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Abstract. Cross-demand creates links between goods which cause demand-driven

cross-price dependencies. We construct a theoretical model to analyze their role in

propagating microeconomic price shocks to the CPI inflation rate and examine their

empirical relevance using spatial econometric techniques. The results highlight the

importance of complementarity and substitution properties between goods in exac-

erbating or mitigating price shocks. This contrasts with the propagation through

the production network. Most importantly, demand-driven cross-price dependencies

determine the impact of producer prices on the CPI inflation rate.
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1. Introduction

We analyze the role of microeconomic price shocks in shaping fluctuations in aggregate

price measures such as the consumer price index (CPI). Our focus is on the links between

prices and whether they can act as a channel for the propagation and amplification

of shocks. Links between prices can arise for several reasons. First, from a (firm)

supply side view, distinct goods (and services) may contain the same intermediate

goods, resulting in cross-price dependencies that reflect value chains along production

networks. Second, from a (consumer) demand side view, individual goods’ price shocks

may spill over to other goods’ prices due to the complementarity or substitutability of

goods.1 Acemoglu et al. (2012) construct a theoretical model of a production network in

which links between prices emerge from intra-industry relationships. In this setting, any

additional link exacerbates microeconomic shocks. However, this is unlikely to be the

case when considering the consumer demand side view, since the effect of an additional

link depends on whether it arises from a complementary or substitutive relationship

between goods. Consequently, microeconomic price shocks could either be exacerbated

or mitigated.

Our contribution is threefold. First, we establish a theoretical model to capture

the role of demand-driven links between prices for the CPI inflation rate. This serves

to highlight that microeconomic price shocks diffuse through the demand system and

hence may not remain confined to where they originate. Second, we estimate these links

for a large set of countries and compare them to those from the supply side. This allows

us to compare the size and sign of the spillover effects of microeconomic price shocks

from demand- and supply-driven cross-price dependencies. Third, we examine the role

of the structure of the demand-driven cross-price dependencies for the CPI inflation

rate. This serves to empirically assess their role in the propagation and amplification

of microeconomic price shocks to the CPI inflation rate through the demand system.

Assessing the transmission of microeconomic price shocks to a headline measure of

inflation is currently an active area of research. However, the focus in this context has

so far been limited to the supply side. Bilgin and Yılmaz (2018) consider a production

network to examine how shocks to prices, rather than quantities, are transmitted across

industries. They show that the input-output (I-O) linkages across industries form a

network through which the price shocks are transmitted. Moreover, they cannot reject

1For example, a high demand for restaurant visits (“catering services”) might not only raise prices
in this subcomponent, but also in those which are closely related (“food”, “beverages”, “transport
services”, etc.).
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the hypothesis that their system-wide measure of the underlying network Granger-

causes the system-wide measure of inflation linkages. As an extension, Bilgin (2022)

shows how the underlying I-O linkages are responsible for the transmission of inflation.

A common feature of these studies is their focus on the supply side. While it is clear that

the effect of microeconomic price shocks can be amplified as they propagate through

the production network, the same shocks can also propagate through the demand side.

The extent of shock diffusion, in turn, shapes the overall inflation dynamics.

We therefore employ a simple theoretical general equilibrium model in which links

between prices emerge from consumers’ cross-demand, hence reflecting consumer prefer-

ences. Cross-demand captures the extent to which goods are related from a demand side

view. This in turn creates links between the prices of goods which we will henceforth

refer to as demand-driven cross-price dependencies. As cross-demands lead to comple-

ments or substitutes, the corresponding links between prices can be assigned negative

or positive values. The model serves to examine the consequence of the demand-driven

cross-price dependencies for shaping the spillover effects of microeconomic price shocks

on the CPI inflation rate. The spillover effects reflect the degree of connectedness of the

network of cross-price dependencies which can be decomposed into (i) a strength effect

and (ii) a diffusion effect. While the former is determined by the size and sign of the

links (edges) between prices (nodes), the latter is determined by the structure of the

demand-driven cross-price dependencies. We use distinct network topology measures

to capture the spillover effects arising from the strength and diffusion effect. We then

estimate the key equation of the theoretical model to examine the empirical evidence

for demand-driven cross-price dependencies. We apply a Bayesian spatial econometric

framework and use the three-digit price subindices of the CPI for 28 countries (UK

and the current EU member states) to compare the resulting links between prices with

those emerging from a production network. The latter is based on the I-O tables

which are converted into the CPI’s Classification of Individual Consumption by Pur-

pose (COICOP) using the concordance matrices of Cai and Vandyck (2020). Finally,

the estimated price network is used to examine the first-order and second-order ef-

fects of the demand-driven cross-price dependencies (proxied by the network topology

measures) on the CPI inflation rate.

Our contribution builds on two relatively recent developments. First, by drawing

on tools from a diverse body of knowledge, the burgeoning field of graph theory has

developed a conceptual framework and a comprehensive set of tools for effectively en-

coding and measuring the interconnections among the units of analysis that make up
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a network. It serves as a tool for assessing how shocks propagate and how aggregate

fluctuations can be traced back to localized micro-disturbances. Second, developments

in econometric theory have established a set of models and theoretical instruments of

spatial statistics and spatial data analysis to analyze various economic effects such as

externalities, interactions and spatial concentration. These allow for efficient estimation

of linkages across a large number of individual units.

To preview some results, we find empirical support for the existence of demand-driven

cross-price dependencies which render the overall effect of microeconomic price shocks

on the CPI inflation rate distinct to their mere direct effect. Most importantly in the

context of consumer demand, the presence of substitutes and complements leads to an

exacerbation or mitigation of microeconomic price shocks. In particular, we find, first,

that positive valued links dominate which highlights the relative importance of the com-

plementarity property among goods. Second, spillover effects of the price subindices on

the CPI inflation rate are both negative and positive and their quantitative size out-

weighs the direct effects in most of the cases. The latter emerges from the high number

of cycles among prices. Third, demand-driven links among prices show remarkable

differences to a supply side counterpart and they tend to change over time, reflecting

changes in consumer preferences. Most importantly, we find that the demand-driven

cross-price dependencies explain a major part of the CPI inflation rate. We do so by

proxying the corresponding spillover effects with distinct network topology measures

and regressing them on the CPI inflation rate. We find that, while they explain signif-

icant variation in the CPI inflation rate by themselves, they critically shape the effects

of other variables (e.g., producer prices, PPI) on the CPI inflation rate. This empirical

result is consistent with the theoretical model and highlights the importance of the

demand system for the diffusion of microeconomic price shocks to the CPI inflation

rate.

Related literature. Our contribution is related to various strands of the literature.

There is a long research on cross-price demand effects with a focus both on individual

goods’ prices and on composite price indices. Work by Mulhern and Leone (1991);

Regmi and Seale (2010); Mehta and Ma (2012) highlight the dominance of substitutes,

while others (van Oest, 2005) emphasize complements. Using 7,264 estimates from

115 studies, Auer and Papies (2020) find that the mean cross-price demand elasticity

is 0.26 (median: 0.10), with high-stockpiling groceries having the highest cross-price

elasticities. With a view to the composite price indices for goods categories, Regmi and
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Seale (2010) highlight that among their nine categories of goods,2 non-zero cross-price

dependencies hold in 97 percent of all possible combinations. This finding applies to

high, middle and low income countries, and the sign of the cross-price demand effects

gives rise to a dominance of complements (67%). Hence, while price indices may ap-

pear independent to each other by virtue of their category’s name, depending on which

level of disaggregation one chooses, it is apparent that changes in one price (sub) index

may have an impact on others. This is likely to be particularly relevant for the CPI,

which constitutes a composite index that partitions all consumer goods and services

into a hierarchy of increasingly detailed subindices. This establishes a connection with

another important part of the literature concerning production networks. Acemoglu et

al. (2012) construct theoretical models in which each industry depends on the output

of other sectors, while combining these outputs as their intermediate inputs for pro-

duction. Bilgin and Yılmaz (2018) and Bilgin (2022) extend these models to examine

how producer prices diffuse through the I-O linkages in a multi-sector setting. Their

empirical results highlight the importance of supply-driven cross-price dependencies for

the inflation transmission. Afrouzi and Bhattarai (2022) extend this static setting to

a dynamic one and show that in response to monetary policy and supply shocks, I-O

linkages significantly increase the persistence of the CPI inflation rate relative to an

economy with a horizontal production network.

In a similar context, several papers investigate the I-O linkages for inflation synchro-

nization – including Di Giovanni and Levchenko (2010); Auer and Sauré (2013); Auer

et al. (2019) – and report that countries that trade with each other exhibit higher infla-

tion synchronization. Auer and Mehrotra (2014) examine cross-border price spillover

effects in the Asian manufacturing supply-chain based on the World I-O database.

Neely and Rapach (2011) characterize links in international inflation and find that the

global component accounts for 35 percent of domestic inflation volatility. Ahmad and

Staveley-O’Carroll (2017) highlight the structure of international price contracts that

explain most of the differences in inflation volatility and persistence. Auer et al. (2019)

document that international I-O linkages contribute substantially to the synchroniza-

tion of producer price inflation (PPI) across countries, and that these linkages account

for half of the global component of PPI inflation.

In a more general context, our contribution is also related to studies that examine

the cross-country differences in inflationary dynamics. Hall et al. (2023) and Choi et

2The nine goods categories are: food, beverage and tobacco; clothing and footwear; gross rent, fuel
and power; house operations; medical care; education; transport and communication; recreation; other
items.
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al. (2018) are recent contributions among others in this context, of which the former

analyze commonalities in inflation dynamics across the US, the euro area and the UK,

while the latter focus on the role of the oil price for a large panel of advanced and

developing economies.

The paper is structured as follows. Section 2 presents the theoretical model and in-

troduces the network topology measures to capture the spillover effects that emanate

from the demand-driven cross-price dependencies. Section 3 motivates the econometric

model to estimate the demand-driven cross-price dependencies and compares the result-

ing spillover effects with those from a supply side set-up. Section 4 extends the analysis

by examining as to whether the structure of the cross-price dependencies matters for

explaining the variation of the inflation rate. Finally, Section 5 concludes.

2. Consumer preferences and inflation dynamics

The purpose of this section is to illustrate the role of cross-price effects for inflation

dynamics. We analyze cross-price effects as a result of consumer behavior and hence

of preferences captured in the associated consumer demand functions. In this context,

cross-price effects emerge due to the substitutability or complementarity of goods. We

show how this matters for the impact of microeconomic price shocks on the CPI inflation

rate.

