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Abstract

This paper proposes a general statistical framework for systemic financial stress indices
which measure the severity of financial crises on a continuous scale. Several index designs
from the financial stress and systemic risk literature can be represented as special cases. We
introduce an enhanced daily variant of the CISS (composite indicator of systemic stress)
for the euro area and the US. The CISS aggregates a representative set of stress indicators
using their time-varying cross-correlations as systemic risk weights, computationally similar
to how portfolio risk is computed from the risk characteristics of individual assets. A boot-
strap algorithm provides test statistics. Single-equation and system quantile growth-at-risk
regressions show that the CISS has stronger effects in the lower tails of the growth distribu-
tion. Simulations based on a quantile VAR suggest that systemic stress is a major driver of
the Great Recession, while its contribution to the COVID-19 crisis appears to be small.

JEL classification: C14, C31, C43, C53, E44, G01.

Keywords: Financial crisis; Financial stress index; Macro-financial linkages; Quantile VAR;
Systemic risk.
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Non-technical Summary

This paper proposes a general statistical framework for systemic financial stress indices that
is rooted in standard definitions of systemic risk. Systemic risk can be characterised as the
risk that financial instability becomes so widespread that it severely disrupts the provision
of financial services to the broader economy, with significant adverse effects on growth and
employment. Financial stress indices quantify the aggregate level of stress in the financial
system by compressing a certain number of stress indicators from individual financial market
segments into a single statistic. We consider systemic stress as realised systemic risk, and thus
as a measure of the severity of financial crises. Our statistical framework defines systemic stress
as a state of the financial system in which a representative set of individual stress measures is
considered to be extremely high and strongly co-dependent. The composite indicator results
from a matrix association index that combines two matrices quantifying the extremeness and
the co-dependence hypotheses. We demonstrate that several indicators from the literature on
financial stress indices and systemic risk indicators can be represented as special cases of our
general framework.

The paper also introduces an enhanced daily variant of the ECB’s Composite Indicator of
Systemic Stress (CISS, pronounced /kIS/) as a non-parametric operationalisation of the general
statistical framework. Since its first release in 2011, the CISS concept has been adopted by
many financial stability authorities around the world as a blueprint for their own financial stress
index. Moreover, the CISS has become a popular tool in academic research as a measure of crisis
severity and general financial conditions, not least in the context of the recent macroeconomic
“outcome-at-risk” literature. In this paper, we provide a rigorous statistical foundation for the
design of the CISS. In the empirical application, we compute the CISS for the euro area and
the US. However, daily updates of the new CISS are available for a broader set of countries via
the ECB’s Statistical Data Warehouse (https://sdw.ecb.europa.eu/browse.do?node=9689686).
Both the euro area and the US CISS aggregate 15 components that capture stress symptoms in
money, bond, equity and foreign exchange markets. All raw input variables are first transformed
into relative ranks using the probability integral transform. System-wide stress is then computed
as the average cross-product of all pairs of transformed indicators (measuring extremeness)
weighted by their time-varying rank correlation (measuring co-dependence), in the same way
as portfolio risk is computed from the risk of individual assets in standard finance theory.
Accordingly, the CISS gives more weight to situations in which stress becomes widespread and
thus systemic. Correlations can also capture externalities such as contagion or spillovers from
one part of the financial system to the financial system as a whole, a feature that any measure
of systemic risk should take into account. From a statistical point of view, the various steps
in the design of the CISS aim to provide a composite indicator that does not suffer from look-
ahead bias, is sufficiently robust to outliers, is largely unaffected by different distributional
properties of the underlying raw data, and is easy to compute and update. Finally, we propose
a bootstrap algorithm to test whether the CISS exceeds a level that can be considered as normal
and harmless.

The final part of the paper investigates the empirical linkages between systemic stress and
economic growth. It is a stylised fact that systemic financial crises lead to large losses in output
and employment. Any meaningful measure of systemic financial stress should therefore be able
to replicate this fact. We apply single-equation and VAR-based quantile regressions to assess
the short-run forecasting properties of the CISS for real GDP growth. Indeed, we find a stronger
predictive power of the CISS for short-term economic activity in the lower tails of the growth
distribution, i.e. in bad states of the economy. In an in-sample quantile predictive regression
horserace, the CISS is found to have superior short-term forecasting power compared to different
index designs and other financial indicators from the literature. Simulations with a quantile
VAR suggest a dominant role for the CISS in explaining the deep recession observed during the
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GFC. This differs from the COVID-19 crisis, where financial stress shocks play a minor role
relative to aggregate output shocks, despite the large initial jump in the CISS.
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1. Introduction

Money is a veil, but when the veil flutters, real output sputters.

John G. Gurley (1961)

Finance and growth are twin sisters. Finance helps overcome frictions in the real sector

arising from transaction and information costs, thereby supporting the savings and investment

decisions of economic agents and thus capital accumulation and growth (Levine (2005), Beck

(2014)). A prosperous real economy, in turn, provides profitable opportunities for the financial

system to invest in and develop. However, this interdependence between finance and growth

holds true in good times as well as bad. The Global Financial Crisis (GFC) reminded us that

financial development can sometimes become the root cause of a deep financial and economic

crisis. This ambiguous role of finance reflects the fact that the financial sector itself is prone

to market failures caused, for example, by externalities, information asymmetries, incomplete

markets or limited human cognitive abilities (Bisias et al. (2012)). When such financial frictions

intensify and prevail, leading to widespread financial stress, they tend to have severe repercus-

sions on the real economy. A better understanding of these important macro-financial linkages

requires - in addition to appropriate theoretical models - meaningful empirical measures of

financial stress.

There are many indicators that measure stress in different market segments. Each of these

indicators captures certain market- and instrument-specific stress symptoms, such as increased

market volatility or wider default and liquidity risk premia, which in turn reflect stress reactions

such as increased uncertainty, higher risk aversion or run-like phenomena such as flight-to-safety

and flight-to-liquidity. For example, volatility measures derived from option prices provide

information on the degree of risk aversion and uncertainty of market participants (Bekaert

and Hoerova (2014)); the most well-known of such volatility measures, the VIX, is often used

as a general “fear gauge” and thus as an indicator of financial stress (Carr (2017)). Such

standard indicators form the backbone of any financial stability surveillance toolkit. However,

the sheer number of individual stress measures complicates the task of inferring whether the

stress observed in a particular market segment is either idiosyncratic or instead a more system-

wide phenomenon. Sometimes you “can’t see the wood for the trees.”

Financial stress indices are one way of synthesising such scattered information. A financial

stress index (FSI) quantifies the aggregate level of stress by compressing a number of individual

stress indicators into a single statistic. This paper proposes a general statistical framework for

systemic financial stress indices that is firmly rooted in standard definitions of systemic risk.

Systemic risk can be characterised as the risk that financial instability becomes so widespread

that it severely disrupts the provision of financial services to the broader economy, with signif-

icant adverse effects on growth and employment (de Bandt and Hartmann (2000) and Freixas

et al. (2015)). We interpret systemic stress as an ex post measure of systemic risk, i.e. a mea-

sure of the degree to which systemic risk has materialised at any point in time. A systemic

FSI can thus be seen as a coincident indicator of financial (in)stability, measuring the severity

of financial crises on a continuous scale. The statistical framework defines systemic stress as a

state of the financial system in which a representative set of stress indicators is considered to
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be extremely high and highly co-dependent. The composite indicator results from a matrix as-

sociation index that combines two matrices quantifying the extremeness and the co-dependence

stress dimensions.

We also propose an enhanced variant of the ECB’s Composite Indicator of Systemic Stress

(CISS, pronounced /kIS/, originally developed by Hóllo et al. (2012)) as a non-parametric op-

erationalisation of this framework. The present paper provides a rigorous statistical foundation

for the CISS. In the empirical application, we introduce new daily CISS series for the US and the

euro area. Both indicators aggregate 15 components that capture stress symptoms in money,

bond, equity and foreign exchange markets. All raw input variables are first transformed into

relative ranks using the probability integral transform. System-wide stress is then computed

as the average cross-product of all pairs of transformed indicators (measuring extremeness)

weighted by their time-varying rank correlation (measuring co-dependence), in the same way as

portfolio risk is computed from the risk of individual assets in standard finance theory. Accord-

ingly, the CISS gives more weight to situations in which stress becomes widespread and thus

systemic. Correlations can also capture externalities such as contagion or spillovers from one

part of the financial system to the financial system as a whole, a feature to which any measure

of systemic risk should pay attention to (Freixas et al. (2015)). From a statistical point of view,

the various steps in the design of the CISS aim to provide a composite indicator that does not

suffer from look-ahead bias, is sufficiently robust to outliers, is largely unaffected by different

distributional properties of the underlying raw data, and is easy to compute and update. Fi-

nally, we propose a bootstrap algorithm to test whether the CISS exceeds a level that can be

considered as normal and harmless.

The final part of the paper investigates the empirical linkages between systemic stress and

economic growth. It is a stylised fact that systemic financial crises lead to large losses in output

and employment. Any meaningful measure of systemic financial stress should therefore be able

to replicate this fact. We apply single-equation and VAR-based quantile regressions to assess

the short-run forecasting properties of the CISS for real GDP growth. Indeed, we find a stronger

predictive power of the CISS for short-term economic activity in the lower tails of the growth

distribution, i.e. in bad states of the economy. In an in-sample quantile predictive regression

horserace, the CISS is found to have superior short-term forecasting power compared to different

index designs and other financial indicators from the literature. Simulations with a quantile

VAR suggest a dominant role for the CISS in explaining the deep recession observed during the

GFC. This differs from the COVID-19 crisis, where financial stress shocks play a minor role

relative to aggregate output shocks, despite the large initial jump in the CISS.

The paper is organised as follows. The next section presents a selective literature review

and outlines how the paper contributes to the various areas covered in the review. Section 3

describes the general statistical framework for estimating a systemic stress index. Section 4

presents and discusses the CISS as a practical implementation of the framework, using data for

the US and the euro area. Section 5 proposes a statistical inference tool to address the joint

extremeness-co-dependence hypothesis underlying the CISS. Section 6 examines the empirical

linkages between the CISS and measures of economic activity. Section 7 concludes, and several

appendices provide supplementary information.
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2. Related Literature

The paper contributes to several strands of the literature. First, our paper speaks to the

literature on financial crisis indicators. Crisis indicators aim to identify periods of extreme

stress in either one or more systemically important segments of a country’s financial system.

The most well-known and widely-used indicators assign ordinal values to crisis and non-crisis

periods based on quantitative criteria, qualitative information and events. For example, Laeven

and Valencia (2008, 2013, 2018) create annual crisis dummies that capture systemic distress

in the banking system when they find significant signs of distress accompanied by significant

banking policy interventions. Reinhart and Rogoff (2009) develop a composite crisis index by

summing up the values of five crisis dummies that identify severe distress in the banking system,

in currency markets, in domestic and external debt markets, and in inflation conditions, thereby

measuring the severity of each crisis episode in a given country. Romer and Romer (2017a,b) go

one step further in differentiating the severity of crises. Using the semi-annual OECD Economic

Outlook as a real-time source of information, they identify and classify financial stress events

into five groups, from pure credit disruptions, minor crisis, moderate crisis, major crisis up to

extreme crisis. The severity of the stress within each group is further differentiated into three

sub-categories (minus, regular, and plus events) to produce a “measure of financial distress”

with values ranging from 0 for no distress periods to a maximum of 15 for an extreme crisis-

plus. Unlike qualitative ordinal crisis indicators, FSIs use a statistical approach to measure the

severity of financial distress on a continuous scale. The relationship between FSIs and qualitative

crisis indicators resembles that between composite real-time business cycle indicators (such as

that of Aruoba et al. (2009)) and qualitative recession dummies, such as those published by the

business cycle dating committees of the NBER for the United States and the CEPR-EABCN

for the euro area. Romer and Romer (2017a) acknowledges that financial stress occurs along a

continuum, and that “(t)reating a continuous variable as discrete introduces measurement error,

both because the variation across crises is omitted and because a small inaccuracy in evaluating

an observation can cause a large change in the value assigned to it.” Financial stress indices

such as the CISS mitigate such problems. Like Reinhart and Rogoff (2009) and Romer and

Romer (2017a), the CISS takes into account stress in several systemically important segments

of the financial system, but aggregates stress in these market segments based on weights derived

from economic and statistical principles that operationalise the concept of systemic risk. As a

continuous measure, the CISS also allows a finer delimitation of the start and end dates of crisis

episodes.

