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The Role of Medical Innovations
This study provides new evidence regarding the extent to which medical care mitigates the 

economic consequences of various health shocks for the individual and a wider family. To 

obtain causal effects, I focus on the role of medical scientific discoveries and leverage the 

longitudinal dimension of unique administrative data for Sweden. The results indicate that 

medical innovations strongly mitigate the negative economic consequences of a health 

shock for the individual and create spillovers to relatives. Such mitigating effects are highly 

heterogeneous across diagnoses that cause health shocks. These results suggest that 

medical innovations substantially reduce the burden of welfare costs yet produce income 

inequalities.
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Introduction 

The role of medical care in health recovery after health shocks is well understood. However, 

little is known about the extent to which medical care can mitigate the economic consequences of 

health shocks, due to which an individual’s economic outcomes, including labor force participation 

and earnings, tend to drop substantially and often fail to recover in the long term (see Prinz et al. 

2018 for a recent review). Limited studies have demonstrated the ability of new drugs and medical 

procedures to compensate for a large proportion of such economic losses.1 However, the beneficial 

economic effects of medical care for several diseases are becoming clearer due to the universal 

progress in medical care in recent decades. Furthermore, such economic effects are not experienced 

only by the affected individual. The onset of disease in one individual creates an economic 

burden—in terms of additional informal care and household duties or the necessity to work more 

to secure income—for other household members (Fadlon and Nielsen 2021; García-Gómez et al. 

2013), and may even affect close relatives residing outside the household (Frimmel et al. 2020; 

Schmitz and Westphal 2017). Additionally, the magnitude of economic losses due to health shocks 

varies significantly across individuals and neither vanishes nor equalizes when welfare transfers 

are considered (Meyer and Mok 2019; Lundborg, Nilsson, and Vikström 2015).  

This study assesses the proportion of economic losses caused by various health shocks that 

can be mitigated by medical care. This study focuses on adults in Sweden aged 40–70 years, 

suffering with diseases of varying severities and prognosis, and their close relatives, specifically 

their partners and adult children. Data on these individuals are available in unique administrative 

 
1 Several studies have established the economic impacts of medical innovation on experimental or quasi-

experimental study designs, including drugs and therapies for prostate and breast cancer (Jeon and Pohl 

2019), drugs and therapies for coronary heart disease (Stephens and Toohey 2021), antiretroviral therapy 

against AIDS (Thirumurthy, Zivin, and Goldstein 2008), and Cox-2 inhibitors for arthropathies (Bütikofer 

and Skira 2018; Garthwaite 2012). 
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registers on a longitudinal basis and cover numerous cohorts, allowing the implementation of a 

quasi-experimental research design and the application of machine learning. The data are rich in 

economic and welfare outcomes that provide important insights into various mechanisms through 

which medical care reduces the economic loss of a given health shock. The medical care measures 

used in this study refer to disease-specific treatment and comprise medical scientific discoveries, 

such as introduced and withdrawn new molecular entities (hereafter, NMEs) and patents for 

medical procedures in diagnostics, therapy, and surgery. They allow me to use variation of not few 

but 34 608 incepted and 5 860 withdrawn innovations. The study intends to establish the beneficial 

economic effects of medical care on average and across subgroups to assess whether any 

heterogeneity observed is economically meaningful, thus presenting a complete account of 

different welfare schemes. It offers a novel investigation of the moderating economic effects of 

medical care, both generally and specifically, while capturing the entire range of diseases in the 

population.   

This study dually focuses on medical innovations’ total and heterogeneous effects, thus 

revealing the sources of rising income inequalities. As a result, it exhibits the following three 

important aspects. First, this study establishes the relative scope in which medical care mitigates 

the negative economic consequences of a health shock as well as the remaining loss. Even today, 

in a developed context such as Sweden, policy-makers view medical care as expenditure rather 

than an investment (Lundberg 2018). The findings of this study elucidate the economic returns of 

medical care and demonstrate the need for more welfare resources, for instance, to ensure that 

incomes are insulated from various health shocks. Second, the study demonstrates that a health 

shock’s negative consequences affect not only the affected individuals but also their close relatives; 

further, medical care partially compensates for the losses of a wider group, thus increasing the 

potential returns on medical investments. Concentrated progress in medical care for the most 

common diseases makes heterogeneity in the moderating effects of medical care inevitable (Cutler, 
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Meara, and Richards-Shubik 2012). Finally, this study provides a comprehensive account of the 

various sources of this heterogeneity, highlighting the groups most affected by health shocks in the 

setting of a developed country—namely, Sweden.  

Identifying the causal effects of health shocks and medical care on economic outcomes poses 

two methodological challenges. In this regard, the present study benefits from recent studies in 

applied economics that have succeeded in addressing these challenges. The first challenge involves 

isolating health shocks’ causal effects on economic outcomes. To document the differences of 

health shocks’ effects on economic outcomes across treatment schemes, I adopt the methodological 

approach proposed by Fadlon and Nielsen (2021). This approach compares individuals who 

contracted a disease (a heart attack or a stroke) to those not-yet-diseased within a relatively short 

period of time; herein, the health shock’s timing can be considered “random.” The second challenge 

involves estimating the ability of medical care to reduce the disease’s tragic impact. Jeon and Pohl’s 

(2019) study applied a difference-in-differences (DDD) approach, wherein the economic effects of 

prostate and breast cancer varied by the year of diagnosis. In their study, individuals diagnosed 

later were expected to benefit more from medical care than those diagnosed earlier because more 

innovative drugs and medical procedures are available to treat the disease over time.  

In this study, I combine and extend the aforementioned quasi-experimental approaches to 

different health shocks from the entire range of diseases observed in Swedish registers for adults 

aged 40–70 years. Applying a DDD approach, I estimate medical innovation’s impact on the 

economic outcomes of both the individual and their close relatives in terms of an innovation-

induced reduction in economic losses caused by a specific health shock. To construct 

counterfactuals for individuals who experienced a health shock, I leverage a longitudinal dimension 

of the individual-level data and matched each of these individuals to an individual who suffered 

from the same health shock (in terms of diagnosis) two years in the future and who is similar in 

several observed characteristics. Appealingly, this combination of shrinking the time window 
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between the groups of diseased and not-yet-diseased individuals and matching cancels the 

influence of time-dependent unobservable factors across not only severe and unanticipated diseases 

(e.g., cancers or certain circulatory diseases), but also degenerative ones (e.g., mental or 

musculoskeletal), which are generally difficult to contrapose. To obtain a DDD indicator, I further 

exploit a yearly dimension within a disease group to link scientific discoveries in medical care. In 

contrast to previous studies, I focus on both disapproved and approved NMEs and patents that 

allows me to eliminate a stochastic trend from a cumulative series and avoid the influence of this 

trend on results.   

Such a design-based DDD approach enables further analysis of inequalities to mitigate the 

economic effects of medical care. Recent methodological studies have argued that in the presence 

of heterogeneous treatment effects, fixed-effects models, such as those used in this study, may 

create a weighting problem and thereby distort the effects under analysis (Goodman-Bacon 2021). 

The year-to-year construction of the cohorts—implemented as a part of this study’s empirical 

strategy—solves this problem (Novgorodsky and Setzler 2019) and addresses whether the 

economic consequences between family members and the individual are equal or distinguished by 

the severity of the disease responsible for the health shock, gender, education, marital 

(cohabitation) status, and age. It also allows me to explore how medical care affects these 

inequalities. In particular, knowledge of the exact novel chemical substance or medical procedure 

that most significantly moderates the negative economic effects of the disease helps reveal the 

underlying mechanisms. Therefore, I further apply a machine learning (ML) approach to define the 

most effective (in terms of mitigating economic effects) medical innovations for certain diseases.  

This study has three main findings. First, an individual’s health shock leads to negative 

economic consequences, including income loss for the individual (5%), the partner (46%), and the 

nuclear family (32%). It also leads to income inequalities, which are most pronounced in the disease 

and marital (cohabitation) status of the individual. This finding supports the inability of welfare 
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transfers to provide equity and insurance after a negative health event. Second, medical innovations 

reduce the negative economic consequences of health shocks. A one standard deviation increase in 

medical innovations reduces the individual’s income loss in full (6%) and produce positive 

spillovers for the partner’s income (22%). Medical innovations return 65 606 SEK per year: 

equivalent to a fourth of the average annual family income in 2021. Third, the mitigating economic 

effects of medical innovations are heterogeneous, especially for diseases causing health shocks and 

marital (cohabitation) status. Such differential patterns stem from the income responses of the 

partner who, for certain diseases, increases the amount of additional informal care in concordance 

with the increased consumption of medical care.  

This study offers several contributions to the economics literature. First, it contributes to the 

applied microeconomic literature on the impact of single medical innovations on economic 

outcomes (Stephens and Toohey 2021; Jeon and Pohl 2019) by broadening the evidence to include 

all diseases observable in the population and highlighting the most effective medical innovations 

across all population groups. Further, it adds to the growing literature on the economic 

consequences of health shocks and their heterogeneity (García-Gómez 2011; Dobkin et al. 2018) 

by assessing the value of the innovation-induced reduction of economic losses due to health shocks. 

My findings contribute to empirical studies on the economic responses of close relatives to an 

individual’s health and labor force participation shocks (Fadlon and Nielsen 2021; García-Gómez 

et al. 2013) by establishing spillover effects of medical innovations. Moreover, this study adds to 

the general economics literature on income profiles by introducing consumption of medical care as 

its important determinant (Meghir and Pistaferri 2011). This study also allows for the analysis of 

the assumptions of the health capital theory and its extensions (Grossman 2000; Bolin, Jacobson, 

and Lindgren 2002) by looking at returns of medical care to scale and across disease severity. 

Finally, this study also complements more general and diverse literature on the aggregate 
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productivity of medical care (Murphy and Topel 2006; Bloom et al. 2020; Cutler et al. 2021) by 

demonstrating plausible causal gains of medical innovations based on a quasi-experimental design.  

Data 

This study begins with a description of the data to lay the foundation for the empirical strategy, 

which is described further. The data were then classified into the following two datasets: (1) data 

derived from individual income and health registers, which provide longitudinal individual records. 

(2) time series of medical scientific discoveries for each disease, drawn from the databases of 

national approval authorities. 

Individual-Level Data 

Information on individuals studied in this article was obtained from the administrative 

longitudinal registers of the total Swedish population—combined with the use of unique personal 

identifiers in the Swedish Interdisciplinary Panel (SIP).2 SIP includes data on demographic 

characteristics, income, labor market participation, education, and health. The main study 

population comprised individuals aged 40–70 years, including adults of working age (below 60 

years) and older adults. Individuals in the latter age group were included because, in the context of 

the study, they had the possibility of early and postponed retirement that could be affected by the 

health shock and because numerous medical innovations were introduced for diseases more 

pronounced in older age. Information on the outcomes of individuals’ close relatives, including 

partners and adult children, was also obtained. Children aged 25–40 years were considered to avoid 

the overrepresentation of children in older cohorts and the influence of own children’s health 

 
2 I have used the database “Swedish Interdisciplinary Panel,” which was hosted at the Centre for Economic 

Demography at Lund University (Statistics Sweden 1960-2021). Lazuka (2020) provides details about the 

sources and reliability of the data.  



7 
 

shocks on the outcomes. I extracted information on individuals and their close relatives for the 

period 1978–2008, which is as wide as the overlap allowed between different registers. 

To identify individuals who had experienced health shocks due to certain diseases, I utilized 

information on inpatient hospital admissions.3 Inpatient hospital admissions involve considerable 

economic consequences, are identifiable, and guarantee access to the newest medical technologies, 

including diagnostics, therapies and drugs (Dobkin et al. 2018; Lundborg, Nilsson, and Vikström 

2015). I applied three exclusion criteria to the hospitalization data. First, I focused on the first 

hospital admissions of individuals who had not been admitted in the three preceding years to 

minimize the possibility of obtaining anticipated health shocks. Second, I limited admissions to 

those individuals for whom specific medical technology could be identified, and hence excluded 

stays related to pregnancy, external causes, and symptoms. Finally, the causes of hospitalizations 

should align with the data on medical innovation, as described before. The obtained hospitalization 

records, combined with residence records, allowed me to define 1 409 751 individuals who had 

experienced a health shock at some point from 40–70 years of age (“ever-treated”).  

The SIP provides a rich set of variables to determine an individual’s income and its sources. 

The main outcome variable is disposable family income in real terms, which has been empirically 

regarded as the ultimate outcome of all economic consequences of a health shock (O'Donnell, van 

Doorslaer, and van Ourti 2015). This variable was calculated in terms of net taxes, which can be 

considered equivalent to efficiency in the context of public health insurance and the absence of out-

of-pocket expenses, as seen in Sweden. Further, I utilized personal disposable income and various 

economic variables that quantify its sources, such as disposable income, wages, capital income, 

 
3 The inpatient hospital register has covered all 24 counties in Sweden since 1987. Between 1977 and 1987, 

this coverage was gradually increased by including seven previously missing counties. The populations of 

these counties for older cohorts were excluded from the analysis (4.51% of all observations). For the period 

under study, I employed 3-digit ICD codes from ICD revisions 8, 9, and 10.  
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and payments for sick leave, unemployment, and disability. The group of welfare variables should 

compensate for the absence of health variables, which should ideally be studied as outcomes. The 

construction of counterfactuals for the individuals who experienced health shocks required that 

potential control individuals appear in the future; such a sample relying on future survival means 

that neither hospitalizations nor mortality could be considered. To avoid the influence of 

compositional changes across the disease groups due to differential mortality, income information 

was included only for the full calendar years when the individual was alive. I used economic 

outcomes in the relative form (the inverse hyperbolic sine, [IHS]) to ease the interpretation of the 

results.  