2.1. Cross-price effects and the inflation rate. Consider a static economy with

n ∈ N goods produced by a unit mass of firms. The total quantity of each of the n

goods produced is given by xsi ≥ 0 ∀ i = 1, ..., n, which in turn are supplied in perfectly

competitive markets at market prices pi ∈ R ∀ i = 1, ..., n. We take a short term

view and assume that the supply of each good xsi is perfectly inelastic with respect

to its price pi. Consumers in turn buy these goods. We consider a unit mass of

representative consumers out of which consumer j’s consumption of the n different types

of goods is given by the Walrasian (Marshallian) demand function xj,di = x
j,d
i (pi,p−i,mj)

∀ i = 1, ..., n, with xji being the quantity demanded of good i, mj denotes the consumer’s

available budget and p−i = [pk]
n/{i}
k=1 ∈ R

n−1 is a vector of prices excluding the price of

good i. Summation over the mass of consumers establishes the total demand for good

i which is given by the total demand function xdi = ∑j x
j,d
i = xdi (pi,p−i,∑jmj), where

the last step follows from the assumption of representative consumers. In equilibrium

xsi = xdi = xi, which gives rise to the following equilibrium quantity

(1) xi = xi(pi,p−i,m)



7

where m = ∑jmj is consumers’ total income. With the assumption of a perfectly price-

inelastic supply, equilibrium prices are shaped by demand shocks only. This implies

that, whenever a demand shock occurs, the equilibrium quantity xi will be left un-

changed and only the price pi will be affected. The latter though, is likely to shape

the demand for yet other goods xj ∀ j ≠ i, which emerges from the circumstance that

goods may be substitutes or complements to each other. This, in turn, will then also

shape the prices of these goods (pj ∀ j ≠ i), which establishes links across prices in

equilibrium. In what follows, we use this set-up to elaborate on the role of cross-price

dependencies for an aggregate price measure and its rate of change. It is useful to this

purpose to express the demand function for good i as of equation (1) by means of its

inverse demand function pi = pi(xi,p−i). Collecting all goods’ (inverse) total demand

functions in the price vector function pf(⋅) gives the following vector of equilibrium

prices

(2) pf(p,x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(x1,p−1)

⋮

pn(xn,p−n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

where all arguments beyond prices pi are omitted in pi(⋅) for simplicity. Letting w =

[wi]
n
i=1 with wi ∈ [0,1] ∀ i = 1, ..., n and ∑n

i=1wi = 1 be the vector of expenditure shares

(that is, the weights) of the goods, then the consumer price index p (CPI), as an

aggregate price measure, is given by p =w′pf(p,x) and its change is

(3) ∆p =w′ ⋅∆pf(p,x)

where p = [pi]
n
i=1 ∈ Rn and the geometric mean, as used for constructing the CPI

(IMF, 2022a), is approximated with the arithmetic mean. Observe that the price vector

pf(p,x) is a function pf ∶ Rn → Rn that takes a vector as input and produces a vector

as output. We can identify the cross-price effects from this vector of inverse demand

functions by the Jacobian matrix A = ∇ppf(p,x) which is a n × n matrix of partial

derivatives and given by

(4) A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . ∂p1(x1,p−1)
∂pn

⋱
∂pn(xn,p−n)

∂p1
. . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will henceforth refer to A as the price-Jacobian matrix. It tells us the relationship

between changes in the input and changes in the output, for instance, considering the

i, j element, the corresponding entry in A identifies the effect of a change in pj on pi
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which is given by ∆pi = ∂pi(xi,p−i)
∂pj

⋅∆pj. This can be generalized in matrix notation as

∆pf(p,x) = A ⋅∆pf(p,x). Adding to this relationship an exogenous demand shock in

the form of a disturbance to the price of good i equal to ũi, then the own price effect is

given by ∆pi = ∑n
j=1αij∆pj + ũi with ∂pi(xi,p−i)/∂pj ≡ αij ∈ A and the effect on other

goods’ prices by ∆pk = ∑n
j=1αkj∆pj ∀ k ≠ i. Since this relationship has to hold for

all prices, it provides a system of equations to solve for all prices in terms of demand

shocks. It can be rewritten in matrix form as

(5) ∆pf(p,x) = A ⋅∆pf(p,x) + ũ

where ũ is the vector of demand shocks (ũ1, ..., ũn). Equation (5) solves for the change

in the price vector as follows: ∆pf(p,x) = (I − A)−1ũ, provided that the inverse of

I − A exists (more on this in Section 2.2). From this equation we can then determine

the effect on the CPI inflation rate by using equation (3), which implies

(6) π =w′(I −A)−1u

where the CPI inflation rate π is given by π = ∆p
p and u = ũ/p. As equation (6)

illustrates, the CPI inflation rate is shaped by cross-price effects captured in the price-

Jacobian matrix A. If the price-Jacobian matrix is equal to the null matrix, then we

have that ∂π/∂ui = wi, which implies that the effect of a shock to an individual price on

the CPI inflation rate equals this price’s weight wi times the size of the shock. When

cross-price dependencies are present, the price-Jacobian matrix is then distinct to the

null matrix and a shock to an individual price may affect the CPI inflation rate not only

directly, but also via spillover effects arising from the cross-price dependencies. What

matters in this context are (i) the sign of the off-diagonal elements in the price-Jacobian

matrix A reflecting the substitution and complementarity relationships among goods,

and (ii) the structure that emerges from the cross-price dependencies. In what follows,

we discuss this in more detail using graph theory.

2.2. On the price-Jacobian matrix. The price-Jacobian matrix A in equation (5)

is derived under the assumption of inelastic supply. It therefore only captures price

effects of demand shocks. We establish equivalent relations to equations (5) and (6)

from a supply side approach in Appendix A. It is useful to take a closer look at the

properties of the price-Jacobian matrix A and the matrix L = (I −A)−1. In the context

of a production network the latter is commonly referred to as the economy’s Leontief

inverse (see Appendix A). There economic theory imposes certain restrictions on (I−A)
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which guarantee the invertibility of L and its representation as an infinite sum. While

this does not apply in our case, several aspects are still worth to be highlighted.

First of all, the elements αij ∈ A can have both positive and negative entries. This

results from the substitution and complementarity of the goods. Consider goods i and

j and their prices: a demand shock, for instance, in the form of a change in income m

by dm, gives rise to dxi = 0 ∀i = 1, .., n due to the assumption on supply and hence only

prices will react: dpi/dm = −dxi/dm
dxi/dpi ∀i = 1, ..., n. Since dpi/dpj = dpi/dm

dpj/dm , we obtain the

following expression for the cross-price dependencies by means of the total differential

of equation (1)

(7)
∂pj
∂pi
=
dxj/dpi
dxj/dpj

⪋ 0

Ruling out Giffen goods implies that dxj/dpj < 0 ∀ j = 1, ..., n. With regard to cross-

price effects, whenever good i and j are complements (dxj/dpi < 0), we have that ∂pj
∂pi
> 0.

Conversely,
∂pj
∂pi
< 0 when they are substitutes. In other words, the demand shock (dm)

leads to a positive co-movement among prices of those goods that are complements,

while the opposite applies to prices of goods that are substitutes.

Second, αij ≠ αji since in general dxi

dpj
≠ dxj

dpi
. Sethuraman et al. (1999) put forth two

effects that matter from an empirical point of view in this context: the asymmetric

price effect and the neighborhood price effect. The asymmetric price effect states that

cross-price elasticities are larger when the price changing good has a higher price than

the demand changing good. Under the neighborhood price effect, cross-price elasticities

are larger when the two competing goods are closer in price.

Third, the price-Jacobian matrix A captures both own- and cross-price elasticities.

Defining by εi = dxi/xi

dpi/pi the (uncompensated) own-price elasticity and by εij = dxi/xi

dpj/pj

the cross-price elasticity of demand, the elements αij are given by αij = εij
εi

pi
pj
, and the

price-Jacobian matrix can then be decomposed in the following form

(8) A = −E−1 ⋅H

where E = diag (∣εi∣, ..., ∣εn∣) andH = [ηij]ni,j=1 with ηij = εij
pi
pj
⪋ 0 ∀ i ≠ j and ηij = 0 ∀ i =

j. The matrix E captures the own-price effects while H the cross-price demand effects.

In what follows, we assume that ∑n
j=1 εij

pi
pj
< ∣εi∣ ∀ i = 1, ..., n. Under this assumption,

all column-sums of the price-Jacobian matrix A are less than unity. This motivates the

following Lemma.
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Lemma 1. If ∑n
j=1 εij

pi
pj
< ∣εi∣ ∀ i = 1, ..., n, then the matrix L can be expressed as an

infinite sum of the price-Jacobian matrix A, that is

(9) L = (I −A)−1 =
∞
∑
k=0
Ak

The proof of Lemma 1 follows directly from the relation between any matrix norm

and the spectral radius.3 Important for our context, Lemma 1 illustrates that the (i, j)

element of the matrix L captures the importance of price j as a direct and indirect

shock transmitter to price i. To see this, note that, for any i ≠ j, Lemma 1 implies that

lij = αij + ∑n
h=1αihαhj + [...], with the first term in this expression accounting for price

j’s role as a direct shock transmitter to price i, the second term accounting for price

j’s role as a transmitter to the recipients of price i, and so on. Interpreted in terms of

a network, lij accounts for all possible directed walks (of various lengths) that connect

price j to price i over the network.

Fourth, in general, most non-zero entries in A are likely to be small in amount. This

follows from the fact that, on the one hand, mean cross-price elasticities are found to

have small values in amount in most situations4 and, on the other hand, cross-price

elasticities enter αij ∈ A only relative to a good’s own price elasticity, which is likely to

be larger in amount.

2.3. The price-Jacobian matrix as a Graph. The price-Jacobian matrix A can

be considered as a directed weighted graph G = (N ,E ,A), where the n > 1 nodes in

N = {ν1, ..., νn} represent the goods’ prices ∆pi ∀ i = 1, ...n, which are related to each

other via the edges E ⊆ N ×N , and the weight matrix A ∈ Rn×n determines the size (and

sign) of the edges. Hence, the elements ∂pi(xi,p−i)
∂ph

∀ i, h = 1, ..., n with i ≠ h quantify the

strength of the network’s edges across nodes i and h, that is, νiνh ∈ E ⇐⇒ ∂pi(xi,p−i)
∂ph

≠ 0

with ∂pi(xi,p−i)
∂ph

∈ A.

In order to illustrate the role of the network structure for the effects of the cross-price

dependencies on the CPI inflation rate, we assume that all non-zero edges have the

same weight αij = α. We further simplify the exposition by considering a graph with

three prices (n = 3), each represented by a node in the network (both assumptions are

3Werner (2009) shows that for any real matrixM we have that ϱ(M) ≤ ∣∣M∣∣, where ∣∣ ⋅ ∣∣ denotes any
natural norm and ϱ(M) is the spectral radius which is defined as the maximum of the absolute values
of the eigenvalues of M. Then it follows that ϱ(M) ≤ ∣∣M∣∣∞, the maximum absolute row sum, and
ϱ(M) ≤ ∣∣M∣∣1, the maximum absolute column sum. So, if the row sum or the column sum of the
matrixM is less than unity, then these results verify the spectral radius condition. In this case, I −A
is invertible and can be written as the Neumann-series ∑∞k=0Ak = (I −A)−1.
4Auer and Papies (2020) find an overall mean cross-price elasticity of 0.26 with 70 percent of all
observations being below the mean, and a median of 0.10; similar values (in amount) are provided in
Regmi and Seale (2010).
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relaxed in the empirical part). The focus is explicitly on the network’s structure in

order to assess its consequence for the inflation rate π. To this purpose, we assume that

each price has the same weight w in the CPI.

Table 1 shows several simple network structures (first column) and their consequences

for the CPI inflation rate in response to a shock in the first price (u1). We establish

the adjacency matrix A for the five cases, (a)–(e), and compute the CPI inflation rate

π using equation (6). In the absence of links, the effect of a shock to the first price

by u1 = 1 on the CPI inflation rate equals π(a) = w (the superscript “(a)” refers to the

case considered). Hence the effect of the shock (u1) on the CPI inflation rate equals

the weight w of the first price times the size of the shock. The introduction of links

between the prices changes the effect of the shock on the CPI inflation rate. This is

documented algebraically in the second column. The presence of links leads to spillover

effects (ς) given by

(10) ς =w′ ((I −A)−1 − I)u

that is, the effects relative to those emanating from the zero-link case (a): ς(i) = π(i) −

π(a). Importantly, the spillover effects emerge from the cross-price dependencies and

they reflect the degree of connectedness in the network. The degree of connectedness

is in turn shaped by (i) a strength effect and (ii) a diffusion effect. When no links

are present, the price-Jacobian matrix is equal to the null matrix. Hence, the spillover

effects are equal to zero as neither a strength nor a diffusion effect applies. When the

goods are complements to each other (α > 0), then the strength effect implies that the

degree of connectedness (and hence the spillover effects) increases with α, as can be

seen in case (b): ∂ς(b)/∂α = w > 0. Conversely, the diffusion effect implies that the

degree of connectedness (and hence the spillover effects) is determined by the number

of links (ς(b) < ς(c) < ς(d)) and by the structure of the links in directed networks5 (acyclic

or cyclic network structures: ς(d) < ς(e) when α ∈ (0,1)).

A complication arises from the fact that goods may be substitutes to each other

(α < 0). Considering case (c), we then have that ∂ς(c)/∂α = w + 2wα ⪌ 0, which implies

that for certain network structures, the strength (and diffusion) effect can go either

way.

The network structure is typically captured by so called network topology measures.