Figure 1 plots the three qualitative crisis indicators for the US together with our CISS index,

which by construction is bounded between zero and one. Panel A shows the Reinhard/Rogoff

and the Laeven/Valencia indicators, and panel B the Romer/Romer indicator at a monthly

frequency, assigning the value of the annual or semi-annual data to all months of a year or half-

year, respectively. There is clearly some positive association between the qualitative indicators

and the CISS during the crisis years indicated by the former. This is particularly true for

the Romer/Romer indicator, which is explicitly constructed to better reflect crisis severity.

This notwithstanding, the US financial system appears to have experienced several major stress

events that are not captured by any of the qualitative indicators. It can be argued that FSIs can

ECB Working Paper Series No 2842 6



Panel A

Reinhart-Rogoff (lhs) Laeven-Valencia (rhs) CISS (rhs)

1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015 2018
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.00

0.25

0.50

0.75

1.00

Panel B

Romer-Romer (lhs) CISS (rhs)

1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015 2018
0.0

2.5

5.0

7.5

10.0

12.5

15.0

0.00

0.25

0.50

0.75

1.00

Fig. 1. The figure plots the Composite Indicator of Systemic Stress (CISS, black line) along
with three qualitative financial crisis indicators for the United States. Panel A shows the crisis
indicators of Reinhard and Rogoff (2009, blue line) and Laeven and Valencia (2018, red line);
the indicator of Romer and Romer (2017, green line) is displayed in Panel B. Data is shown
monthly from January 1973 to March 2020 for the CISS, annual until 2017 for Laeven and
Valencia, annual until 2012 for Reinhard and Rogoff, and semiannual until 2012:2 for Romer
and Romer. National Bureau of Economic Research recessions are represented by the shaded
areas.

only measure financial stress net of the impact of policy interventions, whereas most qualitative

indicators explicitly consider the magnitude of policy reactions when assessing a potential crisis

event.1 As a result, the FSIs categorise crisis severity according to the measured level of stress,

but this may reflect very different intensities of policy intervention. Notwithstanding this, it

may still be possible to construct appropriate counterfactuals that allow the FSI to be cleansed

of the effects of policy interventions, or, equally, to quantify the impact of policy interventions

on financial distress, which would be interesting in its own right.

Second, our paper links the literature on FSIs with that on empirical measures of systemic

risk. For overviews of the FSI literature see Illing and Liu (2006) and Kliesen et al. (2012), and

systemic risk measures are surveyed in Bisias et al. (2012) and Freixas et al. (2015), Chapter

7. The seminal paper on FSIs is Illing and Liu (2006). They discuss several approaches to

1An exception is Carlson et al. (2012), who use policy interventions to identify crisis events and construct the
FSI.
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aggregating a given set of individual stress indicators into a composite stress index. Their

favoured design is determined by which variant performs best in signalling crisis events in the

Canadian financial system by evaluating Type I and Type II errors; the crisis events are identified

through a survey of Bank of Canada policymakers and staff. The preferred FSI consists of 11

daily financial market variables aggregated on the basis of weights determined by the relative size

of the market to which each indicator relates. Cardarelli et al. (2011) present a monthly financial

stress index for 17 advanced economies, calculated as the arithmetic mean of 12 standardised

financial stress indicators. Nelson and Perli (2007) and Carlson et al. (2011) present a weekly

financial fragility indicator for the US computed in two steps from twelve market-based financial

stress measures. The standardised input series are first reduced to three summary indicators,

namely a level factor, a rate-of-change factor and a correlation factor. In the second step,

the financial fragility indicator is computed as the fitted probability from a logistic regression

model with the three summary indicators as explanatory variables and a predefined binary

crisis indicator as the dependent variable. As a refinement of the last step of this approach,

Blix Grimaldi (2010) computes a weekly FSI for the euro area, where the binary crisis indicator

is systematically derived from crisis events identified on the basis of a keyword-search algorithm

applied to relevant parts of the ECB Monthly Bulletin. The Fed Cleveland FSI developed

by Oet et al. (2011) integrates 11 daily financial market indicators grouped into four sectors.

The raw indicators are normalised by applying the probability integral transform and are then

aggregated into the composite indicator by computing a weighted average with time-varying

credit weights proportional to the quarterly financing flows in the four markets. Hakkio and

Keeton (2009) construct a monthly FSI for the US applying principal components analysis based

on the idea that financial stress is the latent factor driving the observed correlation between

the input series. Kliesen and Smith (2010) and, more recently, Groen et al. (2022) follow the

same approach, with the latter paper constructing monthly FSIs for 46 countries. The weekly

index developed by Brave and Butters (2011, 2012) is also based on factor analysis, but is more

complex and sophisticated than its competitors in terms of the number and the heterogeneity of

the input data and the statistical indicator design. The computation of the National Financial

Conditions Index (NFCI), which is published regularly by the Federal Reserve Bank of Chicago,

is cast in a dynamic factor model in state-space form with a maximum of 100 indicators, where

Kalman filtering deals with the problem of missing data resulting from the different sample

lengths and frequencies of the input data.

Such factor models also provide non-trivial systemic risk weights. The models cited all

include stress indictors from a wide range of financial market segments. In addition, factor

models determine the relative weights of the input series in the composite indicator based

on their sample cross-correlations, which can be interpreted as applying systemic risk weights

(Brave and Butters (2011)). Principal component analysis of a set of asset returns is also behind

the systemic risk measures proposed by Kritzman et al. (2011) and Billio et al. (2012). The

“absorption ratio” of Kritzman et al. (2011) takes daily returns of 51 US stock market sectors

and computes, over a 500-day moving window, the fraction of the total variance of these returns

explained by the first ten eigenvectors of the covariance matrix. The ratio is higher when there

is more commonality between sector returns. The idea is that high values of the absorption
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ratio indicate a state of increased system fragility, since a given shock to financial stability would

tend to propagate more quickly and more broadly when markets are more closely linked. In a

similar vein, Billio et al. (2012) takes the monthly returns of 100 individual hedge funds, banks,

broker/dealers, and insurance companies and estimates, over 36-month rolling windows, the

“cumulative risk fraction”, which corresponds to the fraction of total return variance explained

by a given number of statistically significant principal components. The turbulence index of

Kritzman and Li (2010) aggregates asset returns based on the Mahalanobis distance. The index

aims to capture the statistical “unusualness” of a set of returns given their historical pattern of

behaviour.

Our paper presents a general statistical framework for measuring systemic financial stress,

a concept that blends the ideas behind financial stress indices and systemic risk indicators. In

Section 4.7, we illustrate that several of the aforementioned indicator designs from both fields can

be represented as special cases of our general statistical framework. Following the taxonomy

of systemic risk measures by the analytical time horizon (pre-event, contemporaneous, and

post-event) proposed by Bisias et al. (2012), our general framework produces contemporaneous

systemic risk measures that fit into both the “fragility” and the “crisis monitoring” subcategories

of such measures, similar to Kritzman et al. (2011), Billio et al. (2012) and the aggregate CoVaR

(Adrian and Brunnermeier (2016)) and SRISK (Brownlees and Engle (2017)) indicators. While

the main purpose of the latter two studies is to measure the contribution of individual financial

institutions to the aggregate systemic risk of the sector comprising these institutions, the CISS

measures the degree of interconnectedness of various aggregate market segments and how this

contributes to the level of systemic stress in the financial system as a whole. These perspectives

can therefore be seen as complementary. In contrast to the factor models of Hakkio and Keeton

(2009) and Brave and Butters (2012), which rely on sample cross-correlations, we estimate state-

dependent interconnectedness as autoregressive cross-correlations, borrowing from the GARCH

literature. The PCA approaches of Kritzman et al. (2011) and Billio et al. (2012) also measure

the time variation in cross-correlations, but do so by way of a fixed moving-window estimation (0-

1-weighting of historical information). In contrast, our exponentially-weighted-moving-average

approach places decaying weights on more distant information, which is flexible enough to

capture abrupt changes in correlation patterns as they typically occur during periods of stress.

Finally, our paper complements Hóllo et al. (2012) by enhancing the statistical foundation of

the CISS design. For instance, we substantiate the use of relative ranks (probability integral

transform) as a more robust and homogeneous transformation of raw input indicators. This

paper also introduces an enhanced daily variant of the CISS for the US and the euro area, which

has facilitated the real-time monitoring of financial stability conditions since the outbreak of the

Covid-19 crisis.2 Since its introduction in Hóllo et al. (2012), the statistical concept of the CISS

has been adopted by many financial stability authorities across the world as the blueprint for

2Compared to the older version of the CISS, the enhanced version first estimates asset volatilities as integrated
GARCH processes which allows moving to a daily computation of the index. Second, the new version aggregates
the index components in one step, without prior aggregation into market-specific subindexes; therefore, it uses
the full 15× 15 matrix of cross-correlations instead of the 5× 5 correlation matrix of the previous version. Third,
the new variant uses equal weights per indicator instead of segment-specific real-impact weights; the latter are
often perceived as arbitrary. Fourth, the set of input series changes somewhat and becomes more harmonised
across the US and euro area indices. Fifth, the euro area CISS carries a longer data history, starting in 1980.
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their own financial stress index.3 The CISS concept is also applied to aggregate different stress

symptoms into composite indicators of stress prevailing in specific important market segments

like the markets for European sovereign bonds (Garcia-de-Andoain and Kremer (2017)) and US

corporate bonds (Boyarchenko et al. (2022)).4

Third, the paper contributes to the rich literature on the real effects of financial distress.

In linear growth prediction frameworks, several studies capture financial stress using FSIs (in-

cluding the CISS) or financial conditions indices (FCIs), and they uniformly find economically

and statistically significant effects (Hakkio and Keeton (2009), Cardarelli et al. (2011), Carlson

et al. (2011), Mallick and Sousa (2013), Dovern and van Roye (2014), Kremer (2016), Hatz-

ius et al. (2010)). In line with theoretical predictions, studies applying nonlinear regression

frameworks have found stronger real effects in bad states of the world. The set of nonlinear

approaches include, inter alia, threshold VARs (Hóllo et al. (2012)), Markov-switching VARs

(Davig and Hakkio (2010), Hubrich and Tetlow (2015), Hartmann et al. (2015)), quantile VARs

(Chavleishvili and Manganelli (2019), Chavleishvili et al. (2021)), and single-equation quantile

regressions as common in the recent growth-at-risk literature (Adrian et al. (2019), Figueres

and Jarociński (2020)). Similar studies using alternative measures of financial distress (qualita-

tive crisis variables, systemic risk indicators, or individual asset price indicators, such as credit

spreads or stock market volatilities) also find strong and, where applicable, enhanced state-

dependent effects of financial distress on economic activity (Romer and Romer (2017a), Giglio

et al. (2016), Adrian et al. (2019), Bloom (2009), Gilchrist and Zakraǰsek (2012)). Giglio et al.

(2016), Adrian et al. (2019) and Figueres and Jarociński (2020) demonstrate that composite

indicators perform superior in terms of predictive power than a broad range of single indicators

capturing financial stress and/or systemic risk.

Our paper complements this literature by running single-equation and VAR-system quantile

regressions on euro area and US data. The structural quantile VAR (QVAR) approach recently

developed by Chavleishvili and Manganelli (2019) allows us to capture, apart from asymmetries

in the dynamic relationships, potential feedback effects between financial stress and economic

growth. The results from both approaches corroborate previous studies that find particularly

strong effects of financial stress on future economic activity in the lower tails of the growth

distribution. While Adams et al. (2020) and Figueres and Jarociński (2020) also use our new

CISS for the US and the euro area, respectively, in single-equation quantile growth-at-risk

regressions, this paper is the first to use it in the QVAR framework. Furthermore, we quantify

the macroeconomic relevance of systemic stress by performing conditional growth projections

based on historical shocks in the CISS. The simulation results demonstrate the different nature

of the GFC and the COVID-19 crisis, with the first being mainly driven by shocks in systemic

stress and the latter by macroeconomic activity shocks.