Finally, I added information on the economic outcomes of close relatives, calculating and then 

including the income of the partner and other household members.4 Adult children could provide 

informal care instead of the partner and receive the related allowance; hence, I also extracted their 

income, wages, and welfare payments.  

Medical Innovations 

Undoubtedly, the provision of medical care depends on the economic performance of the 

working population; therefore, I approximated medical care with medical scientific discoveries that 

are exogenous to the individual’s income or propensity to contract a disease. The main sources of 

these data are the registries of the Swedish authorities responsible for the approval of medical 

innovations. I created disease groups within which medical innovations are measured in a trade-off 

between clinically meaningful categories—as defined by Elixhauser, Steiner, and Palmer (2015)—

 
4 Family income is identified based on the income of at most two generations who have a relationship 

(marriage, cohabitation with a common child (children), or an adoption) with each other and reside on the 

same property. To obtain the spouse’s income, I subtracted personal income from family income. However, 

for working-age unmarried (non-cohabitating) individuals who live with their parents, this residual 

represents the income of their parents.  
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and the availability and consistency of the ICD codes for hospitalization causes over the study 

period. The final list of 91 disease groups (see Appendix A Table A1) was verified by health experts 

(Lindström and Rosvall 2019). Innovations in each disease group were made annually during the 

study period. 

The basis for a medical innovation measure used in this study is the list of approved and 

disapproved NMEs, which refer to novel chemical compounds. These chemical compounds 

capture the role of one component of innovation in medical care, in contrast to drugs that can be 

based on the same compound but marketed with different names (Kesselheim, Wang, and Avorn 

2013). To compare, my database contains 6 743 drugs and only 1 939 NMEs, out of which 571 

were disapproved in the period of study. I linked the NMEs to specific diseases in the following 

three steps. First, the Swedish Medical Products Agency was utilized to obtain a detailed registry 

of all drugs, their NMEs, and the dates of approval and disapproval to treat a particular disease in 

Sweden. Second, as each drug also supplied information on the Anatomical Therapeutic Chemical 

code of the underlying NME and therapeutic indications, I was able to successfully match their 

combinations with the three-digit ICD codes—available from the Theriaque database (Husson 

2008). Finally, to validate the series, I cross-checked the appearance of the most important drugs 

with those in both the World Health Organization Model List of Essential Medicines (WHO 2019) 

and relevant systematic assessments (Kesselheim and Avorn 2013). 

Another complementary measure of medical innovation that was used in this study was 

patents granted for diagnostics, therapeutics, and surgical treatment. This information was obtained 

from the Swedish Patent Database run by the Swedish Patents and Registration Agency using a 

search procedure practiced by advisory experts. A database with detailed information, such as the 

International Patent Classification (IPC) code, taken together with the patent in a searchable format, 

is a useful tool for finding technology and innovation patents within a certain field, their origins, 

and the dates they were in force. First, I limited the IPC codes to those covering surgery, 
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electrotherapy, magnetotherapy, radiation therapy, ultrasound therapy, medical devices, and 

diagnostics.5 Second, based on the names of diseases in the corresponding ICD versions within 

each disease group, I formulated combinations of keywords to conduct inclusive yet independent 

searches (available upon request). Based on the IPC codes and keywords, I conducted a search for 

the number of patents granted and lapsed per disease group and year in the heading and text of 

patents. Patents defined the final year of treatment in this study: They ended in 2006 because the 

law prohibited the granting of patents for surgical/therapeutic treatment and diagnostics. My final 

database contains 30 687 granted patents, out of which 3 921 were lapsed. 

Figure A1 in Appendix A presents the series of NMEs and patents that were obtained and 

eventually used in the estimations. I use a net series of approved and disapproved NMEs and 

granted and lapsed patents taken cumulatively for two reasons: 1) It measures the stock of medical 

knowledge. 2) Commonly, a combination of new and old medical innovations is most efficient. 

The content and ranking of innovations based on the obtained series generally correspond to the 

categorizations provided by relevant benchmark studies for pharmaceutical (Kesselheim and 

Avorn 2013) and non-pharmaceutical innovations (Fermont et al. 2016). Since I employed 

measures of medical innovations that were ready for use in healthcare, I preferred a lag of one year 

for each to capture the correct timing when the technology was implemented, as well as to take into 

account its exogenous nature. Most previous studies (Lichtenberg 2015; Jeon and Pohl 2019) select 

the preferred lag length after examining the empirical exercise itself, thus making any hypothesis 

testing irrelevant. To compare the findings of this study with those of previous studies, I present 

the results with a longer lag length in the robustness analysis. 

 
5 They correspond to the categories linked to diagnostics, therapy and surgery in subchapter in A61 “Medical 

or Veterinary Science; Hygiene”. I excluded patents granted for A61K “Preparations for medical, dental, or 

toilet purposes,” which makes the variable measuring patents complementary to that for drug approvals. 
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Empirical Strategy 

DDD Approach 

This study aims to define the extent to which medical innovations mitigate a health shock’s 

negative consequences. This formulation implies a causal inference; therefore, I applied a DDD 

approach and estimated medical innovations’ impact on economic outcomes as an innovation-

induced reduction in economic loss due to a health shock. This can be considered as the difference 

between the two DD estimators (Goodman-Bacon 2021). To form the first DD estimator (DDidst), 

I compared the evolution of the economic outcomes of individuals who had experienced the health 

shock (“ever-treated”) to the “control” individuals. For adult children’s outcomes, treatment groups 

are defined based on treatment status of their parents. I estimated the following equation:  

(1) Yitds = αi  + β1 postidst  + β2 DDidst + uitds 

In this equation, Yitds is an outcome for an individual i in year t (family income and its sources), 

who either experienced a health shock due to disease d in year s (“ever-treated”) or an outcome for 

another individual who serves as a counterpart to the treated individual (“control”). DDidst is an 

indicator for years during and after a negative health shock experienced by an individual due to 

disease d in year s (i.e., three years before and two years after the health shock, including the 

hospitalization year); postts is an indicator for years during and after the health shock; and αi 

represents individual fixed effects. 

To form the second DD estimator, one needs to use the variation in DDidst by at least one more 

dimension; in this case, these differentially affected groups appeared because the number of 

medical innovations varies over time and across diseases. To obtain a triple-difference coefficient, 

where one of the differences varies across the values of a continuous variable (i.e., medical 

innovations), I estimated the following DDD specification:   

(2) Yitds = αi  + β1 postidst  + β2 DDidst + β3 DDidstMds + β4 postidstMds + uitds 
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In this equation, DDidstMds  denotes the interaction between DDidst and Mds —lagged number of 

NMEs and patents (in separate models) available to treat disease d in year s; and other terms are 

defined as before.6  

Eq.2 enables the exclusion of four main sources of bias from the main effect of interest β3, 

which should represent the causal effect of a medical innovation on income and its sources, i.e., the 

innovation-induced difference in the Average Treatment Effect on the Treated (ATET). First, the 

bias related to the permanent differences between individuals that affect both the outcome and 

treatment differs based on the presence of individual fixed effects.7 Second, changes in the 

outcomes over time—similar to all individuals—are also mechanically ruled out due to the 

inclusion of the post-treatment dummy postidst and matching within the same observation years (see 

below). Finally, it excluded time-varying bias specific to each level of medical innovation, 

controlled by the interaction postidstMds and necessary for a complete DDD specification, such as 

structural breaks in different years.  

Conditional on the absence of the anticipation of treatment, the DDD approach relies on the 

“parallel trends” assumption, which states that there are no time-varying shocks specific to 

comparison groups (between “ever-treated” and “control” groups and between those at each level 

of medical innovation); I constructed the “control” group to ensure that this assumption holds. 

Fadlon and Nielsen (2021) demonstrated that individuals who suffered a heart attack or stroke in 

the near future were valid counterfactuals for individuals who had the same health shock in the year 

 
6 In Eq.1 and 2, the effects of three terms—an indicator for the individuals who experienced a health shock, 

Mds, and their interaction—are absorbed by the individual fixed effects.  

7 As soon as an individual was matched, they received a new unique individual (experimental) number that 

was different from their original individual number. That is, observations for individuals who participated 

both as controls (t ∈ [-8; -4]) and then as treated (t = 0) are considered and constructed as being independent 

of each other.  
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of analysis. I adopted and developed this approach for a broader set of diseases (see Appendix B 

for more details). I matched each “ever-treated” individual with others within the pool of 

individuals based on the following criteria: 1) hospitalized due to the same cause in two years; 2) 

had the same gender; and 3) well-aligned with the propensity score predicted from several 

observable characteristics. This mechanically ruled out the calendar, gender, and age effects. Due 

to the no-anticipation condition (recall that “ever-treated” individuals were previously restricted to 

those not hospitalized three years before the observed hospitalization), it was also possible to rely 

on a formal t-test for the absence of pre-trends (Novgorodsky and Setzler 2019).  

Figure 1 presents the mean of economic outcomes under study by a comparison group across 

event years, while Appendix B contains information for specific disease groups. The pattern of 

family income and other economic outcomes reveals remarkable similarity in the development of 

the outcome for the comparison groups before the event year of t = 0, that is, the year of the health 

shock (i.e., hospitalization) for the treated individuals. The absence of visible pre-trends is probably 

caused due to the following reason: When there were a number of events preceding hospitalization 

(e.g., an earlier diagnosis or job loss), both groups of individuals experienced a deterioration in 

economic outcomes, resulting in similar pre-trends during a time window of two years 

(Novgorodsky and Setzler 2019). In the year of the health shock and afterwards, the relative family 

income declined rapidly among the affected individuals, providing primary evidence for the 

appearance of economic loss in the family; in contrast, control individuals showed no change.  

[Insert Figure 1 here]  

Heterogeneous DDD effects and an ML approach 

This study also estimated the heterogeneous mitigating effects of medical innovations. In this 

section, I first describe how these effects are accurately estimated with the three-way fixed effects 

estimator in a design-based sample, and then present the approaches used in this study.    
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Recent methodological literature has revealed that OLS regressions with fixed effects may 

produce estimates far from ATET in the presence of heterogeneous effects—due to a weighting 

problem (Callaway and Sant’Anna 2020; Sun and Abraham 2020). The solution proposed to solve 

this problem—estimating the cohort-average treatment effects and appropriately aggregating 

them—is similar to the empirical approach applied in the present study. As mentioned earlier, I 

matched each treated individual to the not-yet-treated individual, extracted the same pre- and post-

treatment years for each pair, and stacked all pairs with duplicates in regressions. This solved two 

problems related to weighting. First, there were no negative weights in my estimation, meaning 

that the DD and DDD estimates could not be of different signs compared to the ATET. Second, 

the availability of treatment pairs ensured that differential treatment groups received equal weights 

and contributed equally to the estimates in the two-way fixed-effects regression. In the robustness 

analyses, I verify this with alternative estimators. 

In this study, I analyzed the inequalities in economic responses to medical innovation in two 

ways: 1) I estimated the heterogeneous DD and DDD effects across relevant individual’s 

characteristics; 2) I applied an ML approach that allowed me to identify the most effective medical 

innovations (i.e., in terms of the economic response) within certain disease groups. The most 

effective innovations should be identified based on their mitigating economic effects; thus, I 

leveraged the model-based recursive partitioning proposed by Zeileis, Hothorn, and Hornik (2008), 

which relies on Eq.2, and selected the year of the health shock (i.e., time of hospital admission) in 

a categorical form as a partitioning variable. This method enables the assessment of parameter 

instability with respect to the values of the year of the health shock. If there is some overall 

instability, it selects the year associated with the highest parameter instability. To avoid overfitting 

with such a large dataset, I applied both a p-value of 0.001 for the detection of parameter instability 

and post-pruning with Bayes information criteria. After determining the year when medical 

innovation produced the largest economic impact for each disease group, I returned to the primary 
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sources of data on medical innovation to identify the exact drugs and patents responsible for the 

effects.  

Results 

Economic Losses Due to the Health Shocks 

Firstly, I present the estimates for the economic responses due to the health shock (i.e., β2) for 

the individual and the individual’s close relatives, including their partner and adult children. In 

relation to the study cohorts, the magnitude of these responses is not known yet important to further 

understand the role of medical innovation. 