The challenge in this respect is to establish network topology measures that adequately

capture the variation in the spillover effects due to distinct network structures and edge

5More precisely, the network in case (d) constitutes an acyclic graph (commonly referred to as directed
acyclic graph, DAG) and the network in case (e) is a cyclic graph.
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Table 1. Examples of network structures

Network topology Spillover effect Link Network Graph
(cases) of shock u1 = 1 density density energy

1
w

2

w

3w(a) ς(a) = 0 0 0 0

1
w

2

w

3w
α

(b) ς(b) = wα 1
3

α
3

0

1
w

2

w

3w
α

α

(c) ς(c) = ς(b) +wα2

= wα(1 + α)
2
3

2α
3

0

1
w

2

w

3w
α

α

α

(d) ς(d) = ς(c) +wα
= wα(2 + α)

1 α 0

1
w

2

w

3w
α

α

α

(e) ς(e) = wα
1−α

1 α 2∣α∣

Note: The table shows distinct network structures and their implications

for the spillover effects ς from a shock to the first price by u1 = 1. The

table also displays the values of three distinct network topology measures–

link density (LD), network density (ND) and graph energy (GER)–for each

network structure. For α = 1, we have that GER =GEZ2 .

weights α. In what follows, we introduce three distinct network topology measures to

capture the spillover effects.

2.4. Network topology measures and spillover effects. We use network topology

measures to capture the size and the sign of the spillover effects, paying attention to

strength and diffusion effect. The former concerns the quantitative size of the link

between two connected nodes, while the latter concerns the amount of links and the

overall arrangement of the links. We consider the following network topology measures:

(1) Link density (LD): This measures how many links exist between nodes relative

to the maximum possible number of links (Newman, 2010). Link density is

thus a measure for the diffusion effect. For a graph with an N ×N adjacency

matrix B = [βij]i,j=1,...,N with B ≠ B′, the link density is given by the scalar
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LD(B) = ∑
N
i ∑

N
j≠i 1{∣βij ∣>0}

N(N−1) ∈ [0,1] where N is the number of nodes and 1{∣βij ∣>0} is

the indicator function, which takes on a value of one if the condition ∣βij ∣ > 0 is

satisfied. The link density measures the diffusion effect.

(2) Network density (ND): For the same graph as before, the network density (Hor-

vath, 2011) is given by the scalar ND(B) = ∑
N
i ∑

N
j≠i βij

N(N−1) ∈ R. It extends the link

density by taking into account the weight of each edge βij ∈ B. Thus, for a given

link density, the network density measures the strength effect.

(3) Graph energy (GE): For the same graph as before, the graph energy is defined

by the scalar GE(B) = ∑N
i=1 ∣R(zi)∣, where R(zi) is the real part of the complex

number zi, and the zi ∀ i = 1, ...,N are the eigenvalues of the adjacency matrix

B. (Gutman, 1978; Peña and Rada, 2008). GE(B) = 0 means that a network

has a perfect tree-like structure in which no loop is formed. Thus, the higher the

graph energy,6 the more cyclic is the architecture of the network. We consider

two versions of graph energy: the first is given by GEZ2 ≥ 0 (henceforth binary

GE) and is based on βij ∈ B with βij ∈ {0,1} ∀ i, j = 1, ...,N and i ≠ j and

the second by GER ≥ 0 (henceforth non-binary GE) which is based on βij ∈ B

with βij ∈ R ∀ i, j = 1, ...,N and i ≠ j. The first measure (GEZ2) captures the

diffusion effect solely, while the second (GER) captures both the diffusion and

the strength effect.

We show the values of the three network topology measures for each of the five cases

(a)–(e) in the third to fifth columns of Table 1. Their adequacy for our analysis is

determined by their ability to capture the size and sign of the spillover effects.

Considering Table 1, in the absence of links, no spillover effects arise (ς(a) = 0) and

the three topology measures (LD, ND, and GE) are all equal to zero. When links

are present, spillover effects occur. Whenever the goods are complements (α > 0),

increasing the number of links leads to yet larger spillover effects (second column) due

to the diffusion effect. This is captured by the link density (third column) and applies

to the cases (b)–(d). However, for the same cases, the presence of substitutes (α < 0)

renders the spillover effects negative, thus mitigating the effects of the shock. While

the link density fails to capture this, the network density in turn does (fourth column),

as it captures the strength effect, which in turn is affected by the sign of the edges.

Importantly, though, a positive spillover effect can also occur in the case of substitutes.

6There are various alternatives, as for instance, the R-measure of Kim and Kim (2005). They propose a
cyclic coefficient R that represents the cyclic characteristics of complex networks (R: cycle coefficient).
Another interesting network topology measure in this context is given by the cycle ratio as proposed
by Fan et al. (2021), or the cycle nodes ratio (CNR), which describes the ratio of the number of nodes
belonging to cycles to the number of total nodes (Zhang et al., 2021).
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Figure 1. Spillover effects and inflation
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Note: Panel (a) shows the spillover effects of a unit-shock to the first node (u1 = 1) for varying values of the

edge weight α for a given node weight w = 1/3. Panel (b) shows the volatility of the CPI inflation rate as a

function of the number of prices (nodes, n) in the network (each price i has a weight wi = 1/n in the CPI) for

three distinct values of the edge weight α.

This is indicated by cases (c) and (d) and is shown in Figure 1, which illustrates the

spillover effects for varying edge weights α.

Finally, case (e) comprises an interesting alternative network structure. It shares

similarities with cases (c) and (d). The similarity with case (c) emerges from the fact

that the CPI inflation rate for the network structure in case (c) is given by

(11) π(c) = w

1 − α

and the spillover effect by ς(c) = wα
1−α once the number of nodes n becomes large and

each node (except the first and the last) has exactly one in-degree and one out-degree,7

and ∣α∣ < 1. In this case, the two networks have the same spillover effects despite their

distinct structures. In contrast, as regards cases (d) and (e), while the link and network

densities are the same for these two cases, the graph energy is not. In particular, the

spillover effect arising from case (e) can indeed be sizeable, especially in the case of

complements8 (see Figure 1). Hence, the link and network density fail to capture this

effect adequately from a quantitative point of view. Importantly, the effect emerges

from a cyclical feature: Cases (b)–(d) represent acyclic networks, each with a nilpotent

adjacency matrix. Case (e), on the other hand, is a cyclic network, which differs from

the previous ones in that once a shock hits this network, a series of knock-on effects arise

from the fact that the shock is continuously transmitted through the nodes forming the

cycle (Boccaletti et al., 2006). From a technical point of view, the adjacency matrix

7In particular, the network is given by: (Node 1)↷(Node 2)↷(...)↷(Node n). In this case, ς(c) =
wα∑n−1

i=0 αi = wα
1−α

if ∣α∣ < 1, which is the same as in case (e).
8If the cycle involves only two nodes: (Node 1)↷º(Node 2), then π = w

1−α
and ς = wα

1−α
, which is the

same as in case (e), where the cycle involves three nodes.
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has non-zero eigenvalues (Newman, 2010). While the number of non-zero eigenvalues

depends on the number of cycles present in the network, we hence use an overall eigen-

value measure, which is given by the graph energy.9 This measure captures spillover

effects emerging from cycles.

2.5. Individual price shocks and inflation dynamics. While the previous section

illustrated the extent to which cross-price dependencies can act as a mechanism for

propagating shocks from one good’s price to the CPI inflation rate, we now examine

whether they play a role for the inflation volatility.

Using equation (6) and setting the price-Jacobian matrix A equal to the null matrix

(case (a) of Table 1) implies that the volatility of the CPI inflation rate π that is due

to idiosyncratic microeconomic price shocks is given by

(12) σ(π)(a) = ∣∣w∣∣

where σ(⋅) denotes the standard deviation and the demand shocks’ variance is given by

E[uu′] = I. Since ∣∣w∣∣ = (∑n
i=1w

2
i )1/2, equation (12) highlights that more dispersion in

the weights w can result in higher levels of volatility emerging from purely idiosyncratic

shocks. In this regards, Gelos and Ustyugova (2017) highlight that countries with a

higher weight of food in the CPI experience more persistent inflationary effects from

commodity price shocks. In the absence of dispersion in the weights (wi = w ∀ i =

1, ..., n), we have that

(13) σ(π)(a) = 1√
n

since the weights w satisfy ∑n
i=1wi = 1 = nw. This equation implies that when the

weights of all prices are identical, the volatility of the inflation rate is proportional to

1/
√
n, which is consistent with the diversification argument put forth in the context

of production networks (Acemoglu et al., 2012; Fadinger et al., 2022) and financial

networks (Teteryatnikova, 2014; Glasserman and Young, 2016; Das et al., 2022; Balcilar

et al., 2023). However, the presence of cross-price dependencies can render the effects

of a shock from any individual price large, irrespective of the dispersion of the weights.

In this case, the prices of goods would be correlated, and thus individual price shocks

may not disappear when aggregated, even if the shocks themselves are independent.

Consider case (c) of Table 1, where ∣α∣ < 1 and n is large; the effect of a shock to u1 on

the CPI inflation rate is given in equation (11); generalizing this result to the vector of

9With a view to Table 1, for α = 1 we have that GER =GEZ2 .
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shocks u, we then obtain the following

(14) σ(π)(c) = 1

(1 − α)
√
n

which implies that σ(π)(c) > σ(π)(a) whenever α > 0 due to network spillover ef-

fects. The above equation highlights that there is a trade-off between the network

and the volatility of the CPI inflation rate: A higher degree of connectedness–either

via the strength effect (higher value of ∣α∣) and/or the diffusion effect (larger number of

connections)–exacerbates the effect of microeconomic price shocks on the CPI inflation

rate. The effect is attenuated by the degree of diversification, that is, a high n. This

argument, however, only holds when cross-price dependencies emerge in the wake of

complements (α > 0), as illustrated in panel (b) of Figure 1. When dependencies arise

from substitutes, then both the network effect (higher or lower degree of connectedness)

and the diversification effect operate in the same direction rendering the mitigation of

microeconomic shocks especially strong. In other words, each shock dissipates quickly

and exerts an effect on the CPI inflation rate that is smaller than its pure direct effect.

3. Estimating the price-Jacobian matrix

If the equilibrium conditions xi(pi,p−i,m) ∀ i = 1, ..., n set out in Section 2.1 are

based on homothetic consumer preferences10, then the rate at which a consumer is

willing to substitute one good for another is independent of his income level. This,

in turn, implies homogeneity of expenditure patterns across consumers with different

income levels, that is, consumers spend the same share of their total expenditure on

particular goods regardless of differences in income (Jehle and Reny, 2011). Since the

assumption of homothetic preferences is at the core of the CPI (see Diewert, 2009;

IMF, 2022b, among others), we estimate the price-Jacobian matrix A by proxying the

elements in the price vector of equation (2) by subcomponents of the CPI.

The goods and services in the CPI basket are classified by purpose into consumption

groups (COICOP) at various levels of (dis-)aggregation, which are referred to as struc-

ture levels (two-digit, three-digit, etc.). We use the three digit COICOP structure of

the CPI, which consists of 44 distinct monthly price subindices Pi,t. From these we ex-

clude all those subindices for which the sample does not date back until (at least) 2004.

This involves the price subindinces related to educational goods and services (cp 101

10Homothetic preferences apply when the utility function u(x) has a linear homogeneity property,
which means that u satisfies the following condition: u(λx) = λu(x) for all λ > 0 and all x ∈ R+. This
assumption implies that each indifference curve is a radial projection of the unit utility indifference
curve. It also implies that all income elasticities of demand are unity.
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to cp 105), leaving a total of n = 39 subindices and their respective basket weights.11

The details of the subindices are provided in Table 4 in the Appendix. We collect these

data for 28 countries (the UK and the current EU member states).

Our choice of the three-digit COICOP level is motivated by our ambition to com-

pare demand- with supply-driven cross-price dependencies for which we rely on the

work of Cai and Vandyck (2020). They establish concordance matrices that map the

statistical classification of the input-output (I-O) tables to the COICOP classification.

These matrices are limited to the three-digit COICOP level, so we only consider the

price subindices of this level of disaggregation. Most importantly, based on the model

presented in the Appendix, a supply side version of the price-Jacobian matrix can be

constructed and calibrated by using the I-O tables and the concordance matrices of Cai

and Vandyck (2020). This then allows the cross-price dependencies of the supply side

(Γ̃) to be directly compared with those of the demand side (Ã).