3Such as the Swedish Riksbank, Norges Bank, Bank of England, Banco de España, the Spanish Comisión
Nacional del Mercado de Valores, Banco de Portugal, Bank of Greece, Czech National Bank, European Securities
and Markets Authority (ESMA), Peoples Bank of China, Bank Negara Malaysia, Banco de la República Colombia,
and Bank of Jamaica.

4Such composite indicators are regularly published by the ECB and the Federal Reserve Bank of New York,
respectively.
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3. A general statistical framework for measuring systemic fi-

nancial stress

This section proposes a general statistical framework for measuring systemic financial stress

using a composite indicator, namely a systemic financial stress index (FSI). A systemic FSI

St can be thought of as a statistical function combining three types of ingredients: i) an N -

dimensional vector of raw stress indicators xt, for t = 1, . . . , T ; ii) a conformable vector of

“portfolio share weights” wt; and iii) some matrix or vector of systemic risk weights Ct. All

stress indicators are constructed from the raw data to satisfy the following assumption:

Assumption 3.1. Raw stress indicators xi,t increase in the level of stress, i.e. stress at time

t1 is strictly higher (lower) than stress at time t2 if xi,t1 > xi,t2 (xi,t1 < xi,t2).

Assumption 3.1 requires that the raw stress indicators are constructed in such a way that

higher indicator levels are associated with higher levels of financial stress. In practice, this

assumption also implies that a raw stress indicator should appear mean-reverting, possibly

in a highly nonlinear manner, over the available data sample in order to allow a meaningful

comparison of stress levels over time. Indicators that follow a deterministic upward or downward

trend can therefore be excluded. Moreover, an observable raw stress indicator should cover a

wider range of stress levels. This does not mean, however, that the support of an indicator’s

empirical distribution must cover all conceivable outcomes. Financial crises are rare events,

and each new crisis can extend the scale and add significant mass to the upper tail of an

indicator’s empirical distribution function. We therefore expect the indicator design to face

statistical problems arising from small data samples, such as imprecise or even biased estimates

of an indicator’s empirical distribution function. It is therefore all the more important, in our

view, that the statistical properties of a systemic stress indicator are sufficiently robust to the

addition of outlier observations. Abstracting from such small-sample issues, we could simply

assume that the raw stress indicators follow weakly stationary and ergodic stochastic processes

in the population, and amend Assumption 3.1 accordingly.

As the raw stress indicators are usually measured on different scales, or on a common scale

with widely varying ranges, meaningful aggregation usually requires some form of normalisation,

for which we formulate a minimum requirement:

Assumption 3.2. Raw stress indicators xi,t are transformed into normalised stress factors zi,t

by applying a monotone transformation xi,t → g(xi,t) ≡ zi,t which is increasing, i.e. u > v ⇒
g(v) > g(u).

For instance, converting the raw scores of the original stress indicators into z-scores (by

subtracting the sample mean from an individual raw score and then dividing the difference by

the sample standard deviation) is the most common monotone transformation in the literature.

However, as we argue later, z-score standardisation has certain comparative disadvantages over

our preferred alternative, the probability integral transform, in the context of systemic FSIs.

For aggregation, the stress factors zi,t are assigned portfolio share weights wi,t with 0 <

wi,t < 1 and
∑N

i=1wi,t = 1 for i = 1, . . . , N . The positivity assumption ensures that no stress

indicator is redundant. We borrow the term “portfolio share weights” from standard portfolio
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theory in finance, where the weights wi,t would capture the share of asset i in the total asset

portfolio. In the context of FSIs, wi,t could represent the relative size of the different market

segments covered by the set of stress indicators. In turn, the relative size could be measured

in terms of the stocks or flows of financial instruments traded in each market segment. Since

the structure of a financial system typically changes over time, such size-based weights can be

made time-varying, which is why we add a time index to wt.
5 However, the simplest and most

common way to calibrate wt is to assume constant equal weights per indicator, wi = 1/N .

A systemic FSI differs from a standard FSI by introducing a weighting of indicators that

operationalises the concept of systemic stress. The main idea behind the systemic weighting is

that, in order to assess the broader implications of stress in a particular market segment, it is

necessary to consider how that stress relates to the stress in the other market segments, reflecting

potentially state-dependent degrees of market interconnectedness, stress spillovers, or contagion

risks. If stress spreads widely, it may trigger a systemic crisis with large macroeconomic costs.

Allowing for bilateral differences in the measured connectivity between stress indicators, the

systemic risk weights may be conceived of as some N ×N matrix function Ct.
If the individual stress indicators satisfy Assumptions 3.1 and 3.2, then in principle any

increasing function of the vector zt could serve as a financial stress index. However, not every

function will capture what we consider to be characteristic of financial crises, namely widespread

financial stress. To be more precise, we define systemic financial stress as follows:

Definition 1 (Systemic Financial Stress). Systemic financial stress is a state of the financial

system in which stress factors zi,t are generally extremely high (extremeness) and strongly co-

dependent (co-dependence).

According to Definition 1, systemic financial stress rules out cases where high stress remains

locally confined and does not spill over to other significant parts of the financial system due

to generally weak cross-market co-dependencies. In fact, we assume that in a systemic crisis,

a vast majority of stress factors zi,t jointly increase to extremely high levels due to strong co-

dependencies among them. Hence, jointly high stress among the stress factors implies strong co-

dependence. But the converse is not true, as stress factors can also be highly co-dependent when

they are jointly extremely low, but not high. It is therefore useful to distinguish between the

stress dimensions of extremeness and co-dependence. We can thus characterise systemic stress

or financial instability as a state of “co-extremeness”, i.e., extremeness cum co-dependence,

rendering the notion of widespread financial stress more concrete.6

Definition 2 introduces the final building block of our proposed general statistical framework

for a systemic FSI.7

Definition 2 (Systemic Financial Stress Index). Let extremeness and co-dependence be mea-

sured by some N ×N bounded real-valued matrices Et and Ct, respectively. A systemic financial

5As an alternative, Hóllo et al. (2012) estimate weights based on the relative predictive power of each subindex
of stress for industrial production growth.

6In this paper, we use the terms extreme and extremeness only in the sense of extremely high.
7The following notation is used throughout the paper. The scalar (A)i,j represents the i, jth element of an

N × N matrix A. IN denotes the N × N identity matrix, JN the N × N all-ones matrix and ON the N × N
all-zeros matrix ; ιN and 0N are N × 1 vectors of ones and zeros, respectively.

ECB Working Paper Series No 2842 12



stress index St can be defined as a matrix association index that quantifies the degree of co-

extremeness as expressed in Equation (1):

St ≡
1

N2

N∑
i=1

N∑
j=1

(Et)i,j (Ct)i,j . (1)

The scaling factor 1/N2 reflects the assumption of equal weighting, i.e., wi = 1/N . The

extremeness matrix Et is usually a simple function of the time-t realisations of the stress factors

zt, and the co-dependence matrix Ct represents the matrix of systemic risk weights that can be

estimated or calibrated. The index in Equation (1) can be viewed as a scaled matrix association

index as proposed by Mantel (1967). Such indices are widely used in various fields of science to

model and test the similarity of multidimensional data observed in matrix form.8 In our case, the

index shows the extent to which realisations zi,t are jointly high and co-dependent by associating

two matrix functions Et and Ct that quantify extremeness and co-dependence. In Section 5 we

offer a bootstrap procedure to statistically test the null hypothesis of low or normal stress, i.e.

the hypothesis that stress factors are not jointly high and strongly co-dependent at any given

point in time. Hence, the co-extremeness hypothesis represents the alternative hypothesis in

our proposed testing scheme.

4. Operationalising systemic stress - the CISS

As our favoured operationalisation of the general statistical framework summarised in Equa-

tion 1, we propose an improved version of the ECB’s Composite Indicator of Systemic Stress

(CISS), originally developed by one of the authors and collaborators in the working paper Hóllo

et al. (2012). The present paper introduces new daily CISS series for the United States and

the euro area.9 As we will argue, the CISS has certain specific advantages which, in our view,

distinguish it from alternative FSI designs. Section 4.7 demonstrates how other popular FSI

designs can be represented as special cases of our general framework.

4.1. Raw stress indicators

We start with selecting N = 15 raw stress indicators, xi,t, with i = 1, . . . , N and t = 1, . . . , T ,

from the main segments of the US and the euro area financial systems. Taken together, these

market segments should cover the main flows of financial funds that are channelled either indi-

rectly through financial intermediaries or directly through short-term and long-term securities

markets from ultimate lenders to final borrowers. These market segments include: (i) equity

markets for nonfinancial corporations; (ii) equity markets for financial institutions (listed banks

and other traded financial entities); (iii) money markets (interbank, commercial paper and T-

bill markets); (iv) sovereign and corporate bond markets; and (v) foreign exchange markets.

8The scaled version of this measure can also be seen as Moran’s I or Geary’s C statistics, which are widely
used in modelling economic networks based on geographical distances.

9Daily updates of the new daily CISS for Austria, Belgium, China, the euro area, Finland, France, Germany,
Greece, Ireland, Italy, the Netherlands, Portugal, Spain, the UK and the US are available via the ECB’s Statistical
Data Warehouse: https://sdw.ecb.europa.eu/browse.do?node=9689686.
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Our choice of indicators is constrained by the following considerations. First, to ensure rep-

resentativeness, the raw stress indicators should be based either on broader market indices or

on assets with benchmark status for the pricing of a wider range of substitutes (e.g., on-the-

run government bonds). Second, we require daily data (with a maximum publication lag of

one business day) to support the CISS as a quasi real-time financial stability monitoring tool.

And third, the stress indicators should carry long data histories to allow meaningful histori-

cal benchmarking of stress events and to make the CISS potentially useful for macro-financial

econometric time-series analysis. These limitations imply that the CISS is mainly based on

fairly standard financial market data.

Stress is measured in several ways, with each indicator capturing certain observable stress

symptoms and increasing in the level of stress in line with Assumption 3.1.10 All market

segments include (at least) a measure of historical volatility, computed as an exponentially-

weighted moving average (EWMA) of squared daily log returns or squared daily interest rate

changes with a smoothing parameter of λ = 0.85; initial values are set to the return variance

over the first two years of the respective data sample (Engle (2009), p. 30f.).11 Other stress

measures include various interest rate differentials as risk spreads (e.g., Ted spread, corporate

bond spreads) as well as book-price ratios and cumulative valuation losses (the CMAX of Patel

and Sarkar (1998)) to capture equity market stress. All raw stress indicators included in the

US and the euro area CISS are described in Tables 3 and 4 in Appendix A.

4.2. Stress factors

Next, all raw stress indicators xi,t are transformed into stress factors zi,t by applying the

probability integral transform (PIT), which involves estimating the empirical cumulative distri-

bution function (cdf):12

zi,t = F̂ (xi,t) :=

{
1

T0−1

∑T0−1
s=1 I(xi,s ≤ xi,t), for t = 1, . . . , T0 − 1

1
t

∑t
s=1 I(xi,s ≤ xi,t), for t = T0, . . . , T,

(2)

where F̂ (xi,t) is defined as the empirical cdf of the indicator xi,t and I(x) is the indicator

function. Hence, each realisation of the stress factor zi,t simply results from replacing the

original score xi,t with its cdf value F̂ (xi,t). Since F̂ (xi,t) is non-decreasing, the PIT satisfies

Assumption 3.2. To address some anticipated statistical problems with small data samples,

we compute the PIT recursively over expanding data samples. The integer T0 sets the start

date of the recursion. In our application to US and euro area data, the recursion starts on 1

January 2002.13 The recursive transformation immunises the composite indicator against look-

ahead bias (Brownlees et al. (2020)) and, relatedly, against event reclassification, i.e. the risk

of recalling a stress event reported in the past (based only on past data) that is not identified

10For a general discussion of individual stress indicators and their information content, see Hakkio and Keeton
(2009), Hóllo et al. (2012) and the literature cited therein.

11The 2012 version of the CISS measures volatility as the average absolute daily return or interest rate change
over the five business days of a week.

12See, e.g., Casella and Berger (2002).
13This date is chosen to ensure at least several years of data for the initialisation of a few euro area time series

that start only in 1999 or shortly before.
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as a stress event when future information is also taken into account (Hóllo et al. (2012)).

