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Abstract 
 
We derive closed-form solutions and sufficient statistics for inflation and GDP dynamics in multi-
sector New Keynesian economies with arbitrary input-output linkages. Analytically, we 
decompose how production linkages (1) amplify the persistence of inflation and GDP responses 
to monetary and sectoral shocks and (2) increase the pass-through of sectoral shocks to aggregate 
inflation. Quantitatively, we confirm the significant role of production networks in shock 
propagation, emphasizing the disproportionate effects of sectors with large input-output adjusted 
price stickiness: The three sectors with the highest contribution to the persistence of aggregate 
inflation have consumption shares of around zero but explain 16% of monetary non-neutrality. 
JEL-Codes: E320, E520, C670. 
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1 Introduction

Recent supply chain disruptions have underscored the importance of how production linkages

impact the dynamics of sectoral prices, inflation, and GDP. For instance, monetary policymakers

have been grappling with whether shocks to prices of specific sectors, e.g., oil or semiconductors,

have played any role in the rise of aggregate inflation, and if so, whether these effects have been

persistent. In this paper, we answer the following question: In an economy with sticky prices

and production networks, what determines each sector’s contribution to the persistence and the

magnitude of sectoral prices, inflation, and GDP responses to shocks?

In a dynamic multi-sector model, we analytically characterize how arbitrary input-output

linkages interact with staggered heterogeneous sticky prices to amplify the persistence and the

magnitude of inflation and GDP responses to monetary and sectoral shocks. These effects are

quantitatively large. In the case of monetary shocks, production linkages of the U.S. economy

quadruple monetary non-neutrality and double the half-life of the consumer price index (CPI)

inflation response. In particular, the three sectors with the highest input-output adjusted price

stickiness have a combined consumption share of roughly zero but explain around 16% of monetary

non-neutrality. In the case of sectoral shocks, inflation in an upstream but flexible price sector such

as the Oil and Gas Extraction industry has a high but transitory pass-through to aggregate inflation.

In contrast, inflation in an upstream but stickier sector such as the Semiconductor Manufacturing

Machinery industry has persistent spillover effects on aggregate inflation with large GDP gap effects.

We derive these results in a production network economy with multiple sectors. Each sector

contains a continuum of monopolistically competitive intermediate goods firms which use labor

and goods from other sectors to produce with sector-specific production functions subject to

sectoral productivity shocks. These firms also make staggered forward-looking pricing decisions,

where price changes arrive at sector-specific Poisson rates as in Calvo (1983). A competitive producer

in each sector aggregates these intermediate products into a final sectoral good and sells it for

household consumption and for intermediate input use across sectors. Importantly, we do not

restrict or impose any symmetries across sectors in terms of price change frequencies or input-

output linkages. In our benchmark, monetary policy controls nominal GDP.1 In this framework, we

derive closed-form solutions for the local dynamics of the model around an efficient steady state.

Our first result is that the local dynamics of this model, in response to any arbitrary path of

shocks, is summarized by a system of second-order differential equations, which can be interpreted

1In extensions, we also consider inflation targeting and a Taylor rule type policy.
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as the economy’s sectoral Phillips curves. Using this representation, we show that all model

parameters affect the dynamics of the model exclusively through a novel adjustment of the Leontief

matrix that takes the duration of price spells across sectors into account.2 The explicit solution to

this system reveals that the sufficient statistic for the dynamics of all model variables in response

to any path of shocks is the principal square root of the duration-adjusted Leontief (PRDL) matrix.

Intuitively, a particular interaction of price stickiness and input-output linkages fully pins down the

model IRFs, all of which decay exponentially at the rate of the PRDL matrix.

Two observations immediately follow from this result. (1) Monetary shocks have distortionary

and asymmetric effects on relative sectoral prices, governed by the eigendecomposition of the PRDL

matrix: All else equal, sectors that spend more on stickier suppliers have more persistent responses

and disproportionally affect the persistence of aggregate inflation. (2) The input-output matrix has

a dual role in the propagation of sectoral shocks. First, consistent with insights from static models,

input-output linkages amplify the effects of sectoral shocks through the inverse Leontief matrix

and increase the pass-through of these shocks on impact. Second, a novel dynamic force amplifies

this total pass-through by increasing the persistence of IRFs. Importantly, this second force is

independent of the role of the inverse Leontief matrix. Instead, it stems from the precise interaction

of input-output linkages with staggered price changes through the PRDL matrix. We show that these

two separate forces accumulate: more input-output linkages amplify static propagation through

the inverse Leontief matrix and create dynamic effects that last longer through the PRDL matrix.

Having established the importance of the PRDL matrix in governing the dynamics of the model,

we next derive a series of new analytical results that shed light on the economic forces encoded by

this matrix (through its eigendecomposition). In particular, we use perturbation theory to approxi-

mate the eigenvalues and eigenvectors of the PRDL matrix based on the underlying parameters

of the model.3 This approach allows us to prove three key and novel results on how input-output

linkages amplify (1) the persistence of inflation response to monetary shocks in all sectors, (2) the

degree of monetary non-neutrality, and (3) the pass-through of sectoral inflation to aggregate infla-

tion. These analytical results uncover how stickiness trickles to downstream sectors. In particular,

sectors with large input-output adjusted price spell durations play a disproportionate role (relative

2La’O and Tahbaz-Salehi (2022) also characterize an adjusted inverse Leontief matrix that is important for the real
effects of monetary policy in a static model with information frictions. Earlier versions of Rubbo (2023) also had a similar
characterization in a static framework. We instead consider the dynamic propagation of shocks with Calvo pricing,
focusing on the interactions between production linkages and price stickiness that are relevant to these dynamics.
Accordingly, our sufficient statistic (the PRDL matrix) is different from these related matrices in earlier work as it targets
an inherently different object, namely the persistence of endogenous responses in the model.

3We later verify that this approximation is remarkably accurate for the measured input-output matrix in the U.S.
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to their expenditure shares) in amplifying monetary non-neutrality and inflation persistence.

Using input-output tables, price adjustment frequencies, and consumption shares, we con-

struct our sufficient statistics for the U.S. and quantify the importance of production networks for

propagation of shocks. In the case of monetary shocks, we find that production linkages quadruple

the cumulative response of GDP and double the half-life of the consumer price index (CPI) inflation

response. Furthermore, underneath these aggregate responses, we identify a rich distribution of

sectoral responses, with few sectors disproportionately affecting monetary non-neutrality and

inflation persistence. In a counterfactual exercise, we find that dropping the top three sectors with

the largest input-output adjusted price spell durations reduces monetary non-neutrality by 16

percent, even though the combined consumption share of these three sectors is approximately zero.

We then quantify the pass-through of sectoral shocks to aggregate inflation on impact. To do so,

we consider idiosyncratic sectoral shocks that increase the inflation of their corresponding sector

by one percent. We then measure the spillover pass-through of this shock as its impact on aggregate

inflation minus the direct effect coming from the expenditure share of its sector (so that in the

absence of production linkages, these pass-throughs are zero). While we provide comprehensive

rankings of sectors, we use two industries that have been salient recently as informative examples of

our analysis: the Oil and Gas Extraction industry and the Semiconductor Manufacturing Machinery

industry. We find that the Oil and Gas Extraction industry is among the top sectors that have a large

spillover pass-through to aggregate inflation on impact, due to its role as an input to many sectors.

Next, we quantify the effects of these sectoral shocks on the persistence of aggregate inflation

response. Relying on our perturbed eigenvalues, we show that the key determinant of these effects

is an input-output adjusted duration of price spells within these sectors. To provide concrete

examples, this adjusted duration in Oil and Gas Extraction industry is relatively small due to its

high price flexibility. Thus, a shock to this sector does not lead to persistent aggregate inflation

effects. In contrast, the Semiconductor Manufacturing Machinery industry has very persistent

aggregate inflation effects because its adjusted duration is relatively larger. Moreover, to connect

these persistent responses with the real effects of sectoral shocks, we also show that sectoral shocks

that cause more persistent inflation responses also lead to greater GDP gap effects.

Finally, having established these analytical and quantitative results on the separate roles of

monetary and sectoral shocks, we study the propagation of sectoral shocks when monetary policy

endogenously responds to neutralize their inflationary effects. In benchmark New Keynesian (NK)

models, inflationary pressures are determined by the slope of the aggregate Phillips curve. In those

models, this slope is the elasticity of inflation to demand shocks (output gap). We use our theoretical
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results to show that in multi-sector models with production networks, the slope of the aggregate

Phillips curve is not sufficient for the magnitude or the direction of non-neutrality and inflation

persistence. The key behind this observation is that in multi-sector economies, the Phillips curve is

also affected by differences in relative prices that are not captured by its slope. As one implication

of this result, we provide an example with two multi-sector economies where, contrary to common

intuition, the economy with the steeper Phillips curve also exhibits higher monetary non-neutrality.4

We conclude that these relative price distortions are theoretically and quantitatively relevant

for the inflationary effects of sectoral shocks, especially when monetary policy stabilizes aggregate

inflation conditional on shocks to sectors with higher input-output adjusted price flexibility. For

instance, a sectoral shock to the Oil and Gas Extraction industry that raises inflation in that sector

has a large pass-through to aggregate inflation when monetary policy keeps interest rates fixed.5 In

contrast, if monetary policy responds to this shock by stabilizing aggregate inflation, it generates a

substantially negative GDP gap response, in contrast to benchmark NK models.

To illustrate this last point, inflationary TFP shocks in benchmark NK models are expansionary

to the output gap because sticky prices do not increase as much as they would under flexible prices.

In the extreme case when monetary policy fully stabilizes TFP-driven inflation in those models,

the output gap is also stabilized. Yet, we find that in the production network of the U.S. economy,

stabilizing TFP-driven inflation due to Oil shocks contracts the GDP gap due to the indirect effects

of this policy on other sectors. It is important to highlight the interaction of production linkages and

price stickiness for this result. For instance, in contrast, stabilizing aggregate inflation conditional

on an inflationary TFP shock to the Semiconductor Manufacturing Machinery industry is not very

costly in terms of GDP gap. This industry is also an input to many sectors, similar to the Oil industry,

but it has a much higher duration-adjusted price stickiness relative to its downstream sectors.

Thus, the contractionary effects of stabilizing aggregate inflation are also smaller because sectoral

inflation in that sector does not distort relative prices as much.

Related Literature. We contribute to the literature on shock propagation and inflation dynamics in

multi-sector NK models with production networks and relative price distortions. On the production

networks side, the closest recent work to ours is La’O and Tahbaz-Salehi (2022) which studies optimal

monetary policy in a static model with production networks and information frictions, as well as

4See, e.g., Hazell, Herreno, Nakamura, and Steinsson (2022) who discuss when a two-sector economy admits an
aggregate Phillips curve. As they note, more generally, multi-sector economies do not necessarily admit Phillips curves
with only output gap and inflation terms. Moreover, see Lorenzoni and Werning (2023a,b) who crystallize the underlying
mechanisms for inflation that arises from disagreement in relative prices (i.e. conflict inflation).

5In the background, monetary policy achieves determinacy by controlling the nominal GDP, which, under the
preferences that we consider, corresponds to fixed interest rates in equilibrium.
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Rubbo (2023) which studies optimal monetary policy in a dynamic model with production networks

and heterogeneous price stickiness. We contribute to this literature by analyzing the propagation of

(1) sectoral shocks and their impact on aggregates, and (2) monetary shocks, especially focusing on

how they distort relative prices where few sectors have disproportionate effects on inflation and

GDP dynamics. On the relative price distortions side, our work is related to Lorenzoni and Werning

(2023a,b) who show that disagreement in relative prices is a key determinant of inflation due to

conflict. Our findings demonstrate how production networks endogenize conflict and quantitatively

lead to substantial inflation, even with homogenous price stickiness across sectors.

More broadly, our analytical results on the real effects of monetary shocks are related to two

strands of the literature. First, they connect to results in Carvalho (2006) and Nakamura and Steins-

son (2010) which showed how heterogeneous price stickiness amplifies monetary non-neutrality in

time- and state-dependent models respectively. Second, our findings on how production linkages

amplify real effects of monetary shocks are connected to the insights of Blanchard (1983), Basu

(1995) and more recently La’O and Tahbaz-Salehi (2022) which showed that such amplification

stems from strategic complementarities introduced by production networks. More recently, Car-

valho, Lee, and Park (2021), Pasten, Schoenle, and Weber (2020), Woodford (2021), and Ghassibe

(2021) study the transmission of monetary shocks in specific production networks.6 We contribute

to this literature by considering a multi-sector NK model with unrestricted input-output linkages.

Furthermore, our results on the propagation of sectoral shocks in models with production

networks build on a rich literature, mostly in settings without nominal rigidities. Long and Plosser

(1983), Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012), Jones (2013) are important contri-

butions and Carvalho (2014), Carvalho and Tahbaz-Salehi (2019) provide comprehensive surveys of

the literature. In more recent work, Guerrieri, Lorenzoni, Straub, and Werning (2020) characterize

how supply shocks to a sector can lead to aggregate contractions, and Minton and Wheaton (2023)

provide empirical support for the dynamic propagation of price stickiness through production

networks. Our focus on dynamics also connects with the work in Liu and Tsyvinski (2021), which

analyzes the dynamics of real variables in a model with adjustment costs in inputs. We contribute to

this literature by characterizing the forces that determine the propagation of monetary and sectoral

shocks under nominal rigidities in dynamic settings with production networks.7

6Our paper also relates to Wang and Werning (2021) and Alvarez, Lippi, and Souganidis (2022), which derive
similar statistics in settings with oligopolies and menu costs featuring strategic complementarities, but not production
networks. These results are also related to Alvarez, Le Bihan, and Lippi (2016), Baley and Blanco (2021) who provide
analytical results in settings with idiosyncratic shocks and menu costs but no strategic complementarities.

7Other papers, such as Taschereau-Dumouchel (2020), consider endogenous production networks in real models.
We use exogenous production networks, but we study a dynamic model with sticky prices.
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2 Model

2.1. Environment

Time is continuous and is indexed by t ∈R+. The economy consists of a representative household,

monetary and fiscal authorities, and n sectors with input-output linkages. In each sector i ∈ [n] ≡
{1,2, . . . ,n}, a unit measure of monopolistically competitive firms use labor and goods from all

sectors to produce and supply to a competitive final good producer within the same industry. These

final goods are sold to the household and other industries.

Household. The representative household demands the final goods produced by each industry,

supplies labor in a competitive market, and holds nominal bonds with nominal yield it . Household’s

preferences over consumption C and labor supply L is U (C )−V (L), where U and V are strictly

increasing with Inada conditions, and U ′′(.) < 0, V ′′(.) > 0. Household solves:

max{(Ci ,t )i∈[n],Lt ,Bt }t≥0

∫ ∞
0 e−ρt [U (Ct )−V (Lt )]dt (1)

s.t .
∑

i∈[n] Pi ,tCi ,t + Ḃt ≤Wt Lt + it Bt +Profitst −Tt , Ct ≡Φ(C1,t , . . . ,Cn,t ) (2)

Here, Φ(.) defines the consumption index Ct over the household’s consumption from sectors

(Ci ,t )i∈[n]. It is degree one homogenous, strictly increasing in each Ci ,t , satisfying Inada conditions.

Lt is labor supply at wage Wt , Pi ,t is sector i ’s final good price, Bt is demand for nominal bonds,

Profitst denote all firms’ profits rebated to the household, and Tt is a lump-sum tax.

Monetary and Fiscal Policy. For our baseline, we assume monetary authority directly controls the

path of nominal GDP, {Mt ≡ PtCt }t≥0, where Pt is the consumer price index (CPI).8 A Taylor rule

extension is in Section 5.2. The fiscal authority taxes or subsidizes intermediate firms’ sales in each

sector i at a possibly time-varying rate τi ,t , lump-sum transferred back to the household. A wedge

shock to sector i is an unexpected disturbance in that sector’s taxes.

Final Good Producers. A competitive final good producer in each industry i buys from a continuum

of intermediate firms in its sector, indexed by i j : j ∈ [0,1], and produces a final sectoral good using

a CES production function. The profit maximization problem of this firm is:

max(Y d
i j ,t ) j∈[0,1]

Pi ,t Yi ,t −
∫ 1

0 Pi j ,t Y d
i j ,t d j s.t . Yi ,t =

[∫ 1
0 (Y d

i j ,t )1−σ−1
i d j

] 1
1−σ−1

i (3)

8Such policy can be implemented by a cash-in-advance constraint (e.g. La’O and Tahbaz-Salehi, 2022), money in
utility (e.g. Golosov and Lucas, 2007) or nominal GDP growth targeting (e.g. Afrouzi and Yang, 2019).
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where Y d
i j ,t is the producer’s demand for variety i j at price Pi j ,t , Yi ,t is its production at price Pi ,t ,

and σi > 1 is the substitution elasticity across varieties in i . Thus, demand for variety i j is:

Y d
i j ,t =D(Pi j ,t /Pi ,t ;Yi ,t ) ≡ Yi ,t

(
Pi j ,t

Pi ,t

)−σi
where Pi ,t =

[∫ 1
0 P 1−σi

i j ,t d j
] 1

1−σi (4)

Final good producers define a unified good for each industry and have zero value added due to

being competitive and constant returns to scale (CRS) production.

Intermediate Goods Producers. The intermediate good producer i j uses labor as well as the

sectoral goods as inputs and produces with the following CRS production function:

Y s
i j ,t = Zi ,t Fi (Li j ,t , Xi j ,1,t , . . . , Xi j ,n,t ) (5)

where Zi ,t is sector i ’s Hicks-neutral productivity, Li j ,t is firm i j ’s labor demand, and Xi j ,k,t is its

demand for sector k’s final good. The function Fi is strictly increasing in all arguments with Inada

conditions. The firm’s total cost for producing output Y , given Pt ≡ (Wt ,Pi ,t )i∈[n], is:

Ci (Y ;Pt , Zi ,t ) ≡ min
Li j ,t ,Xi j ,k,t

Wt Li j ,t +
∑

k∈[n]
Pk,t Xi j ,k,t s.t . Zi ,t Fi (Li j ,t , Xi j ,1,t , . . . , Xi j ,n,t ) ≥ Y (6)

In each sector i , firms set their prices under a Calvo friction, where i.i.d. price change opportunities

arrive at Poisson rates θi . Given its cost in Equation (6) and its demand in Equation (4), a firm i j

that has the opportunity to change its price at time t chooses its reset price, denoted by P #
i j ,t , to

maximize the expected net present value of its profits until the next price change:

P #
i j ,t ≡ argmax

Pi j ,t

∫ ∞

0
θi e−(θi h+∫ h

0 it+s ds)
[

(1−τi ,t )Pi j ,tD(Pi j ,t/Pi ,t+h;Yi ,t+h)−Ci (Y s
i j ,t+h ;Pt+h , Zi ,t+h)

]
dh

s.t . Y s
i j ,t+h ≥D(Pi j ,t/Pi ,t+h;Yi ,t+h), ∀h ≥ 0 (7)

where θi e−θi h is the duration density of the next price change, e−∫ h
0 it+h ds is the discount rate based

on nominal rates, and τi ,t is the tax/subsidy rate on sales. Were prices flexible, maximizing net

present value of profits would be equivalent to choosing desired prices, denoted by P∗
i j ,t , that

maximized firms’ static profits within every instant. Desired prices solve:

P∗
i j ,t ≡ argmax

Pi j ,t
(1−τi ,t )Pi j ,t D(Pi j ,t/Pi ,t ;Yi ,t )−Ci (Y s

i j ,t ;Pt , Zi ,t ) s.t . Y s
i j ,t ≥D(Pi j ,t/Pi ,t ;Yi ,t ) (8)

Equilibrium Definition. An equilibrium is a set of allocations for households and firms, monetary

and fiscal policies, and prices such that: (1) given prices and policies, the allocations are optimal for

households and firms, and (2) markets clear. A precise definition is in Appendix B.
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2.2. Log-Linearized Approximation

We log-linearize this economy around an efficient steady-state, derivations of which are in Ap-

pendix C. For our baseline analysis, we use Golosov and Lucas (2007)’s preferences, U (C )−V (L) =
log(C )−L, which simplifies the analytical expressions. In Section 5.1, we consider a more general

specification. Going forward, small letters denote the log deviations of their corresponding variables

from their steady-state values.

Sectoral Prices. While prices are staggered within sectors, the Calvo assumption implies that we

can fully characterize aggregate sectoral prices by desired and reset prices.

First, desired prices are equal to firms’ marginal costs, (mci ,t )i∈[n], up to a wedge that captures

markups or other distortions, (ωi ,t )i∈[n]. With input-output linkages, mci ,t depends on the aggregate

wage, wt , sectoral prices, (pk,t )k∈[n], and the sectoral productivity, zi ,t :

p∗
i ,t ≡ωi ,t +mci ,t , mci ,t ≡αi wt +∑

k∈[n] ai k pk,t − zi ,t , ωi ,t ≡ log( σi
σi−1 × 1

1−τi ,t
) (9)

where αi and ai ,k are sector i ’s firms’ labor share and expenditure share on sector k’s final good in

the steady-state, respectively. Thus, the steady-state input-output matrix is A ≡ [ai k ] ∈Rn×n .9

Second, the reset price in sector i is the average of all future desired prices, discounted at rate ρ

and the probability density of the time between price changes, e−(ρ+θi )h :

p#
i ,t = (ρ+θi )

∫ ∞
0 e−(ρ+θi )h p∗

i ,t+hdh (10)

Finally, given sector i ’s initial aggregate price at t = 0, pi ,0− , the aggregate sectoral price pi ,t is an

average of the past reset prices, weighted by the density of time between price changes:

pi ,t = θi
∫ t

0 e−θi h p#
i ,t−hdh +e−θi t pi ,0− (11)

Aggregate Price and GDP. The household’s demand for goods defines the aggregate Consumer

Price Index (CPI) as the expenditure share weighted average of sectoral prices:

pt =∑
i∈[n]βi pi ,t , with

∑
i∈[n]βi = 1 (12)

where β= (βi )i∈[n] is the vector of the household’s expenditure shares in the efficient steady-state.