3.1. The econometric methodology. We estimate the price-Jacobian matrix of

equation (5) by relying on spatial econometric methods and consider the following

empirical model to this purpose

(15) yt =Ayt +Xtβ + εyt,

where yt is a vector of length n of the dependent variables measured at time t = 1, ..., T ,

Xt is an n ×Q matrix of control (or explanatory) variables with a corresponding slope

parameter vector β, where the matrix Xt may also include fixed effects. εyt is an

n-dimensional error term, and the (n × n) matrix A governs the interaction between

the cross-sectional observations (i.e. the n price subindices). The dependent variable

comprises information on n = 39 price subindices (three-digit level of the CPI) and

they enter the vector yt in annual percentage changes. The monthly data set starts

in January 2000 and12 ends in May 2022, which implies that T = 269. We estimate

equation (15) individually for each country and rely on Bayesian methods for the sta-

tistical inference. We use an n × n matrix A, which comprises prior knowledge on

A, along with Dirichlet-Laplace shrinkage priors (Bhattacharya et al., 2015) to avoid

over-parameterization. Our model set-up is thus a Bayesian Markov chain Monte-Carlo

(MCMC) version, reminiscent of recent work by Gefang et al. (2022) and Lam and

Souza (2020). We follow Lam and Souza (2020) for the estimation of A and construct

instruments from within the model by interacting the expert prior information A with

11The weights were re-adjusted to account for the omission of five subindices.
12For some countries, the sample of the CPI data starts later than January 2000. In these cases we
use the earliest available data.
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the exogenous variables. We rely on the estimates in Table 4 in Regmi and Seale (2010)

as a prior information for A and distinguish between high-income and low-income coun-

tries, and hierarchical shrinkage is applied to these estimates. Alternatively, no external

prior information is used, the elements in A are shrunk to a sparse matrix. For infer-

ence, we sample 1,000 MCMC draws for each country and discard 750 as burn-ins.

Further technical details are provided in the Appendix.

The values of the vector β are interpreted as average immediate effects of changes

in the explanatory variables on the dependent variables of the same price subindex

(Asgharian et al., 2018; Karamysheva and Seregina, 2022). The matrix A governs the

interaction between the dependent variables (commonly referred to as the weighting

matrix) and has zeros on its main diagonal and is not symmetric. The elements in

this matrix indicate the relative closeness of the price subindices to each other. More

specifically, the element in row i and column j of the matrix shows the reaction of the

price subindex i to a change in the price subindex j. This element is therefore a measure

of the cross-price effects of the price subindex i on changes in the price subindex j (Heil

et al., 2022; Hall et al., 2022).

Our attempt to estimate demand-driven cross-price dependencies is based on the

idea of estimating inverse demand functions. In this setting, however, the classic iden-

tification problem arises as prices are the result of the interplay between supply and

demand. Thus, assuming that markets clear, prices are hence equilibrium outcomes.

In principle, there is no endogeneity problem if supply is price inelastic (this could be

relevant for administered prices and/or supply in the short run). In general, however,

this is not the case. What is needed conceptually is a way to keep demand constant

while varying supply. We therefore use a large set of supply side variables in the vector

of explanatory variables (Xt) that do not directly affect demand (but only indirectly

through the price variable). Thus, after controlling for supply side influences, we can

capture the demand-driven cross-price dependencies in the matrix A. Our set of ex-

planatory variables includes several price subindices of the producer price index (price

indices for the manufacture of food products, beverages and tobacco products; for the

manufacture of textiles, wearing apparel, leather and related products; for intermedi-

ate goods; for energy; for capital goods; for durable consumer goods; for non-durable

consumer goods; and for mining and quarrying), a measure of administered prices, the

nominal effective exchange rate and global measures such as shipping costs (Carrière-

Swallow et al., 2023), the oil price (Brent) and a price measure for natural gas (Dutch

TTF). In addition, we use the overall CPI inflation rate as a control variable. This is
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Figure 2. Cross price dependencies

Note: The figure shows the cross-price dependencies as a network. We only show the edges that are present in

50 percent of the countries. Nodes in red indicate out-degree dominance, while those in green indicate in-degree

dominance; nodes in blue indicate equality between out- and in-degree. Edges in red refer to positive valued

links (complements, αi > 0) and those in black to negative ones (substitutes, αi < 0).

motivated by the common practice in many industries (insurance and telecommunica-

tion services, for instance) to adjust prices on the basis of the past CPI inflation rate

(inflation indexation of prices). These variables are used for each country.

We transform the estimated matrix A of equation (15) into an adjacency matrix Ã

by applying the following statistical thresholding

α̃ij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

aij if ∀ i ≠ j ∶ Pr(aij ≠ 0) ≥ 1 − p̄

0 else
(16)

where aij ∈ A and α̃ij ∈ Ã, and we use a significance value of p equal to one percent.

These values define the edges of the weighted directed network of empirical cross-price

dependencies. Since we have a posterior distribution for A, the same then applies to the

adjacency matrix Ã (in particular, its non-zero elements). We keep all those posterior

draws of Ã that satisfy Lemma 1. On average (across countries), three percent of the

draws are discarded as a consequence.

3.2. The empirical cross price dependencies. Figure 2 shows the empirical cross-

price dependencies given by the matrix Ã across all countries. We display only those

edges that are present in 50 percent of the countries, in order to allow for a reasonable

inspection of the most relevant links. Edges in red refer to positive entries (αij > 0,

complements) and those in black to negative ones (αij < 0, substitutes).
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Table 2. Network topology statistics

Demand side (Ã) Supply side (Γ̃)

Standard Standard
Mean deviation Mean deviation

Positive edges ratio(1) 0.76 0.03 1 0
Link (degree) density (LD) 0.26 0.07 0.33 0.09

Network density (ND) 0.01 0.01 0.15 0.00
Graph energy (non-binary, GER) 2.01 0.54 9.64 1.56

Graph energy (binary, GEZ2) 12.77 3.63 25.18 4.76

(Dis-) Assortativity(2) -0.06 0.06 -0.27 0.07

Cosine-
Sensitivity Specificity Accuracy similarity

Similarity of Ã to Γ̃(3) 0.04 0.52 0.26 0.02
(0.01) (0.03) (0.08) (0.04)

Notes: The moments (Mean and Standard deviation) are computed for each network
topology measure across the countries.
(1) Positive edges ratio denotes the number of edges with a positive value relative to the
total number of non-zero edges.
(2) Assortativity (Dis-assortativity if negative) is a measure of the preference of nodes in
a network to attach to others that are (dis-)similar in terms of their degree. It is opera-
tionalized as the correlation between two nodes.
(3) The figures shown are the mean and the standard deviation (in parenthesis) across
the countries.

The estimated cross-price dependencies imply, for instance, that an increase in de-

mand for food (node 1) leads to higher prices in this group and to price changes in two

closely related groups, that is, non-alcoholic beverages (node 2) and tobacco (node 4),

both of which are affected positively, creating complementary effects. Food prices are

in turn shaped by the prices of catering services (node 32), which also affect the prices

of alcoholic beverages (node 3).

As a second example, consider an increase in rental prices for housing (node 7), which

triggers substitution effects for tobacco (node 4) and clothing (node 6). The latter in

turn forms a cycle with footwear (node 5), that is, higher demand for clothing raises

demand for footwear with price increases in both groups; higher demand for footwear

in turn stimulates demand for clothing with another round of price increases in both

groups. The interaction is shaped by positive-valued edges resulting in goods being

complementary to each other. Table 2 highlights that the complementarity property of

goods dominates. The mean (across countries) of the ratio of positive-valued edges to

the total number of non-zero edges equals 76 percent, which is well in line with the 67

percent estimate in Regmi and Seale (2010). A cross-country mean value of 26 percent

for the link (degree) density contrasts a fairly low value for network density due to

negative-valued edges.
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The cross-price dependencies as shown in Figure 2 emerge from demand dynamics

as we control for a wide range of supply side factors in the estimation. This naturally

raises the question as to what extent they differ to the supply side cross-price depen-

dencies. We show the supply side driven cross-price dependencies in Figure 5 in the

Appendix. They are based on a simple supply side model, which is a version of the

model considered in Acemoglu et al. (2012). The model is calibrated using, among

others, the I-O tables. Most importantly for our purposes, the statistical classification

of the I-O tables was mapped to the COICOP classification by using the concordance

matrices of Cai and Vandyck (2020). A direct visual comparison of the two networks

of cross-price dependencies reveals notable differences, as do the network statistics pro-

vided in Table 2. First, the supply side network has a high level of dis-assortativity

(negative degree correlation), but also a high extent of assortative hubs (nodes 1, 3,

10 and 39). Colizza et al. (2006) point out that most real-world (scale-free) networks

have this feature. A closer look reveals that these hubs have a significant out-degree

dominance. The implication for the network is that a small set of nodes shapes the

network’s overall dynamics. In contrast to that, the demand-driven cross-price depen-

dencies show a lower extent of dis-assortativity with a more balanced distribution of

the nodes with out-degree dominance. Second, the supply-driven network displays a

high clustering tendency, which is manifested in the form of nodes being divided into

three blocks. The network aligns with a so called stochastic block model (Frank and

Harary, 1982; Holland et al., 1983; Karrer and Newman, 2011). The implication is that

the network’s dynamics are determined by the interaction of the nodes in these blocks,

which in turn are shaped by the hubs in these blocks. Such block clustering is absent in

the demand-driven network of cross-price dependencies. Third, both networks share a

high degree of cyclicality. For instance, the demand-driven network has three individual

cycles (nodes 5 and 6; nodes 10 and 21; nodes 24, 25 and 26) while the supply-driven

network has two (nodes 1 and 3; nodes 7 and 39). In each case this gives rise to a high

overall extent of network dynamics, as indicated by the high values of graph energy

(see Table 2).

Although the previous analysis already indicated significant differences between the

price dependencies of the demand side and the supply side, we now formalize this using

statistical criteria. The accuracy of the estimated demand-driven price dependencies

(and hence the quality of the estimation of the matrix A in equation (15)) can be

assessed by comparing them with their supply side counterpart. In this context, a high

degree of similarity indicates an insufficient coverage of demand factors to explain the
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price dependencies. To this purpose, we use the cross-price matrices of the demand

side (Ã) and the supply side (Γ̃) and evaluate their similarities. We do this following

Gandy and Veraart (2019) and consider the following standard criteria

Sensitivity = 1

µ

n

∑
i=1

n

∑
j=1

1{α̃ij≠0} ⋅ 1{γ̃ij>0}(17)

Specificity = 1

n2 − µ

n

∑
i=1

n

∑
j=1

1{α̃ij=0} ⋅ 1{γ̃ij=0}(18)

Accuracy = 1

n2

n

∑
i=1

n

∑
j=1
(1{α̃ij=0 ∧ γ̃ij=0} + 1{α̃ij≠0 ∧ γ̃ij>0})(19)

Cosine-Similarity =
∑n

i=1∑n
j=1 α̃ij γ̃ij√

∑n
i=1∑n

j=1 α̃
2
ij

√
∑n

i=1∑n
j=1 γ̃

2
ij

(20)

where, as before, 1{⋅} is the indicator function and µ = ∑n
i=1∑n

j=1 1{γ̃ij>0}. The first three

criteria are in the range [0,1], and higher values indicate a greater extent of similarity,

while the fourth is in the range [−1,1], with a higher value (in amount) indicating a

higher extent of similarity. The results are provided in Table 2. The low value of the

sensitivity measure indicates a markedly low congruence between the two adjacency

matrices (Ã for the demand-driven and Γ̃ for the supply-driven cross-price networks)

with respect to the non-zero entries. This shows, on the one hand, that sufficient

supply variables have been included in the estimation to separate the demand- and

supply-driven influences on the cross-price dependencies, and, on the other hand, that

the cross-price dependencies from the estimation of the matrix Ã in equation (15) can

indeed be interpreted as the result of demand-specific influences. The moderate value

of the specificity measure is due to the fact that both cross-price networks are rather

sparse, giving rise to only a small number of non-zero edges (consider the link density

in Table 2). The accuracy measure, as a combination of the previous two, confirms the

low congruence of the two adjacency matrices. Finally, the cosine-similarity measure

again has a markedly low value, which is due to the low overall congruence of the two

adjacency matrices with respect to their non-zero edges on the one hand, and on the

other hand, to the fact that once a non-zero edge applies to the same element i, j in

the two adjacency matrices, the sign of these entries can be different which augments

their dis-similarities even further.

