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Abstract

This paper estimates the curvature of the Earth, defined as one over its radius,
without relying on physical measurements. The orthodox model states that the
Earth is (nearly) spherical with a curvature of 7/20,000 km. By contrast, the
heterodox flat-Earth model stipulates a curvature of zero. Abstracting from the
well-worn arguments for and against both models, rebuttals and counter-rebuttals
ad infinitum, we propose a novel statistical methodology based on verifiable flight
times along regularly scheduled commercial airline routes; this methodology allows
for both estimating and making inference for Earth’s curvature. In particular, a
formal hypothesis test resolutely rejects the flat-Earth model, whereas it does not
reject the orthodox spherical-Earth model.

KEY WORDS: Flat earth, flight times, nonlinear least squares, trigonometry.

JEL classification codes: C12, C13.



1 Introduction

This paper designs and executes an even-handed, replicable, and powerful test of the
hypothesis that the Earth is flat against the hypothesis that the Earth is spherical. We
accomplish this by developing an accurate estimator of the curvature of the Earth, defined
as one over its radius, which allows for making inference as well. If the Earth is flat, its
curvature is equal to zero; if it is instead spherical according to the orthodox model, its
curvature is equal to 7/20,000 km = 1.5708 - 1074 km™'.

This subject is of current policy interest because the flat-Earth movement is gathering
strength given its viral attractiveness in social networks. There are international societies,
conferences, and widely distributed professional documentary films about it. Policy
implications are especially heavy because the flat-Farth hypothesis flirts with the broader
spectrum of conspiracy theories, such as: Was JFK assassinated by the FBI? Were the
moon landings faked? Was 9/11 an inside job? Etc.

Testing for veracity or falsity is an arduous and socially valuable task because some
conspiracy theories have historically turned out to be conspiracy facts. Just to give one
big example: The entire Catholic Church hierarchy conspired to claim that the so-called
“Donation of Constantine” had given them temporal control over Italy, and they got away
with it for several centuries; however, it was fake news.

The flat-Earth hypothesis is also of scientific interest because the response from
spherical-Earth proponents is usually limited to: (1) appeal to authority and (2) refusal
to debate. Surely, astronauts or Antarctica explorers can opine and academics can publish
papers that are not accessible to mere mortals, but this is not enough to satisfy the
average educated, curious, and skeptical layperson.

As an example of appeal to academic authority, consider Kuzii and Rovenchak (2019).
This paper is mathematically masterful, but not readily accessible to those outside the
narrow field of theoretical physics. Starting with Newton’s law of gravitation, they derive
expressions for the gravitational field of a two-dimensional mass, namely the flat-Earth
disk, with radius R and constant surface density. In lay terms, the key qualitative insight
is that the radial component of gravitational force at distance r from the origin increases
sharply and non-linearly towards the ‘edge’ of the disk, as the ratio r/R approaches one:
An individual walking towards the edge of a flat Earth would, therefore, feel the need to
bend as they walked or, alternatively, have the sensation that they were ascending up a
‘bowl’ from the origin — as illustrated by Kuzii and Rovenchak (2019, Figures 2 and 9) —
counter to actual sensorial experience.

Instead, such a fundamental question as whether the Earth is flat should ideally
be decisively resolvable for free, and without having to leave home or getting an advanced
university degree. This is the epistemological gap the paper aims to fill.

We apply state-of-the-art statistical methodology in an innovative design to reverse-
engineer three-dimensional information about Earth’s curvature from data collected on
the two-dimensional manifold that is the surface of the Earth. The only data needed are:
(i) longitude, (ii) distance from the North Pole, and (iii) flight times between airports



connected by regularly scheduled commercial routes. Both flat-Earth and spherical-Earth
models agree on the first two items. The third item is essentially unfalsifiable due to the
large number of sources that report aviation data, so it will act as the ‘Judge of Peace’ in
the statistical analysis.

First, we establish an accurate relation between (average) flight time and distance
using the routes where the two models most agree: along a North-South axis (allowing for
North Pole flyover). We obtain an estimated linear model with an adjusted R? of 99.9%
that must be acceptable to both camps. Second, we use this relation to execute a powerful
test using the routes where the two models most disagree: along an East-West axis far
away from the North Pole. This even-handed test resolutely rejects the flat-Earth model.,
whereas it does not reject the orthodox spherical-Earth model.

The crucial breakthrough is to reverse-engineer from surface data an estimator of
the curvature of the Earth (and by implication its radius) that enjoys a near-perfect
99.3% relative accuracy just by applying the statistical method on publicly available and
verifiable data, without relying on complex (and expensive) physical measurements.

The remainder of the paper is organized as follows. Section 2 develops a general
formula for the distance between two points on Earth that embeds both the flat-Earth and
spherical-Earth models as special cases of a ‘curvature’ parameter. Section 3 establishes
an accurate relation between (average) flight time and distance using airline routes along a
North-South axis (allowing for North Pole flyover), where the two models are in agreement
with respect to distance between airports. Section 4 uses this relation to execute a formal
hypothesis test by focusing on airline routes where the flat-Earth model and spherical-
Earth model are most in disagreement: the ones along an East-West axis far from the
North Pole. Section 5 concludes by reaffirming the core insights of our paper: namely,
that it is possible to accurately reverse-engineer three-dimensional information about
Earth’s curvature using only surface data; as well as to decisively and irrefutably settle the
lingering dispute between the flat-Earth and spherical-Earth proponents by designing and
executing a test that is not only even-handed and replicable, but also rests on elemental
trigonometry only and is couched in terms of data that are intuitive and verifiable to a
layperson. An appendix contains mathematical proofs and additional material.

2 Integrated Model of Distance Between Two Points

This is a tale of two maps. It takes a model to beat a model: If flat-Earthers did not have
a map to call their own, running any test would be like trying to nail jelly to a wall.