The aggregate GDP, yt , is equal to aggregate consumption and is given by the difference between

the nominal GDP, mt , and the CPI, pt : yt ≡ mt −pt . Fully elastic labor supply implies that the wage

9Baqaee and Farhi (2020) emphasize the distinction between cost-based and sales-based input-output matrices and
Domar weights. In an efficient equilibrium, like the one we linearize around, the two are the same.
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is equal to nominal demand:10

wt = pt + yt = mt (fully elastic labor supply) (13)

Equilibrium in the Approximated Economy. Given a path for (ωt , zt ,mt )t≥0, an equilibrium is

a path for GDP, wage and prices, ϑ≡ {yt , wt , pt , (p∗
i ,t , p#

i ,t , pi ,t )i∈[n]}t≥0, such that given a vector of

initial sectoral prices, p0− = (pi ,0−)i∈[n], ϑ solves Equations (9) to (13).

Flexible Prices and GDP. Consider a counterfactual economy where all prices are flexible. By

Equation (9), we can derive flexible prices of this economy, denoted by p f
t ∈Rn , as:

p f
t = wtα+Ap f

t +ωt − zt =⇒ p f
t = mt 1+Ψ(ωt − zt ) (14)

where α≡ (αi )i∈[n] contains labor shares, 1 is the vector of ones, andΨ≡ (I−A)−1 is the inverse

Leontief matrix. A key observation is that p f
t is only a function of exogenous shocks and model

parameters. We can also derive the flexible price GDP, y f
t , in this counterfactual economy as:

y f
t = mt −β⊺p f

t = λ⊺zt︸ ︷︷ ︸
aggregate TFP

− λ⊺ωt︸ ︷︷ ︸
labor wedge

, λ≡ ( Pi Yi
PC )i∈[n] =Ψ⊺β (15)

whereλ is the vector of Domar weights in the steady state.11 Equation (15) shows that two terms

determine flexible GDP around the efficient steady-state up to first order: (1) the aggregate TFP,

which is the Domar-weighted sectoral productivities (Hulten, 1978), (2) the labor wedge due to

distortions, which is the Domar-weighted wedges across sectors (Bigio and La’O, 2020).

3 Sufficient Statistics

Here, we solve sectoral price dynamics in closed form and derive our sufficient statistics results. We

then measure these sufficient statistics for the U.S. economy and provide quantitative results on

aggregate and sectoral shocks. All proofs are included in Appendix A.

3.1. Dynamics of Prices

Let pt ≡ (pi ,t )i∈[n], p#
t ≡ (p#

i ,t )i∈[n] and p∗
t ≡ (p∗

i ,t )i∈[n] be the vectors of sectoral aggregate, reset and

desired prices, respectively. Using Equations (9) and (14):12

p∗
t = (I−A)p f

t +Apt (16)

10See Section 5.1 for an extension to the case with partially elastic labor supply.
11The Domar weight of a sector i , λi , is the ratio of its total sales to the household’s total nominal expenditures.
12Usingα= (I−A)1, the vector form of Equation (9) is p∗

t = (I−A)(1wt +Ψ(ωt − zt ))+Apt .
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where p f
t is the vector of flexible equilibrium prices in Equation (14). Equation (16) shows that

firms’ desired prices across sectors is a convex combination of exogenous flexible equilibrium prices

and endogenous sectoral prices in the sticky price economy, with the input-output matrix A fully

capturing the strategic complementarities induced by production linkages across the economy

(Blanchard, 1983, Basu, 1995, La’O and Tahbaz-Salehi, 2022).

Accordingly, reset and sectoral prices in Equations (10) and (11) solve:

π#
t ≡ ṗ#

t = (ρI+Θ)(p#
t −p∗

t ), forward-looking with lim
t→∞e−(ρI+Θ)t p#

t = 0, (17)

πt ≡ ṗt =Θ(p#
t −pt ), backward-looking with p0 = p0− (18)

Here, π#
t and πt are the inflation rates in reset and aggregate prices across sectors, respectively.

Θ = diag(θi ) ∈ Rn×n is a diagonal matrix, with its i ’th diagonal entry representing the frequency

of price adjustments in sector i .13 The memorylessness of the Poisson price adjustments (Calvo

assumption) allows us to represent this system only in terms of sectoral prices, pt :

Proposition 1. Sectoral prices evolve according to the following set of differential equations:

π̇t = ρπt +Θ(ρI+Θ)(I−A)(pt −p f
t ), with p0 = p0− given. (19)

We discuss the main implications of Proposition 1 in the following four remarks.

Remark 1. Equation (19) represents the sectoral Phillips curves of this economy in vector form,

linking changes in inflation to the gap between prices and their counterparts in a flexible economy.

The matrix Γ≡Θ(ρI+Θ)(I−A)—the Leontief matrix, I−A, adjusted by a quadratic form of price

adjustment frequencies,Θ(ρI+Θ)—encodes the slopes of these Phillips curves.

Equation (19) differs from the usual representations of Phillips curves featuring output gap.

Such an equivalent representation exists for Equation (19), which we discuss in detail in Section 4.

However, we start with the representation above because it is the most straightforward way to

demonstrate the following remarks and derive our analytical results.

Remark 2. Sectoral Phillips curves, with boundary conditions p0 = p0− and non-explosive prices,

uniquely pin down the path of sectoral prices for a given path of flexible prices (p f
t )t≥0.

The key to this observation is that the only endogenous variables in the system of second-order

differential equations in Equation (19) are nominal prices and their inflation rates, pt andπt , with

p f
t acting as an exogenous forcing term. Intuitively, nominal prices in the sticky price economy

should adjust towards their flexible levels, p f
t . This is formalized in Equation (19), where inflation in

13In this draft, we frequently use the exponential function of square matrices, defined by its corresponding power
series: ∀X ∈Rn×n , eX ≡∑∞

k=0 Xk /k !, which is well-defined because these series always converge.
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sectoral prices depends solely on the time series of nominal price gaps, pt −p f
t .

Remark 3. All shocks (ωt , zt ,mt )t≥0 affect price dynamics only through flexible prices, (p f
t )t≥0.

The observation in Remark 3 demonstrates the power of expressing inflation dynamics in terms

of nominal price gaps. It implies that solving for the dynamics of prices for a given path of p f
t is

equivalent to having characterized impulse response functions of all the prices in the economy to

all three types shocks–TFP, markup/wedge, and monetary–in a unified framework.

Remark 4. All parameters affect the dynamics of sectoral prices only through the duration-adjusted

Leontief matrix, Γ, and the household’s discount rate, ρ.

Intuitively, the dynamics of prices in a production network depend on the frequency of price ad-

justments (Θ) and how these shocks propagate through input-output linkages (the Leontief matrix).

Proposition 1 formally shows how these two mechanisms interact through Γ and ρ. Moreover, note

that substitution elasticities across different inputs have no impact on price dynamics at the first

order. This is due to the flatness of the marginal cost function with respect to inputs at the optimum

by Shephard’s Lemma (see, e.g., Baqaee and Farhi, 2020).

Given that ρ is usually calibrated close to zero, we will assume ρ = 0 going forward.14 This makes

Γ the sole object through which model parameters affect prices, allowing us to fully focus on the

economic intuition behind its effects. We now state the main result of this section.

Proposition 2. Suppose p f
t is piece-wise continuous and is bounded,15 and let ρ = 0. Then, given p f

t

and a vector of initial prices p0− , the principal square root of the duration-adjusted Leontief (PRDL)

matrix,
p
Γ, exists and is a sufficient statistic for dynamics of sectoral prices:16

pt = e−pΓt p0− +
p
Γe−pΓt

∫ t

0
sinh(

p
Γh)p f

hdh︸ ︷︷ ︸
inertial effect of past prices due to stickiness

+
p
Γsinh(

p
Γt )

∫ ∞

t
e−pΓhp f

hdh︸ ︷︷ ︸
forward looking effect of future prices

(20)

Drawing on Remarks 1 to 4, Proposition 2 presents the analytical solution for dynamics of all

sectoral prices. This solution specifically highlights the interplay between the forward-looking

nature of pricing decisions and the backward-looking nature of aggregation, Equations (17) and (18).

While firms take the future path of p f
t into account when setting prices, aggregate prices also depend

on the past path of p f
t due to the persistence of stickiness over time.

14With an annual interest rate of 0.04, ρ ≈ ln(1.04)/12 ≈ 0.003 at a monthly frequency. However, there is a literature
that reinterprets a larger ρ as a parameter for disciplining how myopic firms are in price-setting (see, e.g., Gabaix, 2020).
See Minton and Wheaton (2023) for a discussion of myopia in production networks.

15In our setting with perfect foresight, piece-wise continuity ensures that p f
t is Riemann integrable with unexpected

shocks introducing at most countable jumps in flexible prices. The boundedness assumption is not restrictive with zero
trend inflation. With trend inflation, boundedness is replaced with exponential order.

16The hyperbolic sine of a square matrix X is defined as sinh(X) ≡ (eX −e−X)/2.
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Furthermore, Proposition 2 illustrates that it is not Γ itself that is crucial for price dynamics, but

rather its principal square root, which is the square root of Γwith all eigenvalues having positive

real parts. From an economic standpoint, this square root emerges as a result of the system’s dual

forward-looking and backward-looking nature. Firms take the future and past paths of flexible

prices into account when adjusting prices so that these paths affect dynamics partially insofar as

such changes were not incorporated at the time of adjustment. Additionally, the principal square

root is the relevant square root because it is the one that adheres to stability boundary conditions.

Proving the existence of
p
Γmainly relies on the economic assumptions that all sectors have strictly

positive labor shares and price adjustment frequencies.17

Next, we explore the analytical solution presented in Proposition 2 by examining the IRFs of

sectoral prices, CPI inflation, and GDP (gap) to monetary, sectoral TFP, and wedge shocks.

3.2. Impulse Response Functions

Using Proposition 2, we can obtain IRFs by plugging in specific paths for p f
t implied by shocks.

Consider the economy in its steady state at t = 0− (left limit at t = 0), so that exogenous variables

(zt ,ωt ,mt ) = (z0− ,ω0− ,m0−) for t ↑ 0 and all prices are at their flexible level: p0− −p f
0− = 0.

3.2.1. Monetary Shocks. An expansionary monetary shock is a one-time unexpected but perma-

nent increase in nominal GDP: mt = m0−+δm ,∀t ≥ 0 where δm denotes the shock size. The implied

path for p f
t is p f

t = p f
0− +δm1, where 1 is a vector of ones.

Proposition 3. The IRFs of sectoral prices, pt ; CPI inflation, πt = β⊺πt ; GDP, yt ; and GDP gap,

ỹt ≡ yt − y f
t to an expansionary monetary shock are given by:

∂
∂δm

pt = (I−e−pΓt )1, ∂
∂δm

πt =β⊺
p
Γe−pΓt 1, ∂

∂δm
yt = ∂

∂δm
ỹt =β⊺e−pΓt 1 (21)

Proposition 3 shows: (1) The only relevant objects for the sectoral price, inflation, and GDP

dynamics are
p
Γ and expenditure shares β. Thus, we can compute these IRFs for the input-

output structure of the U.S. economy once we construct
p
Γ and the expenditure shares β from

the data. (2) Although relative sectoral prices converge back to the steady state in the long run, the

aggregate monetary shock distorts these relative prices on the transition path. These distortions

are also captured by
p
Γ and thus are measurable. (3)

p
Γ also captures the degree of monetary

17This ensures that the inverse Leontief matrix exists and has positive real entries (see, Carvalho and Tahbaz-Salehi,
2019, p. 639). We can then show Γ is a M-matrix: By Theorem 2.3 in (Berman and Plemmons, 1994, p. 134, condition
N38), this is true if Γ is inverse-positive; i.e., Γ−1 ≥ 0 elementwise. Since Θ(ρI+Θ) is invertible because θi > 0,∀i ,
and I−A is invertible because inverse Leontief exists, Γ−1 exists and is the infinite sum of positive matrices: Γ−1 =∑∞

n=0 An(ρI+Θ)−1Θ−1 ≥ 0. Finally, having shown that Γ is a non-singular M-matrix, we can apply Theorem 5 in Alefeld
and Schneider (1982) which shows that every non-singular M-matrix has exactly one M-matrix as its square root, which
is also its principal square root by properties of M-matrices.
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non-neutrality in the economy since GDP response to a monetary shock is zero in the flexible

economy. We see this in the cumulative impulse response (CIR) of GDP, obtained by integrating the

area under its impulse response function:

CIRỹ ,m ≡ ∫ ∞
0

∂
∂δm

ỹt dt =β⊺
p
Γ
−1

1 (22)

3.2.2. TFP and Wedge Shocks. How do sectoral prices, CPI and GDP respond to sectoral TFP/wedge

shocks? To answer this question, we consider the following shock to any sector i :

ωi ,t − zi ,t =ωi ,0− − zi ,0− +e−φi tδi
z , ∀t ≥ 0 (23)

Here, a positive δi
z captures a negative TFP or a positive wedge shock to sector i that decays at

the rate φi ≥ 0. We note that φi = 0 would correspond to a permanent TFP/wedge shock while a

positive φi denotes a temporary disturbance that disappears at rate φi . The implied path for p f
t ,

given such a shock, is p f
t = p f

0− +e−φi tδi
zΨei , whereΨ is the inverse Leonteif matrix and ei is the

i ’th standard basis vector. Economically,Ψei is a measure of sector i ’s upstreamness as it measures

how much sector i , directly and indirectly, supplies to other sectors.

Proposition 4. Suppose φi ∉ eig(
p
Γ).18 Then, the IRFs of sectoral prices, pt ; CPI inflation, πt =

β⊺πt ; GDP, yt ; and GDP gap, ỹt = yt − y f
t , to a TFP/wedge shock in sector i are given by:

∂

∂δi
z

pt = (e−φi t I−e−pΓt )(I−φ2
i Γ

−1)−1Ψei , ∂

∂δi
z
πt =β⊺(

p
Γe−pΓt −φi e−φi t I)(I−φ2

i Γ
−1)−1Ψei

∂

∂δi
z

yt =β⊺(e−pΓt −e−φi t I)(I−φ2
i Γ

−1)−1Ψei , ∂

∂δi
z

ỹt =β⊺(e−pΓt −φ2
i Γ

−1e−φi t )(I−φ2
i Γ

−1)−1Ψei

The most important observation from Proposition 4 is that, aside from the exogenous dynamics

introduced by the shock (e−φi t ), all endogenous dynamics are captured by e−pΓ. This is best

illustrated in the limiting case when the shock is almost permanent φi ↓ 0:

∂

∂δi
z

pt |φi ↓0 = (I−e−pΓt )Ψei , ∂

∂δi
z
πt |φi ↓0 =β⊺

p
Γe−pΓtΨei , ∂

∂δi
z

ỹt |φi ↓0 =β⊺e−pΓtΨei (24)

This observation uncovers two separate roles of the Leontief matrix in the dynamic economy.

Remark 5. The inverse Leontief matrix,Ψ, determines the static propagation of TFP/wedge shocks

by passing them through the network (ei →Ψei ). The principal square root,
p
Γ, determines the

dynamic propagation of these shocks over time (Ψei → e−pΓtΨei ).

Moreover, in response to TFP/wedge shocks, the GDP response combines both the response

under flexible prices and the response of the GDP gap under sticky prices. To separate these, we

18I.e., assume φi is not an eigenvalue of the
p
Γ matrix. This is a technical assumption that simplifies analytical

derivations, but it is not restrictive: A limit of IRFs can be taken and is valid when φi → x ∈ eig(
p
Γ).
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decompose the CIR of GDP to its two components:

CIRy,zi ≡
∫ ∞

0
∂

∂δi
z

yt dt = −φ−1
i λi︸ ︷︷ ︸

CIR
y f ,zi

≡Flexible GDP Response

(Domar-weighted cumulative TFP)

+ β⊺(φi I+p
Γ)−1Ψei︸ ︷︷ ︸

CIRỹ ,zi ≡Cumulative GDP Gap Response

(25)

This decomposition provides intuition for the limiting case when φi → 0. Note that in this case,

the flexible GDP CIR explodes because, with a permanent shock to TFP, the economy diverges

from the initial steady-state (which is why we are only considering the case when φi → 0 and not

φi = 0). However, the GDP gap CIR is not explosive in this limit as the effects of sticky prices are

only temporary deviations from the flexible price response:

CIRỹ ,zi |φi ↓0 =β⊺
p
Γ
−1
Ψei (26)

Equations (22) and (26) illustrate a more general takeaway in the context of permanent shocks.

They show that the total effect of a monetary or sectoral shock on the cumulative response of

GDP gap is a combination of two forces, where the interaction is captured by the inner product

of two vectors: (1) A vector that captures the pass-through of the shock to flexible prices (1 for

monetary shocks and Ψei for TFP/wedge shocks as seen from Equation (14)), and (2) A second

vector that captures the dynamic propagation of shocks which is independent of whether the shock

is a monetary or sectoral shock. Instead, it only depends on the expenditure share weighted inverse

PRDL matrix (β⊺
p
Γ
−1

). This is the dynamic force that converts the static pass-through of the shock

to its endogenous dynamic propagation through the terms involving e−pΓt in Propositions 3 and 4.

Accordingly,
p
Γ connects the persistence of inflation response to the shocks’ total effects on the

GDP gap. Next, we study the economic interpretation of the PRDL matrix,
p
Γ.

3.3. Perturbation Around Disconnected Economies

We have shown that
p
Γ encodes all the economic forces of the model in shaping the endogenous

dynamics of prices and GDP. But what is its economic interpretation? In principle, we could use

the Jordan decomposition of
p
Γ to conduct a spectral analysis, but this approach does not take

us far in terms of economic intuition. Suppose
p
Γ is diagonalizable so that there exists a diagonal

D = diag(d1, . . . ,dn), and an invertible matrix P such that
p
Γ= PDP−1, which for instance, would

imply that GDP and inflation responses to a monetary shock are

∂
∂δm

ỹt =β⊺e−pΓt 1 =
n∑

i=1
wi e−di t , (27)

∂
∂δm

πt =β⊺
p
Γe−pΓt 1 =

n∑
i=1

di wi e−di t , wi ≡β⊺Pei e⊺i P−11 (28)
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The problem is it is unclear how the structure of the economy is reflected in the eigenvalues {di } and

coefficients {wi }. The key idea here is to approximate an arbitrary input-output economy around

“disconnected” economies, whose eigendecomposition has a clear economic interpretation.

We do not use this approximation in the quantitative results presented in Section 3.4 below but

derive it here to provide intuition. We start by defining a disconnected economy as follows:

Definition 1. A disconnected economy is characterized by a diagonal input-output matrix.

Figure 1: Perturbation around Disconnected Economies

(a) n-Sector Disconnected Economies

L

1 2 n

H

. . .

β1

β2

βn

a11 a22 ann

(b) Perturbation towards A = [ai j ]

L

1 2 n

H

. . .

β1

β2

βn

a11 a22 ann

εa21

εa12

. . .

. . .

εan1

εa1n

Notes: Figure 1a draws the structure of disconnected economies where sectors operate independently but are allowed
to use their own output in roundabout production. Figure 1b shows our parameterized perturbation of an arbitrary
input-output matrix A around its disconnected structure: the perturbation is given by keeping a sector’s own input
shares from their output fixed, and only adding their input from other sectors proportional to an ε> 0.

Figure 1a depicts disconnected economies. These are multi-sector economies with heteroge-

neous price stickiness where sectors only use their own output in roundabout production. Discon-

nected economies are useful benchmarks because for each sector i , the corresponding eigenvalue is

its frequency adjusted by the square root of their labor share, di = θi
p

1−ai i , and the corresponding

weight in Equation (27) is the household’s expenditure share for that sector:

∂
∂δm

ỹt =
n∑

i=1
βi e−θi

p
1−ai i t , ∂

∂δm
πt =

n∑
i=1

βiθi

√
1−ai i e−θi

p
1−ai i t (29)

These expressions are now interpretable; e.g., GDP response is the expenditure-weighted average of

exponential functions, each decaying at the rate of the sector’s adjusted frequency. Moreover, note

that integrating the GDP gap response in Equation (29), we obtain:

CIRỹ ,m
∣∣
ε=0 ≡

∫ ∞

0

∂
∂δm

ỹt dt =∑n
i=1βi

1
θi
p

1−ai i
(30)

Equation (30) connects two separate insights about monetary non-neutrality in a unified frame-

work. First, when ai i = 0,∀i ∈ [n], it shows that in a pure multisector economy, monetary non-
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neutrality is the expenditure weighted average of price spell durations—which is equal to one

over frequency of each sector due to the exponential distribution of price changes. Since these

durations are convex functions of the frequencies, we can apply Jensen’s inequality to conclude

that heterogeneity in frequencies amplifies monetary non-neutrality (Carvalho, 2006, Nakamura

and Steinsson, 2010). Second, when n = 1 but a11 ̸= 0, we see that what determines monetary

non-neutrality is no longer the duration of price spells but their duration adjusted by the input

share of that sector from its total output. Since a11 > 0, we can see that fixing the frequency, a

higher input share from this final product—i.e. “roundabout” production—amplifies monetary

non-neutrality (Basu, 1995). In the more general case when n > 1 and ai i ̸= 0, Equation (30) extends

these insights and shows that, even in a disconnected economy, monetary non-neutrality depends

on the duration of price spells adjusted for the input-output structure of an economy. In particular,

it delivers the novel result that even when all sectors have the same frequency, heterogeneity in

these adjusted frequencies amplifies monetary non-neutrality.19

Now, consider an arbitrary n-sector economy with frequency matrix Θ= diag(θ1, . . . ,θn) and

input-output matrix A = [ai j ], and define the corresponding disconnected economy as AD ≡
diag(a11, . . . , ann). Thus, we can write the duration-adjusted Leontief matrix Γ =Θ2(I−A) as the

sum of the one in the disconnected economy ΓD =Θ2(I−AD ) and the off-diagonal matrix ΓR :

Γ=ΓD +ΓR , with ΓR ≡Θ2(AD −A) (31)

This is a classic exercise in perturbation theory where we replace Γwith Γ(ε) =ΓD +εΓR for some

ε > 0 and express the eigenvalues and eigenvectors as power series in ε (see, e.g., Kato 1995, ch.

