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Abstract

We propose a novel empirical approach to inform monetary policymakers about the potential

effects of policy action when facing trade-offs between financial and macroeconomic stability.

We estimate a quantile vector autoregression (QVAR) for the euro area covering the real

economy, monetary policy and measures of ex ante and ex post systemic risk representing

financial stability. Policy implications are derived from scenario analyses where the associ-

ated costs and benefits are functions of the projected paths of the potentially asymmetric

distributions of inflation and economic growth, allowing us to take a risk management per-

spective. One exercise considers the intertemporal financial stability trade-off in the context

of the global financial crisis, where we find ex post evidence in favour of monetary policy

leaning against the financial cycle. Another exercise considers the short-term financial sta-

bility trade-off when deciding the appropriate speed of monetary policy tightening to combat

inflationary pressures in a fragile financial environment.

JEL Classification: C32, E37, E44, E52, G01

Keywords: Policy trade-offs, systemic risk, growth-at-risk, quantile regression.
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Non-technical summary

Since the global financial crisis (GFC) of 2008-09, the debate on how monetary policy should take

financial stability considerations into account has gained momentum. The controversies have

centered on several related questions: First, could the GFC have been avoided if monetary policy

had preemptively countered the credit boom, and what would have been the costs and benefits

of doing so? Second, did the loose monetary policy stance for most of the post-crisis period

have the unintended consequence of increasing financial vulnerabilities, and would economies

have been better off if central banks had been less accommodative to limit financial fault lines?

Finally, should central banks tighten monetary policy rapidly or gradually in response to the

recent surge in inflation, with different speeds of tightening potentially implying different risks

to financial stability?

This article presents an empirical nonlinear macro-financial model that is suited to quantify

such important policy trade-offs. We estimate a quantile vector autoregressive model (QVAR)

for the euro area on quarterly data from 1990Q1 to 2022Q4 and include measures of systemic

stress and systemic vulnerabilities, consumer price inflation and real economic growth as the

target variables of monetary policy makers, as well as the short-term policy rate to capture the

stance of monetary policy. The QVAR presents a flexible framework that allows us to investigate

the interactions between macroeconomic risks, in particular downside risks to growth and upside

risks to inflation, financial stability risks and monetary policy. In addition, the nonlinear nature

of the QVAR permits us to directly evaluate different monetary policy options through the lens

of the central banker as a risk manager, effectively balancing the risks to the macroeconomy

through policy interventions.

Through simulation exercises, we focus on two trade-offs related to financial stability which,

under the right circumstances, can prove relevant to the conduct of monetary policy: The

intertemporal financial stability trade-off and the intratemporal financial stability trade-off.

In the first exercise, we focus on the period prior to and during the GFC and consider a

monetary policy that “leans against the wind” by hiking rates preemptively during the pre-crisis

years in response to the escalating financial imbalances, and lowering them during the onset of

the crisis to contain the surge in financial distress. The intuition for this type of approach

is as follows: Tighter monetary policy contributes to lower leverage in the financial system

by tightening financial conditions and limiting the supply of credit, thereby limiting the scale
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of a potential unravelling in case of a crisis. In other words, limiting the build-up of financial

vulnerabilities today, while potentially sacrificing price stability, can contribute to lower financial

stability risks and consequently increase macroeconomic stability in the medium-term, which is

exactly the intertemporal financial stability trade-off. Applying a risk management approach ex

post, we find that such a policy would have been a net benefit, as the losses generated by the

additional tightening during the pre-crisis years are outweighed by the gains stemming from a

milder crisis. In the considered scenario, monetary policymakers are thus able to directly affect

the intertemporal financial stability trade-off through the considered policy.

Our second exercise instead focuses on the intratemporal trade-off by considering monetary

policy at the end of 2022, which was characterised by an environment of simultaneously high

inflation and financial stress. In this setting, policy makers had to decide whether to hike

rates rapidly, in order to avoid inflation becoming entrenched, or take a more gradual approach

in service of financial stability risks. This potential dilemma encapsulates the intratemporal

financial stability trade-off. Using the same risk management lens as the previous exercise

favours a more gradual approach to interest rate hikes, as the balance of risks to economic

activity is already tilted heavily to the downside. However, this particular conclusion, borne

by the parsimonious nature of the employed QVAR, ignores some crucial points in the conduct

of monetary policy pertinent to the considered scenario. First, the low and stable inflation

experienced in the euro area over the estimation sample can arguably be attributed to the

successful anchoring of inflation expectations at the inflation target close to 2%. Consequently,

if policy makers are worried that persistently high inflation leads to a de-anchoring of inflation

expectations, something not inherent in the QVAR, they may have strong preferences to bring

down inflation despite the potential increase in financial stability risks. Second, policy makers

have an array of tools that can be deployed for different purposes. Indeed, we model monetary

policy solely through short-term interest rates, however, central banks may use other tools

specifically for the purpose of containing financial stress while at the same time hiking policy

rates to subdue inflation.

Still, the QVAR presented in this paper represents a flexible, nonlinear tool which, through

scenario analysis, can be used to integrate the potential macroeconomic implications of financial

stability risks into monetary policy geared towards achieving price stability over the medium-

term.
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1 Introduction

Since the global financial crisis (GFC) of 2008-09, the debate on how monetary policy should take

financial stability considerations into account has gained momentum. The controversies have

centered on several related questions: First, could the GFC have been avoided if monetary policy

had preemptively countered the credit boom, and what would have been the costs and benefits

of doing so? Second, did the loose monetary policy stance for most of the post-crisis period

have the unintended consequence of increasing financial vulnerabilities, and would economies

have been better off if central banks had been less accommodative to limit financial fault lines?

Finally, should central banks tighten monetary policy rapidly or gradually in response to the

recent surge in inflation, with different speeds of tightening potentially implying different risks

to financial stability? This article presents an empirical nonlinear macro-financial model that is

suited to quantify such important policy trade-offs.

Based on a parsimonious quantile vector autoregression (QVAR) model for the euro area,

we investigate how financial stability conditions interact with monetary policy and its primary

target variables, consumer price inflation and real GDP growth. In the model, financial sta-

bility conditions are represented by the ECB’s systemic risk indicator (SRI) and the composite

indicator of systemic stress (CISS). While the SRI gauges system-wide financial imbalances or

vulnerabilities, the CISS quantifies the level of systemic stress in the financial system. The con-

cepts of overall financial imbalances and systemic stress are intimately related: the first relates

to systemic risk ex ante (i.e., the risk of a future financial crisis) and the second to systemic risk

ex post (i.e., the severity of a realised financial crisis). A typical financial boom-bust cycle could

thus be simulated by combining an elevated level of the SRI with a subsequent steep rise in the

CISS, which occurs when the bubble is assumed to burst. Furthermore, since not all systemic

events are ignited by the unravelling of financial imbalances like those observed prior to the

GFC, including a measure of systemic financial stress as a separate variable enables us to also

capture the effects of alternative sources of systemic events such as macro shocks or financial

contagion (de Bandt and Hartmann (2001)). A short-term interest rate represents the setting

of standard monetary policy. Estimating the model by quantile regression allows us to tease out

potential nonlinearities in the macro-financial linkages, such as those highlighted in the seminal

“growth-at-risk” papers by Adrian et al. (2019) and Adrian et al. (2022). In line with that

literature, we find that the left tail of the economic growth distribution is much more sensitive
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to systemic stress than the remaining parts of the distribution. We also detect an intertempo-

ral relationship between systemic vulnerabilities and systemic stress, in that an increase in the

former tends to precede a moderate increase in upside risks to the latter in the medium term,

and that monetary policy can potentially have a direct impact on macro volatility through this

intertemporal connection.

Financial stability implications for the conduct of monetary policy are derived from scenario

analysis. For this purpose, we first estimate conditional forecast distributions of output growth

and inflation over short- to medium-term horizons for both a baseline and an alternative policy

scenario, conditional on either historical or assumed patterns of financial stability conditions.

We next compute specific risk metrics from these density forecasts to help us evaluate the policy

options from a risk management perspective. Within such a framework, financial stability

considerations are elevated from pure “side effects” of monetary policy, to a direct channel with

first-order effects on the projected paths of the distributions of inflation and output growth. The

implied intertemporal balance of risks can be influenced by monetary policymakers according

to their preferences over short- and medium-term gains and losses in macroeconomic stability.

In order to exemplify how to quantify the different financial stability trade-offs, we perform two

simulation exercises.

The first exercise runs simulations over the period 2004–2010, covering the GFC. In the

baseline scenario, a set of constraints ensures that the endogenous variables follow paths that

resemble the actual historical ones while still being endogenously determined. The counterfactual

scenario implements a monetary policy that “leans against the wind” by increasing rates during

the pre-crisis years in response to the escalation of financial imbalances, and lowering them after

the onset of the crisis in response to surging financial distress. We find that such a leaning

policy would have been beneficial according to risk measures that emphasise the tail risks of

poor outcomes, meaning that the macroeconomic costs, ex post, of running a tighter monetary

policy prior to the GFC are outbalanced by the smaller losses arising from a milder crisis.

As an alternative to this well-known intertemporal financial stability trade-off or “credit-

bites-back” case (Kashyap and Stein (2023), Jordà et al. (2013)), the second exercise deals with

an intratemporal or short-run financial stability trade-off. In this situation, similar to the stan-

dard Phillips-curve trade-off, policymakers must set off short-term benefits and losses in macroe-

conomic and financial stability against each other. We study such policy conflicts in the context

of the recent surge in global inflation. In an effort to regain price stability, monetary policy
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started tightening after years of ultra-low interest rates and expansionary balance-sheet policies.

In doing so, central banks have to decide whether to implement tighter policies rapidly or grad-

ually. Front-loading policy helps prevent inflation from becoming entrenched, while a gradualist

approach contains risks to financial stability and economic growth stemming from disruptive

financial market reactions to unusually large policy rate rises (Cavallino et al. (2022)). We run a

baseline scenario from late 2022 onward, assuming that policy rates evolve according to market

expectations, that commodity prices increase moderately, and that financial stress—which shot

up initially along with rising inflation—abates in line with the implied model dynamics. The

counterfactuals assume that interest rates rise more strongly (gradually) and to a higher (lower)

level than anticipated in the baseline. The results overall support a cautious policy approach.

If larger policy moves are assumed to create additional financial stress, the balance of risks tilts

even further towards a more gradual course of policy action. The recent banking turmoil in the

U.S. and elsewhere provide a lucid example of how monetary tightening may induce, or reveal,

financial fragility (Jiang et al. (2023), Acharya et al. (2023)).

Notwithstanding the ability of monetary policy to address financial stability concerns, it is

not the only game in town. The current consensus view sees macroprudential policy as the first

line of defense to safeguard financial stability (Bernanke (2015)). By setting appropriate capital

and liquidity buffers, for instance, macroprudential policy can counter the build-up of systemic

risks and improve the resilience of the financial sector. Even so, the longer implementation

lags, the limited scope and uncertain effectiveness of macroprudential policy tools leave room

for monetary policy to play a complementary role in mitigating financial exuberance and stress

(Freixas et al. (2015)). One of the main advantages of monetary policy is its more immediate

and widespread impact on financial markets; as has been said, “monetary policy [...] gets in all

of the cracks” (Stein (2013)).

Related literature – This paper relates to a long and broad literature on the multifaceted

relationship between monetary policy and financial stability. The policy goals of financial

and macroeconomic stability are seen as complementary, if not mutually conducive, in gen-

eral (Freixas et al. (2015), Adrian and Liang (2016), Smets (2018)). On the one hand, financial

stability is considered a necessary condition to achieve macroeconomic stability. The macroeco-

nomic fallout from the GFC convinced academics and policymakers to upgrade their views on

how costly financial crises actually are. Macro models that aim to either theoretically explain

or empirically estimate the unusually large costs of financial stress on the real economy feature
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nonlinearities to capture discontinuities in the macro-financial linkages brought about by, e.g.,

fire sale externalities, liquidity runs, and occasionally binding financial constraints. Empirically,

such discontinuities reveal themselves in the heavy left-hand tails of the distribution of real eco-

nomic activity conditional on measures of financial conditions (Adrian et al. (2019), Adrian et al.