2.1 The Map of the Flat Earth

Thankfully, there exists a map that is well-accepted within the flat-Earth community. It
is the polar azimuthal equidistant projection of the orthodox globe, centered on the North
Pole. This well-known geometric construct (Snyder, 1987, p. 192) means that flat-Earthers
and spherical-Earthers agree on two measurements: (i) longitude and (ii) distance from



the North Pole of a given city. As an illustration, Figure 2.1 displays side-by-side the
heterodox flat-Earth map and the orthodox spherical-Earth globe.!
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Figure 2.1: Flat-Earth map and spherical-Earth globe on the same scale.

The organizers of the 2018 Flat Earth International Conference had Alexander Gleason’s
flat-Earth map marketed during their event, as evidenced by the documentary Flat Earth:
To the Edge and Back (at the 21- and 24-minute marks).” In addition, it conforms one-to-
one with two other prestigious maps in the flat-Earth community: the one drawn by the
movement’s founder (Rowbotham, 1881, Figure 54) and the one promoted on the current
Flat Earth Society’s website. It also coincides with two more maps of strong historical
and political significance (cf. Appendix B). On this basis, we can safely conclude that
flat-Earth proponents coalesce around Gleason’s 1892 North-Polar azimuthal equidistant
projection as a fair and legitimate representation of their belief system.

LAlthough the globe is a three-dimensional object it can also be called a ‘map’ because it is a
diagrammatic representation that shows the relative positions of identifiable points.

2The serious flat-Earth activist Nathan Thompson also promoted the same map in his segment of the
high-profile 2018 Netflix documentary Beyond the Curve, starting at the 14-minute mark.
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At the epistemological level, the flat-Earth Gleason map and the spherical-Earth
orthodox globe are falsifiable. It means that both of them are not religions but scientific
theories according to Popper (1959), and as such earn the right to an even-handed
treatment. Nonetheless, they are so incompatible with each other — as illustrated by
Figure 2.1 — that designing an easily replicable, yet powerfully conclusive statistical
analysis that falsifies either one or the other lies well within the reach of determined
statisticians.

2.2 Longitude

Longitude is an angular measure centered on the North Pole computed relative to a
reference meridian. The reference (or ‘prime’) meridian is traditionally taken as the one
that radiates out of the North Pole through the Greenwich Royal Observatory (just across
the River Thames from London) and beyond. The flat-Earth map of Figure 2.1 indicates
(in small print) the Greenwich meridian extending to the right of the North Pole. A city’s
longitude is customarily expressed as a number of degrees in the [0°, 180°] range, either
East or West of Greenwich. Not all meridians can be shown on a map, of course; the
flat-Earth map in Figure 2.1 shows all meridians that are integer multiples of 15°. For the
purpose of the upcoming test, it is practical to deviate from custom and convert longitude
from degrees into radians (which we denote by ) as follows.

Definition 2.1.

1. If a point has longitude conventionally expressed in degrees as d°m's” Fast, then its
longitude expressed in radians is

7T m s
= — 4+ —) . 2.1
o 180° (d + 60 + 602) (2.1)

2. If a point has longitude conventionally expressed in degrees as d°m's" West, then its
longitude expressed in radians is

7 m 5
f— — (d m _> _ 2.2

180° * 60 * 602 (22)
This mapping of longitudes into radians 6 € [—m, 7] is valid in both the flat-Earth model
and the spherical-Earth model. The sign comes from the trigonometric convention that
turning counterclockwise is positive.

2.3 Distance From the North Pole

Distance from the North Pole according to the flat-Earth map in Figure 2.1 can be
inferred from the legend at the bottom that says “60 nautical miles to the degree”. Given
that the North Pole is at 90 degrees of latitude relative to the Equator, this implies
that the distance from the North Pole to the Equator is 60 x 90 = 5,400 nautical miles.
A helpful double-sided ruler also shows that there are 208 land miles (what we would
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now call US miles) to 180 nautical miles; however, the more accurate ratio is 207.6 US
miles to 180.4 nautical miles. It implies that the distance from the North Pole to the
Equator is 5,400 x 207.6/180.4 = 6,214 US miles. Given that there are 1.6093 US
miles to the kilometer, we finally get a distance from the North Pole to the Equator of
6,214 x 1.6093 = 10,000 km. This is the same distance as in the spherical-Earth model
because the meter was precisely defined by the French Revolution as the (1/10, 000, 000)
part of the distance from the North Pole to the Equator.

There is no surprise here: Polar azimuthal projection preserves distance from the
North Pole, but it was worth double-checking by hand. The correspondence runs much
deeper though, as any two cities on the same meridian have the same distance (both
in terms of centimeters on the map and corresponding kilometers in the real world) on
the flat-Earth map and the spherical-Earth globe; the scale is 11 centimeters to 10,000
kilometers. This is even true when two cities are on anti-meridians (meaning 180° apart
from each other) if they are both North of the Equator.

This is the how we can say that the two maps in Figure 2.1 are on the same scale.
Visual confirmation comes easily because Canada has basically the same shape and size
in both the flat-Earth map and the orthodox globe. Once again, the requirements of our
test make us depart from convention by using not latitude (expressed in degrees North or
South away from the Equator) but instead distance from the North Pole.

o, . S‘ L T
Proposition 2.1. Define the constant ¢” := 30000 Km -

1. If a point has latitude d°m's” North, then its distance from the North Pole is

T o m s 1
T—1800 [90 —(d+6—0+@)] X;,. (23)

2. If a point has latitude d°m’s" South, then its distance from the North Pole is

™
r =
180°

[90°+ (d+%+%>] x Cis (2.4)

These two statements are valid in both the flat-FEarth model and the spherical-Earth model.

The constant ¢® := 7/20, 000 km is equal to one over the radius of the Earth if the Earth
is spherical according to the orthodox model®, so it represents the curvature of the Earth
(or, one could also say, of the meridians) in the orthodox model. If the Earth is flat,
S does not serve to measure curvature anymore, but it still serves to convert latitude into
distance from the North Pole.

