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1 Introduction

Routine weather forecasts are the product of a sophisticated scientific and policy e↵ort

requiring global cooperation (Benjamin et al., 2018). Data from around the world are con-

tinuously gathered and processed to produce forecasts that are disseminated to the public

multiple times per day, largely for free. Despite their ubiquity and the e↵ort that goes into

their creation, surprisingly little is known about their value to the public. Understanding

this value is important for at least two reasons. First, weather forecasts are a far-reaching

information intervention that is particularly well-suited to o↵ering empirical insights into

how individuals use information.1 Yet economists have only rarely used forecasts to study

informational questions (e.g., Roll, 1984). Second, forecasts are a costly but potentially

important policy tool. Globally, public funding for forecasting agencies exceeds $15 billion

per year (Rogers and Tsirkunov, 2013),2 and decisions about future investments in forecasts

require information about the value of making forecasts more accurate.3 Economists have

studied the value of weather warnings (e.g., Craft, 1998) but have not valued improvements

in weather forecasts.

We combine new theory and comprehensive data to provide the first revealed preference

evidence of behavioral responses to forecasts and the value of improved forecasts. In par-

ticular, we examine how much more accurate forecasts help people avoid mortality from

temperature. We do so by formally demonstrating that whether more accurate forecasts

reduce mortality depends on the relationship between mortality risk and forecast errors. If

mortality risk is convex in forecast errors, then improvements in forecast accuracy will reduce

expected mortality. The convexity of mortality risk depends on how agents’ chosen actions

depend on whether they receive one forecast or another. Namely, risk is convex if actions are

“appropriate” in the sense of seeking to suit the weather rather than being “protective” in

the sense of monotonically reducing mortality as more action is taken. Because either model

of adaptation is plausible, it is an empirical question whether or not more accurate forecasts

reduce mortality.

1Economists have long been interested in the role of information in decision-making, with particular
growth in experimental evaluations of information interventions. Many experimental information inter-
ventions find e↵ects on subjective beliefs but not actions, a di↵erence that may reflect small sample sizes
(Haaland et al., 2023). We take advantage of the ubiquity of forecasts to measure how people respond to
information in a higher-powered environment.

2Each year, the U.S. National Weather Service has a budget of around $1 billion, collects around 76
billion weather observations, and issues around 1.5 million forecasts (NOAA, 2021).

3This point as been emphasized by both national and international observers (Chapman, 1992, WMO
et al., 2015). Weather forecasts have steadily improved since 1980 (Bauer et al., 2015). Many expect forecast
skill to continue increasing in the near future as weather forecasting groups improve observational networks,
data assimilation, modeling, and computing power (Toth and Buizza, 2019, Zhang et al., 2019). Many have
emphasized the need for good estimates of the economic value of forecast improvements (e.g., Freebairn and
Zillman, 2002, Pielke and Carbone, 2002, National Research Council, 2010, Katz and Lazo, 2011).
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To estimate the e↵ect of weather forecasts on mortality, we combine the universe of deaths

reported by the Centers for Disease Control and Prevention (CDC) with daily weather and

forecasts issued by the National Weather Service (NWS). We study the continental U.S. from

2005 through 2017 and focus on day-ahead forecasts of temperature. A large literature

across economics, epidemiology, and other fields has shown that extreme temperatures are

a major source of mortality,4 the NWS says that one goal when issuing forecasts is to

minimize loss of life,5 and households say these short-run temperature forecasts are among

the most important forecast products to them (Stratus Consulting Inc., 2002). Our regression

framework accounts for potential location-specific and time-varying confounders as well as

for the potential direct e↵ects of temperature and other aspects of weather on mortality.

Across the full sample, we find that mortality risk is indeed convex in forecast errors.

Reducing the standard deviation of forecast errors by 50% would save 2,200 lives per year.

We find that mortality risk is especially convex in forecast errors on days with extreme heat.

This convexity indicates that either adaptation is particularly responsive to forecasts during

periods of extreme heat or adaptation is especially consequential for mortality in extreme

heat. Climate change will make such days more common over the coming century. As a

result, climate change increases the mortality benefit of improved forecasts to 2,400 lives

saved annually by 2100. Short-run weather forecasts thereby facilitate adaptation to climate

change.

We also formally show how to estimate agents’ ex ante willingness to pay for more accurate

forecasts, accounting for their costs of acting on forecasts. Related literature arrives at net

value for climate-induced mortality by using cross-sectional variation in climate and mortality

risk to empirically identify marginal benefits of adaptation, then using first-order conditions

to equate those marginal benefits of adaptation to marginal costs of adaptation, and finally

summing these adaptation costs with mortality benefits estimated from panel variation in

weather (Carleton et al., 2022). Instead, we formally derive the change in an agent’s value

function from more accurate forecasts and we measure that change from panel variation in

forecasts and weather, without relying on cross-sectional variation for identification.6 We

find that the net value of making forecasts 50% more accurate is $2.1 billion per year, or

roughly 10% of the monetized mortality benefit. Climate change increases that value to $2.9
4See, for instance, Anderson and Bell (2009), Deschênes and Moretti (2009), Gasparrini et al. (2015),

Barreca et al. (2016), Carleton et al. (2022).
5This goal is part of the NWS mission statement: “Provide weather, water and climate data, forecasts,

warnings, and impact-based decision support services for the protection of life and property and enhancement
of the national economy.”

6An established literature theoretically analyzes the value of changes in mortality risk (e.g., Berger et al.,
1987, Shogren and Crocker, 1991), which corresponds to valuing changes in temperature in our setting. One
can view Carleton et al. (2022) as implementing equation (17) in Berger et al. (1987). We di↵er in analyzing
and estimating the value of changes in uncertainty about a mortality risk.
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billion per year by 2100, so that the present value of improving forecast accuracy by 50%

over the remainder of the century is $112 billion.

Forecasts can a↵ect mortality only if people take actions based on them. We also report

direct evidence that people do indeed act on forecasts: electricity use responds to forecasts,

time use responds to forecasts, estimated responses to forecasts vary cross-sectionally in

intuitive ways, and, in a new survey conducted for this paper, college students state that

they modify behavior in response to forecasts. This evidence and the robustness of our results

to model specification suggest that our estimated mortality benefits do indeed capture actual

use of forecasts.

Our results are the first revealed preference estimates of the benefits of routine weather

forecasts.7 Recent theoretical work emphasizes that short-run forecasts such as those studied

here can be especially valuable for planning purposes (Millner and Heyen, 2021). Previous

valuations of routine weather forecasts calibrated models of particular decision problems

(e.g., Lave, 1963, Wilks, 1997, Richardson, 2000), tallied up the value of sectors judged

to be sensitive to weather (e.g., National Research Council, 1998), or surveyed potential

users (e.g., Haas and Rinkle, 1979, Stewart, 1997, Stratus Consulting Inc., 2002, Lazo et al.,

2009).8 Many authors in the forecasting literature have recognized that it would be ideal to

find a market in which people reveal their value for forecasts with real bets but lament that

such markets do not exist for publicly provided forecasts (e.g., Freebairn and Zillman, 2002,

Letson et al., 2007, Morss et al., 2008, Katz and Lazo, 2011). We here infer that agents use

and value forecasts by exploring how forecasts a↵ect observed mortality.

Previous work has found that both hot and cold temperatures are associated with ex-

cess mortality (see footnote 4). The dominant methodology uses fixed e↵ects to account for

the average weather in each place over time and also across places within a period. This

methodology seeks to isolate the consequences of as-good-as-random weather shocks, but

shocks relative to average weather may not be shocks relative to expectations: the “un-

usual” weather that provides the identifying variation in fixed e↵ects models may or may

not be surprising weather relative to the forecasts that agents see.9 Accurately forecasted

weather shocks can have very di↵erent implications from inaccurately forecasted weather

shocks if people act on their information about coming weather. It is important to disen-

7Seasonal (i.e., multi-month) weather forecasts have been subject to additional study (e.g., Meza et al.,
2008, Rosenzweig and Udry, 2019, Shrader, 2023). Shorter-run forecasts of weather only days ahead are much
more accurate, widely produced, and widely used than seasonal forecasts. Some have shown that traders
of weather derivatives attend to short-run forecasts like those studied here (e.g., Dorfleitner and Wimmer,
2010, Schlenker and Taylor, 2021), but they do not relate these forecasts to real outcomes.

8There have also been randomized controlled trials of forecast provision in developing country agricultural
contexts (Yegbemey et al., 2023).

9Indeed, we show in Section 3 that forecasts substantially outperform average weather at predicting
coming weather.
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tangle these e↵ects when assessing policy responses to extreme temperatures and also when

extrapolating to the e↵ects of climate change. First, the proper policy response depends on

whether mortality is driven by a forecasting failure or by an extreme temperature. Second,

estimated e↵ects are typically driven by extreme temperatures. The most extreme real-

ized temperatures could tend to exceed their forecasts, but these same temperatures may

nonetheless be well-forecasted when they occur regularly with climate change. Reinforcing

both concerns, we find that surprising extreme heat is deadly but forecasted extreme heat is

not as deadly.

Our study shows that one of the most pervasive, prominent, and complex informational

interventions undertaken by governments does generate substantial value for agents in the

economy. Similar evidence is surprisingly rare. Governments have undertaken large-scale

informational interventions for many decades, but many of these have been judged of dubious

consequence (e.g., Adler and Pittle, 1983, Viscusi, 1989). Previous work documents that

information provision can help people avoid air pollution (Neidell, 2009, Barwick et al.,

2019, Wang and Zhang, 2022), enroll in retirement plans (Duflo and Saez, 2003), and choose

schools (Hastings and Weinstein, 2008). We document the consequences for mortality of an

intervention that is more thoroughgoing and consistent than any of these. Previous work

shows that access to information moderates the e↵ect of temperature on mortality during

the Great Depression in the U.S. (Fishback et al., 2011), and concurrent work shows that the

typical accuracy of forecasts a↵ects the sensitivity of labor supply to forecasts of temperature

in China (Song, 2022). Previous work also studies the e↵ects of forecasting extreme weather

events (e.g., Craft, 1998, Bakkensen, 2016, Miller, 2018, Weinberger et al., 2018, Kruttli

et al., 2019, Molina and Rudik, 2022, Anand, 2022). We study the e↵ects of the forecasts

that underpin several important extreme weather warnings. Our headline value incorporates

the e↵ects of any extreme weather warnings that are based on temperature forecasts, but we

do show that extreme heat warnings do not contribute much to our estimates.

Section 2 theoretically analyzes how more accurate forecasts can reduce expected mortal-

ity. Section 3 describes the data used for the empirical analysis. Section 4 reports results on

the relationship between mortality and forecast errors. Section 5 analyzes mechanisms. Sec-

tion 6 calculates the mortality benefit of improved forecasts, willingness to pay for improved

forecasts, and how each depends on climate change. Section 7 concludes.

2 Theoretical Analysis

We extend the workhorse single-period model of the value of a statistical life (VSL), the

marginal rate of substitution between money and the risk of sudden mortality, to allow for

mortality due to temperature and for adaptation based on forecasts. This model originates
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with Drèze (1962) and Jones-Lee (1974) and has been extensively applied in the literature

(see Viscusi, 1993, Andersson and Treich, 2011).

An individual’s indirect utility over wealth is u(·) when alive and v(·) when dead. Per

convention, assume that u(·) > v(·), u0(·) � v0(·) � 0, and u00(·) < 0. The individual’s

hazard of death following temperature T is h(T,A) � 0, where hTT � 0 and hAT 6= 0 (with

subscripts indicating partial derivatives). A represents actions chosen with knowledge of a

forecast f of temperature. These actions constitute “ex ante” or “anticipatory” adaptation.10

Forecasts are unbiased: E[T |f ] = f .11 Actions cost C(A), where, for convenience, C(·) is

di↵erentiable and C 00(·) � 0. Initial wealth is w, so that end-of-period wealth is w � C(A).

The individual chooses actions to maximize expected indirect utility

V (f) = max
A

ET |f


[1� h(T,A)] u(w � C(A)) + h(T,A) v(w � C(A))

�
, (1)

where ET |f indicates expectations over temperature given forecast f . The first-order condi-

tion is

0 =� C 0(A) u0(w � C(A))

+ ET |f [h(T,A)]C
0(A)

✓
u0(w � C(A))� v0(w � C(A))

◆

� ET |f [hA(T,A)]

✓
u(w � C(A))� v(w � C(A))

◆
. (2)

This equation implicitly defines optimal actions A⇤(f), with the second-order condition dis-

cussed in Appendix B.1. Now consider adding a small daily mortality risk ⌧ to h(T,A). The

VSL is willingness to accept the small risk. Substituting A⇤(f) into (1), totally di↵erentiating

while holding V constant, and using (2), we find:

V SL(f) , dw

d⌧

����
⌧=0

=
u(w � C(A⇤(f)))� v(w � C(A⇤(f)))

[1� ET |f [h(T,A⇤(f))]] u0(w � C(A⇤(f))) + ET |f [h(T,A⇤(f))] v0(w � C(A⇤(f)))
.

(3)

10This representation subsumes any “ex post” or “reactive” adaptation (i.e., adaptation chosen based on
knowledge of realized temperature) into the temperature argument of the hazard function.

11If we permitted nonzero expected bias, then the below expressions would survive with derivatives eval-
uated at the new conditional expectation. The bias is small in our empirical application.
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Around an optimum, the first-order condition (2) becomes

C 0(A⇤(f)) = �ET |f [hA(T,A
⇤(f))]V SL(f). (4)

Optimal adaptation equates its marginal cost to its marginal benefit, measured as the ex-

pected reduction in mortality risk times the value of reduced mortality risk.

The following assumption will suit our empirical application, in which agents value their

lives highly and have access to high-quality weather forecasts:

Assumption 1 (Small Errors and Valuable Lives) For some forecast f and for ✏ pos-

itive but small, C 0(A⇤(f))/V SL(f)  ✏ and V ar[T |f ]  ✏.

Under this assumption, adaptation has a small marginal e↵ect on mortality risk around

agents’ optimal choices:

Lemma 1 (Small Marginal Adaptation E↵ects) Under Assumption 1,

lim
✏!0

hA(f, A
⇤(f)) = 0.

Proof. Second-order approximating hA(·, A⇤(f)) around T = f ,

ET |f [hA(T,A
⇤(f))] ⇡ hA(f, A

⇤(f)) +
1

2
hATT (f, A

⇤(f))V ar[T |f ], (5)

with higher-order terms vanishing as V ar[T |f ] becomes small. V ar[T |f ] < ✏ implies

lim
✏!0

ET |f [hA(T,A
⇤(f))] = lim

✏!0
hA(f, A

⇤(f)).

From (4), C 0(A⇤(f))/V SL(f) < ✏ implies that lim✏!0 ET |f [hA(T,A⇤(f))] = 0.

Agents adapt to nearly the point where their adaptations cease a↵ecting mortality risk in

the event that their forecast turns out to be accurate.