(2022)). On the other hand, financial stability itself depends on macroeconomic stability. This

is evidenced by the surge in financial stress when the COVID-19 pandemic triggered a free fall

in economic activity and dislocations in the financial sector (Chavleishvili and Kremer (2023)

and Acharya et al. (2021)). As a further example, large cost-push shocks to inflation—typically

accompanied by monetary tightening, an inverted yield curve and economic slowdown—tend

to diminish the loss absorbing capacity and thus the resilience of financial institutions, thereby

making a financial system more fragile (Jiang et al. (2023)). Finally, the inherent stability of a

financial system also depends on the central bank being available, as a matter of principle, as

lender of last resort to contain the risk of self-fulfilling liquidity crises (Bagehot (1873), Martin

(2009)).

However, it also happens that the goals of financial stability and macroeconomic stability

come into conflict. The intertemporal trade-off raised by boom-bust cycles in credit and asset

prices is a prominent case in point (Schularick and Taylor (2012), Jordà et al. (2013), Jordà

et al. (2015); see Boyarchenko et al. (2022) for an overview). The role of monetary policy in

preventing such boom-bust cycles is two-edged, depending on the presumed causes of the boom.

First, assume that the boom is driven by forces exogenous to monetary policy, such as investors’

overoptimism about future profit opportunities and associated risks (“animal spirits”). The pre-

crisis consensus view favoured a benign neglect approach, implying that central banks should

not try to lean against the financial boom but rather clean up or mop-up the damage done to

the financial system once the bubble burst. Irrational credit and asset booms were thought to

be too difficult to identify in real time, and even if they were, interest rates were perceived as too

blunt a tool to effectively contain the bubbles (Smets (2018)). This view seemed to be supported

by the experience of the dotcom boom-bust episode in the late 1990s and early 2000s (Woodford

(2012)). Supporting the sceptical stance toward the use of monetary policy to lean against the

financial cycle, recent evidence also suggests that unsystematic discretionary monetary policy

tightening during a financial boom may actually increase the probability of a financial crisis

rather than decrease it (Schularick et al. (2021)). This notwithstanding, the GFC challenged

the main assumptions underlying these views and paved the way for considering a more active
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role for monetary policy in safeguarding financial stability. As noted above, systemic crises

are now perceived to be much more costly than in the past (see, e.g., Gourio et al. (2018)).

In addition, recent findings support the notion that policymakers may now be able to better

distinguish between good and bad credit booms in real time by monitoring certain markers (see

Richter et al. (2021)). Moreover, countercyclical changes in policy rates can be quite effective,

especially when asset price booms are driven by leveraged short-term debt financing. Finally,

it should be sufficient for policymakers to identify conditions of heightened systemic “tail risk”

to justify a tighter monetary policy stance (Woodford (2012)). As a result, leaning against

financial booms in order to preserve financial and macroeconomic stability beyond short-term

horizons has penetrated mainstream views about optimal monetary policy strategies (Boissay

et al. (2021), Woodford (2012), Goldberg et al. (2020), European Central Bank (2021)).

Second, it has also been suggested that financial imbalances can develop endogenously, in

response to incentives provided by monetary policy. Indeed, Grimm et al. (2023) show that

persistently accommodative monetary policy increases financial fragility and the probability of

future financial distress through excessive credit and asset price growth, using more than 100

years of data for advanced economies. Freixas et al. (2015) and Kashyap and Stein (2023)

summarise the theoretical and empirical literature linking risk-taking behaviour by financial

institutions to the conduct of monetary policy. Central banks can induce such “reach for yield”

by pursuing persistent expansionary interest rate and balance sheet policies, which have been

shown to suppress risk premia on a range of financial assets (Bauer et al. (2023)). However, as

the effect of monetary policy on risk premia is only temporary, the risk-taking channel is doomed

to reverse, sowing the seeds of the next crisis (Kashyap and Stein (2023)). Indeed, the risk that

such a “premium-bites-back” reversal could be disorderly complicates current efforts by central

banks to withdraw monetary stimulus to contain inflationary pressures (Cavallino et al. (2022)).

This short-term trade-off became especially apparent in September and October 2022 when the

Bank of England injected fresh liquidity in government bond markets to contain systemic risks

while simultaneously raising short-term policy rates to combat double digit inflation, although

the ability of central banks to employ different tools to simultaneously target price and financial

stability can soften the potential trade-off, as argued by (Hauser (2022)). At the strategic level,

the risk-taking view also implies that monetary policy should dampen the financial cycle, but

for a different reason. Countering the moral hazard stemming from central banks’ lender of

last resort function, monetary policy should be tighter than macroeconomic conditions would
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suggest in order to limit risk-taking ex ante (Freixas et al. (2015)).

We start describing our contributions to the literature with two quotes:

“Acceptance that monetary policy deliberations should take account of the conse-

quences of the policy decision for financial stability will require a sustained research

effort, to develop the quantitative models that will be needed as a basis for such a

discussion.” (Woodford (2012), p. 5)

“How might central banks adapt their monetary-policy processes to take account

explicitly of the intertemporal tradeoff we have identified? One suggestion is that

policymakers should seek to develop summary measures of financial conditions that

are most useful for capturing the kind of credit-bites-back risk we have highlighted.”

(Kashyap and Stein (2023), p. 68)

Our first contribution is to quantify the mutual dynamic relationships between two summary

measures of financial stability conditions on the one hand, and inflation, economic growth and

short-term interest rates, the three main variables of interest in any conventional macro model

of monetary policy, on the other. Including a composite indicator of credit and asset price de-

velopments along with a systemic stress index—based on an idea put forward in Chavleishvili

et al. (2021)—allows simulating all sorts of financial stability constellations and their short-

and medium-run effects on inflation and growth, conditional on certain interest rate paths.

The quantile VAR setup extends single-equation macro-at-risk applications into a multivariate

quantile framework. By capturing the dynamic, possibly state-dependent predictive relation-

ships between all model variables, this framework lends itself to flexible multi-period-ahead stress

testing exercises as first proposed in Chavleishvili and Manganelli (2019).

Second, we present a tool that, through the use of scenario analysis, can be used to assess

the short- and medium-term costs and benefits of a monetary policy that systematically takes

financial stability risks into account. A strength of this “monetary policy stress-testing frame-

work” is that it does not require an intertemporal trade-off between systemic vulnerabilities

and systemic stress to be present in the estimated model coefficients.1 Instead, any potential

boom-bust cycle can be modelled through appropriate scenarios in which financial imbalances

1The infrequent nature of financial crises in history makes the relationship between indicators of vulnerability
and the probability of future financial crises hard to estimate (Goldberg et al. (2020)). This notwithstanding,
estimates for the euro area model reveal a moderate financial boom-bust relationship between the SRI and the
CISS. But still, this result is not essential for our main findings.
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and systemic stress are assumed to follow certain paths, representing milder or stronger financial

crises. What matters is a significant impact of systemic stress on the short-term outlook for real

growth as well as some leverage of monetary policy on financial and macroeconomic conditions.

Since the short-term predictive power of financial conditions for economic growth appears to

hold across countries, our framework should also work for economies where no major financial

crisis occurred over the estimation period.

Third, we suggest an intratemporal financial stability trade-off for monetary policy, which is

particularly acute when monetary policy needs to tighten—through interest rate and/or quanti-

tative policies—in the face of adverse shocks to inflation. In such circumstances, policy-induced

financial stress can magnify the usual Phillips-curve trade-off. In this context, our model can

be seen as an empirical counterpart to the theoretical model of Stein and Sunderam (2018) on

monetary policy gradualism when central banks care for bond market volatility. The CISS in-

cludes measures of bond, equity and foreign exchange market volatility, apart from risk premia

and other valuation indicators, thus allowing for a more general perspective on financial market

discontinuities disliked by policymakers (Coibion and Gorodnichenko (2012)).

Fourth, we show how the QVAR can be used to operationalise a monetary policy risk man-

agement framework (Kilian and Manganelli (2008)) that systematically incorporates financial

stability considerations with the aim of balancing short- to medium-term macroeconomic risks.

This risk management perspective offers an alternative to existing frameworks to study the

costs and benefits of leaning against the wind policies (see Svensson (2017), Brandao-Marques

et al. (2020), Filardo and Rungcharoenkitkul (2016)). Finally, the paper also makes a modest

methodological contribution by proposing a Shapley value decomposition to identify the driving

factors of the model forecasts for any variable and any specific quantile of interest.

The paper is structured as follows. Section 2 introduces the lens with which we perceive

financial stability risks along different dimensions. Section 3 presents the QVAR framework and

how to apply it in scenario analyses, while section 4 specifies the QVAR model and describes the

data. Section 5 estimates the model and dissects the inherent model dynamics and nonlinearities.

Sections 6 and 7 present the scenarios for the intertemporal and intratemporal financial stability

trade-offs, respectively. Section 8 concludes.
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Figure 1: Time series of the euro area CISS and SRI, 1990Q2:2022Q4

Source: ECB.
Note: The CISS is constructed to take values between [0; 1].

2 Operationalising financial stability

To motivate the financial stability trade-offs for monetary policy, we begin by considering finan-

cial stability as broadly spanning two related but distinct dimensions, systemic vulnerabilities

and systemic stress. Systemic vulnerabilities reflect the built-up yet docile risk of systemic na-

ture within a financial system, some or all of which materialises at a future point in time with

some probability. Systemic stress, on the other hand, is the realisation of all or part of said risk.

To illustrate the complementary nature of financial vulnerabilities and stress in the euro area,

figure 1 depicts prevailing stress in financial markets, as captured by the composite indicator

of systemic stress, CISS (see Hollo et al. (2012), and Chavleishvili and Kremer (2023)), and

cyclical systemic vulnerabilities stemming from economic and financial imbalances, reflected in

the systemic risk indicator, SRI (see Lang et al. (2019)). Prolonged periods of elevated levels

of the CISS are seen to be regularly, though not always, preceded by a persistent increase in

the SRI, capturing the build-up of vulnerabilities in the financial system, after which the SRI

declines in response to the heightened volatility.2 Unsurprisingly, the GFC in 2008 and 2009 is

the most notable example of this intertemporal relationship, representing a tail event in which

2The surge in the SRI in 2020Q2 is in large part a result of the sharp decline in real GDP growth experienced
during the COVID-19 pandemic, which mechanically caused select sub components and consequently the SRI
itself to increase.
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a large share of the pent up vulnerabilities materialised.

The pattern above is not coincidental. Indeed, the SRI belongs to a broad class of early

warning-indicators built with the express purpose of flagging widening financial imbalances of

systemic nature (e.g. Alessi and Detken (2018)). In particular, the SRI combines several sub-

indicators representative of different categories relevant for gauging trends in systemic risks,

most notably linked to 2 to 3-year changes in real asset prices and credit.3 Having both asset

price and credit measures makes the SRI well suited to study the interaction between systemic

risks ex ante and ex post, as Jordà et al. (2015) show that asset price bubbles driven by credit

booms can lead to particularly detrimental outcomes for the real economy. Further, the use of

multi-year changes in the underlying indicators implies that the SRI represents cycles of a more

persistent nature, thus contributing to its slow-moving nature by filtering out long-run trends

as well as short-run fluctuations (see Hamilton (2018)).4

The observed co-movement between systemic vulnerabilities and stress motivates the general

notion of a potential intertemporal financial stability trade-off for monetary policy. While ac-

commodative monetary policy tends to reduce financial stress and macroeconomic volatility in

the short term, it may also encourage the build-up of financial imbalances over the medium term,

thereby increasing the likelihood of heightened financial stress and macroeconomic instability

over longer horizons. This is intuitive, as periods of tranquility, characterised by low uncertainty

and ample financing opportunities, may increase risk-taking and, consequently, leverage in the

financial system. Conversely, by tightening monetary policy, central banks can provide incen-

tives for private agents to unwind risky financial positions and deleverage, thereby reducing the

likelihood of financial distress in the future at the cost of increased financial and macroeconomic

instability today.