2 or Bender and Orszag 1999, p. 350). The economic interpretation is that we move from the

disconnected economy, AD , towards the arbitrary economy, A, in proportion to ε, as shown in

Figure 1b. Notably, ε= 0 corresponds to the disconnected economy and ε= 1 corresponds to the

arbitrary economy A.

Generally, eigenvalues and eigenvectors of Γ(ε) do not need to be differentiable in ε, especially

for non-symmetric matrices as in our case. However, assuming that eigenvalues of ΓD are distinct

(i.e., sectors of the disconnected economy have distinct adjusted frequencies),20 we obtain the

19This follows neither from Carvalho (2006) nor Basu (1995). The latter is a one-sector economy and thus does
not have predictions for multisector economies, and the former would predict that a multisector economy with the
same frequency across sectors implies the same degree of monetary non-neutrality as a one-sector economy with that
frequency.

20This is a fairly weak assumption because ξi ’s are almost surely distinct if the distributions ofΘ and A in the data
are drawn from distributions with densities with respect to the Lebesgue measure. In other words, the event that two
sectors have the same adjusted frequencies in the data has zero probability.
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following Lemma from Theorems 1 and 2 in Greenbaum, Li, and Overton (2020).

Lemma 1. Let ξi ≡ θi
p

1−ai i and assume ξi ’s are distinct. Let (di (ε),vi (ε)) be an eigenvalue/eigenvector

pair for the principal square root of the perturbed economy,
p
Γ(ε). Then,

di (ε) = ξi +O (∥ε∥2) vi (ε) = ei +ε
[ θ2

j a j i

ξ2
j −ξ2

i

1{ j ̸=i }
]+O (∥ε∥2) (32)

Lemma 1 is useful because it links the mathematical properties of
p
Γ to its economic properties.

It shows that up to first-order in ε, the eigenvalues of
p
Γ are the same as the disconnected economy;

i.e. ∂
∂εdi (ε)|ε=0 = 0. Importantly, note that in theory, this perturbation does not have to be accurate

for ε= 1. But as we plot in Figure F.1 in the Appendix, it is a remarkably accurate approximation for

the eigenvalues of the measured
p
Γ for the U.S. economy.

3.3.1. Aggregate and Sectoral Effects of Monetary Shocks. We now discuss how monetary shocks

propagate in our approximate economy. We first present the results for sectoral inflation and then

aggregate these responses to obtain the effects on CPI inflation and GDP.

Proposition 5 (Sectoral Inflation Responses). Suppose {ξi ≡ θi
p

1−ai i }i∈[n] are distinct. The im-

pulse response of inflation in sector i ∈ [n] to a monetary shock is:

∂
∂δm

πi ,t = ξi e−ξi t

︸ ︷︷ ︸
disconnected baseline

+ε∑
j ̸=i

ξi ai j

1−ai i
× ξi

ξi +ξ j
× ξ j e−ξ j t −ξi e−ξi t

ξi −ξ j︸ ︷︷ ︸
first order effect of the network

+O (∥ε∥2) (33)

Equation (33) shows that introducing production linkages creates spillover effects on the infla-

tion of sector i through all of its suppliers, captured by the term labeled the “first order effect of

the network.” It is straightforward to verify that these first-order effects are negative initially but

turn positive after some t . Intuitively, since i ’s suppliers have sticky prices, increasing production

linkages (higher ε) leads to an initial dampening of the inflation response in sector i to a monetary

shock. However, since money is neutral in the long run, this dampened response has to be com-

pensated for in terms of inflation in the long run, which implies that inflation in sector i is more

persistent with higher ϵ. The following corollary shows how these sectoral effects translate into the

response of aggregate inflation to monetary shocks.

Proposition 6 (Impact and Asymptotic Inflation Response). Input-output linkages dampen CPI

inflation response to a monetary shock on impact but amplify its persistence.

∂
∂ε [ ∂

∂δm
π0]

∣∣
ε=0︸ ︷︷ ︸

∂impact response/∂ε

=−
n∑

i=1
βi

∑
j ̸=i

ξi ai j

1−ai i
× ξi

ξi +ξ j
< 0 (34)
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ι≡ argmin
i

{ξi } =⇒ ∂
∂ε

[ ∂
∂δm

πt |t→∞]
∣∣
ε=0︸ ︷︷ ︸

∂asymptotic response/∂ε

∼ ∑
j ̸=ι

(
β jξ

2
j

a j ι

1−a j j
+βιξ2

ι

aι j
1−aιι

)ξιe−ξιt

ξ2
j −ξ2

ι

> 0 (35)

Finally, we show in the next proposition that this increase in the persistence of inflationary

responses due to input-output linkages corresponds to an increase in monetary non-neutrality.

Proposition 7 (Monetary Non-Neutrality). Input-output linkages amplify monetary non-neutrality

measured by the CIR of GDP to a monetary shock.

CIRỹ ,δm =
n∑

i=1
βiξ

−1
i︸ ︷︷ ︸

direct effect
of sector i

+ε
n∑

i=1

1︷︸︸︷
ξ−1

i ×
n∑

j ̸=i

2︷︸︸︷
a j i ×

3︷ ︸︸ ︷
β j

1−a j j
×

4︷ ︸︸ ︷
ξ−1

i

ξ−1
i +ξ−1

j︸ ︷︷ ︸
first-order indirect effect of

sector i through network ≥0

+ O (∥ε∥2)︸ ︷︷ ︸
higher-order

effects

(36)

Equation (36) shows how monetary non-neutrality varies with ε around the disconnected

economy. First, the term labeled the “direct effect of sector i ” corresponds to the expression in

Equation (30) and its ensuing discussion, where the contribution of each sector to monetary non-

neutrality is its expenditure weighted adjusted duration. Beyond this direct effect, each sector i also

contributes to monetary non-neutrality through all of its downstream firms, the first-order terms of

which are labeled 1 − 4 .

For economic interpretation of these terms, note that, intuitively, input-output linkages amplify

monetary non-neutrality through a sector i by propagating its price stickiness to its downstream

firms. Thus, the first important factor on how much monetary non-neutrality will increase through

i (indirectly) should depend on the adjusted duration of sector i ’s own price spells, which is what 1

captures. Given this adjusted duration, to capture the total first-order indirect effects of a sector i

on monetary non-neutrality, we then need to sum over its immediate downstream sectors, captured

by
∑

j ̸=i in Equation (36). For each downstream sector j , then we need to take into account the

exposure of that sector to sector i , captured by its expenditure share a j i in 2 . Moreover, we need

to take into account sector j ’s own centrality in affecting GDP, which is captured by its Domar

weight in the disconnected economy, which we have labeled 3 .21 Finally, the term under 4

captures the dynamic adjustment based on the relative adjusted duration of the upstream sector

i to downstream sector j . When the adjusted duration of price spells in the upstream sector i is

relatively small compared to that of the downstream sector j , then firms in j are not very responsive

to the price changes of supplier i anyways, so the indirect effect of sector i through sector j is

21It is easy to verify that the Domar weight of any sector j in the disconnected economy is its expenditure share
divided by 1−a j j .
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muted. Alternatively, when sector j is more flexible relative to its supplier i , then i ’s indirect effect

through j is amplified because prices in j would have been more responsive to monetary shocks

were it not for the stickiness in their marginal costs through i .

Thus, with more input-output linkages, monetary non-neutrality becomes larger through the in-

teraction of these four forces. We use these findings in our quantitative analysis below in identifying

sectors that have disproportionate effects in the propagation of monetary shocks.

3.3.2. Aggregate Effects of Sectoral Shocks. We now characterize the pass-through of sectoral

inflation to aggregate CPI inflation. The experiment is to consider a negative sectoral TFP shock to

sector i that raises the inflation rate in that sector by 1 percent on impact. Our goal is to characterize

how much aggregate CPI inflation rises in response to this sectoral shock, and how this pass-through

is affected by the network. The following proposition presents this pass-through for the impact

response of inflation. The full expression for the dynamic response of inflation is available, but

more complicated and is only included in the proof of the proposition.

Proposition 8 (Pass-through of Sectoral to Aggregate Inflation). Input-output linkages amplify the

pass-through of sectoral inflation rates to aggregate CPI inflation.

∂π0

∂πi ,0

∣∣
δi

z
= βi︸︷︷︸

direct pass-through

+ε∑
j ̸=i

1︷︸︸︷
a j i ×

2︷ ︸︸ ︷
β j

1−a j j
×

3︷ ︸︸ ︷
φ−1

i

ξ−1
j +φ−1

i

×

4︷ ︸︸ ︷
ξ−1

i

ξ−1
i +ξ−1

j︸ ︷︷ ︸
first-order indirect pass-through via network

+ O (∥ε∥2)︸ ︷︷ ︸
higher-order

effects

(37)

Equation (37) relates the pass-through of sectoral inflation rate in sector i to aggregate inflation

conditional on a negative TFP shock to sector i . The first term on the right-hand side is the direct

pass-through of sectoral inflation to aggregate inflation: a one percent inflation in sector i directly

feeds to inflation proportional to the expenditure share of the sector, denoted by βi . The second

term, which itself consists of four components, labeled by 1 − 4 , captures the first-order indirect

pass-through of sectoral inflation to aggregate inflation through the network.

The indirect effect can be understood as follows: an inflationary shock in sector i , up to first-

order, propagates through its buyers. Thus, we need to sum over all the other sectors that purchase

from i . When considering a buyer j ̸= i , the impact of i ’s inflationary shock on the economy

through j is proportional to j ’s expenditure share on i , 1 , and j ’s own Domar weight in the

baseline economy, 2 . These two components jointly determine the potency of i ’s shock on j

and resemble what is known from static models. The next two terms, however, capture dynamic

considerations. The term labeled 3 accounts for the fact that if the duration of the shock to i , φ−1
i ,
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is small compared to the adjusted duration of price spells in the downstream sector j , ξ−1
j , then the

shock’s pass-through via j is weakened. This occurs because stickier downstream sectors, measured

by their adjusted duration ξ−1
j , are less responsive to a transient shock because they anticipate it

will dissipate relatively faster than prices in their sector will adjust. The term under 4 captures

a similar effect, but relative to the adjusted duration of price spells in the upstream sector i itself.

When the adjusted duration of price spells in the upstream sector i is relatively small compared

to that of the downstream sector j , then firms in j are not very responsive to the price changes of

supplier i since they anticipate those prices will readjust faster than their own prices.

3.4. Measurement and Quantitative Implications

In this section, we measure the sufficient statistics implied by the model for the U.S. and study the

dynamic responses of inflation and GDP using the statistics.

3.4.1. Sufficient Statistics Construction From Data. Propositions 2 to 4 show that the sufficient

statistics for inflation and GDP dynamics are the PRDL matrix,
p
Γ, and the expenditure shares

vector, β. We use the make and use input-output (IO) tables from 2012, made available by the

BEA, to construct the input-output matrix A; the consumption expenditure share vector β; and

the sectoral labor shares vectorα. We construct them at the detailed disaggregation level, which,

excluding the government sectors, leads to 393 sectors. Figure F.2 shows the heatmap of the matrix

A that we construct from the data. Moreover, we construct the diagonal matrixΘ2, whose diagonal

elements are the squared frequency of price adjustments in these sectors, using data on 341 sectors

from Pasten, Schoenle, and Weber (2020). A detailed description is provided in Appendix E.

3.4.2. Dynamic Aggregate Responses to a Monetary Policy Shock. Panel A of Figure 2 shows

impulse responses of aggregate inflation and GDP to an expansionary monetary policy shock in our

calibrated economy. The size of this shock is normalized so that inflation responds by 1 percent

on impact, after which it slowly goes back to its steady state level at zero. The persistence of this

convergence is governed by our measured
p
Γ, with a half-life of around 6 months. Moreover, the

shock has substantial real effects. GDP rises by around 10 percent on impact and decays slowly

back to zero. The cumulative response of GDP is about 131 percent.

To illustrate the roles of various model ingredients that lead to such substantial real effects, we

consider the following counterfactual experiments. In these counterfactuals, the initial impact on

inflation is always at 1 percent.22 In Panel B of Figure 2, we compare our calibrated economy to a

22The monetary policy shock size is therefore different across the baseline and the counterfactual cases. Recall that
the cumulated impulse response of aggregate inflation corresponds to the monetary policy shock size in our model.
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horizontal economy, where we set A = 0 while keepingΘ the same as before. Thus, this economy

features no input-output linkages but has the same price change frequencies. The cumulative

impulse response of GDP is 4.1 times larger in our baseline economy. Strategic complementarity in

price setting that arises through input-output linkages, as we pointed out in the discussion below

Equation (16), is the driving force for this result. This in turn leads to a more persistent inflation

response, which amplifies GDP response both on impact and over time. These results quantify our

analytical results for inflation persistence and monetary non-neutrality in Propositions 6 and 7.

In addition to input-output linkages, another source that amplifies the real effects of monetary

policy is heterogenous price stickiness across sectors, as discussed below Equation (30) and Propo-

sition 7. To investigate the role of this channel, in Panel C of Figure 2, we compare our calibrated

baseline economy to an economy with homogenous frequencies, which keeps A the same as before

but sets Θ = θ̄I. We calibrate the frequency of price changes in this economy to be the same as

the expenditure-weighted average of the frequency of price changes across sectors in our baseline

economy—i.e., θ̄ ≡ βiθi . Note that this economy still features the same input-output linkages,

and through that, strategic complementarities in price setting. The cumulative impulse of GDP

is 2.4 times larger in our baseline economy, which shows that heterogeneity in price stickiness

across sectors does play a quantitatively important role in magnifying monetary non-neutrality. The

quantitative importance of this channel, however, is not as high as that of input-output linkages.

Finally, shutting down both channels, in Panel D of Figure 2, we compare our calibrated baseline

economy to a horizontal economy with homogenous price stickiness across sectors (A = 0,Θ= θ̄I).

The cumulative impulse response of GDP is 6.9 times larger in our baseline economy.23 This total

effect is approximately equal to the sum of the two separate counterfactual effects we showed above.

3.4.3. Heterogeneous Sectoral Inflation Responses to a Monetary Policy Shock. Underlying the

aggregate inflation response to the monetary shock discussed above is a distribution of sectoral

inflation responses. In Figure 3, we show impulse responses of some selected sectors’ inflation to

an expansionary monetary policy shock. Sectoral inflation responses differ significantly both in

terms of the impact response and the persistence, and moreover, sectors where inflation responds

by a larger amount initially have more short-lived responses. In particular, Figure 3 shows that

sectoral inflation in the Oil and Gas Extraction industry is high in the initial periods but dissipates

Keeping the initial impact on aggregate inflation the same across various model specifications brings out the crucial
role played by the persistence of inflation.

23Note that even in this textbook type multisector New Keynesian model, inflation effects are persistent because our
modeling of monetary policy preserves an endogenous state variable. This is a standard approach in the literature on
sufficient statistics of monetary policy shocks, but is a different approach than assuming a Taylor rule where the interest
rate feedback coefficient is on inflation. We show results from this case later.
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fast, while sectoral inflation in the Semiconductor Manufacturing Machinery industry responds by

a small amount initially but is persistently positive over time. For completeness, Table F.1 provides a

ranking of the top twenty sectors by their initial sectoral inflation response while Table F.2 provides

a ranking of the top twenty sectors by the half-life of their sectoral inflation response.

For interpretation, we turn to Proposition 5 and its discussion, where we showed that inflation

in sectors with more flexible prices and less input-output linkages respond more strongly initially.

Specifically, Equation (33) showed that the relevant statistic for impact sectoral inflation response

(evaluated at t = 0) is ξi − ε∑
j ̸=i

ξi ai j

1−ai i

ξi
ξi+ξ j

. Panel A of Figure 4 shows the correlation between

the actual ranks of sectors and the ranks predicted from this statistic. The approximated statistic

accounts extremely well for the exact numerical results. Moreover, as mentioned above, sectors

where inflation responds more initially tend to have short-lived responses. Panel B of Figure 4 shows

the correlation between actual ranks of sectors given by half-life of sectoral inflation response and

the ranks predicted from this statistic for impact response. The correlation is strongly negative.

3.4.4. Sectoral Origins of Aggregate Inflation and GDP Dynamics. Motivated by supply chain

issues, commodity price increases, and persistent aggregate inflation in the U.S. recently, we now

study aggregate implications of sectoral shocks. Specifically, we compute sectoral shocks that

lead to a 1 percent increase in sectoral inflation and then study the pass-through of such sectoral

inflation increases on aggregate inflation. The average duration of the sectoral shocks is 6 months.24

We start by identifying sectors that lead to a high on-impact response of aggregate inflation

in Table 1. We provide a ranking of the top twenty sectors by their initial effect on aggregate

inflation, where we remove the effect coming from the size of the sector. This metric, therefore,

provides an evaluation of the spillover of sectoral inflation to aggregate inflation due to input-

output linkages for in the absence of such linkages, this pass-through metric would be zero for all

sectors.25 As one example, the Oil and Gas Extraction industry ranks very high in Table 1. As we

showed analytically in Proposition 8, sectors that serve as input to other sectors and have more

input-output adjusted sticky prices cause greater spillover to aggregate inflation. Specifically, in

Equation (37) we showed that the relevant statistic for this impact pass-through on aggregate

inflation is
∑

j ̸=i β j
a j i

1−a j j

φ−1
i

φ−1
i +ξ−1

j

ξ−1
i

ξ−1
i +ξ−1

j
. Panel A of Figure 5 shows the correlation between the actual

ranks of sectors and the ranks predicted from this statistic. The approximated statistic accounts

well for the exact numerical results, thereby providing an economic interpretation to the rankings.

24We interpret these sectoral shocks as negative supply shocks. Note that while the average duration of the sectoral
shock is the same across all sectors, the size of the sectoral shock is different in this exercise as we calibrate the size
such that sectoral inflation increases by 1 percent across all sectors.

25We are thus capturing what are sometimes called second-round effects of sectoral inflation increases.
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We next identify sectors that lead to persistent aggregate inflation dynamics when sectoral

inflation increases by 1 percent. Table 2 provides a ranking of the top twenty sectors by the half-life

of the aggregate inflation response. One clear pattern emerges: Sectors with more sticky prices lead

to persistent aggregate inflation dynamics when sectoral shocks cause a rise in sectoral inflation.

Semiconductor Manufacturing Machinery industry is one sector that ranks high in Table 2. These

results highlight that identifying which sectors are the main sources of persistent aggregate inflation

dynamics is critical because those persistent effects translate to larger aggregate GDP gap effects.

We discussed this link and the theoretical reasons behind it in the discussion below Equation (26).

To make this clear quantitatively, in Panel B of Figure 5, we show that the cumulative impulse

response of aggregate GDP gap is very tightly correlated with the half-life of aggregate inflation.26

This implies that it is precisely the shocks to sectors that are the sources of persistent aggregate

inflation dynamics that will have a bigger impact on the real macroeconomy.

3.4.5. A Spectral Analysis of Aggregate Inflation Persistence. So far, we have highlighted the

critical role played by the persistence of aggregate inflation in driving macroeconomic dynamics.

In particular, for monetary shocks, we showed in Section 3.4.2 that model features which increase

the persistence of aggregate inflation lead to higher monetary non-neutrality. We now investigate

further the origins of aggregate inflation persistence by identifying which sectors play a key role in

propagating monetary policy shocks in the longer run. In terms of long-run dynamics, given our

analytical solution, the smallest eigenvalues of Γ≡Θ2(I−A) play the dominant role.

Theoretically, eigenvalues as such depend on the whole network and might not be intimately

connected to any particular sector. To make such a connection, we turn to Lemma 1, which

showed that these eigenvalues are given by di = θi
p

1−ai i +O
(∥ε∥2

)
. To measure the accuracy of

this approximation, in Table 3, we sort the eigenvalues of Γ ≡Θ2(I−A) together with θi
p

1−ai i

for several industries. The eigenvalues are extremely close across these two cases, thus helping

us identify sectors that are associated with the smallest eigenvalues. Figure F.1 shows that this

extremely close association holds across the full range of eigenvalues. This remarkable accuracy

stems from the feature that the diagonal entries of the input-output matrix are large relative to its

off-diagonal entries. Accordingly, an application of Gershgorin circle theorem delivers a visual and

complementary interpretation of why this approximation is so accurate.

To show the aggregate implications of shocks to these sectors with the lowest eigenvalues,

we do a counterfactual exercise by dropping the three sectors with the smallest eigenvalues and

26We compute the ratio of the cumulated impulse respone of GDP to the cumulated impulse response of GDP under
flexible prices for a unit sectoral shock. The size of the sectoral shocks are thus the same in this experiment.
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recomputing the impulse responses of inflation and GDP.27 Just dropping these three sectors leads

to a noticeable change in dynamics, with the cumulated IRF of real GDP in the calibrated economy

higher by around 16 percent.28 These results show that a few sectors play a very influential role in

driving monetary non-neutrality in the economy as they determine the persistence of aggregate

inflation. To show this clearly, in Figure 6 we plot the impulse responses of inflation and GDP to

a monetary shock for both our calibrated and counterfactual economies. They depict that over

the longer horizon, inflation response is lower in the counterfactual economy and this difference

in dynamics gets reflected in a lower response of real GDP throughout. We had highlighted this

critical role of sectors with low ξi = θi
p

1−ai i in driving monetary non-neutrality analytically in

Proposition 7 and results here are the quantitative counterpart.

4 Propagation with Endogenous Monetary Policy Responses

So far, we have focused on the economy’s responses to monetary policy and sectoral TFP/wedge

shocks separately. In this section, we investigate the response of inflation and GDP to sectoral

shocks, when monetary policy endogenously responds to these shocks; specifically, when monetary

policy aims to stabilize CPI inflation. We begin by outlining the aggregate Phillips curve and identify

novel forces resulting from multi-sector production linkages. Additionally, we discuss how monetary

policy responses to sectoral shocks can nontrivially impact their transmission.