The first reason why we insist on defining the location of a specific point on the Earth
by using the pair (r, ) is that both the flat-Earth model and the spherical-Earth model
agree on (r,60). The second reason is that (r, ) constitute what is known as a pair of polar
coordinates, which facilitates usage of standard trigonometric techniques.

3Hence the superscript S in ¢°.



2.4 Distance Between Two Points in the Flat-Earth Model

We can now give the formula for the distance between any two points on the flat Earth.

Theorem 2.1. Consider two points with polar coordinates (r1,01) and (rq,05), respectively.
In the flat-Farth model, the distance between these two points is equal to

dF(T'l, 81, T, 02) = \/T’f + 7’% — 27’17’2 COS(091 — (92) . (25)

This is what one would find by using a hand-held ruler to measure the length of a straight
line between any two cities on the flat-Earth map in Figure 2.1.

2.5 Distance Between Two Points in the Spherical-Earth Model

To continue the parallel examination of the orthodox spherical-Earth model alongside its
heterodox flat-Earth rival, we now present a counterpart to Theorem 2.1.

Theorem 2.2. Consider two points with polar coordinates (r1,61) and (rq, 0s), respectively.
In the spherical-Earth model, the distance d°(ry, 01; 19, 0:) between these two points is equal
to

1 0, — 0. 0, — 0.
5 arccos {C082 ( ! 5 2) cos[(r1 — r2)c®] + sin® ( : 5 2) cos|(r + Tz)cﬂ} . (2.6)

This formula is particularly intuitive in two cases:

1. If both points are on the same meridian, then cos? (%) =1 and sin? (91‘%92) =0,
so the output is the difference between the two distances from the North Pole. This
corresponds to a path that does not go through a pole.

2. If the two points are on antimeridians relative to each other, then cos? (@) =0

and sin? (%) =1, so the output depends on the sum of the two distances from

the North Pole. This corresponds to a path that goes through a pole.

In the general case, since cos> (@) + sin? (@) = 1, the distance will be a weighted
average of the distance implied by the difference r; — ry (not going through/near a pole),
and the one implied by the sum 7, + 79 (going through/near a pole), with their relative
importances controlled by the difference of longitudes #; — #,. Once again, this is what
we would find if we used a flexible measuring tape on the orthodox globe in Figure 2.1.

2.6 Making Curvature a Free Input

This section contains our final mathematical result: an integrated formula for distance
that embeds both the spherical-Earth model and the flat-Earth model as special cases,
depending on how the curvature parameter is dialed up or down.



Theorem 2.3. Define the distance function D(T1,91;T2,«92;c) as

(2.7)

Larccos {cos? (25%) cos|[(ry — ra2)c] + sin® (£52) cos[(r1 + r2)c]}  ifc >0
V1?2 + 13— 2rir9 cos(0) — 0s) ife=0

on the domain {(ry,01;72,09;¢) € R : 17 > 0,79 > 0,¢> 0,7¢ < 7, r9¢ < 7}
The function D is continuous on its domain of definition.

The function D embeds both the spherical-Earth distance function as the special case
¢ = ¢ and the flat-Earth distance function as the special case ¢ = 0. Having ¢ as a free
input (parameter) will allow us to construct an estimator of Earth’s curvature as well as a
test of the flat-Earth model against the spherical-Earth model. In order to implement such
statistical methodology in practice, Section 3 will need to establish an accurate relation
between (average) flight time and distance that it easy to verify from publicly available
data.

At the epistemological level, moving from the spherical-Earth model to the flat-Earth
model (or vice-versa, as has been the case in the distant past) would constitute a paradigm
shift in the sense of Kuhn (1962). The structure of scientific revolutions is such that they
are either-or propositions: you are either with the old paradigm or with the new one,
and there is nothing in-between. This makes cogent evaluation of the relative merits of
both camps extremely contentious. The value of Theorem 2.3 is that it integrates both
paradigms into a broader continuum that restores the possibility of civilized testability.

3 Relation Between Flight Time and Distance

In order to establish an accurate relation between (average) flight time of regularly
scheduled commercial aircraft and the distance between two points on the surface of the
Earth, in a way that is acceptable to all, our initial focus will be on airline routes where
the flat-Earth model and the spherical-Earth model most agree.

3.1 Geometric Analysis of Agreement

Pairs of locations for which both models give the same distance are identified by the
following theorem.

Theorem 3.1. Consider two points with polar coordinates (r1,0,) and (ry, 05), respectively.
Then d¥(ry,01;79,05) = d%(r1, 01579, 05) if either one of the two following conditions is
satisfied:

Condition 1: The points are on the same meridian (6, = 0s);
Condition 2: The points are on antimeridians (|6y — 0s| = w) and r1 + o < 20,000 km.



3.2 Airport Pairs on a North-South Axis

Manual exploration of the website flightsfrom.com yields ten commercial airline routes
(listed in Table 3.1) that almost perfectly (a.p.) satisfy the conditions of Theorem 3.1.
The first eight routes (a.p.) satisfy Condition 1 (same meridian) and the last two routes
(a.p.) satisfy Condition 2 (antimeridian, flying through the North Pole route). The
distances between airports have been obtained from the original latitude and longitude
data by following the derivations of Section 2. Just to illustrate, and for the sake of clarity,
we can provide a fully worked-out example of the calculations for the distances between
Johannesburg and Istanbul in the first row of Table 3.1. Applying Proposition 2.1 and
Definition 2.1, respectively, to the latitude and longitude data yields

r1 = 12,904 km
ro = 5,415 km

0, = 0.4931 rad
f, = 0.5014 rad

Johannesburg:
Istanbul:

Based on these four inputs, both formulas (2.5) and (2.6) give a distance of 7,489 km

(rounding to the nearest integer). Readers are encouraged to double-check these

computations independently, as they are technically central to the paper.

