
Hansen, Jörgen; Davalloo, Golnaz

Working Paper

Persistent Marijuana Use: Evidence from the NLSY

IZA Discussion Papers, No. 16446

Provided in Cooperation with:
IZA – Institute of Labor Economics

Suggested Citation: Hansen, Jörgen; Davalloo, Golnaz (2023) : Persistent Marijuana Use: Evidence
from the NLSY, IZA Discussion Papers, No. 16446, Institute of Labor Economics (IZA), Bonn

This Version is available at:
https://hdl.handle.net/10419/279144

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/279144
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


DISCUSSION PAPER SERIES

IZA DP No. 16446

Jorgen Hansen
Golnaz Davalloo

Persistent Marijuana Use:  
Evidence from the NLSY

SEPTEMBER 2023



Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may 
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA 
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics 
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the 
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our 
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper 
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

ISSN: 2365-9793

IZA DP No. 16446

Persistent Marijuana Use:  
Evidence from the NLSY

SEPTEMBER 2023

Jorgen Hansen
Concordia University, CIRANO, CIREQ and IZA

Golnaz Davalloo
Concordia University



ABSTRACT

IZA DP No. 16446 SEPTEMBER 2023

Persistent Marijuana Use:  
Evidence from the NLSY

We analyze persistence in marijuana consumption utilizing data from the 1997 cohort 

of the National Longitudinal Survey of Youth (NLSY97). We allow for three sources 

of persistence: pure state dependence, time invariant unobserved heterogeneity and 

persistence in idiosyncratic, time-varying shocks. We also consider intensity of consumption 

based on days of use per month and estimate a dynamic ordered Probit model using 

simulated Maximum Likelihood. We consider a Polya model that generalizes the more 

commonly used Markov models. The results show that there is a causal eect of previous 

use. However, ignoring unobserved heterogeneity and serially correlated shocks signicantly 

exaggerates the state dependence.
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1 Introduction

The legal status of recreational marijuana in the US has changed signi�cantly since

2012 when Colorado and Washington became the �rst states to legalize cannabis for

adult use. Currently, recreational use is legal in as many as 23 states plus the Dis-

trict of Columbia. These changes have occurred despite evidence pointing to negative

impacts from marijuana use (especially at young ages) on di�erent outcomes, such as

educational attainment (Mezza and Buchinsky, 2021), academic performance (Marie

and Zolitz, 2017), school to work transitions (Williams and van Ours, 2020), �nancial

and relational di�culties in adulthood (Chan et al., 2021; Cerda et al, 2016), health

(Hall and Degenhardt, 2009; Lev-Ran et al., 2014), and welfare use and unemployment

(Fergusson and Boden, 2008; Schmidt et al., 1998). Marijuana consumption has also

been shown to increase the risk of consuming hard drags (Deza, 2015).

It is however possible that the nature of marijuana consumption, and its associated

risks, is heterogeneous in the population. For many, consumption is modest, occasional

and highly transitory while others use marijuana on a regular and persistent basis, and

the existence and magnitude of any negative impacts of marijuana use is likely to vary

with consumption patterns. However, if there is a causal, addictive e�ect of marijuana

use over time, any initiation is associated with a risk of continued, persistent use.

In this case, policies that make marijuana consumption more accessible and socially

acceptable may increase the risk of marijuana dependence. On the other hand, if there

is no causal e�ect of past marijuana use on current consumption, this risk is eliminated.

It is therefore important to understand the dynamics of marijuana consumption and

how it varies, at an individual level, over time.

In this paper we analyze transitions into and out-of marijuana consumption. Data

from the 1997 cohort of National Longitudinal Survey of Youth (NLSY97) show that the

probability of using marijuana in a given year is seven times higher for those who used
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it the year before compared to those who did not use it. However, this data pattern

is uninformative about the nature of marijuana persistence. Does past consumption

cause current use (perhaps by changing preferences for the drug)? Or is the data simply

re�ecting di�erent innate propensities to use marijuana over time where some youth

receive substantial utility from marijuana consumption and therefore continuously use

it while others receive a negative utility and never use it. A third possibility for the

observed time dependence is persistence in random shocks to the utility of consumption.

For example, an event in school or within the family may alter the perceived the utility

and induce consumption in a given year. This e�ect may then persist over time. Our

aim in this paper is to estimate the sources for persistence in marijuana consumption

and evaluate their relative importance for overall persistence.

Our empirical framework builds on the in�uential work by Heckman (1981) and

others who have developed models designed to separate true state dependence from

spurious dependence (due to persistent unobserved heterogeneity). These models have

been estimated for a number of di�erent outcomes, such as welfare (Card and Hys-

lop, 2005; Hansen and Lofstrom, 2009), labor supply (Hyslop, 1999), unemployment

(Hansen and Lofstrom, 2009) and health (Carro and Traferri 2014). A particularly

relevant study for this paper is Deza (2015) who use a dynamic discrete choice model

to analyze persistence in illicit drug use. Using data from the 1997 cohort of the NLSY,

she estimates a general model of alcohol, marijuana and hard drug use and separate the

contributions from state dependence and unobserved heterogeneity, both within drugs

but also between drugs. Her results show the existence of signi�cant �stepping-stone�

e�ects into hard drugs, where current alcohol and marijuana use signi�cantly increase

the probability of hard drug use in the future.

Our paper addresses some important shortcomings in the previous literature. We

�rst analyze the probability of marijuana use among American youth from ages 13 to
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26, paying particular attention to its persistence. Apart from Deza (2015), there are few

studies that have analyzed time dependence or persistence in marijuana consumption.

While Deza (2015) estimates a general, dynamic model of consumption of alcohol and

hard drugs, in addition to marijuana, the focus is on structural state dependence and

transitions from alcohol and marijuana into hard drugs. Our model speci�cation, while

limited to marijuana consumption only, allows for more general forms of dynamics as

well as serially correlated utility shocks.1 We also estimate di�erent persistence proba-

bilities conditional on the amount consumed, allowing for the separation of occasional

or experimental use from continuous, intensive use. We show that these additional

dimensions are important and that moderate consumption of marijuana may serve as

a �stepping-stone� into heavy use.2

The results indicate that serial correlation in the time-varying utility shocks con-

tributes substantially to overall, observed persistence. If ignored, the estimate for

structural state dependence is exaggerated, leading to incorrect inference about sources

of persistence. Further, separating moderate use from intense use is important.