Now consider the average mortality risk induced by forecast errors, which determines lives

saved from accurate forecasts. We observe days with temperature T and ask how average

mortality risk on these days would have changed if forecasts had been more accurate. Let

the forecast error on a day with measured temperature T be e , f � T , so that the optimal

adaptation action is A⇤(T + e). Average mortality risk on a day with temperature T is

h̄(T ) , Ee|T [h(T,A⇤(T + e))], where we average over the possible forecast errors for a day

7



with temperature T . Second-order approximating around e = 0,

h̄(T ) ⇡ h(T,A⇤(T )) +
1

2

�
hA(T,A

⇤(T ))A⇤00(T ) + hAA(T,A
⇤(T )) [A⇤0(T )]2

�
| {z }

d2h(T,A⇤(T+e))/ de2|e=0

V ar[e|T ]. (6)

Let the number of days with temperature T during a year be n(T ). The additional mortality

risk over the year from making forecasts less accurate is

dh̄(T )

dV ar[e|T ]n(T ) ⇡
1

2

d2h(T,A⇤(T + e))

de2

����
e=0| {z }

ex post increase in errors

n(T ) (7)

+

✓
hA(T,A

⇤(T )) +
1

2

d3h(T,A⇤(T + e))

de2 dA

����
e=0

V ar[e|T ]
◆

dA⇤(T )

dV ar[e|T ]| {z }
e↵ect of uncertainty on ex ante adaptation

n(T ).

The first line on the right-hand side gives the mortality incurred once we average over the

ex post mistakes. It depends on the convexity of mortality risk in forecast errors, which in

turn depends on how agents react to di↵erent forecasts. The second line gives the change in

mortality due to agents’ rational expectations of forecast accuracy. From (2), A⇤ will depend

on the variance of forecast errors unless mortality risk is linear in temperature. Agents who

understand that a forecast’s accuracy has changed may choose di↵erent actions that in turn

generate di↵erent mortality risks.

We will be able to credibly identify the ex post error term on the first line of (7) from

random variation in forecast errors. The following proposition establishes that the ex post

error term is likely to be the important term in our empirical application:12

Proposition 1 (E↵ect of Forecast Accuracy on Average Mortality) If Assumption 1

holds at f = T , then

lim
✏!0

dh̄(T )

dV ar[e|T ]n(T ) = lim
✏!0

1

2

d2h(T,A⇤(T + e))

de2

����
e=0

n(T ).

Proof. Follows from (7) and Lemma 1.

If we estimate that mortality risk is convex in forecast errors, then we can conclude that

forecasts would reduce average mortality risk.

We broadly classify agents’ adaptation environments based on how adaptation a↵ects

12Proposition 1 also holds if, instead of Assumption 1, we assumed that |hATT |  ✏, because then
lim✏!0 dA⇤(T )/ dV ar[e|T ] = 0 in (7). For instance, Proposition 1 would hold if we assumed quadratic
h(·, ·) instead of Assumption 1.
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mortality risk when forecasts turn out to be inaccurate:

Definition 1 (Adaptation Environment) Adaptation is appropriate if, for forecasts f

in a neighborhood of T , dh(T,A⇤(f))/ df < 0 for f < T and dh(T,A⇤(f))/ df > 0 for

f > T . Adaptation is protective otherwise.

When adaptation is appropriate, an action’s mortality risk is minimized when the action is

based on a forecast that turns out to be accurate:

Corollary 1 (Forecast Errors that Minimize Mortality) If Assumption 1 holds at f =

T with ✏ arbitrarily small and adaptation is appropriate, then realized mortality on a day with

temperature T is locally minimized when there is no forecast error.

Proof. From Definition 1, d2h(T,A⇤(T + e))/ de2|
e=0 is strictly positive when adapta-

tion is appropriate, and d2h(T,A⇤(T + e))/ de2|
e=0 > 0 is a su�cient condition for mor-

tality risk to be minimized at e = 0 in the case that the first-order necessary condition

dh(T,A⇤(T + e))/ de|
e=0 = 0 holds at e = 0. Observe that

dh(T,A⇤(T + e))

de

����
e=0

=hA(T,A
⇤(T ))A⇤0(T ).

Applying Lemma 1, lim✏!0 dh(T,A⇤(T + e))/ de|
e=0 = 0. Therefore the first-order condition

for errors that locally minimize mortality risk holds at e = 0 as ✏ goes to 0.

Because both positive and negative forecast errors locally increase mortality risk when adap-

tation risk is appropriate, reducing the variance of forecast errors reduces average mortality

risk when adaptation is appropriate:

Corollary 2 (Form of Adaptation Determines E↵ect of Forecast Accuracy) If As-

sumption 1 holds at f = T with ✏ arbitrarily small, then reducing the variance of forecast

errors on a day with temperature T reduces average mortality if and only if adaptation is

appropriate.

Proof. From (6) and Lemma 1, d2h(T,A⇤(T + e))/ de2|
e=0 > 0 if and only if hAA(T,A⇤(T )) >

0. Because dh/ de|
e=0 = 0 from Lemma 1, hAA(T,A⇤(T )) > 0 implies that dh/ de changes

sign from negative to positive around e = 0. The result follows from Proposition 1 and

Definition 1.

When Assumption 1 holds, the condition from Proposition 1 for mortality risk to increase

in the variance of forecast errors is equivalent to adaptation being appropriate.
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When adaptation is appropriate, adaptation is targeted to particular temperatures and

is less e↵ective if temperatures are higher or lower than the target.13 Formally, appropriate

adaptation could have h(T,A) / (T � A)2, so that mortality increases away from A = T .

In such an environment, symmetric forecast mistakes can increase mortality on average. We

label other cases as protective adaptation. For instance, mistakenly undertaking too much

adaptation may reduce mortality risk compared to a case in which the realized tempera-

ture had been forecasted accurately. Formally, protective adaptation could have the hazard

decrease monotonically in A, as when h(T,A) / T (T � A) for A  T . In such an envi-

ronment, symmetric forecast mistakes can fail to a↵ect (or can even reduce) mortality on

average. It is not a priori obvious which type of adaptation predominates in the real world.

It is ultimately an empirical question whether more accurate forecasts in fact reduce average

mortality. And from Proposition 1, we can estimate whether they do so by estimating the

relationship between mortality risk and forecast errors.

We have thus far followed much other literature (e.g., Deschênes and Moretti, 2009,

Barreca et al., 2016) in studying the mortality consequences of weather without netting out

adaptation costs. Now consider each agent’s willingness to pay for more accurate forecasts,

net of adaptation costs. Consider an agent who knows the temperature will be T on n(T )

days in the year and values the accuracy of the forecasts she receives in advance of those

days. Let the conditional probability of forecast f be p(f |T ). Expected value on a day with

temperature T is

V̄ (T ) ,
Z

V (f) p(f |T ) df.

Denote the agent’s willingness to pay for a marginally more accurate forecast on days with

temperature T as WTP (T ):

WTP (T ) ,� dV̄ (T )/ dV ar[e|T ]
dV̄ (T )/ dw

n(T ). (8)

Assume that observing forecasts similar to the accurate forecast does not change the agent’s

perception of accuracy:

Assumption 2 (Locally Constant Forecast Accuracy) V ar[e|f ] is constant around fore-

cast f = T .

We now value an improvement in forecast accuracy on days with temperature T :

Proposition 2 (Agent’s Willingness to Pay for More Accurate Forecasts) If Assump-

13Appendix B.2 shows that we learn that lim✏!0 hAA(T,A⇤(T )) > 0 if we estimate that adaptation is
appropriate and Assumption 1 holds.
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tions 1 and 2 hold, then

lim
✏!0

WTP (T ) = lim
✏!0

1

2
V SL(T )


@2h(T,A⇤(T + e))

@T 2

����
e=0

+
d

de

@h(T,A⇤(T + e))

@T

����
e=0

�

| {z }
dhT (T,A⇤(T+e))/ dT

n(T ).

(9)

Proof. See Appendix B.3.

The possibility of forecast errors makes the agent uncertain about what forecasts she will

receive over the year. This uncertainty is costly if and only if V (f) is concave around f = T

(equation (A-2)). The proof shows that V 00(f) depends on the total derivative of hT with

respect to T , which comprises the two terms in square brackets in (9).

The first term captures the change in the agent’s expected mortality risk due to their

reduced uncertainty about realized temperature. Via Jensen’s inequality, expected mortality

is greater when mortality risk is convex in temperature (i.e., when hTT > 0). Therefore this

first term generates positive willingness to pay when hTT > 0.

The second term typically reduces agents’ willingness to pay for more accurate forecasts

because agents’ responses to forecasts tend to make mortality risk less convex in temperature

forecasts than in realized temperature (see Appendix B.3). It scales with hAT and with A⇤0,

so that it becomes important when the e↵ectiveness of actions depends on temperature

and actions are sensitive to forecasts. Under general conditions, agents choose larger A

upon observing a higher forecast if and only if higher temperatures increase the marginal

mortality benefit of A (i.e., i↵ hAT < 0; see Appendix B.2). So actions respond to forecasts in

a direction that reduces hT under high forecasts and increases hT under low forecasts. These

responses push mortality risk to be less convex in forecasted temperature. For instance, if

hotter weather makes adaptation more e↵ective, then agents respond to forecasted hotter

weather by doing more adaptation and thereby mitigating any increase in mortality risk.

Anticipating these responses reduces agents’ willingness to pay for more accurate forecasts.

One might be surprised that willingness to pay is not driven by the mortality consequences

of inaccurate forecasts (i.e., that the d2h/ de2 term from Proposition 1 does not appear).

This absence is a consequence of the envelope theorem. The envelope theorem reflects the

assumption that agents optimize their actions (i.e., that the first-order condition holds at all

forecasts). If not for the envelope theorem, V 0(f) would include dh/ de, in which case V 00(f)

would include the d2h/ de2 term that Proposition 1 showed controls the average mortality

benefit of more accurate forecasts. However, dh/ de matters only via A⇤0, which drops out of

V 0(f) because optimizing agents’ marginal costs of adapting o↵set any marginal benefit. As

a result, the mortality benefit of advance information drops out of value calculations. But

11



the envelope theorem does not apply when di↵erentiating V 0(f). Because V 0(f) includes hT ,

V 00(f) includes the derivative of hT with respect to forecasts and thus includes how forecast-

driven actions a↵ect the risk hT due to realized weather (i.e., the second term in (9)). The

envelope theorem eliminated the e↵ects of actions from previous work that valued marginal

changes in mortality risk (e.g., Berger et al., 1987, Shogren and Crocker, 1991, Carleton

et al., 2022), but actions here do a↵ect net value because we value changes in uncertainty

about that mortality risk.14

3 Data

To estimate the e↵ect of forecasts on mortality risk, we combine data on mortality events,

realized temperature, and temperature forecasts. Details on datasets used for robustness and

auxiliary analyses can be found in Appendix A.

3.1 Weather and Weather Forecasts

Our two primary explanatory variables are daily temperature and forecasted temperature.

We focus on 1-day-ahead, daily minimum and maximum temperature point forecasts, from

which we calculate daily average temperature by averaging the two measures. The NWS

runs the forecasting model multiple model times during the day, with the most important

runs at noon and midnight UTC. We use the noon UTC run because it is typically the one

reported in morning news broadcasts. These are also the forecasts that are available at any

time of day on the public NWS website, weather.gov.15

The forecasts are stored in the National Digital Forecast Database (NDFD), which was

created in the early 2000s to standardize the processing, storage, and dissemination of

weather forecasts in the U.S. (Glahn and Ruth, 2003). Meteorologists in di↵erent loca-

tions across the country, known as Weather Forecasting O�ces (WFOs), work in shifts to

produce forecasts for their local area, known as County Warning Areas (CWAs, mapped in

14In concurrent work, Molina and Rudik (2022) analyze how reducing the uncertainty in a given hurricane
wind speed forecast a↵ects the expected cost of that hurricane. In their analysis, the reduction in forecast
uncertainty reduces the spread of realized wind speeds, so that they value changes in mortality risk. In
contrast, we analyze willingness to pay for systematically more accurate forecasts, before the particular
forecasts have been produced. Forecast accuracy here does not a↵ect realized weather but instead a↵ects
the spread of the forecasts that agents receive in advance of that weather. As a result, the concavity of the
value function in the observed forecast is critical in our analysis.

15People may see forecasts that di↵er from the NWS forecasts. For instance, apps, websites, or local
media may slightly alter the o�cial forecasts, in which case the NWS forecasts serve as a proxy for observed
forecasts. Such alterations would cause concern only if they introduce bias that is correlated with the NWS
forecasts. This type of bias has been seen historically, for instance before baseball games in 1890s New York
(Raymond and Taylor, 2021) and for more recent Weather Channel rainfall forecasts that exaggerate the
probability of rainfall (Bickel and Kim, 2008). Modern temperature forecasts—the object of study in this
paper—do not typically exhibit such biases (Brooks et al., 1997).
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Figure A10). The NDFD stores the forecasts on a consistent spatial grid with resolution of

2.5km or 5km, depending on the time period.

We use forecast data in the NDFD that contains both minimum and maximum tempera-

ture forecasts. These data begin on April 13, 2005. Roughly 5% of the county-day values are

missing in the raw NDFD data (owing, for example, to data corruption in the NWS archives

or to a missed forecast deadline).16 We aggregate the forecasts to the county level by taking

the population-weighted average, based on the 2010 population grids from CIESIN (2017).

For weather realizations, we use PRISM (Parameter-elevation Regressions on Indepen-

dent Slopes) Climate Group data (PRISM Climate Group, 2004). PRISM combines weather

station observations with an interpolation procedure that accounts for features such as el-

evation, weather inversions, rain shadows, and coastal proximity. The outputs are daily

measures of weather on a consistent 4km resolution grid across the country. The PRISM

data provide more consistent geographic coverage than raw weather station data.17 We cal-

culate a day’s average realized temperature by averaging the day’s minimum and maximum

realized temperature. We aggregate the gridded measures to the county level using the same

procedure as for forecasts.

We map the spatial variation in weather and compare weather and forecast values in

Appendix Figure A11. The final weather dataset contains measures of daily minimum and

maximum temperature as well as control variables for total daily rainfall and average dew

point temperature for each continental U.S. county from April 13, 2005 to July 6, 2017.

3.2 Mortality

Our primary outcome is mortality. Mortality data come from the CDC’s National Center

for Health Statistics Multiple Cause of Death (MCOD) file. It contains records of all vital

events that occurred in the U.S. from 2005 to 2017. We use the restricted access version

of the dataset, which includes the day and county of each mortality event. From the set

of all mortality events, we calculate county mortality rates per 100,000 people by dividing

the total mortality each day by the county population in that year. Population figures are

from the NIH Surveillance, Epidemiology, and End Results (SEER) Program. The race,

sex, and cause of death for the decedent are also recorded and are discussed further in the

heterogeneity analysis results. Decedent demographics are typically filled out by the funeral

16The results we report below are robust to estimating with a sample that interpolates the missing values
based on the most recent available forecast.

17We use the original PRISM data rather than the version produced by Schlenker and Roberts (2006, 2009)
so that we can also measure dewpoint temperature for humidity robustness checks. One of the advantages
of the Schlenker-Roberts version of the data is greater temporal consistency. Over the relatively recent time
series analyzed in this project, the di↵erence between the original PRISM data and the Schlenker-Roberts
data is minimal.
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home director or a healthcare work, ideally based on input from next of kin (Ver Ploeg and

Perrin, 2004).