3.3. The empirical spillover effects. The network representation in Figure 2 shows

the links, their signs and the corresponding node connections, but does not allow a

quantitative assessment of individual price shocks on the CPI inflation rate. Moreover,

given the differences between the demand- and supply-driven cross-price dependencies,
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Figure 3. Individual price shocks: Direct and spillover effects

Note: The box-plots show the variation across countries of (i) the spillover effects, and (ii) the direct effects of a

shock to an individual price subindex to the CPI inflation rate. The direct effects (DE) are given by πDE
=w′u

(this just reflects the weights of the price subindices in the CPI) and the spillover effects by equation (10). In

each box, the central marker indicates the median, and the lower and upper edges of the box indicate the 25th

and 75th percentiles of the cross-country variation, respectively. The whiskers extend to the most extreme

non-outlying data points.

the question arises as to what extent the resulting spillover effects of microeconomic

price shocks on the CPI inflation rate differ. A quantification of the spillover effects

and a comparison between the demand- and supply-driven network of cross-price de-

pendencies is the focus of what follows.

In line with the second column of Table 1, we compute the spillover effects of the

individual price subindices on the CPI inflation rate. Technically, this is done by again

using equation (10) where we set each element in the vector of shocks u equal to zero

except its i’s element which has a unit entry (ui = 1). This allows us to calculate the

spillover effect of a shock to the subindex of price i on the CPI inflation rate. We do

this for each price subindex. The results are provided in the first panel of Figure 3 in

the form of box-plots showing the variation across countries. The figure highlights a

few noteworthy things.

First, there is a remarkable cross-country variation in the sign and quantitative mag-

nitude of the spillover effects. Consider, for instance, the price subindex No. 1 (food)
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in the left-hand panel. The median value of the spillover effect of this subindex is 0.15

implying that a one percentage point increase of this subindex raises the CPI inflation

rate by 0.15 percentage points; the values for the boxes (25th and 75th percentiles) are

0.09 and 0.23, respectively, which undermine the large cross-country differences. The

finding of a significant extent of heterogeneity in the spillover effects across countries

aligns with the results put forth in Abdallah and Kpodar (2023) who focus on the role

of retail energy prices for the CPI.

Second, the spillover effects from the supply-driven network (second panel of Figure 3)

are always non-negative because of the solely positive valued edges while those from the

demand-driven counterpart can be either negative or positive. Thus, while microeco-

nomic price shocks can only be exacerbated by supply-driven cross-price dependencies,

demand-driven cross-price dependencies can lead to an attenuation or exacerbation of

the same shocks. This is particularly evident in the case of the price subindex No.

39 (other services n.e.c.), where a large positive (median) value of the supply-driven

network of cross-price dependencies contrasts with a large negative (in amount) value

of the demand-driven counterpart. In a similar vein, the extent of shock exacerbation

is likely to be especially pronounced in the case of the price subindices No. 1 (food),

21 (operation of personal transport equipment) and 32 (catering), as in each case posi-

tive valued spillover effects result from both the demand- and supply-driven cross-price

dependencies.

Third, on average, the size of the spillover effect of the price subindices exceeds

their direct effect (right-hand panel in Figure 3; they reflect the weights of the price

subindices in the CPI) on the CPI inflation rate. This is the case for both the demand-

and the supply-driven cross-price networks. For the latter, the extent of asymmetry is

especially pronounced for the price subindices No. 1 (food), 3 (alcoholic beverages),

10 (electricity, gas and other fuels) and 39 (other services n.e.c.). This highlights the

importance of the spillover effects relative to the direct effects in explaining the impact

of microeconomic price shocks on the CPI inflation rate.

4. The role of cross price dependencies for inflation dynamics

The previous section has highlighted the role of the cross-price dependencies for the

size and sign of the spillover effects of microeconomic price shocks on the CPI inflation

rate. This raises the question of whether they also matter for the overall inflationary

dynamics.
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With a view to equation (6), the inflation rate is determined by two elements. On

the one hand, there are the exogenous shocks u. In the theoretical model in Section 2,

supply was assumed to be inelastic with respect to the price, so that demand shocks

were the only element shaping prices and hence the CPI inflation rate. In a more general

setting, however, the vector u can contain any exogenous shock. On the other hand, the

inflation rate in equation (6) depends on the extent of cross-price dependencies, which

are governed by the price-Jacobian matrix A. The cross-price dependencies determine

the size and sign of the spillover effects. For a given vector of shocks u, changes in

the price-Jacobian matrix alter the spillover effects and hence the inflation rate. This

motivates considering the CPI inflation rate π as a function f(⋅) of (i) the exogenous

shock elements in u and (ii) the spillover effects ςA ∈ R that emerge from the price-

Jacobian matrix A

(21) π = f (ςA, u)

where the vector of shocks u has been reduced to the scalar u for simplicity. Importantly,

the spillover effects ςA are determined by the strength and the diffusion effect, both of

which were discussed in Section 2.3. To get a better insight into the role of the spillover

effects on the CPI inflation rate, we consider a second-order Taylor approximation of

equation (21) around u0 = 0, which yields the following

(22) π = fςA ⋅ ς̃A + fu ⋅ u +
1

2
(fςAςA ⋅ (ς̃A)

2 + fuu ⋅ (u)2 + fςAu ⋅ ς̃Au)

where ς̃A = ςA − ςA,0 and f (ςA,0) = 0. The spillover effects ςA thus shape the inflation

rate along two dimensions. The first of these comes from the first-order terms and holds

whenever fςA = ∂π/∂ςA ≠ 0. The effects of this term can be considered as an extension

of the weights w of the individual price subindices for the CPI. For given values of u,

changes in it will affect the CPI inflation rate. The second dimension is comparatively

more important and emerges from the second-order terms. The main focus here is on

the term fςAu. It determines the propagation mechanism of the exogenous shocks u. It

applies whenever fςAu = ∂2π/∂u∂ςA ≠ 0, given that fu = ∂π/∂u ≠ 0. Intuitively, changes

in consumer preferences are likely to alter the structure of the cross-price dependencies,

which in turn causes changes to the propagation mechanism of microeconomic price

shocks to the CPI inflation rate. In what follows, we examine both dimensions. To do

so, we approximate the spillover effects ςA by the network topology measures put forth

in Section 2.4.



26

Figure 4. Network topology measures: country and time variation

Note: The box-plots show the variation across countries and time of the network topology measures. They

are based on a window estimation of equation (15), with each window having a length of 60 months. The CPI

inflation rate is given by the cumulative relative change for each window.

4.1. First-order terms. We enter the first-order terms of equation (22) into a panel

data regression model in which we explain the CPI inflation rate by the spillover effects

ςA and the shocks u. We proxy the spillover effects by the network topology (NT(Ã))

measures (link density, network density and graph energy) as motivated in Section 2.4.

For the shock elements u, we use the variables of a classical Philips curve specification,

namely: the producer price index (PPI), the cyclical unemployment gap (U-Gap)13

and the import price index (IMPI) (see Aguiar and Martins, 2005; Hazell et al., 2022,

and the references therein). We create an appropriate time variation of the network

(compare Holme and Saramäki, 2012) by estimating equation (15) over different time

windows of 60 months each, with an overlap to obtain estimates for a total of nine

windows. We use the adjacency matrix Ãc,t of each window t = 1, ...,9 to compute the

network topology measures and we do this for each country c = 1, ...,28. Figure 4 shows

the variation over time and across countries of the three network topology measures

and the CPI inflation rate (cumulative relative change). There is a remarkable variation

across countries in the three network topology measures and the CPI inflation rate, as

is indicated by the width of the boxes. At the same time, there is also a strong variation

over time, best illustrated by the temporal variation of the median estimate. This is

the case for both the CPI inflation rate and the network topology measures.

We estimate a panel data regression model of the form

(23) πc,t = βNT ⋅NT (Ãc,t) +
K

∑
i≥1
βixc,t,i + ec,t

to explain the CPI inflation rate πc,t. As regards equation (23), the K = 3 explanatory

variables (xc,t,i) next to the network topology measure NT (Ãc,t) are given by the pro-

ducer price index (PPI), the unemployment gap (U-Gap) and the import price index

13The unemployment gap (U-Gap) is measured by the cyclical component of the monthly year-over-
year change in unemployment, extracted using the Hodrick-Prescott filter with a smoothing parameter
of 14,400 (Ravn and Uhlig, 2002).
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(IMPI), ec,t is the error term, c denotes the country and t the time variation. The

temporal variation t is limited to the nine time windows. All variables are based on

a monthly frequency. The price variables (CPI, PPI, IMPI) enter in cumulative per-

centage changes for the respective time windows and the unemployment gap enters as

level.

We use the fixed effects (FE) estimator as it is considered to be the adequate approach

for a situation where there are unobservable country effects and unobservable time

effects. The results are provided in Table 3, where we report the estimates of distinct

specifications of equation (23) (Reg. 1 to Reg. 6). The first regression (Reg. 1) does

not include any of the network topology measures and the estimates for the partial

effects of the remaining explanatory variables (PPI, U-Gap, IMPI) are in each case

statistically significantly different from zero at least at the one percent level and all

parameter estimates have their expected signs. For example, the estimates indicate,

that a one percentage point increase in the producer price inflation rate leads to an

increase in the CPI inflation rate of 0.14 percentage points; this partial effect turns out

higher in the case of import prices (0.24). The remaining regressions (Reg. 2 to 6)

include the network topology measures.

In a sequential extension of the basic regression model (Reg. 1) to include the network

topology measures, we find that, first, link density (Reg. 2) is statistically significant

in explaining the CPI inflation rate. This confirms the importance of cross-price de-

pendencies for the CPI inflation rate in general. At the same time, however, we find

that the network density (Reg. 3) has less statistical support for explaining the vari-

ation in the CPI inflation rate. Looking at Figure 4, this is not surprising, especially

as this topology measure exhibits a lower extent of time variation. Most importantly,

this measure captures changes in the connectedness along both the strength and diffu-

sion effects. While link density has indicated the significant role of the diffusion effect,

network density implies that both effects apply. The fact that the statistical signifi-

cance level is slightly lower than for the link density suggests that the strength effect

moderates the overall effect to some extent.

Finally, the graph energy (Reg. 4 and Reg. 5) has a high explanatory power for the

CPI inflation rate. This is the case for both measures (GEZ2 and GER). Although the

coefficient estimate of the binary graph energy measure (GEZ2) is small, this should not

obscure the importance of this variable, especially as its values are high (see Figure 4).

The fact that the graph energy measures have a statistically significant impact on the in-

flation rate highlights the role of cyclical interdependencies between the price subindices
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(see Table 1). Cyclical interdependencies imply that the effects of microeconomic price

shocks are slow to dissipate, resulting in long-lasting effects of microeconomic price

shocks on the CPI inflation rate.

When all four network topology measures are used simultaneously in the regression

model (Reg. 6), most of the measures retain their statistical properties. However, in

the case of the two graph energy measures and the link density, we observe a slight

decrease of these properties which is due to multicollinearity, as the link density and

the two graph energy measures are positively correlated with each other.

4.2. Second-order terms. We now extend the panel data regression model given by

equation (23) to include the second-order terms of equation (22). We estimate the

extended model again using the fixed effects estimator and provide the results in the

last five columns (Reg. 7 to Reg. 11) of Table 3. We restrict the interaction terms to the

producer price index and the four network topology measures, since in all other cases

the results are not statistically significant. In these five cases, however, the second-order

terms provide several interesting results and insights.

The results highlight that in all cases (Reg. 7 to 11) the unemployment gap (U-

Gap) and the import price inflation rate (IMPI) keep their high level of statistical

significance compared to the estimation results of the first-order terms, but in each

case their partial effects are noticeably lower than in the first-order terms set-up. As

regards the producer price index (PPI), both the first-order terms and the quadratic

terms are of statistical importance (consider Reg. 7) and the partial effect is given by

∂π
∂PPI = 0.32 (the mean value of the PPI was used: PPI = 0.15), which exceeds that of

the first-order terms model. We ignore the second-order terms of the unemployment

gap and the import price inflation rate since in each case the parameter estimates are

not statistically different from zero.

When the network topology measures (Reg. 8 to Reg. 11) are added, the quadratic

term of the PPI loses its high level of statistical significance in some cases. The partial

effect of the producer price index ∂π/∂PPI is now given by 0.26 for Reg. 8, 0.23 for

Reg. 9, 0.26 for Reg. 10 and 0.28 for Reg. 11, when using the mean values for the

relative change in the producer price index (PPI = 0.15), the link density (LD = 0.18),

the network density (ND = 0.01) and the graph energy measures (GEZ2 = 38.5 and

GER = 0.3). In each case, the partial effects are slightly larger than those of the model

containing only the first-order terms (Reg. 1 to Reg. 6).