Focusing �rst on the estimated average partial e�ects, which are designed to show

the causal e�ect of past consumption on current consumption, our results for the most

general speci�cation of the binary case suggest that consumption of marijuana in the

previous period increases the probability of current consumption by 0.325.3 Given an

unconditional consumption rate of 15-20 percent (depending on age), this e�ect is very

large. However, it is signi�cantly smaller than the corresponding e�ect obtained from

1We generalize the standard �rst-order Markov speci�cation for dynamics to allow for direct, but
fading, e�ects of consumption in periods before the previous one. This model speci�cation is referred
to as the Polya model in Lee (1998) and more details are provided below.

2We de�ne moderate use as consumption less than 9 times per month and heavy use as 10 days
or more of consumption. The data show that persistence is concentrated among heavy users while
moderate use is more transitory. Speci�cally, the average probability of heavy marijuana use is 0.635,
conditional on heavy consumption in the previous time period. This should be compared to a proba-
bility of 0.339 for moderate marijuana consumption.

3The average partial e�ect is estimated as P̂ r (yi,t = 1|yi,t−1 = 1)− P̂ r (yi,t = 1|yi,t−1 = 0), which
is averaged across individuals and time periods.
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a speci�cation without persistent unobserved heterogeneity or persistent utility shocks

(where the e�ect is 0.510).

For the ordered model, we estimate two average partial e�ects for each intensity

level. For moderate consumption levels, the �rst e�ect is the di�erence in conditional

probabilities of moderate consumption when we condition on moderate versus no con-

sumption in the previous time period while the second e�ect conditions on moderate

and heavy use instead. The former e�ect (moderate versus no consumption) is 0.086

while the second e�ect is -0.085. That is, the probability of consuming moderate lev-

els of marijuana in year t is 8.6 percentage points higher if the person consumed the

same level of marijuana in year t-1, relative to not using any marijuana in year t-1.

While the magnitude of this e�ect is smaller than the one obtained in the binary case,

it constitutes a relative e�ect that is similar to the observed proportions of moderate

consumption in the data. The negative e�ect for moderate versus heavy usage suggests

a higher probability of moderate use in year t for those with a heavy consumption in

the previous year compared to those with moderate consumption.

For heavy consumption levels, the �rst e�ect is the di�erence in conditional prob-

abilities of heavy consumption when we condition on heavy versus no consumption in

the previous time period while the second e�ect conditions on heavy and moderate use

instead. The former e�ect equals 0.116 and is slightly larger than the one estimated for

moderate use. The second e�ect is smaller, 0.076. That is, the probability of consum-

ing heavy levels of marijuana in year t is 11.6 percentage points higher if the person

consumed the same level of marijuana in year t-1, relative to not using any marijuana

in year t-1. Again, while the magnitude of this e�ect is smaller than the one obtained

in the binary case, it is similar to the observed proportions of heavy consumption in

the data.

Finally, our analysis of the sources for persistence in marijuana consumption re-
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veals some interesting patterns. In the binary case, 66 percent of the persistence is

causal (true state dependence). The remaining sources for the time dependence in mar-

ijuana consumption are: i) persistent, unobserved heterogeneity (23 percent); and ii)

persistence in time-varying utility shocks (11 percent).

The estimated persistence probabilities for the ordered model suggest that persis-

tent, time-varying utility shocks play similar roles for persistence of moderate marijuana

consumption (18 percent of overall persistence is due to unobserved heterogeneity) and

heavy use (17 percent). Persistence due to time-invariant unobserved individual char-

acteristics play a larger role for both consumption levels, (28 percent for moderate

consumption and 62 percent for heavy consumption). Consequently, true or causal

state dependence accounts for 54 percent of total persistence in moderate consumption

while it is less important for heavy consumption levels (21 percent). That is, most of the

overall persistence in moderate consumption is due to structural state dependence (this

result also applies when we consider consumption as a binary outcome) while for heavy

consumption, most of the persistence is due to persistent, time-invariant individual

characteristics.

The rest of the paper is organized as follows. In the next section, we describe the

data and in Section 3 we present the econometric model and its results when we consider

marijuana consumption as a binary outcome. Section 4 is structured similarly but for

the generalized model with ordered outcomes. Section 5 concludes the paper with a

brief summary.

2 Data

In this paper, we utilize data from the 1997 cohort of the National Longitudinal

Survey of Youth (NLSY97), which is a nationally representative sample of �ve cohorts
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of males and females who were born between 1980 and 1984. The initial interview took

place in 1997 and follow-up interviews were conducted annually until 2011 after which

it became a biannual survey. NLSY97 gathers information in an event history format,

in which dates are collected for the beginning and end of signi�cant life events. In

addition, there are detailed information on family background and income as well as

on individual scholastic ability.

In our analysis, we remove individuals who were not part of the representative cross-

sectional sample in 1997 (this removes over-samples of Blacks and Hispanics). In order

to reduce potential initial conditions concerns, we also exclude all respondents who were

born before 1983. Many of those born in 1983 were 13 years old at the time of the �rst

survey while many of those born in 1984 were 12 years old at that interview. We are

then left with 1,589 individuals. Of these, 55 reported having used Marijuana before

the age of 13 and to avoid left censoring, these were removed.

We also excluded individuals who did not provide valid information on the following:

family income (at any point between 1997 and 2001), mother's age at birth, family

situation at the time of the survey (divorced parents or not), area of residence, number

of siblings, mother's education and Armed Forces Quali�cation Test (AFQT) scores.4

We exclude those with missing information on any of these variables since they are

included as covariates in all model speci�cations.5 Finally, we remove respondents who

did not provide any answers on questions related to marijuana use and those who we

only observed once. After these selections, the sample consists of 1,204 individuals.

4AFQT scores consists of four components of the Armed Forces Vocational Aptitude Battery
(ASVAB): Arithmetic Reasoning (AR), Mathematics Knowledge (MK), Word Knowledge (WK), and
Paragraph Comprehension (PC). These scores have been used extensively in research on education
using NLSY data. In this paper, we follow Belzil and Hansen (2020) and regress the scores on age and
education, in order to adjust for age and educational di�erences at the time of the test, and use the
standardized residual from that regression as the measure of cognitive ability.

5These variables are commonly included in empirical analysis of substance use. We decided not
to include father's education in the list mainly because of the large number of missing values for this
variable and the skewness in responses to questions about this across the sample (there is a higher
fraction of missing among non-white respondents).
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We use information on family income for each individual at ages 16 and 17, if

available, and construct an average income measure. If income is only available for one

of the years, the average income is replaced by that income. If no income information

is available for these ages, we consider income at earlier ages if available in order to

minimize the number of individuals dropped because of missing income. We express

income in year 2000 dollars using the CPI for all urban consumers.