Figure 1 shows that financial distress can also arise due to macro shocks and financial con-

tagion, unrelated to the prior accumulation of systemic vulnerabilities. For instance, the war in

Ukraine which started in early 2022 brought about a surge in systemic stress, partly related to

the global bout of inflation following the huge increases in the energy and food prices, among

3The SRI is a weighted-average of the following components: two-year change in the bank credit-to-GDP
ratio; two-year growth rate of real total credit; two-year change in the debt-service-ratio; three-year change in the
residential-real-estate price-to-income ratio; three-year growth rate of real equity prices; current account-to-GDP
ratio.

4Notably, Lang et al. (2019) show that the SRI performs equally well as an early warning indicator for financial
crises when only using data prior to 2000Q1, supporting its signalling value outside of the period leading up to
the GFC.
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others. Another example is the spreading risk of contagion from the downturn of the large hedge

fund Long-Term Capital Management in 1998.

3 QVAR framework

3.1 The QVAR model

The QVAR combines the methods of structural vector autoregressions and quantile regressions

(Koenker and Bassett Jr (1978)), as laid out in more detail by Chavleishvili and Manganelli

(2019).

Specifically, letting j ∈ (0; 1) be an index of quantiles to be estimated, the QVAR can be

formalised as

Yt = CjDt +Aj
0Yt +

P∑
p=1

Aj
pYt−p +

S∑
s=0

Bj
sXt−s + εjt (1)

F
(
εji,t < 0|Ψi,t−1

)
= j ∀ i = 1, 2, . . . ,K (2)

where Yt is a K × 1 vector containing the endogenous variables at time t, Xt an M ×

1 vector containing the exogenous variables, Dt an R × 1 vector of deterministic terms, εjt

the error term at quantile j and {Cj , Aj
0, A

j
1, . . . , A

j
P , B

j
0, . . . , B

j
S} a set of coefficient matrices

for quantile j, with Aj
0 in particular being lower triangular and having a zero diagonal. The

design of Aj
0 is what grants the model its structural quality, in particular through a Cholesky

decomposition common in the structural VAR literature (e.g. Christiano et al. (1999)). Equation

(2) is the identifying assumption used in quantile regressions. It provides that for an unspecified

cumulative distribution function, F (·), the jth quantile of variable i’s quantile error, εji,t, equals

0 conditional on the information set Ψi,t−1, containing realisations of lagged values of Y and X

as well as contemporaneous values of X and yk for k = 1, ..., i.

The inclusion of Xt in equation (1) is a special case of Chavleishvili and Manganelli (2019),

in which a set of variables assumed strictly exogenous, meaning there is no feedback from Yt into

Xt or between any individual variable in Xt. The choice of Xt and the associated exogeneity

assumptions are discussed in greater detail in section 4.
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3.2 Conditional quantile forecasting and scenario analysis

The QVAR given by equations (1)-(2) jointly models the quantile forecasts of the endogenous

variables conditional on their past realisations, and using the simulation methods detailed in

Koenker et al. (2017) and Chavleishvili and Manganelli (2019), the model can be used to forecast

the conditional joint distribution of the system. A more thorough description on conditional

quantile forecasting with the QVAR is given in appendix B, and we refer the reader to this

appendix as well as the literature above for more details on the methodology as well as the

simulation algorithm employed. However, we briefly describe the general idea here to provide

some intuition. Importantly, we project the conditional distribution of individual exogenous

variables forward using a univariate version of the approach described below, although other

approaches, including those not based on regression quantiles, could be employed.5 For this

purpose, it can be instructive to think of the QVAR as a random coefficient model (Koenker

and Xiao (2006) and Chavleishvili and Manganelli (2019)). Consider then again equation (1),

dropping exogenous terms without loss of generality, but rewritten in the random coefficients

representation

Yt = C (Ut)Dt +
P∑

p=0

Ap (Ut)Yt−p (3)

where the matrices of parameters in C and A• are now determined by the i.i.d. standard uni-

form variable, Ut, with support (0; 1)K , which maps into a set of estimated quantile coefficients.

From equation (3) it becomes clear that the forward motion of the entire system up to horizon

H from period τ can be forecast by selecting a set, {Uτ+h}Hh=1, which will then determine the

parameters governing the endogenous variables at each point in time. This set can either be

chosen directly by the researcher or drawn randomly. The simulation approach listed above

takes the latter approach, and by estimating the model (1)-(2) for a sufficiently granular set

of quantiles, η, a random draw of Uτ+h can subsequently be mapped to a particular selection

of quantiles, λτ+h ∈ η, one for each endogenous variable, which then dictates the behaviour of

Yτ+h as given by (3). Repeating the conditional forecast a sufficient number of times then yields

the complete joint forecast distribution of the system at each point in the forecast horizon.

Once the method for producing conditional quantile forecasts is in place, scenario analysis

5As such, we could equivalently model the exogenous variables as endogenous with an appropriate set of zero
restrictions on the relevant coefficients.
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follows naturally through an appropriate set of restrictions on the model. We once again refer

the reader to appendix B for more details on how to do scenario analysis in the QVAR and

provide a brief description here.

One way to do simple scenario analysis in the QVAR is by imposing a series of shocks

throughout the forecast horizon, for instance a set of monetary policy shocks or inflationary

shocks. A special case of scenario analysis with structural shocks is when the shocks are chosen

such that one or more of the endogenous variables realise a specific path (see e.g. Leeper and Zha

(2003) and Giannone et al. (2019)). This can be useful if, for instance, one wants to investigate

how a specific interest rate path would affect the predictions of the model. One major difference

between this type of analysis in the the QVAR and linear VARs is that shocking the latter implies

a shock to the mean of the forecast distribution, consequently shifting the entire distribution in

the direction of the shock, while it is in principle possible to impose different shocks on different

quantiles in the QVAR. Shocking the different quantiles in a non-symmetric way increases the

complexity of the exercise substantially, however, and for our purposes we therefore only consider

shocks to variables that are equal across the forecast distribution.

Particular to the QVAR, another way to do scenario analysis is to restrict the realisations of

Uτ+h throughout the forecast horizon. Instead of randomly picking a quantile when simulating

the QVAR forward, we can also select a specific path of the Uτ+h which fixes the parameters

governing the model dynamics in a given period. In this way, the QVAR allows for the endoge-

nous variables to be pushed along a desired path through the choice of Uτ+h while still being

endogenously determined, allowing for counterfactual analysis over historical episodes, as we

will demonstrate below.

4 Model specification

4.1 Endogenous variables

Our set of endogenous variables consists of the CISS and SRI to capture realised systemic risk

and systemic vulnerabilities, log-differences of harmonised consumer prices and euro area real

GDP representing the real economy as well as the changes in the 3-month EUR overnight index

swap (OIS) rate as a measure of standard monetary policy.6 We include two lags of Y in our

6Supporting the inclusion of the SRI and 3-month OIS rate, a variable selection exercise considering model fit
(see Lee et al. (2014) and Machado (1993)) and forecasting ability finds that these particular variables perform
relatively well vis-à-vis other measures of financial imbalances and monetary instruments.
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model as a compromise between the need to appropriately capture relevant model dynamics and

the typical issue of dimensionality in VARs with limited sample size, see also section 4.3.

As noted previously, the applied QVAR imposes a recursive identification scheme to identify

the structural model, and we order the block of real economy variables, i.e. real GDP growth

and consumer price inflation, before monetary policy instruments, in our case the 3-month

EUR OIS rate, similar to e.g. Christiano et al. (1999). The structural implication is that

monetary policy can respond to macroeconomic developments within the current period, while

real economic activity only responds to monetary policy with a delay. The notion of monetary

policy transmission lags is well documented in the literature (Havranek and Rusnak (2013))

making this particular ordering a natural choice. Additionally, we impose an implementation

lag of monetary policy on the real economy, akin to Estrella (2015), by requiring that the first

lag of changes in the 3-month OIS rate impacts neither economic activity nor inflation directly,

but only implicitly through the financial block. Specifically, we estimate the model setting the

elements corresponding to the 3-month OIS rate in Aj
1,HICP and Aj

1,GDP equal to 0 for all j.

Second, we place the financial stability block, that is, the CISS and SRI, before real economy

and monetary policy variables. This choice in large part reflects the desired model property

of allowing severe shocks originating from the financial system to affect the macroeconomy

“instantaneously”, i.e. within the data sampling period. The most prominent example of this

type of dynamic was seen during the GFC, where increased risk aversion and uncertainty about

the solidity of the financial sector, though not necessarily about the macroeconomy at the outset,

led to a self propagating evaporation of liquidity in interbank and other key funding markets,

evolving into a full blown liquidity crisis with severe and immediate consequences for economic

activity (Borio (2010)).7 8

7However, placing the financial stability block first in our structural identification is largely an inconsequential
choice, as a reverse ordering leads to similar results.

8One may also consider the placement of the CISS as reflecting an information lag as suggested in Inoue et al.
(2009). While financial asset prices can be observed more or less in real time, economic agents receive information
about current GDP and inflation with a lag of several weeks. Accordingly, it may be assumed that the CISS -
being composed of readily observable asset prices - can influence financial and real quantities contemporaneously,
while the opposite may not necessarily apply since credit volumes, real GDP as well as housing and consumer
prices are published only with significant delays and are thus not known to agents when taking financial and
economic decisions in time t.
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4.2 Exogenous variables

In order to capture supply side pressures of more global origin, we include commodity price

inflation based on the S&P GSCI index, which reflects price movements in global commodity

markets, as our only exogenous variable with two lags. The addition of commodity prices serves

two purposes: The macroeconomic environment following the COVID-19 pandemic in 2020 put

the spotlight back on the pass-through of supply side factors into consumer prices, which had

remained relatively benign for the previous decade. Hence, commodity prices help expand the

dimensions of the QVAR pertaining to supply side dynamics. Second, commodity prices are

often identified as alleviating the “price puzzle” often present in VARs, see e.g. Sims (1992) and

Sims and Zha (2006).

The assumption of commodity prices as exogenous is not necessarily innocuous since they

are determined by global supply and demand (Kilian (2009)), the latter of which the euro area

constitutes a non-negligible share of. To this point, oil prices, which make up almost half of the

S&P GSCI index, are generally recognised as hard to predict with standard statistical models

(Hamilton (2009)), and it is therefore often assumed that they evolve exogenously to individual

economies (see also Kilian and Vega (2011) and Kilian and Vigfusson (2013)). We support the

assumption of exogeneity of commodity prices by running a range of block exclusion tests on

our model variables which fail to reject the null hypothesis of no direct predictive power of the

euro area macro variables on commodity prices.

To allow us to identify commodity price shocks as supply shocks, we restrict our model in

(1)-(2) such that structural effects of commodity prices on the system of endogenous variables

only enter through consumer price inflation, i.e. the coefficients of Bj
s,i̸=HICP associated with

commodity price inflation are set equal to zero for all j, i, s. Without this particular restriction,

model estimates will tend to conflate global supply and demand shocks within commodity prices,

thereby weakening the case for identifying the associated shocks as supply shocks.

4.3 Data

We estimate the QVAR on quarterly data over the period 1990Q1-2022Q4, totaling 132 obser-

vations. Quarterly values of the CISS are computed as quarterly averages of daily values, while

consumer and commodity price inflation are the log-difference in the quarterly average of the

seasonally adjusted HICP and commodity price index, respectively, at a monthly frequency. We
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use the change in quarterly averages for the 3-month OIS rate as the monetary policy instrument.