Most importantly, however, we find that the terms for fςAu in equation (22), given

by ∂2π
∂PPI ⋅∂LD = 2.66, ∂2π

∂PPI ⋅∂ND = 26.43, ∂2π
∂PPI ⋅∂GEZ2

≈ 0.01 and ∂2π
∂PPI ⋅∂GER

= 0.97 from the
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panel data regression results are all positive. Moreover, these parameter values are

all statistically different from zero. This implies that the transmission mechanism of

changes in the producer prices to the CPI inflation rate are shaped by the demand-

driven cross-price dependencies. More specifically, a higher link density (LD) and/or

a higher (binary) graph energy (GEZ2) exacerbates any change in the producer prices

on the CPI inflation rate. In these two cases, the extent of shock exacerbation occurs

only due to the diffusion effect. In the case of the link density, the diffusion arises

from the increase in the number of links between prices, which raises the overall degree

of connectedness. In the case of the (binary) graph energy, diffusion results from the

occurrence of additional cycles between prices, which means that the effect of a shock is

slow to dissipate. However, as highlighted by the network density (ND) and non-binary

graph energy measure (GER), the strength effect is also important alongside to the

diffusion effect, although the statistical support is weaker for these topology measures.

This suggests that the strength effect attenuates the diffusion effect which is due to

the negative valued edges. This in turn reflects the substitutive relationships between

goods.

These results demonstrate the importance of the second-order terms of the cross-

price dependencies and their important role in shaping the propagation mechanism of

shocks to the CPI inflation rate. This is supported by the goodness-of-fit measure (R2):

while the regressors explain up to 35 percent of the variation in the CPI inflation rate

in the model containing only the first-order terms, this rises to 56 percent when the

second-order terms are added. The interaction terms contribute a major part to this

increase.

4.3. Further remarks. The results presented here are robust to various extensions

in form of additional variables being used in equation (15) to estimate the network of

cross-price dependencies, different specifications of the prior densities for the empirical

price-Jacobian matrix (Ã), additional explanatory variables in the panel data regres-

sion model in equation (23), both for the version of the first-order terms and also for

the second-order terms, and when robust standard errors are used (no change in the

significance levels). A detailed discussion of the robustness checks can be found in the

Appendix, where we also consider extensions related to an assessment of the inflation

risks based on the network topology measures within a quantile regression framework.

As a final note, we attempted to estimate equation (23) using the network topology

measures based on the supply-driven cross-price dependencies (Γ̃). However, significant

data limitations impaired the implementation. On the one hand, calibration is not
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possible for some countries because I-O tables are not available. On the other hand,

for many other countries, I-O tables are only available for a limited number of recent

years. This confines both the time span and the country coverage rendering impossible

a proper estimation of equation (23).

5. Conclusion

We assess the role of demand-driven links between prices for the CPI inflation rate.

Since the links arise from the complementary and substitutive properties of goods, they

can be either negative or positive. Based on a simple theoretical model, we highlight

the role of the structure and sign of these links in shaping the spillover effects of microe-

conomic price shocks on the CPI inflation rate, giving rise to a strength and a diffusion

effect. The former is determined by the size and sign of the cross-price dependencies,

with spillover effects increasing with the size of positive valued links, while negative

links can give rise to both mitigating and exacerbating effects. With regards to the

diffusion effect, when goods are complements, the spillover effects increase with the

number of links; moreover the presence of a link structure in the form of a cycle renders

the amplification particularly pronounced.

We test the theoretical findings empirically by estimating demand-driven cross-price

dependencies using a spatial econometric model. We use the three-digit subindices of the

CPI for 28 countries (UK and current EU member states) and find that, first, positive

valued links dominate, highlighting the relative importance of the complementarity

property between goods. Second, the spillover effects of the price subindices on the

CPI inflation rate are both negative and positive and their quantitative magnitude

outweighs the direct effects in most cases. Third, demand-driven links between prices

show remarkable differences from a supply side counterpart and tend to change over

time, reflecting changes in consumer preferences.

Finally, we examine whether the structure of the cross-price dependencies also matters

for overall inflation dynamics. We find that the cross-price dependencies themselves

have a statistically significant impact on the CPI inflation rate, but, more importantly,

they shape the impact of other variables (such as producer prices) on the CPI inflation

rate. This empirical result is consistent with that of the theoretical model and highlights

the role of the demand system in the transmission of microeconomic price shocks to the

CPI inflation rate.

The results of this study shed light on the role of consumer preferences in the demand-

driven diffusion of inflation. The complementary or substitutive nature of goods is key
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in this respect, leading to a mitigation or exacerbation of microeconomic price shocks

on the CPI inflation rate.
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Appendix A. Cross-price effects from a supply side view

This section motivates price-dependencies arising from value chains along production

networks. We follow Acemoglu et al. (2012) in this respect. Consider again a static

economy with n ∈ N goods. We now assume that the demand by consumers for these

n goods is perfectly price inelastic. Each good is produced in a distinct industry and

can be either purchased by the consumers or used as an intermediate input for the

production of other goods. Firms in each industry employ Cobb-Douglas production

technologies with constant returns to scale to transform intermediate inputs and labor

into final goods. In particular, the output of industry i is given by

(24) xi = ξilγii
n

∏
j=1
x
γij
ij
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where li is the amount of labor hired by firms in industry i, xij ∈ R+ is the quantity of

good j used for the production of good i, γi > 0 denotes the share of labor in industry i’s

production technology and ξi is an industry specific productivity shock. The exponents

γij ≥ 0 in equation (24) formalize the idea that firms in an industry may need to rely

on the goods produced by other industries as intermediate inputs for production. Note

that, in general, γij ≠ γji and γi +∑n
j=1 γij = 1. Firms in industry i choose their demand

for labor and intermediate goods to maximize profits, πi = Pixi − li − ∑n
j=1Pjxij, while

taking all prices (P1, ...,Pn) as given and the wage is normalized to one. The first-order

conditions imply that xij = γijPixi/Pj and li = γiPixi. Plugging these expressions into

firm i’s production function, equation (24), and taking logarithms implies that

(25) ∆pi =
n

∑
j=1
γij∆pj + εi

where εi = −∆log(ξi) and pi = log(Pi). Since the above relationship has to hold for all

industries i = 1, ..., n, it provides a system of equations to solve for all relative prices in

terms of productivity shocks. It can be rewritten in matrix form

(26) ∆p = Γ ⋅∆p + ε

where Γ = [γij]ni,j=1 is the economy’s input–output matrix, p = [pi]ni=1 ∈ Rn is again the

price vector and ε = [εi]ni=1 ∈ Rn is a vector of supply shocks. Since demand is price

inelastic, equilibrium prices are set by goods’ supplies only according to equation (26).

Consequently, the equilibrium CPI inflation rate is given by

(27) π =w′(I −Γ)−1ε

where the price level according to the CPI is given by log(p) =w′p and π =∆log(p) =

w′∆p. Equation (27) expresses the inflation rate in terms of industry-level shocks and

the economy’s production network. The latter captures the input-output (I-O) linkages

between various industries and they are summarized in the matrix Γ. From an empirical

point of view, the I-O matrix of an economy as constructed by the national statistical

offices and it is defined in terms of input expenditures as a fraction of sales, that is,

ηij = Pjxij/Pixi. However, in the special case that all technologies are Cobb-Douglas,

ηij coincides with the exponent γij in equation (24).

Some remarks on the matrix Γ are in order. First, note that the assumption that

γi + ∑n
j=1 γij = 1 with γi > 0 implies that for all rows i = 1, ..., n in Γ we have that

∑n
j=1 γij < 1. Following Werner (2009), this implies that the matrix Γ has a spectral

radius ϱ(Γ) that satisfies 0 < ϱ(Γ) < 1 which in turn guarantees that I −Γ is invertible

and, moreover, the economy’s Leontief inverse L̃ = (I −Γ)−1 can be decomposed in form
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of a Neumann-series: L̃ = (I−Γ)−1 = ∑∞k=0Γk. This implies that l̃ij = γij+∑n
h=1 γihγhj+[...]

where l̃ij ∈ L̃, with the first term in this expression accounting for industry j’s role as

a direct intermediate goods’ supplier to industry i, the second term accounting for j’s

role as a supplier to i’s suppliers, and so on. Interpreted in terms of the production

network representation of the economy, l̃ij accounts for all possible directed walks (of

various lengths) that connect industry j to industry i over the network. The latter in

turn shapes the transmission of price shocks originating in specific industries on the

CPI inflation rate.

A.1. From the I-O to the COICOP (CPI) classification. In what follows, we

examine the conversion of the production network Γ based on the I-O classification

into the COICOP classification on which the CPI is based upon. This serves to enable

a direct comparison of the two price networks given by A and Γ. We use the input-

output (I-O) tables to this purpose. I-O tables can be product-by-product or industry-

by-industry matrices combining both supply and use tables into a single matrix. We

use the latter for our purposes. These tables depict inter-industry relationships within

an economy, showing how output from one industry may become an input to another

industry. They quantify the inter-industry relationships by means of a matrix. Their

column entries capture inputs to an industry, while row entries represent outputs from

a given industry. This arrangement, therefore, shows the extent of dependency of one

industry on another, both as a customer of outputs from other industries and as a

supplier of inputs. Industries may also depend on their own output, that is, on a

portion of their own production; this is delineated by the entries of the main diagonal.

Each column of the I-O matrix shows the monetary value of inputs to each sector and

each row represents the value of each sector’s outputs.

We convert the I-O classification into the COICOP classification on which the CPI

is based upon by using the concordance matrices B of Cai and Vandyck (2020). This

gives rise to a production network expressed in terms of the COICOP classification

which we denote by Γ̃ and it is given by

(28) Γ̃ =B′
ΓB

Equation (28) maps the production network based on the I-O classification into a new

production network based on the COICOP classification. Moreover, the transformation

in equation (28) makes sure that both matrices (A from the demand (consumer) side

and Γ̃ from the supply (firm) side) have the same dimension (n×n). This implies that

the two price-Jacobian matrices can now be compared directly to each other.



37

Figure 5. I-O network based on the CPI classification (COICOP)

Note: The figure shows the production network given by the I-O tables based on the COICOP classification

for which the concordance matrices of Cai and Vandyck (2020) were used. The network shown is the average

over all countries (the UK and the current EU member countries). We only show the edges that are greater

than 0.01. Nodes in red indicate out-degree dominance while those in green in-degree dominance; nodes in

blue indicate equality between out- and in-degree.

A.2. Price dependencies from the supply side. We collect the I-O tables (Γ) for

the UK and the current EU member countries for the year 2015 which allows for the

highest data coverage across countries; no I-O tables are available for Bulgaria and

Luxembourg. The classification which these tables are based upon is outlined in Table

5 in the Appendix. We re-classify the tables by using the concordance matrices of

Cai and Vandyck (2020) which map the I-O tables (Γ) based on the I-O classification

(Table 5) into the COICOP classification (Table 4) by using equation (28). This yields

Γ̃. We re-classify the matrix Γ̃ in line with the assumptions of equation (24) and the

constraint that γi + ∑n
j=1 γij = 1 where we set the labor share γi equal to 0.45 for each

sector i = 1, ..., n (Acemoglu et al., 2012). This implies that the elements γ̃ij ∈ Γ̃ satisfy

0 ≤ γ̃ij < 1 ∀ i, j = 1, ..., n. We then compute the average of Γ̃ across all countries in our

sample and show the corresponding production network in Figure 5. We omit self-loops

and use size-thresholding to enable a better visual inspection. The size-thresholding

applies to the value of the edges γ̃ij and we omit all those edges which are less than

0.01 in value. This gives rise to a link density equal to 33 percent, see Table 2. Note

that the price network Γ as of the production network does not need to be estimated

as it was the case for the price network A as of the consumer demand side. This is due

to the fact that the I-O tables identify the links (edges) of the network (compare Bilgin

and Yılmaz, 2018).
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The resulting network shown in Figure 5 has some interesting characteristics. First

of all, the prices associated with the nodes (prices) 1, 3, 7, 10 and 39 act as the central

sources of shocks in the network. In each case the out-degree clearly predominates over

the in-degree (nodes in red). While the interaction among themselves is limited, they in

turn shape the dynamics of a series of other prices (nodes) which are connected to these

five central prices. This particular network structure gives rise to a disassortative net-

work (negative degree-correlation, see Table 2). Secondly, the network is characterized

by rich dynamics, since a cycle applies twice involving on the one hand prices No. 1 and

3 and prices No. 7 and 39 on the other hand. This can also be seen by the high value of

the graph energy (GE) measures as provided in Table 2. Third, the network gives rise

to three blocks and can hence be considered as a stochastic block model (Holland et al.,

1983; Karrer and Newman, 2011). The first involves the prices in the upper-left corner

of Figure 5 with prices No. 7 and 39 as the central ones; the second block is given

by the prices in the right part of the figure involving price No. 10 as the central one,

and finally, the third block is comprised by the prices in the lower-left corner involving

prices No. 1 and 3 as the central ones.