3.3 Data Structure and Summary Statistics

The primary estimation sample consists of all non-missing observations of all-cause mor-

tality, average temperature, total daily precipitation, average 1-day-ahead temperature fore-

casts,18 and population shares for each county in the continental U.S. and each day from

April 13, 2005 to July 6, 2017. Summary statistics for the sample are shown in Appendix

Table A3. In the estimation sample, the average number of deaths reported for all causes

per day across the U.S. is 2.3 per 100,000 people.

Forecasts tend to be close to correct on average. There is a slight cool bias to the forecasts

overall of about �0.04�C. This bias is small relative to the standard deviation of forecast

errors, which is just over 1�C.19 Figure 1a shows the distribution of forecast errors within

four di↵erent expected temperature ranges: cold (< 0�C), cool (0–15�C), warm (15–30�C),

and hot (> 30�C). Across the expected temperature distribution, forecasts are essentially

unbiased and are largely symmetric around zero with a bell-curve shape. The distributions

are widest for the coldest temperatures and narrowest for the warmest temperatures.

Figure 1b shows how 1-day-ahead forecast accuracy has evolved over our sample period.

The lines in the figure are local linear regressions fit to the daily forecast root mean squared

error (RMSE). Over the 12 years of the sample, forecast RMSE fell from about 1.37�C to

about 1.08�C, an improvement of 27%. The forecasts have improved within all temperature

ranges. The largest improvement occurred for hot temperatures, with a 56% improvement

on an already high level of accuracy.

Figure 1c compares the forecast error for our sample to error from other forecasting

methods. It shows the RMSE for the forecasts we use in our baseline analysis (the 1-day-

ahead forecasts issued by the NWS) as well as six additional forecasts: the 6-day-ahead

NWS forecast, an AR(19) forecast selected through information criteria, an AR(1) forecast

using yesterday’s value (estimated within sample), a persistence forecast based on yesterday’s

observation, a climatological forecast based on the average weather for that location and day,

and the observation from one year ago. The 1-day-ahead forecast substantially outperforms

18In Section H we also analyze longer-horizon forecasts. Both longer- and shorter-horizon forecasts a↵ect
mortality, with decreasing marginal returns to horizon. Given the high correlation between forecasts of
di↵erent horizons, the main results can be interpreted as the e↵ect of forecasts of horizons between 1 and 6
days.

19See Myrick and Horel (2006) for an early analysis of forecast error and discussion of the creation of a
routine verification system that can now be found at https://sats.nws.noaa.gov/~verification/ndfd/.
Myrick and Horel (2006) emphasize how terrain features like rapid changes in elevation can a↵ect forecast
error. In our estimation sample, we include location fixed e↵ects to mitigate bias from these types of
di↵erences.
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Figure 1: Forecast Errors and Comparison With Alternatives
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Notes: Panel (a) shows empirical distributions of errors from the 1-day-ahead NWS forecast within four
expected temperature ranges. The values are weighted by annual, county-level population, and distributions
are truncated at the 0.025 and 99.75 percentiles. The x-axis tick marks are at standard deviations of the
overall distribution of forecast errors. Panel (b) shows the trend in 1-day-ahead forecast root mean squared
error (RMSE) over the sample period. Each line is a local linear regression fit to the daily, national average
RMSE within 4 expected temperature ranges. Panel (c) shows the RMSE for the 1-day-ahead and 6-day-
ahead NWS forecasts compared to alternatives: an AR(19) forecast selected through information criteria,
an AR(1) forecast using yesterday’s observation, a persistence forecast based on yesterday’s observation,
the average value for that location and day (the “forecast” when using location-time fixed e↵ects), and last
year’s value for that location.

even the best-performing non-NWS competitor, suggesting that agents should use the day-

ahead NWS forecasts that we study over other plausible alternatives.20

4 Identifying Behavior by Estimating the Relationship Between

Mortality and Forecast Errors

Section 2 showed that the shape of the relationship between mortality risk and forecast

errors is informative about the types of adaptation that people undertake and that the

convexity of the relationship determines the mortality benefit of improving forecast accuracy.

So the empirical analysis begins by estimating the shape of this relationship.

20Conventional weather-mortality regressions do implicitly account for the climatological forecast via loca-
tion fixed e↵ects, but Figure 1c shows that its RMSE is four times larger than the o�cial forecast’s RMSE.
Conventional weather-mortality regressions therefore do not capture all of the information available to an
agent one (or even six) days ahead of a weather realization.
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4.1 Estimating Equation and Empirical Strategy

To assess behavior, we estimate the following equation, which allows for flexible but

powerful tests of non-monotonicity in the e↵ect of forecast errors on mortality:

yct =
LX

`=0

"
JX

j=1

1{fc,t�` 2 Bj}
⇣
�10,`,j + �11,`,je

low

j,c,t�`
+ �12,`,je

high

j,c,t�`
+ �13,`,j1{ec,t�` > ẽj}

⌘#

+
LX

`=0

⇥
g1,`(Tc,t�`; ⇠11) + g2,`(precc,t�`

; ⇠12)
⇤
+Xct�1 + ↵1,cm + ⇢1,t + "1,ct, (10)

where 1 is an indicator function. The dependent variable yct is the daily mortality rate in

county c on day t. The primary right-hand side variables are realized temperature Tct and

forecast error ect , fct � Tct (based on the one-day-ahead forecast fct of temperature).21 In

one specification that allows for more flexibility, we bin forecasted temperature every 5�C

from 0�C to 30�C, for J = 8 bins in total, and in another specification that allows for clearer

presentation, we bin every 15�C from 0�C to 30�C, for J = 4 bins in total.

The theoretical model shows that our estimating equation needs to be flexible enough to

capture a potentially non-monotonic relationship between mortality and forecast errors. In

particular, we want to classify behavior based on potential non-monotonicities without yet

invoking Assumption 1. Non-monotonic or “U-shaped” relationships are sometimes tested

using quadratic specifications, but this approach can lead to spuriously finding a U shape

(Kostyshak, 2017). Simonsohn (2018) proposes a test to detect non-monotonicities that

avoids false positives that can occur with quadratic specifications yet maintains power to

detect true e↵ects. Simonsohn’s two-line approach uses an interrupted regression to estimate

distinct slopes on either side of a breakpoint, ẽ.22 Those slopes are the coe�cients �11,`,j and

�12,`,j on

elow
j,c,t�`

, (ẽj � ec,t�`)1{ec,t�`  ẽj} and ehigh
j,c,t�`

, (ec,t�` � ẽj)1{ec,t�` > ẽj}.

The coe�cients can be interpreted as the marginal e↵ect of a more erroneous forecast. If both

coe�cients are positive, then we conclude that adaptation is “appropriate” per Definition 1.

We estimate distributed lag models in order to account for dynamic e↵ects such as tem-

poral displacement of mortality. In the main results, we use 6 total lags of temperature,

21To reduce the influence of potential outliers, we Winsorize forecast errors at the 1% level.
22We set the breakpoint to the median forecast error within each expected temperature range. Section D

assesses sensitivity to choice of breakpoints.
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precipitation, and forecast errors (L = 5).23 We focus on cumulative e↵ects, defined as

�̄i,j ,
5X

`=0

�i,`,j. (11)

The other components of the estimating equation are controls. For temperature realiza-

tions, we estimate g1(T ; ⇠1) semi-parametrically by discretizing temperature into 5�C bins.

Flexibly controlling for temperature realizations ensures that our forecast error estimates

can be interpreted as the e↵ect of varying forecasts around a given realization. The function

g2(prec; ⇠2) is specified as indicators for daily precipitation above the county’s median. This

control accounts for potentially correlated e↵ects of rainfall. Both temperature and rainfall

lags are included in the distributed lag model.

Date fixed e↵ects (denoted ⇢1,t) remove any national, time-based confounders, including

day-of-week e↵ects, holidays, overall patterns in economic activity, changes in national pol-

icy, and large-scale weather patterns. County-by-month fixed e↵ects (↵1,cm) remove local

seasonal patterns. These fixed e↵ects also adjust for any time-invariant di↵erences across

locations including long-run climate, average medical care availability, economic conditions,

and information provision and acquisition. Xct includes county-month fixed e↵ects inter-

acted with linear time trends to account for any overall trends in county- or season-specific

weather or mortality. Finally, we weight the regressions by annual population in the county

to better estimate nationally representative values and to increase precision.

Standard errors are clustered at the CWA level. As discussed in Section 3, CWAs are

collections of counties that receive weather forecasts from the same NWS forecast o�ce. The

counties are grouped based on technological considerations related to weather observation

equipment and so that meteorologists can specialize in forecasting weather for particular ar-

eas of the country. The CWA is a natural level for clustering because its counties have similar

weather and because its counties all receive forecasts from the same group of meteorologists.

Econometrically, CWAs also have some further appealing features, particularly when com-

pared to state-level clustering. First, there are 116 CWAs in the continental U.S., well above

the typical rule-of-thumb for the minimum number of clusters (Cameron and Miller, 2015).24

Second, state borders di↵er from CWAs in not being defined based on meteorological consid-

erations, making it more plausible that meteorological data are approximately i.i.d. across

CWAs than across states.
23Using 6 lags balances flexibly capturing dynamic e↵ects with computational complexity. Previous epi-

demiological research shows that most adverse e↵ects from heat appear within 3 days (Guo et al., 2014). We
include up to 14 lags in robustness checks (Appendix C).

24Some counties fall into more than one CWA, and for those locations, we assign the county an identifier
that is the combination of CWAs to it belongs. This results in 130 CWA ids in our sample. See Figure A2
for CWA boundaries.
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For identification, we assume that forecast errors are as-good-as-randomly assigned within

counties over time (i.e., sequential exogeneity), conditional on our other covariates. Formally,

we assume that the expectation of "ct is zero, conditional on all contemporaneous and past

values of our covariates. This assumption is more plausible when studying forecast errors

than for a generic variable. If forecasting systems strive for accuracy, then historical atmo-

spheric conditions will not confound forecast errors because the meteorologist takes them

into account when formulating the forecast. In other words, forecast errors are surprises

relative to the information available to the forecaster, so they cannot be confounded by

anything inside that information set. The primary remaining potential threat to identifica-

tion is unobserved aspects of realized contemporaneous weather that directly a↵ect mortality

and also a↵ect forecast quality. To address this concern, we conduct robustness checks (see

Section 4.3) that include additional controls for contemporaneous weather and atmospheric

conditions, including humidity, wind, pollution, and other forecast errors. We find that

e↵ects are largely unchanged when these additional covariates are added.

4.2 Results

Now consider the results of estimating equation (10). Figure 2 shows 6-day cumulative

e↵ects of forecast errors on mortality based on a single estimation of equation (10). The

bottom portion of the figure (panel B) shows the point estimates for �̄i,j, the cumulative

e↵ect of more erroneous forecasts on mortality from (11).25 As a guide to interpretation, the

top portion of the figure (panel A) shows predicted e↵ects on mortality from the marginal

e↵ects in panel B.

The far left pair of points shows the e↵ect of forecast errors on a day when the expected

temperature is below freezing (< 0�C). The blue, circular point shows that a larger negative

forecast error does not have a strong e↵ect on mortality: a forecast saying that it will be

colder than it turns out to be does not lead to more deaths. In contrast, a 1�C larger

positive forecast error does increase mortality by just over 0.01 deaths per 100,000 people,

representing around a 0.5% increase in mortality over the average daily rate. The leftmost

plot in panel A shows the same result, but in terms of predicted mortality. Predicted

mortality barely changes with a negative forecast error but rises significantly with a positive

error. Accounting for both of the cold-temperature coe�cients, an average forecast error on

a cold day increases mortality by about 0.004 deaths per 100,000 people, or about 0.15%.26

25The forecast error e↵ect we find is based on daily, county-wide average temperature. Thus, a 1�C error
in our analysis could correspond to a substantially larger forecast error at specific locations within the county
or specific moments during the day.

26One extra day per month of realized temperatures in this range raises mortality by about 1% relative to a
mild day. In contrast, extending the realized temperature analysis from Barreca et al. (2016) to our sample
period, we find that an extra hot day reduces mortality relative to a moderate day. One reason for this
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Figure 2: Forecast Errors Increase Mortality
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Notes: The figure shows results of a single estimation of Equation (10) on the baseline sample. The dependent
variable is the daily mortality rate per 100,000 people. The reported values are 6-day (day t through day
t + 5) cumulative e↵ects of forecast errors. The model includes covariates for lags of 5�C bins of realized
temperature, lags of indicators for above median precipitation, lags of four bins in forecasted temperature,
date fixed e↵ects, and county-by-month fixed e↵ects interacted with a linear time trend. The regression is
weighted by county population. Standard errors are clustered at the CWA-level.
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The other coe�cients can be interpreted similarly. Overall, during periods with warm

temperatures, negative forecast errors are deadly while positive forecast errors have little

or no e↵ect, on average. The reverse is true for the coldest temperatures. Reassuringly,

moderate temperatures reveal little e↵ect of forecast errors on mortality. It is intuitive that

changes in behavior have smaller e↵ects on mortality risk when that risk is already small.

Table 1 shows similar estimates to the figure, but using only four forecast bins for leg-

ibility. We will use these same bins when testing mechanisms and valuing forecast errors.

The columns of the table show the e↵ect of forecast errors on mortality for errors below

the breakpoint (left column) and above the breakpoint (right column). The rows show the

e↵ects within di↵erent temperature ranges. The results are consistent with the richer set of

forecasted temperature bins shown in Figure 2.

Our point estimates so far are consistent with Definition 1 (non-monotonic e↵ects and

therefore appropriate adaptation). But if we use Assumption 1 we can get more power

and then we find significant convexity. The theoretical analysis showed that the convexity

of mortality risk in forecast errors is critical to assessing the mortality value of forecast

improvements. We assess whether the relationship between forecast errors and mortality is

convex by testing whether the sum of the negative and positive forecast error marginal e↵ects

is greater than 0. The p-value is 0.35 for forecasted temperatures less than 0�C, but we reject

the null hypothesis of nonconvexity at the 5% level in all other temperature ranges (with

p-values of 0.035, 0.006, and 0.029 for cool, warm, and hot temperatures).27 As a result,

we conclude that adaptation is appropriate (Definition 1), that lim✏!0 hAA(T,A⇤(T )) > 0

(Appendix B.2), and that improving the accuracy of forecasts reduces expected mortality

(Proposition 1).

4.3 Robustness and Sensitivity

Figure 3 compares the baseline estimates from Table 1’s hot bin to estimates from a va-

riety of di↵erent specifications. Results are largely similar across the rest of the temperature

distribution and can bee seen in Section E. We separate results into changes in clustering,

unexpected result is that conventional analyses of realized temperature conflate expected and unexpected
forecast shocks: writing forecasts as a function of T and assuming e is independent of T , they recover
d
dT h(T,A

⇤(T + e)) = hT + dh/ de (averaged over observed forecast errors). Throughout the manuscript
we find that forecasts are especially e↵ective in hot temperatures, so that the two terms plausibly conflict.
And in the quadratic analysis of Section 6, we do find that the two terms roughly o↵set each other (with hT

positive and quite large) in the hot bin. Complementary explanations include that: trends in air conditioning
adoption analyzed by Barreca et al. (2016) have continued into our more recent sample period; forecasts have
improved the most on hot days during our sample (see Figure 1b); and public health authorities encourage
individuals to go to cooling centers on hot days, where they may socialize or receive additional medical
attention.

