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ERGODIC MEAN-FIELD GAMES OF SINGULAR CONTROL WITH

REGIME-SWITCHING (EXTENDED VERSION)

JODI DIANETTI, GIORGIO FERRARI, AND IOANNIS TZOUANAS

ABSTRACT. This paper studies a class of stationary mean-field games of singular stochastic control

with regime-switching. The representative agent adjusts the dynamics of a Markov-modulated Itô-

diffusion via a two-sided singular stochastic control and faces a long-time-average expected profit cri-

terion. The mean-field interaction is of scalar type and it is given through the stationary distribution of

the population. Via a constructive approach, we prove the existence and uniqueness of the stationary

mean-field equilibrium. Furthermore, we show that this realizes a symmetric εN -Nash equilibrium for a

suitable ergodic N -player game with singular controls. The proof hinges on the characterization of the

optimal solution to the representative player’s ergodic singular stochastic control problem with regime

switching, which is of independent interest and appears here for the first time.

Keywords: stationary mean-field games; singular control; regime-switching; ergodic criterion; ε-
Nash equilibrium.

MSC subject classification: 49L20, 91A15, 91A16, 60G40, 35R35, 93C30.

1. INTRODUCTION

Mean-field games (MFGs in short) have been introduced independently in 2006 by Larsy-Lions

[38] and Caines et al. [13] as limit models for symmetricN -player differential games, where the inter-

action is through the empirical distribution of the states (and possibly of the actions) of the players. In

MFGs, a representative agent determines her best reply to a given flow of probability measures – e.g.,

representing the distribution of the states of the indistinguishable rivals – so that the counterpart to the

Nash equilibrium concept arising in N -player games takes now the form of a consistency condition:

The law of the optimally controlled state of the representative agent must agree with the given flow of

probability measures. Since their introduction, because of their tractability, their relation to the theory

of propagation of chaos and of forward-backward systems, and their ability to reproduce εN -Nash

equilibria for suitably related symmetric N -player games, MFGs have attracted large attention in the

mathematical and applied literature. We refer to the two-volume book by Carmona and Delarue [19]

for a comprehensive presentation of results, approaches, and techniques, as well as to the paper by

Carmona [18] for a review of applications of MFGs in Economics, Finance, and Engineering.

In stationary MFGs, the representative player interacts with the long-run distribution of the popu-

lation. Such a concept has a long tradition in economic theory: Stationary equilibria appeared already

in the 1980s in the context of games with a continuum of players (see [31] and [33]), and also play an

important role in the analysis of competitive market models with heterogeneous agents (see, e.g., [1]

and [41], amongst many others). Closely connected is also the concept of stationary oblivious equi-

libria, introduced by Adlakha et al. in [2]. Within the mathematical literature, stationary MFGs have

been approached both via analytic and probabilistic methods. Among those papers adopting a partial

differential equations (PDE) approach, we refer to the works of Bardi and Feleqi [7] for the study of

the forward-backward system arising in stationary MFGs with regular controls, Gomes et al. [29] for

extended stationary MFGs, Cardaliaguet and Porretta [17] for the study of the long-term behavior of

the master equation arising in MFG theory, and to Bertucci [10] for the study of stationary mean-field
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optimal stopping games. On the other hand, a probabilistic approach is followed in a series of recent

contributions dealing with stationary MFGs with singular and impulsive controls, see Aı̈d et al. [3],

Cao and Guo [16], Cao et al. [15], and Christensen et al. [20].

1.1. Our results. In this paper, we study a class of stationary MFGs where the underlying state

process is a general singularly controlled one-dimensional diffusion whose coefficients are modulated

by a continuous-time Markov chain with d ≥ 2 states. More precisely, the representative agent

optimally controls a Markov-modulated real-valued Itô-diffusion through a two-sided singular control

in order to maximize an ergodic reward functional. This is given by the long-time-average of the time-

integral of a running profit function, net of the proportional costs of actions. The mean-field interaction

is of scalar type and comes through a real-valued parameter denoted by θ, which, at equilibrium, has to

identify with a suitable generalized moment of the stationary distribution of the optimally controlled

state process. From the economic point of view, θ can be thought of as a stationary price index arising

from the aggregate productivity through an isoelastic demand function à la Spence-Dixit-Stiglitz (see

pp. 7-8 in [1]), or of as a stationary demand due to aggregate advertising (see pp. 595-596 in [39]).

Under suitable assumptions on the problem’s data, by employing mainly probabilistic means, we

prove the existence and uniqueness of a stationary MFG equilibrium for the considered game. Fur-

thermore, we show that this realizes an ε-Nash equilibrium for a related symmetric ergodic N -player

game with singular controls.

Our first contribution consists in studying the representative player’s optimal control problem and

thus in providing, for the first time in the literature, the complete solution to a two-sided ergodic

singular stochastic control problem with regime-switching (cf. Proposition 3.5 below). This is ac-

complished through the study of an auxiliary optimal stopping game, which is then tackled through

probabilistic arguments similarly to Ferrari and Rodosthenous in [25] (where, however, the consid-

ered Dynkin game was related to a discounted singular stochastic control problem). Through a novel

verification argument (see Propositions 3.4 and 3.5 below), we show that, for a given and fixed mean-

field parameter θ, the optimal control is of barrier-type. That is, the optimal control uniquely solves a

Skorokhod reflection problem (see e.g. Burdzy et al. [12]) at endogenously determined barriers (free

boundaries), which depend on the underlying Markov chain and on the given and fixed mean-field pa-

rameter θ. As a byproduct, we also show that the optimal upwards and downwards reflection policies

satisfy a couple of functional equations resembling those in Theorem 2 of [35].

The next step deals with the construction of the MFG equilibrium and with the proof of its unique-

ness. To that end, we first show that the joint process constituted by the optimally controlled Markov-

modulated diffusion process and the Markov chain admits a stationary distribution (cf. Proposition 4.2

below). As a matter of fact, we prove that its cumulative distribution function is the unique classical

solution to a weakly-coupled system of ordinary differential equations (cf. (4.10) below). This is in

line with the result in the Brownian setting obtained by D’Auria and Kella in Theorem 1 of [23].

Clearly, the stationary distribution and its cumulative distribution depend on the fixed mean-field pa-

rameter θ, since the optimally controlled state does. In order to proceed with the equilibrium analysis,

we thus study the stability of the stationary distribution with respect to θ and actually prove its con-

tinuity with respect to such a parameter (cf. Theorem 4.1). Further exploiting the connection to the

aforementioned Dynkin game of optimal stopping, we are then able to determine an invariant com-

pact set where any equilibrium value of θ (if one exists) should lie. Combining those continuity and

compactness results, an application of the Schauder-Tychonof fixed point theorem allows us to prove

that there exists a unique stationary equilibrium (cf. Theorem 4.1).

The analysis of the considered stationary MFG is finally justified by the fact that its unique sta-

tionary mean-field equilibrium is able to realize an εN -Nash equilibrium for an N -player symmetric

game with singular controls in which each player faces an ergodic net profit functional. It is worth

noticing that in the N -player game the interaction comes through a suitable time-dependent average



ERGODIC MFGS OF SINGULAR CONTROL WITH REGIME-SWITCHING 3

of the players’ states (see Eqs. (5.1) and (5.2) below), and it is therefore given in terms of the empirical

distribution of players’ states at the current time.

1.2. Related literature. Ergodic singular stochastic control problems for one-dimensional diffusions

have been treated in general settings, including state-dependent costs of actions, and with different

applications, in [5], [40], [42] and [32], [37], among others. However, in all those papers, no regime

switching is included.

Our paper is placed within the recent bunch of literature dealing with MFGs with singular controls

by following a probabilistic approach; see Aı̈d et al. [3], Cao and Guo [16], Cao et al. [15], Campi

et al. [14], Dianetti et al. [22], Fu [26], Fu and Horst [27], and Guo and Xu [30]. Amongst those,

the works that most relate to ours are those by Aı̈d et al. [3] and by Cao et al. [15]. Cao et al. con-

sider in [15] ergodic MFGs involving a one-dimensional singularly controlled Itô-diffusion. However,

differently to us, the control in [15] can be exerted only upwards and no regime-switching process is

considered therein. In our work, similarly to [3], we consider a stationary MFG involving a singularly

controlled one-dimensional diffusion whose coefficients are modulated by a continuous-time Markov

chain. However, differently to [3], here the control is two-sided, rather than only increasing, the per-

formance criterion is of ergodic type, rather than of discounted type, the dynamics of the underlying

state process are general, rather than geometric, and the Markov chain has d ≥ 2 states, rather than

only two regimes.

We also clearly relate to those works dealing with MFGs involving regime-switching regular con-

trol models. Wang and Zhang [50] consider social optima of mean-field linear-quadratic-Gaussian

control models with Markov jump parameters, while distributed games for large-population multi-

agent systems with random time-varying parameters are investigated in [49]. Bensoussan et al. [9]

focus on MFGs of risk-sensitive type with jump-diffusions and regime-switching. Furthermore, due

to the application in networks with switching mechanism, mean-field control problems with regime-

switching became recently of particular interest: see, among others, Bayraktar et al. [8], Zhang et al.

[52] and Nguyen et al. [43].

1.3. Organization of the paper. The rest of the paper is organized as follows. In Section 2, we

introduce the probabilistic setting and the MFG under study. Next, in Section 3, for a given and fixed

mean-field parameter, we solve the ergodic stochastic control problem faced by the representative

player. In Section 4 we then prove the existence and uniqueness of the mean-field equilibrium, while

in Section 5 we provide the approximation result for a related N -player symmetric game. Finally,

technical proofs are collected in the Appendices A and B.

2. PROBLEM FORMULATION

2.1. Probabilistic Setting. Let (Ω,F ,P) be a probability space which satisfies the usual conditions,

on which it is defined a one-dimensional Brownian motion {Wt}t≥0 and an independent irreducible

continuous-time Markov chain {Yt}t≥0. Denote by F := {FW,Y
t }t≥0 the filtration which is generated

by W and Y , as usual augmented by P-null sets of F . The Markov chain Y has state space Y :=
{1, ..., d} and transition matrix Q := {qij}1≤i,j≤d. The transition rates are such that κi := −qii > 0
and the condition

∑
j∈Y qij = 0 holds for every i ∈ Y. Accordingly, the transition probabilities of Y

are defined as

P(Yt+∆t = j|Yt = i) :=

{
qij∆t+ o(∆t), j 6= i,

1 + qii∆t+ o(∆t), j = i.