Table 1 presents the estimates of the impact of the individual’s health shock on the total family 

disposable income for two years and for each event year. The overall impact of an individual’s 

health shock on family income is usually ambiguous because it is the ultimate outcome of 

multidirectional responses—negative for the individual and ambiguous for household members 

(Riphahn 1999; Fadlon and Nielsen 2021). Consistent with previous studies, I find that a family 

suffers a net income loss when an individual experiences a health shock. On average, the results 

show that following the health shock, family income declines by 32%, which is equal to 103 331 

SEK per individual year in terms of the real income of the counterfactuals. There was no sign of 

shrinkage in family income loss in the second year after the health shock.   

[Insert Table 1 here]  

Regarding the individual, Table 1 shows that the income loss is only 5% or 9644 SEK and 

emerges due to several counterbalancing responses. However, there is a substantial reduction in 

wages (38%, or 83 008 SEK). Unsurprisingly, a reduction in wages is compensated by a large 

increase in the uptake of different welfare payments. The responses by type of welfare payment are 

provided in Table C1 in Appendix C. These results show a large increase in absenteeism due to 

illness (2.4 times), which is a job-based income insurance covering periods of short-term sickness. 

Health shocks force individuals to exit the labor force (a 33% increase in unemployment 
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payments), obtain disability insurance (an 18% increase in disability pension payments), and self-

insure (a 4% increase in capital income). Finally, the results indicate the permanent nature of the 

deterioration in health capital because income loss does not shrink over time, while the wage and 

disability effects almost double. 

Further, Table 1 presents the results for the effect of an individual’s health shock on the 

economic outcomes of both the partner (or parents) and adult children. In the European setting, 

partners and children decrease labor force participation to provide informal care and compensate 

for the reduced household productivity of the individual (García-Gómez et al. 2013; Frimmel et al. 

2020). In line with this evidence, my results show that the income response of the partner or other 

household members is negative and equal to 64 468 SEK (or 46%). Such changes seem permanent 

because the gap in this economic outcome between the treated and counterfactuals remains in force 

in the second year after the individual’s health shock. As for adult children, the results indicate a 

small decrease in their labor force participation (1793 SEK or 1%), which is fully compensated by 

welfare transfers and results in a zero net income loss.  

In Table 2 I present the impact of health shocks across individual’s characteristics and herein 

analyze whether health shocks cause income inequalities. Previous studies have shown that 

different health shocks affect an individual’s earnings to different extents; for instance, the effects 

are particularly significant and permanent in the case of acute dramatic health events and create 

spillover effects for the partner even in generous welfare contexts (McClellan 1998; Fadlon and 

Nielsen 2021). My results show that differences in responses to health shocks are particularly large 

for married individuals (33%), individuals above age 60 (60%), and those diagnosed with cancer 

(93%). Importantly, reductions in the individual’s wages and partner’s incomes are universal yet 

extremely variable across prognoses. Presented in Table C2 and Figure C1-C4 in Appendix C, I 

find that in addition to cancer, less severe diagnoses requiring long-term treatment (e.g., mental and 

nervous diseases or diseases related to blood-forming organs) cause significant income losses for 
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the partner, perhaps due to their decision to provide informal care or take charge of household 

work. 

[Insert Table 2 about here]  

The Mitigating Economic Impact of Medical Innovations 

In this section, I present the results of the mitigating impacts of medical care (i.e., β2) on the 

economic outcomes of the individual and his/her close relatives. Medical care consumption is an 

important and universal determinant of family health production; if medical care mitigates the 

negative consequences of the health shock, the full extent of the economic consequences of various 

health shocks remains underestimated in the context of different levels of medical care.  

Table 3 and Figure 2 present the estimates for the mitigating impact of NMEs and patents on 

the economic outcomes of the individual and his/her close relatives that indicate three important 

findings. First, medical innovations significantly reduce individuals’ and families’ income losses. 

The mitigating impact of one standard deviation change in medical innovations on family income 

amounts to 12% (1.574 × 0.075 × 100%) using NMEs and 8% (0.335 × 0.243 × 100%) using 

patents. Referring to the latter magnitude of the overall decline in family income due to the health 

shock (32%, from Table 1), I find that medical discoveries moderated up between 25 and 38% of 

the family income loss. In absolute terms, medical innovations returned up to 65 606 SEK per 

individual year.  

[Insert Table 3 and Figure 2 about here] 

Second, medical innovations have beneficial economic effects for both individuals and their 

partners. As for individual income, a one standard deviation change in medical innovation amounts 

to 4% using NMEs and 2% using patents. This result suggests that when medical innovations 

reduce an individual’s net economic loss to zero. Additionally, there are large positive spillover 

effects of medical innovation on partner’s income, up to 15%. However, in relative terms, the 

partner’s income loss is mediated to a smaller extent, pointing to a more complex picture, which is 
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developed in the next section with an analysis of their heterogeneities. Beneficial mitigating effects 

are found for wages and unemployment payments that link these effects to the restored health 

capital (see also Table C4 Appendix C). In line with the absence of income responses to the parental 

health shock, there are no clear mitigating effects for adult children.  

Third, medical innovations produce economic effects not only in a year of a health shock 

(hospitalization) but also in the next year (see Figure 2). The even-study estimates of the impact of 

NMEs and patents are not strong or statistically significant before a health shock, suggesting no 

differential pre-trends between treatment groups within and between levels of medical innovation. 

Starting from the year of a health shock, the estimates are economically and statistically significant 

for the outcomes of the individual, partner, and the nuclear family. There are also marginally 

significant effects for adult children’s earnings for the first year, at a 1% for each type of innovation.     

Even though my results are based on microdata, it is possible to juxtapose them with estimates 

for the aggregate productivity of medical care. The most recent studies have considered the realized 

utilization of medical care and labor productivity growth and provided an estimate of 0.7% for the 

annual productivity of medical care for the working-age population (Fonseca et al. 2021). For 

compatibility, I multiply the annual change in the number of medical innovations by the estimates 

of β3 for family disposable income as an outcome, which reflects the net taxes, and hence, medical 

care expenses. The corresponding estimate is 0.4% using NMEs and 0.3% using patents. However, 

this is an estimate of the lower bound for two reasons. First, the beneficial economic effects of 

medical care last for more than one year. Second, medical care produces substantial positive 

spillover effects on labor force participation of partners.  

Heterogenous Mitigating Effects of Medical Innovations 

To understand how medical innovation influence income inequalities, I further present the 

results for the heterogeneous mitigating effects of medical innovations on the economic outcomes 

of both individuals and their close relatives. It is noteworthy that the sample used in this analysis 
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was designed to balance the individual characteristics of the study; therefore, the effects presented 

below are not driven by compositional differences.   

Figure 3 presents the estimates of the mitigating income effects of medical innovation for the 

family and close relatives. The mitigating impacts of medical innovations on economic outcomes 

vary significantly across characteristics of the individual who experienced a health shock. Using, 

NMEs as a measure of innovation, for instance, these effects appear more significant for older 

adults (22%), and low (29%) versus highly educated individuals (9%). The impact on older adults 

is in line with more medical innovations developed for diseases that are common in older age (cf. 

Cutler et al. 2021). My finding on less educated individuals seems at odds with the previous studies 

(Jeon and Pohl 2019) but can be explained by the fact that health shocks under study here are 

sudden inpatient hospitalizations guaranteeing immediate access to innovative drugs and 

procedures that are not otherwise accessible. In general, for many subgroups medical innovations 

substantially reduce both absolute and relative economic consequences of health shocks. 

[Insert Figure 3 here] 

However, spillover effects of medical innovations for partners are not always positive. In 

principle, married individuals benefit more from medical care than do single individuals (12% 

versus no effect). While medical innovation reduces income loss on the part of the individual for 

any diagnosis, it induces the income loss on the part of the partner in case of many neoplasms, 

mental, respiratory, and blood-forming diseases (see Figure C5-C12 in Appendix C). Partners or 

other family members hence reduce their labor force participation due to increased consumption of 

medical care in the family and are not equally compensated. Therefore, medical innovations induce 

income inequalities between household members, suggestively revealing the lack of formal care 

and welfare compensation for the related parties accompanying the provision of more efficient 

medical treatments.  
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I also analyzed the mitigating effects of medical innovations in relation to scale and present 

results in Figure 4. While economic responses to medical innovation are predicted to proportionally 

increase in relation to health inputs and disease severity increase (Grossman 2000), applied 

literature has not been able to prove it due to data limitations. This led some scholars to argue that 

the growth in medical innovations yielded negative returns (cf. Bloom et al. 2020). My results 

suggest that these dynamics are not linear. In relation to severity of a health shock measured with 

longer stay at hospital, mitigating effects of medical innovation increase sharply but then decline 

and reduce to null. Results for the economic effects across cohorts demonstrate constant effects 

using NMEs and decreasing effects using patents. In sum, my results indicate that usual 

assumptions of theoretical models of health capital might be too restrictive.  

[Insert Figure 4 here] 

The Analysis of Single Innovations 

In this section, I present the results from model-based recursive partitioning to reveal the most 

transformative medical innovations for selected diseases. Here, the aim is not only to identify these 

innovations but also to understand the within-family differences in responses to medical 

innovations available to treat certain diseases. I provide results for cancer, circulatory system 

diseases, and HIV that are significant in terms of incidence rates and the mitigating economic 

effects of medical innovation and exemplary for the differential effects of household members. 

Appendix D presents the results of the ML analysis using approved drugs and granted patents, 

which include the years with the most powerful predictive effect of medical innovation, for which 

I identified single medical innovations from the database used to construct their cumulative series. 

The results for cancer, for which individual’s mitigating effects are positive and partner’s 

effects are negative, indicate that the most efficient innovations in cancer treatment are 

“blockbuster” DNA-damaging drugs such as Paclitaxel, Gemcitabine hydrochloride, Etoposide, 

and Fludarabine phosphate, supporting the idea that NMEs with the greatest economic effects are 



21 
 

those with well-known survival efficiencies against certain cancers (Lichtenberg 2019). 

Meanwhile, the results using patents support the economic efficiency of computerized procedures, 

such as magnetic resonance imaging, laser treatment, application of devices for image-guided 

radiotherapy, and automated chemical diagnostics. These procedures result in better treatment 

outcomes and fewer side effects (Bradley 2008). However, such treatments are often long term and 

involve substantial time investments for informal care from the partner, consistent with their 

negative labor market responses (cf. Yabroff and Kim 2009).  

Regarding circulatory diseases, the results reveal a pattern of positive economic effects for 

both the individual and his/her partner, and indicate that most innovations are highly efficient. The 

largest economic effects of medical innovations are related to thrombolytic drugs, including the 

coagulants Heparin, Streptokinase, and Argatroban. Additionally, the high economic efficiency of 

revascularization procedures is revealed, including electronic diagnostics, angioplasty, stent 

delivery, and advances in bypass surgery (e.g., high-capacity blood pumps or heart valve implants). 

Interestingly, for ischemic heart disease, the results suggest no single important drug; rather, each 

drug and their combination has substantial mitigating effects, consistent with a series of continuous 

advances related to antihypertensive drugs, statins, and beta- and angiotensin blockers (Weisfeldt 

and Zieman 2007). The commonality in these medical innovations is their capacity to save an 

individual’s life and relatively quickly restore health to the pre-shock levels.  

The mitigating economic effects of medical innovations to treat HIV spill over to all family 

members and adult children. The HIV patients in this study are likely those whose immune systems 

are strongly impaired by the infection, so this infectious disease causes strong negative income 

responses among both family members and adult children. The results of the ML analysis show 

that the most economically efficient drug is Nellfinavir and its combination with previous drugs 

that are free from severe side effects. These drugs almost fully restore the individual’s capacity to 

work and form the core of antiretroviral therapy against HIV (Bhidé, Datar, and Villa 2020). As 
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for medical procedures, results point to the efficacy of therapies that stimulate the immune system, 

such as electromagnetic radiotherapy. The identified medical innovations to treat HIV return 

individuals to a normal life, thus relieving close relatives of the burden of spending additional time 

on informal care. 

Robustness Analysis 

I have departed from the three standard assumptions of the DDD framework in the 

identification strategy: 1) There are no treatment effects prior to treatment realization (“no 

anticipation” effects). 2) The control group provides a valid counterfactual (the “parallel trends” 

assumption). 3) The potential outcomes and treatments of different groups are independent across 

underlying DD comparisons (the “independent groups” assumption). In this section, I provide 

evidence that the fixed-effects estimator is valid to estimate DDD effects and the assumptions 

possibly hold true. 

I have argued that fixed-effects estimator is valid in a design-based DD and DDD framework 

due to the absence of weighting problem. I tested it empirically with two robustness checks and 

present results in Table 4. First, I checked whether compositional differences between treatment 

groups for different cohorts (i.e., levels of medical innovation) distort the results and added event-

year-fixed effects interacted with ICD-chapter disease groups to Eq.2 (as suggested in Goodman-

Bacon 2021). Second, following Callaway and Sant’Anna (2020), I used an alternative estimator 

which is based on estimation and aggregation of cohort-specific treatment effects. My results 

suggest that the fixed-effects estimator used in the main body of the paper produces ATET effects. 