The inclusion of the COVID-19 outbreak and its subsequent effects in the sample necessitates

a careful approach to the exact specification of the QVAR, as the extraordinary movements in

real GDP growth can severely interfere with estimation coefficients (see also Lenza and Primiceri

(2022)). Indeed, estimating the QVAR for the entire sample without any regard for the COVID-

19 shock results in notably stronger mean reversion for real GDP growth, in particular when

compared to a model estimated on data ending in 2019Q4. We account for the pandemic by

adding a set of dummy variables (D2020Q1, D2020Q2, D2020Q3 and D2020Q4), one for each quarter

in 2020. Although this approach increases the dimensionality of the model, they ensure that

the effects of the COVID observations on estimated coefficients remain relatively muted. In

addition to the four dummy variables, we include a constant term. In contrast to the COVID-19

crisis, we do not include dummies for the GFC. While the nonlinear interactions between the

financial and the macroeconomic variables during the GFC are well captured by the QVAR, the

COVID-19 crisis produces extremely oversized model residuals of the real variables far from the

tails of the prior historical distributions if not accounted for explicitly.

Euro area macroeconomic data prior to 1999 stems from the Area Wide Model developed

by Fagan et al. (2005). The Area Wide Model synthesises several country-level data series to

create a new set of time series reflecting euro area aggregates, had the currency union existed

before 1999.9

Like aggregate euro area data, EUR OIS markets were not sufficiently active or liquid to

construct OIS rates until the beginning of 2000. As such, we approximate the 3-month OIS rate

before 2000 by using the backcasted 3-month EURIBOR rate from 1994Q1-1999Q4 corrected for

the average spread to the EUR OIS rate in the period 2000Q1-2007Q2. Before 1994 we use the 3-

month FIBOR rate, the German interbank rate, corrected for the same average EURIBOR-OIS

spread as above as well as the average spread between FIBOR and EURIBOR at the 3-month

tenor from 1994Q1-1998Q4.

Time series for endogenous and exogenous variables are plotted in appendix A with the

exception of the CISS and SRI, which are separately illustrated in figure 1.

9The data set is made publicly available by the Euro Area Business Cycle Network.
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5 Nonlinearity and model dynamics

We estimate the QVAR specified above and confirm its nonlinearity through Wald tests of the

equality of slopes across quantiles, see Koenker (2005). Specifically, we test the null hypothesis

that the slope parameters are equal to the median estimates across quantiles, that is, Aj ̸=0.5
0,i =

A0.5
0,i , A

j ̸=0.5
p,i = A0.5

p,i and Bj ̸=0.5
s,i = B0.5

s,i . Failure to reject the null indicates that there is no

nonlinearity in the direct predictive power of one variable on another. We perform the test for

each endogenous variable by individually estimating the quantile equations across deciles in the

interval [0.1; 0.9] and compute the Wald test statistic. The test follows a χ2-distribution where

the degrees of freedom equal the number of slope parameters we wish to test, i.e. the number

of non-zero restricted coefficients in Aj
0,i, A

j
p,i and Bj

s,i, times the total number of estimated

quantiles, not counting the median, which we test against, in this case 8. Consequently, the

degrees of freedom will vary depending on the ordering in the structural identification and the

number of additional zero restrictions imposed, as discussed in the previous section. The results

of the Wald tests are reported in table 1. The test rejects the null of slope homogeneity for all

endogenous variables except HICP inflation and the SRI, but only marginally for the latter.

Table 1: Wald tests of parameter homogeneity

Test statistic DF p-value

CISS 116.87 80 0.00
SRI 109.99 88 0.06

∆ln(HICP ) 111.31 112 0.50
∆ln(GDP ) 145.41 96 0.00
∆OISe3M 316.51 112 0.00

Source: Authors’ calculations.
Note: Test statistics are calculated individually for each endogenous variable and for each decile in the
closed interval [0.1; 0.9]. P-values are based on a χ2-distribution.

The estimated nonlinearities are also present in the generalised quantile impulse response

functions (G-QIRFs). The G-QIRFs are computed following Chavleishvili and Mönch (2023)

using the simulation approach described in appendix B.10 The entire set of G-QIRFs can be

found in figures A.5 and A.6 in appendix A. The remainder of this section highlights some

G-QIRFs that are particularly relevant in our context.

10We compute bootstrapped confidence intervals for the G-QIRFs based on the moving block bootstrap pro-
cedure (see Fitzenberger (1998) and Härdle et al. (2003)).
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Figure 2: Impact of a CISS-shock on select quantiles of real GDP growth and the SRI

Source: Authors’ calculations.
Note: G-QIRFs for the SRI (right) and real GDP growth (left) of a shock to the CISS based on 106

forward simulations. The shock equals the standard deviation of the errors in the CISS-equation at the
50th percentile. Initial conditions are set equal to the historical median values of the respective time
series. Shaded areas indicate bootstrapped 90% confidence intervals using 5, 000 bootstrap iterations
with 2× 104 forward simulations each.

5.1 Effects of macro-financial shocks

The quantile-specific dynamic multipliers plotted in the right-hand panels of figures 2 and 3

reveal mutual dependence between our two dimensions of financial stability. To help interpret

those impulse responses, we also plot the corresponding responses of real GDP growth in the left-

hand panels of figures 2 and 3. First, a positive shock in the CISS correlates with a prolonged,

significant decline in the SRI, which is rather homogeneous across quantiles. This pattern

confirms our expectations that a surge in financial stress tends to gradually depress financial

activity and asset prices. However, there is a notable asymmetry in the reaction of real GDP

growth to a CISS shock. In particular, an increases in the CISS predicts a much stronger drop

in real economic activity in the lower tail of the growth distribution, and the differences between

the QIRF at the 10% quantile and those at the median and the 90% level are also statistically

significant. This overall pattern may suggest that the frictions associated with financial stress

produce highly nonlinear contractions in economic activity mainly during bad states of the world.

Second, a positive shock to the SRI is associated with a rapid decline in the CISS which is

stronger, and statistically significant, in the right tail of the CISS distribution. One possible

interpretation of this comovement is that the increase in the SRI reflects an easing of financial
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Figure 3: Impact of an SRI-shock on select quantiles of real GDP growth and the CISS

Source: Authors’ calculations.
Note: G-QIRFs for the CISS (right) and real GDP growth (left) of a shock to the SRI based on 106

forward simulations. The shock equals the standard deviation of the errors in the SRI-equation at the
50th percentile. Initial conditions are set equal to the historical median values of the respective time
series. Shaded areas indicate bootstrapped 90% confidence intervals using 5, 000 bootstrap iterations
with 2× 104 forward simulations each.

constraints and greater risk-taking in the system, implying stronger economic activity and lower

risk premia and market uncertainty. However, this dampening effect on financial stress tends to

reverse over the medium term, as indicated by the significant reversal in the upper conditional

quantile of the CISS at the 2-3 year horizon. Switching the sign of the assumed SRI shock,

the strong initial reaction of the CISS in the upper tail of its distribution may also point to a

temporary vicious circle between financial activity and stress during crisis episodes.

5.2 Effects of monetary policy

In what follows, we interpret changes in the short-term interest rate as being driven by monetary

policy. The top row of figure 4 plots the responses of the conditional distributions of inflation

and real GDP growth to a positive interest rate shock. As expected, monetary policy shocks in

the QVAR are associated with deflationary and contractionary outcomes for the real economy.

The effects of an interest rate shock on economic activity are rather rapid and clearly statistically

significant across all quantiles shown. The effects die out after about a year. The effects on

inflation, on the other hand, are delayed by several months, are basically linear, as seen by the

symmetric response of the different quantiles, and become statistically significant only in the

upper tail of the conditional distribution. The persistent nature of the effects may reflect the
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near-unit root in the inflation process over our sample of data. 11

Figure 4: Impact of an interest rate shock on select quantiles of the real and financial blocks

Source: Authors’ calculations.
Note: G-QIRFs for real GDP growth (top left), HICP inflation (top right), QoQ annualised values,
CISS (bottom left) and the SRI (bottom right) of a shock to interest rates based on 106 forward
simulations. The shock equals the standard deviation of the errors in the interest rate equation at the
50th percentile. Initial conditions are set equal to the historical median values of the respective time
series. Shaded areas indicate bootstrapped 90% confidence intervals using 5, 000 bootstrap iterations
with 2× 104 forward simulations each.

The financial stability trade-offs of monetary policy require a link between the policy in-

strument and our macro-financial variables capturing systemic risk. The bottom row of figure

4 plots the response of the CISS and SRI to changes in interest rate. Indeed, we see that a

positive interest rate shock leads to an upward shift in the conditional forecast distribution of

11The impact of the short-term interest rate on inflation estimated in the QVAR imply elasticities similar to
those found by Rusnák et al. (2013), while the larger initial impact on output is a common occurrence in the
structural VAR literature, e.g. Mojon and Peersman (2001).
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the CISS, with upside risks in particular becoming gradually stronger and significant over time.

Financial vulnerabilities, on the other hand, tend to become persistently lower following a tighter

monetary policy stance, potentially capturing the higher interest rates permeating through the

system, tightening financial conditions as a result, significantly so for the lower quantiles.

The properties of the estimated macro-financial linkages, including those assumed to reflect

monetary policy, principally support the existence of the two financial stability trade-offs in

the euro area. Specifically, tightening monetary policy today may alleviate the build-up of

financial imbalances, entail short-term losses in economic output, but bring about positive effects

on macroeconomic stability in the medium term. Likewise, increased inflationary pressures,

particularly when driven by supply-shocks, requires policymakers to raise interest rates, even if

tighter monetary policy generates a near-term increase in systemic stress and downside risks to

growth.

6 Leaning against the financial cycle with monetary policy

In order to highlight the role of monetary policy in different macro-financial states, we now

use the QVAR to analyse a scenario characterised by a credit-fuelled economic boom and bust,

modelled after the GFC and the period leading up to it. In this scenario, the central bank is faced

with the intertemporal financial stability trade-off as it can effectively reduce expected losses

in the medium term by adjusting its policy, although at the cost of allowing price instability

in the short term. In the next section, we will instead consider a scenario highlighting the

intratemporal trade-off.

6.1 Calibration

When engineering a financial crisis in the QVAR with the intent of performing counterfactual

policy analysis through conditional forecasting, it is important that the financial and real econ-

omy variables are allowed to respond to changes in monetary conditions both before, during and

after the crisis. Hence, the implementation method discussed in section 3 is not a trivial one.

To begin with, we choose 2004Q3 as our forecast origin as this point marked the beginning

of an accelerating increase in systemic vulnerabilities that eventually culminated in the GFC

(figure 1), making it a suitable starting point for counterfactual analysis.

In order to replicate the initial build-up and subsequent unraveling of financial vulnerabilities,
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Table 2: Conditional percentile realisations for the CISS, SRI, inflation and real GDP growth

2004 2005 2006 2007 2008

Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
CISS 30 30 35 45 40 30 30 30 20 20 20 85 45 95 30 90 95
SRI 45 80 90 90 90 90 30 60 60 60 60 50 25 25 - - -

HICP - - - - - - - - - - - - - - - - -
GDP - - - - - - - - - - - - - - - 10 10

Note: A hyphen (‘-’) indicates the absence of any quantile restriction.

we impose quantile paths on the SRI, CISS and real GDP growth to mimic the realised values

over the restricted periods (table 2).12 In this way, we take advantage of having endogenously

modelled the entire conditional forecast distribution, allowing us to consider how monetary policy

changes the shape and location of the conditional distributions of the endogenous variables, both

directly and indirectly.