For future frequent use, we denote by p(i) := κi∑d
j=1 κj

the i-th component of the stationary distribution

of Y . Let

(2.1) A := { {ξt}t≥0, F-adapted, with bounded-variation, left-continuous, ξ0 = 0, a.s. }
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and notice that any ξ ∈ A admits the Jordan decomposition ξ = ξ+−ξ−, for ξ± nondecreasing. Also,

let {|ξ|t}t≥0 := ξ+ + ξ− denote the variation of ξ ∈ A. Then, for given ξ ∈ A and Borel-measurable

functions b : R × Y → R, σ : R × Y → (0,∞), we introduce the process Xξ with state space

I := (x, x) ⊆ R and dynamics

(2.2) dXξ
t = b(Xξ

t , Yt)dt+ σ(Xξ
t , Yt)dWt + dξ+t − dξ−t , (Xξ

0 , Y0) = (x, i) ∈ I × Y.

The following assumption in particular ensures that there exists a unique strong solution to (2.2),

for every ξ ∈ A and (x, i) ∈ I × Y (see Theorem 7 Chapter V in [46]). In the following, we shall

denote such a strong solution by (Xx,ξ, Y i), when needed.

Assumption 2.1. The following hold:

(1) The functions b(·, i) and σ(·, i) are twice continuously differentiable, for every i ∈ Y.

(2) There exists C > 0,such that

|b(x, i)|+ |σ(x, i)| ≤ C(1 + |x|), for any (x, i) ∈ I × Y.

(3) There exists c > 0, such that

bx(x, i) ≤ −c, for any (x, i) ∈ I × Y.

(4) For any (x, i) ∈ I × Y,

σ(x, i) > 0.

Denoting by (X0, Y ) the unique strong solution to (2.2) with ξ ≡ 0, Conditions (1) and (2) in

Assumption 2.1 imply that (X0, Y ) is regular, meaning that there exists a sequence of stopping times

{βn}n≥0, with βn := inf{t ≥ 0 : |X0
t | = n}, such that β∞ := limn→∞ βn = ∞, P-a.s.; for further

details see Section 2.3 in [51]. For our subsequent analysis, we introduce the F-adapted process

{X̂t}t≥0, which evolves as

(2.3) dX̂t = (b(X̂t, Yt) + σσx(X̂t, Yt))dt+ σ(X̂t, Yt)dŴt, (X̂0, Y0) = (x, i) ∈ I × Y,

for an F-adapted Brownian motion Ŵ . Notice that Equation (2.3) also admits a unique strong solution

(X̂x, Y i) which is regular, due to Assumption 2.1.

For f : R × Y → R such that f(·, i) ∈ C2(R), for any i ∈ Y, the infinitesimal generator of the

uncontrolled process (X0, Y ) is denoted by L(X,Y ) and it is such that

(2.4)
(
L(X,Y )f

)
(x, i) =

1

2
σ2(x, i)fxx(x, i) + b(x, i)fx(x, i) +

∑

j 6=i

qij(f(x, j)− f(x, i)),

while the infinitesimal generator L
(X̂,Y )

for the process (X̂, Y ) is such that

(2.5)
(
L
(X̂,Y )

f
)
(x, i) =

1

2
σ2(x, i)fxx(x, i) + (b(x, i) + σσx(x, i))fx(x, i) +

∑

j 6=i

qij(f(x, j)− f(x, i)).

In the rest of the paper, we adopt the following notation: P(x,i)[ · ] := P[ · |Xξ
0 = x, Y0 = i]

and E(x,i)[ · ] := EP[ · |Xξ
0 = x, Y0 = i] for the hybrid-diffusion process (Xξ, Y ), and P̂(x,i)[ · ] :=

P̂[ · |X̂0 = x, Y0 = i] and Ê(x,i)[ · ] := EP̂[ · |X̂0 = x, Y0 = i] for (X̂, Y ). We also set Pi[ · ] :=
P[ · |Y0 = i] and denote by Ei the corresponding expectation.

2.2. The Ergodic Mean-Field Game. Within the previous probabilistic setting, we now introduce

the ergodic mean-field game (ergodic MFG for short) which will be the main object of our study. For

(x, i) ∈ I × Y =: O, ξ ∈ A and θ ∈ R+, we introduce the ergodic profit functional

(2.6) J(x, i; ξ, θ) := lim sup
T↑∞

1

T
E(x,i)

[ ∫ T

0
π(Xξ

t , θ)dt− k1ξ
+
T + k2ξ

−
T

]
,
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where 0 < k2 < k1. In (2.6), π is the instantaneous profit function satisfying Assumption 2.2 below,

and θ is (for the moment) a fixed nonnegative number. We will see later, that θ drives the mean-field

interaction (cf. Definition 2.1 below).

The instantaneous profit function π fulfills the following conditions.

Assumption 2.2. The function π : R× R+ 7→ R+ is such that:

(1) π(·, θ) ∈ C2(I), for any θ ∈ R+;

(2) π(·, θ) is non-decreasing and concave, for any θ ∈ R+;

(3) πxθ is continuous and it is such that πxθ(x, θ) < 0, for any (x, θ) ∈ I × R+;

(4) for every (x, i, θ) ∈ O × R+,

lim
x↓x

Ê(x,i)

[ ∫ ∞

0
e
∫ t

0 bx(X̂s,Ys)dsπx(X̂t, θ)dt

]
= ∞,

and,

lim
x↑x

Ê(x,i)

[ ∫ ∞

0
e
∫ t

0 bx(X̂s,Ys)dsπx(X̂t, θ)dt

]
= 0;

(5) for every (x, i, θ) ∈ O × R+,

Ê(x,i)

[ ∫ ∞

0
e−ct|πx(X̂t, θ)|dt

]
<∞,

and, for some ǫ0 := ǫ0(x) ∈ (0, 1),

Ê

[ ∫ ∞

0
e−ct sup

x′∈(x,x+ǫ0)

(
|πxx(X̂

x′

t , θ)|∂xX̂
x
s

∣∣
x=x′

)
dt

]
+

+ Ê

[ ∫ ∞

0
e−ct|πx(X̂

x
t , θ)| sup

x′∈(x,x+ǫ0)

(∫ t

0
|bxx(X̂

x′

s , Y
i
s )|∂xX̂

x
s

∣∣
x=x′ds

)
dt

]
<∞,

where ∂xX̂
x
t := exp

( ∫ t

0

(
bx + ∂x(σσx)−

1
2σ

2
x

)
(X̂x

s , Ys)ds+
∫ t

0 σx(X̂
x
s , Ys)dŴs

)
and c >

0 is the same constant as in Assumption 2.1-(3),

(6) for every (x, i) ∈ O, and for some ǫ0 := ǫ0(x) ∈ (0, 1), it holds that

(2.7) Ê

[ ∫ ∞

0
e−ct sup

x′∈(x,x+ǫ0)

(
|bxx(X̂

x′

t , Y
i
t )
∣∣∂xX̂x

t

∣∣
x=x′

)
dt

]
<∞.

We are now ready to introduce the notion of stationary mean-field equilibrium. To that end, we

provide the following assumption for the functions F and f that will appear in Definition 2.1 below.

Furthermore, we restrict to those ξ ∈ A belonging to

(2.8) Ae :=

{
ξ ∈ A : E

[
|ξ|T

]
<∞ for any T <∞, lim sup

T↑∞

1

T
E
[
|Xξ

T |
]
= 0

}
.

Assumption 2.3. F : R+ → R+, f : I → R+ are such that:

(1) F and f are strictly increasing continuously differentiable functions;

(2) for β ∈ (0, 1), there exists C > 0 such that:

(a) |f(x)| ≤ C(1 + |x|β), |F (x)| ≤ C(1 + |x|
1
β ),

(b)
∣∣F (x)− F (y)

∣∣ ≤ C(1 + |x|+ |y|)
1
β
−1|x− y|;

(3) limx↑∞ F (x) = limx↑x f(x) = ∞.

Definition 2.1 (Ergodic MFG Equilibrium). For (x, i) ∈ O, a couple (ξ∗(θ∗), θ∗) ∈ Ae ×R+ is said

to be an equilibrium of the ergodic MFG for the initial condition (x, i) if

(1) J(x, i; ξ∗(θ∗), θ∗) ≥ J(x, i; ξ, θ∗), for any ξ ∈ Ae.
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(2) The optimally controlled state process (Xξ∗(θ∗), Y ) admits a limiting stationary distribution

µθ
∗

and θ∗ = F
(∑d

i=1

∫
I f(x)µ

θ∗(dx, i)
)
.

In the sequel, our solution plan will be as following:

(1) For a fixed mean-field parameter θ ∈ R+, we solve the ergodic control problem aiming at

maximizing (2.6) over Ae.

(2) We then impose the consistency condition (2) in Definition 2.1 and we prove the existence and

uniqueness of the mean-field parameter θ∗ via a fixed-point argument.

(3) We finally show that the ergodic MFG equilibrium realizes an ǫN -Nash equilibrium for a

suitable ergodic N -player game of singular control with regime-switching.

3. THE ERGODIC OPTIMAL CONTROL PROBLEM

Recalling (2.6), in this section we fix θ ∈ R+ and solve the ergodic control problem. In particular,

we want to find

(3.1) λ̄(θ) := sup
ξ∈Ae

J(x, i; ξ, θ).

Notice that the value λ̄ is independent of (x, i) ∈ O, since an initial jump does not alter the value

of the limit in (2.6). In order to solve (3.1), we let V : O × R+ → R and λ : R+ × Y → R to

be determined such that V (·, i; θ) ∈ C2(I), for any (i, θ) ∈ Y × R+ and the pair (V, λ) solves the

variational inequality

(3.2) max
{
L(X,Y )V (x, i; θ) + π(x, θ)− λ(θ, i), Vx(x, i; θ)− k1, k2 − Vx(x, i; θ)

}
= 0.

It will be shown in Proposition 3.4 below that a solution (V, λ) to (3.2) allows to obtain λ̄ in the sense

that

(3.3) λ̄(θ) :=
d∑

i=1

p(i)λ(θ, i).