27Estimating a quadratic specification, we find quantitatively similar results except that in the hot bin the
convexity is no longer significant (see Table 3).
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Table 1: Testing Monotonicity of Mortality-Forecast Error Relationship

(1) (2)
Negative error Positive error

Forecast too cold Forecast too hot

<0°C (cold) -0.005 0.013⇤⇤

(0.006) (0.005)
0–15°C (cool) 0.007⇤ 0.004

(0.004) (0.004)
15–30°C (warm) 0.013⇤⇤⇤ 0.002

(0.005) (0.003)
>30°C (hot) 0.073⇤⇤ 0.002

(0.029) (0.014)

Avg. death rate 2.245
Clusters 130
N 13,642,033

Notes: The table shows results of a single estimation of
Equation (10) on the baseline sample. The dependent
variable is the daily mortality rate per 100,000 people.
The reported values are 6-day cumulative e↵ects of larger
forecast errors. Column 1 shows negative forecast errors
(below median for each expected temperature bin), and
Column 2 shows positive forecast errors (above median).
The model includes covariates for 6 lags of 5�C bins of
realized temperature, indicators for above median precip-
itation, and four bins of forecasted temperature plus date
fixed e↵ects and county-by-month fixed e↵ects interacted
with a linear time trend. Weighted by county population.
Standard errors, clustered at the CWA-level, are below
each estimate. Significance: * p < .10, ** p < .05, ***
p < .01.
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changes to the non-weather controls, and changes to the controls for realized weather and

other forecasts. Across the full set of checks, the point estimates remain largely unchanged,

so the text below focuses on some highlighted checks and limits the discussion to e↵ects

during periods with hot forecasted temperatures. Appendix E contains a full discussion of

all checks and forecasted temperatures.

Figure 3: Robustness and Sensitivity Checks: Hot Forecasted Temperature
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Notes: The figure shows robustness and sensitivity checks on the main results reported in Section 4 for hot
expected temperatures. The other temperature ranges are shown in Section E. All models use the same
functional form and lag length as the baseline results. The lines are 95% confidence intervals based on
standard errors clustered at the CWA level. The labels indicate the change or addition. For comparison,
“Baseline” reproduces the baseline estimate, with controls described in Section 4.1. Unless otherwise speci-
fied, added weather variables are controlled for non-parametrically using quantile bins. In all cases, 6 lags of
the variables are included to match the lag length of the forecast error. Note that wind and rainfall forecasts
are only available for a subset of the observations, so the sample changes.

Both temperature and mortality are highly seasonal. Including finer location-specific

seasonality controls by replacing month-of-year fixed e↵ects with day-of-year fixed e↵ects

makes the results slightly stronger. However, our base specification’s more parsimonious

month controls do appear to largely account for seasonal patterns.

Realized weather on day t is not in the forecaster’s information set and could bias our

estimates if it is correlated with forecast errors. The checks in the “Weather” section of the

plot show that this bias may not be of practical concern. Controlling for humidity, pollution,

or wind a↵ects the estimate only minimally. Using finer bins of realized temperature (1�C

versus 5�C in the baseline) reduces the e↵ect of negative forecast errors but increases the

e↵ect of positive forecast errors, leaving the average e↵ect unchanged.

In addition to realized weather, one might be concerned that correlated forecasts or

forecast errors might be driving the results. Temperature is one of the most important drivers
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of mortality among all weather phenomena, so temperature forecasts likely constitute the

majority of the e↵ect we find. We assess the e↵ect of correlated rainfall forecasts by adding

them to the baseline regression (“Rain fcast”), using bins for above and below median as

with the realized rainfall controls. The results are una↵ected.

The results also do not change when excessive heat warning indicators are added as

controls to the model. The NWS issues excessive heat warnings when heat is expected

to rise above dangerously high thresholds. These warnings are therefore correlated with

temperature forecasts in the hot and warm bins. The robustness results show, however, that

holding constant the presence or absence of an active warning does not a↵ect the results.

Our baseline specification does include the e↵ects of forecast-driven heat warnings in the

estimated total e↵ects of forecasts, but the present results imply that forecasts drive our

baseline results through channels other than their role in issuing formal warnings.

5 Mechanisms

We have seen that forecast errors matter for mortality, holding realized temperatures

constant. Agents must be using forecasts to take actions that a↵ect their mortality (see

Lemma 3 in Appendix B.2). We now explore what these actions may be.

5.1 Evidence from Time Use and Electricity Consumption

To test for mechanisms, we estimate:

zct =
LX

`=0

"
JX

j=1

1{fc,t�` 2 Bj}(�20,`,j + �21,`,jec,t�`)

#

+
LX

`=0

⇥
g1,`(Tc,t�`; ⇠21) + g2,`(precc,t�`

; ⇠22)
⇤
+Xct�2 + ↵2,cm + ⇢2,t + "2,ct. (12)

All variables are as in equation (10) except that the dependent variable zct is here either time

use or electricity consumption. We estimate linear relationships between outcomes z and

forecast errors because actions may depend linearly on forecasts even as mortality depends

nonlinearly on forecast errors.28

The time use analysis relies on daily, individual-level data from the American Time

Use Survey (ATUS). These data are geocoded at the county, state, or core-based statistical

area (CBSA) level, and we observe data for 100 out of the 130 County Warning Areas

in the continental U.S. The electricity data are at the state-month level and are from the

28Appendix I reports nonlinear regressions of actions on forecast errors in Tables A6 and A4.
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U.S. Energy Information Agency (EIA). We aggregate the daily, county-level forecast data

to the state-month level by taking population-weighted averages.29

Table 2: Residential Electricity Demand and Time Use

(1) (2) (3) (4)
Time use (minutes/day) Log electricity

Work Home prod. Leisure demand

< 0�C ⇥ Forecast error 3.94 -2.03 -1.91 0.00029
(4.41) (4.00) (7.16) (0.00026)

0 to 15�C ⇥ Forecast error 0.53 -5.84*** 5.31** -0.00029
(2.57) (1.99) (2.51) (0.00020)

15 to 30�C ⇥ Forecast error 3.95 -1.63 -2.32 0.00014
(2.78) (2.45) (2.52) (0.00019)

> 30�C ⇥ Forecast error 12.5 27.6*** -40.1*** 0.0014***
(8.07) (10.1) (7.37) (0.00033)

LHS mean 189.8 263.8 986.4
N 144,234 144,234 144,234 7,104
Clusters 100 100 100 48

Notes: The table shows results of estimating 4 versions of Equation 12 on two
di↵erent datasets. Columns 1 through 3 use daily, individual-level time use data
from ATUS. The dependent variables are time uses in minutes and are indicated
at the top of each column. The forecasted temperature bins are based on daily
average temperature forecasts. The coe�cients are 6-day cumulative e↵ects. Col-
umn 4 uses monthly, state-level electricity demand data from EIA. The dependent
variable is the log of monthly residential electricity demand. The right-hand-side
forecasted temperature bins are the number of days per month forecasted to be in
those ranges. The models include covariates for 5�C bins of realized temperature,
quartiles in precipitation (Columns 1–3) or a quadratic in precipitation (Column
4), four bins for forecasted temperature, as well as time (date for Columns 1–3,
year-month for Column 4) fixed e↵ects, and county-by-month fixed e↵ects inter-
acted with a linear time trend. Columns 1-3 are weighted by county population
and Column 4 by state population. Standard errors are clustered at the WFO
(1–3) or state (4) level. Significance: * p < .10, ** p < .05, *** p < .01.

The time use regressions in Columns 1–3 of Table 2 show that 1-day-ahead forecasts cause

people to change their time use patterns, particularly on hot days. For a day forecasted to

be above 30�C on average, individuals respond to a 1�C higher forecast error (equivalently, a

1�C hotter forecast) by reducing their leisure time by 40 minutes and shifting their time use

toward work and home production, even though we hold realized temperature fixed. The

e↵ect of forecasts is smaller on milder or colder days, but there is still about 4 to 5 minutes

29Appendix A provides details on each dataset and on the definition of each time use category.
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of total time-shifting on those days in response to forecasts. And the pattern from hot days

reverses on cold days: when we see a warmer forecast in cold weather, people spend more

time on leisure activities and less time on home production. People do respond to forecasts

by meaningfully changing their activities.

Column 4 shows that there is also a significant e↵ect of forecasts on hot days’ electricity

use. A 1�C larger forecast error increases residential electricity demand by 0.14%. Table A5

reports estimates for all variables in the model, including realized temperature. The table

shows that an extra day forecasted to be above 30�C, compared to a day between 15 and

20�C, leads to 1.2% higher electricity demand, roughly one-tenth the size of the e↵ect of an

extra hot day. Viewed in the context of the results in Columns 1–3, this additional residential

electricity demand could come from the increased use of electricity by individuals staying

home rather than going out to work or engaging in leisure.

5.2 Cross-Sectional Evidence

We investigate additional mechanisms by examining the correlation between our esti-

mated county-level e↵ect of forecasts on mortality and geographical characteristics. First,

we estimate county-level versions of equation (10) to recover coe�cients �̄c

11,j and �̄c

12,j,

with superscript c indicating the county.30 Next, for each county, we calculate the aver-

age convexity of the forecast-mortality function within forecasted temperature bin: ˆ̄�c,j ,
(1/2)( ˆ̄�c

11,j +
ˆ̄�c

12,j) for j 2 {1, 2, 3, 4}.
We use the county-level estimates of average convexity in the following regression:

ˆ̄�c,j = Zc✓ +
2X

i=1

⇥
�1,i(Latc)

i + �2,i(Longc)
i
⇤
+ ↵ + "c. (13)

One regression is run for each forecasted temperature bin, j. The matrix Zc contains the

variables of interest: average temperature; county-level median income and poverty rate from

the Census Small Area Income and Poverty Estimates (SAIPE) program; Google Trends

searches at the state level for “weather” normalized by searches for “dog”; libraries (which

act as heating and cooling shelters during extreme weather) per capita from the Institute

of Museum and Library Services Public Library Survey; home air conditioning adoption,

derived from American Community Survey and American Housing Survey data; land area

from the 2010 Census county shapefile; the count of homeless persons per state, from the

30These are county-level analogies of the coe�cients in Equation 11. Regressions are run separately for each
county. We replace county-by-month fixed e↵ects with month fixed e↵ects. In order to reduce the noisiness
of estimates (e.g., in low-population counties that rarely experience mortality events), the estimates are
partially pooled to the average value across locations using an empirical Bayes procedure. The procedure
shrinks estimates toward the group mean in proportion to the standard error of the county-level estimate.
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Department of Housing and Urban Development; population density, derived from SEER

population data; and the RMSE of day-ahead temperature forecasts over the sample period.31

For all variables, we take simple averages over the sample period to create cross-sectional

measures that vary by county c. In addition to the depicted variables, the regression controls

for quadratics in the latitude and longitude of the county centroid. The regression uses

heteroskedasticity robust standard errors.

Figure 4: Correlation Between County-Level Covariates and Average Convexity
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(b) Cool (0–15�C)
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(c) Warm (15–30�C)
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(d) Hot (> 30�C)

Notes: The figure shows the elements of ✓̂ estimated from regression (13). The points are coe�cient estimates
and whiskers are 95% confidence intervals from heteroskedasticity-robust standard errors.

Figure 4 plots the estimated ✓̂. Overall, the signal to noise ratio is low for these estimates,

but some consistent patterns emerge. Higher median income and poverty rates are associ-

ated with a stronger forecast e↵ect. Higher income might allow for more flexibility when

responding to forecasts, but locations with higher poverty rates likely have a larger popula-

tion at high risk of mortality from temperature and a greater need for forecast-driven public

health interventions. Income e↵ects are largest for hotter forecasted temperatures, whereas

poverty e↵ects are uniform across the temperature bins, lending support to the possibility

that adaptation activities at hotter temperatures are costly. Higher RMSE (less accurate

31See Appendix A for details on the datasets and Appendix A.2 for a description of AC estimation
procedure.
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forecasts on average) reduces forecast e↵ectiveness across all bins. As discussed further in

Appendix C, this result is consistent with individuals finding forecasts less useful when they

are typically noisy.32

Higher air conditioner penetration is also associated with a stronger forecast e↵ect in

both extreme bins, which suggests that air conditioning does not substitute for forecasts but

is, if anything, a complement (in line with the electricity demand evidence from Section 5).

Average temperature has an asymmetric e↵ect. In the cold bin, higher temperatures raise

the forecast e↵ect while in the hot bin it lowers it, potentially because extreme temperatures

are more surprising in these locations, making forecasts more helpful.

5.3 Survey Evidence

To complement the revealed preference evidence of the impact of forecast on actions, we

also collect stated preference evidence using a survey of 128 University of Arizona students.33

Although a sample of convenience, this group can still be considered an informative case as

respondents should be relatively unlikely to act on forecast information: they are of an age

group that has low sensitivity to extreme temperature, and they took the survey during a

season of relatively mild temperatures.34

Overall, respondents cared about the weather forecast: 90% of respondents replied that

they cared “a little bit” or “quite a lot” about what the weather will be tomorrow, as op-

posed to not “at all” (10%). In addition, 82% of respondents responded that they look at

the weather forecast at least once a week and 52% reported looking at the forecast at least

once a day (compared to 60% for a recent representative sample in the U.S. (Orth, 2023)).

Respondents were further asked to “think back to a time during the summer when the tem-

perature was hot,” and asked, “If the temperature was forecast to be especially hot the next

day, would you plan to do anything di↵erently because of the forecasted hot weather?” 69%

of respondents replied “Yes”. When asked, “What would you do di↵erently?”, open-ended

responses mentioned avoiding outdoor activity, drinking water, changing wardrobe, or find-

ing a cool activity. In addition, of the 89% of respondents who recalled “a time when there

was an excessive heat warning where you lived,” 61% responded that they did something

di↵erently because of the warning. A majority of this subset of respondents recalled stay-

32In concurrent work, Song (2022) examines e↵ects of RMSE on labor supply in China. Our estimated
e↵ects of awareness of forecast accuracy are consistent with Song’s results, and our identification is similar
in being cross-sectional.

33The survey (STUDY00001720) was reviewed and approved by the University of Arizona Human Subjects
Protection Program and administered through the Arizona Policy Lab. Student were incentivized with one
point of extra credit in a participating class of their choice for taking the survey. The survey was run from
September 2022 to May 2023.

34Average day-ahead high temperature forecast during the study period was 77.7�F, with a minimum of
52�F and a maximum of 98�F.
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ing inside as a response to the warning, and others noted modifying the times of outdoor

activities (dog walking, yard work, etc.) to cooler parts of the day. Some respondents also

recalled behavioral modifications like drinking more water or wearing weather-appropriate

clothing. Finally, 92% of respondents replied “Yes” to the question “Do you think excessive

heat warnings give the public information that helps to save lives?” While these responses

could su↵er from well-known survey biases (e.g., recall bias, social desirability bias), they do

corroborate our revealed preference findings.

6 E↵ect of Forecast Accuracy on Mortality

Having seen that forecasts matter for mortality, and having seen that several lines of

evidence suggest that people do use forecasts in ways consistent with our estimated e↵ects

on mortality, we now use the theoretical analysis to quantify the e↵ects of improved forecast

accuracy. In particular, we estimate the average mortality benefit following Proposition 1

and willingness to pay following Proposition 2.