4.1. Phillips Curves Revisited

In Proposition 1, we derived sectoral Phillips curves in terms of inflation and nominal price gaps

and discussed how this representation delivers analytical results for general paths of money, pro-

ductivities, and wedges. To study endogenous monetary policy responses, however, it is useful

for us to relate our results to more conventional representations of Phillips curves in New Keyne-

sian (NK) economies, which involve output gaps, combined with real wage gaps in sticky-price

and sticky-wage models (e.g., Woodford, 2003a, Galí, 2008), or relative price gaps in multi-sector

economies (e.g., Aoki, 2001, Benigno, 2004).

To this end, consider the sectoral Phillips curves in Proposition 1 and define the relative sectoral

prices, qt ≡ pt − pt 1, as the vector of sectoral prices relative to the CPI price index in log form.

27In this exercise, we recompute the counterfactual input-output matrix by moving the share of these dropped sectors
(as inputs) to the labor share. Moreover, these sectors correspond closely to sectors that have the highest half-life of
sectoral inflation to a monetary shock.

28Two of these sectors have a zero sectoral share in aggregate GDP while the third one has an extremely small sectoral
share of 0.0015 percent. As such, in a disconnected economy, dropping them would not have affected the response of
aggregate GDP. That is, the “direct effect of sector i ” term in Equation (36) would be zero for these sectors.
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Similarly, let q f
t ≡ p f

t −p f
t 1 denote the same object in the flexible price economy, and ỹt ≡ yt − y f

t

denote the GDP gap. Then, we can re-write Equation (19) as:

π̇t = ρπt +Γ(qt −q f
t )−Γ1ỹt (38)

which shows that the nominal price gaps can be decomposed into relative price gaps and a term

that involves the aggregate GDP gap.29 Thus, in a network economy, relative price distortions

affect inflation dynamics independently of the GDP gap. For instance, even if monetary policy

fully stabilized the GDP gap (ỹt = 0), inflation rates across sectors would still move until relative

prices are at their flexible levels. Such inflation that is due to differences in flexible levels of relative

prices is closely related to the characterization of conflict inflation developed by Lorenzoni and

Werning (2023a), connecting our representation of the Phillips curves in network economies to

their discussion of inflation in two sector economies. Importantly, Γ=Θ(ρI+Θ)(I−A) remains the

sufficient statistic for the effect of these relative price distortions on inflation dynamics.

Moreover, we obtain the equivalence result that any two economies with the same Γ matrix

deliver the same inflation dynamics, whether it reflects heterogeneous price stickiness as in Aoki

(2001), Benigno (2004) or production linkages across sectors. This result also reflects the new forces

that are introduced through networks. Multisector economies without production linkages restrict

Γ to be diagonal, implicitly putting the most sticky sectors as the drivers of inflation persistence.

With production linkages, Γ can be non-diagonal, implicitly capturing the indirect effects of price

stickiness across sectors on inflation persistence through production linkages.

Moreover, the independent role of relative price distortions in these Phillips curves undermines

the conventional wisdom on the sufficiency of the slope of the aggregate Phillips curve in determin-

ing inflation dynamics. To elaborate on this point, let us consider the aggregate Phillips curve for

the CPI inflation, which can be derived by multiplying Equation (38) with β⊺ from the left:

π̇t = ρπt +β⊺Γ(qt −q f
t )−β⊺Γ1ỹt (40)

The coefficient on the GDP gap in Equation (40), β⊺Γ1, is usually referred to as the slope of the

Phillips curve and it holds significance in the literature for the following two reasons.

First, in one-sector economies, the term involving relative price gaps is zero.30 So the slope

29This equation is perhaps more familiar in its discrete-time form. To see this, note that d
dtπt = limdt→0(πt+dt−πt )/dt .

For small dt one can substitute this to get the familiar discrete time version under perfect foresight:

πt = (1−ρdt )πt+dt −Γ(qt −q f
t )dt +Γ1ỹt dt (39)

30To see this, note that in a one-sector economy the relative price qt = pt −pt = 0 because the CPI is equal to the final

price of the economy’s single sector. Similarly, q f
t = 0. Thus, for a one-sector economy π̇t =−β⊺Γ1ỹt .
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β⊺Γ1 > 0 uniquely captures all inflationary forces, determining the degree to which changes in GDP

gap translate into changes in inflation. With multiple sectors and production linkages, however,

this slope is insufficient for characterizing inflation dynamics and can even be misleading if the role

of relative prices is not taken into account, as we discuss further below.

The second reason is its empirical interpretation. Conditional on the term involving relative

price gaps being zero—e.g., the one-sector model—the slope of the Phillips curve is the elasticity of

inflation to demand shocks. Note that the Phillips curve is an endogenous relationship and does

not imply a causal relationship on its own. However, once one writes the Phillips curve so that

the only term on the right-hand side is the GDP gap (if such a representation is possible), then by

estimating its slope, one can identify the inflationary effects of demand shocks.

Nonetheless, such a representation does not necessarily exist in multisector economies. For

instance, Hazell, Herreno, Nakamura, and Steinsson (2022) demonstrate this in a two-sector model

with GHH preferences, which eliminates the term involving relative price gaps. As they observe,

without such assumptions, multi-sector economies do not necessarily admit aggregate Phillips

curves with only inflation and output gap terms. We can also observe this in Equation (40): since Γ

is invertible, the only model that admits a representation of the aggregate Phillips curve with only

inflation and output gap is one where the expenditure share β is a left eigenvector of the Γmatrix,

which is a very strict restriction on price stickiness and production linkages across sectors. Two

obvious examples of such economies are the one-sector economy as well as multi-sector economies

with no production linkages (A = 0) and homogenous price stickiness (Θ= θ̄I).

More generally, Rubbo (2023) addresses this issue from an alternative perspective and shows

that while the aggregate Phillips curve in multi-sector economies with production networks involves

terms other than the GDP gap, there always exists a composite price index whose corresponding

Phillips curve only includes inflation in that price index and the GDP gap. Rubbo (2023) refers to

this price as the “divine coincidence index” because a policy that stabilizes this index in an economy

with only TFP shocks also automatically stabilizes GDP gap.31

But what can the slope of the aggregate Phillips curve for CPI inflation, β⊺Γ1, tell us about

inflation and GDP dynamics in economies with production networks? More specifically, can it still

31Rubbo (2023) proves this result generally for all production network economies. Special cases of this result in two
sector economies with heterogeneous price stickiness as well as models with sticky prices and sticky wages are also
discussed in (Woodford, 2003b, page 442) and (Galí, 2008, Equation (33) and the discussion on page 137), respectively.
To see Rubbo (2023)’s point in our framework, define the divine coincidence price index as pDC

t ≡β⊺Γ−1pt /(β⊺Γ−11).
Using Equation (38), inflation in this price index evolves according to

π̇DC
t = ρπDC

t − 1
β⊺Γ−11

ỹt , β⊺Γ−11 =∑
i∈[n]λiθ

−2
i (41)
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predict the inflationary pressures of demand shocks, at least qualitatively? The answer is no. To

illustrate this, we construct a counterexample where the slope is not only insufficient in predicting

the magnitudes of these dynamics but is also misleading in predicting the direction of the effects of

monetary shocks (the demand shock in our model) on inflation and GDP.

To this end, consider a counterexample with the following two economies: (1) A horizontal

economy where price change frequencies across n ≥ 1 sectors are heterogeneous, with no input-

output linkages (A = 0). (2) A homogenuous economy, also with no input-output linkages, where

price change frequencies are homogeneous across sectors given by the expenditure-weighted

average of frequencies in the horizontal economy, i.e., θ̄ =∑
i βiθi . We have the following result.

Proposition 9. Consider the horizontal and homogeneous economies described above. Then,

(1) When n = 1, in both economies, monetary non-neutrality is higher when the aggregate Phillips

curve is flatter. (2) When n > 1, with at least two sectors having distinct frequencies of price changes,

the horizontal economy experiences strictly higher monetary non-neutrality even though that it has

a strictly steeper aggregate Phillips curve than the homogeneous economy.

4.2. Quantitative Results

We now present quantitative results that are counterparts to our theoretical discussions above. We

compute the slope of the aggregate Phillips curve in various economies and also show how different

monetary policy responses can alter the transmission of sectoral shocks.

In Section 3.4.2, we presented the extent of monetary non-neutrality in our baseline and various

counterfactual economies. Consistent with Proposition 9, here, we show these effects are not

reflected by the slope of the aggregate Phillips curves, β⊺Γ1 in Equation (40), in these economies.

These slopes are as follows: In our calibrated economy, it is 0.0187; in the horizontal economy,

it is 0.1135; in the homogeneous price stickiness economy, it is 0.0190; and in the horizontal

and homogeneous price stickiness economy, it is 0.0526. Notice the lack of correlation between

these slopes and the ranking of monetary non-neutrality. For instance, the slope is steeper in the

horizontal economy compared to the economy that is both horizontal and has homogeneous price

stickiness across sectors. As we showed in Section 3.4.2, however, monetary non-neutrality is much

lower in the economy that is both horizontal and has homogeneous price stickiness across sectors.

This failure of β⊺Γ1 to predict the GDP effects of monetary policy shocks is due to the disagreement

of relative prices in the aggregate Phillips curve in Equation (40) and highlight the importance of

these relative distortions, consistent with the insights of Lorenzoni and Werning (2023a).

As our final exercise, we show how different monetary policy responses can alter the trans-
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mission of sectoral shocks. For this exercise, we choose Oil and Gas Extraction industry and

Semiconductor Manufacturing Machinery industry as representatives of upstream industries with

high and low adjusted price change frequencies, respectively. In Figure 7, we plot impulse responses

for the two sectoral shocks under (a) our baseline monetary policy, which stabilizes nominal rates,32

and (b) under a policy that fully stabilizes aggregate inflation. The sectoral shocks are calibrated to

lead to a 1 percent increase in sectoral inflation under the baseline monetary policy specification.

As discussed in Section 3.4.4, sectoral inflation in the Oil and Gas Extraction industry passes

through substantially on impact to aggregate inflation, but the effects are very transient. The key

result we want to highlight is that if monetary policy responds by stabilizing aggregate inflation

driven by a shock to Oil and Gas Extraction industry, it creates a large negative GDP gap. In fact,

this policy is so contractionary that it leads the GDP in the economy to fall below the GDP under

flexible prices!33 In contrast, stabilizing aggregate inflation due to a shock to the Semiconductor

Manufacturing Machinery industry is not nearly as contractionary in terms of aggregate GDP. The

reason for this sharp difference is that the Oil and Gas Extraction industry has a relatively short

adjusted price spell durations, and as such, rises in sectoral inflation in that sector do not cause

large dispersion in relative prices when policy does not respond to it. However, when monetary

policy does respond by stabilizing aggregate inflation it creates large relative price gaps that lead

to a negative aggregate GDP gap. To illustrate, Figure F.3 repeats this exercise in a homogeneous

frequency of price adjustment across sectors and there, it is clear that responding to inflation

originating in the Oil and Gas Extraction industry does not lead to negative GDP gap effects.

5 Extensions

We now present several extensions of our theoretical and quantitative results.

5.1. General Labor Supply Elasticity

So far, we used preferences that imply an infinite Frisch elasticity of labor supply. Our solution

techniques, analytical results, and quantitative insights do not, however, depend on this simplifica-

tion. In Appendix D.1, we present the details of the model with a general labor supply elasticity and

present here the counterpart of Proposition 1 with ρ = 0:

π̇t =Γ(I+ψ1β⊺)(pt −p f
t ), p f

t ≡ mt 1−Ψzt + (Ψ− ψ

1+ψ1λ⊺)ωt (42)

32Note that with Golosov and Lucas (2007) preferences, as our baseline monetary policy fixes nominal GDP at some
m, it also fixes nominal interest rates at ρ.

33This is a direct consequence of network spillover effects as such responses are not possible in one sector NK models.
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where ψ is the inverse Frisch elasticity of labor supply. We can then extend Propositions 3 and 4

to this case by replacing Γwith Γψ ≡Γ(I+ψ1β⊺) and adjusting for p f
t as above. In particular, the

impulse responses for monetary and sectoral productivity shocks only change through Γψ. The

impulse responses for sectoral wedge shocks, however, also need to be adjusted through p f
t .

In Figure F.4 we show impulse responses of aggregate inflation and GDP to an expansionary

monetary policy shock when the Frisch elasticity is calibrated at 2. For comparison, we also

present the results from our baseline calibration. Since a finite Frisch elasticity introduces aggregate

strategic substitutability, it reduces the persistence of inflation and thereby, the extent of monetary

non-neutrality. More importantly, this calibration does not alter our quantitative results on the

various forces that drive monetary non-neutrality, as shown in Figure F.5 - Figure F.7. Finally,

Figure F.8 shows that the distribution of sectoral inflation response after a monetary policy shock

depicts the same patterns as in Section 3.4.2.

5.2. Taylor Rule as Monetary Policy Rule

For our baseline anlaysis, we used a monetary policy rule as determining a path of nominal GDP,

which kept the analysis similar to the theoretical literature on monetary non-neutrality and high-

lighted the role of endogenous persistence in the model. We now model monetary policy as

following a rule in which the nominal interest rate responds to aggregate inflation. Our model

derivations generalize to using such a Taylor rule and the details are in Appendix D.2. We need to

impose boundary conditions that ensure that inflation and relative sectoral prices are stationary

and for solving the resulting set of equilibrium system of equations, we use a Schur decomposition.

Here, we discuss some key aspects of the equilibrium. First, the counterpart of Proposition 1

with ρ = 0 and a Taylor rule, it =φπβ⊺πt + vt —where vt captures deviations from the rule—is:34

π̈t =Γ(I−φπ1β⊺)(πt −π f
t ), (I−φπ1β⊺)π f

t ≡ 1vt −Ψ(żt − ω̇t ) (43)

In this representation,π f
t is the sectoral inflation rate that would have prevailed in a flexible price

economy with the same Taylor rule and is exogenous to the system of differential equations. We

can see that this equation differs from our Proposition 1 in two aspects. First, it is a second-order

differential equation inπt rather than in prices. This is because, with an inflation-targeting Taylor

rule, the economy is no longer price stationary, similar to one-sector New Keynesian models.

Second, the dynamics of the second-order differential equations are governed by Γ, now adjusted

for the endogenous response of monetary policy through the Taylor rule: Γφ,π ≡Γ(I−φπ1β⊺).

34In Appendix D.2 we derive more general versions of these conditions for ρ ̸= 0 and a Taylor that targets other
inflation indices.
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A Taylor rule in terms of inflation makes sticky price models forward-looking and thus the

source of persistence is exogenous.35 In our baseline calibration, fixing the Taylor rule coefficient at

the standard value of φπ = 1.5, we introduce persistent shocks to the Taylor rule. We then calibrate

the size and persistence of the shocks to generate a response of aggregate inflation that matches the

aggregate inflation response in our nominal GDP rule economy of Section 3.4.2.36 Figure F.9 shows

the impulse responses of aggregate inflation and GDP to an expansionary monetary policy shock.

The monetary non-neutrality, by design, is essentially the same as in Section 3.4.2.

Given this calibrated Taylor rule economy, we investigate the various forces that drive monetary

non-neutrality using counterfactual exercises, which are presented in Figure F.10 - Figure F.12.37

Overall, these results are consistent with our main conclusion that both production networks and

heterogenous price stickiness play a quantitatively important role in amplifying monetary non-

neutrality. We note that the amplification coming from them jointly, compared to the horizontal

economy with homogenous price stickiness across sectors, is a bit smaller than in Section 3.4.2. The

reason is that in this economy, persistent dynamics in inflation come about through persistence

in the monetary policy shock itself, which increases monetary non-neutrality even in the basic

multi-sector economy.38 Additionally, Figure F.13 shows that the distribution of sectoral inflation

response after a monetary policy shock depicts the same patterns as in Section 3.4.2.

6 Conclusion

In this paper, we derive closed-form solutions for inflation and GDP dynamics in multi-sector New

Keynesian economies with arbitrary production networks. Our theoretical results clarify the inter-

action of nominal rigidities and production networks in shaping the propagation of aggregate and

sectoral shocks. In particular, they emphasize how sectors with small and negligible consumption

and expenditure shares could have large and persistent spillover effects on aggregate inflation and

GDP through the network.

In a series of new analytical results, we isolate the precise interactions of production linkages and

35In the standard three equation sticky price model with a Taylor rule, the economy is fully forward-looking.
36We match exactly the initial response and the half-life of aggregate inflation in these two economies.
37In these counterfactual exercises, we keep the monetary policy shock and persistence the same as the baseline

calibration. The reason is that with the Taylor rule as a monetary policy rule, inflation becomes forward-looking in
the model and as such, differences in model features show up as affecting the level response of inflation, and not the
persistence. We thus will not fix the impact response of inflation across various counterfactual exercises. For intuition,
in the one-sector model with the Taylor rule, the slope of the Phillips curve that incorporates strategic complementarity
only shows up as affecting the impact response of inflation.

38In addition, compared to the results in Section 3.4.2, production networks and heterogenous price stickiness play a
similar role quantitatively.
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price stickiness across sectors and show how stickiness trickles to downstream sectors through the

input-output network. We also show that these amplification results are quantitatively significant.

For instance, the three sectors with the most contribution to the persistence of aggregate inflation

have a combined consumption share of around zero and yet, they explain around 16% of the GDP

response to monetary shocks. Finally, we explore how the reaction of monetary policy to aggregate

inflation can have significantly different implications for GDP response depending on the sectoral

source of inflation.

Our framework presents several new avenues for future research. For instance, it will be interest-

ing to study welfare and optimal policy implications in our model with various shocks that help

match historical sectoral inflation dynamics well. Moreover, a model with state-dependent pricing,

due to fixed costs of changing nominal prices, could lead to new insights.
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7 Figures and Tables

Figure 2: IRFs to a monetary policy shock
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates a
one percentage increase in inflation on impact. The different panels show the results from the baseline calibrated
economy (Panel A) as well as various counterfactual economies (Panels B, C, and D). CIR denotes the cumulative
impulse response. CIR Ratio denotes the ratio of CIR of the baseline economy to the counterfactual economy. The
calibration of the model is at a monthly frequency.
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Figure 3: Sectoral inflation response to a monetary policy shock
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Notes: This figure plots the impulse response functions for aggregate inflation and sectoral inflation to a monetary
shock that generates a one percentage increase in aggregate inflation on impact. The aggregate inflation response is
shown in dashed lines. The calibration of the model is at a monthly frequency.
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Figure 4: Correlation of actual ranks of sectors and ranks using an approximated statistic for sectoral
inflation response to a monetary policy shock
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Notes: This figure plots the actual ranks and ranks using an approximated statistic for sectoral inflation response to a
monetary policy shock that generates a one percentage increase in aggregate inflation on impact. Panel A plots sectoral
inflation impact response while Panel B plots the sectoral inflation half-life. Each dot in the figure represents a sector.
The calibration of the model is at a monthly frequency.
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Figure 5: Aggregate inflation and GDP dynamics following sectoral shocks
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Notes: Panel A of the figure plots actual ranks of sectors and ranks using an approximated statistic for aggregate inflation
impact response after a sectoral shock increases sectoral inflation by one percentage on impact. Panel B of the figure
plots how aggregate GDP gap and half-life of aggregate inflation are correlated when a unit sectoral TFP shock hits
the economy. Average duration of the sectoral shocks is six months. Each dot in the figure represents a sector. The
calibration of the model is at a monthly frequency.
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Figure 6: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the inflation and GDP responses after a monetary policy shock that generates a one percent
increase in inflation on impact in the baseline economy and in a counterfactual economy where the top-3 sectors by
lowest eigenvalues (in the disconnected economy) are excluded. CIR denotes the cumulative impulse response. The
calibration of the model is at a monthly frequency.

37



Figure 7: Dynamics following sectoral shocks under different policies
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Notes: This figure plots the impulse response functions for inflation, gdp gap, and sectoral inflation to a sectoral shock
that increases sectoral inflation by one percent on impact in the baseline policy economy. It compares the baseline
policy economy with an economy where monetary policy stabilizes aggregate inflation. Panel A: Oil and gas extraction.
Panel B: Semiconductor machine manufacturing. The calibration of the model is at a monthly frequency.
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Table 1: Ranking of industries by pass-through to aggregate inflation after a sectoral shock

Industry Agg. Inflation Impact Resp.

Oil and gas extraction 0.009543
Insurance agencies, brokerages, and related act... 0.008415
Employment services 0.006016
Legal services 0.005696
Management consulting services 0.005642
Advertising, public relations, and related serv... 0.005026
Accounting, tax preparation, bookkeeping, and p... 0.004993
Warehousing and storage 0.004981
Architectural, engineering, and related services 0.004981
Electric power generation, transmission, and di... 0.003828
Services to buildings and dwellings 0.003702
Monetary authorities and depository credit inte... 0.003621
Scenic and sightseeing transportation and suppo... 0.003418
Securities and commodity contracts intermediati... 0.003354
Other support activities for mining 0.003241
Truck transportation 0.003186
Commercial and industrial machinery and equipme... 0.003146
Wired telecommunications carriers 0.003121
Other financial investment activities 0.003025
Other nondurable goods merchant wholesalers 0.002608

Notes: Ranking of industries by aggregate inflation impact response when a sectoral shock leads to an increase in 1% in
the shocked sector’s inflation on impact. Average duration of the sectoral shock is 6 months.