The following additional assumption on π holds throughout the rest of this paper.

Assumption 3.1. For x−(θ) := (x−(1, θ), ..., x−(d, θ)), x+(θ) := (x+(1, θ), ..., x+(d, θ)), with

x−(i, θ) < x+(i, θ), i ∈ Y, it holds:

πx(x, θ) + k1bx(x, i)





> 0, x ∈ (x, x−(i, θ)),

= 0, x = x−(i, θ),

< 0, x ∈ (x−(i, θ), x),

πx(x, θ) + k2bx(x, i)





> 0, x ∈ (x, x+(i, θ)),

= 0, x = x+(i, θ),

< 0, x ∈ (x+(i, θ), x).

Assumption 3.1 together with Assumption 2.2-(4) guarantee that a solution to (3.2) will be of

threshold type, meaning that there shall exist α(i, θ) < β(i, θ), i ∈ Y, such that Vx(x, i; θ) < k1
on {(x, i) ∈ O : x < α(i, θ)} and Vx(x, i; θ) > k2 on {(x, i) ∈ O : x > β(i, θ)}.

3.1. An auxiliary optimal stopping game. To deal with (3.2), we introduce the auxiliary optimal

stopping game (Dynkin game) with stopping functional

Ĵ(x, i; τ, σ, θ) := Ê(x,i)

[ ∫ τ∧σ

0
e
∫ t

0 bx(X̂s,Ys)dsπx(X̂t, θ)dt+ k1e
∫ τ

0 bx(X̂t,Yt)dt1{τ<σ}

(3.4) +k2e
∫ σ

0 bx(X̂t,Yt)dt1{σ<τ}

]
,
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where (X̂t, Yt)t≥0 is the unique strong solution to (2.3) and τ, σ ∈ T , where T := {ρ : Ω → [0,∞] :

ρ is an F-stopping time}. In (3.4), we use the convention e
∫ ρ

0 bx(X̂x
s ,Y

i
s )ds = 0 on {ρ = ∞}. The

Dynkin game is such that Player 1 aims at minimizing (3.4) over τ ∈ T , while Player 2 at maximizing

(3.4) over σ ∈ T . Theorem 2.1 in [44] allows to show that such a game indeed admits a value.

Theorem 3.1. Let (x, i, θ) ∈ O × R+. Then,

(3.5) inf
τ∈T

sup
σ∈T

Ĵ(x, i; τ, σ, θ) = sup
σ∈T

inf
τ∈T

Ĵ(x, i; τ, σ, θ),

and we define the value function

(3.6) v(x, i; θ) := inf
τ∈T

sup
σ∈T

Ĵ(x, i; τ, σ, θ) = sup
σ∈T

inf
τ∈T

Ĵ(x, i; τ, σ, θ).

Moreover, letting the continuation region be

Cθ := {(x, i) ∈ O : k2 < v(x, i; θ) < k1},

and the stopping regions be

Sθ
inf := {(x, i) ∈ O : v(x, i; θ) ≥ k1}, Sθ

sup := {(x, i) ∈ O : v(x, i; θ) ≤ k2},

the stopping times

τ∗(x, i; θ) := inf{t ≥ 0 : (X̂t, Yt) ∈ Sθ
inf}, σ

∗(x, i; θ) := inf{t ≥ 0 : (X̂t, Yt) ∈ Sθ
sup}, P̂(x,i)-a.s.,

realize a saddle-point. In particular,

v(x, i; θ) = Ĵ(x, i; τ∗(x, i; θ), σ∗(x, i; θ), θ).

Proof. See Appendix A. �

The following proposition is easily proved thanks to Conditions (2) and (3) in Assumption 2.2.

Proposition 3.1. It holds:

(1) The mapping x 7→ v(x, i; θ) is decreasing for every (i, θ) ∈ Y× R+.

(2) The mapping θ 7→ v(x, i; θ) is decreasing for every (x, i) ∈ O.

The next result excludes the possibility of empty stopping regions.

Proposition 3.2. The following hold:

Sθ
inf 6= ∅ and Sθ

sup 6= ∅.

Proof. See Appendix A. �

We define the free-boundaries

(3.7) αi(θ) := sup{x ∈ I : v(x, i; θ) ≥ k1}, βi(θ) := inf{x ∈ I : v(x, i; θ) ≤ k2},

for any (i, θ) ∈ Y × R+, with the conventions sup ∅ = x and inf ∅ = x. Then, thanks to the

monotonicity of v(·, i; θ), (i, θ) ∈ Y× R+, we have

(3.8) Cθ = {(x, i) ∈ O : x ∈ (αi(θ), βi(θ))},

(3.9) Sθ
inf = {(x, i) ∈ O : x ∈ (x, αi(θ)]} and Sθ

sup = {(x, i) ∈ O : x ∈ [βi(θ), x)}.

Notice that, due to Assumption 3.1, x−(i, θ) < α(i, θ) and β(i, θ) < x+(i, θ), for any (i, θ) ∈ Y×R+.

The next proposition provides regularity results about the value of the Dynkin game (3.6). The proof

is in the same spirit as that of Theorem 4.3 in [25].

Proposition 3.3. For any (i, θ) ∈ Y× R+ we have v(·, i; θ) ∈ C1(I) ∩ C2(I \ {αi(θ), βi(θ)}).

Proof. See Appendix A. �
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By Proposition 3.3 and arguments based on the semi-harmonic characterization of v (see [44]), we

are allowed to conclude that (v(x, i; θ), αi(θ), βi(θ))i∈Y solves the free-boundary problem:

(3.10)





L
(X̂,Y )

v(x, i; θ) + bx(x, i)v(x, i; θ) + πx(x, θ) = 0, x ∈ (αi(θ), βi(θ)), i ∈ Y,

L
(X̂,Y )

v(x, i; θ) + bx(x, i)v(x, i; θ) + πx(x, θ) ≤ 0, x ∈ (αi(θ), x), i ∈ Y,

L
(X̂,Y )

v(x, i; θ) + bx(x, i)v(x, i; θ) + πx(x, θ) ≥ 0, x ∈ (x, βi(θ)), i ∈ Y,

v(x, i; θ) = k1, x ∈ (x, αi(θ)], i ∈ Y,

v(x, i; θ) = k2, x ∈ [βi(θ), x), i ∈ Y,

vx(x, i; θ) = 0, x ∈ (x, αi(θ)], i ∈ Y,

vx(x, i; θ) = 0, x ∈ [βi(θ), x), i ∈ Y.

3.2. The solution to the ergodic singular control problem. In this section we establish the relation

between the Dynkin game of Section 3.1 and the ergodic singular control problem (3.1).

Proposition 3.4. Recall v as in (3.6), the free boundaries (αi(θ))i∈Y and (βi(θ))i∈Y as in (3.7), and

define

(3.11) U(x, i; θ) := Ki(θ) +

∫ x

αi(θ)
v(y, i; θ)dy, (x, i, θ) ∈ O × R+,

with Ki(θ) := −
∫ βi(θ)
αi(θ)

v(y, i; θ)dy. Then we have

(3.12)





L(X,Y )U(x, i; θ) + π(x, θ) = λ(θ, i), x ∈ (αi(θ), βi(θ)), i ∈ Y,

L(X,Y )U(x, i; θ) + π(x, θ) ≤ λ(θ, i), x /∈ (αi(θ), βi(θ)), i ∈ Y,

Ux(x, i; θ) = k1, x ∈ (x, αi(θ)], i ∈ Y,

Ux(x, i; θ) ≤ k1, x ∈ (αi(θ), βi(θ)), i ∈ Y,

Ux(x, i; θ) = k2, x ∈ [βi(θ), x), i ∈ Y,

Ux(x, i; θ) ≥ k2, x ∈ (αi(θ), βi(θ)), i ∈ Y,

where

(3.13) λ(θ, i) :=
∑

j 6=i

qij

(∫ αi(θ)

αj(θ)
v(y, j; θ)dy +Ki(θ)−Kj(θ)

)
+
(
b(αi(θ), i)k1 + π(αi(θ), θ)

)
.

Proof. By Proposition 3.3 and the definition of U , we obtain that U(·, i; θ) ∈ C2(I) for i ∈ Y. Then,

L(X,Y )U(x, i; θ) + π(x, θ) =
1

2
σ2(x, i)Uxx(x, i; θ) + b(x, i)Ux(x, i; θ)

+
∑

j 6=i

qij(U(x, j; θ)− U(x, i; θ)) + π(x, θ),

so that, by (3.11),

L(X,Y )U(x, i; θ) + π(x, θ) =
(1
2
σ2(x, i)vx(x, i; θ) + b(x, i)v(x, i; θ) + π(x, θ)

)
︸ ︷︷ ︸

(1)

(3.14) +
∑

j 6=i

qij

(
Kj(θ) +

∫ x

αj(θ)
v(y, j; θ)dy −Ki(θ)−

∫ x

αi(θ)
v(y, i; θ)dy

)
.

Using that v satisfies (3.10) (see in particular the fourth to seventh display equations), via an integra-

tion by parts we have that
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(1) =

∫ x

αi(θ)

(
1

2
σ2(y, i)vxx(y, i; θ)+(b(y, i)+σσx(y, i))vx(y, i; θ)+bx(y, i)v(y, i; θ)+πx(y, θ)

)
dy

+
(
b(αi(θ), i)k1 + π(αi(θ), θ)

)
.

Then, using the second equation in (3.10) we find

(1) ≤

∫ x

αi(θ)
−
∑

j 6=i

qij
(
v(y, j; θ)− v(y, i; θ)

)
dy +

(
b(αi(θ), i)k1 + π(αi(θ), θ)

)
.

Substituting the latter inequality into (3.14) yields

L(X,Y )U(x, i; θ) + π(x, θ) ≤

≤ −

∫ x

αi

∑

j 6=i

qij(v(y, j; θ)− v(y, i; θ))dy +
(
b(αi(θ), i)k1 + πx(αi(θ), θ)

)

+
∑

j 6=i

qij

(
Kj(θ) +

∫ x

αj(θ)
v(y, j; θ)dy −Ki(θ)−

∫ x

αi(θ)
v(y, i; θ)dy

)

=
∑

j 6=i

qij

(∫ x

αi(θ)
v(y, j; θ)dy −

∫ x

αj(θ)
v(y, j; θ)dy

)
+
(
b(αi(θ), i)k1 + π(αi(θ), θ)

)

=
∑

j 6=i

qij

(∫ αi(θ)

αj(θ)
v(y, j; θ)dy

)
+
(
b(αi(θ), i)k1 + π(αi(θ), θ)

)
.