There are several reasons why we prefer the PIT to the z-score transformation for our

purposes.14 1. Homogeneity. – The PIT leads to indicators that are unitless and, whatever

their original distribution, (approximately) unconditionally standard uniform distributed: zi,t ∼
U(0, 1). The stress factors resulting from the PIT are thus homogenised not only in terms of

scale (i.e., zi,t ∈ (0, 1]) but also in terms of distribution. The latter is not true for z-score

standardisation. 2. Robustness. – The use of ranks in the PIT makes the stress factors, and thus

the composite indicator, more robust to outliers by limiting an outlier to the value of its relative

rank (Stuart and Ord (1994)). This property is important in our context for two main related

reasons. First, it ensures that even though the PIT is computed recursively, the information

content of the composite indicator is still robust over time, i.e., it does not depend on whether

the composite indicator is computed over the full data sample or a meaningful subset of it

(see Figure 14 in Appendix B). Consequently, the CISS is also robust to the choice of different

starting dates T0 for the recursive PIT (Hóllo et al. (2012)). And second, this robustness

is most important when the composite indicator is most useful, namely during episodes of

financial instability, which can add many outliers to the expanding data samples of the raw

stress indicators. Figure 2 below shows - in a constructed example based on the US Ted spread

- that z-score standardisation can lead to transformed indicators whose information content

becomes unstable over time when many outlying observations are added to the data sample

(panel b). While recursive standardisation identifies several stress peaks prior to the GFC,

most of these indicated events are almost completely “ironed out” when using the full-sample

mean and standard deviation for the transformation. The picture is much less dramatic when

the probability integral transform is used (panel a). A third major advantage of the PIT -

namely the robustness of our measure of co-dependence - is discussed in Subsection 4.4.

4.3. Extremeness

The vector of stress factors zt is a natural measure of extremeness. Stress in a particular

market segment is most extreme when the respective indicator xi,t reaches its historical max-

imum, in which case zi,t = 1. However, we want to capture extremeness for the system as

a whole. To do this, we quantify extremeness as the cross-product of all non-centered stress

factors, zi,t · zj,t, and collect them in the symmetric matrix Et of order N :

Et = ztz
′
t. (3)

Since it holds that (Et)i,j = (ztz
′
t)i,j ∈ (0, 1], the extremeness matrix becomes an all-ones matrix

JN = ιN ι
′
N at maximum system stress and approaches a zero matrix ON = 0N0′N at minimum

stress.

14We are not the first to use the PIT in FSI designs. Illing and Liu (2006) conduct a study comparing different
indicator transformations (PIT and z-score), and they find that FSIs based on z-score transformed components
perform better in regressions of crisis-event dummies on FSIs.
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Fig. 2. The figure assumes that Ted spread data were only available from January 2002 to
December 2011, i.e. ten years of daily data. The subprime mortgage turmoil and the Global
Financial Crisis took place in the second half of the sample period. In panel (b), the Ted spread
is z-score standardised recursively from January 2006 (blue line) and non-recursively using the
full sample information at all points in time (red line). The figure shows that, particularly in
the case of small samples, the information content of z-score transformed indicators can become
unstable. Panel (a) suggests that this problem is less severe for probability integral transformed
indicators.

4.4. Co-dependence

We compute the co-dependence non-parametrically as the conditional rank correlation (Spear-

man’s ρ) between each of the N(N − 1)/2 pairs of stress factors. The rank correlation tells us

whether and to what extent two stress factors are similarly high or low at any given time. For

instance, if two stress factors move together towards the upper ranges of their empirical cdfs,

then, ceteris paribus, there is a higher risk that financial stress has become more widespread

and thus systemic. If they move asynchronously, this risk tends to be lower.

Since our stress factors inherit some of the autocorrelation and heteroskedasticity of the

original data15, we estimate the rank correlation between two stress factors zi,t and zj,t as the

conditional time series expectation ρi,j,t := Et[ρi,j,t+1|zi,t−k, zj,t−k, ρi,j,0] for k = 0, 1, ..., t − 1

and some initial value ρi,j,0. The conditional expectation is non-parametrically modelled as an

autoregressive exponentially-weighted moving average (EWMA) process, following the multi-

variate GARCH literature (Engle (2002)). The rank correlation coefficient is defined against a

centrality measure. We take the population median 0.5 as the centrality measure and accord-

ingly define the vector of centered stress factors as z̃t = (zt − ιN · 0.5). The EWMA filter is

implemented on the variance-covariance matrix Ht of the centered stress factors z̃t:

Ht = λHt−1 + (1− λ)z̃tz̃
′
t (4)

with a calibrated smoothing parameter (or decay factor) λ = 0.85. On the one hand, this value

of 0.85 provides relatively smooth estimates of the rank correlation in normal times; on the other

15We do not pre-whiten or de-GARCH the raw stress indicators before applying the PIT to the “cleaned”
residuals, as is done, for example, in the standard copula literature.
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hand, it still accommodates abrupt and large shifts in the correlation patterns that typically

occur during crisis periods. The elements ρi,j,t of the correlation matrix Rt are computed from

the elements hi,j,t of Ht as ρi,j,t = hi,j,t/
√
hi,i,thj,j,t. The Spearman’s ρ matrix Rt is our desired

matrix of systemic risk weights:

Ct = Rt. (5)

Estimating the rank correlation as the correlation coefficient between PIT-transformed data

ensures that our non-parametric measure of co-dependence is fairly robust to distributional

assumptions and outliers (Engle (2009), p. 22). For example, Spearman’s rank correlation

relies only on the existence of a monotonic relationship between the original stress indicators.

In contrast, raw stress indicators with heterogeneous statistical distributions may co-vary in a

nonlinear manner despite monotonicity. A linear correlation between the raw stress indicators

or their z-scores may therefore fail to capture such nonlinear dependencies. Since we are working

with the PIT and with rank correlations, our approach to measuring co-dependence is loosely

based on the copula literature (Engle (2009)).

Figure 3 visualises realisations of the matrices Et and Ct on four different days, characterising

stress conditions before and during the GFC and the COVID-19 crisis, respectively. Panel

(a) represents the pre-GFC period, when volatilities and risk premia were persistently low

by historical standards in virtually all market segments and across the globe. This apparent

“pricing for perfection” (Gieve (2006)) is reflected in the dominant dark blue colours on and

below the main diagonal, indicating that stress factors were at or below the 30th or 10th

percentile of their historical distribution on 31 January 2007. The dominant dark red colour

above the main diagonal illustrates the commonality of very low stress conditions across market

segments, indicating rank correlations in the range of 0.8 to 1.0.16 This benign picture in early

2007 soon gave way to the subprime mortgage crisis and ultimately to the GFC. At the height of

the GFC, stress levels were consistently at or slightly below their historical maxima across the

board, as shown in panel (b), which is coloured dark red almost everywhere on 10 October 2008.

Panels (c) and (d) highlight how quickly financial stability deteriorated when the US was struck

by the COVID-19 shock. By 28 February 2020, financial stress conditions were mixed across

markets and indicators and very benign overall. Accordingly, panel (c) covers more or less the

full colour spectrum. Within just one month, the situation changed completely, with financial

stress rising sharply across all market segments. The systemic dimension of the coronavirus-

induced spike in financial stress is evident in the similarity of panels (b) and (d). As at the

height of the GFC, the contour plot in panel (d) is dominated by the dark red colour; the blue

and yellow “cross” reflects the fact that only the price-book ratio of nonfinancial corporations

did not jump to historically high levels by 31 March 2020.

4.5. Composite Indicator

Equipped with all the ingredients, the CISS can now be easily computed as the matrix

association index St as defined in Equation (1) based on the quantified inputs from Equations

16See the notes section of Figure 3 for how to infer correlation levels from the colour bars.
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Fig. 3. The figure shows contour plots visualising realisations of the extremeness and the
correlation matrices on four days representing financial stability conditions before and during
the Global Financial Crisis (GFC) and the COVID-19 crisis. As both matrices are symmetric,
extremeness is shown in the triangle below and correlation in the triangle above the main
diagonal in each of the four panels. The main diagonal is highlighted by the two parallel black
solid lines and shows the levels of the 15 stress factors zi,t for the US data. The order of the
stress factors follows the numbering in Table 3. Extremeness is plotted as the square root of the
cross-product

√
zi,tzj,t (the geometric mean) consistent with the level scale of the stress factors.

For graphical purposes, the plotted correlation coefficients ρ̃i,j,t are rescaled to fit into the unit
interval according to the transformation ρ̃i,j,t = 0.5(ρi,j,t + 1).
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(3) and (5):

CISSt =
1

N2

N∑
i=1

N∑
j=1

(
ztz

′
t

)
i,j

(Rt)i,j , (6)

with 0 < CISSt ≤ 1. As mentioned above, the scaling parameter 1/N2 simply represents an

equal portfolio weighting wi = 1/N of the stress factors zi,t. Since Rt has only ones on its main

diagonal, each (squared) stress factor enters this scaled sum of element-by-element products with

a unit systemic risk weight, while the risk weights of the cross-products (the upper and lower

diagonal elements of Rt) are typically less than 1 and only approach 1 if stress is persistently

high or low.

This formulation of the composite indicator problem is not only statistically attractive but

also economically intuitive. The formula is well-known in finance and describes how to compute

the return variance (risk) of a portfolio of assets from the return variances and covariances of

a set of assets with equal portfolio shares (see, e.g., the seminal paper on portfolio selection by

Markowitz (1952)).

The CISS formula (6) can be equivalently expressed as a quadratic form:

CISSt = (w ◦ zt)′Rt(w ◦ zt), (7)

where ◦ denotes element-by-element multiplication. Figure 4 shows the CISS for the US and the

euro area since January 1973 and January 1980 respectively. Most of the pronounced peaks in

the indicators occur simultaneously and can be associated with well-known global stress events

such as the stock market crash of 1987, the LTCM collapse in 1998, the 9/11 terrorist attacks

in 2001, the subprime mortgage turmoil in 2007, the Lehman Brothers default in 2008 and

the recent COVID-19 crisis. However, there are also some episodes that reflect more localised

shocks, such as the Fed’s monetary tightening regime under Chairman Paul Volcker from 1979

to 1982 and the associated savings and loan crisis in the early 1980s, the European Exchange

Rate Mechanism (ERM) crisis in 1992 and the euro area sovereign debt crisis in 2011 and 2012.

US CISS Euro area CISS

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
0.00

0.25

0.50

0.75

1.00

Fig. 4. This figure plots daily CISS data for the US and the euro area up to 1 July 2022. US
and euro area data start on 3 January 1973 and 1 January 1980 respectively.
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4.6. A Decomposition

The following simple decomposition of the CISS helps to understand its rationale. The

decomposition assumes that all stress factors are perfectly correlated at all times. In this case,

the correlation matrix Rt becomes an all-ones matrix JN and thus redundant, simplifying the

CISS formula to the following expression:

CISSt = (w ◦ zt)′JN (w ◦ zt) = (w ◦ zt)′(w ◦ zt)

= (
∑N

i=1wi · zi,t)2 = z̄2t . (8)

Hence, in the case of perfect correlation, the square of the equally-weighted average of the stress

factors z̄2t emerges as the upper bound of the CISS. This implies that in a systemic crisis, when

stress is high across the board, the CISS converges to z̄2t . Conversely, when cross-correlations

are generally weaker, the CISS deviates more from the simple-average FSI. Accordingly, we call

the difference between the CISS and z̄2t the correlation discount and use it for the following

decomposition of the CISS:

CISSt =

N∑
i=1

z̄t
N
zi,t −

 1

N2

N∑
i=1

N∑
j=1

zi,tzj,t(1− ρi,j,t)

 . (9)

The first term of Equation (9) is simply z̄2t decomposed into N stress factor contributions, and

the second term is the correlation discount. Figure 5 shows the decomposition of z̄2t where the

stress factors are aggregated into five market segments.17 The figure confirms that the CISS and

the stacked contributions are close to coincide during the GFC, with the correlation discount

approaching zero. More importantly, the pattern of the correlation discount - the grey shaded

area in Figure 5 - clearly illustrates the main advantage of the CISS: it helps to better identify

episodes of truly widespread financial stress (systemic crises) by giving less weight to situations

where elevated stress remains a more local, market-specific event. The dot-com boom and bust

of the late 1990s and early 2000s is a prime example of a largely non-systemic episode of stress.

