50km of border -0.0054
(0.0031)

National park 0.0050
(0.0032)

Cell-fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time-fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Obs 93400 93400 93400 93400 93400 93400 93400 93400 93400 93400

Notes: The table reports the results of regressing our indicator for any conflict event (ACLED Raleigh et al.,
2020) on the log of rainfall deficit (log(rainfall)×-1) at the cell and neighborhood level, the insurance cover
indicator at the cell level, the standardized insurance coverage neighborhood measure, and the respective
interactions at the cell and neighborhood level. Rainfall data comes from NASA’s GMP product (Huffman
et al., 2017). The Index-Based Livestock Insurance (IBLI) coverage is given by the International Livestock
Research Institute (ILRI). Throughout columns 1 to 10, we add interactions of the rainfall deficit at the
neighborhood level with neighborhood versions of the cell level controls shown as potentially correlated with
IBLI coverage (see Figure B-1). Log of population from the GHSL population raster data (2000 estimates).
Climate zones follow the Köppen-Geiger climate classification from Beck et al. (2018). Biomes indicate the
terrestrial ecoregions from Olson et al. (2001). Poor soil is an indicator variable built using a combination
of soil characteristics from the Harmonized World Soil Database (Nachtergaele et al., 2009) where locations
associated with class 3, 4, or 5 (severe limitations, very severe limitations, and mainly non-soil) are considered
as poor soil quality. Primary rivers (perennial) and secondary (non-perennial/intermittent/fluctuating) rivers
are taken from the ICPAC geoportal. Water bodies indicate the presence of lakes, reservoirs, and lagoons
from the World Bank database. National parks are taken from the world database on protected area UNEP-
WCMC (2022). The neighborhood variables are based on the 1/distance weighting. The different variables
are processed at a 0.1◦ × 0.1◦ grid-cell level. Cell-level variables are omitted from the table. Conley standard
errors are implemented using the acreg package in Stata (Colella et al., 2019), with a distance cutoff of 200km.
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TABLE B-7
ITT: Soil quality controls (cell level)

Dependent variable: Conflicti,t

(1) (2) (3) (4) (5) (6) (7)

NEIGHBORHOOD

Rain deficit (δ1) 0.0677 0.0685 0.0691 0.0702 0.0680 0.0687 0.0730
(0.0297) (0.0296) (0.0296) (0.0297) (0.0297) (0.0295) (0.0297)

IBLI (δ2) -0.0235 -0.0235 -0.0235 -0.0235 -0.0235 -0.0235 -0.0235
(0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053)

Rain deficit × IBLI (δ3) -0.0154 -0.0154 -0.0154 -0.0154 -0.0154 -0.0154 -0.0154
(0.0052) (0.0052) (0.0052) (0.0052) (0.0052) (0.0052) (0.0052)

NEIGHBORHOOD RAIN DEFICIT × POOR SOIL CELL CHARACTERISTICS

Nutrient availability 0.0042
(0.0052)

Nutrient retention capacity 0.0066
(0.0125)

Rooting condition -0.0061
(0.0081)

Oxygen availability -0.0072
(0.0066)

Excess salts 0.0016
(0.0039)

Toxicity 0.0286
(0.1033)

Workability -0.0127
(0.0073)

Cell-fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time-fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓
Obs 93400 93400 93400 93400 93400 93400 93400

Notes: The table reports the results of regressing our indicator for any conflict event (ACLED Raleigh et al.,
2020) on the log of rainfall deficit (log(rainfall)×-1) at the cell and neighborhood level, the insurance cover
indicator at the cell level, the standardized insurance coverage neighborhood measure, and the respective
interactions at the cell and neighborhood level. Rainfall data comes from NASA’s GMP product (Huffman
et al., 2017). The Index-Based Livestock Insurance (IBLI) coverage is given by the International Livestock
Research Institute (ILRI). Throughout columns 1 to 7, we add interactions of the rainfall deficit at the
neighborhood level with a poor soil indicator at the cell level based on soil characteristics from the Hamonized
World Soil Database (Nachtergaele et al., 2009). For each one of the soil characteristics, a location is considered
to be of poor quality when it is associated to class 3, 4 or 5 (severe limitations, very severe limitations,
and mainly non-soil). In cases where some locations encompass a soil characteristic defined as both of
poor and good quality, we assign to the location the quality that covers most of the area of that location.
The neighborhood variables are based on the 1/distance weighting. The different variables are processed
at a 0.1◦ × 0.1◦ grid-cell level. Cell-level variables are omitted from the table. Conley standard errors are
implemented using the acreg package in Stata (Colella et al., 2019), with a distance cutoff of 200km.
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TABLE B-8
ITT: Soil quality controls (neighborhood level)

Dependent variable: Conflicti,t

(1) (2) (3) (4) (5) (6) (7)

NEIGHBORHOOD

Rain deficit (δ1) 0.0657 0.0693 0.0691 0.0692 0.0614 0.0701 0.0675
(0.0294) (0.0297) (0.0295) (0.0296) (0.0297) (0.0289) (0.0295)

IBLI (δ2) -0.0236 -0.0236 -0.0234 -0.0235 -0.0234 -0.0235 -0.0235
(0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053)

Rain deficit × IBLI (δ3) -0.0158 -0.0155 -0.0155 -0.0153 -0.0166 -0.0154 -0.0160
(0.0053) (0.0053) (0.0053) (0.0053) (0.0054) (0.0052) (0.0055)

NEIGHBORHOOD RAIN DEFICIT × POOR SOIL NEIGHBORHOOD CHARACTERISTICS

Nutrient availability 0.0025
(0.0024)

Nutrient retention capacity 0.0012
(0.0030)

Rooting condition 0.0011
(0.0030)

Oxygen availability -0.0004
(0.0025)

Excess salts 0.0044
(0.0030)

Toxicity 0.0008
(0.0047)

Workability 0.0021
(0.0038)

Cell-fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time-fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓
Obs 93400 93400 93400 93400 93400 93400 93400

Notes: The table reports the results of regressing our indicator for any conflict event (ACLED Raleigh
et al., 2020) on the log of rainfall deficit (log(rainfall)×-1) at the cell and neighborhood level, the insurance
cover indicator at the cell level, the standardized insurance coverage neighborhood measure, and the
respective interactions at the cell and neighborhood level. Rainfall data comes from NASA’s GMP product
(Huffman et al., 2017). The Index-Based Livestock Insurance (IBLI) coverage is given by the International
Livestock Research Institute (ILRI). Throughout columns 1 to 7, we add interactions of the rainfall deficit
at the neighborhood level with a poor soil indicator at the cell level based on soil characteristics from the
Harmonized World Soil Database (Nachtergaele et al., 2009). For each one of the soil characteristics, a location
is considered to be of poor quality when it is associated to class 3, 4 or 5 (severe limitations, very severe
limitations, and mainly non-soil). In cases where some locations encompass a soil characteristic defined as
both of poor and good quality, we assign to the location the quality that covers most of the area of that
location. The neighborhood variables are based on the 1/distance weighting. The different variables are
processed at a 0.1◦ × 0.1◦ grid-cell level. Cell-level variables are omitted from the table. Conley standard
errors are implemented using the acreg package in Stata (Colella et al., 2019), with a distance cutoff of 200km.
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