Thus, defining

λ(θ, i) :=
∑

j 6=i

qij

(∫ αi(θ)

αj(θ)
v(y, j; θ)dy

)
+
(
b(αi(θ), i)k1 + π(αi(θ), θ)

)

(3.15) +
∑

j 6=i

qij

(∫ βi(θ)

αi(θ)
v(y, i; θ)dy −

∫ βj(θ)

αj(θ)
v(y, j; θ)dy

)
,

we see that (U, λ) solves the variational inequality (3.12). �

In order to derive the optimal control rule we introduce the following definition.

Definition 3.1 (Skorokhod reflection regime-switching problem). Let D[0,∞) be the space of càdlàg

processes on [0,∞). Given x ∈ I, i ∈ Y, X ∈ D[0,∞), and a vector (α, β) = (αj , βj)j∈Y ∈ R2d

with αj < βj , for any j ∈ Y, the process (Xξ, ξ) ∈ D[0,∞) × A is said to be a solution to the

Skorokhod refection problem SP(α, β, i, x) for the noise (W,Y ) if it satisfies the following properties:

(1) Letting I : D[0,∞) → D[0,∞) be such that

(3.16) (X)t≥0 7→

(
x+

∫ t

0
b(Xs, Ys)ds+

∫ t

0
σ(Xs, Ys)dWs

)

t≥0

,

then

(3.17) Xξ
t = I(Xξ)t + ξ+t − ξ−t , P⊗ dt-a.s.;

(2) Xξ
t ∈ [αYt , βYt ], P⊗ dt-a.s.;

(3)
∫ T

0 1
{Xξ

t >αYt
}
dξ+t =

∫ T

0 1
{Xξ

t <βYt
}
dξ−t = 0, for any T > 0, P-a.s.

We then have the following result.
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Theorem 3.2. There exists ξ∗(θ) ∈ Ae which is the unique solution to SP(α(θ), β(θ), x, i) with

decomposition ξ∗(θ) = ξ∗,+(θ)− ξ∗,−(θ), where

ξ∗,+(θ) := sup
0≤s≤t

(
αYs(θ)− I(Xξ∗(θ))s + ξ∗,−s (θ)

)+

,

ξ∗,−(θ) := sup
0≤s≤t

(
I(Xξ∗(θ))s + ξ∗,+s (θ)− βYs(θ)

)+

(3.18)

Proof. See Appendix B. �

We now prove that ξ∗(θ) solving SP(α(θ), β(θ), x, i) is optimal for (3.1).

Proposition 3.5. For every (x, i) ∈ O, ξ∗(θ) = ξ∗,+(θ) − ξ∗,−(θ) solving SP(α(θ), β(θ), x, i) is

optimal for (3.1). Moreover, (3.3) holds with λ as in (3.13).

Proof. Let T > 0 and (x, i) ∈ O. Recall that U as in (3.11) is such that U(·, i) ∈ C2(I), i ∈ Y, and

(U, λ) solves (3.12), with λ as in (3.13). Let {ηn}n∈N be an increasing sequence of F-stopping times

such that ηn ↑ ∞, n → ∞. Fixing ξ ∈ Ae and applying Itô-Meyer’s formula (in the sense of [11]) to

(U(XT∧ηn , YT∧ηn ; θ))T≥0, we have:

(3.19) U(Xξ
T∧ηn

, YT∧ηn ; θ) = U(x, i; θ) +

∫ T∧ηn

0
L(X,Y )U(Xξ

s , Ys; θ)ds

+

∫ T∧ηn

0
Ux(X

ξ
s , Ys; θ)σ(X

ξ
s , Ys)dWs +

∫ T∧ηn

0
Ux(X

ξ
s , Ys; θ)(dξ

+,c
s − dξ−,c

s )

+
∑

0≤s≤T∧ηn,s∈Λξ

(
U(Xξ

s+
, Ys; θ)− U(Xξ

s , Ys; θ)
)
+MT∧ηn −M0

where Λξ := {t ≥ 0 : ξt+ 6= ξt}, ξ±,c denotes the continuous part of ξ±, and

(3.20) Mt :=

∫ t

0

∫

R+

(
U(Xξ

s , h(Ys, z) + Y0; θ)− U(Xξ
s , Ys; θ)

)
ν(dt, dz)

is an F-local martingale, where ν(dt, dz) := ℘(dt, dz)− dt⊗m(dz). In particular, ℘(dt, dz) denotes

the Poisson random measure with intensity dt ⊗ m(dz) for Lebesgue measure m, and the function

h : Y× R+ has the form

h(i, z) =

d∑

j=1

(j − i)1{z∈∆i,j},

with ∆i,j being the partition of the R+ where each interval has length qij (for further details see

Chapter 2 in [51]). We then define the F-local martingale {M̃t}t≥0 as

(3.21) M̃t :=Mt +

∫ t

0
Ux(X

ξ
s , Ys; θ)σ(X

ξ
s , Ys)dWs

and notice that E(x,i)

[
M̃T∧ηn

]
= 0, ∀T ≥ 0, n ∈ N. Then, taking expectations in (3.19), we obtain

E(x,i)

[
U(Xξ

T∧ηn
, YT∧ηn ; θ)

]
=U(x, i; θ) + E(x,i)

[ ∫ T∧ηn

0
L(X,Y )U(Xξ

s , Ys; θ)ds

]

+ E(x,i)

[ ∫ T∧ηn

0
Ux(X

ξ
s , Ys; θ)(dξ

+,c
s − dξ−,c

s )

]

+ E(x,i)

[ ∑

0≤s≤T∧ηn,s∈Λξ

(
U(Xξ

s+
, Ys; θ)− U(Xξ

s , Ys; θ)
)]
.
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Employing the second display inequality in (3.12), we find

E(x,i)

[
U(Xξ

T∧ηn
, YT∧ηn ; θ)

]
≤U(x, i; θ) + E(x,i)

[ ∫ T∧ηn

0

(
λ(θ, Ys)− π(Xξ

s , θ)
)
ds

]
(3.22)

+ E(x,i)

[ ∫ T∧ηn

0
Ux(X

ξ
s , Ys; θ)(dξ

+,c
s − dξ−,c

s )

]

+ E(x,i)

[ ∑

0≤s≤T∧ηn,s∈Λξ

(
U(Xξ

s+, Ys; θ)− U(Xξ
s , Ys; θ)

)]
.

Since

U(Xξ

s+
, Ys; θ)− U(Xξ

s , Ys; θ) =1{∆ξ+s >0}

∫ ∆ξ+s

0
Ux(X

ξ
s + z, Ys; θ)dz

− 1{∆ξ−s >0}

∫ ∆ξ−s

0
Ux(X

ξ
s − z, Ys; θ)dz,

then (3.22), together with the fourth and sixth conditions in (3.12), give

E(x,i)

[
U(Xξ

T∧ηn
, YT∧ηn ; θ)

]
≤U(x, i; θ) + E(x,i)

[ ∫ T∧ηn

0

(
λ(θ, Ys)− π(Xξ

s , θ)
)
ds

]
(3.23)

+ E(x,i)

[ ∫ T∧ηn

0
(k1dξ

+
t − k2dξ

−
t )

]
.

If now the dominated convergence theorem can be applied (we will verify this later), taking limits

as n ↑ ∞ in (3.23) we find

(3.24) E(x,i)

[
U(Xξ

T , YT ; θ)
]
≤ U(x, i; θ)+E(x,i)

[ ∫ T

0

(
λ(θ, Ys)−π(X

ξ
s , θ)

)
ds+k1ξ

+
T −k2ξ

−
T

]
.

Rearranging the terms, dividing by T , and sending T ↑ ∞, we conclude that

(3.25) lim sup
T↑∞

(
1

T
E(x,i)

[
U(Xξ

T , YT ; θ)
]
+

1

T
E(x,i)

[ ∫ T

0
π(Xξ

t , θ)dt− k1ξ
+
T + k2ξ

−
T

])

≤ lim sup
T↑∞

(
1

T
U(x, i; θ) +

1

T
E(x,i)

[ ∫ T

0
λ(θ, Yt)dt

])
,

which implies

(3.26) lim sup
T↑∞

(
1

T
E(x,i)

[
U(Xξ

T , YT ; θ)
]
+

1

T
E(x,i)

[ ∫ T

0
π(Xξ

s , θ)ds− k1ξ
+
T + k2ξ

−
T

])

≤ lim sup
T↑∞

1

T
U(x, i; θ) + lim sup

T↑∞

1

T
E(x,i)

[ ∫ T

0
λ(θ, Ys)ds

]
.

Hence, using the inequality

lim inf
n→∞

(fn) + lim sup
n→∞

(gn) ≤ lim sup
n→∞

(fn + gn),

on the left-hand side of (3.26), we find that

lim inf
T↑∞

1

T
E(x,i)

[
U(Xξ

T , YT ; θ)
]
+ lim sup

T↑∞

1

T
E(x,i)

[ ∫ T

0
π(Xξ

s , θ)ds− k1ξ
+
T + k2ξ

−
T

]

(3.27) ≤ lim sup
T↑∞

1

T
U(x, i; θ) + lim sup

T↑∞

1

T
E(x,i)

[ ∫ T

0
λ(θ, Ys)ds

]
.
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Since Ux ∈ [k2, k1] by (3.12), we have that exists C > 0 such that for every (x, i, θ) ∈ O × R+ one

has

(3.28)
∣∣U(x, i, θ)

∣∣ ≤ C(1 + |x|).

This fact gives

(3.29) lim
T↑∞

1

T
U(x, i; θ) = 0,

and, thanks to the fact that ξ ∈ Ae (cf. (2.8)), we also find

lim inf
T↑∞

1

T
E(x,i)

[
U(Xξ

T , YT ; θ)
]
≥ lim inf

T↑∞

1

T
E(x,i)[−C(1 + |Xξ

T |)](3.30)

= −C lim sup
T↑∞

1

T
E(x,i)

[
|Xξ

T |
]
= 0,

as well as,

lim sup
T↑∞

1

T
E(x,i)

[
U(Xξ

T , YT ; θ)
]
≤ C lim sup

T↑∞

1

T
E(x,i)[C(1 + |Xξ

T |)](3.31)

≤ lim sup
T↑∞

1

T
E(x,i)[|X

ξ
T |] = 0.