Thus, in the case of the CISS, the systemic risk weighting achieves that “the whole is [smaller]

than the sum of the parts.”

4.7. Special cases from the literature

This section illustrates how several designs of financial stress and systemic risk indicators

from the literature can be represented as special cases of the general statistical framework

introduced in Section 3. The way in which the raw input series xt are transformed is an

important design feature of any FSI. We consider two different transformations: the probability

integral transform based on the empirical cdf (which gives rise to the stress factors zt), and the

z-score standardisation (x̃ = (xt − x̄)/σx). Regarding the aggregation scheme, we distinguish

between simple weighted averages (as in Oet et al. (2011) and Cardarelli et al. (2011)), principal

component analysis (as in Hakkio and Keeton (2009)), a dynamic factor model approach (in the

17Such a decomposition chart for the weekly euro area CISS of Hóllo et al. (2012) is regularly shown in the
ESRB Risk Dashboard (https://www.esrb.europa.eu/pub/rd/html/index.en.html).
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Fig. 5. The figure plots the decomposition of the US CISS according to Equation (9). The
contributions from the individual stress factors are aggregated into money, bond, equity nonfi-
nancial corporations, equity financials and foreign exchange market contributions in line with
Table 3. The data are monthly averages of daily data from January 1980 to June 2022.

spirit of Brave and Butters (2012)), and the turbulence index (from Kritzman and Li (2010)).

Table 1 describes the design of seven FSIs, including the CISS, in terms of how they opera-

tionalise the extremeness and co-dependence dimensions (columns 2 and 3) and how these are

combined in the index formula (column 4). Financial authorities that regularly publish stress

indices based on the respective design are listed in column 5, together with the main literature

references. The simple-average FSIs for the two transformations (FSI-avg-cdf and FSI-avg-std)

are trivial cases as they do not perform any systemic risk weighting, so the co-dependence is

represented by an all-ones vector.18 The two PCA-based indices (FSI-PCA-cdf and FSI-PCA-

std) and the dynamic factor model (FSI-DF-std) follow the idea that the systemic dimension of

financial stress can be captured by a latent factor that drives the observed correlation between

the input indicators. The latent factor thus serves as the FSI. In the PCA approaches, the

latent factor is identified as the first principal component of the sample correlation matrix of

the transformed indicators. Accordingly, the systemic risk weights of the input series in the

composite indicator are accordingly computed from their loadings on the first principal compo-

nent, i.e. the first eigenvector. The dynamic factor model follows the same logic, but estimates

the latent common factor ft based on state-space methods. The estimated loadings γ on the

common factor can be interpreted as the systemic risk weights, as they implicitly reflect the

extent to which each input series contributes to the dynamics of the estimated common factor.19

The turbulence index measures the Mahalanobis distance between the standardised indicators

18Averaging over standardised indicators has also been labelled variance-equal weighting. If the FSI uses weights
calibrated to reflect the relative size of the market segment, this could also be seen as a form of systemic risk
weighting.

19The dynamic factor model is set up as a simplified version of that in Stock and Watson (1991). The state
space model is estimated by maximum likelihood methods using the Kalman filter. The measurement equation
is x̃t = γft + vt; the state equation is ft = ϕft−1 + wt, where γ is the vector of loadings on the single latent
factor ft, ϕ the autoregressive coefficient of the dynamic factor in the state equation, and vt and wt are i.i.d.
error terms, where the variance of wt is normalised to 1 to achieve identification of the dynamic factor.
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Table 1: Different FSI designs as special cases of the general framework

FSI concept Et Ct Index formula Published by; main references

CISS ztz
′
t Rt (w ◦ zt)′Rt(w ◦ zt) ECB, New York Fed; [1], [2]

FSI-average-cdf zt ιN w′
tzt Cleveland Fed; [3]

FSI-PCA-cdf zt e1 e1
′zt

FSI-average-std x̃t ιN w′
tx̃t [4], [5], [6]

FSI-PCA-std x̃t e1 e1
′x̃t Kansas City & St. Louis Fed; [7], [8]

FSI-DF-std x̃t γ x̃t = γft + v̂t Chicago Fed, OFR; [9], [10], [11]

Turbulence x̃tx̃
′
t R−1 (w ◦ x̃t)′R−1(w ◦ z̃t) [12]

Notes: The table describes different FSI designs in terms of different measures of the extreme-
ness (Et) and co-dependence (Ct) dimensions according to Definition 2 and Equation 1. For
brevity, the index formulae are written in matrix notation: xt denotes the N -dimensional vec-
tor of raw stress indicators, x̃t their z-score transformations and zt their probability integral
transforms; R denotes the correlation matrix of the stress factors; ιN represents the trivial
case of unitary co-dependence (systemic risk) weighting; e1 denotes the first eigenvector of the
spectral decomposition of the variance-covariance matrix of the stress factors; γ is the vector of
estimated loadings of the stress factors on a single latent dynamic factor ft, where v̂t denotes
the residuals from the measurement equation of the dynamic factor model; In this model, the
dynamic factor ft represents the FSI; w is the vector of equal weights with wi = 1/N ; wt de-
notes a set of convex weights that deviate from equal weights and can also vary over time. Main
references: [1] Hóllo et al. (2012); [2] Boyarchenko et al. (2022); [3] Oet et al. (2011); [4] Illing
and Liu (2006); [5] Cardarelli et al. (2011); [6] Vermeulen et al. (2015); [7] Hakkio and Keeton
(2009); [8] Kliesen and Smith (2010); [9] Brave and Butters (2012); [10] Monin (2017); [11] van
Roye (2014); [12] Kritzman and Li (2010).

over time. The Mahalanobis distance is a multidimensional generalisation of the idea of how

many standard deviations a set of variables are away from their means. The turbulence index

thus captures how “unusual” the input series behave together at each point in time, and it

turns out that periods of unusualness broadly coincide with well-known episodes of heightened

financial stress. The formula behind the turbulence index looks similar to that of the CISS, but

weights the cross-products by the inverse of the full-sample correlation matrix.

In the empirical exercise, we apply the different indicator designs to the same set of input

series, namely to the 15 components of the US CISS. This ensures that any differences between

the FSIs only reflect differences in the way the components are transformed and aggregated.

The resulting seven FSI series are plotted in the two panels of Figure 4.7. Both panels re-

veal, first, that the simple-average FSIs and the PCA-based FSIs are almost identical for both

transformations, reflecting that the first eigenvector of the spectral decompositions is not very

different from the vector of equal weights. This in turn suggests that, on average, all compo-

nents contribute similarly to the total variability of the data, implying that no indicator appears

to be significantly “more systemic” than any other. Second, while the FSI estimated from the

dynamic factor model appears somewhat smoother than the PCA index, they still generally
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overlap to a large extent. Third, in terms of cdf-transformed indicators, the CISS discriminates

more strongly between systemic and non-systemic stress episodes due to its time-varying corre-

lation weighting. As shown in Section 4.6, the CISS and the simple-average FSI only coincide

when all input series are close to being perfectly correlated. Fourth, the turbulence index does

indeed mainly identify extreme events and thus acts similarly to a dummy variable. It shows

some large jumps around known episodes of stress, while most of the time it hovers around low

levels.
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Fig. 6. The figure plots seven different FSIs designed according to Table 1 and applied to the 15
component series of the US CISS as described in Table 3. The first three series in the bottom
panel are standardised for graphical purposes. The series are monthly averages of daily data
from January 1980 to June 2022.

5. Statistical analysis

In Definition 2 we motivated a systemic financial stress index St as a quantification of

the hypothesis that stress factors are jointly high (co-extremeness). This section proposes a

bootstrap algorithm to derive test statistics to assess this hypothesis. Let the realisations of

the stress index {St : t = 1, ..., T} be computed as the CISS according to Equation 6. Our goal

is to make statistical statements about whether a particular realisation St can be considered

unusually high or low (“normal”). For this purpose we formulate the following null hypothesis

for any realisation St:

H0 : St ∈ Υ low (10)

where Υ low = {S̃t : t = T̃0, ..., T̃1} denotes a subsample of the data representing a low stress

period, and where T̃0 and T̃1 are the start and end dates of this period, respectively. If Υ full =

{St : t = 1, ..., T} denotes the full data sample, then Υ low ⊂ Υ full and T̃1 − T̃0 < T − 1. To test

the null hypothesis, we derive a critical stress value γ1−α at some statistical significance level

α, implicitly defined in

Pr
(
S̃t > γ1−α|Υ low

)
≤ α. (11)
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If the data generating process of S̃t were known, Equation (11) could be solved analytically

for γ1−α. Since we do not assume any particular data generating process, we need to estimate

the critical value non-parametrically by simulation. We propose a bootstrap-based sampling

procedure that first approximates the empirical distribution of St under no-stress conditions,

i.e. under the null hypothesis, and then computes a critical value for the null hypothesis as the

1− α percentile of this approximated distribution.

The idea of our bootstrap algorithm is similar to the random permutation approach of

Mantel (1967), which provides a test for the similarity of two (distance) matrices. Since the

CISS summarises the information contained in the matrix of cross-products (ztz
′
t)i,j (Rt)i,j , any

statistical comparison of a realised CISS with a benchmark value (e.g., a critical value) for a

low-stress CISS can be interpreted as a test of the similarity of the two underlying cross-product

matrices. However, our procedure benefits from the assumption that some observations of St

come from a low-stress environment and are thus generated under the null hypothesis. We

consider the subperiod from 1 January 1992 (T̃0) to 29 December 2006 (T̃1) to represent normal

stress conditions in the US financial system.

We start with a simple linear relationship between each cross-product and the CISS, which

defines the set of N(N − 1)/2 different “residuals” ψi,j,t from which to draw:

(
ztzt

′)
i,j

(Rt)i,j = S̃t + ψi,j,t, i, j = 1, . . . , N, t = T̃0, . . . , T̃1, (12)

where ψi,j,t has a zero mean by construction. We now assume that in a low-stress environment

- where extremeness and correlations are on average rather low - the ψi,j,t are expected to be

evenly allocated. We formalise this expectation in the following assumption:

Assumption 5.1. Suppose there exists an array of random variables {ψi,j,t, 1 ≤ i, j ≤ N}
which are i.i.d. with zero mean, finite variance and satisfy |ψi,j,t|3 <∞.

If this assumption holds, we can randomly draw from this array of random variables, and

the following bootstrap algorithm can be used to construct the empirical distribution of S̃t

(Wasserman (2003), Chapter 8) and to compute any critical value γ1−α:
20

Algorithm 1. Let t = T̃0, ..., T̃1 and perform the following steps:

(i) Let S̃t =
1
N2

∑N
i=1

∑N
j=1 (ztz

′
t)i,j (Rt)i,j, and define the auxiliary residuals

ψi,j,t = (ztz
′
t)i,j (Rt)i,j − S̃t;

(ii) From the array of random variables {ψi,j,t, 1 ≤ i, j ≤ N}, draw randomly i and j, n =

1, . . . , Nb times, and construct Nb simulated values of array {ψ(n)
i,j,t, 1 ≤ i, j ≤ N};

(iii) Compute Nb simulated values of each cross-product term as(
(ztzt

′)i,j (Rt)i,j

)(n)
= S̃t + ψ

(n)
i,j,t;

(iv) Compute Nb simulated values of the stress index S̃
(n)
t = 1

N2

∑N
i=1

∑N
j=1

(
(ztzt

′)i,j (Rt)i,j

)(n)

and define

γ1−α =
1

T̃1 − T̃0 + 1

T̃1∑
t=T̃0

Q1−α

(
S̃
(1)
t , . . . , S̃

(Nb)
t

)
,

20By a loose interpretation, this would mean that there is only a negligible difference between realisations ψi,j,t

across i, j = 1, . . . , N .
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where Q1−α (·) is an empirical quantile function that delivers the required critical value.

The algorithm is applied to US daily data based on the entire low-stress subsample, and the

critical value is computed for a significance level of α = 0.01 (1%). Figure 7 plots the US CISS

together with a red horizontal line representing the estimated critical value of 0.123.21

US CISS 1% significance level of no-stress

1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019
0.00
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0.50

0.75

1.00

Fig. 7. US CISS and high-stress threshold. The threshold value (0.123) represents the critical
value of the null hypothesis of low or “non-systemic” stress at the 1% significance level. The
threshold is generated using the sampling algorithm 1. The shaded areas are NBER recessions
for the United States (peak to trough). Data are daily from 2 January 1980 to 31 May 2020.
Sources: Federal Reserve Bank of St. Louis for the NBER recession indicator.