| City | Airport | Latitude | Longitude |r (km)| 0 (rad) | d" (km) [ d® (km) |
Johannesburg (RSA) | JNB | 26°08'00”S | 28°15'00"E | 12,904 | 0.4931 7 4R9 7 489
Istanbul (Turkey) IST | 41°15'44"N | 28°43'40"E | 5,415 | 0.5014 T o
Santiago (Chile) SCL | 33°23/34”S | 70°47'08"W | 13,710 | —1.2354 8238 8232
New York (USA) JFK | 40°38'23"N | 73°46'44"W | 5,484 | —1.2877 ’ '
Frankfurt (Germany) | FRA | 50°02’00"N | 08°34'14"E | 4,441 | 0.1496 4561 4560
Abuja (Nigeria) ABV | 09°0024"N | 07°1547"E | 8,999 | 0.1268 » "
Abu Dhabi (UAE) AUH |24°25'59"N | 54°39'04"E | 7,285 | 0.9538 3937 3936
Mahé (Seychelles) SEZ | 04°40'28”S | 55°31'19"E | 10,519 | 0.9690 ’ '
London (UK) LHR |51°28'39"N | 00°27'41"W | 4,280 | —0.0081 5.097 5.097
Accra (Ghana) ACC | 05°36'17"N | 00°10°03"W | 9,377 | —0.0029 | *° ’
Melbourne (AUS) MEL | 37°40'24"S | 144°50/'36"E | 14,186 | 2.5280 8191 8173
Tokyo (Japan) NRT | 35°45'55”N | 140°23'08"E | 6,026 | 2.4502 ’ '
Hong Kong (China) HKG | 22°18'32"N | 113°54’'52"E | 7,521 | 1.9882 6.039 6.032
Perth (AUS) PER | 31°56'25”S | 115°58'01”E | 13,549 | 2.0240 ’ '
Cape Town (RSA) CPT | 33°58'10”S | 18°35'50"E | 13,774 | 0.3246 9.433 9.386
Frankfurt (Germany) | FRA | 50°02’00"N | 08°34'14"E | 4,441 | 0.1496 ’ ’
Dubai (UAE) DXB | 25°15'10"N | 55°21'52"E | 7,194 | 0.9663 13.403 | 13.390
Los Angeles (USA) LAX | 33°56'33"N | 118°24'29"W | 6,229 | —2.0666 ' ’
Doha (Qatar) DOH |25°16'23"N | 51°29'36"E | 7,192 | 0.8987 12.994 | 12.983
San Francisco (USA) | SFO | 37°37'08"N | 122°22/30"W | 5,820 | —2.1358 ’ '

Table 3.1: Ten airport pairs with essentially identical flat-Earth and spherical-Earth
distances.

Disagreement between the two models is exceedingly small for all of the ten airport pairs
listed in Table 3.1: It ranges from zero to only 47 kilometers at most, never exceeding 1%
of the flight distance.



3.3 Flight Times Along a North-South Axis

We collect flight times over the routes in Table 3.1 from flightaware.com. These are
defined as the average take-off-to-landing time over all the flights that took place over a
three-month window.* The data were manually collected from the website on 12 November
2022, and go as far back as 12 August 2022. We carried out an independent check over
the ten most recent flights with a competitor site, airportia.com, and found negligible
discrepancies of only a few minutes at most. Gate-to-gate times are slightly longer because
of taxiing around the runway; flightaware.com reports those too, and they match on
average what the airline itself has announced, which is yet another independent check.

Given the economic incentives for airlines, the needs of passengers, and their ability to
transmit and propagate information about flight arrival and departures via social networks,
as well as oversight by regulatory authorities, it is simply not possible to cheat on such
data systematically, let alone by a wide margin.

| Airline | Route | Flight # | Flight Time | Average |
T e | ] T [
s e | A e B S
i e | Lo S| B OO0 |,
o e | o S
ot | R T
ETe i Al AT
v | B | G|

Table 3.2: Average flight times between ten airport pairs with essentially identical flat-
Earth and spherical-Earth distances.

Remark 3.1 (Average flight time). Each “flight time” in column four of Table 3.2, and
later in Table 4.2, is actually an average of many individual flight times collected; but, in
order to keep terminology compact, what we mean by “average flight time” listed in column
five of the two tables is the average of the two “flight times” in column four (to and fro).

4The number of flight times over which we average depends on the sample size for any given route in
Table 3.2; the mean and median of the twenty sample sizes are, roughly, equal to 65.
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Clearly, we need to work with this overall average flight time in order to eliminate (or at
least mitigate) effects of head and tail winds. m

3.4 Regressing Average Flight Time on Distance

Having gathered airport-pair-distance data (Table 3.1) and flight-time data along the
same routes (Table 3.2), we are now ready to fit a linear regression model of average flight
time on distance for a generic flight. Given the visible and obvious agreement between the
flat-distance column and the spherical-distance column in Table 3.1, this model should be
equally agreeable to flat-Earthers and spherical-Earthers alike. The model specification is
grounded in the fundamental premise that engineering and economic constraints governing
the modern airline industry dictate that average flight times depend on distance and little
else.

As widely reported in the popular and business press, average flight times have,
counterintuitively, increased despite advances in technology; for example, see Ledsom
(2022). These increases are attributed to practices like “schedule padding” and the desire
to save money on fuel; recall however that our data collection window was a mere three
months, obviating any issues in our case.

We stack the vector of ten spherical-Earth distances atop the vector of tenn flat-Earth
distances to construct an independent variable (or regressor) of dimension 20 x 1 which
we call X. We then stack two copies of the corresponding average flight times on top of
each other to construct a dependent variable (or regressand) of dimension 20 x 1 which
we call Y. Finally, we regress Y (unit: hours) on a constant and X (unit: kilometers) via
ordinary least squares. The result is:

34 X

Y=""h+

S — 1
60 ' 905 km/h (3:1)

This means that in order to predict average flight times, we just need to charge a constant
penalty of 34 minutes for the initial climb after takeoff and the final descent before landing,
and assume an average cruising speed of 905 km/h that carries the aircraft from departure
point to arrival point.
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Adjusted R? = 99.9%
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Figure 3.1: Linear regression of average flight time on a constant and distance along a
North-South axis.