To derive measures of marijuana use, we compile information from questions like:

1) have you ever used marijuana?; 2) when did you start using marijuana?; 3) did you

use marijuana during the year before the interview? and 4) On how many days have

you used marijuana in the last 30 days? From the responses to these questions, we

create individual annual indicators of marijuana use (and non-use) as well as indicators

for intensity of use, conditional on use (less than 10 days last month versus 10 days

or more). Responses to the �rst three questions are used to validate consistency in

responses while our outcome variables are derived from answers to the fourth question.

In Table 1 below, we present the proportions of the sample that used marijuana at

a given age. At age 13, 3.7 percent of the respondents used marijuana at least once.

Three years later, at age 16, this had increased almost �ve-fold to 18.3 percent. After

16, the proportion of users increase until age 18 when it peaks and then declines to

around 16 percent when respondents are in their 20s.

The entries in Table 1 do not reveal how respondents move in and out of mari-

juana use. In order to infer the degree of time persistence and the transitory nature

of marijuana use, we show average (across individuals and time periods) conditional

probabilities in Table 2. The entries show row percentages of the probability of using

marijuana in year t, conditional on marijuana use in year t-1. The top row entries

show that 91.5 percent of those who did not use marijuana in year t-1 continued to be

non-users in year t, while 8.5 percent started using marijuana. Similarly, among those
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who used marijuana in year t-1, 63 percent continued using it in year t while 37 percent

stopped.6

While the entries in Table 1 show how usage vary with age, the entries in Table 2

show the anatomy of usage in any year. That is, how many start using it and how many

stop. The focus of this paper is to analyze the persistence over time in marijuana use

and estimate to what extent it is causal (or due to addiction) as opposed to persistence

in observed and unobserved characteristics.

In Table 3, we show average characteristics separately for individuals who never used

marijuana and for those who used it at least once over the sample period. Overall, males

and Hispanics are somewhat over-represented among users. The proportion living with

both biological parents at the interview date is higher among the never-users (0.66)

than among the users (0.57). For other background variables - family income, mother's

education, AFQT scores, mother's age at birth, urban residence and number of siblings

- there are no major di�erences in sample means between the two groups. Lastly, half

of our sample have used marijuana at least once. This is somewhat lower than the

57-58 percent reported in Deza (2015).

Similar to earlier studies on substance use that utilize retrospective information, our

measures of marijuana are subject to potential measurement error problems, speci�cally

recall errors. However, unlike most of them (see for instance Van Ours and Williams

(2009) whose sample consists of respondents aged 25-50), the respondents in our sample

were �rst asked about their marijuana use at a young age (age 12 or 13). We therefore

believe the issue of recall errors is less serious in this paper than in many of the previous

studies on this topic.

6Deza (2015) reports similar proportions (an entry probability of 9.2 percent and a persistence
probability of 67 percent (Table 2, panel B)) using NLSY97, despite di�erent sample selections. She
limited her sample to respondents with a valid state of residence at each wave between 1997 and 2007,
i.e. a balanced panel. She also included the oversample of minorities available in NLSY97.
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3 Binary outcomes

3.1 Estimation

In this paper we explore the persistence in marijuana use and its sources. Exploiting

the longitudinal nature of the NLSY97 data, we analyze the dynamics of marijuana use

(and non-use). Our empirical models are inspired by Heckman (1981) who derived a

general framework for the analysis of discrete choices in discrete time. He showed that

observed choices can be derived from latent variables, which in turn can be thought

of as describing utility di�erences across alternatives. Hence, observed choices are

outcomes of utility maximization. We follow Lee (1997) and Liu et al (2012) who o�ers

a description and assessment of generalized versions of Heckman's original framework.

It is commonly assumed that the dynamics of marijuana use can be fully captured

by choices made in the previous time period. Alternatively, we can imagine that there

is some memory in the process and that usage in periods prior to the last one may also

have a direct or causal impact on current use. To allow for this, we consider a more

general dynamic representation, described as the Polya model in Lee (1997), in this

paper. Speci�cally, let y∗it denote latent, unobserved utility di�erences, for individual i

in period t, between using and not using marijuana

y∗i,t = Ψi,t + γ
t∑

j=1

δj−1yi,t−j + σµi + εi,t (1)

for i = 1, ..., n; t = 1, ..., Ti and where Ψi,t = Xiβ + κ1 (t− t0) + κ2 (t− t0)
2. δ, [0, 1]

can be thought of as a discount factor. When δ = 0, past choices beyond t-1 do not

matter for the utility in period t whereas when δ = 1, the impact of past choices do not

fade with time. If the utility di�erence is positive, individual i consumes marijuana in

period t and the observed outcome is

10



yi,t =


1 if y∗i,t > 0

0 if y∗i,t ≤ 0

In our case, yi,0 = 0 as we start observing and modeling marijuana use at age 13.

We include a fairly rich set of observable characteristics in X and assume that the error

terms (µi) and (εi,t) are independent of X and across individuals. While µi is �xed

over time, εi,t is time-varying and possibly correlated over time. There are four possible

sources of time persistence in marijuana use in equation (1): i) time-invariant observed

characteristics (Xi); ii) true state dependence (γ > 0); iii) time-invariant unobserved

characteristics (µi); and iv) persistence in time-varying shocks (εi,t).

We assume that εi,t = ρεi,t−1 + νi,t, where νit are i.i.d N (0, 1), and consequently

the choice probabilities involve multiple integrals. Following Lee (1997), we adopt the

Geweke-Hajivassiliou-Keane (GHK) simulator and estimate the parameters in equations

(1) and (2) using Maximum Simulated Likelihood. The joint probability for observed

choices yi,1, ..., yi,T , conditional on Xi and µi is

Pr (yi,1, ., yi,T |Xi, µi) =
∫ U1

L1
.
∫ UT

LT
f (εi,T |εi,T−1, ., εi,1) f (εi,T−1|εi,T−2, ., εi,1) ...f (εi,1) dεT .dε1(2)

where f (εi,t|εi,t−1, .., εi,1) is the density of εi,t conditional on past realizations of ε

and the integral limits are

Lt =


−
(
Ψi,t + γ

∑t
j=1 δ

j−1yi,t−j + σµi

)
if yi,t = 1

−∞ if yi,t = 0
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and

Ut =


∞ if yi,t = 1

−
(
Ψi,t + γ

∑t
j=1 δ

j−1yi,t−j + σµi

)
if yi,t = 0

Lee (1997) shows how the joint probability in (3) can be expressed using standard

normal density and distribution functions and simulated using the GHK simulator. The

sample likelihood then becomes

L =
∑n

i=1 ln
{

1
m

∑m
j=1

∏Ti

t=1Φ
(
Di,t

(
Ψi,t + γ

∑t
j=1 δ

j−1yi,t−j + σµj
i + ρεji,t−1

))}
(3)

where Di,t = 2yi,t − 1. The random disturbances εi,t are recursively generated as

described in Lee (1997).7 The µ′s are generated from N (0, 1) random draws while the

ε′s are generated from functions of U [0, 1] draws. Lee (1997) provides Monte Carlo

results for this and other dynamic speci�cations and concludes that this estimator

generally performs well. Since we use an unbalanced panel, Ti varies between 2 and 14.