A simple illustration can provide some preliminary evidence of the economic relevance of

such a threshold estimate. We use the 1%-critical value to split the sample into low-stress and

high-stress CISS observations (monthly averages of daily data) and plot, separately for each

regime, the US CISS against annual real GDP growth led by two months (Figure 8). The red

dots indicate joint observations from the low-stress regime and the blue dots from the high-

stress regime. The figure suggests a negative relationship between the CISS and growth in the

high-stress regime, at least when growth is negative. The red dots, on the other hand, appear

to be a pure random cloud. Such a nonlinear relationship is consistent with Hóllo et al. (2012)

who estimate a crisis threshold for the CISS within a bivariate threshold-VAR model with the

euro area CISS and the annual growth rate of industrial production as endogenous variables.

That paper indeed finds statistical support for a single threshold, and it turns out that shocks

to the CISS have strong negative effects on economic activity only in the high-stress regime.

The next section examines the real effects of systemic stress in more detail.

6. Downside risks to growth from financial stress

This section investigates the real effects of systemic financial stress, with a particular focus

on potential asymmetries in these effects. Recent empirical studies typically find strong short-

term predictive power of financial stress or financial conditions indicators in the lower tails of

21The critical values for the 5% and 10% significance levels are 0.115 and 0.111, respectively.
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Fig. 8. Scatter plot of CISS and annual real GDP growth (in %, led by two months) in the
US. CISS is a monthly average of daily data, and real GDP is interpolated to monthly from
quarterly data as described in Appendix C. Blue dots represent periods when the CISS is above
the 1% critical value from the sample algorithm 1 (high stress), and red dots symbolise periods
when the CISS is below this threshold (low stress). Data are monthly from January 1980 to
March 2020.

the conditional output growth distribution, while the effects are much weaker in the central

and upper parts of the growth distribution. Such asymmetric responses of economic activity to

financial distress may reflect several mechanisms put forward in the recent theoretical macro-

finance literature. For example, the effects of sharply rising financial frictions and increasing

uncertainty may be amplified by asset fire sales and credit constraints becoming binding (e.g.,

Bianchi (2011), He and Krishnamurthy (2012), Lorenzoni (2008) and Mendoza (2010)). Indeed,

the popular growth-at-risk literature relies on this macro-financial asymmetry as a stylised fact.

We first run and compare single-equation predictive quantile regressions of real GDP growth

on the CISS, the alternative FSI designs presented in Section 4.7, and some standard financial

business cycle predictors from the literature. The purpose of such a horse race is to assess the

potential value added of the CISS and its particular design features in forecasting, in-sample,

the short-term downside risks to the economy. We then assess the dynamic effects of the CISS

on measures of economic activity based on a parsimoniously specified structural quantile VAR

(QVAR) as proposed in Chavleishvili and Manganelli (2019). We use simulations to show how

financial stress contributed to the major recessions in two recent economic crises, the GFC and

the COVID-19 pandemic.
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6.1. Direct growth forecasting with quantile regressions

We first employ the direct multistep, single-equation forecasting approach applied in the

seminal paper by Adrian et al. (2020). In our case, we regress future real GDP growth on

current values of financial indicators over expanding cumulative growth horizons from 1 month

to 12 months ahead. We do not consider horizons further ahead, as we do not expect financial

stress to have longer-term cyclical effects on the economy. The models are estimated as quantile

regressions to allow for nonlinear relationships in the conditional joint distribution of financial

stress and economic growth.

In the first set of regressions, the Purchasing Managers’ Index (PMI) is included as a fore-

cast variable, along with the CISS and lagged real GDP growth, to control for general business

conditions at the forecast origin. Indeed, Jarocinski and Mackowiak (2017) finds strong predic-

tive power of the PMI for macroeconomic activity variables in both the euro area and the US,

and figure 15 in Appendix C illustrates the generally strong comovement between annual real

GDP growth and the PMI over the euro area business cycle. The following quantile regression

equation is estimated for monthly data for the euro area:22

∆yt+h = βθ0 + βθ1CISSt + βθ2PMIt + βθ3∆yt−1 + ϵθt+h, (13)

where ∆yt+h denotes the annualised real GDP growth from month t to month t + h and su-

perscript θ indicates the regression quantiles θ = 5%, 10%, ..., 95%; ϵθt+h is the forecast error.

Representative results for the 3-month forecast horizon (h = 3) are graphically summarised in

Figure 9.23
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Fig. 9. Predictive quantile regression coefficients for the euro area. This figure plots the es-
timated quantile-specific coefficients βθ1 on the CISS (left-hand panel) and βθ2 on the PMI
(right-hand panel) of the quantile regression (13). The variable to be predicted is real GDP
growth 3 months ahead (h = 3). The quantile regression coefficients are plotted as solid blue
lines with 95% error bounds as blue dashed lines for each quantile θ = 5%, 10%, ..., 95%. For
comparison, the OLS coefficients are plotted as red horizontal lines. Regressions are estimated
using monthly euro area data from 1998M7 to 2019M12.

Two main facts stand out: First, the predictive coefficient of the CISS, plotted from the

22All data are described in Appendix C.
23Results for the US case are very similar to those for the euro area and are available on request.
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lowest (5%) to the highest (95%) regression quantile, shows a pronounced asymmetric pattern.

In the lower tail of the growth distribution, the CISS has strong predictive power, with a

negative coefficient of around −13 at the 5% quantile. The predictive coefficient then gradually

increases to exceed the OLS estimate of around −5 in the middle part of the distribution; in

the upper tail, the coefficient becomes zero and statistically insignificant. Second, the quantile

regression coefficients on the PMI are stable throughout the growth distribution, close to the

OLS estimate of around 0.2. Thus, the relationship between the PMI and future real GDP

growth is essentially linear. These general results confirm our expectation that systemic stress is

important for economic growth mainly in bad states of the economy. Capturing this asymmetry

may be important because linear empirical approaches would tend to underestimate the effects of

financial stress on short-term economic growth during financial crisis episodes and overestimate

such effects in normal economic times.

In a second exercise, we apply this predictive framework to assess the lower-tail predictive

power of the CISS vis-à-vis alternative FSI designs (the special cases from Section 4.7) and

other well-known financial business-cycle indicators.24 Predictive power is assessed in terms of

tick loss, which is defined as the asymmetrically-weighted sample average of prediction errors:

Tθ =
1

T

T∑
t=1

ϵθt+3(θ − I(ϵθt+3 < 0)). (14)

The lower the tick loss, the better the forecasting performance. For each indicator and each

quantile θ ∈ {10%, 20%, 50%, 90%}, we compute the percentage gain in tick loss (Tθ-gain) over
the tick loss of a simple quantile autoregression, averaged over all forecast horizons from 1 to

12 months.25 We report the average tick loss gain along with the average rank of an indicator

in all horizon-specific performance rankings (with the first rank given to the indicator with the

highest tick loss gain).

Table 2 presents the results of the comparison between the CISS and the six alternative FSI

designs based on data for the euro area (panel a) and the US (panel b). In general, the CISS

is found to predict short-term real GDP growth particularly well at the lower quantiles. In the

euro area, the predictive power of the CISS is second only to the FSI based on the dynamic

factor model (FSI-DF-std). The average tick loss gain of the CISS is about 22% compared to

34% for the dynamic factor model. The predictive power of the CISS remains relatively strong

at the 20% quantile, but progressively deteriorates at the higher quantiles. In the US case, the

CISS is even the best predictor at the 10% and 20% quantiles. The tick loss gain of about

13% at the 10% quantile is lower than for the euro area, probably reflecting the larger data

sample in the US case (see the notes section of table 2). However, the dynamic factor model

performs relatively poorly when applied to US data. Looking at the design characteristics of the

FSIs, it is noticeable that the predictive performance of the CISS is generally quite similar to

that of the FSIs based on z-score transformed components (FSI-average-std, FSI-PCA-std and

FSI-DF-std). In contrast, the other FSIs based on cdf-transformed components (which remove

24We drop the PMI from the list of regressors without much impact on the quantitative and qualitative results.
25The tick loss gain for each FSI is computed as 100 · (T AR

θ − T FSI
θ )/T AR

θ , where T FSI
θ is the FSI tick loss

and T AR
θ is the autoregression tick loss.
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the cardinal scale of the input series) perform much worse at the lower quantiles. Thus, in

terms of short-term growth-at-risk forecasting properties, the time-varying correlation weighting

embedded in the CISS design seems to compensate for the loss in forecasting performance when

using cdf-transformed index components.

Panel c of Table 2 compares the CISS with alternative financial indicators based on US

data.26 The CISS again emerges as the best predictor in the lower tails of the growth distribution

(10% and 20%). However, the differences in the tick loss gain with most other indicators are not

very large. The closest competitors are the term spread of the government bond yield curve and

the Gilchrist-Zakraǰsek corporate bond spread net of the excess bond premium (GZ-netspread).

The NFCI performs worst in the lower tails, but becomes the best financial predictor in the

upper tail (90%). Nevertheless, and as a general pattern observed in all three exercises, none of

the financial indicators improves the predictive power of a simple autoregression in the upper

tail by more than a mere 7% at best. The overall results of these horse-race exercises are

robust to the addition of more lags (for all forecast variables) and to the inclusion of the PMI

as a control variable. However, when the 1973-1979 period is added to the sample of US data

underlying the third exercise, the predictive power of the NFCI rises very sharply, surpassing

that of the CISS and all other financial indicators. The ranking of the CISS relative to the

other indicators remains basically stable in the larger data sample.

6.2. Growth forecasts from a quantile VAR

In this section we use a quantile VAR to examine the dynamic interlinkages between systemic

financial stress and the real economy. The analysis uses euro area data, but US data yield

very similar results.27 The QVAR includes three endogenous variables measured at monthly

frequency: the CISS, the PMI Composite Output Index, and the year-on-year change in log

real GDP. The series are described in Appendix C. The PMI tracks current business trends

by collecting information on sales, new orders, employment, inventories and prices from over

5,000 companies from the manufacturing and service sectors. The PMI for a given month is

published as a flash estimate towards the end of that month and as a final estimate at the

beginning of the following month. Against this background, we consider the PMI to be a timely

indicator of business activity and sentiment that should help us to better identify shocks to real

GDP growth, given the rather long publication lags of real GDP (and industrial production,

the variable that informs the interpolation of quarterly real GDP into monthly observations).

Year-on-year real GDP growth can be seen as a measure of the cyclical component of real GDP

(see Hamilton (2018)). Its time series properties fit well with those of the PMI and the CISS,

which appear to follow stationary, though rather persistent stochastic processes. The QVAR

is estimated with two lags over the period October 1998 to February 2020.28 As proposed in

Chavleishvili and Manganelli (2019) for QVARs, we identify the structural shocks to the model

26For a very similar exercise using euro area data, see Figueres and Jarociński (2020). In that paper, the CISS
emerges as the best growth-at-risk predictor compared with several corporate bond spreads, the TED spread,
a bank lending rate spread, the term spread, an average sovereign bond yield spread, stock market volatility
(VSTOXX) and the first principal component of all these financial indicators excluding the CISS.