Figure 3.1 provides a graphical illustration. The adjusted R? of the estimated linear
regression model (3.1) is a near-perfect 99.9%, so treating the relation as exact (over the
range of observed distances in the data, or slightly outside of it) seems justified.

4 Testing the Flat-Earth Model

Whereas all the work so far has been to establish commonalities between the flat-Earth
model and the spherical-Earth model in order to establish an (essentially) exact relation
between (average) flight time and distance, we now turn to the maximal disagreement in
order to set up a powerful test of the flat-Earth model.

4.1 Geometric Analysis of Disagreement: Latitude & Parallels

The main difference between the two models is quite obvious: It lies in the implied
circumferences of the eleven parallel circles visible in Figure 2.1. A parallel circle is the
ensemble of all the points on the surface of the Earth that are at the same distance from
the North Pole.

In extracting information from Gleason’s map, we ignore the Arctic and Antarctic
Circles (both clearly labeled) as well as the Tropics of Capricorn and Cancer (one labeled,
the other one not but still clearly identifiable). These four traditional circles pertain
more to the solar cycle of seasons than to the geometry of the surface of the Earth itself.
The pertinent information lies in the eleven circles that are labeled from 0° to 75° in
15° latitude intervals on both sides of the Equator. Regarding the contentious 90° South
parallel circle, which may or may not reduce to a single point, we can safely omit it, since
no regular commercial airline route flies over Antarctica.
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Because of the geometry of the polar azimuthal equidistant projection, parallel circles
go through the same cities in the flat-Earth model as in the spherical-Earth model. Not all
parallel circles can be represented on a map, of course, so it is only the major ones, the
ones on 15° latitude intervals, that are plotted. Figure 4.1 shows how the perimeters of
the major parallel circles according to the two respective models diverge as one moves
further away from the North Pole.

1 x10¢

E i Flat-Earth Model |
° 10 O  Spherical-Earth Model
o
5 8l -
Q
E 6 T
3
S 4l o © 9 o o '
P (o)
o 2 (o) -
= )
O 0 1 1 L 1 1 1 L 1 1

O% Oe Oé Oe 0% QO O% 0% O% 0% O%

Latitude

Figure 4.1: Implied circumferences of the eleven major parallel circles.

The two formulas used to generate Figure 4.1 are, for latitude £ € {0°,15°,...,75°},

27 90° =€ 10,000 km if North

90°
C*(0) == { 27 x 10,000 km if £ =0° (4.1)
2%9%dt£x]UJm0knl if South
S —
C>(0) == 4 cos (77 1800) x 10,000 km (4.2)

Remark 4.1 (Deviations from perfect sphericity). Formula (4.2) for C(¢) assumes that
the Earth is a perfect sphere, in which case the circumference of the Equator is four times
its distance from the North Pole. The mainstream view is more nuanced: The Earth is
spherical only approximately; it is slightly flatter around the poles, and bulges a little
more around the Equator. In this paper, we opt to ignore such refinements and instead
treat the Earth as a perfect sphere for the sake of simplicity. m

Figure 4.1 shows that initially, when one is close to the North Pole, in particular at 75°
of latitude, there is very little difference between the circumferences implied by the two
models. However, the difference gradually increases as one moves further away from
the North Pole, and becomes huge beyond the Equator into the Southern hemisphere.
This feature allows us to construct a powerful test of the flat-Earth model against the
spherical-Earth model.
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4.2 Airport Pairs on an East-West Axis Far From North Pole

Using the three criteria highlighted below:

1. departure and arrival cities linked by a direct regularly scheduled commercial flight,

2. being as far away from the North Pole as possible,

3. and spanning an arc of longitude as wide as possible,

we put together in Table 4.1 a list of ten airport pairs where the flat-Earth model

spherical-Earth model strongly disagree with respect to distance.

| City

| Airport | Latitude | Longitude | r (km) | 0 (rad) | d" (km) | d> (km) |

Santiago (Chile) SCL | 33°23'34”S | 70°47'08"W | 13,710 | —1.2354 93 391 0.646
Auckland (NZ) AKL | 37°00'29”S | 174°47'30"E | 14,112 | 3.0507 ' ’
Johannesburg (RSA) | JNB | 26°08'00”S | 28°15'00"W | 12,904 | 0.4931 93438 | 11.016
Sydney (AUS) SYD | 33°56'46"S | 151°10'38"E | 13,772 | 2.6385 ' '

Sao Paulo (Brazil) GRU | 23°26'08"S | 46°28'23"W | 12,604 | —0.8111 11.825 6.529
Luanda (Angola) LAD | 08°51'30”S | 13°13/52"E | 10,984 | 0.2309 ' ’
Papeete (France) PPT | 17°33/24"S | 149°36'41"W | 11,951 | —2.6112 0.185 4690
Nouméa (France) NOU | 22°00'59”S | 166°12'58"E | 12,446 | 2.9010 | "
Auckland (NZ) AKL | 37°00'29"S | 174°47'30"E | 14,112 | 3.0507 13.593 5.339
Perth (AUS) PER | 31°56'25”S | 115°58'01E | 13,549 | 2.0240 ' ’
Johannesburg (RSA) JNB | 26°08'00”S | 28°15'00"W | 12,904 | 0.4931 18.334 5 889
Perth (AUS) PER | 31°56'25”S | 115°58'01"E | 13,549 | 2.0240 ' ’
Perth (AUS) PER | 31°56'25”S | 115°58'01”E | 13,549 | 2.0240 12.623 5 882
Port Louis (Mauritius) | MRU | 20°2548”S | 57°40'59"E | 12,270 | 1.0068 ’ ’
Easter Island (Chile) 1PC 27°09'53"S | 109°25'18"E | 13,018 | —1.9098 8.866 3.749
Santiago (Chile) SCL 33°23/34"S | 70°4708"W | 13,710 | —1.2354 ’ ’
Wellington (NZ) WLG | 41°19/38”S | 174°48'19"E | 14,592 | 3.0509 7 449 9 588
Melbourne (AUS) MEL | 37°40'24"S | 144°50'36"E | 14,186 | 2.5280 ’ ’
Singapore (Singapore) | SIN | 01°21’33"N | 103°59'22"E | 9,849 | 1.8150 14174 | 8649
Johannesburg (RSA) | JNB | 26°08'00”S | 28°15'00"W | 12,904 | 0.4931 ’ ’

Table 4.1: Ten airport pairs with strongly different flat-Earth and spherical-Earth distances.