Table 2: Ranking of industries by half-life of aggregate inflation repsonse after a sectoral shock

Industry Agg. Inflation Half Life

Packaging machinery manufacturing 11.3
Miscellaneous nonmetallic mineral products 10.8
Coating, engraving, heat treating and allied ac... 10.7
All other forging, stamping, and sintering 10.6
Industrial process furnace and oven manufacturing 10.5
Semiconductor machinery manufacturing 10.3
Printing ink manufacturing 10.3
Speed changer, industrial high-speed drive, and... 10.2
Machine shops 10.0
Insurance agencies, brokerages, and related act... 9.6
Turned product and screw, nut, and bolt manufac... 9.6
Electricity and signal testing instruments manu... 8.8
Other communications equipment manufacturing 8.8
Fluid power process machinery 8.8
Support activities for printing 8.7
Relay and industrial control manufacturing 8.7
Industrial and commercial fan and blower and ai... 8.7
Optical instrument and lens manufacturing 8.6
In-vitro diagnostic substance manufacturing 8.5
Other electronic component manufacturing 8.4

Notes: Ranking of industries by half-life of aggregate inflation response when a sectoral shock that leads to an increase
in 1% in the shocked sector’s inflation on impact. Average duration of the sectoral shock is 6 months.
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Table 3: Comparison of eigenvalues of the calibrated economy with eigenvalues of the disconnected
economy associated with specific industries

Industry θi θi
p

1−ai i Eigenvalue
p
Γ

Insurance agencies, brokerages, and related act... 0.035586 0.022688 0.022439
Coating, engraving, heat treating and allied ac... 0.027804 0.02744 0.027327
Warehousing and storage 0.032407 0.030659 0.030562
Semiconductor machinery manufacturing 0.034003 0.032861 0.032858
Flavoring syrup and concentrate manufacturing 0.038897 0.038458 0.038413
Showcase, partition, shelving, and locker manuf... 0.039775 0.039335 0.039325
Packaging machinery manufacturing 0.040667 0.039349 0.039346
Machine shops 0.044323 0.043501 0.042797
Watch, clock, and other measuring and controlli... 0.043928 0.043682 0.043607
Other communications equipment manufacturing 0.044149 0.043945 0.043919
Turned product and screw, nut, and bolt manufac... 0.044987 0.044227 0.044319
Electricity and signal testing instruments manu... 0.048076 0.044627 0.044622
Broadcast and wireless communications equipment 0.053673 0.045249 0.045218
Fluid power process machinery 0.047158 0.045863 0.045821
Optical instrument and lens manufacturing 0.048201 0.04615 0.046098
All other miscellaneous manufacturing 0.047515 0.046339 0.046138
Miscellaneous nonmetallic mineral products 0.049119 0.046373 0.04629
Other aircraft parts and auxiliary equipment ma... 0.051709 0.046385 0.046363
Cutlery and handtool manufacturing 0.047783 0.047746 0.047703
Analytical laboratory instrument manufacturing 0.04835 0.048093 0.048118
Other industrial machinery manufacturing 0.049155 0.048275 0.048118
Breakfast cereal manufacturing 0.048738 0.048585 0.048335
Cut stone and stone product manufacturing 0.063157 0.048644 0.048573
Advertising, public relations, and related serv... 0.049135 0.048695 0.048643
Metal crown, closure, and other metal stamping ... 0.048895 0.048722 0.048708
Toilet preparation manufacturing 0.050453 0.050085 0.05007
Doll, toy, and game manufacturing 0.050442 0.050401 0.050399
Offices of physicians 0.050503 0.050503 0.050503
Waste management and remediation services 0.054119 0.050815 0.050563
Motorcycle, bicycle, and parts manufacturing 0.057306 0.050978 0.050979

Notes: The actual eigenvalues of the calibrated economy are compared with eigenvalues of the counterfactual discon-
nected economy. In the disconnected economy, the eigenvalues are associated with specific industries, which are given
in the first column.
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A Proofs

A.1. Proof of Proposition 1

Differentiating Equation (18) with respect to time and substituting Equation (17) we arrive at

π̇t = p̈t =Θ(π#
t −πt ) =Θ(ρI+Θ)(p#

t −p∗
t )−Θπt

=Θ(ρI+Θ)(pt −p∗
t )+Θ(ρI+Θ)(p#

t −pt )−Θπt︸ ︷︷ ︸
=ρπt by Equation (18)

(A.1)

Now using the definition of p∗
t from Equation (9) observe that:

pt −p∗
t = pt −ωt + zt −mtα+Apt =−(I−A)(mt 1+Ψ(ωt − zt )︸ ︷︷ ︸

=p f
t by Equation (14)

−pt ) (A.2)

Combining Equations (A.1) and (A.2) gives us the desired result.

A.2. Proof of Proposition 2

For ρ = 0, the differential equation in Equation (19) is

π̇t = p̈t =Γ(pt −p f
t ) (A.3)

Since p f
t is piece-wise continuous and bounded, it has a Laplace transform for any s ≥ 0. Let

P f (s) = Ls(p f
t ) ≡ ∫ ∞

0 e−st p f
t dt denote the Laplace transform of p f

t . Similarly, let P(s) = Ls(pt )

denote the Laplace transform of pt . Then, applying the Laplace transform to the differential

equation above, we have:

P(s) = (s2I−Γ)−1(sp0+ +π0+)− (s2I−Γ)−1ΓP f (s) (A.4)

Now, let
p
Γ denote the principal square root of Γ; i.e., the square root of Γ all of whose eigenvalues

have non-negative real parts. This matrix exists and is a non-singular M-matrix by Theorem 5 in

Alefeld and Schneider (1982). Thus, we have:

pt =
p
Γ
−1

sinh(
p
Γt )π0+ +cosh(

p
Γt )p0+ −L −1

t

[
(s2I−Γ)−1ΓP f (s)

]
(A.5)

where c0 and c1 are vectors in Rn and are appropriate linear transformations of p0+ and π0+ .

Moreover, the last terms is the inverse Laplace transform of the product of (s2I−Γ)−1Γ and P f (s).

Since the inverse Laplace transform of a product is the convolution of inverse Laplace of individual

functions, we have:

L −1
t

[
(s2I−Γ)−1ΓP f (s)

]
=

∫ t

0
L −1

t−h

[
(s2I−Γ)−1Γ

]
p f

hdh

=
p
Γ

∫ t

0
sinh(

p
Γ(t −h))p f

hdh (A.6)
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Combining Equations (A.5) and (A.6) and using the definitions of sinh(.) and cosh(.) we arrive at

pt = 1

2
e
p
Γt

[p
Γ
−1
π0+ +p0+ −

p
Γ

∫ t

0
e−pΓhp f

hdh

]
− 1

2
e−pΓt

[p
Γ
−1
π0+ −p0+ −

p
Γ

∫ t

0
e
p
Γhp f

hdh

]
(A.7)

Now, in terms of boundary conditions pt satisfies the following two: (1) it is continuous at t = 0,

since the probability of price change opportunities arriving at a short interval around any point

is arbitrarily small—i.e., p0+ = p0− because no firm changes their price exactly at t = 0 as it is a

measure zero event, (2) we are looking for the solution in which prices are non-explosive; in fact

bounded because p f
t is bounded. So the term multiplying e

p
Γt has to be zero as t →∞ and we

have:
p
Γ
−1
π0+ +p0− =

p
Γ

∫ ∞

0
e−pΓhp f

hdh (A.8)

Plugging these boundary conditions into the solution we have:

pt = e−pΓt p0− +
p
Γ

2
e
p
Γt

∫ ∞

t
e−pΓhp f

hdh −
p
Γ

2
e−pΓt

∫ ∞

0
e−pΓhp f

hdh +
p
Γ

2
e−pΓt

∫ t

0
e
p
Γhp f

hdh

= e−pΓt p0− +
p
Γe−pΓt

∫ t

0
sinh(

p
Γh)p f

hdh +
p
Γsinh(

p
Γt )

∫ ∞

t
e−pΓhp f

hdh (A.9)

A.3. Proof of Propositions 3 and 4

First, note that we can combine all the shocks in both propositions into a single path for p f
t as:

p f
t = p0− +δm1+Ψe−Φtδz , Φ≡ diag(φ1, . . . ,φn), δz ≡

n∑
i=1

δi
z ei (A.10)

where p0− are the steady-state prices before shocks, δm is the monetary shock, and δi
z is the

TFP/wedge shock to sector i . We can then plug this path into Proposition 2 to derive the response

of the economy to all of these shocks jointly. Since we have log-linearized the model the response

of the economy to this aggregated path is simply the sum of the impulse responses to individual

shocks. So we can solve the model for the joint path in Equation (A.10) and then decompose it to

individual IRFs.

While the joint response can be derived from Proposition 2 by solving explicitly for the integrals

in Equation (20), it is more convenient to guess a particular solution for the differential equation

in Equation (19) for the particular path of flexible prices specified in Equation (A.10): with ρ = 0, a

path of non-explosive prices, pt , is uniquely characterized by

π̇t = p̈t =Γ(pt −p f
t ) =Γ(pt −p0− −δm1−Ψe−Φtδz) with p0 = p f

0− (A.11)

Noting that this is a system of non-homogenous differential equations, the general solution to this

system can be written as pt = pp
t +pg

t , where pp
t is a particular solution to the non-homogenous
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system of differential equations above and pg
t is the general solution to the homogenous system,

p̈g
t =Γpg

t . To obtain the solution we start with the guess that a candidate for the particular solution

is

pp
t = p f

0− +δm1+Xe−Φtδz (A.12)

for some X ∈Rn×n . Plugging this into Equation (A.11) we obtain (ΓX−XΦ2 −ΓΨ)e−Φtδz = 0. Since

we want this equation to hold for any t ≥ 0 and any δz , it follows that our guess is verified when X is

the solution to the Sylvester equation

ΓX−XΦ2 =ΓΨ (A.13)

which is unique because we assumed that Γ andΦ2 do not have any common eigenvalues (see, e.g.,

Horn and Johnson, 2012, Theorem 2.4.4.1).

As for the general solution, pg
t , one can solve this differential equation by the method of undeter-

mined coefficients for second-order matrix differential equations (see Apostol, 1975). In particular,

one can easily confirm that such a solution has the form:

pg
t =

∞∑
k=0

Γk t 2k

(2k)!
c0 +

∞∑
k=0

Γk t 2k+1

(2k +1)!
c1 (A.14)

whose domain of convergence in t includes our time domain [0,∞) and c0,c1 are constant vectors

in Rn . Now, letting
p
Γ denote the principal square root of Γ, which exists and is a non-singular

M-matrix by Theorem 5 in Alefeld and Schneider (1982), we can write the equation above as

pg
t =

∞∑
k=0

(
p
Γt )k

k !︸ ︷︷ ︸
=e

p
Γt

(
c0 +

p
Γ
−1

c1

2︸ ︷︷ ︸
≡c̃0

)+
∞∑

k=0

(−pΓt )k

k !︸ ︷︷ ︸
=e−

p
Γt

(
c0 −

p
Γ
−1

c1

2︸ ︷︷ ︸
≡c̃1

) (A.15)

Thus, the general solution to the non-homogenous system is given by

pt = pp
t +pg

t = p f
0− +δm1+Xe−Φtδz +e

p
Γt c̃0 +e−pΓt c̃1 (A.16)

Now, to determine the constant vectors c̃0, c̃1, we have the two sets of boundary conditions. (1)

p0 = p f
0− (notice with positive and finite frequencies of price changes, no firm gets an opportunity

to change their prices at instant zero so the left and right limits are the same). (2) With zero trend

inflation (which is the assumption here), prices converge to a steady-state level as t →∞—i.e., the

price function is non-explosive over time. The second set of boundary conditions immediately

imply c̃0 = 0 because all of the eigenvalues of Γ have strictly positive real parts because it is an

M-matrix. The first set of boundary conditions imply: c̃1 =−δm1−Xδz . Thus,

pt = p f
0− +δm(I−e−pΓt )1+Xe−Φtδz −e−pΓt Xδz (A.17)
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Now to calculate the terms that involve X note that

Xe−Φtδz −e−pΓt Xδz =
n∑

i=1
δi

z[Xe−Φt −e−pΓt X]ei (A.18)

=
n∑

i=1
δi

z[e−φi t I−e−pΓt ]Xei

where the second line follows from the fact that e−Φt ei = e−φi t I. Now, we need to calculate Xei .

Using the Sylvester equation that characterizes X in Equation (A.18), we have:

ΓXei −XΦ2ei =ΓΨei =⇒ (Γ−φ2
i I)Xei =ΓΨ (A.19)

=⇒ Xei = (I−φ2
i Γ

−1)−1Ψ

where the second line follows from the fact that both Γ and Γ−φ2
i I are invertible.39 Thus,

pt = p f
0− +δm(I−e−pΓt )1+Xe−Φtδz −e−pΓt Xδz (A.20)

= p f
0− +δm(I−e−pΓt )1+

n∑
i=1

δi
z[e−φi t I−e−pΓt ](I−φ2

i Γ
−1)−1Ψei

To get the IRFs in Proposition 3 note that

d
dδm

pt = (I−e−pΓt )1 (A.21)

d
dδm

πt = d
dδm

d
dtβ

⊺pt =β⊺
p
Γe−pΓt 1 (A.22)

d
dδm

yt = d
dδm

(mt −β⊺pt ) =β⊺e−pΓt 1 (A.23)

d
dδm

ỹt = d
dδm

(yt − y f
t ) = d

dδm
β⊺(p f

t −pt ) =β⊺e−pΓt 1 (A.24)

To get the IRFs in Proposition 4 note that

d
dδi

z
pt = (e−φi t I−e−pΓt )(I−φ2

i Γ
−1)−1Ψei (A.25)

d
dδi

z
πt = d

dδi
z

d
dtβ

⊺pt =β⊺(
p
Γe−pΓt −φi e−φi t I)(I−φ2

i Γ
−1)−1Ψei (A.26)

d
dδi

z
yt = d

dδi
z

(mt −β⊺pt ) =β⊺(e−pΓt −e−φi t I)(I−φ2
i Γ

−1)−1Ψei (A.27)

d
dδm

ỹt = d
dδm

(yt − y f
t ) =β⊺(e−pΓt −φ2

i e−φi tΓ−1)(I−φ2
i Γ

−1)−1Ψei (A.28)

A.4. Proof of Lemma 1

Consider the matrix

Γ(ε) =ΓD +εΓR (A.29)

as defined in the main text, where ΓD =Θ2(I−A) is the diagonal and ΓR =Θ2(AD −A), with AD ≡
diag(A) defined as the diagonal of the input-output matrix A. Note that ε = 1 gives us the Γ for

39Γ is invertible because bothΘ and I−A are invertible by assumptions θi > 0 and αi > 0, ∀i . To see why Γ−φ2
i I is

invertible, take the Jordan form of Γ as Γ= PDP−1 and note that Γ−φ2
i I = P(D−φ2

i I)∓−1. Note that each block of D−φ2
i

has non-zero diagonal because φ2
i ∉ eig(Γ) so (D−φ2

i I) is invertible and (Γ−φ2
i I)−1 = P(D−φ2

i I)−1P−1.
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the original model and ε= 0 gives us the ΓD of the diagonal model. Now, we want to perturb the

eigendecomposition of the matrix
p
Γ(ε) up to first order in ε. To this end, let√
Γ(ε) = P(ε)D(ε)P(ε)−1 (A.30)

denote the Jordan decomposition of the principal square root
p
Γ(ε). It then follows that

Γ(ε) = P(ε)D(ε)2P(ε)−1 (A.31)

Since Γ(0) =ΓD is already diagonal we have D(0) =p
ΓD and P(0) = I. So letting V(ε) ≡ P(ε)−P(0) =

P(ε)− I, and∆(ε) ≡ D(ε)−D(0) = D(ε)−p
ΓD , we have

Γ(ε) = (I+V(ε))(
√
ΓD +∆(ε))2(I+V(ε))−1 (A.32)

At this point we can apply Theorems 1 and 2 from Greenbaum, Li, and Overton (2020), which also

shows differentiability of V(ε) and∆(ε) to obtain the results presented in the lemma.

For completeness, however, let us take differentiability as given and calculate these derivatives

in our case. Assuming differentiability at ε= 0, we can now do a first order Taylor expansion of V(ε)

and∆(ε) in a small neighborhood around ε= 0 to get

V(ε) = εV′(0)+O (∥ε∥2) (A.33)

∆(ε) = ε∆′(0)+O (∥ε∥2) (A.34)

for some matrices V′(0) and∆′(0) that we still need to characterize. Note that since eigenvalues of

Γ(0) = ΓD are distinct by assumption, for small enough ε, eigenvalues of Γ(ε) are also distinct by

continuity, meaning that Γ(ε) is diagonalizable and ∆(ε) = ε∆′(0) is diagonal in a neighborhood

around ε= 0.

Now, to characterize V′(0) and∆′(0), we the above Taylor expansions into Equation (A.32) and

use the identity that (I+εV′(0))−1 = I−εV′(0)+O (∥ε∥2), we get

Γ(ε) =ΓD +εΓR =ΓD +εV′(0)ΓD −εΓD V′(0)+ε
√
ΓD∆

′(0)+ε∆′(0)
√
ΓD +O (∥ε∥2) (A.35)

Canceling out the ΓD terms, dividing by ε and taking the limit as ε→ 0 we get

ΓR = V′(0)ΓD −ΓD V′(0)+
√
ΓD∆

′(0)+∆′(0)
√
ΓD (A.36)

We know the left hand side of this equation ΓR =Θ2(AD −A) as well as ΓD =Θ2(I−AD ) on the right

hand side. Moreover, we know that∆′(0) is diagonal. Now multiplying by standard basis vectors ei

and e j from both sides, we get

[ΓR ]i i = [∆′(0)]i i =⇒ 2[
√
ΓD ]i i [∆]i i = 0 ∀i = j (A.37)

[ΓR ] j i = ([ΓD ]i i − [ΓD ] j j )[V′(0)] j i =⇒ [V′(0)] j i =
θ2

j a j i

ξ2
j −ξ2

i

=
ξ2

j

ξ2
j −ξ2

i

a j i

1−a j j
∀i ̸= j (A.38)
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Thus, we obtain that

D(ε) = D(0)+ε∆′(0)+O (∥ε∥2) =
√
ΓD +ε∆′(0)+O (∥ε∥2) = diag(ξi )+O (∥ε∥2) (A.39)

P(ε) = I+εV′(0)+O (∥ε∥2) = I+εV′(0)+O (∥ε∥2) = I+ε[ θ2
j a j i

ξ2
j −ξ2

i

]+O (∥ε∥2) (A.40)

A.5. Proof of Proposition 5

For a given Γ(ε), recall form Proposition 3 that the IRF of sectoral inflation rates to a monetary shock

is

∂
∂δm

πt =
p
Γ(ε)e−pΓ(ε)t 1 (A.41)

Using the eigendecomposition and approximation from Lemma 1, we have:

∂
∂δm

πt = P(ε)D(ε)e−D(ε)t P(ε)−11 (A.42)

= (I+εV′(0))
p
ΓD e−pΓD t (I−εV′(0))1+O (∥ε∥2) (A.43)

=p
ΓD e−pΓD t 1+εV′(0)

p
ΓD e−pΓD t 1−εpΓD e−pΓD t V′(0)1+O (∥ε∥2) (A.44)

Now, note that the IRF of inflation in sector i is the i ’th element of this vector, so that:

∂
∂δm

πi ,t = e⊺i
∂

∂δm
πt = ξi e−ξi t +ε∑

j ̸=i [V′(0)]i j (ξ j e−ξ j t −ξi e−ξi t )+O (∥ε∥2) (A.45)

= ξi e−ξi t +ε∑
j ̸=i

ξ2
i

ξ2
i −ξ2

j

ai j

1−ai i
(ξ j e−ξ j t −ξi e−ξi t )+O (∥ε∥2) (A.46)

where we have used the expression for [V′(0)]i j form the proof of Lemma 1.

A.6. Proof of Proposition 6

Noting that the IRF for CPI inflation is the expenditure share weighted average of sectoral inflation

rates, ∂
∂δm

πt =β⊺ ∂
∂δm

πt , we can use the result from Proposition 5 to write:

∂

∂δm
πt =

n∑
i=1

βi

[
ξi e−ξi t +ε∑

j ̸=i

ξ2
i

ξ2
i −ξ2

j

ai j

1−ai i
(ξ j e−ξ j t −ξi e−ξi t )

]
+O (∥ε∥2) (A.47)

Evaluating this at t = 0, differentaiting with respect to ε, and letting ε= 0 gives the impact response

in the Proposition:

∂ ∂
∂δm

π0

∂ε

∣∣
ε=0 =−∑n

i=1βi

[∑
j ̸=i

ξ2
i

ξi+ξ j

ai j

1−ai i

]
< 0 (A.48)

which is strictly negative as long as some ai j is not zero. Now, to get the asymptotic responses, let

ι≡ argmini {ξi }, divide ∂
∂δm

πt in Equation (A.47) by e−ξιt and take the limit as t →∞:

lim
t→∞

∂
∂δm

πt

e−ξιt =βιξι+εβι
∑
j ̸=ι

ξ2
ι

ξ2
j −ξ2

ι

aι j
1−aιι

ξι+ε
∑
j ̸=ι
β j

ξ2
j

ξ2
j −ξ2

ι

a j ι

1−a j j
ξι+O (∥ε∥2) (A.49)
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=βιξι+ε
∑
j ̸=ι

[
βιaι jξ2

ι

1−aιι
+
β j a j ιξ

2
j

1−a j j

]
ξι

ξ2
j −ξ2

ι

+O (∥ε∥2) (A.50)

Differentiating this with respect to ε and setting ε= 0 we have:

∂ ∂
∂δm

πt

∂ε

∣∣
ε=0 ∼

∑
j ̸=ι

[
βιaι j ξ

2
ι

1−aιι
+ β j a j ιξ

2
j

1−a j j

]
ξιe−ξιt
ξ2

j−ξ2
ι
> 0 (A.51)

which is strictly positive as long as some aι j or a j ι is not zero.