[Insert Table 4 here] 

The “no anticipation” and “parallel trends” assumptions were addressed at the stage of 

constructing the estimation sample. To obtain valid counterfactuals, I applied a matching technique 

that allowed me to deal with time-varying selection issues. For the final estimation sample, both 

the visual analysis and formal tests by event year across the treated and control groups showed 
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similar development in their pre-treatment outcomes. In Appendix C Figures C5-C12, I have also 

demonstrated the absence of pre-trends for each DD comparison group participating in Eq.2. In 89 

of the 91 disease groups (98%), the results showed no significant pre-trends. 

The “independent groups” assumption is likely to hold in this study setting because measures 

of medical innovation are plausibly exogenous to the decision of hospitalization. However, the 

uptake of health insurance and care arguably induces medical innovation (Lleras-Muney and 

Lichtenberg 2005; Acemoglu et al. 2006). I elaborated on the plausibility of the “independent 

groups” assumption through several checks. First, I detrended the panel of medical innovations 

within each disease group to obtain their white noise components and used the latter in the models. 

Next, I estimated the models with medical innovations of exclusively international origin that more 

likely approximated exogenous shocks, directly imported NMEs, and patents granted to non-

Swedish applicants (cf. Papageorgiou, Savvides, and Zachariadis 2007). I also estimated the 

models with the 5- and 10-year lags, which should exacerbate any existing endogeneity problem. I 

included individuals who experienced potentially similar health shocks but were left outside the 

estimation sample, such as individuals who were treated in emergency units and died. In sum, the 

results of the robustness models are similar to the main results of this study.   

[Insert Table 4 here] 

Conclusions 

Despite growing evidence of the negative economic consequences of various health shocks 

and their heterogeneity in different treatment schemes, little is known about the extent to which 

these consequences can be mitigated by medical care. This study fills this gap in the literature by 

studying adults in Sweden aged from 40–70 years suffering with diseases of varying severity and 

progression and spillovers to their partners and adult children. To obtain the causal effects of 

medical care, I focused on the role of medical scientific discoveries and leveraged the longitudinal 

dimension of administrative microdata. This study reveals that medical innovations have sizable 
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mitigating effects for the economic outcomes of individuals and their close relatives and that these 

effects are highly heterogeneous. Half of the family income loss is mitigated by medical 

innovations, which return 65 606 SEK per individual year, the sum equivalent to a fourth of the 

yearly family income in the study period. If medical care had been less efficient, the burden of 

welfare transfers would have been almost three times greater to fully compensate for the 

individual’s capacity and income losses. While medical innovations are efficient concerning the 

individual for most diseases that cause a health shock, partners are relied on to reduce the 

individual’s work effort in the case of certain diseases due to the increased consumption of medical 

care in the family.  

This study provides important policy implications. First, it shows that medical innovations can 

be regarded as investments with high returns. Second, the effects of medical innovations appear to 

extend beyond the receivers of the treatment to their respective partners and adult children. 

However, the partner’s response to medical innovations is heterogeneous in the individual’s disease 

during the health shock, consistent with the efficiency of medical innovations being inversely 

related to the amount of extra informal care needed from the partner and working-age children. 

This highlights the weakness of the existing income insurance schemes in fully compensating for 

the economic repercussions of disease for the related parties. Finally, the mitigating economic 

effects of medical innovations are not equally distributed across population groups. This supports 

the idea that the existing welfare and public health systems do not sufficiently ensure equity and 

the absence of income loss after various health shocks. In summary, income profiles and economic 

repercussions of health shocks are poorly understood without focus on the family and medical care 

available to treat each disease.    
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Table 1. Impact of a health shock on economic outcomes of the nuclear family, family members, and adult children 

Family and family members Adult children 

Family 

income 

Individual’s 

own 

income 

Partner’s 

income 
Wages 

Unemploy- 

ment 

payments 

Capital 

income 
Income Wages 

Welfare 

payments 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

DDidst -0.315*** -0.051*** -0.464*** -0.382*** 0.246*** 0.038*** 0.002 -0.009** 0.031***

(0.002) (0.002) (0.004) (0.004) (0.002) (0.007) (0.002) (0.004) (0.006)

by event-year 

DDidst X event-year 0 -0.327*** -0.054*** -0.474*** -0.254*** 0.333*** 0.028*** 0.004* -0.006 0.028*** 

(0.002) (0.002) (0.005) (0.004) (0.002) (0.008) (0.002) (0.004) (0.006) 

DDidst X event-year 1 -0.304*** -0.049*** -0.455*** -0.303*** 0.157*** 0.048*** 0.000 -0.012** 0.034***

(0.002) (0.002) (0.005) (0.005) (0.002) (0.009) (0.002) (0.005) (0.007)

Outcome for DDids =0, 10 000 SEK 32.803 18.909 13.894 21.751 0.036 0.506 16.090 17.938 0.785 

Observations 11 032 884 11 032 884 11 032 884 11 032 884 11 032 884 11 032 884 9 763 843 9 763 843 9 497 515 

Number of individuals 2 243 040 2 243 040 2 243 040 2 243 040 2 243 040 2 243 040 1 282 796 1 282 796 1 282 609 

Note: Models were estimated according to Eq.1. Robust standard errors clustered at individual (experimental) level are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 



Table 2. Heterogeneous impact of a health shock on income of the nuclear family, family members, and adult children 

Men Women Single Married Below 

age 60 

Above 

age 60 

Compulsory 

education 

Higher Liquidity-

constrained 

Not-

constrained 

Cancer Other 

than 

cancer 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(A) Family income

DDidst -0.356*** -0.266*** 0.004* -0.328*** -0.231*** -0.591*** -0.474*** -0.206*** -0.343*** -0.274*** -0.928*** -0.190***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.004) (0.003) (0.002) (0.002) (0.002) (0.006) (0.002) 

Outcome for DDids =0, 10 000 SEK 33.188  32.850  22.571  36.971  33.722  29.449  26.698  37.653  13.206 27.416 33.853 32.456 

(B) Individual’s own income

DDidst -0.066*** -0.034*** 0.007** -0.055*** -0.039*** -0.082*** -0.107*** -0.012*** -0.084*** -0.006*** -0.151*** -0.030***

(0.002) (0.002) (0.003) (0.002) (0.002) (0.003) (0.003) (0.002) (0.002) (0.002) (0.004) (0.002) 

Outcome for DDids =0, 10 000 SEK 21.600  16.409  19.518  19.184  19.256  18.055  15.308  21.952  16.197 12.79024 18.730 19.000 

(C) Partner’s income

DDidst -0.532*** -0.388*** -0.035*** -0.522*** -0.357*** -0.834*** -0.640*** -0.346*** -0.451*** -0.479*** -1.311*** -0.295***

(0.006) (0.006) (0.008) (0.004) (0.005) (0.009) (0.007) (0.005) (0.006) (0.006) (0.012) (0.004) 

Outcome for DDids =0, 10 000 SEK 11.588  16.440  3.052  17.787  14.465  11.393  11.390  15.701  9.766 11.219 15.122 13.455 

(D) Adult child’s income

DDidst -0.001 0.004* 0.003 0.001 0.003 0.001 0.004 0.001 0.002 0.001 -0.001 0.002 

(0.003) (0.003) (0.002) (0.003) (0.002) (0.003) (0.004) (0.002) (0.002) (0.003) (0.005) (0.002) 

Outcome for DDids =0, 10 000 SEK 16.171  16.571  16.034  16.717  15.224  17.985  15.294  17.423  12.463 16.598 17.069 16.009 

Note: Models are estimated according to Eq.1 by subsamples based on the characteristics of the individual experiencing a health shock. Robust standard errors clustered at 

individual (experimental) level are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 



Table 3. Mitigating impact of medical innovations on income and its sources of the nuclear family, family members, and adult children 

Family and family members Adult children 

Family 

income 

Individual’s 

own 

income 

Partner’s 

income 
Wages 

Unemploy- 

ment 

payments 

Capital 

income 
Income Wages 

Welfare 

payments 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

(A) L1 NMEs, 100s

DDidst x L1 NMEs 1.574*** 0.470*** 2.009*** 1.177*** -0.468*** -0.071 -0.036 0.097* -0.152**

(0.020) (0.022) (0.054) (0.081) (0.022) (0.097) (0.028) (0.059) (0.075)

By event-years 

DDidst x L1 NMEs x event-year 0 1.480*** 0.457*** 1.912*** 2.036*** -0.685*** -0.151 0.002 0.126** -0.089

(0.021) (0.022) (0.055) (0.081) (0.026) (0.101) (0.030) (0.061) (0.078) 

DDidst x L1 NMEs x event-year 1 1.667*** 0.479*** 2.115*** 0.350*** -0.229*** 0.029 -0.080** 0.072 -0.190**

(0.021) (0.023) (0.058) (0.090) (0.025) (0.108) (0.035) (0.071) (0.091)

(B) L1 patents, 1 000s

DDidst x L1 patents 0.335*** 0.100*** 0.387*** 0.270*** -0.126*** -0.015 0.014 0.029 -0.024

(0.006) (0.006) (0.017) (0.026) (0.007) (0.031) (0.009) (0.019) (0.024)

By event-years 

DDidst x L1 patents x event-year 0 0.310*** 0.101*** 0.356*** 0.464*** -0.134*** -0.011 0.022** 0.036* -0.030

(0.007) (0.007) (0.018) (0.026) (0.008) (0.032) (0.009) (0.019) (0.026)

DDidst x L1 patents x event-year 1 0.359*** 0.099*** 0.419*** 0.082*** -0.116*** -0.020 0.004 0.023 -0.015

(0.007) (0.007) (0.020) (0.031) (0.008) (0.036) (0.011) (0.023) (0.030)

Outcome for DDids =0, 10 000 SEK 32.803 18.909 13.894 21.751 0.036 0.506 16.090 17.938 0.785

Observations 11 032 884 11 032 884 11 032 884 11 032 884 10 665 937 11 032 884 9 763 843 9 763 843 9 497 515 

Number of individuals 2 243 040 2 243 040 2 243 040 2 243 040 2 242 971 2 243 040 1 282 796 1 282 796 1 282 609 

Note: Models are estimated according to Eq.2. Robust standard errors clustered at individual (experimental) level are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 



Table 4. Robustness analyses of the mitigating impact of medical innovations on family income 

Adding event-year X 

ICD - fixed effects 

Using CATE 

estimator 

Detrended 

Innovations 

International 

Innovations 

10-Year Lags of

Innovations

Adding Data from 

Emergency Units 

(1) (2) (3) (4) (5) (6)

(A) L1 NMEs, 100s

DDidst x L1 NMEs 1.590*** 1.705*** 1.598*** 2.733*** 2.288*** 1.574*** 

(0.020) (0.017) (0.019) (0.017) (0.028) (0.020) 

By event-years 

DDidst x L1 NMEs x event-year 0 1.550*** 1.620*** 1.568*** 2.612*** 2.269*** 1.482*** 

(0.025) (0.016) (0.024) (0.021) (0.035) (0.022) 

DDidst x L1 NMEs x event-year 1 1.629*** 1.709*** 1.626*** 2.851*** 2.350*** 1.661*** 

(0.023) (0.015) (0.023) (0.020) (0.033) (0.019) 

1 SD L1 NMEs 0.075 0.075 0.073 0.056 0.053 0.075 

(B) L1 patents, 1 000s

DDidst x L1 patents 0.338*** 0.419*** 0.333*** 0.558*** 0.411*** 0.338*** 

(0.006) (0.005) (0.006) (0.005) (0.008) (0.006) 

By event-years 

DDidst x L1 patents x event-year 0 0.335*** 0.386*** 0.332*** 0.490*** 0.404*** 0.314*** 

(0.007) (0.003) (0.007) (0.005) (0.010) (0.009) 

DDidst x L1 patents x event-year 1 0.340*** 0.421*** 0.333*** 0.598*** 0.416*** 0.363*** 

(0.008) (0.005) (0.007) (0.001) (0.010) (0.003) 

1 SD L1 patents 0.243 0.243 0.241 0.154 0.175 0.243 

Outcome for DDids =0, 10 000 SEK 32.803 32.803 32.803 32.803 32.803 32.796 

Observations 11 032 884 11 032 884 11 032 884 11 032 884 11 032 884 11 033 065 

Number of individuals 2 243 040 2 243 040 2 243 040 2 243 040 2 243 040 2 243 061 

Note: Models are estimated according to Eq.1 and 2 with modifications described in Section III.e. Robust standard errors clustered at individual (experimental) level are in 

parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 



 

Figure 1. Development of economic outcomes (IHS) by event-years for “ever-treated” and 

matched individuals in the estimation sample 

Note: Sample means of the outcomes by treatment groups and event-years. 

 

 



 
Figure 2. Estimates of the impact of medical innovations (L1 NMEs and L1 patents) by event-

years for the outcomes of “ever-treated” and matched individuals (one SD change x 100) 

Note: Estimates and 95-% confidence intervals are obtained according to the event-study version of Eq.2 with 

event-years -3 and -1 as reference categories. Blue lines denote the impact of L1 NMEs and orange lines denote 

the impact of L1 patents.