27Results are available on request.
28Standard information criteria uniformly suggest an optimal lag order of two in a linear VAR with the same

model variables.
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Table 2: Relative performance of different financial indicators in quantile growth predictions

θ = 10% θ = 20% θ = 50% θ = 90%
Predictor Xt Tθ-gain rank Tθ-gain rank Tθ-gain rank Tθ-gain rank

a) Euro Area - Special cases
CISS 21.74 3.25 16.01 3.50 4.85 5.50 2.89 5.33
FSI-average-cdf 15.49 4.92 14.48 4.50 5.76 4.17 4.03 2.92
FSI-PCA-cdf 15.05 5.75 13.81 5.75 5.42 5.08 4.07 2.50
FSI-average-std 20.96 3.83 16.64 3.25 7.64 1.75 4.24 2.17
FSI-PCA-std 21.45 3.17 16.56 3.67 7.37 2.92 4.15 3.08
FSI-DF-std 34.31 1.00 23.97 1.00 7.67 1.58 2.93 5.25
Turbulence 11.72 6.08 8.87 6.33 2.59 7.00 0.26 6.75
b) US - Special cases
CISS 12.79 1.17 7.26 2.08 1.73 3.08 0.33 3.17
FSI-average-cdf 10.89 3.83 6.03 4.42 1.07 3.92 0.06 5.08
FSI-PCA-cdf 10.71 4.92 5.58 5.42 0.69 6.67 0.10 3.92
FSI-average-std 11.67 4.08 7.14 2.42 1.81 1.83 0.09 3.83
FSI-PCA-std 11.79 3.08 7.16 2.17 1.72 3.00 0.06 5.75
FSI-DF-std 6.46 6.92 4.09 6.83 0.80 6.17 1.91 1.75
Turbulence 11.68 4.00 5.81 4.67 1.71 3.33 0.09 4.50

c) US - Standard financial indicators
CISS 12.79 1.17 7.26 2.00 1.73 3.00 0.33 3.08
EBP 10.74 3.83 5.95 4.33 1.05 3.92 0.06 5.25
GZ-spread 10.52 4.92 5.47 5.42 0.67 6.58 0.10 3.75
GZ-netspread 11.51 4.00 7.04 2.58 1.78 1.83 0.09 4.00
Term spread 11.63 2.92 7.07 2.17 1.69 2.92 0.06 5.67
NFCI 6.34 6.92 4.02 6.83 0.78 6.17 1.94 1.75
SP500-DY 11.33 4.25 5.65 4.67 1.67 3.58 0.09 4.50

Notes: The numbers in this table are the results of quantile regressions ∆yt+h = βθ0 + βθ1Xt +
βθ2∆yt−1 + ϵθt+3, where ∆yt+h is the annualised real GDP growth from month t to month t+ h,
forecast horizon h = 1, ..., 12, and θ the regression quantiles. Tθ-gain denotes the average
tick loss (see Equation (14)) gain over all h regressions against the tick loss from a simple
quantile autoregression without any Xt. Positive numbers indicate lower losses relative to the
autoregression. Columns labelled “rank” show the average rank of each predictor over all 12
prediction horizons. EBP and GZ-spread are the excess bond premium and the corporate bond
spread from Gilchrist and Zakraǰsek (2012); GZ-netspread is the GZ-spread minus the EBP;
term spread is the yield differential between 10-year and 3-month government bonds; NFCI
is the National Financial Conditions Index from Brave and Butters (2012); SP500-DY is the
dividend yield on the S&P 500 stock price index. Effective regression samples of monthly data:
1999M1-2019M12 for the euro area and 1980M1-2019M12 for the US.
Sources: ECB, FRED, Haver, Board of Governors of the Federal Reserve System.
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variables using the recursive Cholesky factorisation. The CISS is ordered first in the QVAR,

which implies that it does not respond to simultaneous shocks to the PMI and real GDP growth.

This assumption can be justified from an information delay perspective, as argued in Inoue et al.

(2009) and Hóllo et al. (2012). Since the PMI and real GDP are published with a lag, their

realisations in a given month are not directly observable by financial market participants. We

therefore assume that the CISS cannot react to contemporaneous innovations in the PMI and

real GDP growth. Similarly, we order the PMI ahead of real GDP growth, so that growth can

react to contemporaneous shocks in the PMI, but not vice versa. Nevertheless, the qualitative

results of our empirical exercises remain robust to a reverse ordering of the real variables and

the CISS.

Our structural QVAR can be sketched as follows:29

yt = ϕθ +

2∑
l=1

Φθ
l yt−j + Γθyt + εθt , (15)

where yt ∈ R3 is a vector collecting the endogenous variables in the order CISS, PMI and real

GDP growth; ϕθ denotes the vector of intercepts for a given quantile θ ∈ (0, 1); Φθ
l are the

two quantile-specific 3× 3 matrices containing the lag coefficients; and Γθ is a lower triangular

matrix with zeros on the main diagonal and the identified contemporaneous coefficients as

the non-zero elements, again conditional on a particular quantile. Let F1,t =
(
y′t−1, y

′
t−2

)′
and Fi,t =

(
F ′
i−1,t, yi−1,t

)′
for i = 2, 3 be the recursive information set, then the conditional

quantile functions can be used to explain the relationships between the variables across the

entire conditional distribution and can be obtained by solving the following conditional quantile

restrictions:

Pr(yi,t < Qyi,t(θ|Fi,t) = θ, i = 1, 2, 3, (16)

with

Qyt = ϕθ +
2∑

l=1

Φθ
l yt−j + Γθyt,

denoting the conditional quantile functions identified through restrictions (16).

The regression is equivalent to solving the numerical problem in Koenker and Bassett (1978):

β̂i(θ) = arg min
β∈Rd

T∑
t=3

ρθ
(
yi,t −Qyi,t(θ|Fi,t)

)
,

where βi(θ) =
((
ϕθ

)
i
,
(
Φθ
1

)
i,.
, . . . ,

(
Φθ
p

)
i,.
,
(
Γθ

)
i,.

)′
is a vector containing the d regression pa-

rameters in the equation for variable i, and ρθ(u) = u(θ − I(u < 0)) is an asymmetric loss

function and I(u < 0) the indicator function.

All direct and indirect, lagged and contemporaneous, state-dependent interactions between

the model variables can be summarised in terms of quantile impulse response functions (QIRFs).

We compute the QIRFs using the simulation algorithm in Chavleishvili and Manganelli (2019).

The idea of a QIRF is to explore whether a particular part of the conditional distribution of

29For a detailed exposition see Chavleishvili and Manganelli (2019).
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a variable of interest responds differently from other parts to an unpredicted change in one of

the model variables, as opposed to an IRF from a linear VAR which only estimates conditional

mean effects. For a horizon h ≥ 1, a QIRF is defined as

Qyt+h
(θ|Ft+1, δi)−Qyt+h

(θ|Ft+1), θ ∈ (0, 1)3, (17)

where δi denotes the value at time t+ 1 value of the variable i ∈ (1, 2, 3), yi,t+1, after being hit

by a certain structural shock. It should be noted that θ is now defined as a three-dimensional

vector with elements θi ∈ (0, 1), which means that the QIRF can be computed for cases where

the model variables follow paths along different quantiles of their distributions.30

Fig. 10. The figure plots structural quantile impulse response functions (QIRFs) for the euro
area QVAR. The QIRFs are shown for adverse shocks in each variable, with the absolute
size being one standard deviation of the median shocks. An adverse shock to the CISS is an
increase, while an adverse shock to the PMI and real GDP growth is a decrease. The responses
of the CISS, the PMI and real GDP growth are displayed in the first, second and third rows
respectively. Correspondingly, the responses to shocks to the CISS, the PMI and real GDP
growth are shown in the first, second and third columns respectively. Each panel shows the
QIRFs for the 10%, 50% and 90% quantiles of the conditional distribution of the response
variable.

Figure 10 shows QIRFs from simulations in which each variable, in turn, experiences an

adverse shock equal to one standard deviation at the median of its unconditional empirical

distribution. The respective post-shock values δi at time t+ 1 for the CISS, the PMI and real

GDP growth are set accordingly to δ = (0.2196, 47.3143,−0.9631). The QIRFs are calculated

for horizons h = 1, . . . , 24 months and for three different quantiles θ ∈ (0.1, 0.5, 0.9), i.e., 10%,

30This property of conditional quantile forecasting makes a QVAR particularly suitable for macro stress testing
exercises as demonstrated in Chavleishvili and Manganelli (2019).
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50% and 90%.31 The responses of a variable to the three different shocks are shown row by row,

so that the responses of each of the three variables to a particular shock are shown column by

column.

The QIRFs in the first column and row, all associated with shocks to or responses of the

CISS, display some distinct asymmetries. Most interesting in our context are the much stronger

effects of CISS shocks on the PMI and real GDP growth at the 10% quantile compared to the

90% quantile and the median responses. For example, a CISS shock of +0.18 lowers annual real

GDP growth by a maximum of 1.1% over a roughly one-year horizon at the 10% quantile of the

growth distribution, compared with −0.8% and −0.5% for the median and the 90% quantile,

respectively. In addition, as can be seen from figure 11, the growth responses to a CISS shock

at the 10% quantile are statistically different from the responses at the median and the 90%

quantile at horizons around the peak effects, and responses of all three quantiles are statistically

different from zero. The differences across quantiles are similarly large for the PMI responses

to the same CISS shock, with the PMI falling by 2.5 points at the 90% quantile, 1.7 points

at the median and 1.0 point at the 10% quantile. The responses of the CISS to own shocks

show some temporary overshooting at the 90% quantile. This reflects a local non-stationarity

in the CISS equation at the upper quantiles of the conditional CISS distribution, in line with

previous findings (Chavleishvili et al. (2021)). In contrast to the asymmetries found in the

macro-financial linkages, the QIRFs between the two variables of economic activity reveal a

linear behaviour. Accordingly, shocks to the PMI lead to similar changes in real GDP growth

across all parts of the conditional growth distribution.

Fig. 11. The figure plots structural quantile impulse response functions (QIRFs) for euro area
annual real GDP growth to a one standard deviation shock in the CISS for the 10% quantile
(left panel), the 50% quantile (middle panel) and the 90% quantile (right panel). The QIRFs
are plotted with 95% confidence intervals computed using the subsampling algorithm described
in Chavleishvili and Mönch (2023).

We now use the QVAR to assess how well the CISS performs as an indicator of systemic

financial crises. To this end, we run counterfactual scenarios covering two severe economic crisis

31The QIRFs are constructed using sampling algorithms proposed in Chavleishvili and Manganelli (2019). In
this paper we use a fine grid for θi ∈ [0.05, 0.1, . . . , 0.9, 0.95], i ∈ (1, 2, 3), and 105 sampling repetitions. If the data
generating process is a Gaussian VAR, the QIRFs defined at the median levels would be equal to the standard
IRFs from a linear VAR, calculated as E(yt+h|Ft+1, δi)− E(yt+h|Ft+1).
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episodes, the 2008/09 GFC and the COVID-19 pandemic. In both episodes, economic activity

collapsed with unprecedented severity and speed. However, conventional wisdom would suggest

that financial stress was a key driver of the economic downturn only in the GFC and not in the

pandemic.

The counterfactual scenarios are designed as conditional quantile forecasts of real GDP

growth using the sampling approach suggested in Chavleishvili and Manganelli (2019). The

forecast origin is set to August 2008 for the GFC exercise and to December 2019 for the sim-

ulation covering the COVID-19 crisis, and the forecast horizon is 24 months. Three different

scenarios are calculated for each period. The first is an unconditional projection, which assumes

that the system is not exposed to any structural shock over the forecast horizon. Accordingly,

this scenario assumes that the two crises never happened. In figures 12 (GFC) and 13 (COVID-

19) we show the median unconditional forecast for real GDP growth as a dashed turquoise

line. In the second exercise, we restrict the CISS to follow its realised path over the projection

horizon, implicitly assuming a sequence of structural shocks to the CISS quantiles that ensures

the restriction is satisfied.32 For this scenario, we plot a fan chart covering conditional quantiles

from 1% to 99%. Comparing these forecast distributions conditional on a fixed CISS path with

the unconditional median forecast on the one hand and realised growth on the other, provides

an auxiliary means to quantify the contribution of CISS shocks to the two crisis episodes.33

In the third scenario, both the CISS and the PMI are fixed at their realised paths over the

projection horizon. The median conditional growth projection from this scenario is shown as a

red dashed line in the figures below. Comparing the median projections from the second and

third scenarios (the black and red dashed lines) provides a rough estimate of whether shocks to

either financial stress or business sentiment are mainly responsible for the predictable part of

the decline in real GDP growth.

In the context of the model, the GFC began with two large increases in the CISS of +0.17

and +0.33 in September and October 2008, respectively. The size of these increases was about

three and five times larger, respectively, than the sample standard deviation of monthly changes

in the CISS. In November of that year, the CISS climbed to its all-time high of 0.91, hovered

around similar levels for several months, before gradually returning to its initial level by the

end of the forecast horizon. Accordingly, in the second scenario with the realised CISS as the

only forecast condition, the QVAR predicts unprecedented downside risks to real GDP growth

in the near term (see the fan chart in figure 12). For example, in this scenario, the median

conditional forecast projects a fall in real GDP of 3.4% by May 2009, with the 10% quantile

predicting a “growth at risk” of -5.5%. Actual real GDP growth in May 2009 was around -5%,

in the middle of the 10% and 25% forecast quantiles. As the median unconditional growth

forecast is essentially flat over the first 12 months of the forecast horizon, the persistent rise

32Chavleishvili et al. (2023) describes in detail how conditional quantile forecasts with fixed conditioning paths
are implemented in the QVAR framework of Chavleishvili and Manganelli (2019).