A.7. Proof of Proposition 7

For a given Γ(ε), recall from Equation (22) that the CIR of GDP (gap) to a moentary shock is given by

β⊺pΓ(ε)
−1

1. Using the approximation from Lemma 1, we have

β⊺
√
Γ(ε)

−1
1 =

√
ΓD

−1
1+εβ⊺[V′(0)

√
ΓD

−1 −
√
ΓD

−1
V′(0)]1+O (∥ε∥2) (A.52)

Now note that for i ̸= j :

[V′(0)
√
ΓD

−1 −
√
ΓD

−1
V′(0)] j i = [V′(0)] j i (

1

ξi
− 1

ξ j
) =

θ2
j a j i

ξ j +ξi

1

ξ jξi
= a j i

1−a j j

ξ−1
i

ξ−1
i +ξ−1

j

1

ξi
(A.53)

Thus,

β⊺
√
Γ(ε)

−1
1 =

n∑
i=1

βiξ
−1
i +ε

n∑
i=1

ξ−1
i

∑
j ̸=i

β j
a j i

1−a j j

ξ−1
i

ξ−1
i +ξ−1

j

+O (∥ε∥2) (A.54)

which concludes the proof.

A.8. Proof of Proposition 8

Recall from Proposition 4 that the IRFs of CPI inflation and inflation in sector i with respect to a

TFP/wedge shock to sector i are

∂

∂δi
z
πt =β⊺(

p
Γe−pΓt −φi e−φi t I)(I−φ2

i Γ
−1)−1Ψei , (A.55)

∂

∂δi
z
πi ,t = e⊺i (

p
Γe−pΓt −φi e−φi t I)(I−φ2

i Γ
−1)−1Ψei (A.56)

Now, evaluating this at zero and noting that (I−φiΓ
−1)−1 = (I−φi

p
Γ
−1

)−1(I+φi
p
Γ
−1

)−1, we have:

∂π0

∂πi ,0

∣∣
δi

z
≡

∂

∂δi
z
π0

∂

∂δi
z
πi ,0

(A.57)

= β⊺
p
Γ(I−φi

p
Γ
−1

)(I−φi
p
Γ
−1

)−1(I+φi
p
Γ
−1

)−1Ψei

e⊺i
p
Γ(I−φi

p
Γ
−1

)(I−φi
p
Γ
−1

)−1(I+φi
p
Γ
−1

)−1Ψei

(A.58)

= β⊺
p
Γ(I+φi

p
Γ
−1

)−1Ψei

e⊺i
p
Γ(I+φi

p
Γ
−1

)−1Ψei

= β⊺(
p
Γ+φi I)−1ΓΨei

e⊺i (
p
Γ+φi I)−1ΓΨei

(A.59)

= β⊺(
p
Γ+φi I)−1Θ2ei

e⊺i (
p
Γ+φi I)−1Θ2ei

= β⊺(
p
Γ+φi I)−1ei

e⊺i (
p
Γ+φi I)−1ei

(A.60)
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where in the last line we have used the identity ΓΨ = Θ2(I−A)(I−A)−1 = Θ2 and the fact that

Θ2ei = θ2
i ei . Now, pluging in Γ(ε) in the expression above we can see that for ε= 0,[

∂π0

∂πi ,0

∣∣
δi

z

]
ε=0

=βi (A.61)

Moreover, using the derivatives with respect to ε at ε= 0, we have:

∂

∂ε

[
∂π0

∂πi ,0

∣∣
δi

z

]
ε=0

= (ξi +φi )
∑
j ̸=i

β j [V′(0)] j i
ξ j −ξi

(ξ j +φi )(ξi +φi )
(A.62)

= ∑
j ̸=i

β j
a j i

1−a j j

ξ j

ξ j +φi

ξ j

ξ j +ξi
(A.63)

= ∑
j ̸=i

β j
a j i

1−a j j

φ−1
i

φ−1
i +ξ−1

j

ξ−1
i

ξ−1
j +ξ−1

i

(A.64)

Thus,

∂π0

∂πi ,0

∣∣
δi

z
=βi +ε

∑
j ̸=i

β j
a j i

1−a j j

φ−1
i

φ−1
i +ξ−1

j

ξ−1
i

ξ−1
j +ξ−1

i

+O (∥ε∥2) (A.65)

A.9. Proof of Proposition 9

Let Γ1 = diag(θ2
1, . . . ,θ2

n) and Γ2 = (
∑

i∈[n]βiθi )2I denote the duration-adjusted Leontief matrices in

the horizontal and homogeneous economies, respectively. It follows the PRDLs of these economies

are given by
p
Γ1 = diag(θ1, . . . ,θ2) and

p
Γ2 = (

∑
i∈[n]βiθi )I (since PRDL is the square root that

has eigenvalues with positive parts, for both Γ1 and Γ2 we pick the positive eigenvalues when

constructing
p
Γ1 and

p
Γ2.)

Now, let us construct the slope of the aggregate Phillips curve in these two economies. Letting

κ1 =β⊺Γ11 and κ2 =β⊺Γ21 denote the slope of the aggregate Phillips curve in the horizontal and

homogeneous economies, respectively, we have

κ1 =
∑

i∈[n]
βiθ

2
i , κ2 =

∑
i∈[n]

(βiθi )2 (A.66)

indicating that the difference between these two slopes is the expenditure-weighted variance of

price adjustment frequencies across sectors:

κ1 −κ2 =
∑

i∈[n]
βi (θi −

∑
i∈[n]

βiθi )2 = varβ(θi ) ≥ 0 (A.67)

Note that with n = 1, this variance is zero and κ1 = κ2. However, with n ≥ 2, since we have assumed

that frequencies are distinct in at least two sectors, κ1 > κ2 and the horizontal economy has strictly

a steeper aggregate Phillips curve than the homogeneous economy.

Now, recall that the CIR of output (gap) to a monetary shock in a given economy is given by

β⊺
p
Γ
−1

1. Letting CIR1 and CIR2 denote the CIRs of output (gap) to a monetary shock in the
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horizontal and homogeneous economies, respectively, we have

CIR1 =
∑

i∈[n]

βi

θi
, CIR2 = 1∑

i∈[n]βiθi
(A.68)

Since the function f (X ) ≡ 1/X is a strictly convex function, we can apply Jensen’s inequality to

conclude that

CIR1 = Eβ[ f (θi )] ≥ f (Eβ[θi ]) = CIR2 (A.69)

where the inequality holds with equality if n = 1, and holds strictly with n > 1 as we have assumed

that at least two sectors have distinct frequencies. Thus, we have the following implications for

Parts 1 and 2:

Part 1. With n = 1, κ1 = κ2 = θ2
1 and CIR1 = CIR2 = 1/θ1. Thus, monetary non-neutrality in both

economies is larger if θ1 is smaller which is equivalent to κ1 = κ2 = θ2
1 being smaller (or, equivalently,

the Phillips curve being flatter).

Part 2. With n > 1, we established above that κ1 > κ2 (i.e., the horizontal economy has a strictly

steeper aggregate Phillips curve), but also CIR1 > CIR2 (i.e. the horizontal economy experiences

strictly higher monetary non-neutrality). Thus, the horizontal economy has a steeper aggregate

Phillips curve and higher monetary non-neutrality than the homogeneous economy.

B Equilibrium Definition

Here, we precisely define the equilibrium concept used in this paper.

Definition 2. A sticky price equilibrium for this economy is

(a) an allocation for the household, Ah = {(Ci ,t )i∈[n],Ct ,Lt ,Bt }t≥0 ∪ {B0−},

(b) an allocation for all firms A f = {(Yi ,t ,Y d
i j ,t ,Y s

i j ,t ,Li j ,t , Xi j ,k,t )i∈[n], j∈[0,1]}t≥0,

(c) a set of monetary and fiscal policies Ag = {(Mt ,Tt ,τ1,t , . . . ,τn,t )t≥0},

(d) and a set of prices P = {(Pi ,t ,Pi j ,t )i∈[n], j∈[0,1],Wt ,Pt , it }t≥0 ∪ {(Pi j ,0−)i∈[n], j∈[0,1]}

such that

1. given P and Ag , Ah solves the household’s problem in Equation (1),

2. given P and Ag , A f solves the final goods producers problems in Equation (3), intermediate

goods producers’ cost minimization in Equation (6) and their pricing problem in Equation (7),

3. labor, money, bonds and final sectoral goods markets clear and government budget constraint

is satisfied:

Mt = M s
t , Bt = 0, Lt =

∑
i∈[n]

∫ 1

0
Li j ,t d j ,

∑
i∈[n]

∫ 1

0
(1−τi ,t )Pi j ,t Yi j ,t d j = Tt ∀t ≥ 0 (B.1)

Yk,t =Ck,t +
∑

i∈[n]

∫ 1

0
Xi j ,k,t d j ∀k ∈ [n], ∀t ≥ 0 (B.2)

Furthermore, to understand how the stickiness of prices will affect and distort the equilibrium

allocations, we will make comparisons between the equilibrium defined above and its flexible-price
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analog, formally defined below.

Definition 3. A flexible price equilibrium is an equilibrium defined similarly to Definition 2 with

the only difference that intermediate goods producers’ prices solve the flexible price problems

specified in Equation (8) instead of the sticky price problem in Equation (7).

Finally, since we have defined our economy without any aggregate or sectoral shocks, we will

pay specific attention to stationary equilibria, which we define below.

Definition 4. A stationary equilibrium for this economy is an equilibrium as in Definition 2 or Defi-

nition 3 with the additional requirement that all the allocative variables in the household’s allocation

in Ah and the sectoral production of final good producers (Yi ,t )i∈[n] as well as the distributions of

the allocative variables for intermediate good producers in Ai are constant over time.40

C Derivations of Optimality Conditions in the Model

Here, we characterize the flexible- and sticky-price stationary equilibria of this economy.

C.1. Households’ Optimality Conditions

We can decompose the household’s consumption problem into two stages, where for a given level

of Ct the household minimizes her expenditure on sectoral goods (compensated demand) and

then decides on the optimal level of Ct as a function of lifetime income (uncompensated demand).

The compensated demand of the household for sectoral goods given the vector of sectoral prices

Pt = (P1,t , . . . ,Pn,t ) gives us the expenditure function:

E (Ct ,Pt ) ≡ min
C1,t ,...,Cn,t

∑
i∈[n]

Pi ,tCi ,t subject to Φ(C1,t , . . . ,Cn,t ) ≥Ct

= PtCt , Pt ≡ E (1,Pt ) (C.1)

where the second line follows from the first-degree homogeneity of the functionΦ(.) and Pt is the

cost of a unit of Ct and, or in short, the price of Ct . Note that due to the first-degree homogeneity

ofΦ(.), Pt does not depend on household’s choices and is just a function of the sectoral prices, Pt .

Applying Shephard’s lemma, we obtain that the household’s expenditure share of sectoral good i is

proportional to the elasticity of the expenditure function with respect to the price of i :

Pi ,tC∗
i ,t =βi (Pt )×PtCt where βi (Pt ) ≡ ∂ ln(E (Ct ,Pt ))

∂ ln(Pi ,t )
(C.2)

It is important to note that due to the first-degree homogeneity of the expenditure function, these

elasticities are independent of aggregate consumption Ct and only depend on sectoral prices, Pt .

Moreover, it is easy to verify that they are also a homogeneous of degree zero in these prices so that

the vector of household’s expenditure shares, denoted by βt ∈Rn , can be written as a function of

40Note that the production and input demands of individual intermediate goods producers do not need to be
time-invariant in the stationary equilibrium, but their distributions do.
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sectoral prices relative to wage:

βt =β(Pt/Wt ) (C.3)

Notably, a vector of constant expenditure shares corresponds toΦ(.) being a Cobb-Douglas aggre-

gator where sectoral goods are neither complements nor substitutes.

Given the household’s expenditure function and the aggregate price index Pt in Equation (C.1),

it is straightforward to derive the labor supply and Euler equations for bonds:

γ(Ct )
Ċt

Ct︸ ︷︷ ︸
marginal loss from saving

= it −ρ− Ṗt

Pt︸ ︷︷ ︸
marginal gain from saving

where γ(Ct ) ≡−U ′′(Ct )Ct

U ′(Ct )︸ ︷︷ ︸
inverse elasticity of intertemporal substitution

(C.4)

V ′(Lt )

U ′(Ct )︸ ︷︷ ︸
MRSLC

= Wt

Pt︸︷︷︸
real wage

=⇒ ψ(Lt )
L̇t

Lt
+γ(Ct )

Ċt

Ct
= Ẇt

Wt
− Ṗt

Pt
where ψ(Lt ) ≡ V ′′(Lt )Lt

V ′(Lt )︸ ︷︷ ︸
inverse Frisch elasticity of labor supply

(C.5)

Moreover, as long as the interest rate it > 0, which we will confirm is the case in the stationary

equilibria as well as in small enough neighborhoods around them, the cash-in-advance constraint

binds. Thus, if the central bank targeted a constant nominal GDP growth of µ,

Ṗt

Pt
+ Ċt

Ct
= Ṁt

Mt
=µ (C.6)

Note that by combining Equations (C.4) to (C.6) we can write the growth rate of wages as well as the

nominal interest rates as a function of consumption and labor supply growths:

Ẇt

Wt
=µ+ψ(Lt )

L̇t

Lt
+ (γ(Ct )−1)

Ċt

Ct
, it = ρ+µ+ (γ(Ct )−1)

Ċt

Ct
(C.7)

As demonstrated by Golosov and Lucas (2007) and more recently by Wang and Werning (2021), a

convenient set of preferences that simplify these conditions tremendously are U (Ct ) = log(Ct ) and

V (Lt ) = Lt which imply γ(Ct ) = 1 and ψ(Lt ) = 0. Plugging these elasticities into Equation (C.7), we

can see how these preferences simplifiy aggregate dynamics by setting wage growth to the constant

rate of µ and interest rates to a constant rate at ρ+µ.

C.2. Firms’ Cost Minimization and Input-Output Matrices

We start by characterizing firms’ expenditure shares on inputs by first solving their expenditure

minimization problems. Since expenditure minimization is a static decision within every period,

our characterization of these expenditure shares closely follow Bigio and La’O (2020), Baqaee and

Farhi (2020), and we refer the reader to these papers for more detailed treatments.

Let us start with the observation that the firms’ cost function in Equation (6), given the wage
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and sectoral prices Pt = (Wt ,Pi ,t )i∈[n],41 is homogenous of degree one in production:

Ci (Y s
i j ,t ;Pt , Zi ,t ) = min

L j k,t ,(Xi j ,k,t )k∈[n]

Wt Li j ,t +
∑

k∈[n]
Pk,t Xi j ,k,t subject to Zi ,t Fi (Li j ,t , (Xi j ,k,t )k∈[n]) ≥ Y s

i j ,t

=MCi (Pt , Zi ,t )×Y s
i j ,t , MCi (Pt , Zi ,t ) ≡Ci (1;Pt ,1)/Zi ,t (C.8)

where the second line follows from the first-degree homogeneity of the production function Zi Fi (.)

and MCi (Pt , Zi ,t ) is the cost of producing a unit of output, or in short, the firm’s marginal cost of

production. Note that due to the first-degree homogeneity of the production function, marginal

costs are independent of the level of production and depend only on the sector’s production

function and input prices. Applying Shephard’s lemma and re-arranging firms’ optimal demand

for inputs gives us the result that firms’ expenditure share of any input is the elasticity of the cost

function with respect to that input:

Wt L∗
i j ,t =αi (Pt )×MCi (Pt , Zi ,t )Y s

i j ,t , Pk,t X ∗
i j ,k,t = ai k (Pt )×MCi (Pt , Zi ,t )Y s

i j ,t , ∀k ∈ [n] (C.9)

where αi (Pt ) and ai k (Pt ) are the elasticities of the sector i ’s cost function with respect to labor and

sector k’s final good respectively:

αi (Pt ) ≡ ∂ ln(Ci (Y ;Pt ,1)/Zi ,t )

∂ ln(Wt )
, ai k (Pt ) ≡ ∂ ln(Ci (Y ;Pt ,1)/Zi ,t )

∂ ln(Pk,t )
∀k ∈ [n] (C.10)

with the property that αi (Pt )+∑
k∈[n] ai k (Pt ) = 1. It is important to note that the first-degree homo-

geneity of the cost function in Equation (6) also implies that these elasticities are only functions

of the aggregate wage and sectoral prices. It is also well-known that these elasticities are directly

related to the cost-based input-output matrix, denoted by At ∈ Rn×n , and the labor share vector,

denoted byαt ∈Rn :

[At ]i ,k ≡ total expenditure of sector i on sector k

total expenditure on inputs in sector i
= ai k (Pt ), ∀(i ,k) ∈ [n]2 (C.11)

[αt ]i ≡ total expenditure of sector i on labor

total expenditure on inputs in sector i
=αi (Pt ), ∀i ∈ [n] (C.12)

where the second equality holds only under firms’ optimal expenditure shares and follows from

integrating Equation (C.9). Since these elasticities are also homogenous of degree zero in the price

vector Pt , Equations (C.11) and (C.12) imply that in any equilibrium, the cost-based input-output

matrix and the vector of sectoral labor shares are only a function of the sectoral prices relative to

the nominal wage; i.e.,

At = A(Pt/Wt ) = [ai k (Pt/Wt )], αt =α(Pt/Wt ) = [αi (Pt/Wt )] (C.13)

A notable example is Cobb-Douglas production functions, which imply constant elasticities for the

cost function—because inputs are neither substitutes nor complements—and lead to a constant

41Note that previously in characterizing the expenditure shares of the households, we defined Pt as the vector of
sectoral prices. Here, without loss of generality and with a slight abuse of notation, we are augmenting this vector with
the wage Wt .
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input-output matrix and constant vector of labor shares over time.

C.3. Firms’ Optimal Prices

Having characterized firms’ cost functions, we now derive the optimal desired prices, P∗
i j ,t , in

Equation (8) and reset prices, P #
i j ,t in Equation (C.15). It follows that the optimal desired price is a

markup over the marginal cost of production and proportional to the wedge introduced through

taxes/subsidies:

P∗
i j ,t = P∗

i ,t ≡
1

1−τi︸ ︷︷ ︸
tax/subsidy wedge

× σi

σi −1︸ ︷︷ ︸
markup

×MCi (Pt ,1)

Zi ,t︸ ︷︷ ︸
marginal cost

(C.14)

It is then straightforward to show that the firms’ optimal reset prices are a weighted average of all

future desired prices in industry i :

P #
i j ,t = P #

i ,t ≡
∫ ∞

0

weight (density) on P∗
i ,t+h︷ ︸︸ ︷

e−(θi h+∫ h
0 it+s ds)Yi ,t+hPσi

i ,t+h∫ ∞
0 e−(θi h+∫ h

0 it+s ds)Yi ,t+hPσi
i ,t+hdh

×P∗
i ,t+hdh

︸ ︷︷ ︸
weighted average of all future desired prices

(C.15)

Given this reset price, we can then calculate the aggregate price of sector i from Equation (4) as:

P 1−σi
i ,t =

∫ 1

0
P 1−σi

i j ,t d j = θi

∫ t

0
e−θi h(P #

i ,t−h)1−σi dh +e−θi t
∫ 1

0
P 1−σi

i j ,0−d j︸ ︷︷ ︸
=P

1−σi
i ,0−

(C.16)

where the second equality follows from the observation that at time t the density of firms that reset

their prices h periods ago to P #
i ,t is governed by the exponential distribution of time between price

changes and is equal to θi e−θi h .

C.4. Market Clearing and Total Value Added

Define the sales-based Domar weight of sector i ∈ [n] at time t as the ratio of the final producer’s

sales relative to the household total expenditure on consumption:

λi ,t ≡ Pi ,t Yi ,t /(PtCt ) (C.17)

Now, substituting optimal consumption of the household from sector k ∈ [n] in Equation (C.2)

and optimal demand of firms for the final good of sector k ∈ [n] in Equation (C.9) into the market

clearing condition for final good of sector k and dividing by household’s total expenditure, we get

λk,t =βi (Pt/Wt )+∑
i∈[n] ai k (1, Pt/Wt )λi ,t∆i ,t /µi ,t (C.18)
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where µi ,t ≡ Pi ,t /MCi (Pt ,Wt ) is the markup of sector i and ∆i ,t is the well-known measure of price

dispersion in the New Keynesian literature defined as

∆i ,t =
∫ 1

0
(Pi j ,t /Pi ,t )−σi d j ≥ 1 (C.19)

Where the inequality follows from applying Jensen’s inequality to the definion of the aggregate price

index Pi ,t .42 Thus, lettingλt ≡ (λi ,t )i∈[n] denote the vector of sales-based domar weights at time t

across sectors and M t ≡ diag(µi ,t /∆i ,t ) as the diagonal matrix whose i ’th diagonal entry is the price

dispersion adjusted markup wedge of sector i , we can write Equation (C.18) in the following matrix

form:

λt = (I−A⊺
t M−1

t )−1βt (C.20)

Finally, substituting firms labor demand into the labor market clearing condition, we arrive at the

following expression for the labor share:

Wt Lt

PtCt
=α⊺

t M−1
t λt (C.21)

C.5. Efficient Steady State

We log-linearize the model around an efficient steady state where the rate of growth in money

supply is zero (µ= 0), and fiscal policy sets distortionary subsidies such that in each sector prices

are equal to marginal costs. It is straightforward to verify that the allocation that prevails under these

assumptions coincide with the first-best allocations chosen by a social planner—hence justifying

the term efficient steady state. This is a standard result in New Keynesian models and we refer the

reader to La’O and Tahbaz-Salehi (2022) for its characterization in network economies with multiple

sectors.