Note that the assumed paths of the SRI and the CISS imply a financial boom-bust cycle

as it actually occurred in the GFC. However, we could have also assumed that the GFC never

happened, and that the SRI mean-reverted in a smooth fashion. The design of a financial

stability scenario does not depend on the presence of an intertemporal relationship between our

measures of ex ante and ex post financial stability risks in the QVAR coefficients. Instead, any a

priori information outside the model can be used to impose certain paths for financial imbalances

and financial stress through an appropriate choice of restrictions. What matters for a financial

stability trade-off to exist is a significant impact of systemic stress on the short-term outlook

for real growth as well as some leverage of monetary policy on financial and macroeconomic

conditions.13

In the baseline scenario, policy rates are fixed to their observed values over the simulation

horizon, assuming no uncertainty equivalent to a collapse in the conditional distribution, as

discussed in appendix B. Commodity prices follow a univariate quantile AR process as described

earlier. The counterfactual scenario considers an alternative path for monetary policy guided

by “leaning against the wind” considerations (see figure 5). In this alternative policy scenario,

rates respond counter-cyclically to the financial cycle, rising more during the boom (preemptive

12The select restrictions on growth ensure a more accurate reflection of realised values in the exercise and do
not affect the qualitative results.

13For instance, Chavleishvili et al. (2021) uses an QVAR to directly model how stabilising the financial cycle af-
fects real GDP growth in a financial stress event, even though their model does not explicitly find an intertemporal
link from the financial cycle to financial stress.
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Figure 5: Path of the 3-month EUR OIS rate before and during the GFC in the baseline and
counterfactual scenario

Source: ECB and authors’ calculations.

tightening) and declining more during the bust (crisis management) (discussed in, e.g., European

Central Bank (2021)). Specifically, we assume that policy rates are increased by an additional

25 basis points each quarter in the period 2004Q4:2006Q3, totaling two percentage points, and

lowered by 25 basis points extra for four consecutive quarters at the onset of the crisis in 2008Q1.

6.2 Results

Figure 6 shows the conditional quantile forecasts of the macro-financial variables in the base-

line and counterfactual scenario described above. The chart also includes realised values for

reference. The bands depicted in figure 6 should not be interpreted as conventional confidence

bands, as they hold no direct information about statistical significance or forecast error. Rather,

they are point predictions of select, separately modeled quantiles from the conditional forecast

distribution of the endogenous variables, each accompanied by their own statistical uncertainty

which we do not report here. In a correctly specified model, we should consequently expect to

observe 10 percent of realised values below the 10th quantile, 25 percent below the 25th quantile

and so forth, as per the standard quantile definition. Showing the time profiles of conditional

tail risks is the conceptual essence of macro-at-risk frameworks. Several things are worth noting.

First, the baseline scenario for output and inflation (blue in the charts) reasonably captures

the actual time series observed up until 2008Q4. In particular, both the conditional forecasts

for GDP growth, where barely any restrictions are imposed, experience a financially driven

boom, bust and subsequent recovery remarkably similar to the de facto historical patterns.
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Figure 6: Conditional quantile forecasts of the real and financial variables over the financial
boom and bust in the baseline and counterfactual scenarios

Source: ECB and authors’ calculations.
Note: Based on 106 forward simulations using 2004Q3 as forecast origin. Horizontal dashed lines
indicate the 10th and 90th unconditional percentiles, respectively.

Additionally, the conditional growth distribution is more negatively skewed in contrast to the

more symmetric inflation distribution, in line with the estimated model dynamics.

Second, by leaning against the financial cycle (yellow in the charts), monetary policy would

curb the build-up of systemic vulnerabilities ahead of the GFC. This is seen by the counterfactual

forecast distribution of the SRI peaking at around 0.45, compared to 0.60 in the baseline. As a

result, the subsequent sudden materialisation of systemic stress would be more subdued in the

counterfactual scenario, cushioning the systemic deleveraging taking place during the crisis, and

in turn lowering downside risks to growth substantially.

Third, preemptive action by monetary policy is not without cost. As can be seen from the

figure, the conditional forecast distribution of real GDP growth is shifted downward in the pre-
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crisis period by 1-2 percentage points. The inflation forecast distribution is also shifted downward

over the pre-crisis period, with median inflation dropping well below the ECB’s “below but close

to 2%” inflation aim at that time. However, these losses in growth and inflation stabilisation

in the counterfactual scenario have to be offset against the smaller drop in growth and inflation

during the height of the crisis. We address these trade-offs more systematically at the end of

this section.

To explore the main driving forces of how monetary policy “leaning” influences financial

stability and economic conditions in more detail, we perform a Shapley value decomposition of

the quantile projections in the baseline and counterfactual scenarios. The suggested Shapley

value decomposition dissects the projected conditional quantile paths of any endogenous model

variable in both the baseline and the counterfactual scenarios into contributions from each

included model feature.14 Shapley values represent a convenient tool for ‘model explainability’

and forecast performance evaluation in highly nonlinear model contexts by taking a model-

agnostic, game theoretical approach and considering the marginal contribution to a prediction

of each individual model feature. In the case of the QVAR, model features are the included

endogenous and exogenous variables.15 Shapley values are often used in the machine learning

literature for similar purposes, as described by Lundberg and Lee (2017), and have started to

gain traction within macroeconomic time series analysis (e.g. Borup et al. (2022)). In standard

machine learning applications, Shapley values are computed by re-training or re-estimating the

model for each permutation of feature combinations. Instead of re-estimating the QVAR for each

combination of model features we fix the model parameters to the full model estimates across

permutations. By doing so, we avoid a potential interpretation issue, whereby the inclusion or

exclusion of a model feature is attributed explanatory power not just through its movement

over time, but also its impact on the parameter estimates of other model features. This, in

turn, makes it easier to apply economic interpretation to the Shapley values in a manner closer,

although not necessarily equivalent, to that of standard forecast error variance decomposition

(e.g. Lütkepohl (1990)) used for linear VAR models, where the full model estimates are also

taken as given.16

14A more detailed explanation of the Shapley value decomposition is given in appendix C.
15In principle, the QVAR could be further partitioned into individual lags for each endogenous and exogenous

variable, yielding a total of K · P +M · (S + 1) model features. For the sake of computational feasibility as well
as interpretability, we do not distinguish between lags when computing Shapley values.

16Keeping the parameters fixed instead of re-estimating them to obtain Shapley values has no substantial
implications for the qualitative results of the decomposition.
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Figure 7: Shapley value decomposition of select conditional quantile forecasts for in the baseline
and counterfactual scenario

Source: ECB and authors’ calculations.
Note: Shapley values are computed jointly for all lags of a given variable and do not distinguish
between each lag for each variable. All K · 2K+M model evaluations are based on 100.000 forward
simulations and employ the estimated parameters from the full model specification. Slight differences
between the sum of Shapley values and the conditional quantiles can occur due to Monte Carlo error.
’Deterministic’ covers constant terms and, to the extent relevant, exogenous shocks and historical values
from conversion of quarterly to annual growth rates.

Figure 7 plots the Shapley value decomposition of select conditional quantiles in the baseline

as well as the change to the counterfactual policy scenario.17 Starting with the left hand side,

17Shapley value decompositions of the 10th, 50th and 90th conditional quantile forecasts for all endogenously
determined variables in the baseline scenario can be found in figure A.7 in appendix A.
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downside risks to growth are, unsurprisingly, driven by the CISS and the SRI, both during the

boom, where negligible levels of stress and increasing imbalances supports growth, as well as

the bust, where deleveraging and systemic stress exacerbate the downturn. Financial factors

play a limited role for upside risks to inflation where commodity prices, output growth and own

dynamics exert particular influence. Additionally, monetary policy in the baseline is largely

inconsequential, having limited and delayed impacts on growth- and inflation-at-risk.18

In the counterfactual policy scenario, downside risks to growth are initially increasing com-

pared to the baseline as monetary policy tightens. However, as higher rates curb the build-up

of systemic vulnerabilities, systemic stress is partially contained at the onset of the crisis. Ul-

timately, figure 7 shows that leaning against the wind in the QVAR would have resulted in a

maximum reduction in downside risks to growth of close to 2 percentage points year-on-year,

not only because of the accommodating effects of monetary policy working through the tradi-

tional channels, but also due to a reduction in systemic vulnerabilities in the pre-crisis period.

Notably, leaning against the wind has an asymmetric effect on the conditional distribution of

growth, with the lower quantiles benefiting more than the rest of the distribution (See figure

A.8 in appendix A).

Using the QVAR, the analysis above makes it clear that monetary policy makers can po-

tentially reduce the adverse impact of a severe financial crisis on growth by leaning against the

wind early on. However, as stated previously, this necessarily requires policy makers to accept

lower growth and inflation and potential deviations from related target levels in the upswing.

To gauge this trade-off, consider a monetary policy maker facing the optimisation problem,

min
Ωt

1

2
E0

 ∞∑
t=0

ρt

 aI (πt < π−) (π− − πt)
α
+ (1− a) I (πt > π+) (πt − π+)

β

+wy

(
bI (yt < y−) (y− − yt)

γ
+ (1− b) I (yt > y+) (yt − y+)

δ
)


s.t.

πt = π (Ωt) , yt = y (Ωt)

(4)

letting ρ be the usual discount factor. The loss function in (4) is that of Kilian and Manganelli

(2008) and ensures congruence between the risk management model of central banking and the

standard minimisation of loss problem in the literature. In particular, letting I (·) denote the

18One should be cautious when interpreting Shapley values for more heavily restricted variables, in particular
the CISS and SRI in the baseline, as shifting quantile restrictions can lead to notable jumps in Shapley values as
the underlying model parameters are changing in line with the restrictions.
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indicator function, a central banker acting as a risk manager of the macroeconomy minimises

expected loss using its set of policy instruments, Ω, by keeping inflation, πt, and output growth,

yt, within a predefined set of tolerance bands, [π−;π+] and [y−; y+], respectively. Outcomes

outside of these bands are suboptimal, and the central banker may view positive and negative

deviations differently. For instance, a central banker may be more averse to a 3 percentage

point negative deviation of growth than a positive deviation of similar size, while inflation

undershooting could be perceived as worse than the opposite case given the risk of hitting the

effective lower bound of policy rates and entering into a deflationary trap. The balance of these

risks are given by the weights, 0 ≤ a, b ≤ 1 while wy is the relative weight of output against

inflation in the loss function.19

Figure 8 plots the effects on the central banker’s expected loss of monetary policy leaning

against the financial cycle at each forward horizon using the loss function in (4). To fix ideas, we

set π− = π+ = 2 and y− = y+ = 0, denoting growth and inflation in year-on-year percentages,

while a = 0.5 and b = 1, meaning the central banker cares equally about upside and downside

deviations of inflation, but only cares about negative growth. Finally, we set ρ = 0.98
1
4 , wy = 0.5

and α = β = γ = δ = 2.

The left hand chart shows the impact of a broad based “leaning” where both preemptive

tightening and crisis management is employed. In this setup, preemptive tightening initially

increases the risk of inflation undershooting its lower tolerance, π−, relative to the reduction in

excessive inflation risk, as well as the risk of lower growth, thereby increasing the short-term

expected loss. But the additional policy easing from crisis management to combat the jump in

financial stress decreases the expected loss substantially by curbing downside risks to growth and

reducing disinflationary pressures from the downturn, nearly cancelling out the additional losses

from undershooting inflation during the build-up. The right-hand chart shows the change in

expected loss in a counterfactual where policymakers hike rates preemptively to lower systemic

risks but do not engage in additional monetary easing during the crisis compared to the baseline.

Notably, simply limiting the build-up of systemic risks leads to a preferable outcome from the

central banker’s point of view.