 

Figure 3. Heterogeneous mitigating effect of medical innovations (L1 NMEs and L1 patents) for incomes of the nuclear family, family members, 

and adult children (one SD change x 100) 

Note: Estimates and 95-% confidence intervals are obtained according to Eq.1 by subsamples based on the characteristics of the individual experiencing a health shock. Blue 

lines/bars denote the impact of L1 NMEs and orange lines/bars denote the impact of L1 patents. 



 

Figure 4. Mitigating effect of medical innovations (L1 NMEs and L1 patents) for family 

income by severity and year of a health shock 

Note: Estimates and 95-% confidence intervals are obtained according to Eq.1 by subsamples based on the 

characteristics of the individual experiencing a health shock. Blue lines denote the impact of L1 NMEs and 

orange lines denote the impact of L1 patents.  
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Appendix A 

Table A1 – Disease groups used in the study (based on the ICD-10) 

Group  
number 

Group name ICD-chapter group 

1 Malignant neoplasms of lip, oral cavity and pharynx cancer 
2 Malignant neoplasm of oesophagus cancer 
3 Malignant neoplasm of stomach cancer 
4 Malignant neoplasm of small intestine, colon, rectosigmoid junction, rectum, anus and anal 

canal 
cancer 

5 Malignant neoplasm of liver and intrahepatic bile ducts cancer 
6 Malignant neoplasm of gallbladder cancer 
7 Malignant neoplasm of pancreas cancer 
8 Malignant neoplasm of respiratory and intrathoracic organs cancer 
9 Malignant neoplasm of bone and articular cartilage cancer 
10 Melanoma and other malignant neoplasms of skin cancer 
11 Malignant neoplasms of mesothelial and soft tissue cancer 
12 Malignant neoplasm of breast cancer 
13 Malignant neoplasms of vulva, vagina, cervix uteri, corpus uteri and parts of uterus cancer 
14 Malignant neoplasms of ovary and placenta cancer 
15 Malignant neoplasms of penis, prostate, testis and other male genital organs cancer 
16 Malignant neoplasm of kidney, renal pelvis and ureter cancer 
17 Malignant neoplasm of bladder cancer 
18 Malignant neoplasms of eye and adnexa, meninges, brain, spinal cord, cranial nerves and other 

parts of central nervous system 
cancer 

19 Malignant neoplasms of thyroid gland, adrenal gland, and other endocrine glands cancer 
20 Hodgkin's disease cancer 
21 Non-Hodgkin's lymphoma cancer 
22 Malignant immunoproliferative diseases, multiple myeloma and malignant plasma cell 

neoplasms 
cancer 

23 Leukaemia cancer 
24 In situ neoplasms cancer 
25 Benign neoplasms cancer 
26 Acute rheumatic fever and chronic rheumatic heart diseases circulatory diseases 
27 Hypertensive diseases circulatory diseases 
28 Ischaemic heart diseases circulatory diseases 
29 Pulmonary heart disease and diseases of pulmonary circulation circulatory diseases 
30 Pericarditis circulatory diseases 
31 Endocarditis and myocarditis and cardiomyopathy circulatory diseases 
32 Cardiac arrhythmias and heart failure circulatory diseases 
33 Cerebrovascular diseases circulatory diseases 
34 Diseases of arteries, arterioles and capillaries circulatory diseases 
35 Diseases of veins, lymphatic vessels and lymph nodes, not elsewhere classified circulatory diseases 
36 Organic, including symptomatic, mental disorders and Alzheimer disease. Systemic atrophies. mental diseases 
37 Mental and behavioural disorders due to use of alcohol and other substances mental diseases 
38 Schizophrenia, schizotypal and delusional disorders mental diseases 
39 Mood (affective) disorders mental diseases 
40 Neurotic, stress-related and somatoform disorders mental diseases 
41 Disorders of adult personality and behaviour mental diseases 
42 Mental retardation. Disorders of psychological development, behavioral and emotional 

disorders 
mental diseases 

43 Inflammatory diseases of the central nervous system nervous diseases 
44 Demyelinating diseases of the central nervous system   nervous diseases 
45 Epilepsy   nervous diseases 
46 Migraine and other headache syndromes nervous diseases 
47 Sleep disorders   nervous diseases 
48 Nerve, nerve root and plexus disorders, polyneuropathies and myneuropathies nervous diseases 
49 Diseases of oesophagus, stomach and duodenum digestive diseases 
50 Diseases of appendix digestive diseases 
51 Hernia digestive diseases 
52 Inflammatory bowel disease and other diseases of intestines digestive diseases 
53 Diseases of peritoneum digestive diseases 
54 Diseases of liver digestive diseases 
55 Diseases of gallbladder, biliary tract and pancreas digestive diseases 
56 Infectious arthropathies musculoskeletal diseases 
57 Rheumatoid and juvenile arthritis. Gout musculoskeletal diseases 
58 Arthrosis and systemic connective tissue disorders musculoskeletal diseases 



3 
 

59 Deforming dorsopathies, osteopathies and chondropathies. Disorders of muscles musculoskeletal diseases 
60 Glomerular diseases and renal tubulo-interstitial diseases. Renal failure urinary diseases 
61 Urolithiasis urinary diseases 
62 Other diseases of the urinary system urinary diseases 
63 Diseases of male genital organs urinary diseases 
64 Diseases of female pelvic organs urinary diseases 
65 Diseases of upper respiratory tract respiratory diseases 
66 Pneumonia, other acute lower respiratory infections and diseases of pleura respiratory diseases 
67 Chronic obstructive pulmonary disease and chronic bronchitis respiratory diseases 
68 Asthma   respiratory diseases 
69 Diabetes mellitus   metabolic diseases 
70 Disorders of thyroid gland   metabolic diseases 
71 Disorders of other endocrine glands   metabolic diseases 
72 Obesity and other hyperalimentation, metabolic disorders metabolic diseases 
73 Nutritional anaemias   diseases of bloodforming organs 
74 Haemolytic anaemias   diseases of bloodforming organs 
75 Coagulation defects, purpura and other haemorrhagic conditions   diseases of bloodforming organs 
76 Disorders of eyelid, lacrimal system and orbit, conjunctiva, sclera, cornea, iris, ciliary body, 

choroid and retina. 
diseases of sense organs 

77 Cataract, disorders of lens diseases of sense organs 
78 Glaucoma diseases of sense organs 
79 Disorders of globe, optical nerve and visual pathways, ocular muscles, accommodation and 

refraction, and blindness 
diseases of sense organs 

80 Diseases of external and middle ear diseases of sense organs 
81 Diseases of inner ear diseases of sense organs 
82 Infections of the skin diseases of skin 
83 Bullous disorders, dermatitis and eczema, urticaria and erythema   diseases of skin 
84 Intestinal infectious diseases   infectious and parasitic diseases 
85 Tuberculosis   infectious and parasitic diseases 
86 Bacterial diseases. Erysipelas. Meningitis infectious and parasitic diseases 
87 Sexually transmitted diseases infectious and parasitic diseases 
88 Viral infections infectious and parasitic diseases 
89 Viral hepatitis infectious and parasitic diseases 
90 HIV infectious and parasitic diseases 
91 Protozoal diseases infectious and parasitic diseases 
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Figure A1  – Development of medical innovations by disease over study period 

Note: Blue lines denote L1NMEs in 100s and orange lines denote L1patents in 1000s in each disease group (91 in total). Series 

include both incepted and withdrawn NMEs/patents.  
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Appendix B 

CONSTRUCTION OF THE COUNTERFACTUALS 
As described previously, recognizing valid counterfactuals (in terms of the pre-trends) to the 

“ever-treated” individuals was crucial for the identification strategy. Here, I describe in detail the 
matching procedure and the results of the diagnostic tests. Table B1 presents the descriptive 
statistics of the final estimation sample. 

In this study, I matched “ever-treated” individuals to similar individuals who experienced a 
health shock in the future, inspired by Fadlon and Nielsen’s (2021) methodology. Their study 
focused on heart attacks and strokes, which are both sudden and severe, and obtained valid 
counterfactuals when matched individuals who were hospitalized/died from these causes in year t 
to those who were hospitalized/died from these causes in year t+5. The present study focuses on 
more diseases, thereby narrowing the time window to t+2 within the disease group (91 in total); 
observable characteristics are matched to obtain valid counterfactuals.1 The propensity score was 
predicted based on three characteristics. First, the year of birth was chosen because the range of the 
cohorts under study was quite dispersed. The second and third characteristics, years of schooling 
and IHS earnings for the pre-treatment age period 38–39, potentially affect the development of 
economic outcomes. To choose the most efficient matching procedure, I followed Austin (2014), 
who suggested using propensity score matching with a calliper of 0.2 standard deviations and no 
replacements.  

From the original sample of “ever-treated” individuals, I matched 1 340 485 (or 95%), without 
being particularly restrictive; two diagnostic tests were conducted on the obtained sample. The first 
test compared standard deviations for the observable characteristics with a threshold value of 0.1, 
which has been proposed to indicate a small imbalance between the “ever-treated” and matched 
individuals (Austin 2009). Figure B1 presents the results of this test for the study sample in total 
and for the ICD-chapter groups, each of which indicated no imbalance. In a DDD framework, the 
balancing test does not ensure the parallelism of pre-trends in the outcomes between the comparison 
groups. Therefore, as a second test, I calculated the mean of the economic outcome by a comparison 
group across event years—before and after a health shock.  

Figure 1 in the main body of the paper presents the mean of economic outcomes under study 
by a comparison group across event years, while Figures B2-B8 contain information for specific 
disease groups. The pattern of family income and other economic outcomes reveals remarkable 
similarity in the development of the outcome for the comparison groups before the event year of t 
= 0, that is, the year of the health shock (i.e., hospitalization) for the treated individuals. The 
observation of no pre-trends could be made for both severe and unanticipated diseases—cancers or 
circulatory diseases—and those usually understood as chronic and anticipated—mental/nervous or 
metabolic diseases. The absence of visible pre-trends is probably caused due to the following 
reason: When there were a number of events preceding hospitalization (e.g., an earlier diagnosis or 
job loss), both groups of individuals experienced a deterioration in economic outcomes, resulting 
in similar pre-trends during a time window of two years (Novgorodsky and Setzler 2019). In the 
year of the health shock and afterwards, the relative family income declined rapidly among the 

 
1 This is the smallest window possible: For the pre-treatment period, three years is the minimum time to 
detect non-linearity in outcomes based on t and F-tests; for the treatment period, the year after hospitalization, 
t+1, is the first year when the negative effect of hospitalization is fully realized. 
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affected individuals, providing primary evidence for the appearance of economic loss in the family; 
in contrast, control individuals showed no change. As for the welfare outcomes, only for 
unemployment payments no pre-trends were detected (see Figure B6-B8); therefore, I focus on this 
outcome.  

An investigation of the pre-trends of “ever-treated” and matched individuals was insufficient 
because a DDD would, in addition, use variations of these groups across the levels of medical 
innovation; therefore, I further performed two formal tests to assess the absence of non-linear pre-
trends for relative family income separately by disease group. For the first test, I followed Borusyak, 
Jaravel, and Spiess’s (2021) suggestion to estimate a fully dynamic specification (i.e., event study) 
of the underlying DD models, where several distant pre-treatment event years are treated as 
reference categories, and non-linear pre-trends are detected with an F-test. Across each of the 91 
disease groups for men and women, this test was performed by omitting t = -3 and t = -1. However, 
the outcome of such a test, relying on the sample size, tends to confirm the existence of pre-trends—
even though these pre-trends are economically insignificant, thus potentially biasing the ATET to 
zero. To avoid such a problem, Rosenbaum and Rubin (1985) suggested using a standardized 
difference, which is an indicator neutral to the sample size. Therefore, as a second test, I calculated 
the standardized differences in the outcomes between treated individuals and their counterfactuals 
for each disease group. 