6.1 Estimating Equation

Each calculation requires second-order e↵ects of forecast errors and realized temperature

on mortality risk. We therefore estimate:

yct =
LX

`=0

JX

j=1

1{fc,t�` 2 Bj}
✓
�30,`,j + �31,`,jec,t�` + �32,`,je

2
c,t�`

+ �33,`,jTc,t�` + �34,`,jT
2
c,t�`

+ �35,`,jec,t�`Tc,t�`

◆
(14)

+
LX

`=0

g2,`(precc,t�`
; ⇠32) +Xct�2 + ↵3,cm + ⇢3,t + "3,ct.

All variables are as in equation (10). Here we include an interacted quadratic in realized tem-

perature and forecast errors. The mortality benefit will depend on the �32,`,j, and willingness

to pay will depend on the �34,`,j and the �35,`,j.

6.2 Results

We saw in Section 4 that mortality risk is convex in forecast errors. Therefore, from

Proposition 1, increasing the accuracy of forecasts will save lives when Assumption 1 holds.

We quantify this e↵ect for two counterfactual changes in forecast accuracy. Our calculations

assume: (i) that the estimated changes in mortality are persistent, and (ii) that the estimated

response to forecasts is invariant to the postulated changes in forecast accuracy. We validate
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these assumptions in Appendix C, and we also test robustness of the results to changes in

functional form.35

The top panel of Table 3 reports data-dependent parameters. The top row shows that

cold and hot days are far less common than cool and warm days, and the second row

shows that forecasts are more accurate on hotter days. Our mortality benefit and net value

calculations will rely on an approximation in which Assumption 1 holds with ✏ small, meaning

that the variance of forecast errors is small and the VSL is large relative to marginal costs

of adaptation. The second row shows that forecasts are in general fairly accurate, and

following EPA (2021), we use a VSL of $9.5 million (in 2020 dollars) that surely exceeds

marginal adaptation costs by a large margin.

The middle panel considers the mortality benefit of improved forecast accuracy. Its first

row shows that, as in Section 4, mortality risk is convex in forecast errors, especially on

hot days. Its second row is the marginal e↵ect of the standard deviation of forecast errors

on annual, nationwide mortality.36 Following Proposition 1, this row reports the convexity

multiplied by the number of days per year of weather in that bin, the population of the U.S.

in hundred thousands, and the derivative of variance with respect to standard deviation.37

More accurate forecasts save lives: reducing the standard deviation of forecasts errors by

1�C would save 5,400 lives per year. Across the temperature distribution, the majority of

this value comes from warm and cool days because these temperatures are so much more

common than extreme heat or cold.

The third row of the middle panel of Table 3 calculates lives saved if the standard devia-

tion of forecast errors were halved. The top panel shows that forecasts of hot temperatures

have the smallest standard deviation and forecasts of cold temperatures have the largest

standard deviation. The di↵erence in the spread of errors is likely due to underlying mete-

orology: warm air masses are more stable and easier to forecast than colder, more volatile

air masses. Cold and cool days’ contribution to the total mortality benefit increases from

the second to the third rows of the middle panel because forecasts on these days have more

room for improvement.

Thus far we have shown that improving forecasts saves lives. The monetized value of

lives saved is $51 billion from a 1�C more accurate forecast and $21 billion from a 50%

more accurate forecast. However, these calculations are not agents’ own value for more

accurate forecasts, which nets out their costs of acting on forecasts and accounts for the

terms highlighted in Proposition 2.

35And the results on lives saved are similar whether we use a quadratic specification in Equation 14 or a
more flexible two-line estimator (see Section C). The interacted quadratic specification is conservative and
allows for estimation of WTP.

36Appendix F contains details on the counterfactual calculations.
37We use 310 million for our sample period population and a mean solar year as our year.
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Table 3: Annual Mortality Benefit and Net Value From Forecast Accuracy Improvements

Forecasted Temperature

< 0�C 0–15�C 15–30�C > 30�C All
Cold Cool Warm Hot Temps

Parameters

Frequency n(T ) (days/year) 35 136 188 6 365
Current Error Std Dev

p
V ar[T |f ] (�C) 1.40 1.23 1.03 0.91 1.15

Mortality Benefit

Error Convexity hee 0.0015 0.0033 0.0055 0.0078 0.0044
(0.0024) (0.0017) (0.0022) (0.0185) (0.0012)

Lives Saved from Smaller Std Dev:
Marginal Improvement 222 1,713 3,336 136 5,406

(369) (867) (1,310) (320) (1,526)

50% Improvement 116 790 1,291 46 2,243
(193) (400) (507) (109) (633)

Net Value

Temperature Convexity hTT -0.00038 -0.00012 0.00102 0.00480 0.00053
(0.00019) (0.00025) (0.00025) (0.00297) (0.00011)

Error-Temperature Interaction heT -0.00040 -0.00042 0.00075 -0.00484 0.00011
(0.00054) (0.00037) (0.00039) (0.00607) (0.00038)

WTP for Smaller Std Dev ($billion):
Marginal Improvement -1.1 -2.6 10.1 0.0 6.3

(0.3) (1.2) (1.4) (0.5) (1.3)

50% Improvement -0.6 -1.2 3.9 0.0 2.1
(0.1) (0.6) (0.6) (0.2) (0.4)

Notes: The table shows the mortality benefits and willingness to pay for more accurate weather
forecasts, both broken down by forecasted temperature bins and across all temperatures. The first
section shows the frequency of each temperature level and the associated standard deviation of forecast
errors. The second section shows the convexity of the relationship between mortality and forecast
errors estimated by Equation (14), along with the expected annual lives saved from forecast error
reductions in two counterfactual scenarios. It measures the mortality rate increase from a marginal
change in mean absolute forecast error. The third panel shows the convexity of mortality with respect
to temperature and the cross-partial of forecast error and temperature, generated from the same
estimation of Equation (14). From these estimates, net value of forecast improvements is calculated
under the same two counterfactuals.
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The bottom panel of Table 3 values more accurate forecasts as agents’ willingness to

pay for them, which accounts for their costs of acting on forecasts. Proposition 2 showed

that this value depends on the convexity of mortality in temperature (first row) and on

how responses to accurate forecasts mitigate that convexity (second row). Mortality risk

is convex in temperature on warm days and especially convex on hot days. In line with

the theory, the error-temperature interaction typically has a negative (albeit noisy) point

estimate. Agents use forecasts to smooth mortality risk on hot days to such a degree that

they receive little net value from having more accurate forecasts on hot days (final two

rows). Agents’ responsiveness to hot forecasts is consistent with foregoing results showing

that forecast errors are especially important on hot days and that time use and electricity

use are especially responsive to forecasts on hot days. This smoothing e↵ect vanishes on

warm days, reflecting either that actions are less responsive to forecasts on warm days (so

that A⇤0 is small) or that actions’ e↵ects on mortality risk are less temperature-dependent

on warm days (so that hAT is small). As a result, people would pay $10 billion for a 1�C

reduction in the standard deviation of forecast errors on warm days and $4 billion for a 50%

reduction.

6.3 Heterogeneity Analysis

To assess who is benefiting from forecasts, we estimate versions of equation (14) where

the outcome variable is replaced with mortality for di↵erent demographic groups, as reported

on the death certificates. Figure 5 reports these results for di↵erent race groups, and Fig-

ures A6b, A6a, and A7 in Appendix G report results by age, sex, and cause of death. The

location-specific heterogeneity in Section 5 also provides evidence on variation in lives saved,

while regional heterogeneity is presented in Figure A9. The main takeaways from this analy-

sis are: (1) cause of death generally follows the same pattern as seen in the e↵ect of realized

temperature on mortality (cardiovascular disease being particularly strongly associated with

forecast errors), but forecasts are strongly associated with accidents while realized tempera-

tures are not; (2) adaptation is “protective” for women in cold but otherwise similar for men

and women; (3) individuals 65 or older respond most strongly to forecasts and especially

so in colder weather; (4) colder parts of the country benefit from forecasts in hot weather

and hotter parts of the country benefit from forecasts in cold weather; and (5) mortality for

white people responds more strongly to forecasts.

Figure 5 shows that this last result holds across the temperature distribution. The het-

erogeneity could be due to di↵erences in preferences, information, credibility, or constraints

on adaptive behavior. Prior work suggests that the first possibility is unlikely given that

realized temperature is a relatively more important source of mortality for people of color

than for white Americans (Basu, 2009). The second and third possibilities would imply
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Figure 5: Heterogeneity in Lives Saved by Race of the Deceased
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Notes: The figure shows the annual lives saved (per 100,000 people) from a 1�C reduction in the standard
deviation of forecast errors. Estimates for each demographic group come from a separate model fit using
Equation (14) on the baseline data and translated into annual lives saved by multiplying the convexity by the
days per year in each forecasted temperature bin. The lines are 95% confidence intervals based on standard
errors clustered at the CWA level.

benefits from a policy to improve communication and outreach, whereas the fourth would

imply benefits from a policy to relax constraints on adaptation. Future work should explore

which mechanisms are especially important.

6.4 Projected Benefits of Forecast Improvements Under Climate Change

As the climate in the U.S. warms, both warm and hot days will become more frequent.

From Table 3, these days have the greatest benefit in terms of lives saved and warm days

have the greatest monetized net benefits. Therefore, as the climate warms, forecasts will

become more valuable, ceteris paribus.38 Table 4 shows the projected change in forecast

value from the changing distribution of temperatures in the U.S. over the coming century

under SSP2-4.5, a so-called “middle of the road” scenario in which emissions begin to fall

midcentury and end-of-century warming is 2.5–3�C.39

The top panel of the table shows days per year in each temperature bin, the lives saved

per year, and the net value (WTP) from a 50% forecast improvement in 2100. Even under

38In order to isolate the role of changing weather, our climate calculations hold the population’s level,
demographic structure, geographic distribution, and adaptation options constant over time. Our calculations
also assume that people’s use of forecasts does not change as they experience climate change (see Guido et al.,
2021) and that the short-run forecastability of weather does not change with climate change (see Scher and
Messori, 2019).

39The specific model runs used in the projections come from the CMIP6 ScenarioMIP runs of the NOAA
Geophysical Fluid Dynamics Laboratory model (Guo et al., 2018). Days per year in each temperature bin
are debiased with respect to the observed frequency of days from our data by matching the projections to
observations during the period of overlap (2015–2017).
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Table 4: Projected Forecast Value Under Climate Change

Forecasted Temperature All
< 0 0–15 15–30 > 30 temps

Flow value in 2100, 50% forecast improvement
Days/year 3 140 203 19 365
Lives saved 10 813 1396 143 2361
WTP ($ billion) 0.0 -1.3 4.2 0.0 2.9
Change from 2015 -92% 3% 8% 208% 5%

Present value of 50% forecast improvement (2025-2100)
Lives saved (undiscounted) 3,015 61,634 102,551 6,942 174,142
E↵ect of climate change (lives) -5,723 2,437 5,721 3,462 5,897
WTP ($ billion, r = 1.7%) -10.6 -54.7 177.6 -0.2 112.1
E↵ect of climate change ($ billion) 15.0 -2.2 8.8 -0.1 21.5

Notes: The table shows projections based on changes in realized temperature ac-
cording to the CMIP6 SSP2-4.5 climate scenario. Lives saved and WTP are based
on the 50% forecast improvement counterfactual given in Table 3.

this middle-of-the-road scenario, the number of cold days falls almost to zero, whereas the

number of hot days more than doubles. Altogether, climate change increases lives saved and

annual willingness to pay by 5%.

The bottom panel of the table shows the present value (undiscounted for lives saved,

discounted at a rate of 1.7% for WTP) for a hypothetical policy that reduces the standard

deviation of forecast errors by 50% in 2025–2100. Current willingness to pay for this policy

is $112 billion (third row), which is $22 billion larger than in the absence of further climate

change (fourth row). Therefore, a policy that obtained 50% greater forecast accuracy at

a present cost of $112 billion or less would generate net benefits, even before considering

non-mortality benefits of forecasts. Figure 1b showed that forecast root-mean squared error

fell by 27% over the sample period. A 50% improvement could be achieved in 22 years if

the recent pace of improvement were maintained. If that improvement could be obtained

by redirecting all of the roughly $1 billion NWS annual budget toward this task for those

22 years, then that investment would have a present cost of $16 billion using the same

discounting procedure as in Table 4. Our estimated willingness to pay for mortality benefits

is large enough to justify even that extreme budget allocation.40

40Over the last decade, NOAA had a total budget of $5–6 billion, with around $1 billion allocated to the
National Weather Service (CSR, 2022). The NWS is not solely responsible for forecast-related spending at
the federal level, nor is the entire NWS budget dedicated to forecast improvements. For example, in 1999 the
U.S. government reported spending $2.2 billion on producing and disseminating forecasts and $0.5 billion
on research to improve them, with the private sector spending another $1 billion broadcasting the forecasts
(Hooke and Pielke Jr., 2000).
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7 Conclusion

Routine weather forecasts are a widely used, sophisticated prediction product that most

people interact with on a daily basis. Despite the ubiquity of weather forecasts, the number

of people who rely on them, and the global e↵ort involved in their production, surprisingly

little is known about their economic value. This paper provides the first revealed preference

estimates of the value of daily weather forecasts.

We show that whether improving forecasts’ accuracy reduces mortality is theoretically

ambiguous, depending on the convexity of mortality risk in forecast errors and thereby on the

form of adaptation undertaken. Using the universe of mortality events and weather forecasts

for a twelve-year period in the U.S., we show that forecasts are e↵ective at helping people

avoid mortality, especially during extreme heat. Across the full temperature distribution,

NWS forecasts save thousands of lives per year compared to less accurate alternatives and

agents would pay billions of dollars for more accurate forecasts. These values are large

relative to the $1 billion annual budget of the U.S. National Weather Service, suggesting

that investing in improved forecasts could generate attractive social returns.

Our analysis identifies the value of more accurate forecasts through the e↵ects of idiosyn-

cratic forecast errors on mortality. When we value improved accuracy, we implicitly hold

agents’ responses to any particular forecast fixed. This approach is sensible for marginal

changes in forecast quality, but nonmarginal changes could eventually change the way peo-

ple use forecasts. Our results suggest that people do in fact act on forecasts more in counties

where forecasts tend to be of higher quality. Our estimates may therefore represent a lower

bound on the mortality value of increased accuracy. Future work should seek quasiran-

dom persistent changes in forecast quality that can determine whether people use forecasts

di↵erently once they understand that forecasts have improved.

We show that routine weather forecasts will be an important facilitator of adaptation

to climate change. Our projections assume constant forecast quality for days of a given

temperature. In practice, forecast quality might improve or degrade as the climate changes,

and the value of forecasts on di↵erent days could change as adaptation technology and

behaviors change. Further, forecast quality is inequitably distributed around the world.

International adaptation funds should consider investing in weather forecasting as one way

to enhance resilience to climate change.
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A Data Processing Details

A.1 Primary Estimation Data: Mortality, Weather, and Forecasts

The raw mortality data from the CDC NCHS MCOD files report the day and county

of each vital event. All events in a county on a day are added together to generate the

county-level number of daily deaths. The deaths are translated into a death rate by dividing

by annual county population, as described in Section 3.2.