It should be stressed, however, that the cost-benefit analysis above is conducted ex post,

taking the onset of a financial crisis for granted. In a real-time, ex ante context, most relevant

19Since we are only considering the monetary policymakers’ problem, we do not explicitly include tail risks in
the loss function which would be more relevant for macroprudential policy, see e.g. Carney (2020).
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Figure 8: Change in the central bank loss function by leaning against the wind

Source: Authors’ calculations.
Note: Based on 106 forward simulations using 2004Q3 as forecast origin.

to policy makers, there is only a certain probability that a crisis will occur, and a counter-

factual analysis would necessarily involve evaluating a leaning policy over a range of plausible

probability-weighted scenarios, especially those in which a financial crisis both does and does

not materialise as a possible consequence of increased financial imbalances. If the probability

of a financial crisis is judged to be low, then leaning against the wind may prove too costly in

expectation, even if it provides a net benefit in the event of a crisis. We leave this type of ex

ante analysis outside of the scope of this paper, as it would require a careful calibration of the

crisis and the non-crisis scenarios, including an assumed path of the crisis probability during the

build-up phase, which could be made dependent on the SRI.

7 Monetary policy trade-offs when inflation emerges

We now turn to a scenario in which the central bank faces both rising inflation above its target

value and an increase in financial stress. Specifically, we base our scenario on the macro-financial

environment prevailing in the euro area in 2022, characterised by a rapid increase in monetary

policy rates by the ECB against the background of initially supply-driven inflationary pressures

accompanied by a slowdown in growth and elevated levels of financial stress, in part explained

by the war in Ukraine starting in February 2022 as well as uncertainty about the persistence of
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the inflationary bout. In this setting, the intratemporal financial stability and inflation-output

trade-offs combine into an inflation-financial stability trade-off, greatly complicating the central

banker’s task, who must now decide whether to ease monetary policy to contain stress in the

financial system at the risk of higher inflation, or further tighten monetary policy to rein in

inflation at the cost of potentially triggering or amplifying systemic strains.

7.1 Calibration

Our conditional forecast uses 2022Q3 as forecast origin and runs a little more than four years,

starting from 2022Q4 and ending in 2026Q4. To anchor the path for expected interest rates,

we compute 3-month forward rates until 2024Q4 based on the EUR OIS term structure at the

end of 2022Q3. Restricting the mean QVAR projection to equal the market implied rates as

described in appendix B, figure 9 plots the projected conditional forward distribution against

recent historical observations. At the end of 2022Q3 markets expected the ECB to hike rates

more forcefully through 2023, after which short-term rates would settle at a terminal value of

around 3.3 percent.

We assume commodity price inflation develops over the forecast horizon in line with the

assumptions underlying the downside scenario of the ECB’s publicly available macroeconomic

projection exercise (MPE) in 2022Q3.20 We could have used alternative commodity price as-

sumptions but have chosen the present one for convenience. The resulting forward distribution

for commodity price inflation is depicted in figure 9, and computed by transposing projections

of individual commodity prices from the MPE into index projections using the publicly available

index weights. Commodity prices are assumed to continue increasing for the next few years,

though at a decelerating pace until a new equilibrium level is reached in 2025.

Lastly, while we do not impose any additional shocks to the CISS, we can think of the its

initial climb and subsequent persistence as partly representing an inflation scare, where the

central bank’s commitment to containing inflation is put into question, causing an increase in

government bond yields and volatility. As argued by Goodfriend (1993) and Goodfriend (1998),

inflation scares contributed non-negligibly to several episodes of heightened volatility in US

Treasury markets during the 1970’s and 1980’s.

As the central bank’s choice between expansionary or contractionary monetary policy is less

obvious in the macroeconomic environment underlying this scenario, we conduct a sensitivity

20See European Central Bank (2016) for a description of the projection exercise.
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Figure 9: Projections for the 3-month EUR OIS rate and commodity prices

Source: ECB, Haver Analytics, Refinitiv and authors’ calculations.
Note: The left hand chart plots the QVAR-generated conditional forward distribution centered around
inferred 3-month forward rates based on EUR OIS market prices. The right hand chart shows the
QVAR-generated forward distribution of seasonally adjusted commodity price inflation centered around
MPE projections. Based on 106 forward simulations using 2022Q3 as forecast origin.

analysis that revolves around assumptions of both loser and tighter monetary policy. Specifically,

we consider four consecutive quarters of 25 basis points additional rate increases and decreases,

respectively compared to the baseline path, beginning in 2022Q4. As a result, the expected

short-term interest rates level off at ‘terminal’ values exactly 1 percentage point higher and

lower, respectively, than the terminal rate of the baseline assumption.

7.2 Results

Figure 10 charts as solid lines the conditional forecasts for the four endogenously determined

variables in the baseline scenario for the 10th, the 50th and the 90th quantiles of the conditional

forecast distributions. The dotted and the dashed series around those baseline quantiles reflect

the outcomes of the sensitivity analysis. Figure 11 provides information on the driving factors

behind the baseline projections for real GDP growth and HICP inflation for the same quantiles,

again using Shapley value decompositions.21 A few points are worth highlighting.

Downside risks to growth are notably affected in this scenario, reaching -9% in 2024 in the

baseline (Figure 10). Downside risks to growth are particularly driven by the elevated CISS and

inflation levels as well as the embedded monetary tightening.

21Shapley value decompositions of the 10th, 50th and 90th conditional quantile forecasts for all endogenously
determined variables in the baseline scenario can be found in figure A.9 in appendix A.
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Figure 10: Conditional quantile forecasts of real and financial variables with and without
additional monetary policy measures

Source: ECB and authors’ calculations.
Note: Based on 106 forward simulations using 2022Q3 as forecast origin. While the CISS is
constructed to take values in the intervals [0; 1], it is not immediately possible to impose this restriction
in the QVAR framework, causing some quantiles forecasts to lie outside their respective boundaries.
Horizontal dashed lines indicate the 10th and 90th unconditional percentiles, respectively.

The projected quantiles of inflation are largely explained by past inflation developments

via own lags, which we interpret as supply-side factors such as price stickiness and updating

of inflation expectations, for instance. As expected, the assumption of further increases in

commodity prices puts additional upwards pressure on inflation across its entire conditional

distribution. For instance, inflation-at-risk (the 90th quantile) peaks in the first half of 2023

just above 10% year-on-year and only slowly falls to around 6% in 2026. Median inflation is

projected to decline more quickly from close to 10% at the outset to about 4% in 2026 (Figure

11).

As expected, the monetary policy tightening (easing) in excess of what is priced in by the
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market at the forecast origin tends to lower (increase) the conditional forecast distributions of

both growth and inflation, with lower growth quantiles affected relatively more. In particular,

growth-at-risk is reduced (increased) by approximately 1%, while inflation-at-risk is reduced

(increased) by around 0.2%.

Figure 11: Shapley value decomposition of select conditional quantile forecasts for real GDP
growth and HICP inflation in the baseline

Source: ECB and authors’ calculations.
Note: Shapley values are computed for all lags pertaining to a given variable and do not distinguish
between each lag for each variable. All K · 2K+M model evaluations are based on 100.000 forward
simulations and employ the estimated parameters from the full model specification. Slight differences
between the sum of Shapley values and the conditional quantiles can occur due to Monte Carlo error.
’Deterministic’ covers constant terms and, to the extent relevant, exogenous shocks and historical values
from conversion of quarterly to annual growth rates.

In the financial stability block, the CISS is primarily driven by own dynamics, while the

SRI trends downward, possibly reflecting increased financial stress as well as elevated inflation
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Figure 12: Change in the central bank loss function by tightening and easing monetary policy

Source: Authors’ calculations.
Note: Based on 106 forward simulations using 2022Q3 as forecast origin.

attenuating financial imbalances through a drop in real asset prices and credit provision. Tighter

(easier) monetary policy tends to exacerbate (decrease) upside risks to the CISS and induce

further (less) systemic deleveraging. In any case, the projected worsening of financial stability

conditions and the associated elevated downside risks for economic activity seem to represent a

very unfavourable price stability-financial stability trade-off under both policy alternatives.

Like the last section, figure 12 illustrates the implications for the central bank loss function

of the two different monetary policy paths using the previously established framework. Easier

monetary policy (left-hand chart) generates lower expected losses driven by the associated de-

crease in downside risks to growth despite its positive impact on inflation. Conversely, additional

monetary tightening (right-hand chart) contributes to higher losses in the medium term, as the

relatively muted impact on inflation is more than offset by the increased downside risks to growth

generated by the rate hikes and the fact there there is practically zero risk of undershooting the

inflation target.

In the face of dramatic cost-push shocks and increased financial stress as experienced in the

latter half of 2022, the analysis above thus suggests that the central bank would prefer sacrificing

price stability for output stabilisation as the costs of reducing inflation measured in growth-at-

risk, essentially a quantile version of the ’sacrifice-ratio’, are simply too great to bear when
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deteriorating financial stability conditions weigh particularly strongly on the downside risks to

growth. On the other hand, the extra losses from a tighter monetary policy would become

lower, or may even turn into net benefits, for a central bank that puts relatively more weight on

achieving its inflation target rather than avoiding negative growth, in our framework a low value

of wy. For instance, the ECB specifically has no direct growth mandate but one that explicitly

commands the ECB to focus on price stability. Transposing the ECB’s lexicographic preference

ordering into the extreme case of a zero weight on output deviations in its loss function would

then favour tighter monetary policy in response to the recent inflationary pressures despite the

adverse implications for financial stability and growth-at-risk.

Another factor that is not considered in the analysis is the limited sample of euro area data

on which the QVAR is estimated and from which it follows that inflation is a globally stationary

process, even if individual quantiles may exhibit unit root behaviour. Quantile reversion, in

turn, implies that the conditional forecast distribution of inflation will always return to more

“tolerable” levels eventually, and under this pretext it may make sense for the central bank to

mitigate short-term adverse outcomes on growth as losses from inflation will abate with time.

However, stationarity of inflation as observed in the data can arguably be attributed, at least

in part, to the successful anchoring of inflation expectations by policy makers over the sample

period. As such, persistently high inflation may induce a de-anchoring of inflation expectations,

which cannot be captured by the QVAR because it is not in the historical data. Monetary

policy internalising this potential outcome may therefore be inclined to favour a tighter policy

stance, even if they attach a non-zero weight to stabilising output growth, because the potential

costs of deanchored inflation expectations may potentially outweigh the short term losses from

tightening (e.g. Schnabel (2022)).

8 Conclusion

In this paper, we present an empirical framework for informing monetary policy about the short-

to medium-term macroeconomic implications of different financial stability conditions and the

extent to which monetary policy can influence such macroeconomic outcomes in pursuit of its

policy mandate. The nonlinearity of the framework applied makes it particularly suitable for

a risk management approach to monetary policy, which focuses on balancing the potentially

asymmetric upside and downside risks to its main variables of interest. There are more practical
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policy applications of the model than those presented in the paper. For example, the QVAR

could also be used to generate non-trivial conditional forecast distributions around the conven-

tional median or mean macroeconomic projections produced by central banks and other policy

authorities or research institutes. This could add reliability to an assessment of the projection

risks based on a satellite model that still produces consistent central projections. Of course, our

empirical model is rather stylised and can therefore only be seen as a first step in the intended

direction of policy use. Given the curse of dimensionality in quantile regressions and the typ-

ically small data samples available, the model estimation may benefit from the application of

Bayesian techniques to obtain more precise coefficient estimates for potentially more parameters

when aiming at a more sophisticated modelling of the financial, real or monetary policy blocks

of the QVAR.
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A Additional figures

Figure A.1: Time series of quarterly euro area real GDP growth, 1990Q2:2022Q4

Source: ECB and authors’ calculations.

Figure A.2: Time series of quarterly euro area HICP inflation, 1990Q2:2022Q4

Source: ECB and authors’ calculations.
Note: The series is constructed as 400 times the log difference between quarterly averages of the
seasonally adjusted Harmonised Consumer Price Index for the euro area.
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Figure A.3: Time series of the quarterly change in OISe3M rates, 1990Q2:2022Q4

Source: ECB and authors’ calculations.
Note: The series is constructed as the difference in quarterly averages of the the EUR 3M OIS rate.
Before 2001, OIS rates are extrapolated from EURIBOR/FIBOR rates corrected for the average
EURIBOR-OIS spread until 2007Q2.