Most disease groups successfully passed both tests (see Table B2). Of the 91 disease groups, 
89 had no pre-trends at a 5% significance level according to the results of the F-test. On one 
occasion, for the group of individuals diagnosed with in-situ neoplasms at admission, pre-trends 
were both statistically and economically meaningful. On another occasion, for ischemic heart 
disease, the results of the test indicated an income difference of 0.6% between the comparison 
groups prior to the health shock, which further reduced income by 60%, suggesting that the pre-
trends were unable to nullify the health shock’s impact. In another test, the standardized difference 
was below a threshold of 0.1 for a comprehensive set of 88 disease groups and indicated a marginal 
imbalance for the rest. The results of both tests generally supported the a priori expectation of 
similarity in pre-treatment behavior of individuals who had experienced a health shock in the 
current year and those who experienced the same event in a subsequent two-year window across 
various diseases. In an earlier version of this study (Lazuka 2021), in which several disease groups 
with significant pre-trends were excluded from the estimation sample, the results were almost 
identical to those presented here. Thus, due to the similarity of the results and the focus of the study 
on a broad set of diseases, I based my further estimations on the sample of all 91 disease groups.  
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Table B1 – Descriptive statistics for the estimation sample 
 

Observations Mean SD 
L1 NMEs (in 100s) 11 032 884 0.090 0.075 
L1 patents (in 1000s) 11 032 884 0.160 0.243 
post 11 032 884 0.403 0.491 
post x L1 NMEs 11 032 884 0.036 0.065 
post x L1 patents 11 032 884 0.065 0.173 
DDidst 11 032 884 0.200 0.400 
DDidst x L1 NMEs 11 032 884 0.018 0.049 
DDidst x L1 patents 11 032 884 0.032 0.126 
family disposable income (IHS) 11 032 884 13.150 1.257 
individual’s disposable income (IHS) 11 032 884 12.539 1.639 
partner’s disposable income (IHS) 11 032 884 9.094 5.789 
individual’s wages (IHS) 11 032 884 21.211 19.836 
individual’s unemployment benefits payments (IHS) 11 032 884 0.231 1.489 
individual’s capital income (IHS) 11 032 884 -0.210 8.300 
adult child’s disposable income (IHS) 9 763 843 12.441 1.578 
adult child’s wages (IHS) 9 763 843 11.334 3.872 
adult child’s welfare payments (IHS) 9 497 515 3.771 4.745 

Note: all absolute economic outcomes were adjusted for inflation with the base year in 2021. 
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Table B2 – Results of the F-test on non-linear pre-trends for family income (IHS) by disease group 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 
event year -2 0.027 0.001 -0.006 0.007 -0.014 0.016 -0.001 -0.002 0.023 -0.001 -0.025* -0.004 -0.007  

(0.018) (0.017) (0.014) (0.005) (0.024) (0.013) (0.013) (0.007) (0.029) (0.010) (0.015) (0.003) (0.006) 
event year 0 0.075*** 0.015 0.032* 0.013** 0.036* -0.013 0.006 0.029*** 0.089* 0.032*** 0.023** 0.025*** 0.024***  

(0.019) (0.027) (0.016) (0.006) (0.022) (0.029) (0.015) (0.008) (0.052) (0.010) (0.011) (0.003) (0.006) 
event year 1 0.074*** 0.027 0.040*** 0.034*** 0.057** -0.004 0.007 0.049*** 0.066 0.055*** 0.042*** 0.045*** 0.032***  

(0.024) (0.024) (0.015) (0.007) (0.029) (0.018) (0.018) (0.009) (0.066) (0.012) (0.012) (0.004) (0.007) 
DDidst X event year -2 0.008 -0.027 0.007 -0.009 0.035 -0.023 -0.001 0.005 -0.012 0.004 0.042* -0.000 0.007  

(0.024) (0.030) (0.018) (0.007) (0.031) (0.018) (0.018) (0.011) (0.034) (0.012) (0.024) (0.004) (0.008) 
DDidst X event year 0 -0.871*** -3.746*** -4.230*** -1.400*** -8.636*** -6.972*** -7.162*** -4.763*** -1.855*** -0.653*** -1.673*** -0.210*** -0.370***  

(0.075) (0.222) (0.133) (0.037) (0.259) (0.281) (0.151) (0.077) (0.372) (0.044) (0.160) (0.010) (0.024) 
DDidst X event year 1 -1.882*** -7.648*** -6.024*** -2.185*** -9.979*** -9.404*** -10.571*** -6.973*** -3.673*** -0.978*** -2.063*** -0.414*** -0.894***  

(0.106) (0.308) (0.178) (0.046) (0.502) (0.449) (0.232) (0.106) (0.514) (0.051) (0.181) (0.013) (0.036) 
Constant 13.086*** 13.152*** 13.186*** 13.233*** 13.115*** 13.077*** 13.199*** 13.133*** 13.167*** 13.217*** 13.285*** 13.272*** 13.133***  

(0.014) (0.034) (0.020) (0.006) (0.034) (0.039) (0.020) (0.011) (0.065) (0.008) (0.026) (0.002) (0.005) 
Number of IDs 20,838 6,971 20,886 121,977 5,392 5,009 18,133 65,642 1,489 46,336 7,595 314,974 87,367 
R-squared 0.083 0.399 0.333 0.113 0.634 0.546 0.571 0.381 0.193 0.044 0.115 0.015 0.041 
Observations 4,249 1,448 4,387 24,891 1,171 1,076 3,900 13,813 306 9,470 1,562 63,588 17,691 
F-test: DDidst X event year -2 =0 0.741 0.367 0.689 0.222 0.264 0.220 0.961 0.622 0.721 0.765 0.0753 0.933 0.363 
Standardised difference 0.014 0.025 0.011 0.013 0.077 0.031 0.014 0.013 0.017 0.035 0.037 0.001 0.005 
 

(14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) 
event year -2 0.001 -0.002 -0.008 0.001 -0.007 0.009 -0.024 -0.016* -0.032 0.003 0.000 -0.004** 0.010  

(0.005) (0.004) (0.011) (0.008) (0.012) (0.008) (0.039) (0.009) (0.022) (0.017) (0.004) (0.002) (0.012) 
event year 0 0.020** 0.025*** 0.030*** 0.049*** 0.030* 0.029*** 0.040 0.028** 0.029** 0.044*** 0.039*** 0.036*** -0.025  

(0.008) (0.006) (0.011) (0.010) (0.017) (0.010) (0.038) (0.012) (0.014) (0.015) (0.004) (0.002) (0.037) 
event year 1 0.033*** 0.051*** 0.051*** 0.047*** 0.037** 0.038*** -0.038 0.030* 0.019 0.046*** 0.051*** 0.054*** 0.031  

(0.010) (0.006) (0.011) (0.012) (0.017) (0.013) (0.043) (0.015) (0.022) (0.015) (0.005) (0.002) (0.031) 
DDidst X event year -2 -0.006 -0.003 0.011 0.010 0.020 -0.002 0.102 0.025* 0.036 0.011 0.010* 0.008*** -0.024  

(0.009) (0.007) (0.015) (0.012) (0.018) (0.011) (0.067) (0.014) (0.025) (0.022) (0.005) (0.003) (0.037) 
DDidst X event year 0 -0.882*** -0.410*** -1.935*** -0.525*** -2.780*** -0.549*** -0.329* -1.130*** -1.148*** -1.974*** -1.004*** -0.025*** -0.241**  

(0.053) (0.023) (0.090) (0.039) (0.120) (0.096) (0.186) (0.075) (0.119) (0.117) (0.025) (0.004) (0.094) 
DDidst X event year 1 -2.120*** -0.817*** -2.614*** -0.932*** -5.061*** -0.450*** -0.784*** -1.852*** -1.902*** -3.358*** -1.294*** -0.027*** -0.245***  

(0.079) (0.030) (0.105) (0.051) (0.165) (0.082) (0.244) (0.094) (0.152) (0.153) (0.028) (0.004) (0.081) 
Constant 13.187*** 13.423*** 13.231*** 13.207*** 13.260*** 13.260*** 13.130*** 13.244*** 13.236*** 13.258*** 13.220*** 13.292*** 13.021***  

(0.010) (0.004) (0.014) (0.007) (0.019) (0.015) (0.034) (0.013) (0.020) (0.020) (0.004) (0.001) (0.015) 
Number of IDs 39,213 110,851 27,074 46,275 20,133 7,814 1,653 24,594 10,070 16,168 203,555 632,599 5,169 
R-squared 0.110 0.035 0.143 0.040 0.262 0.028 0.039 0.095 0.096 0.174 0.066 0.002 0.010 
Observations 7,983 22,369 5,557 9,384 4,196 1,597 339 5,024 2,056 3,328 41,562 127,919 1,065 
F-test: DDidst X event year -2 =0 0.483 0.605 0.460 0.365 0.273 0.832 0.128 0.0747 0.158 0.629 0.0574 0.00299 0.512 
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Standardised difference 0.001 0.015 0.011 0.016 0.015 0.010 0.170 0.004 0.046 0.037 0.005 0.002 0.057 
 

(27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) 
event year -2 -0.002 -0.001 0.007 -0.007 -0.005 0.000 -0.002 -0.005 0.000 -0.007 -0.005 -0.006 0.000  

(0.006) (0.002) (0.007) (0.010) (0.009) (0.003) (0.003) (0.007) (0.003) (0.009) (0.007) (0.009) (0.006) 
event year 0 0.025*** 0.030*** 0.040*** -0.008 0.032*** 0.035*** 0.025*** 0.019*** 0.030*** 0.000 -0.006 -0.011 0.019***  

(0.006) (0.002) (0.009) (0.014) (0.009) (0.004) (0.003) (0.007) (0.003) (0.010) (0.008) (0.011) (0.007) 
event year 1 0.047*** 0.043*** 0.060*** -0.008 0.057*** 0.054*** 0.043*** 0.037*** 0.050*** -0.008 -0.012 0.002 0.004  

(0.007) (0.002) (0.009) (0.017) (0.009) (0.004) (0.004) (0.008) (0.003) (0.014) (0.009) (0.013) (0.009) 
DDidst X event year -2 -0.005 0.006** -0.004 -0.007 -0.008 0.003 0.005 0.007 0.002 0.010 0.008 -0.002 0.007  

(0.008) (0.003) (0.011) (0.020) (0.012) (0.004) (0.004) (0.009) (0.004) (0.013) (0.010) (0.013) (0.009) 
DDidst X event year 0 -0.091*** -0.576*** -0.673*** -0.264*** -0.424*** -0.320*** -1.057*** -0.830*** -0.096*** -0.729*** -0.159*** -0.113*** -0.222***  

(0.012) (0.009) (0.039) (0.050) (0.030) (0.012) (0.017) (0.033) (0.007) (0.050) (0.015) (0.023) (0.018) 
DDidst X event year 1 -0.113*** -0.263*** -0.358*** -0.167*** -0.278*** -0.234*** -0.431*** -0.407*** -0.093*** -0.854*** -0.156*** -0.039* -0.123***  

(0.013) (0.006) (0.027) (0.043) (0.024) (0.010) (0.010) (0.021) (0.006) (0.054) (0.016) (0.022) (0.015) 
Constant 13.148*** 13.188*** 13.235*** 13.302*** 13.219*** 13.233*** 13.180*** 13.103*** 13.163*** 13.117*** 12.769*** 12.613*** 13.121***  

(0.002) (0.001) (0.006) (0.008) (0.005) (0.002) (0.002) (0.005) (0.001) (0.008) (0.003) (0.004) (0.003) 
Number of IDs 146,581 905,759 58,197 19,913 69,909 353,852 457,710 101,846 403,297 40,674 217,257 77,074 118,220 
R-squared 0.001 0.025 0.030 0.008 0.014 0.011 0.056 0.040 0.002 0.043 0.003 0.001 0.006 
Observations 29,722 183,512 11,838 4,046 14,178 71,599 93,037 20,744 82,385 8,290 44,544 15,891 24,061 
F-test: DDidst X event year -2 =0 0.530 0.0375 0.676 0.712 0.504 0.532 0.234 0.421 0.658 0.448 0.391 0.900 0.396 
Standardised difference 0.020 0.008 0.015 0.022 0.017 0.005 0.004 0.027 0.008 0.019 0.070 0.040 0.020 
 

(40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) 
event year -2 -0.007 0.078** 0.030 0.012 0.004 -0.025* 0.005 -0.005 0.006 -0.005 -0.004 -0.001 0.000  

(0.007) (0.038) (0.039) (0.019) (0.008) (0.013) (0.006) (0.011) (0.005) (0.004) (0.004) (0.003) (0.003) 
event year 0 0.011 0.016 0.041 0.059*** 0.012 0.012 0.026*** 0.085*** 0.025*** 0.024*** 0.035*** 0.034*** 0.037***  

(0.008) (0.051) (0.060) (0.021) (0.009) (0.011) (0.007) (0.012) (0.007) (0.004) (0.005) (0.003) (0.004) 
event year 1 0.020** 0.008 0.055 0.091*** 0.005 0.015 0.049*** 0.123*** 0.051*** 0.039*** 0.071*** 0.052*** 0.059***  

(0.009) (0.056) (0.060) (0.021) (0.017) (0.013) (0.007) (0.013) (0.007) (0.005) (0.005) (0.003) (0.004) 
DDidst X event year -2 0.004 -0.071 -0.100 0.005 0.003 0.022 -0.003 0.010 -0.009 0.008 -0.003 0.006 0.004  

(0.010) (0.061) (0.070) (0.024) (0.012) (0.016) (0.008) (0.015) (0.008) (0.005) (0.006) (0.004) (0.005) 
DDidst X event year 0 -0.184*** -0.253** -0.244** -0.509*** -0.094*** -0.237*** -0.060*** -0.054*** -0.087*** -0.117*** -0.024*** -0.026*** -0.087***  

(0.017) (0.102) (0.117) (0.072) (0.035) (0.031) (0.014) (0.019) (0.016) (0.009) (0.008) (0.005) (0.008) 
DDidst X event year 1 -0.139*** -0.108 -0.093 -0.331*** -0.046 -0.309*** -0.072*** -0.062*** -0.143*** -0.140*** -0.033*** -0.034*** -0.096***  