Here, we characterize this steady state. To implement the efficient steady-state, fiscal policy sets

taxes to undo distortions arising from monopolistic competition so that τi =− 1
σi

,∀i ∈ [n]

P∗
i j =MCi (P, Zi ),∀ j ∈ [0,1], i ∈ [n] (C.22)

where MCi ≡Ci (1;P, Zi ) is the marginal cost of sector i ∈ [n] at the efficient stationary equilibrium,

which is given by Equation (C.8) evaluated at (P, Zi ). From the firm’s cost minimization problem at

the stationary equilibrium, we also get the demand for labor and intermediate inputs

W Li j =αi (P)×MCi (P, Zi )Y s
i j (C.23)

Pk Xi j ,k = ai k (P)×MCi (P, Zi )Y s
i j , ∀k ∈ [n] (C.24)

where αi (P) and ai k (P) are the elasticities of the sector i ’s cost function with respect to labor and

42Note that 1 = [
∫ 1

0 (Pi j ,t /Pi ,t )1−σi d j ]
σi
σi −1 d j = [

∫ 1
0

(
(Pi j ,t /Pi , t )−σi

) σi −1
σi d j ]

σi
σi −1 d j ≤ ∫ 1

0 (Pi ,t /Pt )−σi d j .
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sector k’s final good at the stationary equilibrium, respectively:

αi (P) ≡ ∂ ln(Ci (Y ;P, Zi ))

∂ ln(W )
, ai k (P) ≡ ∂ ln(Ci (Y ;P, Zi ))

∂ ln(Pk )
, ∀k ∈ [n] (C.25)

Note that these elasticities are only functions of prices because the cost function is homogenous

of degree one in production Y and homogenous of degree -1 in productivity Zi , so the partial

derivatives of the log cost function do not vary with Y or Zi . Moreover, since the cost function is

homogenous of degree 1 in the vector P, these elasticities are homogenous of degree zero in P so

that they will not change if we normalize all prices in P by a constant wage W . Then, the cost-based

input-output matrix and the sectoral labor shares at the efficient stationary equilibrium can be

written in terms of these relative prices and are given by

A = A(P/W ) = [ai k (1, P/W )], α=α(P/W ) = [αi (1, P/W )] (C.26)

where we used the observation that the cost-based input-output matrix and the vector of sectoral

labor shares are only a function of the sectoral prices relative to the nominal wage. From the

representative retailer’s optimality conditions and the monopolistically competitive firm’s optimal

price, the aggregate sectoral price is

Pi/W =
(∫ 1

0

(
P∗

i j/W
)1−σi d j

) 1
1−σi =

(∫ 1

0
(MCi (P,Zi )/W )1−σi d j

) 1
1−σi =MCi (P/W , Zi ), ∀i ∈ [n] ∀ j ∈ [0,1]

(C.27)

where the last equality uses the first-degree homogeneity of the marginal cost function with respect

to P. Now, let p̃ ≡ (ln(Pi/W ))i∈[n] denote the vector of log of the sectoral prices relative to the

wage in the steady-state. With slight abuse of notation, also let e p̃ ≡ (Pi /W )i∈[n]. Then, writing

Equation (C.27) in terms of p̃ gives:

p̃ = f (p̃) ≡ (
ln(MCi (e p̃, Zi ))

)
i∈[n] (C.28)

Note that function f (.) : Rn → Rn depends only on log relative prices and the steady-state values

of productivity across sectors that are exogenous to the model. Thus, we see that relative prices

in the steady state are fully pinned down by the structure of the marginal cost functions and the

steady-state values of productivities. Moreover, these relative prices are a fixed point of the function

f (.). Furthermore, note that the Jacobian of the f (x) function is the input-output matrix evaluated

at the implied relative prices by x, which we will refer to as A(x). Note that the spectral radius of

this Jacobian, denoted by ρ(A(x)), is strictly less than one under the assumption of CRS production

functions and the fact that production functions satisfy Inada conditions. With a slightly stronger

assumption that supx ρ(A(x)) < 1−ϵ, for some however infinitesimal ϵ> 0, it is straightforward to

show that the function f (.) is a contraction mapping in Rn and has a unique fixed point according
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to Banach fixed point theorem.43 So, there exists a unique set of p̃∗ ∈ Rn such that

p̃∗ = f (p̃∗) (C.29)

Moreover, recall that in the equilibrium with Golosov and Lucas (2007) preferences, W = M , where

M is the nominal demand of the economy that is fixed by the central bank. So, given this nominal

anchor, nominal sectoral prices are given by

P∗/W = e p̃∗ =⇒ P∗ = Me p̃∗
(C.30)

Thus, having solved for P∗
i for every sector i , we have

P∗
i j = P∗

i =⇒ Y d
i j = Yi , ∀i ∈ [n], ∀ j ∈ [0,1] (C.31)

So we only need to solve for quantities Y ∗
i and C∗

i . To get these, first, recall that

Pi Ci =βi (P)×PC =βi (P∗/W)×M (C.32)

where

βi (P) ≡ ∂ ln(E (C ;P))

∂ ln(Pi )
(C.33)

with E (C ;P) is the expenditure function in the stationary equilibrium, which is fully pinned down

by the shape of the aggregator functionΦ. Thus,

C∗
i = βi (P∗)M

P∗
i

, ∀i ∈ [n] (C.34)

Finally, note that

Y ∗
i = Mλ∗

i

P∗
i

(C.35)

where λ∗
i is the Domar weight of sector i in the steady state. Note that, by Equation (C.20), these

Domar weights are given by the vector of prices as

(λ∗
i )i∈[n] =λ= (I−A(P∗)⊺)−1β(P∗) (C.36)

and

C∗ =W ∗/P∗ = M∗/P∗, P∗ = E (1;P∗) (C.37)

Finally, other variables of the model are implied by these prices and quantities:

i∗ = ρ, L∗ = P∗C∗/M = 1 (C.38)

where the second equation follows from Equation (C.26) evaluated in the steady state.

43For instance, in a Cobb-Douglas, it is straightforward to verify that such an ϵ> 0 exists as long as all sectors have a
positive labor share, which follows from the Inada conditions.
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C.6. Log-linearization

Let small letters denote the log deviations of their corresponding variables from their stationary

equilibrium values. That is, xt ≡ ln(X t/X ∗).

Desired Prices. Taking the FOC for desired prices in Equation (8), we obtain:

P∗
i ,t =

σi

σi −1

1

1−τi ,t
MCi ,t (C.39)

Letting ωi ,t ≡ ln( σi
σi−1

1
1−τi ,t

), first note that the value of ωi ,t in the efficient steady state is 0, and

second, we have

p∗
i ,t =ωi ,t +mci ,t (C.40)

Marginal Cost. Recall from Equation (C.8) that the marginal cost of a firm in sector i is equal to their

average cost due to constant returns to scale and is defined by their cost minimization problem

MCi (Pt , Zi ,t ) = min
L j k,t ,(Xi j ,k,t )k∈[n]

Wt Li j ,t +
∑

k∈[n]
Pk,t Xi j ,k,t (C.41)

subject to Zi ,t Fi (Li j ,t , (Xi j ,k,t )k∈[n]) ≥ 1 (C.42)

which also holds in the efficient steady state. Now, log-linearizing this equation around the efficient

steady state, we have:

mci ,t ≈
∂ ln(MC∗

i )

∂ ln(W ∗)
wt +

∑
k∈[n]

∂ ln(MC∗
i )

∂ ln(P∗
k )

pk,t − zi ,t (C.43)

=αi wt +
∑

k∈[n]
ai k pk,t − zi ,t , ∀i ∈ [n] (C.44)

where (αi , ai k )k∈[n] in the second line are the elasticities of marginal cost with respect to wage and

prices in the steady state, respectively. Applying the envelope theorem to the cost minimization

problem (Shephard’s Lemma), we can see that αi is the labor share of firms in sector i and ai k is

their expenditure share on intermediate input k, under steady state prices. Finally, note that under

Golosov and Lucas (2007) preferences wt = pt + ct = mt so that

mci ,t =αi mt +
∑

k∈[n]
ai k pk,t − zi ,t , ∀i ∈ [n] (C.45)

Reset Prices. Consider the derivation of optimal reset prices in Equation (C.15) and let

Ξi ,t ,h ≡
e−(θi h+∫ h

0 it+s ds)Yi ,t+hPσi
i ,t+h∫ ∞

0 e−(θi h+∫ h
0 it+s ds)Yi ,t+hPσi

i ,t+hdh
(C.46)

Note that at any given t and i , by definition,
∫ ∞

0 Ξi ,t ,hdi = 1. Moreover, given this notation, we can

re-write Equation (C.15) as

P #
i j ,t = P #

i ,t =
∫ ∞

0
Ξi ,t ,hP∗

i ,t+hdh (C.47)

59



Log-linearizing this, we obtain that (up to first order deviations):

p#
i ,t ≈

∫ ∞

0
Ξ∗

i ,h p∗
i ,t+hdh +

∫ ∞

0
(Ξi ,t ,h −Ξ∗

i ,h)dh (C.48)

but note that the second integral is zero because both Ξi ,t ,h and Ξ∗
i ,h integrate to 1. Moreover, note

that the value of Ξi ,t ,h in the steady state is given by

Ξ∗
i ,h = e−(θi+i∗)hY ∗

i P∗
i
σi∫ ∞

0 e−(θi+i∗)hY ∗
i P∗

i
σi dh

= (θi +ρ)e−(θi+ρ)h (C.49)

where we have used the fact that i∗ = ρ in the efficient steady state. Hence, we have that

p#
i ,t ≈ (θi +ρ)

∫ ∞

0
e−(ρ+θi )h p∗

i ,t+hdh (C.50)

Aggregate Sectoral Prices. Recall from Equation (C.16) that the aggregate sectoral price of sector i is

the generalized mean of past reset prices and the initial sectoral price at time 0−, weighted by the

density of time between price changes:

Pi ,t =
[∫ t

0
θi e−θi h(P #

i ,t−h)1−σi dh +e−θi t P 1−σi
i ,0−

] 1
1−σi

, ∀i ∈ [n] (C.51)

Log-linearizing this gives:

pi ,t ≈ θi

∫ t

0
e−θi h p#

i ,t−hdh +e−θi t pi ,0− (C.52)

Consumer Price Index. Recall from Equation (C.1) that the consumer price index, denoted by Pt , is

given by:

Pt = E (1,Pt ) (C.53)

where E is the expenditure function and Pt is the vector of sectoral prices at time t . Log-linearizing

this gives:

pt ≈
∑

i∈[n]

∂ ln(E (1,P∗))

∂ ln(P∗
i )

pi ,t =
∑

i∈[n]
βi pi ,t (C.54)

where βi after the second equality is the elasticity of the price index with respect to the price of

sector i . Applying Shephard’s Lemma, we obtain that βi is the consumption expenditure share of

the household on the final good of sector i .

Aggregate GDP and GDP gap. Under our benchmark where monetary policy directly sets the ag-

gregate nominal GDP, in log deviations, aggregate real GDP is simply the difference between log

nominal GDP and log aggregate price:

yt = mt −pt = mt

pt
(C.55)

Moreover, if the nominal aggregate GDP set by monetary policy is the same across the flexible

and sticky price economies (e.g. when monetary policy does not respond to endogenous prices or
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quantities), then the output gap is given by the nominal CPI gap:

mt = pt + yt = p f
t + y f

t =⇒ ỹt = yt − y f
t = p f

t −pt , p f
t = mt +λ⊺(ωt − zt ) (C.56)

where the expression for p f
t is coming from Equation (14). Given these, the interest rates are then

determined passively as a function of these allocations from the Euler equation. In particular, with

Golosov and Lucas (2007) preferences and a fixed nominal GDP over time, interest rates are simply

equal to ρ on the equilibrium path.

Beyond our benchmark economy, however, e.g. when preferences deviate from Golosov and

Lucas (2007) or monetary policy is endogenous like in the case of a Taylor rule, the GDP are

jointly determined by the endogenous monetary policy and the log-linearized Euler equation of

the household. We derive the expressions for these cases in our extensions in Appendix D.1 and

Appendix D.2.

The Labor Share Equation and the Aggregate Production Function. Recall from Equation (C.26) that

the aggregate labor share of this economy is given by:

Wt Lt

PtCt
=α⊺

t M−1
t λt (C.57)

=1⊺(I−A⊺
t )M−1

t (I−A⊺
t M−1

t )−1βt (C.58)

=1⊺(I+ (M t − I)Ψ⊺
t )−1βt (C.59)

whereΨt ≡ (I−At )−1 is the inverse Leontief matrix, M t ≡ diag(µi ,t/∆i ,t ) is the diagonal matrix whose

i ’th diagonal entry is the price dispersion adjusted markup wedge of sector i . First note that the

value of the labor share in the efficient steady state is 1 because in this steady state M = I (net

markups are zero and there is no price dispersion), so:

W ∗L∗

P∗C∗ = 1⊺β= 1 (C.60)

where the second equality follows from the fact that expenditure shares in β sum to 1. Moreover,

note that:

Mt − I = diag(pi ,t −mci ,t )−diag(∆i ,t )+O
(∥Mt − I∥2) (C.61)

But note that mci ,t , up to first-order, is itself a function of prices as we showed above. Moreover, it

is straightforward to verify that price dispersion ∆i ,t is of second order in prices in sector i (see, e.g.,

Galí, 2008, p. 63). Thus, letting p̂ ≡ (pi j ,t )i∈[n], j∈[0,1], we obtain:

Mt − I = diag(pi ,t −mci ,t )+O
(∥∥p̂

∥∥2
)

(C.62)

Therefore, noting thatΨt is also changing over time only as a function of prices (Since the input-

output matrix is determined by prices as in Equation (C.11)):

(I+ (Mt − I)Ψ⊺
t )−1 = I−diag(pi ,t −mci ,t )Ψ⊺+ (M − I )︸ ︷︷ ︸

=0

(Ψ⊺
t −Ψ⊺)+O

(∥∥p̂
∥∥2

)
(C.63)
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Hence, noting also that βt only depends on time through prices, we obtain:

1⊺(I+ (Mt − I)Ψ⊺
t )−1βt = 1−β⊺Ψ(pt −mct )+O

(∥∥p̂
∥∥2

)
(C.64)

= 1−β⊺Ψ(I−A)(pt −wt 1)−β⊺Ψzt +O
(∥∥p̂

∥∥2
)

(C.65)

= 1−pt +wt −λ⊺zt +O
(∥∥p̂

∥∥2
)

(C.66)

where λ is the vector of Domar weights in the efficient steady state. Finally. note that in log

deviations the labor share equation can be written as

wt + lt −pt − ct = ln(1−pt +wt −λ⊺zt +O
(∥∥p̂

∥∥2
)
) (C.67)

=−pt +wt −λ⊺zt +O
(∥∥p̂

∥∥2
)

(C.68)

Therefore, we obtain the following log-linear aggregate production function:

ct =λ⊺zt + lt +O
(∥∥p̂

∥∥2
)

(C.69)

D Derivations for Extensions

D.1. Derivations for Finite Frisch Elasticity

For general labor supply elasticity, let U (C ) = lnC and V (L) = L1+ψ
1+ψ . Under these preferences, the

agent’s intra-temporal first-order condition becomes

Wt

Pt
=Ct Lψt (D.1)

With its log-linearized version being

wt −pt = ct +ψlt (D.2)

Using mt = pt + ct aggregate GDP, we get

wt = mt +ψlt (D.3)

Since, in this benchmark, mt is exogenous and the same across both flexible and sticky economies,

doing the same at the flexible price equilibrium, and taking differences we have

(wt −w f
t )− (pt −p f

t ) = (ct − c f
t )+ψ(lt − l f

t ) (D.4)

wt −w f
t =ψ(lt − l f

t ) (D.5)

Thus,

mt = pt + ct = p f
t + c f

t =⇒ ct − c f
t =−(pt −p f

t ) (D.6)

Moreover, from the aggregate production function in Equation (C.69) we have that up to first order

ct =λ⊺zt + lt , which implies that

ct − c f
t = lt − l f

t (D.7)
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Combining the last three equations, we have:

wt −w f
t =ψ(lt − l f

t ) =ψ(ct − c f
t ) =−ψ(pt −p f

t ) (D.8)

Now, consider the equation for the desired prices, while adding and subtracting (I−A)1w f
t . We

obtain:

p∗
t =(I−A)1wt − (I−A)1w f

t + (I−A)1w f
t +Apt − zt +ωt (D.9)

First, recall that the flexible price equilibrium is given by this equation when p∗
t = pt = p f

t :

p f
t = (I−A)1w f

t +Ap f
t − zt +ωt (D.10)

= w f
t 1−Ψ(zt −ωt ) (D.11)

now multiplying by β⊺ we have:

p f
t = w f

t −λ⊺(zt −ωt ) = mt +ψl f
t −λ⊺(zt −ωt ) (D.12)

=⇒ c f
t = mt −p f

t =−ψl f
t +λ⊺(zt −ωt ) (D.13)

=⇒λ⊺zt + l f
t =−ψl f

t +λ⊺(zt −ωt ) (D.14)

=⇒ l f
t =− 1

1+ψλ
⊺ωt (D.15)

=⇒ w f
t = mt +ψl f

t = mt − ψ

1+ψλ
⊺ωt (D.16)

so that

p f
t = w f

t 1−Ψ(zt −ωt ) = mt 1−Ψzt + (Ψ− ψ

1+ψ1λ⊺)ωt (D.17)

Moreover, using Equation (D.9) and Equation (D.8), we can re-write Equation (D.10) as:

p∗
t −pt = (I−A)

(
(wt −w f

t )1+w f
t 1−Ψ(zt −ωt )−pt

)
(D.18)

= (I−A)(I+ψ1β⊺)(p f
t −pt ) (D.19)

Now, recall from Equations (17) and (18) that πt = ṗt =Θ(p#
t −pt ) and π#

t = (ρI+Θ)(p#
t −p∗

t ),

which still hold in this economy because they are implied by firm side optimality of aggregation

conditions. Differentiating Equation (18) with respect to time and using and Equation (D.18) we

obtain:

π̇t = p̈t =Θ(π#
t −πt ) =Θ(ρI+Θ)(p#

t −p∗
t )−Θπt

=Θ(ρI+Θ)(pt −p∗
t )+Θ(ρI+Θ)(p#

t −pt )−Θπt︸ ︷︷ ︸
=ρπt by Equation (18)

(D.20)

= ρπt −Θ(ρI+Θ)(I−A)(I+ψ1β⊺)(p f
t −pt ) (D.21)
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D.2. Equilibrium with Taylor Rule

Here, we consider a version of our benchmark economy where the monetary authority, instead of

directly fixing the nominal GDP, sets the nominal interest rate according to a Taylor rule of the type:

it =η⊺πt + vt (D.22)

where, if η = φπβ as in the main text, the Taylor rule targets the CPI inflation, but note that the

central bank can target any weighted sum of sectoral inflation rates (e.g. ignoring energy and food

prices, which leads to targeting core inflation). Moreover, vt constitutes deviations from the rule,

with its path over time given under perfect foresight. Usually, in the monetary literature, vt is

assumed to be an AR(1) process under perfect foresight.

It is important to note that the main difference between this economy and our benchmark is that,

here, the implied nominal GDP is endogenous (as opposed to being exogenous and the same across

the flexible and sticky economies), and the Taylor rule creates feedback between prices and nominal

GDP. In other words, in our benchmark economy, monetary policy exogenously determined the size

of nominal GDP and the supply side frictions determined its divide between nominal prices and

quantities. But now, the size of the nominal GDP itself depends on these frictions. Note, however,

that under Golosov and Lucas (2007) preferences, the intratemporal condition wt = mt still holds,

but now mt ̸= m f
t . Moreover, with these preferences, the intertemporal Euler equation is ẏt = it −πt

or, moving things around, it = ṁt = πt + ẏt . Combining the Euler equation and the Taylor rule

above, we arrive at:

it = ṁt =η⊺πt + vt (D.23)

Notice how the level of nominal GDP is no longer pinned down when monetary policy targets

inflation through a Taylor rule. Instead, only the growth rate of nominal GDP is determined by the

path of interest rates. This raises the usual issues with determinacy that we discuss below.

To solve for inflation rates in this economy, we start from Equations (17) and (18), which still hold

in the Taylor rule economy because they purely depend on firm side optimization and aggregation:

πt =Θ(p#
t −pt ), π#

t = (ρI+Θ)(p#
t −p∗

t )

where

p∗
t = (I−A)1mt +Apt − zt +ωt (D.24)

Differentiating this last equation with respect to time and using Equation (D.23), we obtain:

ṗ∗
t −πt = (I−A)1ṁt − (I−A)πt − żt + ω̇t = (I−A)(1η⊺− I)πt − żt + ω̇t + (I−A)1vt (D.25)

Note that again, we can define the flexible economy inflation rate as the rate that arises when
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π∗
t =πt =π f

t , which gives:

(I−1η⊺)π f
t = 1vt −Ψ(żt − ω̇t ) (D.26)

Note that all the terms in this expression are exogenous, which implies that π f
t is exogenous.

Combined with Equation (D.25), this gives:

ṗ∗
t −πt = (I−A)(I−1η⊺)(π f

t −πt ) (D.27)

Now, differentiate Equation (18) with respect to time twice, Equation (17) once, and use Equa-

tion (D.27) to get

π̈t =Θ(π̇#
t − π̇t ) =Θ(ρI+Θ)(π#

t − ṗ∗
t )−Θπ̇t (D.28)

=−Θ(ρI+Θ)(ṗ∗
t −πt )+Θ(ρI+Θ)(π#

t −πt )−Θπ̇t︸ ︷︷ ︸
=ρπ̇t

(D.29)

=⇒ π̈t = ρπ̇t +Θ(ρI+Θ)(I−A)(I−1η⊺)(πt −π f
t ) (D.30)

Note that Equation (D.30) is a system of second-order differential equations in the vector of sectoral

inflation rate,πt , withπ f
t acting as an exogenous force term to the system. Thus, the equilibrium

is a solution to this system of differential equations. But note that by introducing the Taylor rule,

we have to discuss a new set of boundary conditions for the system. In particular, we need to

characterize what determinacy requires in this system (recall that even in the one-sector NK model,

the solution to the model can be indeterminate—i.e. the system can have multiple non-explosive

equilibria—if the Taylor principle is not satisfied).

To obtain a particular solution to the system of differential equations above, we need 2n bound-

ary conditions. Of those, n of them are given by the non-explosiveness of the solution as before.

Moreover, of all the non-explosive solutions, the equilibrium requires that the solution be such that

relative prices go back to their steady-state values; i.e.,

lim
t→∞pi ,t −pi ,0− = p j ,t −p j ,0− , ∀i ∈ [n],∀ j ̸= i , j ∈ [n] (D.31)

which defines another n − 1 set of boundary conditions. Therefore, non-explosive prices plus

the requirement that relative prices go back to their steady state values gives us 2n −1 boundary

conditions. The last boundary condition is given by the extension of the Taylor principle to this

network economy. This essentially requires that the matrix Γη ≡ Θ(ρI +Θ)(I − A)(I − 1η⊺) has

a negative eigenvalue so that one cannot construct more than one non-explosive solution that

converges back to the same steady state. Notice that in one sector economies, where η is scalar,

Γη < 0 ⇐⇒ η> 1 (D.32)

which is exactly the Taylor principle. Take, for instance, the case where π f
t = 0 in such an economy.