We set m = 100.

3.2 Results

In this section, we present both parameter estimates and average partial e�ects of

selected variables. We use a parametric bootstrap to estimate the standard errors of

the average partial e�ects. Speci�cally, for each model we draw 100 vectors of param-

eter values from the estimated variance-covariance matrix. For each vector, we draw

7We provide a description of the generation of truncated random draws needed for the likelihood
function in the Appendix.
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100 utility shocks for each individual and time period and predict sequences of out-

comes. We subsequently calculate di�erences in conditional probabilities of marijuana

consumption for each individual in each period. These di�erences are averaged across

individuals and time periods for each draw from the estimated variance-covariance ma-

trix. We refer to these as average partial e�ects below and the standard errors of the

e�ects are estimated using the standard deviation of the simulated e�ects.

3.2.1 Estimates and average partial e�ects

Estimates from three alternative Probit speci�cations are presented in Table 4. This will

allow us to analyze how the parameters associated with previous marijuana consumption

and the corresponding average partial e�ects depend on stochastic assumptions.

The entries in column one refer to a speci�cation with no time-invariant unobserved

heterogeneity and no persistence in the time-varying shocks. In column two, we al-

low for unobserved heterogeneity and but not serial correlation in the time-varying

shocks. Finally, in column three, we allow for both unobserved heterogeneity and serial

correlation in the time-varying shocks. We set δ to 0.7.

There is evidence of signi�cant time dependence in marijuana use. The estimate

in column one for previous marijuana use (γ) is 0.970 and it is statistically signi�cant.

However, as discussed above, in this simpli�ed model, all persistence in marijuana is

captured by this parameter and it is therefore unlikely to represent the true (or causal)

e�ect of past use on current use. Allowing for another source of persistence has an

expected e�ect. The estimate in column two is 0.845, suggesting that the causal e�ect of

past usage is exaggerated in the naive speci�cation in column one. Instead, a signi�cant

part of the observed persistence is due to time-invariant, unobserved heterogeneity with

σ̂ equal to 0.346.

The corresponding estimates reported in column three suggest important roles for

all three sources of time dependence. The estimate of previous use (γ) is further reduced
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to 0.727 while σ̂ equals 0.424. Further, ρ̂ is signi�cant and equals 0.225. At the bottom

of Table 4, we report the Akaike Information Criteria (AIC) for each model speci�cation

and these favor the most general model presented in column three.

Regarding observable characteristics, the entries in Table 4 suggest that gender,

family stability and cognitive skills matter for marijuana use. The estimates associated

with these variables are signi�cant and generally similar across all three speci�cations

while the estimates of the other included variables (shown in Table A1) are not.

In Table 5 we show the average partial e�ects of past consumption. As men-

tioned above, the average partial e�ects are estimated as P̂ r (yi,t = 1|yi,t−1 = 1) −

P̂ r (yi,t = 1|yi,t−1 = 0), and they are averaged across individuals and time periods. Ac-

cording to these estimated e�ects - for the restrictive model with no unobserved hetero-

geneity and no serial persistence in the error terms - the probability of marijuana use

in any given year is 51 percentage points higher if the person used marijuana the year

before. This is a very large e�ect considering that the proportion of the sample that

use marijuana at any given age very between 15 and 20 percent (after age 14, see Table

1). However, as we generalize the models, this conditional probability is reduced. In

column two, the di�erence is 40.3 percentage points while in column three it has been

reduced to 32.5 percentage points.8

3.2.2 Model �t

We assess the model's ability to generate outcomes that match those observed in the

data by predicting transition probabilities. In Table 6, we show the predicted transition

matrix for marijuana use obtained by simulating outcomes generated by the estimates

from the most general speci�cation (Model 3 in Table 4). The predicted conditional

8The average partial e�ect for Model 2 is higher than the corresponding e�ect (25.1 percentage
points) reported in Deza (2015). However, since her model also considers alcohol and hard drugs, the
conditional probabilities are not comparable.
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probabilities, which are averaged over individuals and time, match those in the data

(presented in Table 2) well. For example, the probability of using marijuana in year

t, conditional on using marijuana in year t-1, is 0.63 in the data and the predicted

probability is 0.66. Moreover, the probability of using marijuana in year t, conditional

on not using marijuana in year t-1 is 0.085 in the data while the predicted probability

is 0.097.

3.2.3 Sources of persistence

In Table 7 we explore the anatomy of persistent marijuana use. The entries are obtained

using estimates from the most general speci�cation and in the �rst row, we replicate

the the probability of using marijuana in year t, conditional on using marijuana in year

t-1, from Table 6. This is the predicted persistence. In the second row, we remove the

role of time-varying utility shocks by setting ρ = 0 but allow for permanent unobserved

heterogeneity. The predicted probability drops from 0.661 to 0.578. Thus, close to

13 percent of the overall persistence in marijuana consumption is due to persistent

time-varying utility shocks. In row three, we remove persistence in the time-invariant

unobserved heterogeneity by setting σ = 0 (in addition to setting ρ = 0). The predicted

persistence further drops to 0.436. The remaining persistence (66 percent of the total)

is due to a causal or addictive e�ect of using marijuana in the previous period. Thus, a

majority of the observed state dependence in marijuana consumption is causal although

a large portion is due to persistence in utility shocks and heterogeneity. A similar �nding

is reported in Deza (2015).
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4 Ordered outcomes

The results so far are based on the dichotomy of marijuana use with no separation

between occasional or moderate consumption and more intense, regular use. This is

arguably restrictive and to allow for di�erent e�ects depending on the intensity of

consumption, we generalize the model described above to include multiple, ordered

outcomes.