There is a wide variety of airports (14 in total), spanning Africa, South America, Oceania,
and Asia. The average distance from the North Pole is 13,034 km, ranging from a minimum
of 9,849 km (Singapore) to a maximum of 14,592 km (Wellington). Longitudes (expressed

in radians) are quite different between departure and arrival airports, meaning that the

routes have a strong alignment with an East-West axis instead of a North-South axis.
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4.3 Flight Times Along an East-West Axis

As in Section 3.3, we collect the average takeoff-to-landing flight times between 12 August
and 12 November 2022 from flightaware.com. These are reported in Table 4.2.°

| Airline | Route | Flight # | Flight Time | Average |
AT s | S @ | LAt T s
o Ay | o SOt T
ot e | Dot | DT T |

| Do < Somts | O | 0000 | 5
el I Tl Il B
LATAN s | ot B2 St T LS 1
o e | N e | GET | W
Shsapre At | Snrers et S O s

Table 4.2: Flight times for ten airport pairs with strongly different flat-Earth and spherical-
Earth distances.

4.4 Statistical Analysis

We have now gathered all the building blocks to construct an estimator of Earth’s curvature,
along with corresponding inference. In order to conduct the analysis, we map distances
into average flight times using model (3.1):

34 D(Ti,l, 0i 15742, 05,2 C)

T(Ti,l,ai,l;mzﬁm;c) = "h+

= 4.
60 905 km/h ’ (43)

where (751, 6;1) are the polar coordinates of the first-listed airport on route i = 1,..., 10,
as recorded in Table 4.1, (r;9,6;2) are the polar coordinates of the second-listed one,
D is the integrated formula for distance from Theorem 2.3, and ¢ is the (unknown) true

5The number of flight times over which we average depends on the sample size for any given route in
Table 4.2; both the mean and median of the twenty sample sizes are, roughly, equal to 50.
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curvature. The curvature c is then estimated via nonlinear least squares:

10
é = argmin Z [Y; — T(T’i’l, 091‘,1; T’i72, ‘9@2; E)j| 2 s
T
where Y; is the average flight time for route 7, as recorded in the last column of Table 4.2,
and the ‘candidate’ value ¢ can range over the domain [0, min(min, (7 /r; 1), min;(7/ Tlg))]
The results’ are as follows:

¢=15779-10"" and SE(¢) =4.9813-107",

where the standard error SE(¢) is computed according to Greene (2008, Theorem 11.2);
note that we use the degree-of-freedom correction for 62 with K = 1 outlined below
Greene (2008, Equation (11-13)).

A classic (or normal-theory) nominal 95% confidence interval for ¢ is then given by

¢+1.96 - SE(¢) = [1.5681 - 107*,1.5876 - 107 . (4.4)

Alternatively, with the aim of more reliable small-sample inference, one can use the
studentized symmetric bootstrap based on resampling cases; for example, see Davison and
Hinkley (1997, Sections 6.2 and 7.4). In this way one obtains a nominal 95% bootstrap
confidence interval as

¢tk SE(¢) = [1.5674 - 107*,1.5883 - 1077] . (4.5)
Here, tk"* denotes the bootstrap estimate of the A quantile of the sampling distribution of

¢ — ¢
SE(?)

which we base on R = 99,999 bootstrap repetitions. As is often the case with small sample
sizes, the bootstrap confidence interval is somewhat wider than the classic confidence
interval, the reason being that

tphr =2.094 > 1.96 .

Nevertheless, both intervals come to the same conclusion: Whereas the flat-Earth
model is rejected, the spherical-Earth model is not. This is because whereas both intervals
do not contain zero, they do contain ¢ := 7/20,000 = 1.5708 - 10~*.

Another way to carry out inference on the flat-Earth model is to compute a p-value
for the one-sided hypothesis testing problem

Hy:c=0 vs. H:c>0.

The test statistic computed from the observed data is given by

¢ 15779107

= = —316.8 .
SE(¢)  4.9813- 107

For the sake of exposition, we omit the unit (km) from all radius and curvature values in this section.
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Therefore, the classic p-value is given by
p=Prob(X >316.8) with X ~ N(0,1),

where N(0,1) denotes the standard normal distribution. This results in p = 0 using
statistical software (up to machine precision). Alternatively, following the convention in
Davison and Hinkley (1997, Section 4.4), the bootstrap p-value is given by

:1+#{t*.zt}

& —¢
with ¢ = -2
R+1 "

- SE(e&)

where we still use resampling cases (without enforcing the null hypothesis in the bootstrap
distribution). This results in p = 1/(R+ 1), for any number of bootstrap repetitions R we
tried. For example, the number R = 99, 999 results in a bootstrap p-value of p = 0.00001.
Obviously, an even smaller p-value can be obtained by increasing the number R, but
doing so makes no practical difference.

Last but not least, by inverting the endpoints of the confidence intervals (4.4)—(4.5)
for Earth’s curvature ¢ one can back out nominal 95% classic and bootstrap confidence
intervals for Earth’s radius 1/c as

[6,299;6,377] respectively [6,296; 6, 380] . (4.6)

Obviously, both intervals contain the the orthodox value 1/c¢% = 20, 000/7 = 6, 366.