(0.015) (0.091) (0.097) (0.055) (0.032) (0.036) (0.013) (0.021) (0.018) (0.010) (0.009) (0.006) (0.008) 
Constant 13.052*** 12.580*** 12.470*** 13.232*** 13.229*** 13.018*** 13.210*** 13.366*** 13.171*** 13.115*** 13.282*** 13.160*** 13.240***  

(0.003) (0.020) (0.022) (0.012) (0.006) (0.006) (0.003) (0.004) (0.003) (0.002) (0.002) (0.001) (0.001) 
Number of IDs 108,296 5,852 3,279 14,324 15,157 35,867 95,877 38,866 81,078 294,241 199,061 394,345 334,767 
R-squared 0.005 0.004 0.004 0.018 0.002 0.012 0.001 0.005 0.002 0.002 0.002 0.001 0.001 
Observations 22,265 1,226 672 2,916 3,102 7,378 19,540 7,854 16,578 59,941 40,485 80,213 67,903 
F-test: DDidst X event year -2 =0 0.696 0.247 0.157 0.846 0.809 0.159 0.709 0.496 0.301 0.125 0.651 0.115 0.406 
Standardised difference 0.009 0.111 0.102 0.020 0.036 0.060 0.010 0.020 0.008 0.001 0.008 0.010 0.001 
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(53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) 

event year -2 0.010 -0.001 0.002 0.005 -0.000 -0.002 -0.003 -0.002 -0.001 -0.004 0.006* 0.002 -0.003  
(0.028) (0.010) (0.002) (0.010) (0.003) (0.003) (0.002) (0.006) (0.004) (0.006) (0.003) (0.003) (0.004) 

event year 0 0.038** -0.011 0.033*** 0.040*** 0.017*** 0.038*** 0.037*** 0.035*** 0.040*** 0.045*** 0.024*** 0.044*** 0.043***  
(0.017) (0.013) (0.003) (0.012) (0.003) (0.004) (0.003) (0.007) (0.005) (0.005) (0.004) (0.004) (0.004) 

event year 1 0.072*** 0.003 0.054*** 0.056*** 0.020*** 0.065*** 0.055*** 0.047*** 0.060*** 0.063*** 0.038*** 0.080*** 0.063***  
(0.027) (0.014) (0.003) (0.013) (0.003) (0.004) (0.003) (0.008) (0.005) (0.006) (0.004) (0.003) (0.004) 

DDidst X event year -2 0.008 -0.009 0.000 -0.005 0.002 0.004 0.006* 0.013 0.004 0.004 -0.005 -0.003 0.005  
(0.033) (0.015) (0.003) (0.015) (0.004) (0.004) (0.003) (0.008) (0.006) (0.007) (0.004) (0.004) (0.005) 

DDidst X event year 0 -0.494*** -1.750*** -0.091*** -0.034 -0.038*** -0.052*** -0.042*** -0.174*** -0.024*** -0.054*** -0.040*** -0.017*** -0.040***  
(0.107) (0.067) (0.006) (0.024) (0.006) (0.007) (0.005) (0.018) (0.008) (0.010) (0.007) (0.006) (0.007) 

DDidst X event year 1 -0.328*** -1.083*** -0.115*** -0.028 -0.052*** -0.065*** -0.049*** -0.181*** -0.042*** -0.086*** -0.059*** -0.020*** -0.044***  
(0.079) (0.052) (0.006) (0.024) (0.007) (0.007) (0.005) (0.018) (0.009) (0.012) (0.008) (0.006) (0.007) 

Constant 13.240*** 13.089*** 13.229*** 13.272*** 13.136*** 13.281*** 13.250*** 13.190*** 13.227*** 13.300*** 13.208*** 13.380*** 13.264***  
(0.016) (0.010) (0.001) (0.005) (0.001) (0.001) (0.001) (0.003) (0.002) (0.002) (0.001) (0.001) (0.001) 

Number of IDs 6,095 45,333 575,124 24,219 219,899 277,086 596,224 102,261 197,620 120,582 230,884 288,248 225,181 
R-squared 0.020 0.097 0.002 0.001 0.001 0.001 0.001 0.004 0.001 0.001 0.001 0.004 0.001 
Observations 1,250 9,346 116,465 4,911 44,426 55,872 121,225 20,832 40,276 24,398 46,599 58,333 45,895 
F-test: DDidst X event year -2 =0 0.807 0.555 0.897 0.739 0.618 0.377 0.0729 0.108 0.474 0.558 0.249 0.408 0.320 
Standardised difference 0.105 0.045 0.003 0.002 0.011 0.008 0.004 0.009 0.015 0.011 0.010 0.007 0.015 
 

(66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78) 
event year -2 0.003 0.000 0.010 -0.003 0.002 0.002 -0.011 -0.006 0.013 0.001 0.002 -0.004 0.011*  

(0.004) (0.008) (0.006) (0.006) (0.005) (0.017) (0.009) (0.010) (0.018) (0.014) (0.005) (0.008) (0.006) 
event year 0 0.032*** 0.033*** 0.025*** 0.046*** 0.033*** 0.043*** 0.034*** 0.011 0.021 0.025 0.029*** 0.013 0.020**  

(0.004) (0.009) (0.008) (0.006) (0.005) (0.012) (0.009) (0.013) (0.018) (0.018) (0.006) (0.008) (0.009) 
event year 1 0.052*** 0.037*** 0.043*** 0.051*** 0.049*** 0.055*** 0.049*** 0.035** 0.056*** 0.029 0.060*** 0.028** 0.024***  

(0.005) (0.010) (0.009) (0.006) (0.006) (0.014) (0.011) (0.015) (0.022) (0.022) (0.006) (0.011) (0.009) 
DDidst X event year -2 -0.003 0.012 -0.007 0.018** 0.000 0.006 0.009 -0.005 -0.026 -0.005 -0.007 -0.001 -0.002  

(0.005) (0.010) (0.009) (0.007) (0.006) (0.020) (0.012) (0.015) (0.024) (0.021) (0.007) (0.013) (0.010) 
DDidst X event year 0 -0.396*** -0.340*** -0.148*** -0.154*** -0.044*** -0.126*** -0.149*** -0.138*** -0.640*** -0.508*** -0.015 0.003 -0.037**  

(0.015) (0.029) (0.021) (0.013) (0.009) (0.035) (0.023) (0.030) (0.075) (0.072) (0.009) (0.016) (0.016) 
DDidst X event year 1 -0.395*** -0.428*** -0.160*** -0.165*** -0.041*** -0.150*** -0.150*** -0.261*** -0.712*** -0.462*** -0.037*** -0.056** -0.066***  

(0.014) (0.033) (0.021) (0.014) (0.009) (0.035) (0.023) (0.037) (0.077) (0.066) (0.010) (0.024) (0.021) 
Constant 13.170*** 12.990*** 13.068*** 13.024*** 13.212*** 13.192*** 13.186*** 13.051*** 13.109*** 13.199*** 13.238*** 12.994*** 13.055***  

(0.002) (0.005) (0.004) (0.002) (0.002) (0.007) (0.004) (0.006) (0.012) (0.012) (0.002) (0.004) (0.003) 
Number of IDs 276,503 56,026 63,493 177,291 119,112 19,171 49,797 35,400 15,735 13,292 140,473 25,593 28,879 
R-squared 0.016 0.017 0.004 0.003 0.001 0.003 0.003 0.006 0.032 0.024 0.001 0.001 0.001 
Observations 56,286 11,407 12,991 36,209 24,285 3,912 10,179 7,218 3,223 2,721 28,444 5,192 5,861 
F-test: DDidst X event year -2 =0 0.598 0.234 0.468 0.0120 0.940 0.751 0.462 0.715 0.270 0.807 0.339 0.960 0.839 
Standardised difference 0.004 0.021 0.031 0.012 0.004 0.032 0.007 0.010 0.007 0.002 0.007 0.072 0.009 
 

(79) (80) (81) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) 
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event year -2 0.019** 0.002 -0.011** -0.000 0.000 -0.006 -0.007 -0.001 0.003 -0.015 0.021 -0.045 -0.006  
(0.008) (0.006) (0.005) (0.011) (0.007) (0.007) (0.037) (0.006) (0.010) (0.011) (0.031) (0.074) (0.042) 

event year 0 0.031*** 0.039*** 0.037*** 0.048*** 0.025*** 0.038*** -0.009 0.026*** 0.017 0.049*** 0.104*** 0.041 -0.030  
(0.011) (0.006) (0.005) (0.012) (0.008) (0.007) (0.040) (0.007) (0.014) (0.013) (0.032) (0.048) (0.073) 

event year 1 0.058*** 0.057*** 0.057*** 0.061*** 0.028*** 0.065*** 0.067** 0.046*** 0.028* 0.070*** 0.176*** 0.466 0.067  
(0.013) (0.007) (0.006) (0.014) (0.009) (0.008) (0.031) (0.008) (0.016) (0.013) (0.040) (0.400) (0.077) 

DDidst X event year -2 -0.019 0.003 0.014** 0.015 0.006 0.003 0.022 0.003 0.005 0.021 -0.004 0.049 -0.008  
(0.012) (0.007) (0.007) (0.014) (0.009) (0.009) (0.047) (0.009) (0.016) (0.015) (0.039) (0.147) (0.114) 

DDidst X event year 0 -0.066*** -0.033*** -0.016** -0.085*** -0.017 -0.068*** -0.160* -0.314*** -0.062** -0.118*** -0.185*** -3.116*** -0.060  
(0.023) (0.011) (0.008) (0.022) (0.014) (0.014) (0.091) (0.021) (0.027) (0.027) (0.057) (1.081) (0.134) 

DDidst X event year 1 -0.075*** -0.061*** -0.028*** -0.069*** -0.031** -0.055*** -0.408*** -0.163*** -0.089*** -0.045** -0.213*** -1.728** -0.101  
(0.024) (0.012) (0.010) (0.024) (0.016) (0.013) (0.107) (0.016) (0.029) (0.022) (0.061) (0.840) (0.138) 

Constant 13.218*** 13.194*** 13.307*** 13.109*** 13.107*** 13.273*** 12.919*** 13.169*** 13.127*** 13.272*** 12.917*** 12.426*** 13.059***  
(0.005) (0.002) (0.002) (0.005) (0.003) (0.003) (0.017) (0.003) (0.005) (0.005) (0.012) (0.157) (0.027) 

Number of IDs 29,642 91,623 112,493 47,846 70,343 86,172 5,744 120,563 28,492 36,062 12,708 265 2,334 
R-squared 0.001 0.001 0.002 0.001 0.000 0.001 0.009 0.009 0.001 0.002 0.003 0.186 0.001 
Observations 6,060 18,738 22,778 9,782 14,427 17,582 1,186 24,499 5,851 7,365 2,621 57 487 
F-test: DDidst X event year -2 =0 0.102 0.672 0.0342 0.298 0.498 0.762 0.636 0.749 0.758 0.164 0.928 0.741 0.945 
Standardised difference 0.017 0.004 0.013 0.012 0.010 0.012 0.076 0.002 0.004 0.004 0.022 0.123 0.000 

 Note: Models are estimated according to Eq.1 by replacing the combined indicator for a health shock with event years, separately by disease group. Event years -3 and -1 are reference categories. Standard errors 
clustered at a (experimental) individual level are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 
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Figure B1 – Results of the balancing test for the estimation sample, in total and by ICD-chapter 
disease groups 
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Figure B2 – Development of family income (IHS) by event-years for ever-treated and matched 

individuals in the estimation sample, in total and by ICD-chapter disease groups
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Figure B3 – Development of the individual’s own income (IHS) by event-years for ever-treated and 

matched individuals in the estimation sample, in total and by ICD-chapter disease groups  
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Figure B4 – Development of the partner’s income (IHS) by event-years for ever-treated and matched 

individuals in the estimation sample, in total and by ICD-chapter disease groups 
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Figure B5 – Development of the adult child’s income (IHS) by event-years for ever-treated and 

matched individuals in the estimation sample, in total and by ICD-chapter disease groups  
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Figure B6 – Development of the individual’s sickness absence payments (IHS) by event-years for 
ever-treated and matched individuals in the estimation sample, in total and by ICD-chapter disease 

groups  
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Figure B7 – Development of the individual’s unemployment payments (IHS) by event-years for 
ever-treated and matched individuals in the estimation sample, in total and by ICD-chapter disease 

groups  
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Figure B8 – Development of the individual’s disability payments (IHS) by event-years for ever-
treated and matched individuals in the estimation sample, in total and by ICD-chapter disease groups  
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Appendix C 

Table C1 – Impact of the health shock on welfare outcomes of the individual by type 

 
Sickness 
absence 
payments 

Disability 
payments 

  (1) (2) 
DDidt 2.497*** 0.176*** 
 (0.006) (0.003) 
by event year     
DDidst X event year 0 3.428*** 0.067*** 
 (0.006) (0.003) 
DDidst X event year 1 1.547*** 0.286*** 
 (0.007) (0.004) 
DDids in 10,000 SEK for DDids =0 0.825 1.041 
Observations 10,665,937 10,665,937 
Number of IDs 2,242,971 2,242,971 