4.1 Estimation

Speci�cally, let c∗i,t denote latent, unobserved utility of marijuana consumption for in-

dividual i in period t

c∗i,t = Ψi,t + γ1

t∑
j=1

δj−11 (ci,t−1 = 1) + γ2

t∑
j=1

δj−11 (ci,t−1 = 2) + σµi + εi,t (4)

for i = 1, ..., n; t = 1, ..., Ti and where Ψi,t = Xiβ + κ1 (t− t0) + κ2 (t− t0)
2. 1 (.)

is an indicator function that equals one if the argument is true and zero otherwise. If

utility is below a certain level (θ1), the individual is not consuming marijuana in period

t. If utility exceeds (θ1) but is below (θ2), the individual consumes a moderate amount

of marijuana in period t and �nally, if utility exceeds (θ2), the individual is a heavy

user. Thus, the observed outcome (ci,t) is

ci,t =


0 if c∗i,t ≤ θ1

1 if θ1 < c∗i,t ≤ θ2

2 if c∗i,t > θ2
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As mentioned above in the binary case, ci,0 = 0 since we start observing and mod-

eling marijuana use at age 13. We maintain the assumptions that the error terms (µi)

and (εit) are independent of X and across individuals, µi is i.i.d. N (0, 1) and �xed

over time while εi,t = ρεi,t−1 + νi,t, where νi,t are i.i.d N (0, 1).9 We de�ne ci,t = 0 if

the person did not use marijuana in period t, ci,t = 1 if the person used marijuana less

than 10 times per month in period t (moderate use) and ci,t = 2 if the person used

marijuana 10 times or more per month in period t (heavy use).

Given the stochastic assumptions and the assignment rule above, the probabilities

of observed outcomes are then

Pr (ci,t = 0|ci,t−1) = Φ (θ1 − λi,t) = Λ0

Pr (ci,t = 1|ci,t−1) = Φ (θ2 − λi,t)− Φ (θ1 − λi,t)= Λ1

Pr (ci,t = 2|ci,t−1) = 1− Φ (θ2 − λi,t) = Λ2

where

λi,t = Ψi,t + γ1

t∑
j=1

δj−11 (ci,t−1 = 1) + γ2

t∑
j=1

δj−11 (ci,t−1 = 2) + σµi + ρεi,t−1

We again adopt the Geweke-Hajivassiliou-Keane (GHK) simulator and estimate

the parameters in equation (5) using Maximum Simulated Likelihood. The sample

likelihood is an adjusted version of the one presented in equation (4) above

9Honore et al (2021) derive a generalized method of moments estimator for a dynamic ordered
Logit model with �xed e�ects, assuming time independence of the utility shocks. We believe that it is
important in our context to relax that time independence assumption.
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L =
n∑

i=1

ln
{

1
m

∑m
j=1

∏Ti

t=1 Λ0
I(cit=0)Λ

I(cit=1)
1 Λ

I(cit=2)
2

}
(5)

The random disturbances εi,t are generated recursively, similar to the binary case,

and the µ′s are generated from N (0, 1) random draws while the ε′s are generated from

functions of U [0, 1] draws.10 We set m = 100.

4.2 Results

4.2.1 Descriptive statistics

The proportions of the sample that used marijuana at a given age, by intensity level,

are presented in Table 8. At age 13, of the 3.7 percent of the respondents who used

marijuana at least once, a majority (73 percent) used it occasionally (less than 10

days during the 30 days preceding the survey date). Three years later, at age 16,

the proportion of intense users, among all users, increase to 33 percent. In fact, the

proportion of intense users, among all users, increase with age and reach over 60 percent

at age 26. This suggests a higher degree of persistence among the intense users.

The entries in Table 9 show the degree of time persistence and the transitory nature

of marijuana use, conditional on intensity of consumption. Like before, we show aver-

age (across individuals and time periods) conditional probabilities and the entries show

row percentages of the probability of consuming a certain level of marijuana in year t,

conditional on marijuana use in year t-1. The top row entries show, like before, that

91.5 percent of those who did not use marijuana in year t-1 continued to be non-users

in year t. Among the remaining non-users, 6.4 percent started consuming marijuana

at a moderate intensity level while 2.1 percent (a quarter of those who started using

10See the Appendix for details.

18



marijuana) used marijuana intensively (used it at least 10 days or more during the

30 days preceding the survey date). Among those who used marijuana moderately in

year t-1, almost half stopped consuming it in year t while 16 percent increased their

consumption the following year. Only 34 percent continued with moderate use, sug-

gesting a transitory nature among occasional or moderate users. The entries in the last

row show that 20 percent of the intense users in period t-1 stopped using marijuana in

period t while 16.6 percent reduced their consumption (but kept consuming). However,

the majority (63.5 percent) continued their intense level of consumption the following

year (in year t).

4.2.2 Estimates and average partial e�ects

Estimates from the ordered Probit Polya model (the likelihood presented in equation 6)

are shown in Table 10. Similar to the binary case, we set δ to 0.7. The model includes

the same set of observed characteristics as the ones for the binary case but we report

only a subset of the associated estimates in Table 10. The remaining estimates are

shown in Table A2 in Appendix.

The estimates in the �rst two rows suggest existence of true or causal time depen-

dence in outcomes and this dependence is stronger for intense marijuana use. The

estimates are 0.432 and 0.786 for moderate and heavy use, respectively. We will illus-

trate how these estimates translate into average partial e�ects and predicted transition

probabilities below. The estimates for male and intact family are similar in magnitude

(and statistical signi�cance) to those obtained in the binary case (see column 3 of Table

4). The standard deviation of the persistent unobserved heterogeneity term, σ̂, is 0.569.

Finally, there is evidence of serial persistence in the error terms (εit) as ρ̂ is signi�cant

and equals 0.300.

In Table 11 we show the average partial e�ects for selected variables. The �rst two
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rows show the predicted di�erence in the probability of using marijuana at a moderate

level when we condition on di�erent consumption levels in the previous time period. The

�rst e�ect is the di�erence in conditional probabilities of moderate consumption when

we condition on moderate versus no consumption in the previous time period while

the second e�ect conditions on moderate and heavy use instead. The former e�ect

(moderate versus no consumption) is 0.086 while the second e�ect is -0.085. That is,

the probability of consuming moderate levels of marijuana in year t is 8.6 percentage

points higher if the person consumed the same level of marijuana in year t-1, relative to

not using any marijuana in year t-1. While the magnitude of this e�ect is smaller than

the one obtained in the binary case, it constitutes a relative e�ect that is similar to

the observed moderate consumption rates observed in the data. The negative e�ect for

moderate versus heavy usage suggests a higher probability of moderate use in year t for

those with a heavy consumption in the previous year compared to those with moderate

consumption.

In rows three and four we present the corresponding probability di�erences for heavy

consumption levels. The �rst e�ect is the di�erence in conditional probabilities of heavy

consumption when we condition on heavy versus no consumption in the previous time

period while the second e�ect conditions on heavy and moderate use instead. The

former e�ect equals 0.116 and is slightly larger than the one estimated for moderate

use. The second e�ect is smaller, 0.076. That is, the probability of consuming heavy

levels of marijuana in year t is 11.6 percentage points higher if the person consumed

the same level of marijuana in year t-1, relative to not using any marijuana in year t-1.

Again, while the magnitude of this e�ect is smaller than the one obtained in the binary

case, it is similar to the observed proportions of heavy consumption in the data.
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4.2.3 Model �t

Similar to the binary case presented above, we assess the model's ability to generate

outcomes that match those observed in the data by predicting transition probabilities.