Appendix B. Econometric framework

We consider a panel model with N cross-sectional and T time observations of the

form:

(29) yt =Ayt +Xtβ + εyt,

where yt is an N by 1 vector of the dependent variable measured at time t = 1, ..., T .

Xt is an N × Q matrix of explanatory variables with corresponding slope parameter

vector β.

Network effects are governed by the unknown (N ×N) matrix A, with zero on the

main diagonal (aii = 0 for all i). In the spatial econometrics literature the term Ayt is

called a spatial lag, where endogeneity may be addressed by using instruments for the

spatial lag. We therefore use an N ×N matrix A, which comprises prior knowledge on

A, along with Dirichlet-Laplace shrinkage priors (Bhattacharya et al., 2015) to avoid

over-parameterization. Our model set-up is thus a Bayesian Markov chain Monte-Carlo

(MCMC) version reminiscent to recent work by Gefang et al. (2022) and Lam and

Souza (2020). For estimation of A, we follow Lam and Souza (2020) and construct

instruments from within the model by interacting the expert prior information A with
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the exogenous variables. The (N × P ) matrix of instruments Zt thus contains vectors

from the matrix [Xt,AXt,A
2Xt, ...].14

Defining the endogenous spatial lag yt =Ayt the equation for the spatial lag can be

written as:

(30) yt = Ztδ + εyt.

After vertically stacking the dependent variable and the respective design matrices T

times (and thus removing the time subscript), equations (30) and (29) can be written

as:

y = Zδ + εy(31)

y = y +Xβ + εy,(32)

where y = (IT ⊗ A)y and δ is a P dimensional column parameter vector. Equa-

tions (31) and (32) denote the structural form of a system of equations with a single

endogenous variable and multiple instruments Z, where [εy,i, εy,i]′ ∼ N(0,Σ). The

reduced-form errors are obtained using the transformation of the structural errors via
⎡⎢⎢⎢⎢⎢⎣

νy,i

νy,i

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0

1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

εy,i

εy,i

⎤⎥⎥⎥⎥⎥⎦
.

For Markov-chain Monte Carlo (MCMC) estimation we elicit standard conditional

conjugate priors on the unknown parameters along with a Dirichlet-Laplace shrinkage

prior (Bhattacharya et al., 2015) on the unknown off-diagonal elements in A. We follow

Rossi et al. (2006) and Kleibergen and Zivot (2003), among several others, and put an

inverted Wishart prior on the structural error variance componentΣ, p(Σ) ∼ IW(v,S),

where the (scalar) v and the (2 × 2) matrix S contain prior hyperparameters. For the

slope parameter of the two equations, normal priors are used, p(β) ∼ N(µ
β
,V β) and

p(δ) ∼ N(µ
δ
,V δ). Similar to recent work by Gefang et al. (2022), who put forward a

variational Bayes approach for estimation of the (off-diagonal) elements inA, we employ

a Dirichlet-Laplace (DL) shrinkage prior advocated by Bhattacharya et al. (2015). The

DL prior set-up comprises hierarchical global and local shrinkage parameters and is

14However, it is worth noting that in case of using no prior information (A = 0), no spatial lags of the
explanatory variables can be computed and the elements in A are shrunk towards a sparse matrix.
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structured for the elements aij for i ≠ j as follows:

p(aij) ∼ N(aij, τ 2φ2
ijψ

2
ij)(33)

τ ∼ G(N(N − 1)c,1/2)(34)

ψij ∼ Exp(1/2)(35)

φ ∼ Dir(c, ...c).(36)

where the matrix A with typical element aij represents the prior mean (or expert

information) of the network structure A. The prior of the local shrinkage parameters

ψij are exponentially distributed and uses a vector of scales to provide flexibility on

the shrinkage process. The prior on the vector φ, which collects all individual φij, is

Dirichlet distributed where the prior hyperparameter c governs the prior tightness.

B.1. Markov chain Monte-Carlo estimation. This subsection describes the Bayesian

MCMC sampler employed. After eliciting suitable prior hyperparameters, the MCMC

sampling algorithm makes inference of a set of draws from the conditional posterior dis-

tributions of the unknown parameters after discarding a first set of draws as burn-ins.

Given the conditional conjugate prior set-up we can set up a standard Gibbs sampler

by producing draws from the conditional posterior distributions.

Updating β. Sampling the slope parameters in a Gibbs sampler is straightforward since

conditional on all other parameters the errors εy can be treated as observable, too:

(37)

yi = yi +x′iβ + εy,i∣εy,i

= yi +x′iβ +
Σ12

Σ11

εy,i + νy∣y.

Using the laws of conditional distributions, note that var(νy∣y) = Σ22 − Σ12Σ−111Σ21, the

equation can be simply transformed to a standard Bayesian regression problem with

a standard normal error. This results in a Gaussian conditional posterior such that a

standard Gibbs sampling step can be employed.

Updating δ. We can sample from the conditional posterior for δ, by using the reduced

form representation of the model:

yi = z′iδ + εy,i(38)

yi −x′iβ = z′iδ + (εy,i + εy,i)(39)

Note that var
⎛
⎜
⎝

εy,i

εy,i + εy,i

⎞
⎟
⎠
=
⎡⎢⎢⎢⎢⎢⎣

1 0

1 1

⎤⎥⎥⎥⎥⎥⎦
Σ

⎡⎢⎢⎢⎢⎢⎣

1 1

0 1

⎤⎥⎥⎥⎥⎥⎦
= L′L, where the upper triangular 2 by 2

matrix L can be computed using Cholesky factorization. The equation above can be
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transformed to a regression model with standard normal errors by pre-multiplication

with (L−1)′. The resulting representation can be written as:

(40) (L−1)′
⎡⎢⎢⎢⎢⎢⎣

yi

yi −x′iβ

⎤⎥⎥⎥⎥⎥⎦
= (L−1)′

⎡⎢⎢⎢⎢⎢⎣

z′i

z′i

⎤⎥⎥⎥⎥⎥⎦
δ +N(0,I2)

Equation (40) can be used to set up a standard Gaussian sampling step for δ with a

doubled number of observations.

Updating Σ. The conditional posterior distribution of Σ is well-known and has an

inverted Wishart form:

p(Σ∣●,D) ∼ IW(NT + v,S +S)(41)

S =
⎡⎢⎢⎢⎢⎢⎣

ε′y

ε′y

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

ε′y

ε′y

⎤⎥⎥⎥⎥⎥⎦

′

Updating the shrinkage parameters and the prior variance for A. The hierarchical

global-local shrinkage parameters and thus the prior variance for A as defined in equa-

tion (44) are updated according to Bhattacharya et al. (2015). The respective parame-

ters can be updated by sampling from their conditional posterior distribution using the

generalized inverse Gaussian (GIG) distribution:

(42) p(ψ̃ij ∣φ,A) ∼ GIG (−1/2,1, µ−2φij
) ,

where µφij
= φijτ/∣aij ∣ and after drawing from the conditional posterior we set ψij =

1/ψ̃ij. The global shrinkage parameter τ is also sampled from a GIG using

(43) p(τ ∣φij,A) ∼ GIG(1 −N(N − 1),2∑
i≠j
∑
j≠i
(∣aij − aij ∣)/φij,1) .

In a last step, φ is updated using N(N − 1) auxiliary variables w̃ij, with w̃ij ∼ GIG(c−

1,2(∣aij − aij ∣),1). After independently sampling all w̃ij, we set φij equal to w̃ij/∑ w̃ij.

Subsequently, the (diagonal) prior variance covariance matrix for sampling the elements

in A can be updated according to equation (33).

Updating the elements in A. Let E denote an (N × T ) matrix which comprises the

reorganized (NT ×1) errors y −Xβ by T and N , and Y is the respective N ×T matrix

of dependent variables. For the lth cross-section (i.e. the lth row vector of E, el),

(44) e′l = Y ′−la−l + νy∣y

where e′l is T × 1, Y ′−l is T × (N − 1) and a−l is (N − 1) × 1. As before, the T × 1 vector

νy∣y has mean zero and diagonal variance Σ22. Using equation (44), the elements of A
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can be updated row-wise equation by equation via a Gaussian distribution with prior

variances updated from using the shrinkage parameters.

In practice, however, it is not a priori clear whether ignoring the endogeneity will lead

to a bias in the results. In the context of the literature on global vector autoregressions

(GVAR) (Pesaran et al., 2004), for example, the spatial lag is often assumed to be

weakly exogenous, which is due to the “smallness condition”, which in turn ensures

that all spatial units receive small enough weight to not exert a dominant unit structure

(Pesaran et al., 2004; Pesaran, 2021). A detailed discussion is provided by Elhorst et

al. (2021).

Appendix C. Robustness and extensions

We consider various robustness checks which concern both the estimation of the

demand-driven cross-price dependencies, additional network topology measures to cap-

ture the spillover effects that emanate from the network structure and finally the role

of the skewness of the CPI inflation rate (and several explanatory variables) for the

results. In what follows we address each aspect.

C.1. Alternative prior densities. We consider an alternative specification of the

prior densities in the form of variations in the parameterization. In what follows, we

elaborate on this in more detail. We do so since the choice of the prior density can have

an impact on the (posterior) estimates obtained from a spatial econometric model.

The main results are based on a shrinkage prior. In general, as highlighted by Pal

et al. (2016), shrinkage priors can be a useful tool for incorporating prior information

and reducing estimation uncertainty in spatial econometric models. The main idea

behind a shrinkage prior is to “shrink” or pull the estimates of the parameters towards

a certain known value or distribution. This can help to reduce estimation uncertainty

and improve the stability of the model. We considered the estimates provided in Regmi

and Seale (2010) for the baseline results. They provide estimates for the cross-price

dependencies for low-, middle-, and high-income countries. We relied on the low- and

high-income country results for our baseline results. Here we consider two extensions.

The first concerns a decomposition of the countries of our sample into three groups (low-

, middle-, and high income countries), while the second considers a shrinkage towards

zero in each case.

We decompose the 28 countries in our sample into three income groups (low, middle

and high) based on the level of PPP-adjusted GDP per capita of the year 2021 and
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we allocate an equal number of countries to each group. This implies that the low-

income countries are: Bulgaria, Greece, Croatia, Romania, Latvia, Slovakia, Portugal,

Hungary, Poland, Estonia; the middle-income countries are: Lithuania, Spain, Czech

Republic, Cyprus, Slovenia, Italy, United Kingdom, France, Malta; and finally, the

high income countries are given by: Finland, Belgium, Germany, Sweden, Austria, the

Netherlands, Denmark, Ireland, Luxembourg. Each group is assigned the corresponding

parameter estimates as of Table 4 in Regmi and Seale (2010) and the spatial econometric

model is then re-estimated for each country. With a view to the results provided in

Table 3 we find that there are no qualitative changes. Moreover, also the network

statistics provided in Table 2 change only slightly. We interpret the results of this

robustness check as a confirmation of our baseline results.

The second robustness check in this context concerns a shrinkage of the values in

the matrix A towards zero. We apply this calibration of the shrinkage prior to each

country in our sample and again re-estimate the spatial econometric model and in

turn all network topology measures for each country. We again find that there are

no qualitative changes to the results provided in Table 3 of the panel data regression

models, most importantly, also the significance pattern of the estimated parameters

remains unchanged. We find though changes to the network statistics relative to those

of the baseline results provided in Table 2. In particular, with the shrinkage prior that

pushes the parameter estimates towards zero, the link density now has a lower value

(0.18) and so too the (binary) graph energy (8.31), while the network density declines

only slightly. Despite these changes to the network statistics, we consider these results

again in favor of the stability and plausibility of the baseline results.