Figure A.4: Time series of quarterly commodity price inflation, 1990Q2:2022Q4

Source: ECB, Haver Analytics and authors’ calculations.
Note: The series is constructed as 400 times the log difference between quarterly averages of the
seasonally adjusted S&P GSCI index.
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Figure A.6: G-QIRFs for shocks to exogenous variables

Source: ECB and authors’ calculations.
Note: G-QIRFs for one standard deviation shocks based on 106 forward simulations. The shocks are
set equal to the standard deviation of the errors in the QVAR equation for the respective variables at
the 50th percentile. Initial conditions are set equal to the historical median values of the respective time
series. Shaded areas indicate bootstrapped 90% confidence intervals using 5, 000 bootstrap iterations
with 2× 104 forward simulations each.
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B Forward simulation and scenario analysis using conditional

quantiles

This appendix describes in more detail how we apply the QVAR framework for conditional

quantile forecasting, both with and without restrictions, the latter of which is the foundation

for the scenario analysis performed in this paper.

Central to the forecasting procedure are equations (1) and (2), which we replicate here for

convenience,

Yt = CjDt +Aj
0Yt +

P∑
p=1

Aj
pYt−p +

S∑
s=0

Bj
sXt−s + εjt (B.1)

F
(
εji,t < 0|Ψi,t−1

)
= j ∀ i = 1, 2, . . . ,K (B.2)

B.1 Conditional quantile forecasting

To better understand how the QVAR can be used to simulate the joint conditional distribution

forward, it is instructive to consider the univariate version of equation (B.1), dropping exogenous

variables without loss of generality, for the one-period-ahead conditional forecast of the jth

quantile of variable i = 1 at time τ + 1, where τ is the forecast origin

y1,τ+1 = Cj
1Dτ+1 +

P∑
p=1

Aj
p,1Yτ+1−p + εj1,τ+1 (B.3)

letting subscript i denote the ith row of the relevant matrix and using the fact that Aj
0 is

lower triangular with a zero diagonal ensuring that Aj
0,1Yτ+1 = 0. Let Qj

i,τ (·) denote a quantile

operator that produces the jth quantile of a stochastic process conditional on the information

set Ψi,τ and use it to get the conditional forecast of the jth quantile of y1,τ+1

Qj
1,τ (y1,τ+1) = Cj

1Dτ+1 +

P∑
p=1

Aj
p,1Yτ+1−p (B.4)

where Qj
1,τ

(
εj1,τ+1

)
= 0 follows from equation (B.2), while Dt+1 is deterministic by con-

struction and thus not subject to uncertainty.

More generally, for the endogenous variable, yi, and any associated quantile forecast, λi,τ , it
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similarly follows that Q
λi,τ+1

i,τ

(
ε
λi,τ+1

i,τ+1

)
= 0 such that the conditional quantile forecast one period

ahead is given by

Q
λi,τ+1

i,τ (yi,τ+1) = C
λi,τ+1

i Dτ+1 +
i−1∑
k=1

A
λi,τ+1

0,ik Q
λi,τ

i,τ+1 (yk,τ+1) +
P∑

p=1

A
λi,τ+1

p,i Yτ+1−p (B.5)

again dropping exogenous variables for convenience and letting matrix subscript ik denote

the kth element of the ith row.

Notice that expression (B.5) is still stochastic due to the presence of y1,τ+1, . . . , yi−1,τ+1 and

consequently the set of associated structural shocks {ελk,τ+1

k,τ+1 }
i−1
k=1 in the first summation, which

cannot be conditioned away by the quantile operator for variable i, Q
λi,τ+1

i,τ (·). To circumvent

this and allow conditional quantile forecasting, assume that the quantile realisations for each

yk in period τ + 1 are given, {λ∗
k,τ+1}Kk=1, and use the law of iterated quantiles (Chavleishvili

and Manganelli (2019)) to sequentially condition away the structural shocks, such that the

conditional quantile forecast is purely a function of deterministic terms and lags of endogenous

variables

Q
λ∗
1,τ+1

1,τ

(
. . . Q

λ∗
i−1,τ+1

i−1,τ

(
Q

λ∗
i,τ+1

i,τ (yi,τ+1)
))

= Ci,τ+1Dτ+1 +

P∑
p=1

Ap,i,τ+1Yτ+1−p (B.6)

where Ci,τ+1 and Ap,i,τ+1 are nonlinear functions of the relevant matrix coefficients Cλ∗
ι,τ+1

and A
λ∗
ι,τ+1

• in (B.1) for ι = 1, 2, . . . , i.

Following Chavleishvili and Manganelli (2019), the procedure can easily be extended to allow

for the conditional quantile forecast of any given set of variables at any horizon h ≥ 1 using the

law of iterated quantiles.

As illustrated above, conditional quantile forecasting of up to horizon H > 0 requires com-

plete quantile paths for {Yτ+h}Hh=1 and {Xτ+h}Hh=1 to govern the forward dynamics throughout

the forecasting period. One immediate way of obtaining the forward paths for quantile realisa-

tions is to simply choose them. Deciding on particular quantile paths, however, quickly risks

becoming an arbitrary exercise in the context of forward scenario analysis, in which the goal is

to project the entire conditional distribution in a unified and agnostic manner.

Alternatively, one may instead consider all possible forward paths for both endogenous and
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exogenous variables, of which there are a total of q(K+M)H , letting q denote the number of

quantiles to be estimated. The conditional quantile forecasts at each horizon are then computed

as the empirical quantile over all possible paths. In a medium sized QVAR such as ours, con-

sidering all possible paths quickly becomes computationally infeasible for a sufficiently granular

set of quantiles.

We consequently opt for the use of simulation methods as in Koenker et al. (2017) and

Chavleishvili et al. (2021), who exploit the fact that equations (B.1)-(B.2) implicitly specify the

entire conditional forecast distribution of Y , making it possible to directly draw realisations of

Y by inverse CDF-sampling.

Repeating the forward simulation enough times to sufficiently explore the probability space,

the conditional quantile forecast is then the empirical quantile over all simulations, see also

section B.3. The simulation method is an attractive and computationally feasible approach to

study the QVAR under different scenarios.

B.2 Scenario analysis in the QVAR

Scenario analysis in the QVAR from the forecast origin τ , H periods ahead, can be implemented

in three distinct, though not necessarily mutually exclusive, ways.

i A sequence of structural quantile shocks to one or more endogenous variables, {ϵ̂jτ+h}
H
h=1.

ii The imposition of fixed paths for the jth quantile of one or more endogenous variables

over all or part of the forecast horizon, {ŷji,τ+h}
Hi
h=hi

, letting hi and Hi denote the start

and end point for variable i’s fixed path.

iii Choosing a quantile path and consequently the estimation coefficients governing the dy-

namic properties of one or more endogenous variables, {ĵi,τ+h}Hi
h=hi

, where ji,τ+h is the

quantile realisation of variable i at time τ + h as per equation (B.1).

While the methods above are described for endogenous variables, all of them naturally extend

to exogenous variables. We describe each in more detail below.

B.2.1 Method i: Structural shocks

Much like the linear VAR, method i imposes a sequence of structural shocks, {ϵ̂jτ+h}
H
h=1, on

select system variables. Unlike the linear VAR, where structural shocks shift the location of the
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conditional distribution, the QVAR in principle allows for individual points on the conditional

distribution to be hit by separate shocks. Consider, for instance, the case where the model is

estimated for three quantiles, e.g. j ∈ {0.1, 0.5, 0.9}. Then it would be possible to model a shift

in the right tail of the distribution by designing a sequence of shocks where ϵ̂0.1i,τ+h = ϵ0.5i,τ+h = 0

and ϵ̂0.9i,τ+h ̸= 0. In practice, asymmetric structural shocks should be implemented with caution,

as it can easily result in quantile crossing (Bassett Jr and Koenker (1982)), whereby the choice

of ϵ̂0.9i,τ+h in the above example can imply that Q0.9
i,τ (yi,τ+h) < Q0.5

i,τ (yi,τ+h). For this reason,

structural shocks implying changes in higher order moments of the conditional distribution may

require additional assumptions about the interactions between quantile shocks or the use of

techniques to handle quantile crossing specifically, e.g. Chernozhukov et al. (2010). For our

purposes, it suffices to consider only location shifts in the conditional distribution by imposing

ϵ̂ji,τ+h = ϵ̂i,τ+h ∀ j rather than changes in higher order moments (see e.g. Schüler (2020) for an

example of asymmetrical quantile shock implementation).

B.2.2 Method ii: Fixed paths

This is the quantile equivalent of forecasting conditional on a variable following a specific path

(see e.g. Waggoner and Zha (1999), Leeper and Zha (2003) and Giannone et al. (2019)). Using

the random coefficient representation of the QVAR, imposing a fixed path on the jth quantile

of variable i at time τ + h, ŷji,τ+h, implies a sequence of structural shocks, {ϵτ+h (Uτ+h)}Hh=h,

which ensures that the restrictions are satisfied. As above, adding shocks to individual quantiles

necessarily requires consideration of potential quantile crossing. Even when no quantile crossing

occurs, however, a further complication arises from the fact that multiple sets of structural

shocks across the system variables are likely to satisfy the restrictions. In the linear VAR, this

issue is often solved by minimising a criterion function with respect to the sequence of shocks

conditional on the restrictions, e.g. Doan et al. (1984) and Clarida and Coyle (1984). However,

in the QVAR context with multiple potential restrictions on specific quantiles, identifying the

optimal set of shocks can quickly become intractable. To the best of our knowledge, we are not

aware of any examples in the literature of imposing restrictions on multiple quantiles in a QVAR

system, leaving it as a potential topic of future research.

We take two simplifying approaches to fixed paths in our applications. In one, we assume

a collapse of the conditional forecast distribution to the conditioning path, that is, ŷji,τ+h =

ŷi,τ+h ∀ j and that this is ensured by a set of potentially asymmetric shocks hitting only the
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quantiles of the restricted variables in the relevant periods. In a second, less restrictive approach,

we only require that the means of the conditional forecast distribution satisfy the restrictions.

To impose this, note that the conditional expectation of the QVAR in its random coefficient

form, leaving out deterministic terms and exogenous variables without loss of generality, can be

written as

Eτ+h−1 [Yτ+h] = Eτ+h−1 [A0 (Uτ+h)Yτ+h] +
P∑

p=1

Eτ+h−1 [Ap (Uτ+h)Yτ+h−p] + Eτ+h−1

[
ϵjτ+h

]

=
(
IK − Ǎ0

)−1

 P∑
p=1

ǍpYτ+h−p + ϵ∗τ+h


(B.7)

where Ǎ• = Eτ+h−1 [A• (Uτ+h)], ϵ
∗
τ+h = Eτ+h−1

[
ϵjτ+h

]
and we have used that Uτ+h is i.i.d. For

a sufficiently granular set of estimated quantiles, η, (B.7) allows us to approach the mean QVAR

prediction as a linear VAR using the average of estimated quantile coefficients. Further, we can

use standard methods to identify the sequence of structural shocks to the mean, {ϵ̌τ+h}Hh=1,

that satisfy the restrictions, in our case by minimising the sum of squared shocks. Additionally,

this approach combined with the structural nature of the QVAR permits the inclusion of prior

information about which specific shocks are driving the conditional forecasts akin to Antolin-

Diaz et al. (2021). For instance, one could impose that a particular outcome for expected growth

is entirely explained by macrofinancial shocks.