In Table 12, we show the predicted transition matrix for marijuana use obtained by

simulating outcomes generated by the estimates from the ordered Polya model. The

predicted conditional probabilities, which are averaged over individuals and time, match

those in the data (presented in Table 9) reasonably well. For example, the probability

of not using marijuana in year t, conditional on not using marijuana in year t-1 is 0.915

in the data and the predicted probability is 0.923. The predicted entry probabilities,

going from non-use to moderate or intense use, also match those in the data well.

The second row entries show probabilities of various use conditional on moderate

use in period t-1. The predicted exit (or stopping) probability is 0.524 compared to

0.497 in the data. However, the model underestimates the probability of remaining a

moderate user somewhat (0.264 versus 0.339) and slightly exaggerates the transition

from moderate to intense use (0.212 versus 0.164). Conditional on heavy use, the

predicted probabilities are similar to those in the data, especially the probability of

remaining an intense user (0.615 versus 0.635 in the data). Overall, the model generates

predicted transition matrix entries that match those in the data well.

4.2.4 Sources of persistence

In Table 13 we replicate the analysis on the anatomy of persistent marijuana use but

generalize it to allow di�erential impacts on moderate and heavy use. The entries in

column one refers to moderate use, P̂ r
(
ymi,t = 1|ymi,t−1 = 1

)
, while those in column two

refer to heavy use, P̂ r
(
yhi,t = 1|yhi,t−1 = 1

)
. They are obtained using estimates from

the ordered Polya model and in the �rst row, we replicate the the probabilities of
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marijuana consumption in year t, conditional on the same intensity level of marijuana

consumption in year t-1, from Table 12. In the second row, we remove persistence

in the time-varying utility shocks by setting ρ = 0. The predicted probability drops

from 0.264 to 0.216 in the moderate case and from 0.615 to 0.510 in the heavy case.

Thus, persistent utility shocks contribute signi�cantly to time dependence in both types

of marijuana consumption, by 18 percent for moderate consumption levels and by 17

percent for heavy use.

In row three, we remove persistence due to time-invariant unobserved heterogeneity

by setting σ = 0 (in addition to setting ρ = 0). The predicted persistence further

drops to 0.143 for the moderate case and to 0.128 for the intense case. This source of

persistence contributes about 28 percent to the overall persistence for moderate levels

of marijuana use and 62 percent for heavy levels. The remaining persistence (54 percent

of the total for moderate use and 21 percent of the total for intense use) is due to a

causal or addictive e�ect of using marijuana in the previous period.

That is, most of the overall persistence in moderate consumption is due to structural

state dependence (this result also applies when we consider consumption as a binary

outcome) while for heavy consumption, most of the persistence is due to unobserved,

time-invariant individual heterogeneity.

5 Conclusions

In this paper we provide new evidence on the persistence of marijuana use among Amer-

ican youth. This topic is important for many reason, one being the fact that marijuana

consumption among teenagers is inversely related to many successful future labor mar-

ket outcomes. It is perhaps more important than ever given the recent legalization of

recreational marijuana use in many jurisdictions. Moreover, according to 2018 results
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on monitoring the future from the National Institute on Drug Abuse, marijuana use

were at historic highs in 2018, both among college and non-college peers.

The previous literature on persistence of marijuana consumption is limited. A no-

table exception is Deza (2015) who estimate a dynamic discrete choice model of alcohol,

marijuana and hard drugs use and focus on the state dependence in these, as well as

dependence across di�erent drugs. While our paper share many features with Deza

(2015), there are also important di�erences. Unlike her, we allow for persistence in

the utility shocks, in addition to persistence generated from time-invariant unobserved

heterogeneity and pure or causal state dependence. Further, we specify the dynamics in

marijuana use in a more �exible way and do not limit it to the inclusion of a one-period

lag. Perhaps most importantly, in the second part of the paper, we distinguish between

di�erent intensity levels of marijuana consumption. Instead of using a binary outcome

(used or not), we code moderate use (consumption during 1-10 days last month) sepa-

rately from heavy use (consumption during 10 days or more last month). We show that

moderate consumption is transitory and less persistent than heavy use. A signi�cant

fraction in the data (16.4 percent) of moderate users transit to heavy use in the next

period while an even larger share (49.7 percent) stop using marijuana next period.

The estimated average partial e�ects show that previous consumption signi�cantly

increase the probability of current consumption. We show that these e�ects exist for all

consumption levels but are severely exaggerated in models that ignores time-invariant

unobserved heterogeneity and persistence in utility shocks. However, even in the most

general model speci�cations, the partial e�ects suggest that the probability of consum-

ing marijuana a few days per month now increase by a factor of 2.5 when we change the

status of last year's consumption from none to moderate. For more intensive consump-

tion levels, the corrseponding factor is even higher at over 10. This �nding is robust

towards aggregation of marijuana consumption.
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We also disaggregate overall persistence into three components and show the rela-

tive contribution of each. The results show that persistent unobserved heterogeneity

plays a large role in persistence of heavy marijuana consumption (62 percent of overall

persistence is due to unobserved heterogeneity) and less so for moderate use (28 per-

cent is due to unobserved heterogeneity). Persistence in time-varying random shocks

also play a signi�cant role although its importance is smaller than that observed for

persistent observed individual characteristics. Finally, true or causal state dependence

is important for both intensity levels, but more so for moderate consumption (54 and

21 percent, respectively).

The results for moderate use are similar to those obtained in the binary case where

there is no distinction between occasional and intense consumption. These results are

also similar to those found in Deza (2015). However, by ignoring the possibility that

structural persistence is a function of the level of consumption, the role of causal state

dependence in that paper may be exaggerated. This in turn may lead to misguided

policy recommendations as the risk of addictive behavior may be overstated.
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Table 1: Proportion of respondents using marijuana, by age.

Number of
Age Used

marijuana
individuals

13 0.037 1,204

14 0.091 1,204

15 0.154 1,176

16 0.183 1,142

17 0.204 1,103

18 0.218 1,064

19 0.196 1,024

20 0.200 977

21 0.180 937

22 0.186 916

23 0.160 883

24 0.161 859

25 0.165 843

26 0.162 832
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Table 2: Transition matrix

Used marijuana in year t
Used marijuana in year t-1 No Yes

No 0.915 0.085

Yes 0.370 0.630

Note: Row percentages.
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Table 3: Sample means, by marijuana use

Never used Used at least
once

Male 0.49 0.55

Black 0.14 0.13

Hispanic 0.11 0.13

Intact family 0.66 0.57

Family income $66,191 $65,429

Mother - high school graduate 0.33 0.34

Mother - attend college 0.53 0.53

AFQT 170.9 172.0

Mother's age at birth 26.4 26.2

Urban 0.71 0.75

Number of siblings 2.5 2.4

Peers 0.08 -0.08

Number of individuals 598 606

Note: Family income is expressed in year 2000 dollars.
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Table 4: Selected estimates from binary Probits.