C.2. Additional explanatory variables. The estimation of the cross-price depen-

dencies (A) in equation (15) uses a series of exogenous variables (Xt) to control for

exogenous influences, in particular, supply side factors. In what follows we check for

the stability of the estimates of the adjacency matrix Ã that emerges from the ma-

trix A by the statistical thresholding as defined in equation (16). To this purpose, we

extend the list of exogenous variables in Xt and re-estimate A, Ã and the network

topology measures for each country, to then re-run the panel data regression models

as of equation (23). We consider labor market specific variables (employment growth

rate, the unemployment rate), real activity measures (growth rate of retail trade and

the industrial production index), financial market variables (growth rate of the stock

market index, realized stock market volatility (based on a GARCH(1,1) model), yield

curve on government bonds), further commodity and energy prices (corn, wheat, iron,
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wood, electricity). We add each of these variables into the baseline model one by one

and re-estimate the parameters of the model each time. In doing so, we determine the

network topology measures each time and estimate the panel data regression model of

equation (23) each time as a final step. We find that the results put forth in Table 3

hold qualitatively and conclude that our results are robust to extensions in the vector

of the exogenous variables (Xt).

In a second extension in this context, we employ our baseline results for the estimated

price-Jacobian matrix A and the corresponding adjacency matrix Ã and consider ad-

ditional exogenous variables in the panel data regression model of equation (23) only.

We consider the nominal effective exchange rate, unit labor costs, GDP, the money

supply (M1), and labor market conditions such as the labor force participation rate

and the number of job vacancies. Each of these variables is used in annual growth rates

(except the labor force participation rate) and implement a temporal disaggregation to

a monthly frequency, if necessary, using the method of Chow-Lin. We examined these

variables solely in the first-order set-up in equation (23) to assess the differences of the

parameter estimates of the network topology measures relative to those of the baseline

results. We find that there are no qualitative changes to the results provided in Table 3

of the panel data regression models, most importantly, also the significance pattern of

the estimated parameters remains unchanged. It has to be noted, though, at this point

that the comparison is impaired to some extent by the fact that the country coverage

is limited in some cases since not all countries provide (long) time series on vacancies,

unit labor costs and alike.

C.3. Additional network topology measures. We challenge the baseline results

with various additional network topology measures. This is important in our context

since we utilize network topology measures to proxy for the spillover effects that emerge

from the extent of network connectedness. To this purpose we consider the following

additional measures: (i) transitivity, (ii) rich-club metric, and (iii) assortativity.

With a view to the network structure as provided in Figure 2, Xu et al. (2010) stress

the importance of high-degree nodes for the structure of a complex system. This is

commonly referred to as transitivity (“rich-club” phenomenon) and has been discussed

in several instances in both social and computer sciences and refers to the tendency of

high-degree nodes–the hubs of the network–to be very well connected to each other. For

example, the clustering coefficient (Watts and Strogatz, 1998) is used to measure the

transitivity property of a network. If a social network has a high clustering coefficient, it

means that the “friends” of someone are also likely to be “friends” themselves (Newman
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Figure 6. Inflation series: distribution over time and across countries

Note: The figures shows the year-over-year change in percent of the CPI index of the UK and the current EU

member countries. The histogram in the right panel displays the distribution across countries and over time.

and Park, 2003). It is calculated by the ratio between the observed number of closed

triplets and the maximum possible number of closed triplets in the graph. However,

the clustering coefficient ignores the extent of interaction among high-degree nodes. To

this purpose, Opsahl et al. (2008) extended the rich-club metric (Colizza et al., 2006) to

take the tightness among connected nodes into account. Finally, the (dis-) assortativity

is yet another measure in this context (Newman, 2003). It captures the preference for

a network’s nodes to attach to others that are (dis-) similar in some way.

We use each of these alternative network topology measures at a time instead of the

ones in Table 3. We find that all of these three measures have a statistically significant

first-order effect on the CPI inflation rate. The level of statistical significance is par-

ticularly high in case of the rich-club metric (<0.005). This highlights the role of the

high-degree nodes in shaping the network structure, the overall network connectedness

and hence the size (and sign) of the spillover effects of microeconomic price shocks on

the CPI inflation rate.

C.4. Inflation risks. The choice of a mean framework in the regression analysis is

not always appropriate for two reasons. First, when the distribution of a variable

is highly skewed, and second when sever outliers are observed in the analysis. In

contrast, quantile regression, in special case median regression, remains informative in

such situations (Jalali and Babanezhad, 2011). Figure 6 provides some visual evidence

of inflation skewness. In this context Brož and Kočenda (2018) stress the inflation

convergence in the European Union and highlight that it became more widespread after

the global financial crisis. As can be seen in Figure 6, the distribution of the inflation

rates of the countries in our sample gives rise to a strongly left-skewed distribution (see
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Figure 7. Quantile regression for first-order Taylor approximation
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Note: The sub-panels show the parameter estimates of equation (23) based on a (Bayesian) quantile regression

set-up. Each of the four network topology measures was used individually in the regression equation to avoid

problems related to multicollinearity. The four panels show the parameter estimates of the network topology

measures from the respective regression across the percentiles.

also Pfarrhofer, 2022). A similar extent of skewness applies to several of the control

variables, as for instance the producer price inflation rate. Against this background,

we now examine the effects of the price-network effects within a quantile regression

framework. To this purpose we estimate equation (23) based on a quantile regression

set-up and show the estimates across a range of the percentiles of the distribution of

the explanatory variables. We limit the analysis to the first-order effects.

Each of the four network topology measures was used individually in the regression

equation to avoid problems related to multicollinearity. The four panels in Figure 7

show the parameter estimates of the network topology measures from the respective

regression. The figure shows the parameter estimates for the partial effect of the four

network topology measures (link density, network density and the two graph energy

measures) across their percentiles. The estimates of the link density highlight that

the partial effect increase noticeably when the extent of links is particularly large. The

same applies for the number of cycles which is expressed by the graph energy measures–a

larger number of cycles gives rise to large spillover effects as the effect of microeconomic

price shocks are only slow to dissipate. As a consequence, the overall effect of the graph

energy measures on the CPI inflation rate are higher the larger the values of the graph

energy measures are. In all cases, however, the statistical support is limited. This is

due to the small amount of data points at the tails of the distributions.
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Appendix D. Additional figures and tables

Table 4. The three-digit subindices of the CPI (COICOP classification)

ID Description

1 cp 011 Food
2 cp 012 Non-Alcoholic Beverages
3 cp 021 Alcoholic Beverages
4 cp 022 Tobacco
5 cp 031 Clothing
6 cp 032 Footwear
7 cp 041 Actual Rentals for Housing
8 cp 043 Maintenance and Repair of the Dwelling
9 cp 044 Water Supply and Miscellaneous Services Relating to the Dwelling
10 cp 045 Electricity, Gas and Other Fuels
11 cp 051 Furniture and Furnishings, Carpets and Other Floor Coverings
12 cp 052 Household Textiles
13 cp 053 Household Appliances
14 cp 054 Glassware, Tableware and Household Utensils
15 cp 055 Tools and Equipment for House and Garden
16 cp 056 Goods and Services for Routine Household Maintenance
17 cp 061 Medical Products, Appliances and Equipment
18 cp 062 Out-Patient Services
19 cp 063 Hospital Services
20 cp 071 Purchase of Vehicles
21 cp 072 Operation of Personal Transport Equipment
22 cp 073 Transport Services
23 cp 081 Postal Services
24 cp 082 Telephone and Telefax Equipment
25 cp 083 Telephone and Telefax Services
26 cp 091 Audio-Visual, Photographic and Information Processing Equipment
27 cp 092 Other Major Durables for Recreation and Culture
28 cp 093 Other Recreational Items and Equipment, Gardens and Pets
29 cp 094 Recreational and Cultural Services
30 cp 095 Newspapers, Books and Stationery
31 cp 096 Package Holidays
32 cp 111 Catering Services
33 cp 112 Accommodation Services
34 cp 121 Personal Care
35 cp 123 Personal Effects N.E.C.
36 cp 124 Social Protection
37 cp 125 Insurance
38 cp 126 Financial Services N.E.C.
39 cp 127 Other Services N.E.C.
Not used:
– cp 101 Pre-Primary and Primary Education
– cp 102 Secondary Education
– cp 103 Post-Secondary Non-Tertiary Education
– cp 104 Tertiary Education
– cp 105 Education Not Definable by Level
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Table 5. The I-O tables: Classification

ID Description

1 CPA A01 Products of agriculture, hunting and related services
2 CPA A02 Products of forestry, logging and related services
3 CPA A03 Fish and other fishing products; aquaculture products; support services

to fishing
4 CPA B Mining and quarrying
5 CPA C10-12 Food, beverages and tobacco products
6 CPA C13-15 Textiles, wearing apparel, leather and related products
7 CPA C16 Wood and of products of wood and cork, except furniture; articles of

straw and plaiting materials
8 CPA C17 Paper and paper products
9 CPA C18 Printing and recording services
10 CPA C19 Coke and refined petroleum products
11 CPA C20 Chemicals and chemical products
12 CPA C21 Basic pharmaceutical products and pharmaceutical preparations
13 CPA C22 Rubber and plastic products
14 CPA C23 Other non-metallic mineral products
15 CPA C24 Basic metals
16 CPA C25 Fabricated metal products, except machinery and equipment
17 CPA C26 Computer, electronic and optical products
18 CPA C27 Electrical equipment
19 CPA C28 Machinery and equipment n.e.c.
20 CPA C29 Motor vehicles, trailers and semi-trailers
21 CPA C30 Other transport equipment
22 CPA C31 32 Furniture and other manufactured goods
23 CPA C33 Repair and installation services of machinery and equipment
24 CPA D Electricity, gas, steam and air conditioning
25 CPA E36 Natural water; water treatment and supply services
26 CPA E37-39 Sewerage services; sewage sludge; waste collection, treatment and dis-

posal services; materials recovery services; remediation services and oth-
ers

27 CPA F Constructions and construction works
28 CPA G45 Wholesale and retail trade and repair services of motor vehicles and

motorcycles
29 CPA G46 Wholesale trade services, except of motor vehicles and motorcycles
30 CPA G47 Retail trade services, except of motor vehicles and motorcycles
31 CPA H49 Land transport services and transport services via pipelines
32 CPA H50 Water transport services
33 CPA H51 Air transport services
34 CPA H52 Warehousing and support services for transportation
35 CPA H53 Postal and courier services
36 CPA I Accommodation and food services
37 CPA J58 Publishing services
38 CPA J59 60 Motion picture, video and television programme production services,

sound recording and music publishing; programming and broadcasting
services

39 CPA J61 Telecommunications services
40 CPA J62 63 Computer programming, consultancy and related services;Information

services
41 CPA K64 Financial services, except insurance and pension funding
42 CPA K65 Insurance, reinsurance and pension funding services, except compulsory

social security
43 CPA K66 Services auxiliary to financial services and insurance services
44 CPA L68 Real estate services
45 CPA M69 70 Legal and accounting services; services of head offices; management con-

sultancy services
46 CPA M71 Architectural and engineering services; technical testing and analysis

services
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Table 5. The I-O tables: Classification

ID Description

47 CPA M72 Scientific research and development services
48 CPA M73 Advertising and market research services
49 CPA M74 75 Other professional, scientific and technical services and veterinary ser-

vices
50 CPA N77 Rental and leasing services
51 CPA N78 Employment services
52 CPA N79 Travel agency, tour operator and other reservation services and related

services
53 CPA N80-82 Security and investigation services; services to buildings and landscape;

office administrative, office support and other business support services
54 CPA O Public administration and defence services; compulsory social security

services
55 CPA P Education services
56 CPA Q86 Human health services
57 CPA Q87 88 Residential care services; social work services without accommodation
58 CPA R90-92 Creative, arts, entertainment, library, archive, museum, other cultural

services; gambling and betting services
59 CPA R93 Sporting services and amusement and recreation services
60 CPA S94 Services furnished by membership organisations
61 CPA S95 Repair services of computers and personal and household goods
62 CPA S96 Other personal services
63 CPA T Services of households as employers; undifferentiated goods and services

produced by households for own use