Then, with η> 1, the only non-explosive solution that converges to the steady state is πt = 0 (unless

we accept oscillatory solutions, but they do not converge back to the steady state). But with 0 < η< 1,
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we have a continuum of non-explosive convergent solutions πt =C0e−ηt for any C0 ∈R, which is

the same as indeterminacy.

As for the general system above, given these boundary conditions, we can solve for the equilib-

rium given any path of shocks. Specifically, in our numerical exercises, when we solve this model,

we numerically verify that Γη has exactly one negative eigenvalue and proceed to solve for the

equilibrium using Schur decomposition and imposing the relevant boundary conditions.

E Data Appendix

Propositions 2 to 4 shows that the sufficient statistics for inflation and output dynamics in response

to shocks in our model are the duration-adjusted Leontief matrix, Γ=Θ2(I−A)., and the consump-

tion expenditure shares across sectors, given by β. We now describe in detail how we construct Γ

and β using detailed sectoral US data.

First, we use the input-output (IO) tables from the BEA to construct the input-output linkages

across sectors,44 given by the matrix A; the consumption expenditure shares across sectors, given

by the vector β; and the sectoral labor shares, given by the vector α. In particular, to construct

A, we use both the “make” and “use” IO tables.45 The “use” IO table also provides data on the

compensation of employees, which is used to construct the sectoral labor sharesα. Moreover, the

“use” IO table also provides data on personal consumption expenditure, which is used to construct

the consumption expenditure shares across sectors, β. Figure F.2 presents the matrix A we construct

from the data, in a heat-map version.

Next, we construct the diagonal matrixΘ2, whose diagonal elements are the squared frequency

of price adjustment in each sector, using data on 341 sectors from Pasten, Schoenle, and Weber

(2020). First, we match data from Pasten, Schoenle, and Weber (2020) on the frequency of price

changes with the 2002 concordance table between IO industry codes and the 2002 NAICS codes.

Then, we match these codes with the 2012 concordance table between IO industry codes and 2012

NAICS codes. The last step is performed in order to get the frequency of price adjustment data for

sectors in the 2012 IO table.

E.1. Constructing the Input-Output Matrix

In this subsection, we describe how we use the “Make” and “Use” matrices to get the cost-based

industry-by-industry input-output table. Specifically, we use the 2012 “Make” table after redefini-

tions and the 2012 “Use” table after redefinitions in producers’ value.

Recall that the “Make” table is a matrix of Industry-by-Commodity. Given a row, each column

44We construct industry-by-industry IO tables. We use industry and sector interchangeably.
45The “make” table is a matrix of industries on the rows and commodities on the columns that gives the value of each

commodity on the column produced by the industry on the rows. The “use” table is a matrix of commodities on the
rows and industries on the columns that gives the value of each commodity on the row that was used by each industry
in the column. We combine both matrices to give an industry-by-industry IO matrix.
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shows the values of each commodity produced by the industry in the row. The “Use” table is a

matrix of Commodity-by-Industry. Given a column, each row shows the value of each commodity

used by the industry (or final use) in the column. In order to create an industry-by-industry IO

table, we combine both. We follow the Handbook of Input-Output Table Compilation and Analysis

from the UN (United Nations Department of Economic and Social Affairs, 1999) and Concepts and

Methods of the United States Input-Output Accounts from the BEA (Horowitz and Planting, 2009).

We exclude the government sector, Scraps, Used and secondhand goods, Noncomparable imports,

and Rest of the world adjustment.46

It is important to note that an industry can produce many commodities. Although each industry

may have its own primary product,47 an industry can produce more products in addition to its

primary ones. These are shown in the “Make” table. Besides that, each industry has its own use of

commodities to produce its output. This is shown in the “Use” table. As a result, there is a distinction

between industries and commodities, as a given commodity can be produced by different industries

while industries can produce different commodities.

In our model, we consider a log-linearization of the economy around an efficient steady state.

This implies that in the steady state, the wedges are equal to zero for all sectors and the revenue-

based and the cost-based input-output matrices are the same. In the data, these are not the same

and we need to take into account the wedge between revenue and cost when calculating the object

of interest in our model - the cost-based input-output matrix.

Input-Output Matrix (A) and Labor Shares (α). From the “Use” table from the BEA, a given column

j gives:

Total Industry Output j =Total Intermediate j

+Compensation of Employees j

+Taxes on production and imports, less subsidies j

+Gross operating surplus j

where Total Intermediate j is the sum of the dollar amount of each commodity used by industry j .

The total cost is given by

Total Industry Cost j = Total Intermediate j +Compensation of Employees j

46Baqaee and Farhi (2020) also exclude these sectors. Besides them, we exclude Customs duties, which is an industry
with zero commodity use and zero compensation of employees. After excluding these industries and commodities, we
end up having 392 commodities and 393 industries. The industry that does not have a corresponding commodity with
the same code is ‘Secondary smelting and alloying of aluminum’, with code 331314

47According to the BEA, ‘each commodity is assigned the code of the industry in which the commodity is the primary
product’.
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Therefore,

P j Y j︸ ︷︷ ︸
Total Industry Output

= (1+ω j )︸ ︷︷ ︸
Wedge

(∑
i

Pi X j i +W L j

)
︸ ︷︷ ︸

Total Industry Cost

where we implicitly assume that the wedge is attributed to taxes and gross operating surplus. That

is

(1+ω j ) ≡
Total Intermediate j +Compensation of Employees j +Taxes j +Gross Operating Surplus j

Total Intermediate j +Compensation of Employees j

(E.1)

Let diag(1+ω) be the diagonal matrix in which each j -th diagonal is the wedge in industry j . We

calculate the cost-based IO matrix by first calculating the revenue-based IO matrix and then, using

these wedges, recovering the cost-based IO matrix. First, we calculate the revenue-based IO matrix.

Let U(NC+1)×NI be the “Use” matrix (commodity-by-industry) that gives for each cell ui j the dollar

value of commodity i used in the production of industry j and in the last row the compensation of

employees. Let MNI×NC be the “Make” matrix (industry-by-commodity) that gives for each cell mi j

the dollar value of commodity j produced by i . Let gNI×1 be the vector of industry total output and

qNC×1 be the vector of commodity output, where NC is the number of commodities and NI is the

number of industries. Then, define the following matrices

B = U×diag(g)−1 (E.2)

D = M×diag(q)−1 (E.3)

where diag(g) is the diagonal matrix of vector g and diag(q) is the diagonal matrix of vector q. The

matrix D is a market share matrix. Its entry di j gives the market share of industry i in the production

of commodity j . The matrix B is a direct input matrix. Its entry bi j gives the dollar amount share of

commodity i in the output of industry j . Let

B =
[

BNC×NI
I

α̃
⊺
1×NI

]
(E.4)

where BI is the part of B that includes all intermediate inputs and industries and α̃′ the vector with

compensation of employees for each industry. Then, the revenue-based industry-by-industry IO

matrix is given by

Ã = (DBI )⊺ (E.5)

To go from the revenue-based IO matrix to the cost-based IO matrix, first recall that

[Ã]i j =
P j Xi j

Pi Yi
(E.6)
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where P j Xi j is the expenditure of industry i on industry j , Pi Yi is the revenue of the industry i . The

cost-based IO matrix is given by

A = [
ai j

]
i∈[n], j∈[n] , ai j =

P j Xi j

Ci
(E.7)

where Ci ≡∑
k Pk Xi k +W Li is the total cost of industry i . Since Pi Yi = (1+ωi )Ci , we have that

ai j =
P j Xi j

Ci
= Pi Yi

Ci

Ci

Pi Yi

P j Xi j

Ci
= (1+ωi )[Ã]i j (E.8)

Hence, as in Baqaee and Farhi (2020)

A = diag(1+ωi )Ã (E.9)

Moreover, the labor shares are given by

α= diag(1+ωi )α̃ (E.10)

Alternatively, instead of using the vector of industry outputs g, we can calculate the cost-based

IO matrix using the vector of industry costs (total intermediate + compensation of employees) g̃.

In this case, define B̃ ≡ Udiag(g̃)−1, where, similar to above, B̃ is composed of B̃I that includes all

intermediate inputs and industries andα⊺ which is the vector with compensation of employees for

each industry. Given this decomposition, we can construct the corresponding cost-based IO matrix

as A = (DB̃I )⊺. Note that this gives the same cost-based IO matrix as above.

Consumption Share (β). The “Use” table gives the Personal Consumption Expenditures on each

commodity. Since we are working with an industry-by-industry IO matrix, we need to calculate an

industry consumption share vector. In order to do that, let Ci be the consumption dollar amount

of commodity i , and c be the vector of the consumption dollar amount of all commodities in

the economy. Then, the vector that contains the dollar equivalent consumption amount of each

industry is given by Dc:

Dc =


∑

j d1 j c j∑
j d2 j c j

...∑
j dn j c j

 (E.11)

Recall that di j gives the market share of industry i in the production of commodity j . Therefore,

di j c j is the amount in dollars spent by households on commodity j produced by i . Then, the sum

over j gives the total expenditure in dollars of households on commodities produced by industry i .

That is, the total expenditure in dollars of households on industry i . Then,

β= Dc

1′Dc
(E.12)
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E.2. Constructing the Frequency of Price Adjustment Matrix

To get the 2012 detail-level industry frequency of price adjustments from the 2002 detail-level

industry frequency of price adjustments, we had to manually match them. There were five cases in

which industries could fall:

1. Industries with exact matching: the 2002 detail-level industry exactly correspond to the 2012

detail-level industry. In these cases, we use the 2002 detail-level industry frequency of price

adjustment as the 2012 detail-level industry frequency of price adjustment. E.g.: Poultry and

egg production (2002 IO Code: 112300, 2002 NAICS Code: 1123; 2012 IO Code: 112300; 2012

NAICS Code: 1123).

2. Industries with close matching: the 2002 detail-level industry closely correspond to the 2012

detail-level industry. In these cases, we use the 2002 detail-level industry frequency of price

adjustment as the 2012 detail-level industry frequency of price adjustment. E.g.: In 2012 there

is Metal crown, closure, and other metal stamping (except automotive) (2012 IO Code: 332119,

2012 NAICS Code: 332119). In 2002, there is Crown and closure manufacturing and metal

stamping (2002 IO Code: 33211B, 2002 NAICS Code: 332115-6).

3. Industry present in 2002, but not in 2012: these are detail-level industries that were present in

2002, but not in 2012. These are 2002 industries that seem to be put into a coarser industry in

2012. We match the 2002 industries with the coarser 2012 industry. If there are more than one

2002 industry that are associated with the coarser industry in 2012 with frequency of price

adjustment data, we use their average frequency of price adjustment as the 2012 industry

frequency of price adjustment. E.g.: Other crop farming (2012 IO Code: 111900, 2012 NAICS

Code: 1119). In 2002, there were three industries for which we have data on frequency of

price adjustment, that seem to belong to that industry: All other crop farming (2002 IO Code:

1119B0; 2002 NAICS Code: 11194, 111992, 111998), Tobacco farming (2002 IO Code: 111910,

2002 NAICS Code: 11191), Cotton farming (2002 IO Code: 111920, 2002 NAICS Code: 11192).

We take the average of these industries’ frequency of price adjustment and use as the Other

crop farming frequency of price adjustment.

4. Industry present in 2012, but not in 2002: these are detail-level industries that were present in

2012, but not in 2002. These are industries in 2012 that seem to be put into a coarser industry

in 2002. In these cases, we use the 2002 coarser industry frequency of price adjustment to

impute the 2012 finer industry frequency of price adjustment. E.g.: In 2002, retail trade was

a single industry (2002 IO Code: 4A0000; 2002 NAICS Code: 44, 45). In 2012, within retail

trade there were Motor vehicle and parts dealers (2012 IO Code: 441000, 2012 NAICS Code:

441), Food and beverage stores (2012 IO Code: 445000, 2012 NAICS Code: 445), General

merchandise stores (2012 IO Code: 452000, 2012 NAICS Code: 452), Building material and

garden equipment and supplies dealers (2012 IO Code: 444000, 2012 NAICS Code: 444),

Health and personal care stores (2012 IO Code: 446000, 2012 NAICS Code: 446), Gasoline
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stations (2012 IO Code: 447000, 2012 NAICS Code: 447), Clothing and clothing accessories

stores (2012 IO Code: 448000, 2012 NAICS Code: 448), Nonstore retailers (2012 IO Code:

454000, 2012 NAICS Code: 454), All other retail (2012 IO Code: 4B0000, 2012 NAICS Code: 442,

443, 451, 453). For all these 2012 industries, we impute their frequency of price adjustment

with the 2002 Retail Trade value.

5. Industry present in 2012, but not in 2002 without correspondence: these are 2012 detail-level

industries for which there was no correspondent 2002 detail-level industry. In these cases, we

impute their frequency of price adjustment with the average frequency of price adjustment

among industries with data. E.g.: Motion picture and video industries (2012 IO Code: 512100;

2012 NAICS Code: 5121).

For the industries in cases three, four and five, a concordance table is available upon request. The

average frequency of price adjustment among sectors with data is given by 0.171. Its continuous

counterpart is 0.1875. This is the value that is used to impute the sectors that are present in 2012, but

not in 2002 without any correspondence in the simulations.48 Finally, the consumption weighted

average frequency of price adjustment is given by θ̄ =∑
i βiθi , where βi is sector’s i consumption

share, θi its frequency of price adjustment. This is the value that is used for the counterfactual

economy in which we set an homogenous frequency of price adjustment.

48Its value is given by − ln(1−0.171)
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F Additional Figures and Tables

Figure F.1: Relationship between eigenvalues in the diagonal economy and the baseline economy
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Notes: This figure plots the relationship between the eigenvalues in the diagonal economy and the eigenvalues in the
baseline calibrated economy
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Figure F.2: U.S. sectoral input-output matrix (heat map) in 2012
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Notes: This figure presents the sectoral input-output matrix in a heat map version, using data from the make and use
input-otput tables produced by the BEA in 2012. The industry classification is at the detail-level disaggregation, for a
total of 393 sectors.
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Figure F.3: Dynamics following sectoral shocks in a homogeneous frequency of price adjustment
economy

(a) Oil and gas extraction
IRF for Inflation

0 3 6 9 12 15 18 21 24 27 30 33 36
Time

0

5

10

#10-3
(b) Semiconductor machine mfg

IRF for Inflation

0 3 6 9 12 15 18 21 24 27 30 33 36
Time

0

1

2

#10-5

IRF for GDP gap

0 3 6 9 12 15 18 21 24 27 30 33 36
Time

0

0.2

0.4

0.6

IRF for GDP gap

0 3 6 9 12 15 18 21 24 27 30 33 36
Time

0

10

20 #10-4

IRF for Sectoral Inflation

0 3 6 9 12 15 18 21 24 27 30 33 36
Time

0

0.5

1
Baseline Policy
Inflation Targeting

IRF for Sectoral Inflation

0 3 6 9 12 15 18 21 24 27 30 33 36
Time

0

0.5

1
Baseline Policy
Inflation Targeting

CIR Diff = -0.69544
CIR Diff = -0.0014588

Notes: This figure plots the impulse response functions for inflation, gdp gap, and sectoral inflation to a sectoral
shock that increases sectoral inflation by one percent on impact in the baseline policy economy. It compares the
baseline policy economy with an economy where monetary policy stabilizes aggregate inflation. Panel A: Oil and gas
extraction. Panel B: Semiconductor machine manufacturing. This calibration imposes a homogeneous frequency of
price adjustment across sectors.
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Figure F.4: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates a one
percentage increase in inflation on impact. The calibration of the model is at a monthly frequency. CIR denotes the
cumulative impulse response. The calibration uses a (finite) Frisch elasticity of 2.
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Figure F.5: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates a one
percentage increase in inflation on impact. It compares our baseline economy that has production networks with an
economy that has a horizonal production structure where only labor is used as an input for production. The calibration
of the model is at a monthly frequency. CIR denotes the cumulative impulse response. The calibration uses a (finite)
Frisch elasticity of 2.
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Figure F.6: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates
a one percentage increase in inflation on impact. It compares our baseline economy that has heterogeneous price
stickiness across sectors with an economy that has homogeneous price stickiness across sectors. The homogeneous
price adjustment frequency is calibrated to be the weighted average of the price adjustment frequencies across sectors.
The calibration of the model is at a monthly frequency. CIR denotes the cumulative impulse response. The calibration
uses a (finite) Frisch elasticity of 2.
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Figure F.7: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates a
one percentage increase in inflation on impact. It compares our baseline economy that has production networks and
heterogeneous price stickiness across sectors with an economy that has both a horizonal production structure where
only labor is used as an input for production as well as homogeneous price stickiness across sectors. The homogeneous
price adjustment frequency is calibrated to be the weighted average of the price adjustment frequencies across sectors.
The calibration of the model is at a monthly frequency. CIR denotes the cumulative impulse response. The calibration
uses a (finite) Frisch elasticity of 2.
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Table F.1: Ranking of industries by inflation impact after a monetary policy shock

Industry Inflation
Impact Resp.

Alumina refining and primary aluminum production 3.671238
Other crop farming 2.586257
Monetary authorities and depository credit inte... 2.525314
Dairy cattle and milk production 2.020186
Animal production, except cattle and poultry an... 1.954667
Wholesale electronic markets and agents and bro... 1.729891
Oil and gas extraction 1.526314
Automobile manufacturing 1.460931
Natural gas distribution 1.283793
Copper, nickel, lead, and zinc mining 1.238399
Fishing, hunting and trapping 1.206477
Rail transportation 1.05083
Nonferrous Metal (except Aluminum) Smelting and... 0.992207
Professional and commercial equipment and supplies 0.963642
Machinery, equipment, and supplies 0.848447
Poultry processing 0.834817
Electric lamp bulb and part manufacturing 0.821602
Poultry and egg production 0.804583
Fluid milk and butter manufacturing 0.801039
Petrochemical manufacturing 0.797405

Table F.2: Ranking of industries by inflation half-life after a monetary policy shock

Industry Inflation
Half-Life

Insurance agencies, brokerages, and related act... 33.6
Coating, engraving, heat treating and allied ac... 33.1
Semiconductor machinery manufacturing 29.8
Warehousing and storage 29.0
Packaging machinery manufacturing 25.2
Flavoring syrup and concentrate manufacturing 25.1
Showcase, partition, shelving, and locker manuf... 24.3
Toilet preparation manufacturing 23.7
Turned product and screw, nut, and bolt manufac... 23.7
Breakfast cereal manufacturing 23.0
Other engine equipment manufacturing 22.5
Other industrial machinery manufacturing 22.4
Miscellaneous nonmetallic mineral products 22.2
Fluid power process machinery 21.9
All other miscellaneous manufacturing 21.6
Cut stone and stone product manufacturing 21.5
Other aircraft parts and auxiliary equipment ma... 21.2
Electricity and signal testing instruments manu... 21.2
Metal crown, closure, and other metal stamping ... 20.9
Machine shops 20.9
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Figure F.8: Inflation response to a monetary policy shock
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Notes: This figure plots the impulse response functions for aggregate inflation and sectoral inflation to a monetary
shock that generates a one percentage increase in aggregate inflation on impact. The calibration of the model is at a
monthly frequency. The aggregate inflation response is shown in dashed lines. The calibration uses a (finite) Frisch
elasticity of 2.
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Figure F.9: Impulse response functions to a monetary policy shock in two economies
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Notes: The figure compares the impulse responses for inflation and GDP to a monetary shock in the nominal GDP
rule economy and the Taylor rule economy. The initial shock size and the persistence of the shock in the Taylor rule
economy is calibrated to match: 1) aggregate inflation response as one percentage on impact; 2) half-life of aggregate
inflation the same as in the nominal GDP rule economy. The calibration of the model is at a monthly frequency. CIR
denotes the cumulative impulse response. The calibration fixes the feedback parameter on the Taylor rule to φπ = 1.5.

81



Figure F.10: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock. It compares our
baseline Taylor rule economy that has production networks with an economy that has a horizonal production structure
where only labor is used as an input for production. The calibration of the model is at a monthly frequency. CIR denotes
the cumulative impulse response. The calibration fixes the feedback parameter on the Taylor rule to φπ = 1.5. The
monetary shock size and persistence are the same across the two economies.
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Figure F.11: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock. It compares
our baseline Taylor rule economy that has heterogeneous price stickiness across sectors with an economy that has
homogeneous price stickiness across sectors. The homogeneous price adjustment frequency is calibrated to be the
weighted average of the price adjustment frequencies across sectors. The calibration of the model is at a monthly
frequency. CIR denotes the cumulative impulse response.The calibration fixes the feedback parameter on the Taylor
rule to φπ = 1.5. The monetary shock size and persistence are the same across the two economies.
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Figure F.12: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates a
one percentage increase in inflation on impact. It compares our baseline economy that has production networks and
heterogeneous price stickiness across sectors with an economy that has both a horizonal production structure where
only labor is used as an input for production as well as homogeneous price stickiness across sectors. The homogeneous
price adjustment frequency is calibrated to be the weighted average of the price adjustment frequencies across sectors.
The calibration of the model is at a monthly frequency. CIR denotes the cumulative impulse response.The calibration
fixes the feedback parameter on the Taylor rule to φπ = 1.5. The monetary shock size and persistence are the same
across the two economies.
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Figure F.13: Inflation response to a monetary policy shock
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Notes: This figure plots the impulse response functions for aggrgate inflation and sectoral inflation to a monetary shock
that generates a one percentage increase in aggregate inflation on impact. The calibration of the model is at a monthly
frequency. The aggregate inflation response is shown in dashed lines. The calibration fixes the feedback parameter on
the Taylor rule to φπ = 1.5.
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