The day-county structure of the mortality data motivates our processing choices for

the PRISM weather data and NDFD forecast data. Both datasets originally provide daily

observations on a consistent, high-resolution spatial grid across the U.S. For the forecast

data, there are multiple potential observations per day. Forecast models are run and results

are reported multiple times per day. For the minimum and maximum temperature forecasts

we focus on, the major model runs occur at 12UTC and 00UTC. Based on feedback from

National Weather Service meteorologists, we examine the 12UTC forecast, which is available

in the early morning for locations in the U.S. and typically forms the basis of the morning

forecast on local news. We aggregate the spatial grid to the county level using the following

procedure:

First, for each county, we find the weather and forecast grid points that fall inside the

geographic boundary of the county, using 2010 county TIGER/Line shapefile from the Cen-

sus. Given the high resolution of the underlying datasets (4 ⇥ 4 km for PRISM and either

5⇥ 5 or 2.5⇥ 2.5 km for NDFD), all counties in our sample contain multiple grid points.

Second, we assign a weight to each grid point based on 2010 population grids from CIESIN

(2017). The CIESIN grids are at a roughly 1km resolution, which is higher than either the

weather or forecast grid resolutions. Therefore, we use bilinear resampling to reproject the

the population grid to match that of the weather and forecast grids.

Third, we calculate population-weighted average values for each weather and forecast ob-

servation within the county. The end result is a daily, population-weighted spatial average

of the maximum temperature, minimum temperature, total precipitation, dewpoint temper-

ature, maximum temperature forecast for 1 to 6 days ahead, and minimum temperature

forecast for 1 to 6 days ahead (the NWS issues forecasts out to 7 days, but given our choice

of the 12UTC forecast, the 7-day-ahead minimum temperature forecast is not available).

Comparison of an example gridded forecast data and the corresponding county-level data is

shown in Figure A1.

Fourth, we correct errors in the forecast data. The NDFD data undergo error checking

(such checks are the responsibility of local Weather Forecast O�ces), but there are still

some identifiable errors in the published data. In particular, from one forecast horizon to

the next, there are a small number of observations that have a change in forecast value of
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Figure A1: Comparison of Example Raw Gridded Forecast Data and County-level Data

(a) Gridded Raw Data (b) County Area Average (c) Population-weighted

Notes: The maps show the raw, gridded forecast data in panel (a) and the corresponding county-level area
and population-weighted average forecasts in panels (b) and (c) respectively. The maps are an example from
one day and forecast horizon: the 1-day-ahead forecast for September 9, 2006.

exactly �17.4999�C. When these errors occur, they only appear at one forecast horizon, so we

use adjacent forecast horizons to interpolate the erroneous value. In the primary results, we

Winsorize the forecast errors, so this data cleaning step has minimal e↵ect on the estimates.

Fifth, we match the timing conventions in the forecast and weather data. The NWS

typically uses a noon to noon UTC convention for daily temperature forecasts. Minimum

temperatures are forecasted for the nighttime (midnight UTC day to noon UTC day t or 7

p.m day t� 1 to 7 a.m. day t EST). Maximum temperatures are forecasted for the daytime

(noon UTC to midnight UTC). PRISM also typically follows this timing convention, but not

as strictly. To match the timing conventions between the two datasets, for maximum and

minimum temperatures separately we regress realized temperature on the day t 1-day-ahead

forecast and the day t�1 1-day-ahead forecast. For maximum temperature, we find that the

day t forecast is su�cient (the day t� 1 forecast does not predict the realization conditional

on the day t forecast). For minimum temperature, we find that both days’ forecasts are

predictive, with the day t forecast being about twice as predictive as the day t� 1 forecast.

We therefore construct a time-corrected day t minimum temperature forecast that is the

weighted average of the original day t and day t� 1 forecasts with weight 2/3 on the day t

forecast and 1/3 on the day t� 1 forecast. The time-corrected forecast does exhibit forecast

su�ciency.

After creating the daily, county-level dataset, we merge counties with identifiers for their

NOAA County Warning Area (CWA). CWAs are collections of counties, and the local NWS

Weather Forecasting O�ce (WFO) is responsible for generating forecasts for the CWA. The

map of counties and CWAs is shown in Figure A2.
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Figure A2: Map of NOAA County Warning Areas (CWAs)

Notes: The map shows (in colored areas with black outlines) the geographic boundaries of County Warning
Areas (CWAs), the collection of counties for which a given NWS Weather Forecasting O�ce is responsible
for creating forecasts. State borders are shown in gray, thinner lines. CWAs are typically composed of one
or more counties and can cross state borders. There are 116 CWAs in the continental U.S. Some counties are
part of multiple CWAs, and in those cases, we assign the county a CWA ID composed of each CWA that it
is in. The end result is a many to 1 mapping of all continental U.S. counties to 130 CWAs or CWA groups.

A.2 Air Conditioning

We generate new predictions of air conditioning take-up at the county-by-year level.

We begin with individual-level restricted access, biennial American Housing Survey (AHS)

data from a Census Research Data Center that contains household-level information on air

conditioning (AC) availability and demographic and household information. We link these

data with county-by-year climatic characteristics from 1999 to 2020, from Schlenker and

Roberts (2009). The AHS sample provides details at the household level that our model

uses to predict AC penetration, while partially pooling using other households in the state

to improve predictive fit.

We use a multi-step process to select the best model to predict AC availability at the

household level. First, we consider all variables shared by the AHS and the public ver-

sion of the ACS plus weather variables (annual rainfall; annual average temperature; annual

maximum temperature; annual minimum temperature; average, max, and min summer tem-

perature; and the annual standard deviation of daily temperature) as possible predictors.

The full sample of data is then split, with 1/3 acting as the model testing sample and 2/3

as the hold-out, final prediction sample which helps avoid overfitting or the need for strong

sparsity assumptions (Chernozhukov et al., 2018). The samples are blocked to ensure that

all states and years are represented in both samples.

Candidate models are evaluated through 5-fold cross validation on the model testing
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sample, again blocked at the state-year level. Within each cross-validation step, the set

of chosen predictors is constructed by taking combinations of the possible predictors and

fitting linear multilevel models in R with the lme4 package (Bates et al., 2015). We model

individuals as members of states, so that observations in relatively less sampled states are

more strongly pooled toward their group mean to avoid fragile or high-variance out-of-sample

predictions.

The first set of candidate models starts by fitting univariate models. We sequentially

add each additional potential predictor, keeping the resulting model that achieves the best

performance in terms of the Akaike information criterion (AIC). The addition of variables

stops if the AIC increases or if a model fails to converge, in which case the last converging

model is selected as a candidate. In a second set of models, the set of predictors is chosen

through lasso (Tibshirani, 1996) and then a model is fit using lme4. These candidate models

are then fit with time- and location-varying intercepts and slopes for each combination of

up to three of the predictors. The final model is selected from the pool of best-performing

models based on out-of-sample predictive fit across the cross-validation folds. The hold-out-

sample is then used to estimate the final coe�cients for disclosure. We fit the final model on

523,000 observations. We obtain an in-sample root mean squared error (RMSE) of 0.07696

with an average AC penetration rate at the county level of 0.8719.

We then bring these estimated coe�cients to individual-level Integrated Public Use Mi-

crodata Series (IPUMS USA) data 1% sample household data from the American Community

Survey (ACS) from 2005 to 2017. These ACS public use microdata files are geographically

identified at the Census Public Use Microdata Area (PUMA). We standardize them by con-

verting them to 2010 PUMA definitions using a 2000 to 2010 PUMA crosswalk by IPUMS.

We similarly convert the NOAA climatological data at the county by year level to the PUMA

by year level using the Census county to 2010 PUMA crosswalk. We predict household-level

AC take up using estimated coe�cients from the AHS data applied to our ACS data sample.

Finally, we predict AC take-up at the county-by-year level by converting PUMA estimates

back to counties: for counties that have a direct match with a PUMA, these estimates are

directly applied, and for counties that match to multiple PUMAs, the weighted average of

AC take up is estimated for the county-by-year level.

One version of our final data are these direct county-by-year AC take-up estimates,

however we note that these unadjusted estimates do not monotonically increase over time

as one may theoretically expect. Thus, in a second final estimate, we smooth the county-

by-year estimates for each county based on a linear regression of the predicted county-by-

year estimates for a given county. We force the overall trend to be (weakly) monotonically

increasing. We estimate an average take-up of about 89.2%, broadly consistent with the

average take-up of 87.2% in the original AHS data.
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A.3 American Time Use Survey

American Time Use Survey data come from the Bureau of Labor Statistics (BLS) and

are available at https://www.bls.gov/tus/. The data structure is a repeated cross section.

Individuals who have taken part in the CPS are invited to complete a time use diary for a

single day’s time use. The sample is gathered uniformly throughout the year and across the

country. About 10,000 to 12,000 individuals participate each year.

Data are geocoded at a variety of di↵erent levels depending on the population density

in the location. All observations contain state-level geocoding. For high-density locations,

geocoding is at the county level. For intermediate densities, one can use CPS records to

geocode the observations at the CBSA level. Details on the geocoding process can be found in

Gibson and Shrader (2018). We match individuals to weather and forecast records aggregated

to their finest level of geocoding. For clustering, we assign each individual to a WFO either

using their county or the WFO that covers the most area in their state.

A.4 Electricity Demand

Electricity demand data come from the US Energy Information Agency (EIA) form EIA-

861M and are available at https://www.eia.gov/electricity/data.php. The dataset

“Retail sales of electricity to ultimate customers - Monthly” contains monthly, state-level

electricity consumption (MWh) and prices (cents/kWh) for residential, commercial, indus-

trial, and other users. We combine the electricity data with weather and forecast data by

aggregating the latter to the state-month level. Starting with the county-level data used in

the main analysis, we calculate the number of days per month that a state experiences and

is forecasted to experience weather in temperature bins (5�C for realized temperature and

cold, cool, warm, and hot bins for forecasted temperature, to match Table 1). Rainfall is

summed over days in the month and units are converted to meters per month for legibility.

Forecast errors are averages of county-level errors. All of these calculations are weighted by

county-level population. Finally, we merge the dataset with state-level population from the

NIH Surveillance, Epidemiology, and End Results program.
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B Additional Theoretical Analysis

B.1 Second-order condition

The following lemma gives su�cient conditions for the second-order condition to hold:

Lemma 2 (Second-Order Condition) If Assumption 1 holds, ET |f [h(T,A⇤(f))]  ✏, and

hAA(T,A⇤(T )) � 0, then the second-order condition holds around A⇤(f) as ✏ goes to 0.

Proof. Di↵erentiating the right-hand side of (2) with respect to A, applying Assumption 1

and Lemma 1, and letting ET |f [h(T,A)] be small, the second-order condition holds around

A⇤(f) if �C 00u0 + [C 0]2u00 � ET |f [hAA](u� v) < 0, which holds if ET |f [hAA] � 0.

Given that an individual’s daily mortality risk is not generally large, the second-order con-

dition should hold in our empirical application as long as the hazard function is not too

concave in actions.

B.2 Identifying properties of the hazard function

Here we show how estimating which type of adaptation environment holds is informative

about properties of the hazard function.

Begin by establishing that actions are sensitive to forecasts.

Assumption 3 (Constant VSL) Around forecast f , the VSL is constant.

Lemma 3 (Actions Respond to Forecasts) If Assumptions 1 through 3 hold and the

second-order condition for optimality of actions holds when the forecast is f , then lim✏!0 A⇤0(f) /
�hAT (f, A⇤(f))V SL.

Proof. Applying the implicit function theorem to (4) and using the second-order con-

dition, A⇤0(f) / �@ET |f [hA((T,A⇤(f))]

@f
V SL(f) � ET |f [hA((T,A⇤(f))]V SL0(f). Using (5) and

V SL0(f) = 0 (and thus dropping the argument of V SL), this becomes

A⇤0(f) / �
⇢
hAT (f, A

⇤(f)) +
1

2
hATTT (f, A

⇤(f))V ar[T |f ] + 1

2
hATT (f, A

⇤(f))
dV ar[T |f ]

df

�
V SL.

The lemma follows from applying Assumptions 1 and 2.

Actions are sensitive to forecasts when the marginal e↵ect of temperature on mortality risk

depends on the actions chosen (i.e., when hAT 6= 0).

Now consider what we learn about the hazard function:
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Lemma 4 If Assumptions 1 through 3 hold at f = T with ✏ arbitrarily small and the second-

order condition for optimality of actions holds when the forecast is f = T , then adaptation

is appropriate if and only if lim✏!0 hAA(T,A⇤(T )) > 0.

Proof. Using Lemmas 1 and 3, equation (6) implies that lim✏!0 d2h(T,A⇤(T + e))/ de2|
e=0 >

0 if and only if lim✏!0 hAA(T,A⇤(T )) > 0. And from Definition 1, adaptation is appropriate

if and only if d2h(T,A⇤(T + e))/ de2|
e=0 > 0.

If we estimate that mortality risk is convex in forecast errors, then we can use Lemma 4 to

conclude that the hazard is convex in actions around accurate forecasts. But if we instead

estimate that mortality risk is not convex in forecast errors, then we can conclude that the

hazard is linear or concave in actions around accurate forecasts.

B.3 Proof of Proposition 2

Second-order approximate V (f) around f = T inside V̄ (T ):

V̄ (T ) ⇡V (T ) +
1

2
V 00(T )V ar[e|T ]. (A-1)

Therefore:

dV̄ (T )

dV ar[e|T ] ⇡
1

2
V 00(T ), (A-2)

with the approximation becoming exact when Assumption 1 holds with ✏ small. Second-order

approximating h(f � e, A⇤(f)) around e = 0 yields:

Ee|f [h(f � e, A⇤(f))] ⇡ h(f, A⇤(f)) +
1

2
hTT (f, A

⇤(f))V ar[e|f ],

with the approximation again becoming exact when Assumption 1 holds with ✏ small. Substi-

tute into V (T ) and apply Assumption 2 in order to hold V ar[e|T ] constant in a neighborhood

of T :

V 0(T ) =�

hT (T,A

⇤(T )) +
1

2
hTTT (T,A

⇤(T ))V ar[e|T ]
�
[u(w � C(A⇤(T )))� v(w � C(A⇤(T )))]

+
dV (T )

dA
A⇤0(T ).
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Di↵erentiating again yields:

V 00(T ) =�

hTT (T,A

⇤(T )) +
1

2
hTTTT (T,A

⇤(T ))V ar[e|T ]
�
[u(w � C(A⇤(T )))� v(w � C(A⇤(T )))]

� A⇤0(T )


hAT (T,A

⇤(T )) +
1

2
hATTT (T,A

⇤(T ))V ar[e|f ]
�

[u(w � C(A⇤(T )))� v(w � C(A⇤(T )))]

+ A⇤0(T )C 0(A⇤(T ))


hT (T,A

⇤(T )) +
1

2
hTTT (T,A

⇤(T ))V ar[e|T ]
�

[u0(w � C(A⇤(T )))� v0(w � C(A⇤(T )))]

+
d dV (f)

dA A⇤0(f)

df

�����
f=T

.