33We resort to counterfactual simulations to quantify the contribution of financial stress to the two economic
crises, as historical decompositions for QVARs are not yet available. Chavleishvili et al. (2023) suggests a Shapley-
value decomposition that quantifies the contribution of each QVAR variable to the projected path of any variable
of interest, but only locally for a given quantile and not globally for the observed path of a variable. Historical
decompositions and other tools for counterfactual analysis in linear VARs are discussed in Kilian and Lütkepohl
(2017).
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in the CISS over this period could be seen as accounting for around 3 percentage points lower

real GDP growth. Slightly larger effects emerge when comparing the lower quantiles of the

unconditional forecast distribution with those of the fixed CISS scenario. The magnitude of

these estimated output costs of financial stress is very large compared to standard downturns in

the euro area business cycle. In the third scenario, i.e. when the forecasts are also conditioned

on the realised path of the PMI, the median real GDP growth around the peak of the GFC is

predicted to be about 1 percentage point lower than in the second scenario with the CISS as the

only conditioning variable. The differences between the two scenarios become even smaller at

the lower quantiles of the forecast distributions. Overall, it is probably fair to say that financial

stress is likely to have played a major role in the collapse of the euro area economy during the

GFC.

Fig. 12. The figure plots the monthly QVAR density forecasts of annual real GDP growth
over a 2-year horizon covering the Great Financial Crisis of 2008/09. The forecast origin is
August 2008. The dashed turquoise line represents the median of the unconditional forecast.
The fan chart shows the forecast distribution conditional on the realised path of the CISS over
the forecast horizon. The different grey shaded areas represent the ranges between the 1%, 5%,
10%, 25%, 75%, 90%, 95% and 99% quantiles. The dashed red line marks the median of the
conditional projection with fixed paths of the CISS and the PMI as forecast conditions.

In contrast to the GFC, which was preceded by already elevated financial stress and declining

economic growth associated with the spreading subprime mortgage market turmoil, the COVID-

19 crisis hit the global economy unprepared. The arrival of the pandemic brought the world

economy to a virtual standstill, and the pervasive uncertainty caused severe immediate stress

in the financial system. The latter is captured in our QVAR by a sharp historical one-off

rise in the CISS of 0.48 in March 2020, which is eight times the sample standard deviation

of monthly CISS changes. However, this huge shock was largely reversed in the following

months. This rapid reversal has been attributed in part to the improved resilience of the

banking system, thanks to the regulatory and institutional overhaul following the GFC, as well

as forceful policy interventions by fiscal, monetary and supervisory authorities at the national

and international level (Giese and Haldane (2020)). As a result of this short-lived episode of
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financial turmoil, growth-at-risk in the fixed CISS path scenario was never lower than around

-2%, even at the most pessimistic 1% quantile over shorter horizons (see figure 13). At the

median, the model predicts a maximum loss in output growth of about one percentage point

relative to the median unconditional forecast. The picture changes radically when PMI shocks

are added to the scenario. In March and April 2020, the PMI falls sharply, by -22 and -16

points respectively, which is eight and six times the historical standard deviation of monthly

PMI changes. However, even these “horror” shocks to business sentiment are largely reversed in

the subsequent two months and thus only temporary (see figure 15 in Appendix C). Conditioning

the forecast scenario on fixed paths for both the CISS and the PMI, the QVAR predicts that real

GDP falls by about 4% over the near term, which is around five percentage points lower than

the unconditional projection. While these numbers are large by any standard, the estimated

QVAR is still unable to capture the actual, very unusual dynamics of real GDP during the initial

period of the pandemic. According to the interpolated data, real GDP in April 2020 was one

fifth lower than a year earlier (see figure 13). Due to base effects in the annual growth rates, the

rapid recovery of economic activity becomes visible in April 2021, with a reported growth rate

of +18% year-on-year. Overall, the COVID-19 crisis simulations suggest that financial stress

played only a minor role in causing the temporary collapse of the euro area economy.

Fig. 13. The figure plots the monthly QVAR density forecasts of annual real GDP growth over
a 2-year horizon covering the COVID-19 crisis. The forecast origin is December 2019. The
dashed turquoise line represents the median of the unconditional forecast. The fan chart shows
the forecast distribution conditional on the realised path of the CISS over the forecast horizon.
The different grey shaded areas represent the ranges between the 1%, 5%, 10%, 25%, 75%, 90%,
95% and 99% quantiles. The dashed red line marks the median of the conditional projection
with fixed paths of the CISS and the PMI as forecast conditions.

All in all, the counterfactual simulations support the narrative that the GFC was a truly

systemic financial crisis, leading to a deep economic recession, and that such devastating finan-

cial strains can be well captured by the CISS. On the other hand, the model also supports the

contention that the COVID-19 crisis is mainly a real phenomenon, representing a huge shock to

the real economy that also affected the stability of the financial system, but only temporarily.
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While it is likely that the initial financial strains somewhat propagated the large macro shocks,

it appears that policymakers successfully intervened with decisive large-scale support measures

that helped the financial system to maintain its crucial intermediation function in highly criti-

cal and uncertain times, thereby avoiding the (re)emergence of a vicious macro-financial cycle

(Altavilla et al. (2020)).

7. Conclusions

Financial stress indices, such as the CISS, have become an integral part of the analytical

surveillance toolkit of most financial stability authorities. In particular, systemic FSIs support

macroprudential policy in its crisis management function by allowing policymakers to monitor

realised systemic risk in more or less real time (Freixas et al. (2015)). Moreover, in typical

growth-at-risk regression frameworks (Adrian et al. (2019), Adams et al. (2020), Boyarchenko

et al. (2023)), the CISS is found to predict well short-term tail risks to real GDP and other

macroeconomic variables of interest. This strong short-term predictive power of the CISS has

proved helpful in counterfactual policy analysis, which can serve the preventive arm of macro-

prudential policy (Chavleishvili et al. (2021)). In a similar context, Chavleishvili et al. (2023)

shows how financial stress indices can be used to quantify the short- and long-term costs and

benefits of a monetary policy designed to lean against the financial winds. The CISS can also

help to forecast macroeconomic variables under conditions of extreme uncertainty caused by

extraordinary financial shocks.

In addition, our study raises questions that require further research. For example, why do

composite indicators tend to outperform individual asset price indicators in forecasting stan-

dard macroeconomic variables, and which dimension reduction technique works best in this

regard? And does this superiority vary with the design of the composite indicator, or does it

simply reflect the fact that combined forecasts generally tend to improve forecast accuracy over

individual forecasts?

Finally, our proposed method can also be applied to aggregate certain variables into a

composite indicator in different economic contexts. For instance, Schüler et al. (2020) applies

time-varying correlation-weighting to combine four market-specific financial cycle measures into

an overall financial cycle indicator.
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Appendix A. Composition of the daily CISS

Table 3: Components of the US CISS

Money market

1. Volatility of 3-month nonfinancial AA-rated Commercial Paper (CP)

2. Rate spread 3-month LIBOR against Treasury bills (“Ted spread”)

3. Rate spread 3-month nonfinancial AA-rated CP against Treasury bills

Bond market

4. Volatility of 10-year benchmark government bond price index

5. Yield spread 10-year Moody’s seasoned AAA-rated nonfinancial corporate

bonds against Treasury bonds

6. Yield spread 10-year Moody’s seasoned BAA-rated against AAA-rated

nonfinancial corporate bonds

Equity market

7. Volatility of nonfinancial stock price index

8. Maximum cumulated loss (CMAX) of nonfinancial stock price index over

moving 2-year window: CMAXt = 1− xt/max[xi ∈ (xt−j |j = 0, 1, . . . , 520)]

9. Book-price ratio of nonfinancial stock price index

Financial intermediaries

10. Volatility of financial stock price index

11. CMAX of financial stock price index

12. Book-price ratio of financial stock price index

Foreign exchange market

13. Volatility of US dollar exchange rate vis-à-vis euro

14. Volatility of US dollar exchange rate vis-à-vis Japanese Yen

15. Volatility of US dollar exchange rate vis-à-vis Canadian dollar

Notes: Volatilities are computed as exponentially-weighted moving-averages of squared daily

log returns with smoothing parameter λ = 0.85. Data start in January 1973 or when becoming

available.

Sources: All raw data is from Refinitiv Datastream; own calculations. Daily US CISS updates

are available from the ECB’s Statistical Data Warehouse at https://sdw.ecb.europa.eu with

series key CISS.D.US.Z0Z.4F.EC.SS CIN.IDX.
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Table 4: Components of the euro area CISS

Money market

1. Volatility of 3-month Euribor

2. Rate spread 3-month Euribor against French Treasury bill

Bond market

3. Volatility of German 10-year benchmark government bond price index

4. Yield spread 10-year interest rate swap against German government bonds

5. Yield spread 7-year A-rated nonfinancial corporate bonds against

AAA-rated government bonds

6. Yield spread 7-year A-rated financial corporate bonds against

AAA-rated government bonds

Equity market

7. Volatility of nonfinancial stock price index

8. Maximum cumulated loss (CMAX) of nonfinancial stock price index over

moving 2-year window: CMAXt = 1− xt/max[xi ∈ (xt−j |j = 0, 1, . . . , 520)]

9. Book-price ratio of nonfinancial stock price index

Financial intermediaries

10. Volatility of financial stock price index

11. CMAX of financial stock price index

12. Book-price ratio of financial stock price index

Foreign exchange market

13. Volatility of euro exchange rate vis-à-vis US dollar

14. Volatility of euro exchange rate vis-à-vis Japanese Yen

15. Volatility of euro exchange rate vis-à-vis British pound

Notes: Volatilities are computed as exponentially-weighted moving-averages of squared daily

log returns with smoothing parameter λ = 0.85. Data start in January 1980 or when becoming

available.

Sources: All raw data is from Refinitiv Datastream; own calculations. Daily CISS updates are

available from the ECB’s Statistical Data Warehouse at https://sdw.ecb.europa.eu with series

key CISS.D.U2.Z0Z.4F.EC.SS CIN.IDX.
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Appendix B. Robustness
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Fig. 14. The figure shows daily values of the standard US CISS computed from stress factors
recursively transformed as from 1 January 2002 (red line) and a variant of the CISS using full-
sample information at all times (blue line). Data is from 2 January 1980 to 29 May 2020.

Appendix C. VAR data

The CISS is computed as the monthly average of daily data. Data is from own calculations

and published in the ECB’s SDW.

The original quarterly real GDP data are interpolated to the monthly frequency applying

state space methods, using monthly industrial production as an interpolator variable and as-

suming that the interpolation error can be described as a log-linear ARIMA(1,1,0) process as

in Litterman (1983). Estimation is implemented using the procedure DISAGGREGATE.SRC

in WinRATS (Doan (2016)). The procedure is very similar to the approach advocated by Stock

and Watson (2010) and recently applied to derive a monthly series of euro area real GDP data

in Jarocinski and Karadi (2020). Raw data is taken from the ECB’s SDW and the FRED

database.

The Markit Eurozone PMI Composite Output Index tracks business trends across both the

manufacturing and service sectors, based on data collected from a representative panel of over

5,000 companies (60 percent from the manufacturing sector and 40 percent from the services

sector). The index tracks variables such as sales, new orders, employment, inventories and

prices. National data are included for Germany, France, Italy, Spain, Austria, the Netherlands,

Greece and the Republic of Ireland. Data source is Markit. Figure 15 plots the PMI along with

the monthly series of annual real GDP growth.
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Fig. 15. The figure shows the year-on-year change in log real GDP and the PMI Composite
Output Index for the euro area. A PMI reading above 50 indicates expansion in business activity
and below 50 indicates contraction. Log real GDP is interpolated from quarterly to monthly
frequency informed by the industrial production index. Data is monthly from January 1991
(real GDP) and July 1998 (PMI) to December 2021.
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