Note: Models were estimated according to Eq.1. Robust standard errors clustered at individual (experimental) level are in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
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Table C2 – Impact of a health shock on economic outcomes the nuclear family, family members, and 
adult children, by ICD-chapter disease group 

 FAMILY AND FAMILY MEMBERS  WORKING-AGE CHILDREN 
  

Family 
income Income Partner’s 

income Wages Welfare 
payments 

Capital 
income 

 
Income Wages Welfare 

payments 

  (1) (2) (3) (4) (5) (6)  (7) (8) (9) 

DDidst X cancers -0.928*** -0.151*** -1.311*** -0.535*** 3.646*** 0.089***  -0.000 -0.021** 0.049*** 
 (0.001) (0.003) (0.006) (0.010) (0.008) (0.012)  (0.003) (0.007) (0.010) 
DDidst X circulatory  -0.399*** -0.082*** -0.547*** -0.449*** 2.974*** 0.084***  0.006 -0.007 0.033*** 
 (0.004) (0.004) (0.009) (0.009) (0.012) (0.015)  (0.003) (0.008) (0.011) 
DDidst X mental  -0.196*** 0.027*** -0.739*** -0.472*** 2.098*** 0.128***  0.008 -0.001 0.065* 
 (0.007) (0.008) (0.021) (0.019) (0.025) (0.029)  (0.011) (0.025) (0.033) 
DDidst X nervous  -0.124*** -0.025*** -0.186*** -0.195*** 1.771*** 0.032  -0.015 -0.075** -0.059 
 (0.008) (0.009) (0.024) (0.022) (0.034) (0.044)  (0.013) (0.029) (0.042) 
DDidst X digestive  -0.115*** -0.014*** -0.155*** -0.041*** 1.985*** -0.011  -0.000 -0.009 0.038** 
 (0.003) (0.004) (0.009) (0.009) (0.013) (0.017)  (0.005) (0.011) (0.015) 
DDidst X musculoskeletal  -0.050*** -0.007 -0.056*** -0.402*** 2.526*** -0.021  -0.006 -0.009 0.011 
 (0.003) (0.004) (0.011) (0.012) (0.019) (0.023)  (0.006) (0.013) (0.018) 
DDidst X urinary  -0.053*** -0.013*** -0.076*** 0.016 1.976*** -0.011  0.004 -0.003 0.049*** 
 (0.003) (0.005) (0.012) (0.013) (0.018) (0.025)  (0.007) (0.014) (0.019) 
DDidst X respiratory  -0.241*** -0.036*** -0.370*** -0.091*** 1.758*** -0.020  -0.014* 0.017 0.013 
 (0.006) (0.006) (0.017) (0.016) (0.023) (0.030)  (0.007) (0.018) (0.026) 
DDidst X metabolic  -0.122*** -0.005 -0.182*** -0.151*** 2.121*** 0.005  0.007 -0.029 0.054 
 (0.007) (0.009) (0.021) (0.020) (0.030) (0.036)  (0.010) (0.024) (0.035) 
DDidst X bloodforming -0.370*** -0.035 -0.511*** -0.157*** 2.483*** 0.133  0.039* 0.024 -0.038 
 (0.024) (0.023) (0.057) (0.054) (0.072) (0.087)  (0.022) (0.056) (0.081) 
DDidst X sense -0.035*** -0.005 -0.078*** -0.029 2.243*** -0.046  0.007 -0.014 0.032 
 (0.004) (0.007) (0.018) (0.019) (0.027) (0.036)  (0.010) (0.021) (0.029) 
DDidst X skin -0.049*** -0.004 -0.079** -0.087*** 1.857*** -0.036  0.045** 0.014 -0.080 
 (0.011) (0.016) (0.036) (0.034) (0.051) (0.065)  (0.020) (0.045) (0.064) 
DDidst X infectious -0.153*** -0.014 -0.212*** -0.073*** 1.874*** -0.023  0.008 0.026 0.005 
  (0.009) (0.010) (0.025) (0.022) (0.032) (0.044)  (0.013) (0.028) (0.038) 
  

     
  

   

Total observations 11 032 884 11 032 884 11 032 884 11 032 884 10 665 937 11 032 884  9 763 843 9 763 843 9 497 515 
Total number of IDs 2 243 040 2 243 040 2 243 040 2 243 040 2 242 971 2 243 040  1 282 796 1 282 796 1 282 609 

Note: Models were estimated according to Eq.1 for subsamples of diagnoses causing a health shock aggregated by ICD-chapter groups. 
Robust standard errors clustered at individual (experimental) level are in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
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Table C3 – Impact of a health shock on the individual’s welfare payments, by type and ICD-chapter 
disease group 

  Sickness absence  
payments 

Unemployment  
payments 

Disability pension 
payments 

  (1) (2) (3) 
DDidst X cancers 3.651*** 0.273*** 0.086***  (0.008) (0.002) (0.005) 
DDidst X circulatory  2.956*** 0.322*** 0.219*** 
 (0.012) (0.004) (0.007) 
DDidst X mental  1.921*** 0.150*** 0.354*** 
 (0.027) (0.008) (0.016) 
DDidst X nervous  1.732*** 0.151*** 0.207*** 
 (0.035) (0.010) (0.019) 
DDidst X digestive  1.937*** 0.241*** 0.098*** 
 (0.013) (0.004) (0.007) 
DDidst X musculoskeletal  2.435*** 0.234*** 0.388*** 
 (0.019) (0.006) (0.011) 
DDidst X urinary  1.952*** 0.193*** 0.077*** 
 (0.018) (0.005) (0.010) 
DDidst X respiratory  1.697*** 0.191*** 0.160*** 
 (0.023) (0.007) (0.013) 
DDidst X metabolic  2.027*** 0.197*** 0.212*** 
 (0.030) (0.009) (0.017) 
DDidst X bloodforming 2.452*** 0.235*** 0.125*** 
 (0.072) (0.021) (0.042) 
DDidst X sense 2.189*** 0.210*** 0.115*** 
 (0.027) (0.008) (0.015) 
DDidst X skin 1.734*** 0.197*** 0.249*** 
 (0.053) (0.017) (0.028) 
DDidst X infectious 1.839*** 0.219*** 0.093*** 
  (0.033) (0.010) (0.017) 
  

   

Total observations 10,665,937 11,032,884 10,665,937 
Total number of IDs 2,242,971 2,243,040 2,242,971 

Note: Models were estimated according to Eq.1 for subsamples of diagnoses causing a health shock aggregated by ICD-chapter groups. 
Robust standard errors clustered at individual (experimental) level are in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
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Table C4 – Mitigating impact of medical innovations on the individual’s welfare payments, by type 

 Sickness absence payments Disability pension payments 
 L1 NMEs L1 patents L1 NMEs L1 patents  

(1) (2) (5) (6) 
DDidst x med.innovations 0.271*** -1.107*** 0.292*** 0.113*** 
 (0.075) (0.023) (0.040) (0.013) 
By event years 

  
  

DDidst x med.innovations  0.215** -1.059*** 0.233*** 0.108*** 
x event year 0 (0.085) (0.026) (0.037) (0.012) 
DDidst x med.innovations  0.511*** -1.122*** 0.331*** 0.114*** 
x event year 1 (0.090) (0.028) (0.049) (0.017) 
     
Observations 10,665,937 10,665,937 10,665,937 10,665,937 
Number of IDs 2,242,971 2,242,971 2,242,971 2,242,971 

Note: Models are estimated according to Eq.2. Robust standard errors clustered at individual (experimental) level are in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
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Figure C1 – The impact of the health shock on family income (IHS) by event-years, by single disease 

Note: point estimates and 95% confidence intervals. 
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Figure C2 – The impact of the health shock on the individual’s own income (IHS) by event-years, by single disease 

Note: point estimates and 95% confidence intervals. 
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Figure C3 – The impact of the health shock on the partner’s income (IHS) by event-years, by single disease 

Note: point estimates and 95% confidence intervals. 
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Figure C4 – The impact of the health shock on the adult child’s income (IHS) by event-years, by single disease 

Note: point estimates and 95% confidence intervals. 
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Figure C5 – The impact of NMEs on family income (IHS) by event-years, by single disease 

Note: point estimates and 95% confidence intervals. 
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Figure C6 – The impact of patents on family income (IHS) by event-years, by single disease 

Note: point estimates and 95% confidence intervals. 
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Figure C7 – The impact of NMEs on the individual’s’ own income (IHS) by event-years, by single disease 

Note: point estimates and 95% confidence intervals. 
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Figure C8 – The impact of patents on the individual’s own income (IHS) by event-years, by single disease 

Note: point estimates and 95% confidence intervals. 
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Figure C9 – The impact of NMEs on the partner’s income (IHS) by event-years, by single disease 

Note: point estimates and 95% confidence intervals. 
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Figure C10 – The impact of patents on the partner’s income (IHS) by event-years, by single disease 

Note: point estimates and 95% confidence intervals. 
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Figure C11 – The impact of NMEs on the adult child’s income (IHS) by event-years, by single disease 

Note: point estimates and 95% confidence intervals. 
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Figure C12 – The impact of patents on the adult child’s income (IHS) by event-years, by single disease 

Note: point estimates and 95% confidence intervals.  
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Appendix D  

Table – Results from the model-based recursive partitioning 

Disease group Disease group name (short) The value of the partitioned variable 
with largest instability 

  L1 NMEs L1 patents 
1 Lip cancer 1986 2002 
2 Oesophagus cancer 1981 1981 
3 Stomach cancer 1981 1981 
4 Small intestine cancer 1994 1994 
5 Liver cancer 1997 1997 
6 Gallbladder cancer 2000 2000 
7 Pancreas cancer 1995 1995 
8 Respiratory organs cancer 1995 1995 
9 Bone cancer 1981 1981 

10 Skin cancer 1999 2003 
11 Soft tissue cancer No instability No instability 
12 Breast cancer 1983 1983 
13 Vulva cancer 2005 1997 
14 Ovary cancer 2005 2005 
15 Male genital organs cancer 1988 1988 
16 Kidney cancer 1996 2002 
17 Bladder cancer 1997 1997 
18 Eye cancer 1992 1996 
19 Thyroid gland cancer No instability No instability 
20 Hodgkin's cancer 1985 1985 
21 Non-Hodgkin's cancer 1995 1995 
22 Immunoprof. cancer 1994 1994 
23 Leukaemias 1997 1997 
24 In situ neoplasms 2002 2002 
25 Benign neoplasms 1996 1996 
26 Rheumatic heart disease 1996 2001 
27 Hypertensive 1982 1982 
28 Ischaemic heart disease No instability No instability 
29 Pulmonary heart disease 1984 1991 
30 Pericarditis 1981 1981 
31 Endocarditis 1993 1993 
32 Arrhythmias No instability No instability 
33 Cerebrovasc. 2004 2004 
34 Arteries 1995 1988 
35 Veins 1988 1988 
36 Organic disorders 1981 1981 
37 Alcohol disorders 1998 No instability 
38 Schizophrenia 1981 1981 
39 Mood disorders 1982 1984 
40 Neurotic disorders 1988 1988 
41 Personality disorders 1987 1987 
42 Mental retardation 1982 1982 
43 Inflammatory CNS disorders 1998 1998 
44 Demyelinating disorders 1983 1983 
45 Epilepsy 2005 2005 
46 Migraine 1993 1990 
47 Sleep disorders 1982 1982 
48 Nerve disorders 2005 2005 
49 Oesophagus 2002 2003 
50 Appendix 2002 1987 
51 Hernia 1992 2004 
52 Intestines No instability 1989 
53 Peritoneum 1983 1983 
54 Liver 1995 1988 
55 Gallblader No instability No instability 
56 Infectious arthr. 1986 1986 
57 Rheumatoid 1987 1999 
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58 Arthrosis 1992 1992 
59 Deforming 1982 1982 
60 Glomerular 1991 1991 
61 Urolithiasis 2005 2005 
62 Other urinary 1981 No instability 
63 Male genital No instability No instability 
64 Female genital 1982 1982 
65 Upper respirat. 1997 1997 
66 Pheumonia 2005 1995 
67 COPD 2000 2000 
68 Asthma 2005 2005 
69 Diabetes 1988 1988 
70 Thyroid gland 2004 2004 
71 Endocrine 1991 No instability 
72 Obesity No instability No instability 
73 Nutr. anaemias 2001 1982 
74 Haem. anaemias 1981 1981 
75 Coagulat. Defects 1983 1983 
76 Eyelid 1983 1998 
77 Cataract 1990 1990 
78 Glaucoma 1994 1994 
79 Globe 1984 1984 
80 External ear No instability No instability 
81 Inner ear 1989 1989 
82 Skin 1982 1982 
83 Bullous 1982 1982 
84 Intestinal inf. No instability No instability 
85 Tuberculosis 2001 2001 
86 Bacterial 2003 1998 
87 Sexually transm. 1994 1994 
88 Viral inf. 1984 1984 
89 Viral hepatitis 1999 2000 
90 HIV 2005 2005 
91 Protozoal 2005 2004 
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