The final line vanishes because the first-order condition must hold at all f . Substitute

from (4) and then from (5),

V 00(T ) ⇡�

hTT (T,A

⇤(T )) +
1

2
hTTTT (T,A

⇤(T ))V ar[e|T ]
�
[u(w � C(A⇤(T )))� v(w � C(A⇤(T )))]

� A⇤0(T )


hAT (T,A

⇤(T )) +
1

2
hATTT (T,A

⇤(T ))V ar[e|f ]
�

[u(w � C(A⇤(T )))� v(w � C(A⇤(T )))]

� A⇤0(T )
h
hA(f, A

⇤(f)) +
1

2
hATT (f, A

⇤(f))V ar[T |f ]
i
V SL(T )


hT (T,A

⇤(T )) +
1

2
hTTT (T,A

⇤(T ))V ar[e|T ]
�
[u0(w � C(A⇤(T )))� v0(w � C(A⇤(T )))].

Using Assumption 1 and Lemma 1,

lim
✏!0

V 00(T ) =� lim
✏!0

h
hTT (T,A

⇤(T )) + A⇤0(T )hAT (T,A
⇤(T ))

i
[u(w � C(A⇤(T )))� v(w � C(A⇤(T )))].

Observe that

d

de

@h(T,A⇤(T + e))

@T
= hAT (T,A

⇤(T + e))A⇤0(T + e),
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which, from Lemma 3, is strictly negative if Assumption 3 and the second-order condition

for optimality of actions both hold when the forecast is f . We then have:

lim
✏!0

V 00(T ) =� lim
✏!0


@2h(T,A⇤(T + e))

@T 2

����
e=0

+
d

de

@h(T,A⇤(T + e))

@T

����
e=0

�


u(w � C(A⇤(T )))� v(w � C(A⇤(T )))

�
.

Substituting into (A-2), we find:

lim
✏!0

dV̄ (T )

dV ar[e|T ] ⇡� lim
✏!0

1

2


@2h(T,A⇤(T + e))

@T 2

����
e=0

+
d

de

@h(T,A⇤(T + e))

@T

����
e=0

�


u(w � C(A⇤(T )))� v(w � C(A⇤(T )))

�
. (A-3)

Using (A-1), observe that, under Assumption 1,

lim
✏!0

dV̄

dw
=ET |f [1� h(T,A)] u0(w � C(A⇤(T ))) + ET |f [h(T,A)] v

0(w � C(A⇤(T ))). (A-4)

Plugging (A-3) and (A-4) into the definition of WTP (T ) in (8) and substituting from (3)

yields the expression in the proposition.

C Testing Assumptions Underlying Forecast Benefit Estimates

and Robustness to Functional Form

Section 6 shows the benefit of forecast improvements based on the 6-day cumulative

e↵ect of forecasts on mortality. One assumption underlying those results is that the e↵ect of

forecasts on mortality is persistent. Previous research on the e↵ect of realized temperature on

mortality has shown that there can be dynamic e↵ects over the days following a temperature

realization (Deschênes and Moretti, 2009, Heutel et al., 2021). Figure A3 shows the average

marginal e↵ect across the full temperature distribution of a more erroneous forecast (the same

value reported in Column 5, row 3 of Table 3) using a two-week distributed lag model.41

The results show that on the day the forecast arrives, the marginal e↵ect is roughly 0.001

deaths per 100,000 people. This rises to around 0.002 after just one additional day, continues

to rise through day 3, then stays roughly stable after that point. The value is significantly

positive over all but the first day. This stability of the estimate supports our assumption of

a persistent e↵ect on mortality.

41Examining longer ranges of cumulative e↵ects is computationally infeasible using a standard distributed
lag model given the high dimensionality of the estimating equation.

A-9



Figure A3: Testing Counterfactual Persistence Assumption: Cumulative E↵ects
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Notes: Shows estimates of the cumulative average convexity of mortality with respect to forecast error based
on regressions estimated using Equation (10) (“Two-line”), a variant of that equation using a linear spline
(“Linear spline”), a variant using a quadratic (“Quadratic”), and the baseline value estimating equation (14)
(“Double quadratic”). All are fit to the baseline data and use 14 lags except the double quadratic. The
shaded area shows the 95% confidence interval based on standard errors clustered at the CWA level.
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A second assumption underpinning Table 3 is that the estimated forecast-mortality rela-

tionship holds under the counterfactual forecast. We generate descriptive evidence on this

assumption by looking at how the e↵ect varies by average forecast quality (measured by

RMSE) in the sample. Results are shown in Figure 4. These estimates are non-causal, as

locations with more accurate forecasts may di↵er from locations with less accurate forecasts

in unobserved ways.42 In each forecasted temperature bin, forecasts are more valuable in

locations that have more accurate forecasts on average. If anything, this result suggests that

our estimates are lower bounds on the mortality benefit of improved forecasts because more

accurate forecasts are associated with stronger responses to forecasts.

For robustness, we assess the di↵erent estimates of lives saved that we find when esti-

mating with di↵erent functional forms. In particular, we use the estimates of equation (10)

reported in Table 1, a version that uses a linear spline rather than the two-line formulation,

and a quadratic over forecast errors but not over temperature.43

The cumulative convexity derived from each of these equations is shown in Figure A3.

The figure shows the average convexity across all temperature bins. For each functional form,

the convexity rises for about 4 days then stabilizes. For the more parsimonious functional

forms that permit longer cumulative e↵ects to be computationally tractable, this stability is

exhibited through two weeks with no indication of changing. Overall, the two linear models

(two-line and linear spline) exhibit the largest average convexity. The two quadratic models

exhibit slightly smaller average convexity, though still within the confidence bands of the

linear models.

D Sensitivity to Breakpoint Choice for Two-line Test

The Simonsohn (2018) two-line procedure involves first selecting a breakpoint then fitting

an interrupted regression on either side of that breakpoint. For selecting the breakpoint,

Simonsohn proposes the “Robin Hood algorithm.” The algorithm “donates” points from

the more precisely estimated side of the interrupted regression to the weaker side so that

overall power of the test is improved. In the original algorithm from Simonsohn (2018), the

researcher first fits a flexible function relating the left-hand and right-hand side variables.

This fit can be done using a nonparametric or semiparametric procedure. The researcher then

42There could be omitted variables that could cause forecasts to be more accurate and also cause errors
to matter more (e.g., experiencing hot weather more frequently), and there could be selection in which
places get more accurate forecasts (e.g., radars or skilled meteorologists may be directed to places where the
National Weather Service believes that forecasts are more valuable). We adjust for observable confounders
by including them in the regression, but unobservables might still confound the relationship.

43We also estimated net benefits using a flexible polynomial specification rather than bins of forecasted
temperature. The overall WTP estimates are highly similar in both cases, and the results are available upon
request.
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generates fitted values and chooses an initial candidate breakpoint, x0, based on the most

extreme fitted value. A range of additional candidate breakpoints is chosen by considering

all x values within 1 standard error of the most extreme fitted value. This set of candidate

breakpoints has upper bound xH and lower bound xL.

Next, the researcher fits an interrupted regression using the initial, candidate breakpoint

x0. The interrupted regression fit will lead to two initial slope estimates with associated

standard errors ŝH and ŝL for the estimate above and below the breakpoint respectively.

The final breakpoint is chosen by shifting the breakpoint to increase the number of points

given to the less precisely estimated slope. Simonsohn proposes that the final breakpoint

be (ŝimp/(ŝL + ŝH) ⇤ 100 percent of the way toward the edge of the boundary of candidate

breakpoints, where ŝimp is the standard error of the relatively less precise estimate.

In our setting, we have strong a priori reasons for preferring a breakpoint around 0

or median error, based on the theoretical analysis in Section 2. We thus use a median

breakpoint for our main results. Figure A4 shows the estimated marginal e↵ects using a

range of di↵erent breakpoints. The breakpoint is indicated in the title of each panel. The

results are very similar to the baseline (median breakpoints) when using a breakpoint of 0

because the median forecast error is close to 0 for all forecasted temperature bins. Results

are close to the baseline results for the moderately negative and positive breakpoints (-0.25

and 0.25) although the “forecast too cold” coe�cient in the hot temperature bin is not

significant in the latter case. Results are weakest when the breakpoint is 0.5 (bottom right

panel), a point that is half of a standard deviation away from the median error in most bins.
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Figure A4: Robustness and Sensitivity Checks
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the results in Table 1.
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E Additional Robustness Checks

Figure A5 shows robustness and sensitivity checks for the main results shown in Table 1.

The red triangles show the marginal e↵ect of a forecast that is too hot and the blue circles

show the marginal e↵ects for a forecast that is too cold. The lines are 95% confidence inter-

vals. The figures show results for forecasted cold temperatures (panel a), cool temperatures

(panel b), warm temperatures (panel c), and hot temperatures (panel d). Each panel is bro-

ken into 3 sections. The first section varies the standard error clustering; the second section

varies the non-weather related controls; and the third section varies the realized weather,

pollution, and forecast controls.

In the clustering section, the baseline estimate is clustered at the CWA level. “State”

clusters at the state, and “Two-way” clusters at the county and year level. The results are

typically similar across all of these clustering schemes.

In the controls section, baseline estimate includes controls for 5�C bins of realized tem-

perature, lags of indicators for above median precipitation, date fixed e↵ects, and county-

by-month fixed e↵ects interacted with linear time trends. “DoY FEs” replaces the month

fixed e↵ects with day-of-year fixed e↵ects. “Age+Quad trend” add a quadratic year trend

interacted with county-by-month fixed e↵ects and month fixed e↵ects interacted with four

population age indicators. This exactly matches the control set used in Barreca et al. (2016)

but adapted to our county-level dataset rather than a state-level dataset. “Cubic trend” adds

cubic trends interacted with county-by-month fixed e↵ects. The day of year fixed e↵ects have

the strongest e↵ect on the estimates among this set of checks.

The third section varies controls for weather, pollution, and other forecasts. Unless

otherwise stated, the controls for weather are included using 8 bins equally spaced using

percentiles of the data. “1� temp bins” replaces the 5�C bins with finer controls for real-

ized temperature. “Humidity” controls for the relative humidity. “PM2.5+Ozone” con-

trols for county-level ambient ozone and PM2.5 concentrations from EPA’s RSIG Fused

Air Quality Surface Using Downscaling (FAQSD) files available here: https://www.epa.

gov/hesc/rsig-related-downloadable-data-files. “Rain fcst” includes 1-day-ahead

rainfall forecasts binned to match the realized rainfall controls, “Temp change” includes

the change in temperature between day t and t � 1, “Temp x Rain” interacts the real-

ized rain and temperature controls, and “Wind” controls for both direction and speed of

wind as measured by NOAA’s North American Regional Reanalysis (NARR) available here:

https://psl.noaa.gov/data/gridded/data.narr.html.

Like PRISM, the NARR dataset combines individual weather observations with a model

(in this case, the NCEP Eta weather model) to produce weather measures on a consistent

grid across the U.S (Mesinger et al., 2006). The grid has a spatial dimension of roughly 32km,
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Figure A5: Robustness and Sensitivity Checks
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Notes: The figures show robustness and sensitivity checks on the main results reported in Section 4. All
models use the same functional form and lag length as the baseline results. The lines are 95% confidence
intervals based on standard errors clustered at the CWA level. The labels indicate the change or addition.
For comparison, “Baseline” reproduces the baseline estimate, with controls described in Section 4.1. In all
cases, added weather variables are controlled for non-parametrically using quantile bins, and 6 lags of the
bins are included to match the lag length of the forecast error. Note that wind and rainfall forecasts are
only available for a subset of the observations, so the sample changes.
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and we take a spatial average of the values in each county to match our estimation sample.44

Because the wind data grid is coarser than the PRISM grid, we lose some county observations

when we include wind. The sample also changes for the rainfall point forecast because

rainfall point forecasts were included in the NDFD at a later date than the temperature

point forecasts used in the main analysis.

Among the weather controls, the largest e↵ects come from using finer temperature bins,

including temperature changes, and including wind. Finer temperature bins reduce the e↵ect

of negative forecast errors during hot periods and increase the e↵ect of forecast errors that

are too hot. Temperature changes reduce the e↵ect of negative forecast errors during both

cool and warm periods. Including wind moves marginal e↵ects toward each other during

both cold and warm periods.

F Counterfactual Approximation Quality

In Section 2, we derive marginal conditions for forecast value. These conditions are

second-order approximations to the value of a change in forecast error distribution. For a

marginal change in forecast error standard deviation, this follows from Proposition 1,

lim
✏!0

dh̄(T )

d�e|T
n(T ) = lim

✏!0

dh̄(T )

dV ar[e|T ]
dV ar[e|T ]

d�e|T
n(T )

= lim
✏!0

d2h(T,A⇤(T + e))

de2

����
e=0

�e|Tn(T ) (A-5)

where �e|T is the standard deviation of forecasts (and forecast errors) given temperature T .

For a X⇥100 percent reduction in forecast error standard deviation, the change in mortality

is scaled by (1� (1�X)2)�2
e|T instead of 2�e|T .

For a discrete change in the forecast error distribution, the value is given by the di↵erence

in expected value under the counterfactual and actual distributions. The approximation will

be accurate if the distribution of errors is close to normal or if the mortality hazard function is

approximately quadratic in forecast errors. The approximation is practically useful because

it is faster to compute. Table A1 compares the estimated counterfactual across all realized

temperatures using both the approximation and a nonparametric estimate. One can see that

the approximation accurately reproduces the results from the nonparametric estimator in

this setting, with a di↵erence in estimates of no more than 5%.

44Further details on the steps we follow to process the wind data can be found in Missirian (2020).
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Table A1: Comparison of Counterfactual Approximation and Nonparametric Calculation for
Monetized Lives Saved

(1) (2) (3) (4)
Forecasted temperature: < 0� 0� 15� 15� 30� > 30�

Approximation method
Nonparametric 110.923 768.558 1268.245 44.925
Approximation 116.476 789.543 1290.889 46.356
Approx./Nonpar. 1.05 1.027 1.018 1.032

Notes: The table compares estimates of the counterfactual lives
saved from a 50% improvement in forecast error calculated using
a nonparametric approximation (row 1) and second-order approxi-
mation (row 2). The counterfactual values correspond to the “50%
improvement” row from Table 3.

G Heterogeneity by Demographics, Cause of Death, and Region

The CDC mortality records provide three dimensions of demographic information about

the deceased individuals. They also list the cause of death. Figures A6a, A6b, A6c, and A7

show heterogeneity results along these di↵erent dimensions, based on estimates of equation

(14) where the left-hand side variable has been replaced with mortality for the demographic

or cause of death group listed in the figure. In all panels, the y-axis shows the annual lives

saved per 100,000 people. In each of the figures, the top left panel shows the estimates for

cold forecasted temperatures, the top right panels show it for cool forecasted temperatures,

bottom left for warm, and bottom right for hot.

For sex (Figure A6a), the coe�cients are almost always the same for both men and

women. The one exception is forecasts that are too cold on days that are forecasted to

be cold. This reduces mortality for women, if anything. This results in per capita lives

saved that are similar for men and women at all but cold temperatures, where men have

more positive benefit while women have a value near zero (although the di↵erence is not

statistically significant).

For age (Figure A6b), the strongest e↵ects come from individuals older than 35. Point

estimates are small for young people. In general, there is monotonically increasing per capita

lives saved from forecast improvements as individuals get older for all temperature bins. The

one exception is the cold bin, where individuals between ages 75 and 84 experience the highest

per capita mortality reductions and all other groups show mortality reductions near zero.