Hence, using (3.29) and (3.30) in (3.27), we obtain

lim sup
T↑∞

1

T
E(x,i)

[ ∫ T

0
π(Xξ

s , θ)ds− k1ξ
+
T + k2ξ

−
T

]
(3.32)

≤ lim sup
T↑∞

1

T
E(x,i)

[ ∫ T

0
λ(θ, Ys)ds

]
=

∑

i∈Y

λ(θ, i)p(i).

Here, the last equality is due to the ergodicity of Y (see, for instance, Corollary 25.9 in [34]). Since

(3.32) holds for every ξ ∈ Ae, we get

(3.33) λ(θ) ≤
∑

i∈Y

λ(θ, i)p(i).

Letting now ξ∗(θ) be the solution to SP(α(θ), β(θ), x, i), we notice that in (3.23), and thus in (3.25),

the inequality becomes an equality. Then, using that lim supn↑∞(fn + gn) ≤ lim supn↑∞(fn) +
lim supn↑∞(gn) on the left-hand side of (3.25) (with equality) and lim infn↑∞(fn)+lim supn↑∞(gn) ≤
lim supn↑∞(fn + gn) on the right-hand side of (3.25) (with equality) we obtain

lim sup
T↑∞

1

T
E(x,i)

[
U(X

ξ∗(θ)
T , YT ; θ)

]
+lim sup

T↑∞

1

T
E(x,i)

[ ∫ T

0
π(Xξ∗(θ)

s , θ)ds−k1ξ
∗,+
T (θ)+k2ξ

∗,−
T (θ)

]

(3.34) ≥ lim inf
T↑∞

1

T
U(x, i; θ) + lim sup

T↑∞

1

T
E(x,i)

[ ∫ T

0
λ(θ, Ys)ds

]
.

By means of (3.29), (3.31) and the fact that ξ∗(θ) ∈ Ae we thus conclude from (3.34)

(3.35)

lim sup
T↑∞

1

T
E(x,i)

[ ∫ T

0
π(Xξ∗(θ)

s , θ)ds−k1ξ
∗,+
T (θ)+k2ξ

∗,−
T (θ)

]
≥ lim sup

T↑∞

1

T
E(x,i)

[ ∫ T

0
λ(θ, Ys)ds

]
.

This, together with (3.33), provides the claimed optimality of ξ∗(θ) and that

(3.36) λ(θ) =
∑

i∈Y

λ(θ, i)p(i).
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In order to complete the proof, it remains to show that expectations and limits as n ↑ ∞ can be

interchanged in (3.23). By writing (3.23) as

E(x,i)

[
U(Xξ

T∧ηn
, YT∧ηn ; θ)

]
+ E(x,i)

[ ∫ T∧ηn

0

(
π(Xξ

s , θ(Ys))ds+ k2dξ
−
t

)]

≤ U(x, i; θ) + E(x,i)

[ ∫ T∧ηn

0

(
λ(θ, Ys)ds+ κ1dξ

+
s

)]
,

it is easy to see that the limit as n ↑ ∞ can be interchanged with the expectations of the integral terms

by the monotone convergence theorem. We are thus left to show that

(3.37) lim
n↑∞

E(x,i)

[
U(Xξ

T∧ηn
, YT∧ηn ; θ)

]
= E(x,i)

[
U(Xξ

T , YT ; θ)
]
.

By (3.28),

|U(Xξ
T∧ηn

, YT∧ηn ; θ)| ≤ C(1 + |Xξ
T∧ηn

|) ≤ C(1 + sup
t≤T

|Xξ
t |).

Hence, by standard estimates based on the Lipschitz property of b(·, i) and σ(·, i) and the fact that

ξ ∈ Ae, we conclude that E(x,i)

[
supt≤T |Xξ

t |
]
< ∞, thus allowing the application of the dominated

convergence theorem in order to derive (3.37). �

4. MEAN-FIELD EQUILIBRIUM

In the following, we prove the existence and uniqueness of the mean-field equilibrium (cf. Defi-

nition 2.1) by an application of Schauder-Tychonof fixed-point theorem. Let P(O) be the space of

probability measures on O, endowed with the weak topology.

4.1. Continuity of the free-boundaries w.r.t. the mean-field term. In this subsection we establish

some regularity of the free-boundaries with respect to the variable θ. For the subsequent analysis we

introduce the following assumptions.

Assumption 4.1. The following hold.

(1) There exists κ : R+ → R+ such that

lim
θ↓0

πx(x, θ) = ∞, lim
θ↑∞

πx(x, θ) = κ(x), for any x ∈ I

and, for some x̂− := (x̂−(1), ..., x̂−(d)) and x̂+ := (x̂+(1), ..., x̂+(d)), we have

κ(x) + k1bx(x, i)





> 0, x < x̂−(i),

= 0, x = x̂−(i),

< 0, x < x̂−(i),

κ(x) + k2bx(x, i)





> 0, x < x̂+(i),

= 0, x = x̂+(i),

< 0, x < x̂+(i).

(2) It holds that bxx(x, i) ≤ 0 for any (x, i) ∈ O, and, for any compact X ×Θ ⊂ I × R+, there

exists a constant C(X ,Θ) > 0 such that

Ê(x,i)

[ ∫ ∞

0
e−ct

∣∣πxθ(X̂t, θ)
∣∣dt

]
< C(X ,Θ) <∞,

for any (x, i, θ) ∈ X × Y×Θ, with c as in Assumption 2.1.

(3) For any i ∈ Y we have ∑

j∈Y

qji ≤ 0.

Lemma 4.1. For any i ∈ Y, the maps θ 7→ αi(θ) and θ 7→ βi(θ) are nonincreasing.



14 DIANETTI, FERRARI, AND TZOUANAS

Proof. Take arbitrary i ∈ Y and let θ1, θ2 ∈ R+ such that θ1 ≤ θ2. Then, by Proposition 3.1, we have

that the map θ 7→ v(x, i; θ) is decreasing, for any (x, i) ∈ O. Hence,

{x ∈ I : v(x, i; θ2) ≥ k1} ⊆ {x ∈ I : v(x, i; θ1) ≥ k1},

which, by (3.7), implies that

αi(θ2) ≤ αi(θ1).

The monotonicity of θ 7→ βi(θ), i ∈ Y, can be proved similarly. �

Lemma 4.2. The following hold.

(1) For any compact X , the map θ 7→ v(x, i; θ) is locally Lipschtiz continuous, uniformly for

(x, i) ∈ X × Y.

(2) The function vx(x, i; θ) is nonpositive for any (x, i, θ) ∈ O × R+ and for fixed θ ∈ R+ is

strictly negative for any (x, i) ∈ Cθ, where Cθ is the continuation region as in Theorem 3.1.

Proof. Take a compact X ×Θ ⊂ I ×R+ and generic (x, i, θ) ∈ X ×Y×Θ. Following the proof of

Proposition 3.3 (cf. Appendix A), for ǫ > 0 small enough, by mean value theorem, we have that

∣∣v(x, i; θ + ǫ)− v(x, i; θ)
∣∣ ≤ Ê(x,i)

[ ∫ ∞

0
e
∫ t

0 bx(X̂s,Ys)ds
∣∣πx(X̂t, θ + ǫ)− πx(X̂t, θ)

∣∣dt
]

= ǫ Ê(x,i)

[ ∫ ∞

0
e
∫ t

0 bx(X̂s,Ys)ds
∣∣πxθ(X̂t, θ̃)

∣∣dt
]

≤ ǫ Ê(x,i)

[ ∫ ∞

0
e−ct

∣∣πxθ(X̂t, θ̃)
∣∣dt

]
≤ ǫC(X ,Θ∗),

for θ̃ ∈ (θ, θ+ ǫ) and a compact Θ∗ such that θ+ ǫ ∈ Θ∗ for any θ ∈ Θ. Thus, since C(X ,Θ∗) <∞ by

Assumption 4.1-(2), we deduce that the map θ 7→ v(x, i; θ) is locally Lipschtiz continuous, proving

Claim (1).

We next prove Claim (2). Using the representation of vx in Lemma A.1, Assumption 2.2-(2) and

Assumption 4.1-(2), one can easily check (by observing that ∂xX̂
x
t > 0, P̂ ⊗ dt-a.s., since ∂xX̂

x is

a solution to a linear equation) that the function vx is nonpositive for any (x, i, θ) ∈ O × R+. For

arbitrary fixed θ ∈ R+ and for any (x, i) ∈ Cθ we know that τ∗(x, i; θ) ∧ σ∗(x, i; θ) > 0, P̂-a.s.,

hence by representation of vx (cf. Lemma A.1) we conclude that vx(x, i, ; θ) < 0. �

Proposition 4.1. The map θ 7→ (αi(θ), βi(θ))i∈Y is continuous.

Proof. For fixed i ∈ Y we, first prove that the map θ 7→ αi(θ) is left-continuous. Fix θ ∈ R+, a

sequence {θn}n∈N, and a compact Θ ⊂ R+ such that θn ր θ, and θ, θn ∈ Θ for any n ∈ N. Since

the map θ 7→ αi(θ) is nonincreasing (cf. Lemma 4.1), arguing by contradiction, we assume that there

exists δ > 0 such that αi(θ) + δ ≤ αi(θ
n) for any n ∈ N. Observe that, since the function αi is finite

and monotone (cf. Lemma 4.1), one has

(4.1) αi(θ
n) ∈

[
inf
y∈Θ

αi(y), sup
y∈Θ

αi(y)
]
=: K, for any n,

with K being compact. Thanks to the fourth display equation in (3.10) we have that v(αi(θ), i; θ) =
v(αi(θ

n), i; θn) = k1 for any n ∈ N. Hence, using Proposition 3.3 and Lemma 4.2 we can write

0 = v(αi(θ
n), i; θn)− v(αi(θ), i; θ)

=
(
v(αi(θ

n), i; θn)− v(αi(θ
n), i; θ)

)
+
(
v(αi(θ

n), i; θ)− v(αi(θ), i; θ)
)

= −

∫ θ

θn
vθ(αi(θ

n), i; y)dy +

∫ αi(θ
n)

αi(θ)
vx(y, i; θ)dy
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or, equivalently,

(4.2)

∫ αi(θ
n)

αi(θ)

(
− vx(y, i; θ)

)
dy =

∫ θ

θn

(
− vθ(αi(θ

n), i; y)
)
dy.