Since the point estimate of Earth’s radius is given by 1/¢ = 1/1.5779 - 10~* = 6,338,
even the somewhat wider bootstrap confidence interval implies a relative accuracy of 99.3%,
where we define relative accuracy as one minus the ratio of margin of error to point estimate.
For symmetric confidence intervals, which (up to the provided precision) both intervals
in (4.6) are, the margin of error is given by half the width of the interval, that is, by
the distance from the point estimate to either end point of the interval. Therefore,
we obtain the following relative accuracy based on the bootstrap confidence interval:
1 — (6,380 — 6,338)/6,338 = 0.9933.

4.5 Discussion

The results of our statistical analysis have been obtained by making some simplifying
assumptions:

1. In the spherical-Earth model, the Earth is perfectly spherical.

2. The mapping from distances to average flight times estimated via linear regression
on North-South routes was used as if it held perfectly.

3. The small sample (n = 10) that we have collected synthesizes the information
content of the other regularly-scheduled commercial airline routes not downloaded.

Having said that, none of these limitations, even taken together, really matter in the end:
Even if we increased the widths of the confidence intervals (4.4)—(4.5) by a factor of ten,
the flat-Earth model would still be rejected.
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Our contribution to a topic uniquely intriguing in both scientific discourse and in
popular culture, is that we managed to conclusively discriminate between two strongly
opposing physics models without doing any physics experiment or physics theory. Rather,
we have simply and carefully applied the statistical method. It is usually hard to change
one’s mind (let alone someone else’s mind) about a belief held; but for the proponents of
the flat-Earth model, we suggest an easy way to do so: Take one of the flights listed in
Table 4.2 and time it with your own watch. (Strictly speaking, take a round-trip flight
and then record the average flight time.)

Sometimes a simple picture that distills the essence of the result is a good way to
summarize the main point. There are two flights from Perth (Western Australia) that
take almost exactly seven hours on average: due North to Hong Kong, and due West
to Mauritius. Given near-identical average flight durations, the distances should match
too. They do not if the Earth is flat, but they do if it is spherical, as Figure 4.2 illustrates.

Figure 4.2: Perth-Hong Kong and Perth—Mauritius lines drawn in black.

If the Earth were flat, Perth—Mauritius should take twice as long as Perth—-Hong Kong,
which it does not. The fundamental contradiction is that, under the flat-Earth model, flight
durations observed on an East-West axis far away from the North Pole are incompatible
with flight durations observed on a North-South axis.

5 Conclusion

We have carried out a side-by-side evaluation of the heterodox flat-Earth model against
the orthodox spherical-Earth model, without a priori favoring one over the other. The
key was to use, as an instrument, the distance between airport pairs connected by
regularly scheduled commercial flights, whose times of departure and arrival are essentially
unfalsifiable public knowledge.
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We first selected airport pairs for which both models give (essentially) the same
distance, namely airport pairs on a North-South axis that are either on the same meridian
or on an antimeridian with a combined distance from the North Pole less than or equal to
20,000 km. We used these selected routes to establish an accurate relation between
(average) flight time and distance that should be acceptable to advocates of both models,
and then selected flight routes along an East-West axis far away from the North Pole to
set up a powerfully discriminant test between the two.

The outcome is that observed flight durations along an East-West axis far from the
North Pole are too short to be compatible with those along a North-South axis if the Earth
is flat. This test decisively rejects the flat-Earth model in favor of the spherical-Earth
model. Our novel test’s main and compelling advantages are (i) its simple yet powerful
design; (ii) its use of easily verifiable and uncontroversial data; and (iii) the fact that it was
executed in an even-handed and disinterested way. What is more, we have demonstrated
that the statistical method can estimate a physics quantity as important as Earth’s
curvature with a remarkably high relative accuracy of 99.3%, without relying on any
physical measurements whatsoever.
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A Mathematical Proofs

A.1 Proof of Proposition 2.1

The expression between square brackets is called the colatitude of the point, expressed in
decimal degrees. Rescaling by 7/180° converts it into radians. If the Earth is spherical
with distance from the North Pole to the Equator 10,000km, then Equations (2.3)—(2.4)
follow. If the Earth is flat, due to the fact that the polar azimuthal equidistant projection
preserves distances along meridians, the equations also hold.

A.2 Proof of Theorem 2.1

The first step of the proof is to convert the polar coordinates (r;,6;) into Cartesian
coordinates centered on the North Pole. In this layout, from Figure B.3 we see that the
Greenwich Meridian (0°) lies on the vertical axis in the direction of negative ordinates,
and the antimeridian (180°) on the same axis in the direction of positive ordinates. The
horizontal axis encompasses the 90° East meridian in the direction of positive abscissae,
and the 90° West meridian in the direction of negative abscissae. From this we deduce
that the Cartesian coordinates of points P, and P are as follows:

xy = 7y sin (60;) y1 = —rycos (0) (A.1)
To = rosin (6y) Yo = —13cos (0s) (A.2)

From Equations (A.1)—(A.2), we deduce the Euclidean distance between points Py and Ps
as follows:

d* (11,0139, 62) = /(0 — 1) + (y2 — 1n)?
= \/[rg sin (6y) — 1 sin (61)]% + [ra cos (63) — 1 cos (A1)
= \/rf + 13 — 2ry79 [sin (0;) sin (6y) + cos (A7) cos (02)]

= \/7’% + 12 — 2ryrycos (6; — 65) |

where the last line uses the classic trigonometric identity for angle subtraction.