Model 1 Model 2 Model 3

γ 0.970 0.845 0.727
(0.018) (0.032) (0.027)

σ - 0.346 0.424
(0.049) (0.040)

ρ - - 0.225
(0.024)

Male 0.092 0.116 0.135
(0.050) (0.035) (0.046)

Intact family -0.097 -0.130 -0.153
(0.030) (0.033) (0.046)

AFQT 0.051 0.058 0.063
(0.012) (0.018) (0.021)

AIC 8,847 8,841 8,769
LogL -4,407 -4,403 -4,366

Note: Standard errors in parentheses. AIC is the Akaike Information Criteria. Models 2 and 3 were

estimated using simulated Maximum Likelihood with 100 simulation draws.
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Table 5: Average partial e�ects from binary Probits.

Model 1 Model 2 Model 3

Pr (yi,t = 1|yi,t−1 = 1)− Pr (yi,t = 1|yi,t−1 = 0) 0.510 0.403 0.323
(0.085) (0.110) (0.119)

Note: Standard errors in parentheses. Models 2 and 3 were estimated using simulated Maximum
Likelihood with 100 simulation draws. A parametric bootstrap with 100 draws was used to estimate
the standard errors. The model estimates were used to generate sequences of outcomes and the
di�erences in conditional probabilities above are averaged over time and across individuals.
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Table 6: Predicted transition matrices

Used marijuana in year t
Used marijuana in year t-1 Yes No

Yes 0.661 0.339
(0.138) (0.138)

No 0.097 0.903
(0.046) (0.046)

Note: Average transition probabilities from simulation of outcomes using estimates from Model 3 in
Table 4. Standard errors in parentheses. A parametric bootstrap with 100 draws was used to estimate
the standard errors.
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Table 7: Sources of persistence

(1) Predicted persistence 0.661

(2) After removing time-varying unobserved characteristics 0.578
Proportion of total persistence - (2)/(1) 0.874

(3) After removing time-invariant unobserved heterogeneity and (2) 0.436
Proportion of total persistence - (3)/(1) 0.660

Note: The entries are derived using estimates fromModel 3 in Table 4 and show Pr (yi,t = 1|yi,t−1 = 1).
In (2), we set ρ = 0 and in (3), we set σu = 0; ρ = 0.
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Table 8: Proportion of respondents using marijuana, by age.

Used marijuana Number of
Age Did not use marijuana less than 10 days 10 days or more individuals

13 0.963 0.027 0.010 1,204

14 0.909 0.073 0.018 1,204

15 0.846 0.107 0.047 1,176

16 0.817 0.122 0.061 1,142

17 0.796 0.119 0.085 1,103

18 0.782 0.116 0.102 1,064

19 0.804 0.104 0.093 1,024

20 0.800 0.107 0.092 977

21 0.820 0.099 0.081 937

22 0.814 0.094 0.092 916

23 0.840 0.079 0.080 883

24 0.839 0.079 0.081 859

25 0.835 0.077 0.088 843

26 0.838 0.064 0.099 832
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Table 9: Transition matrix

Days of marijuana use last month in year t
0 1-9 10 or more

Days of marijuana use last month in year t-1
0 0.915 0.064 0.021

1-9 0.497 0.339 0.164

10 or more 0.198 0.166 0.635

Note: Row percentages.
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Table 10: Selected estimates from an ordered Probit Polya model

Standard
Estimate error

γ1 0.432 0.047

γ2 0.786 0.051

Male 0.143 0.047

Intact family -0.183 0.054

AFQT 0.056 0.031

σ 0.569 0.060

ρ 0.300 0.025

θ1 1.735 0.182

θ2 2.556 0.186

LogL -5,623

Note: The speci�cation included additional observed characteristics (the same list as in Table 4). The
remaining parameter estimates and standard errors are presented in Table A2 in Appendix.
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Table 11: Average partial e�ects on the probability of moderate and heavy marijuana
consumption.

Moderate Heavy

Pr
(
ymi,t = 1|ymi,t−1 = 1

)
− Pr

(
ymi,t = 1|yni,t−1 = 1

)
0.086 -
(0.001)

Pr
(
ymi,t = 1|ymi,t−1 = 1

)
− Pr

(
ymi,t = 1|yhi,t−1 = 1

)
-0.085 -
(0.001)

Pr
(
yhi,t = 1|yhi,t−1 = 1

)
− Pr

(
yhi,t = 1|yni,t−1 = 1

)
- 0.116

(0.002)

Pr
(
yhi,t = 1|yhi,t−1 = 1

)
− Pr

(
yhi,t = 1|ymi,t−1 = 1

)
- 0.076

(0.001)

Note: A parametric bootstrap with 100 draws was used to estimate the standard errors of the average
partial e�ects. The model estimates were used to generate sequences of outcomes and the di�erences
in conditional probabilities above are averaged over time and across individuals.
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Table 12: Model �t: Transition matrix

Days of marijuana use last month in year t
0 1-9 10 or more

Days of marijuana use last month in year t-1
0 0.923 0.060 0.017

(0.003) (0.002) (0.001)

1-9 0.524 0.264 0.212
(0.002) (0.003) (0.003)

10 or more 0.161 0.224 0.615
(0.004) (0.003) (0.006)

Note: Row percentages.
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Table 13: Sources of persistence

Persistence
Moderate Heavy

(1) Predicted persistence 0.264 0.615

(2) After removing time-varying unobserved characteristics 0.216 0.510
Proportion of total persistence - (2)/(1) 0.818 0.829

(3) After removing time-invariant unobserved heterogeneity and (2) 0.143 0.128
Proportion of total persistence - (3)/(1) 0.542 0.208

Note: The entries are derived using estimates from the model presented in Table 10 and show

Pr
(
yji,t = 1|yji,t−1 = 1

)
, j = Moderate,Heavy. In (2), we set ρ = 0 and in (3), we set σu = 0; ρ = 0.
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Appendix

Table A1: Estimates from binary Probits.