By Lemma 4.2 we have vx(x, i; θ) < 0 for fixed θ ∈ Θ and for any (x, i) ∈ Cθ, then for ǫ ∈ (0, δ)
small enough we have that

∫ αi(θ
n)

αi(θ)

(
− vx(y, i; θ)

)
dy ≥

∫ αi(θ)+δ

αi(θ)+ǫ

(
− vx(y, i; θ)

)
dy(4.3)

≥ min
y∈[αi(θ)+ǫ,αi(θ)+δ]

|vx(y, i; θ)|(δ − ǫ) > 0,

and

(4.4)

∫ θ

θn

(
− vθ(αi(θ

n), i; y)
)
dy ≤ max

y∈Θ
|vθ(αi(θ

n), i; y)|(θ − θn).

Combining (4.3) and (4.4) with (4.2) we arrive at the inequality,

0 < min
y∈[αi(θ)+ǫ,αi(θ)+δ]

|vx(y, i; θ)|(δ − ǫ) ≤ max
(x,y)∈K×Θ

|vθ(x, i; y)|(θ − θn) ≤ C(θ − θn),

for a constant C not depending on n (thanks to Lemma 4.2). Thus, letting n → ∞ leads to a contra-

diction.

We next show that the map θ 7→ αi(θ) is right-continuous. Fix a sequence {θn}n∈N ⊆ Θ such that

θn ց θ. Again by the monotonicity of the map θ 7→ αi(θ), arguing by contradiction we assume that

there exists δ > 0 such that αi(θ
n) ≤ αi(θ)− δ for any n ∈ N. Similarly to the first part of the proof,

we find
∫ θn

θ

(
− vθ(αi(θ

n), i; y)
)
dy =

∫ αi(θ)

αi(θn)

(
− vx(y, i; θ

n)
)
dy.

which leads to the following inequality

0 < min
y∈[αi(θ)−δ,αi(θ)−ǫ]

|vx(y, i; θ)|(δ − ǫ) ≤ max
(x,y)∈K×Θ

|vθ(x, i; y)|(θ
n − θ) ≤ C(θ − θn),

for K as in (4.1) and a constantC not depending on n. Thus, letting n→ ∞, we obtain a contradiction.

By repeating the same argument, one can show that the map θ 7→ βi(θ) is continuous, thus com-

pleting the proof. �

4.2. Analysis of the stationary distribution. First of all, we show that a stationary distribution for

the process (X
ξ∗(θ)
t , Yt)t≥0 exists.

Proposition 4.2. For any θ ∈ R+, there exists a unique stationary distribution νθ ∈ P(O) for the

hybrid-reflected process (X
ξ∗(θ)
t , Yt)t≥0.

Proof. In light of Theorem 2.1 in [47], in order to establish the existence and uniqueness of a sta-

tionary distribution, it is sufficient to show that (X
ξ∗(θ)
t , Yt)t≥0 is a regenerative process (cf. Def-

inition (D1) in [47]) with finite length regenerative epochs. In particular, for (x, i) ∈ O, setting

η := inf{t > 0 : X
ξ∗(θ)
t = αYt(θ)}, P(x,i)-a.s., by strong Markov property we have that the pro-

cesses (X
ξ∗(θ)
t+η , Yt+η)t≥0 and the collection of random variables ((X

ξ∗(θ)
t , Yt)t<η, η) are independent.

Moreover, when starting from points in the set {(αi(θ), i)|i ∈ Y}, the process (X
ξ∗(θ)
t , Yt)t≥0 has the

same distribution as the process (X
ξ∗(θ)
t+η , Yt+η)t≥0. Thus, (X

ξ∗(θ)
t , Yt)t≥0 is a regenerative process,

with regenerative epoch η. In order to conclude the proof, it remains to show that E(x,i)[η] < ∞, for

any (x, i) ∈ O.
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For (x, i) ∈ O and y ∈ [minj∈Y αj(θ),maxj∈Y βj(θ)], we define the F-hitting time η(y) :=

inf{t > 0 : X
ξ∗(θ)
t = y}. If Y0 = i by Proposition B.2 we have that X

x,ξ∗(θ)
t ≤ X

βi(θ),ξ
∗(θ)

t , Pi-a.s..

Thus, we have

(4.5) E(x,i)[η] ≤ E(βi(θ),i)[η] ≤ E(βi(θ),i)[η(αi(θ))].

We now estimate E(βi(θ),i)[η(αi(θ))]. Let τ be the first jump of the process Y and denoting by Z
the solution to the SDE

(4.6) dZt = b(Zt, i)dt+ σ(Zt, i)dWt, Z0 = βi(θ),

for η̃ := inf{t > 0 : Zt = αi(θ)}, by a comparison principle (a slightly different version of Proposi-

tion B.2) we also have X
βi(θ),ξ

∗(θ)
t ≤ Zt, for any t ∈ [0, τ ∧ η̃), Pi-a.s., which in turn implies

P(βi(θ),i)

(
η(αi(θ)) < τ

)
≥ P(βi(θ),i)

(
η̃ < τ

)
.

Therefore, we find

(4.7) P(βi(θ),i)

(
η(αi(θ) < τ

)
≥ P(βi(θ),i)

(
η̃ < τ

)
=

∫ ∞

0
E[1{η̃<t}]Fτ (dt) := ρ > 0,

where Fτ denotes the distribution function of τ and the last inequality follows from the fact that the

SDE (4.6) induces a regular diffusion (cf. Assumption 2.1).

Using (4.7), we have

E(x,i)

[
η(αi(θ))

]
= E(x,i)

[
η(αi(θ))1{η(αi(θ))<τ}

]
+ E(x,i)

[
η(αi(θ))1{η(αi(θ))≥τ}

]
(4.8)

≤ Ei

[
τ
]
+ E(x,i)

[
E
(X

ξ∗(θ)
τ ,Yτ )

[
η(αi(θ))(1− 1{η(αi(θ))<τ})

]]

= Ei

[
τ
]
+ E(x,i)

[
(1− 1{η(αi(θ))<τ})

]
E(x,i)

[
E
(X

ξ∗(θ)
τ ,Yτ )

[
η(αi(θ))

]]

= Ei

[
τ
]
+
(
1− P(x,i)

(
η(αi(θ)) < τ

))
E(x,i)

[
η(αi(θ))

]
,

≤ Ei

[
τ
]
+ (1− ρ)E(x,i)

[
η(αi(θ))

]
,

where in the second equality we use the strong Markov property of (X
ξ∗(θ)
t , Yt)t≥0. Then, since (4.8)

holds for any (x, i) ∈ O, we obtain

sup
(x,i)∈O

E(x,i)

[
η(αi(θ))

]
≤ Ei

[
τ
]
+ (1− ρ) sup

(x,i)∈O
E(x,i)

[
η(αi(θ))

]
.

Equivalently, we write

(4.9) sup
(x,i)∈O

E(x,i)

[
η(αi(θ))

]
≤

1

ρ
Ei

[
τ
]
<∞,

where, in the last inequality, we have used that the process (Yt)t≥0 is irreducible and positive recurrent.

Finally, plugging (4.9) into (4.5), we conclude that E(x,i)[η] < ∞, which in turn implies that

(X
ξ∗(θ)
t , Yt)t≥0 is a regenerative process with finite mean regenerative epochs. Hence, by Theorem

2.1 in [47], there exists a unique stationary distribution, concluding the proof. �

Next, we characterize the stationary distribution and we study its stability with respect to changes

of the boundary.

Theorem 4.1. Let νθ ∈ P(O) be the stationary distribution of (X
ξ∗(θ)
t , Yt)t≥0. The following hold:

(1) For any i ∈ Y, the cumulative distribution function µθ(x, i) := νθ((x, x], i), x ∈ I has

regularity µθ(·, i) ∈ C1([αi(θ), βi(θ)]) ∩ C
2((αi(θ), βi(θ)) \

⋃
j∈Y{αj(θ), βj(θ)}) and it is

the unique nondecreasing solution of the equation

(4.10)
1

2
σ2(x, i)µθxx(x, i)−(b(x, i)−σσx(x, i))µ

θ
x(x, i)+

∑

j∈Y

qjiµ
θ(x, j) = 0, x ∈ (αi(θ), βi(θ)),
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satisfying the boundary conditions µθ(x, i) = 0, x ≤ αi(θ) and µθ(x, i) = p(i), x ≥ βi(θ).
(2) The map ν : R+ → P(O), θ 7→ νθ is continuous.

Proof. The proof of the first item follows closely the proof of Theorem 1 in [23], and it is proved in

Appenidx C. Therefore, we only provide a proof of Claim 2.

For any (α, β) = (αi, βi)i∈Y, we denote by µ(·, ·;α, β) the solution of (4.10) with (α(θ), β(θ)) =
(α, β). Then for Θ ⊂ R+ compact such that θ ∈ Θ and for {θn}n∈N ⊂ Θ such that θn → θ, as

n ↑ ∞, we know by Proposition 4.1 that αi(θ
n) → αi(θ) = αi and βi(θ

n) → βi(θ) = βi for any

i ∈ Y as n ↑ ∞. For simplicity we set (αn
i , β

n
i )i∈Y := (αi(θ

n), βi(θ
n))i∈Y for any n ∈ N. Unless

repeating the subsequent argument with minor modifications, we assume that there exists n0 ∈ N such

that, for any n ≥ n0 and for any i ∈ Y, we have (αn
i , β

n
i ) ⊆ (αi, βi). For any n ∈ N, let µn(x, i) :=

νn((x, x], i), (x, i) ∈ O be the cumulative distribution function of the stationary distribution of the

solution to SP(αn, βn, x, i) (cf. Proposition 4.2). According to Claim 1, µn satisfies (4.10) with

boundary condition on (αn, βn). Next, for any n ∈ N and for any (x, i) ∈
⋃d

i=1(α
n
i , β

n
i ) × {i},

define vn(x, i) := µ(x, i) − µn(x, i). Since µ and µn are solutions to the linear system (4.10), for

each n ∈ N, vn is a solution to the boundary value problem

(4.11)

{
L∗
(X̂,i)

vn(x, i) +
∑

j∈Y qjiv
n(x, j) = 0, x ∈ (αn

i , β
n
i ), i ∈ Y,

vn(αn
i , i) = µ(αn

i , i), vn(βni , i) = µ(βni , i)− p(i),

where L∗
(X̂,i)

vn(x, i) := 1
2σ

2(x, i) vnxx(x, i)− (b(x, i)− σσx(x, i))v
n
x(x, i). Now, thanks to Assump-

tion 2.1 and Assumption 4.1-(3), we can apply Theorem 1 in [48] to (4.11) which gives us

sup
x∈(αn

i ,β
n
i )
|vn(x, i)| ≤ Cmax

{
|µ(αn

i )|, |µ(β
n
i , i)− p(i)|

}
.