A.3 Proof of Theorem 2.2

The shortest path between two points on the spherical Earth is the shorter arc of a great
circle that joins these two points. Great circles lie on the surface of the Earth and have
the same center as the Earth. To join two points P, := (r1,60;) and P; := (rq,0s), there
exists a unique great circle, except in the special cases where P, and P, are identical or
antipodal. All great circles have circumference 40,000 km (four times the distance from
the North Pole to the Equator) and radius p = 20,000 km/7. Thus, to obtain the distance
between P, and P, it is sufficient to determine the angular length a of the arc between
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these two points along the great circle that joins them. This is achieved by the law of
cosines; for example, see Kells et al. (1940, §156, Equation (18), p. 315):

cos a = cos(A1) cos(Ag) + sin(Ay) sin(Ag) cos(6; — 6s) ,

where )\; == r;c®, i € {1,2}. On this basis, we see that d°(ry, 01; 79, 65) is equal to

20,000 km
T

arccos [cos(A1) cos(A2) + sin(A;) sin(As) cos(6; — 65)] . (A.3)

Thanks to the classic trigonometric identities

cos(z — yb) + cos(x + y)
2 Y

cos(z —y) — cos(x + y)
2

sinzsiny = and coszcosy =

we conveniently rearrange the spherical-Earth distance d° (r1,01;72,05) as

1 1+ cos(fy, — 6
= arccos (2 2 V) cos(A — Ag)

1— _
N cos(2«92 6) COS()\1+)\2):| ‘

Using two other classic trigonometric identities, namely,

1 +cosx 2(3:) q 1 —cosz . 2(3:)
——F——=cos" () and ——F——=sin" (>
2 2 2 2/

we end up with d5(ry, 0; 79, 03) being equal to
1 _ _
—arccos [cos2 (91 5 92) COS()q — )\2) + sin? <01 5 92) COS(/\1 + /\2)]

S
1 _ _
= — arccos [cos2 <01 5 92) COS()\1 — )\2) + sin? (91 5 02) COS(>\1 + )\2)}

S

= i arccos {C082 (81 ; 62) COS[(Tl - 7“2)08] + sin? (91 ; 62) COS[(T‘l + Tz)cs]} )

S

and thus the proof of Theorem 2.2 is complete.

A.4 Proof of Theorem 2.3

What needs to be proven is that

11\1‘% D(ry,01;79,09;¢) = \/rf + 12 — 2ryrocos(f; — 6s) .

From the Taylor series expansion of the cosine around zero we obtain
2 2

cos(e) =1— % +0(e?) and arccos <1 - %) =e+o(e) .
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Remembering also that sin(¢) = & + o(¢), we now obtain:

cos(ry¢) cos(rac) + sin(ryc) sin(ryc) cos(6; — 0s)

_ (1 _ ij) <1 - %) T (r16) (rac) cos(6s — ) + 0 ()

72 412 — 2r179 cos(0y — 0y) 240 (02)
2
arccos [cos(ric) cos(rac) + sin(ryc) sin(rac) cos(6; — 6)]

and thus with (A.3):

= \/r% + 13 — 2ryrecos(f; — 6s) ¢+ o(c)

from which we deduce that lime g D(ry, 01; 19, 09;¢) = \/ 12+ 12 — 2ryry cos(0; — 0s).

A.5 Proof of Theorem 3.1

Let us remind the reader that the arc-cosine is a strictly decreasing function that maps
[—1,1] into [0,7]. Thus, arccos|[cos(z)] = z if and only if z € [0,7]. We start with the
same-meridian case 0, = 0y (modulo 27):

d" (r1, 01572, 00) = \/r% + 73 —2rry=|ry — 7| and

d> (rl, 0179, 62) = Cisarccos {Cos[(n — TQ)CS} }

1

= g arccos {cos[|ri — ra|c®] } = |r1 — 19| .

Next, we turn to the antimeridian case 6; = 6 + m (modulo 27):

d" (r1,01572,00) = \/r% + 124+ 2rry =11+ 71y and

dS (1"1, 01,79, 92) = %arccos {cos[(rl + TQ)CS}} )

This case splits into two sub-cases. The first sub-case is defined by r; + 79 < 20, 000 km,
implying that (r; + 75)c® < 7, so we have:

d° (7’1, 01; r2,62) = Cisarccos {cos[(rl + TQ)CS}} =r+ry.

This corresponds to flying over the North Pole, which is possible in the spherical-
Earth model and also in the flat-Earth model. The second sub-case is defined by
71+ 15 > 20,000 km, implying that (r; + 75)c® > 7, so we have:

a3 (7”17 01572, «92) = ;S arccos {COS[(rl + 7«2)08} }
= Cls arccos {27r — COS[(h + 7’2)03] } = 40,000 km — (1 +79) .

This corresponds to flying over the South Pole, which is impossible if the Earth is flat.
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B More Representations of the Flat-Earth Map

The geometry of Gleason’s Flat-Earth map as depicted in Figure 2.1 goes back at least
to Cassini’s 1696 publication of the map shown in Figure B.1. It depicts what had been
drawn on the floor of the Paris Observatory by his father. The Paris Observatory is also
noteworthy in that, a century later, it hosted the first platinum meter bar that was to
become the universal reference for the unit of distance, defined as the (1/10,000,000)%
part of the distance from the North Pole to the Equator.

Figure B.1: Map of the continents and oceans according to Cassini.

Even though it is generally known as polar azimuthal equidistant projection, as mentioned
in Section 2.1, it is called the “Postel projection” in France, after the local 16th-century
astronomer who pioneered it; see Edney and Pedley (2020, pp. 326-328) for comprehensive
historical background.

Closer to our times, the emblem of the United Nations, which also features on its flag,
adopts the same flat-Earth projection, as shown in Figure B.2.
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Figure B.2: Emblem of the United Nations.

This is not to say that the renowned French astronomers Cassini and Postel, and all the
founding members of the United Nations believed that the Earth is flat. Our point is
that there are strong reasons for proponents of the flat-Earth model to adopt the polar
azimuthal equidistant projection as their map.

The Flat Earth Society promotes Figure B.3 as a map of the surface of the Earth.
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Figure B.3: Map of the continents and oceans if the Earth is flat.
The map in Figure B.3 was collected from the official site of the Flat Earth Society at
http://theflatearthsociety.org/home /index.php/about-the-society /faq

This webpage has been archived dozens of times on http://archive.org, the “Wayback
Machine”, including recently on 22 September 2022 at 19:55:58. The origins of the modern
flat-Earth movement can be traced back to Rowbotham (1881, Figure 54), so we also
reproduce his map below.
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Figure B.4: Classic XIXth-century map from a leading proponent of the flat-Earth model.

We can see that they all conform to the Gleason map that we took as basis for our test.
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