In unreported results, there is substantial heterogeneity in the e↵ect within the 0 to 19 age

group, with the largest point estimates for children between 1 and 5 years old, and a slightly

negative point estimate for infants less than 1. In all cases, however, the confidence intervals

A-17



for these groups are extremely wide.

Figure A6c compares forecast e↵ects by the race of the deceased, with separate estimates

for individuals who identified as white, Black, or other races (Asian or Pacific Islander, and

American Indian or Alaska Native). The e↵ect of forecasts on mortality is substantially

greater for white individuals than for all other individuals. Notably, in Figure A6c (the

same estimates as reported in the body of the text in Figure 5), the point estimates indicate

that forecasts across the temperature distribution have close to zero e↵ect on mortality for

all people of color.

Figure A7 shows estimates by cause of death. Causes of death reported on death certifi-

cates are subject to discretion by the individual filling out the death certificate, so all results

should be taken as noisy and weakly informative. In terms of point estimates, the causes

that are most significantly associated with forecasts are acute respiratory failure, accidents,

cardiovascular disease, as well as other disease and “all other” which captures any cause of

death that is not explicitly categorized.

The strong associations with respiratory, cardiovascular, and cancer deaths is consistent

with the findings on leading causes of death from temperature exposure (Deschênes and

Moretti, 2009). The higher association with accidents is not found in studies of realized

temperature and could be due to avoidance behavior engaged in by individuals to try to

reduce their exposure to extreme weather.

The Figures A8 and A9 show the annual, lives saved per 100,000 people from marginal

forecast improvements for the 9 NOAA climate regions (indicated on the x-axis of each

figure). The points are estimates and the whiskers are 95% confidence intervals.
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Figure A6: Heterogeneity by Demographics of the Deceased

Men

Women
Men

Women

Men

Women
Men

Women

<0°C 0–15°C 15–30°C >30°C
-0.10

-0.05

0.00

0.05

0.10

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

-0.1

0.0

0.1

0.2
An

nu
al

 liv
es

 s
av

ed
 (p

er
 1

00
k 

po
p)

(a) Sex

0-1920-34
35-6465-74

75-84

85+

0-1920-34

35-64
65-74

75-84

85+

0-1920-34

35-64

65-74
75-84

85+
0-19

20-34

35-64

65-74

75-84

85+

<0°C 0–15°C 15–30°C >30°C

-0.08

-0.04

0.00

0.04

-0.25

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

-0.1

0.0

0.1

0.2

An
nu

al
 liv

es
 s

av
ed

 (p
er

 1
00

k 
po

p)

(b) Age

Black Other
White

Black Other

White

Black
Other

White

Black

Other

White

<0°C 0–15°C 15–30°C >30°C

-0.10

-0.05

0.00

0.05

0.10

0.15

0.0

0.5

1.0

1.5

0.00

0.25

0.50

0.75

-0.1

0.0

0.1

0.2

An
nu

al
 liv

es
 s

av
ed

 (p
er

 1
00

k 
po

p)

(c) Race

Notes: The figure shows the 6-day cumulative annual, lives saved per 100,000 people from a marginal decrease
in 1-day-ahead forecast error. Estimates for each demographic category come from a separate model fit using
Equation (14) on the baseline data where the dependent variable is mortality in the indicated demographic
group. The range of forecasted temperature is indicated below each figure. Demographic categories are
shown in the labelled points, which are also the point estimates derived from estimation. The lines are 95%
confidence intervals based on standard errors clustered at the CWA level.
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Figure A7: Heterogeneity by Cause of Death
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Notes: The figure shows the 6-day cumulative e↵ect on annual lives saved per 100,000 people from a marginal
reduction in forecast error. Estimates for each cause of death come from a separate model fit using Equation
(10) on the baseline data. The cause of death is shown on the x-axis, and estimates are ordered by the e↵ect
size for negative forecast errors for f < 0�C and for positive forecast errors for all other panels. The range
of forecasted temperature is indicated below each figure. Circles are the point estimates and the lines are
95% confidence intervals based on standard errors clustered at the CWA level.
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Figure A8: Monetized Mortality Benefits of Marginal Forecast Improvement: Regional Het-
erogeneity by Forecasted Temperature
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Notes: The figure shows the 6-day cumulative percent increase in the per-capita mortality rate, monetized
using the VSL, from a 1�C increase in forecast mean absolute error based on a single model fit using Equation
(10) on the baseline data. The forecast error variables are interacted with indicators for each NOAA climate
region in the Continental U.S. The circles are the point estimates and the lines are 95% confidence intervals
based on standard errors clustered at the CWA level. A map showing these e↵ects spatially can be found in
Figure A9.
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Figure A9: Spatial Heterogeneity in Forecast E↵ect

Notes: The figure shows the 6-day cumulative e↵ect on the mortality
rate from a 1�C reduction in forecast absolute error based on Equation
(10) estimated across NOAA climate regions. Darker purple colors indi-
cate stronger benefits from forecast improvements, while lighter, orange
colors indicate lower benefits.
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H Longer-horizon Forecasts

The NWS issues point forecasts with horizons of up to 1 week. Table A2 shows 2-day

cumulative e↵ects when including both the 1-day-ahead forecast and longer-horizon forecasts

in the estimation simultaneously. We focus on 2-day e↵ects to simplify the interpretation

when including multiple forecast horizons—looking only over 2 days means that the 1-day-

ahead forecast is always the most recent, available information included in the regression. If

there are adjustment costs that hamper individuals from acting on shorter-horizon forecasts,

then longer-horizon forecasts can provide more adaptation benefits. This will show up as a

convex relationship between mortality and the longer-horizon forecast, even conditional on

the shorter-horizon forecast.

Table A2: E↵ects by Forecast Horizon: Convexity of Pooled Estimates

(1) (2) (3)
Mortality rate Mortality rate Mortality rate

1-day ahead convexity 0.0030⇤⇤⇤ 0.0022⇤⇤⇤ 0.0022⇤⇤

(0.0006) (0.0006) (0.0008)
3-day ahead convexity 0.0008⇤⇤

(0.0004)
6-day ahead convexity 0.0008⇤⇤⇤

(0.0002)

Dependent var. mean 2.25 2.24 2.24
N 13,529,776 13,408,395 11,078,870
N Clusters 130 130 130

Notes The table shows 2-day cumulative e↵ects from estimation of ver-
sions of Equation (10) that also include longer-horizon forecasts and use a
quadratic specification rather than a two-line specification to capture non-
linearity in the e↵ect of forecast errors on mortality. The dependent vari-
able is the daily mortality rate per 100,000 people. The coe�cients are the
average marginal e↵ect of a more erroneous forecast, pooled across all fore-
casted temperature bins. All models include the baseline model covariates
and weighting. Standard errors, clustered at the CWA-level, are below each
estimate. Significance: p < .10, ** p < .05, *** p < .01.

The results in Table A2 are consistent with longer-horizon forecasts providing additional

value over-and-above the day-ahead forecasts. For both the 3- and 6-day forecasts, forecast

errors have a significant, convex relationship with mortality. Notably, in Columns (2) and

(3), the sum of the e↵ects of the 1-day-ahead forecast and the 3- or 6-day ahead forecast

are approximately equal to the e↵ects of the 1-day-ahead forecast in Column (1), where the

longer-horizon forecasts are not included. Forecasts at all horizons are highly correlated, so
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the 1-day-ahead forecast e↵ect in Column (1) (and in our other results) captures many of

the benefits of all horizons of forecasts issued by the NWS.
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I Additional Figures and Tables

Table A3: Summary Statistics

Variable Mean S.D. Observations

Daily all-cause mortality rate (per 100,000) 2.25 1.73 13,699,990
Average temperature (�C) 14.557 10.052 13,699,990
1-day-ahead avg. temperature forecast (�C) 14.515 9.964 13,699,990
1-day-ahead forecast error (�C) -0.041 1.146 13,699,990
1-day error if f < 0 (�C) -0.008 1.396 1,775,001
1-day error if 0  f < 15 (�C) -0.007 1.229 5,261,602
1-day error if 15  f < 30 (�C) -0.075 1.031 6,516,717
1-day error if f � 30 (�C) 0.060 0.905 146,670

Notes: The table shows summary statistics for the primary variables in the esti-
mation sample, weighted by county population. The di↵erence between average
realized temperature and average forecasted temperature does not necessarily
equal the average forecast error due to rounding.

Figure A10: Unconditional Variation in Temperature and Day-ahead Forecast

(a) St. dev. of average temperature (b) St. dev. of 1-day-ahead forecast

Notes: The maps show the standard deviation of the unconditional average temperature (left panel) or the
1-day-ahead forecast of average temperature (right panel). For an indication of the identifying variation
conditional on controls, compare these maps to the maps in Figure A11.
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Figure A11: Residual Variation in Temperature and Day-ahead Forecast

(a) St. dev. of residual average temperature (b) St. dev. of residual 1-day-ahead forecast

Notes: The maps show the standard deviation of the residuals from a regression of average temperature (left
panel) or the 1-day-ahead forecast of average temperature (right panel) on all of the controls in the baseline
regression specification (see Equation 10).

Figure A12: Spatial Variation in Forecast RMSE (Conditional on Baseline Controls)

Notes: The map shows the root mean squared error of the 1-day-ahead
forecast for each county in the continental U.S. over the sample period.
Redder values indicate higher average RMSE and yellower values indicate
lower values. The values are all conditional on the baseline fixed e↵ects and
other control variables.
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Figure A13: Raw Data Relationship Between 1-Day Ahead Forecast Error and Mortality for
Days with Hot and Cold Realized Temperatures
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(a) Realized temperature < 0�C
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(b) Realized temperature 0–15�C
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(c) Realized temperature 15–30�C
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(d) Realized temperature > 30�C

Notes: The figures show bin-scatters of the relationship between forecast error from the
1-day ahead forecast and the daily mortality rate using the raw data residualized on realized
temperature. The points are the average mortality rate within 20 quantiles of forecast error.
Panel (a) shows the relationship when the expected temperature is cold (< 0�C), Panel (b)
when cool (0–15�C), Panel (c) when warm (15–30�C), and Panel (d) when hot (> 30�C).

A-27



Table A4: Time Use: Quadratic Specification

(1) (2) (3)
Work Home prod. Leisure

< 0� ⇥ Forecast error 4.01 -2.17 -1.84
(4.20) (4.18) (6.95)

0 to 15� ⇥ Forecast error 0.35 -5.50*** 5.16**
(2.67) (1.99) (2.59)

15 to 30� ⇥ Forecast error 1.97 -1.01 -0.96
(3.13) (3.02) (2.43)

> 30� ⇥ Forecast error -1.01 23.5* -22.5*
(10.2) (13.9) (11.8)

< 0� ⇥ Forecast error2 -5.30* 1.48 3.82
(2.99) (2.92) (2.56)

0 to 15� ⇥ Forecast error2 -1.06 1.13 -0.068
(1.93) (1.70) (1.60)

15 to 30� ⇥ Forecast error2 -5.46*** 2.25 3.21*
(1.91) (1.71) (1.88)

> 30� ⇥ Forecast error2 19.6** 6.42 -26.0***
(8.99) (7.07) (9.59)

LHS mean 189.8 263.8 986.4
N 144,234 144,234 144,234
Clusters 100 100 100

Notes: The table shows estimates of the forecast error e↵ect from
a quadratic version of the time use regressions reported in Table
2. Additional covariates match the main results and are 5� bins
for realized temperature, four bins for forecasted temperature,
quartile bins for precipitation, as well as fixed e↵ects for date, and
location-by-month interacted with a linear time trend. Weighted
by location population. Standard errors, clustered at the WFO
level, are below each estimate. Significance: p < .10, ** p < .05,
*** p < .01.

A-28



Table A5: Residential Electricity Demand: All Weather and Forecast Estimates

(1) (2)
log electricity demand

Temperature < �10� 0.013*** 0.013***
(0.0033) (0.0034)

Temperature �10 to �5� 0.011*** 0.011***
(0.0026) (0.0026)

Temperature �5 to 0� 0.011*** 0.011***
(0.0026) (0.0026)

Temperature 0 to 5� 0.0077*** 0.0077***
(0.0015) (0.0015)

Temperature 5 to 10� 0.0045*** 0.0046***
(0.0016) (0.0016)

Temperature 10 to 15� 0.0032*** 0.0032***
(0.0012) (0.0012)

Temperature 20 to 25� 0.0051*** 0.0051***
(0.0013) (0.0013)

Temperature 25 to 30� 0.0087*** 0.0087***
(0.0021) (0.0021)

Temperature > 30� 0.012*** 0.012***
(0.0025) (0.0026)

Rain -0.00029 -0.00021
(0.00027) (0.00027)

Rain ⇥ Rain 0.0000024 0.0000017
(0.0000046) (0.0000046)

Days < 0� -0.00044 -0.00058
(0.0013) (0.0012)

Days 0 to 15� -0.00010 -0.00020
(0.00039) (0.00040)

Days > 30� -0.0010** -0.0012**
(0.00046) (0.00048)

Days < 0� ⇥ Forecast error 0.00029 0.00023
(0.00026) (0.00025)

Days 0 to 15� ⇥ Forecast error -0.00029 -0.00023
(0.00020) (0.00021)

Days 15 to 30� ⇥ Forecast error 0.00014 0.00016
(0.00019) (0.00019)

Days > 30� ⇥ Forecast error 0.0014*** 0.0013***
(0.00033) (0.00033)

Baseline controls Yes Yes
Log price No Yes

Observations 7104 7104
Clusters 48 48

Notes: The table shows all estimates from the regression
reported in Column 1 of Table 2 plus an additional version
of the regression that includes the log of the electricity
price. Standard errors, clustered at the state level, are
below each estimate. Significance: p < .10, ** p < .05, ***
p < .01.
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Table A6: Residential Electricity Demand: Quadratic Specification

(1) (2)
log electricity demand

Days < 0� ⇥ Forecast error 0.000099 0.000030
(0.00027) (0.00026)

Days 0 to 15� ⇥ Forecast error -0.00012 -0.000043
(0.00024) (0.00026)

Days 15 to 30� ⇥ Forecast error 0.0000047 0.000020
(0.00018) (0.00018)

Days > 30� ⇥ Forecast error 0.00094** 0.00093**
(0.00038) (0.00038)

Days < 0� ⇥ Forecast error2 0.00038*** 0.00039***
(0.00010) (0.00010)

Days 0 to 15� ⇥ Forecast error2 -0.00033*** -0.00035***
(0.000091) (0.000088)

Days 15 to 30� ⇥ Forecast error2 0.00033*** 0.00034***
(0.00012) (0.00012)

Days > 30� ⇥ Forecast error2 0.0011* 0.0011**
(0.00055) (0.00051)

Baseline controls Yes Yes
Log price No Yes

Cost ($) 3,397,047 3,383,431
(1,712,338) (1,853,717)

N 7104 7104
Clusters 48 48

Notes: The table shows estimates of the forecast error e↵ect
from a quadratic version of the residential electricity demand
regression reported in Table 2. Additional covariates are 5� bins
for realized temperature, four bins for forecasted temperature,
a quadratic for precipitation, and the log of the price for res-
idential electricity, as well as fixed e↵ects for year-month, and
state-by-month interacted with a linear time trend. Weighted
by state population. Standard errors, clustered at the state
level, are below each estimate. Significance: p < .10, ** p < .05,
*** p < .01.
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