Therefore, for any x ∈ (αi, βi), we deduce that µn(x, i) → µ(x, i) as n → ∞. Hence, by an

application of Theorem 5.25 in [34] we obtain that νn ⇀ νθ as n → ∞ thus completing the proof of

Claim 2. �

4.3. Existence and uniqueness of the MFG equilibrium. Next, we turn our attention to the main

result of this section. To this end, we introduce the operator T : R+ → R+, as

(4.12) T θ := F

( d∑

i=1

∫

I
f(x)νθ(dx, i)

)
= F

(
〈f, νθ〉

)
, θ ∈ R+

where 〈f, νθ〉 :=
∑

i∈Y

∫
I f(x)ν

θ(dx, i). Thanks to the previous results, we can now prove the

existence and uniqueness of a stationary mean-field equilibrium.

Theorem 4.2. There exists a unique MFG equilibrium θ∗; i.e., a unique θ∗ ∈ R+ such that T θ∗ = θ∗.

Proof. We divide the proof in three steps.

Step 1: Set of relevant θ. We introduce the following auxiliary Dynkin game

v(x, i) := inf
τ∈T

sup
σ∈T

Ê(x,i)

[ ∫ τ∧σ

0
e
∫ t

0 bx(X̂s,Ys)dsκ(X̂s)ds(4.13)

+ k1e
∫ τ

0 bx(X̂s,Ys)ds1{τ<σ} + k2e
∫ σ

0 bx(X̂s,Ys)ds1{σ<τ}

]
.

Arguing as in Section 3.1, the Dynkin game (4.13) admits a value and a saddle point. In particular,

we can define αi := sup{x ∈ I : v(x, i) ≥ k1} and β
i
:= inf{x ∈ I : v(x, i) ≤ k2}, as well as the

stopping regions S inf := {(x, i) ∈ O : v(x, i) ≥ k1} and Ssup := {(x, i) ∈ O : v(x, i) ≤ k2}. Thus,

we have that the stopping times τ∗(x, i) := inf{t ≥ 0 : (X̂t, Yt) ∈ S inf} and σ∗(x, i) := inf{t ≥

0 : (X̂t, Yt) ∈ Ssup} realize a saddle-point for (4.13). Also by Condition (3) in Assumption 2.2 and
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Condition (1) in Assumption 4.1 we conclude that πx(x, θ) ≥ κ(x), for any θ ∈ R+, so that (cf. (3.4)

and (3.6))

(4.14) v(x, i) ≤ v(x, i; θ), for any (x, i; θ) ∈ O × R+.

Then, for any (i, θ) ∈ Y× R+, we have

(4.15) αi(θ) = sup{x ∈ I : v(x, i; θ) ≥ k1} ≥ sup{x ∈ I : v(x, i) ≥ k1} = αi.

Analogously, we find

(4.16) βi(θ) ≥ β
i
, for any (i, θ) ∈ Y× R+.

We then define

(4.17) θ := F

( d∑

i=1

∫

I
f(x)ν(dx, i)

)

where ν is the unique stationary distribution of the process (Xt, Yt)t≥0 and X is the solution to the

SP((αi, βi)i∈Y;X0, Y0). Then, by Proposition B.2, since f is increasing, we obtain

(4.18) E
[
f(Xt)

]
≤ E

[
f(X

ξ∗(θ)
t )

]
, for any t ≥ 0.

Hence, by Proposition 4.2, we can employ the ergodic theorem (see pg.274 in [47]), in order to deduce

that

〈f, ν〉 = lim
t→∞

1

t

∫ t

0
E
[
f(Xt)

]
dt ≤ lim

t→∞

1

t

∫ t

0
E
[
f(X

ξ∗(θ)
t )

]
dt = 〈f, νθ〉,

which in turn, by monotonicity of F , leads to

(4.19) θ ≤ T θ.

To find an upper bound for T θ, we proceed as follows. Since, X
ξ∗(θ)
t ∈ [αYt(θ), βYt(θ)], for any t ≥

0, P-a.s. for any θ ∈ R+, thanks to the monotonicity of F and f (see Condition (1) Assumption 2.3),

we have

T θ = F

( d∑

i=1

∫

I
f(x)νθ(dx, i)

)
≤ F

( d∑

i=1

p(i)f(βi(θ))

)
≤ F

( d∑

i=1

p(i)f(βi(θ))

)
,

for any θ ≥ θ. In the last inequality above we have used the fact that the map θ 7→ (βi(θ))i∈Y is

nonincreasing (cf. Lemma 4.1). Hence, we define θ := F
(∑d

i=1 p(i)f(βi(θ))
)

and for any θ ≤ θ we

find that

(4.20) T θ ≤ θ.

Thus, combining (4.19) and (4.20), we conclude that any potential fixed point of T must lie in the

convex, compact set

(4.21) K := [θ, θ] ⊂ R+.

Step 2: Continuity of T . We begin by observing that the barriers related to θ ∈ K, belong to

a compact K̂, defined in terms of the compact set K in (4.21). Indeed, by Step 1 we know that

αi ≤ αi(θ) for any (i, θ) ∈ Y ×K, and, by monotonicity of the map θ 7→ βi(θ) for i ∈ Y we have

βi(θ) ≤ βi(θ) for i ∈ Y. Thus, for each θ ∈ K we have,

(4.22) αi(θ), βi(θ) ∈
[
min
j∈Y

αj ,max
j∈Y

βj(θ)
]
=: K̂, for any i ∈ Y.

Define now the map T1 : K → P(K̂ × Y) by

T1(θ) := νθ, θ ∈ K.
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By (4.22), such a map is well defined. Moreover, thanks to Claim 2 in Theorem 4.1, the map T1 is

continuous. Next, we denote by T2 : P(K̂ × Y) → K the map

T2(ν) := F

( d∑

i=1

∫

I
f(x)ν(dx, i)

)
.

Since the functions f and F are continuous and the probability measures have compact support, the

map T2 is clearly continuous. Concluding, the map T := T2 ◦ T1 : K → K is continuous in the

convex compact set K and, by Schauder-Tychonof fixed point theorem ( Corollary 17.56 in [4]), there

exist θ∗ ∈ K, such that T θ∗ = θ∗.

Step 3: Uniqueness. Let θ∗ ∈ K be the fixed-point of T and let θ′ ∈ K another fixed-point of T
such that θ∗ 6= θ′. Without loss of generality we can assume that θ∗ < θ′ (the opposite inequality can

be treated similarly). Following the same arguments as in Step 1 we conclude that

αi(θ
∗) ≥ αi(θ

′), βi(θ
∗) ≥ βi(θ

′), ∀i ∈ Y,

so that θ′ = T θ′ ≤ T θ∗ = θ∗, which leads to a contradiction. �

5. N-PLAYER GAME AND APPROXIMATE NASH EQUILIBRIA

In this section we establish the classical connection between MFG and N -player game, by con-

structing approximate Nash equilibria starting from the MFG equilibrium.

5.1. N-player game. Let W and Y be as in Section 2 and assume the filtered probability space

(Ω,F ,F = {Ft}t≥0,P) to be large enough to accommodate a sequence of independent and iden-

tically distributed F-adapted processes {(Wn, Y n)}n∈N as well as independent and identically dis-

tributed I × Y-random variables {(xn0 , i
n
0 )}n∈N, (x0, i0). Each (Wn, Y n) has the same distribution

as (W,Y ) and the random variables (Wn, Y n), (W,Y ), {(xn0 , i
n)}n∈N and (x0, i0) are assumed to be

independent.

When player n does not intervene, its state process Xn evolves accordingly to the SDE

dXn
t = b(Xn

t , Y
n
t )dt+ σ(Xn

t , Y
n
t )dWn

t , (Xn
0 , Y

n
0 ) = (xn0 , i

n
0 ).

Given a boundary vector (αn, βn) = (αn
j , β

n
j )j∈Y ∈ R2d, the (αn, βn)-barrier-type strategy for player

n is the reflection process for the state of player n in the regime-switching domain (αn
Yt
, βnYt

)t≥0; that

is, the ξn-component of the solution (Xn, ξn) to the Skorokhod problem SP(αn, βn, x, i) for the

noise (Wn, Y n), accordingly to Definition 3.1. Without carrying the dependence on the index of the

player, we denote by Ab the set of barrier-type strategies. Thus, when player n choose a strategy

ξn ∈ Ab, its state process Xn,ξn evolves following the regime-switching (reflected) SDE

dXn,ξn

t = b(Xn,ξn

t , Y n
t )dt+ σ(Xn,ξn

t , Y n
t )dWn

t + dξn,+t − dξn,−t , (Xn,ξn

0− , Y n
0 ) = (xn0 , i

n
0 ).

The (generic) vector ξ := (ξ1, ..., ξN ) ∈ AN
b represents a tuple of control policies of the N players.

We denote by ξ−n = (ξℓ)ℓ6=n a vector of strategies of the opponents of player n, and we use the

notation ξ = (ξn, ξ−n). The profit functional of player n is defined as

(5.1) Jn(ξn, ξ−n) := lim sup
T↑∞

1

T
E

[ ∫ T

0
π(Xn,ξn

t , θN
ξ−n(t))dt− k1ξ

n,+
T + k2ξ

n,−
T

]
,

where θN
ξ−n denotes the mean-field interaction term between the players and has the form

(5.2) θN
ξ−n(t) := F

(
1

N − 1

∑

ℓ6=n

f(Xℓ,ξℓ

t )

)
, t ≥ 0.
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Our aim is to use the solution of the ergodic MFG as an approximating solution of the N -player

game. In particular, for K̂ being the compact set as in (4.22), defining the set of restricted barrier

strategies

(5.3) Âb := {(αn, βn)-barrier-type strategy with (αn
j , β

n
j )j∈Y ∈ K̂2d},

we give the following definition of ǫ-Nash equilibrium.