A particular caveat of scenario analysis using method ii is that the structural shocks implied

by a given path can lead to strange behaviour in the unrestricted variables if they are sufficiently

inconsistent with the QVAR dynamics. A second consideration is whether the given path repre-

sents a sufficiently likely scenario within the estimated model. Indeed, for the case of monetary

policy paths in a linear VAR, Leeper and Zha (2003) make the distinction between moderate

and immodest policy interventions, where the latter implies a sequence of shocks so far removed

from the intrinsic model dynamics, that one should consider whether it expresses a structural

break not properly captured by the conditional forecasting model. As such, caution should be

used when implementing method ii.
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B.2.3 Method iii: Quantile paths

Finally, method iii takes advantage of the QVAR structure by restricting the point on the

conditional forecast distribution which the individual variables realise in specific periods. Put

differently, the set of coefficients that are drawn from when simulating the model forward in

an unrestricted environment, {C (Uτ+h) , A• (Uτ+h) , B• (Uτ+h)}, is reduced to a subset for the

restricted variables in the desired periods containing only the coefficients pertaining to a single

quantile. Recalling the random coefficient representation of the QVAR, restrictions on the

quantile path then implies choosing a sequence of points on the interval (0; 1), {Ûτ+h}Hh=h for

one or more variables and periods, such that the conditional forecast is given by

Yτ+h = C
(
Ûτ+h

)
Dτ+h +

P∑
p=0

Ap

(
Ûτ+h

)
Yτ+h−p +

S∑
s=0

Bs

(
Ûτ+h

)
Xτ+h−s (B.8)

Doing scenario analysis with method iii in turn implies that fixing the realised point on the

conditional distribution, unlike method ii, still leaves the variable in question, and consequently

its conditional forecast distribution, endogenous and responsive to prior system developments.

This type of semi-endogenous restriction can be an attractive feature in scenario analysis, in

which one wishes to push certain variables along a given path but still leave them susceptible

to counterfactual movements in other variables, e.g. policy variables.

B.3 Algorithm to simulate the QVAR forward

To obtain forecasts of conditional quantiles of our system of interest, Y , we follow the simulation

algorithm given by Chavleishvili et al. (2021).

Specifically, let H denote the forecast horizon, τ the forecast origin, N the number of sim-

ulations and η a sufficiently large set of q quantiles between 0 and 1 symmetric around the

median. For our purposes we let η = {0.05, 0.10, . . . , 0.90, 0.95} in order to thoroughly explore

the probability space. It is important that N is large such that a sufficient number of different

paths are explored and consequently reflected in any derived statistics. Unless otherwise stated,

we set N = 106.

We then proceed as follows.

1. For all endogenous variables and all j ∈ η, obtain estimates of the quantile coefficients in
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(B.1) as well as for each exogenous variable in X using the univariate version of (B.1)

xm,t = CX,j
m Dt +

S∑
s=1

AX,j
m,sxm,t−s + εX,j

m,t (B.9)

F
(
εX,j
m,t < 0|ΨX

m,t

)
= j (B.10)

for m = 1, . . . ,M .

2. Set n = 1.

2.1. Set h = 1.

2.1.1. Select K + M random numbers, κ, from the uniform distribution U (0, 1) and

select the corresponding quantiles in η based on proximity.

2.1.2. If any quantile paths, Ûτ+h, have been imposed, cf. restriction method B.2.3,

replace the randomly selected quantiles in κ from the previous step with Ûτ+h

for the relevant variables.

2.1.3. Stack the variable specific rows from the matrices of quantile coefficients corre-

sponding to the elements in κ, such that

C̃τ+h =



Cκ1
1

...

Cκi
i

...

CκK
K


, Ãτ+h

p =



Aκ1
p,1

...

Aκi
p,i

...

AκK
p,K


, B̃τ+h

s =



Bκ1
s,1

...

Bκi
s,i

...

BκK
s,K


for p = 0, . . . , P and s = 0, . . . , S, and letting Aj

p,i denote the i’th row of Aj
p

and so forth. Similarly for all exogenous variables, set C̃X,τ+h
m = C

X,κK+m
m and

ÃX,τ+h
m,s = A

X,κK+m
m,s .

2.1.4. Compute the conditional forecast of each of the m variables in X
(n)
τ+h using (B.9)

and the relevant quantile coefficients determined in step 2.1.3 as

x
(n)
m,τ+h = C̃X,τ+h

m Dτ+h +
S∑

s=1

ÃX,τ+h
m,s x

(n)
m,τ−s + ϵ̂X,j

m,τ+h (B.11)
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where ϵ̂X,j
m,τ+h is a shock ensuring that any restrictions using either methods B.2.1

or B.2.2 are satisfied.

2.1.5. Compute the conditional forecast of Y
(n)
τ+h using (1) and the relevant quantile

coefficients determined in step 2.1.3 as

Y
(n)
τ+h =

(
I − Ãτ+h

0

)−1

C̃τ+hDτ+h +
P∑

p=1

Ãτ+h
p Y

(n)
τ+h−p +

S∑
s=0

B̃τ+h
s X

(n)
τ+h−s + ϵ̂τ+h


(B.12)

where ϵ̂τ+h is a K×1 vector of shocks ensuring that any restrictions using either

methods B.2.1 or B.2.2 are satisfied.

2.1.6. If h < H, set h = h+ 1 and return to step 2.1.1

2.2. If n < N , set n = n+ 1 and return to step 2.1.

3. Let Y̌τ+h = {Y (n)
τ+h}

N
n=1 be the set of N simulated forecasts of Yτ+h and compute the ω’th

conditional quantile forecast of yi,τ+h as

Qω
i,τ+h (yi,τ+h) = Qω

(
y̌i,τ+h

)
(B.13)

recalling Qω
i,τ (·) as the ω’th quantile function conditional on the information set, Ψi,τ−1,

and letting Qω (·) denote the empirical quantile function. Note that ω isn’t restricted to

lie in η and can be anywhere in the interval (0; 1).

The algorithm above can be used to compute any statistic based on conditional forecast

quantile forecasts of Y .

Following an approach similar to the general case of Koop et al. (1996) and the QVAR specific

case of Chavleishvili and Mönch (2023), we compute generalised quantile impulse responses, G-

QIRFs, for any K × 1 vector of structural shocks arriving at time τ + h∗, ντ+h∗ , by obtaining

a separate set of simulations,Y̌
∗
τ+h = {Y (n)

τ+h|ντ+h∗}Nn=1, where we condition on the shock. The

generalised quantile impulse response function, gωi,τ+h (ντ+h∗) then follows as

gωi,τ+h (ντ+h∗) = Qω
(
y̌∗
i,τ+h

)
−Qω

(
y̌i,τ+h

)
(B.14)
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C Shapley value computation in the QVAR

The nonlinear property of the QVAR, while attractive in terms of analysing the conditional

distribution of a system of variables, adds a layer of complexity when attempting to apply stan-

dard methods for linear VARs, for instance forecast error variance decomposition and historical

decompositions. To see this consider the simple structural VAR(1) model

Yt = D +ΦYt−1 +Ω−1εt (C.1)

where Ω contains the contemporaneous interaction between the endogenous variables, D and Φ

consist of reduced form parameters, while ε are the K structural shocks. Recasting (C.1) in the

moving average-representation we get

Yt = (I − Φ)−1D +
∞∑
τ=0

ΦτΩ−1εt−τ (C.2)

from which it becomes clear that Y can be decomposed into contributions from the individually

identified structural shocks over the entire sample, since all relevant parameters and shocks in

(C.2) have been estimated. In a similar manner, the contribution of structural shock, i, to the

forecast error variance for variable j at horizon h can be expressed as in Lütkepohl (1990) by

ωj,i,h =
h−1∑
ι=0

(
e
′
jΦ

ιΩei

)2
(C.3)

where ek is the k’th column in IK . As can be seen, both the historical decomposition and the

forecast error variance decomposition derived from (C.2) and (C.3), respectively, can be readily

obtained as soon as the SVAR has been estimated and identified. In the case of the QVAR,

however, the parameters governing the system dynamics change randomly in each period, thus

making the formulas in (C.2) and (C.3) insufficient without directly assuming the quantile paths

travelled by the endogenous variables over all periods.

Shapley values, as discussed in Lundberg and Lee (2017), are an additive feature attribution

method, meaning that a prediction generated by the model, m (F), with the set of model

features, F , as inputs can be written as

m (F) = s0 +
∑
f∈F

sfM (f) (C.4)
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where M (f) is a function returning the value 1 if the feature f is included in the model and 0

otherwise, sf is the Shapley value associated with model feature f , and s0 is the Shapley value

associated with an empty model, i.e. f (∅). The Shapley value, sf , is then given by

sf =
∑

G⊆F\f

1

(|G|+ 1)
( |F|
|G|+1

) (mG∪f (G ∪ f)−mG (G)) (C.5)

letting |H| denote the number of elements in the set, H, and mH the model generating the

prediction and trained on the input variables in H.

Equation (C.5) is essentially a weighted average of all possible contributions to the model

predictions generated by including the feature of interest, f , in all model permutations excluding

it , G. Note that for all G, the modelm is retrained, or re-estimated, thereby requiring estimating

a total of 2|F| models to obtain all |F|+ 1 Shapley values, including s0. By extension, Shapley

values are agnostic to the underlying model, since they only consider the predictions generated

by the different permutations. For this reason, methods based on Shapley values are often used

in the machine learning literature to approximate how different model inputs contribute to a

given model prediction, even if the model is highly nonlinear. For the same reason, Shapley

values are a natural candidate to study the drivers of conditional forecast quantiles generated

by the QVAR.

Recalling the QVAR in equation (1), we let the K endogenous variables in Y and the M

exogenous variables in X be the set of considered model features, FQ, and let the empty model

contain only the deterministic terms in D. Depending on the desired degree of granularity, one

may want to consider each lag for each endogenous and exogenous variable as its own model

feature, although for our purposes, we simply consider all contemporaneous and lagged values of

a given variable as representing one model feature, yielding a total of K +M features. Let then

qji,τ+h

(
FQ

)
be the h-period ahead prediction of variable i’s j’th quantile with forecast origin τ

based on the model features in FQ as inputs. We can then decompose the quantile projection

according to (C.4), such that

qji,τ+h

(
FQ

)
= sj0,i,τ+h +

∑
f∈FQ

sjf,i,τ+hM
Q (f) (C.6)

where MQ is a QVAR-specific version of the related function in equation (C.4) and s the

corresponding Shapley values. Notice that the Shapley values are computed for all quantiles,
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j ∈ κ, for each endogenous variable, i = 1, . . . ,K, at each forecast horizon, h = 1, . . . ,H. For

large models, this level of granularity would typically present a steep increase in computational

complexity and require approximation based methods to obtain the Shapley values, however,

given the relatively parsimonious parameterisation of our QVAR, we instead opt to compute

them directly with equation (C.5).

As mentioned above, getting the Shapley values requires re-estimating the model while per-

muting over the K+M features in the case of the QVAR. Removing and reintroducing variables

in the estimation can, however, lead to endogeneity issues known from standard regression anal-

ysis. To the extent that the omission of a feature yields biased parameter estimates for the

remaining model features, and consequently a different quantile projection, the resulting Shap-

ley values will tend to assign explanatory power to the omitted feature, even if it has none in

the full model specification.

For this reason, we compute Shapley values using the full model parameter estimates for all

permutations, which in terms of equation (C.5) amounts to the modified formula

sjf,i,τ+h =
∑

G⊆FQ\f

1

(|G|+ 1)
( |FQ|
|G|+1

) (qjFQ,i,τ+h
(G ∪ f)− qjFQ,i,τ+h

(G)
)

(C.7)

An important distinction when assessing Shapley values is between explainability and inter-

pretability. The former can be viewed as equivalent to a positive statement, in that it provides

information on how important a model feature is to a given prediction. Interpretability, on

the other hand, is a statement about causation. Because Shapley values are agnostic to the

underlying model, and in particular the identified structure of the SVAR, one should be careful

to not conflate them with information about how structurally identified shocks are driving the

system, as one may otherwise do in the linear SVAR.
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