Model 1 Model 2 Model 3

Black -0.007 -0.024 -0.053
(0.029) (0.038) (0.062)

Hispanic 0.016 0.016 0.039
(0.030) (0.042) (0.080)

Family income 0.001 0.001 0.002
(0.003) (0.004) (0.005)

Mother High School 0.034 0.042 0.051
(0.033) (0.031) (0.051)

Mother College -0.002 0.002 0.012
(0.026) (0.034) (0.054)

Mother's age 0.0001 -0.0002 -0.001
(0.003) (0.004) (0.004)

Urban 0.038 0.047 0.048
(0.020) (0.042) (0.065)

Siblings -0.031 -0.039 -0.045
(0.008) (0.018) (0.020)

Peers -0.049 -0.064 -0.073
(0.014) (0.019) (0.021)

(t− t0) 0.034 0.062 0.090
(0.007) (0.014) (0.015)

(t− t0)
2 -0.006 -0.007 -0.008

(0.001) (0.001) (0.001)

Constant -1.412 -1.506 -1.609
(0.092) (0.130) (0.170)

Note: Standard errors in parentheses. The remaining parameters and model descriptions are available
in Table 4 together with likelihood values and AIC.
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Table A2: Estimates from an ordered Probit polya model

Standard
Estimate error

Black -0.056 0.082

Hispanic 0.047 0.075

Family income 0.001 0.005

Mother High School 0.031 0.060

Mother College -0.006 0.056

Mother's age at birth -0.0002 0.005

Urban 0.082 0.054

Siblings -0.050 0.026

Peers -0.088 0.026

(t− t0) 0.124 0.023

(t− t0)
2 -0.010 0.001

Note: The remaining parameters and model descriptions are available in Table 10 together with
likelihood values and AIC.
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Generation of truncated random variables for the sim-

ulated likelihood function

Binary outcomes

In order to derive the likelihood function in equation (4), we need to generate random

variables (ei,t) from truncated standard normal distributions on [Li,t, Ui,t]. This can

be done by transformations of uniformly distributed random variables, ui,t ∼ U [0, 1].

Speci�cally, for each independent simulation run (j), ei,t can be recursively generated

as follows (see also Lee (1997)).

1. Draw µi from a standard normal distribution.

2. For the �rst period,

(a) Calculate di,1 = Ψi,1 + σµi (assuming the following initial conditions εi,0 = 0

and yi,0 = 0 for all individuals)

(b) Calculate ai,1 = Φ(di,1) ∗ I (yi,1 = 1) + Φ (−di,1) ∗ I (yi,1 = 0)

(c) Calculate b0i,1 = ui,1 ∗ Φ (−di,1)

(d) Calculate b1i,1 = Φ(−di,1) + ui,1 ∗ Φ (di,1)

(e) Calculate ei,1 = Φ−1
(
b0i,1

)
∗ I (yi,1 = 0) + Φ−1

(
b1i,1

)
∗ I (yi,1 = 1)

(f) Obtain εi,1 = ei,1

3. For t > 1,

(a) Calculate di,t = Ψi,t + γ
∑t

j=1 δ
j−1yi,t−j + σµi + ρεi,t−1 + νi,t , where νi,t is

drawn from a standard normal distribution

(b) Calculate ai,t = Φ(di,t) ∗ I (yi,t = 1) + Φ (−di,t) ∗ I (yi,t = 0)
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(c) Calculate b0i,t = ui,t ∗ Φ (−di,t)

(d) Calculate b1i,t = Φ(−di,t) + ui,t ∗ Φ (di,t)

(e) Calculate ei,t = Φ−1
(
b0i,t

)
∗ I (yi,t = 1) + Φ−1

(
b1i,t

)
∗ I (yi,t = 0)

(f) Obtain εi,t = ei,t + ρεi,t−1

This is done m times. The simulated likelihood is then

L =
∑n

i=1 ln
{

1
m

∑m
j=1

∏Ti

t=1 ai,t

}
Asymptotic properties of this estimator are discussed in Lee (1997) as well as in the

references in that paper.

Ordered outcomes

The simulated likelihood function for the dynamic ordered Probit proceeds in a similar

fashion but modi�ed to accommodate the ternary nature of our outcomes. Speci�cally,

for each independent simulation run (j), ei,t can be recursively generated as follows:

1. Draw µi from a standard normal distribution.

2. For the �rst period,

(a) Calculate di,1 = Ψi,1 + σµi (assuming the following initial conditions εi,0 = 0

and ci,0 = 0 for all individuals)

(b) Calculate ai,1 = Φ(θ1 − di,1) ∗ I (ci,1 = 0) + [Φ (θ2 − di,1)− Φ (θ1 − di,1)] ∗

I (ci,1 = 1) + [1− Φ (θ2 − di,1)] ∗ I (ci,1 = 2)

(c) Calculate b0i,1 = ui,1 ∗ Φ (θ1 − di,1)

(d) Calculate b1i,1 = Φ(θ1 − di,1) + ui,1 ∗ [Φ (θ2 − di,1)− Φ (θ1 − di,1)]

(e) Calculate b2i,1 = Φ(θ2 − di,1) + ui,1 ∗ [1− Φ (θ2 − di,1)]
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(f) Calculate ei,1 = Φ−1
(
b0i,1

)
∗ I (ci,1 = 0)+Φ−1

(
b1i,1

)
∗ I (ci,1 = 1)+Φ−1

(
b2i,1

)
∗

I (ci,1 = 2)

(g) Obtain εi,1 = ei,1

3. For t > 1,

(a) Calculate di,t = Ψi,t+γ1
∑t

j=1 δ
j−11 (ci,t−1 = 1)+γ2

∑t
j=1 δ

j−11 (ci,t−1 = 2)+

σµi + ρεi,t−1 + νi,t , where νi,t is drawn from a standard normal distribution

(b) Calculate ai,t = Φ(θ1 − di,t) ∗ I (ci,t = 0) + [Φ (θ2 − di,t)− Φ (θ1 − di,t)] ∗

I (ci,t = 1) + [1− Φ (θ2 − di,t)] ∗ I (ci,t = 2)

(c) Calculate b0i,t = ui,t ∗ Φ (θ1 − di,t)

(d) Calculate b1i,t = Φ(θ1 − di,t) + ui,t ∗ [Φ (θ2 − di,t)− Φ (θ1 − di,t)]

(e) Calculate b2i,t = Φ(θ2 − di,t) + ui,t ∗ [1− Φ (θ2 − di,t)]

(f) Calculate ei,t = Φ−1
(
b0i,t

)
∗ I (ci,t = 0) + Φ−1

(
b1i,t

)
∗ I (ci,t = 1) + Φ−1

(
b2i,t

)
∗

I (ci,t = 2)

(g) Obtain εi,t = ei,t + ρεi,t−1

Similar to the binary case, this is done m times and the simulated likelihood is

L =
∑n

i=1 ln
{

1
m

∑m
j=1

∏Ti

t=1 ai,t

}
Asymptotic properties of this estimator are discussed in Lee (1997) as well as in the

references in that paper.
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