Definition 5.1 (ǫ-Nash equilibrium). For ǫ > 0, ξ̄ = (ξ̄1, ..., ξ̄N ) ∈ ÂN
b is called ǫ-Nash equilibrium

for the N -player game if, for any n = 1, ..., N , one has

(5.4) Jn(ξ̄n, ξ̄
−n

) ≥ Jn(ξn, ξ̄
−n

)− ǫ, ∀ξn ∈ Âb.

Let θ∗ be the unique MFG equilibrium as in Theorem 4.2 and (α(θ∗), β(θ∗)) = (αi(θ
∗), βi(θ

∗))i∈Y
be the related boundary (see (3.7)). We now use the MFG equilibrium θ∗ in order to construct profile

strategies for the N -player games. For any N ≥ 1 and n = 1, ..., N , define the strategy ξ̄n as the

(α(θ∗), β(θ∗))-barrier strategy for the noise (Wn, Y n).

Remark 5.1 (On the initial distribution). We point out that all the results in the previous sections

hold true also if the deterministic initial condition (X0−, Y0) = (x, i) ∈ I × Y is replaced by the

random initial condition (X0−, Y0) = (x0, i0). Indeed, by considering (with slight abuse of notation)

the payoff

J(x0, i0; ξ, θ) := lim sup
T↑∞

1

T
E

[
E(x0,i0)

[ ∫ T

0
π(Xξ

t , θ)dt− k1ξ
+
T + k2ξ

−
T

]]
,

by the Markov property of the solution to the reflected Skorokhod problem the MFG equilibrium

(ξ(θ∗), θ∗) is still given by Theorem 4.2, with ξ(θ∗) characterized as in in Proposition 3.5.

In light of the definition of K̂ in (4.22), we have ξ̄n ∈ Âb. Let ξ̄ be the related profile strategy; i.e.,

set ξ̄ := (ξ̄1, ..., ξ̄N ).
We first show the following preliminary result.

Proposition 5.1. For any N ≥ 1 and {ξn}n≤N ∈ ÂN
b , the ergodic limit

lim
T↑∞

1

T

∫ T

0
G(X1,ξ1

t , Y 1
t , ..., X

N,ξN

t , Y N
t )dt =

∫

ON

G(x1, i1, ..., xN , iN )⊗N
ℓ=1 ν

ℓ(dxℓ, iℓ), P-a.s.

holds for any bounded function G : ON → R.

Proof. Since {(Wn
t , Y

n
t )t≥0}n∈N is i.i.d., the family {(Xn,ξn

t , Y n
t )t≥0}n≤N is i.i.d. For any fixed

1 ≤ n ≤ N , by the proof of Proposition 4.2 we know that the process (Xn,ξn

t , Y n
t )t≥0 has a unique

stationary distribution νn. Thus, by independence of the processes (Xn,ξn

t , Y n
t )t≥0, the stationary

distribution for (X1,ξ1 , Y 1, ..., XN,ξN , Y N ), denoted by ν̄N ∈ P(ON ), exists and it is given by

ν̄N (dx1, i1, ..., dxN , iN ) = ⊗N
ℓ=1ν

ℓ(dxℓ, iℓ).

Clearly, this distribution is unique. Thus, by Theorems 3.2.6 and 3.3.1 in [21], the ergodic limit

holds. �

5.2. Approximation result. We enforce the following condition.

Assumption 5.1. There exists C > 0 such that,

|π(x, θ1)− π(x, θ2)| ≤ C(1 + |x|β)|θ1 − θ2|,

for any θ1, θ2 ∈ R+ and x ∈ I.

In the spirit of [15] and [16], we can now state and prove the main result of this section.
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Theorem 5.1. The profile strategy ξ̄ := (ξ
1
, ..., ξ

N
) ∈ ÂN

b is an ǫN -Nash equilibrium for the ergodic

N -player game, with ǫN → 0 as N → ∞.

Proof. We first introduce some notation. Take barriers (α, β) = (αi, βi)i∈Y ∈ K̂2d, with K̂ as in

(4.22). Denote by (Xn,ξn , ξn) the solution to SP(α, β, x, i) for the noise (Wn, Y n) of player n, and

denote by (X̃, ξ̃) the solution to SP(α, β, x, i) for the noise (W,Y ) of the MFG. By uniqueness in

law of the solution to the Skorokhod problem, the processes (Xn,ξn , ξn) and (X̃n,ξn , ξ̃n) have the

same law, hence

Jn(ξn, θ∗) := lim sup
T↑∞

1

T
E

[ ∫ T

0
π(Xn,ξn

t , θ∗)dt− k1ξ
n,+
T + k2ξ

n,−
T

]
(5.5)

= lim sup
T↑∞

1

T
E

[ ∫ T

0
π(X̃n,ξn

t , θ∗)dt− k1ξ̃
n,+
T + k2ξ̃

n,−
T

]
=: J(ξ̃, θ∗).

Next, introduce the error estimate between the functionals of the N -player game and the MFG. For

N ∈ N and 1 ≤ n ≤ N , set

RN (ξn) := Jn(ξn, ξ̄−n)− Jn(ξn, θ∗), ξn ∈ Âb.

Since the control ξ(θ∗) is optimal for θ∗ (cf. Proposition 3.5), using (5.5), we have that

Jn(ξ̄n, ξ̄−n)− Jn(ξn, ξ̄−n) = RN (ξ̄n)−RN (ξn) + Jn(ξ̄n, θ∗)− Jn(ξn, θ∗)

= RN (ξ̄n)−RN (ξn) + J(ξ(θ∗), θ∗)− J(ξ̃n, θ∗)

≥ RN (ξ̄n)−RN (ξn), for any ξn ∈ Âb.

Therefore, in order to complete the proof it is sufficient to show that

(5.6) lim
N↑∞

sup
ξn∈Âb

RN (ξn) = 0.

By using that limT↑∞

(
αT + βT

)
≥ limT↑∞(αT ) + limT↑∞(βT ), write

RN (ξn) = lim sup
T↑∞

1

T
E

[ ∫ T

0
π(Xn,ξn

t , θN
ξ̄−n

(t))dt− k1ξ
n,+
T + k2ξ

n,−
T

]
(5.7)

− lim sup
T↑∞

1

T
E

[ ∫ T

0
π(Xn,ξn

t , θ∗)dt− k1ξ
n,+
T + k2ξ

n,−
T

]

≤ lim sup
T↑∞

1

T
E

[ ∫ T

0

(
π(Xn,ξn

t , θN
ξ̄−n

(t))− π(Xn,ξn

t , θ∗)
)
dt

]
.

Next, by Proposition 4.2, there exists a stationary distribution νξ
n

for the process (Xn,ξn

t , Yt)t≥0.

Moreover, Proposition 5.1 ensures that the process
(
(Xn,ξn , Y n), {(Xℓ,ξ̄ℓ , Y ℓ)t≥0}ℓ6=n

)
admits an

ergodic distribution ⊗ℓ6=nν
ℓ ⊗ νξ

n
with support in the compact set (K̂ ×Y)N . Thus, by continuity of

the functions f, F and π, Proposition 5.1 also allows to rewrite (5.7) as

RN (ξn) ≤

∫

O

∫

ON−1

(
π
(
xn, F

(∑

ℓ6=n

f(xℓ)

N − 1

))
− π(xn, θ

∗)
)
⊗ℓ6=n ν

ℓ(dxℓ, iℓ)⊗ νξ
n

(dxn, in).
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We proceed by further estimating sup
ξn∈Âb

RN (ξn). From the latter inequality, since ⊗ℓ6=nν
ℓ⊗νξ

n

has compact support, we can use Assumption 5.1 to obtain

RN (ξn) ≤ C

∫

ON

(1 + |xn|
β)

∣∣∣∣F
(∑

ℓ6=n

f(xℓ)

N − 1

)
− F

(
〈f, νθ

∗

〉
)∣∣∣∣⊗ℓ6=n ν

ℓ(dxℓ, iℓ)⊗ νξ
n

(dxn, in)

≤ C

(∫

O
(1 + |xn|

β)νξ
n

(dxn, in)

)

×

(∫

ON−1

∣∣∣∣F
(∑

ℓ6=n

f(xℓ)

N − 1

)
− F

(
〈f, νθ

∗

〉
)∣∣∣∣⊗ℓ6=n ν

ℓ(dxℓ, iℓ)

)

≤ C
K̂

(∫

ON−1

∣∣∣∣F
(∑

ℓ6=n

f(xℓ)

N − 1

)
− F

(
〈f, νθ

∗

〉
)∣∣∣∣⊗ℓ6=n ν

ℓ(dxℓ, iℓ)

)
,

where the constant C
K̂

depends only on the compact K̂, since νξ
n

ha support in the compact K̂

(ξn ∈ Âb as in (5.3)). Next, using the local Lipschitz property of F (cf. Assumption (2b)-(2.3)), and

again the fact that νℓ are supported in the compact K̂ × Y, we obtain

sup
ξn∈Âb

RN (ξ)

≤ C
K̂

∫

ON−1

(
1 +

∑

ℓ6=n

|f(xℓ)|

N − 1
+ 〈f, νθ

∗

〉

) 1
β
−1∣∣∣∣

∑

ℓ6=n

f(xℓ)

N − 1
− 〈f, νθ

∗

〉

∣∣∣∣⊗ℓ6=n ν
ℓ(dxℓ, iℓ)

≤ C
K̂

∫

ON−1

∣∣∣∣
1

N − 1

∑

ℓ6=n

f(xℓ)− 〈f, νθ
∗

〉

∣∣∣∣⊗ℓ6=n ν
ℓ(dxℓ, iℓ).

Finally, by using the strong law of large numbers (cf. Theorem 4.23 in [34]) and the dominated

convergence theorem, a limit as N → ∞ in the latter inequality leads to (5.6). This completes the

proof of the theorem. �

APPENDIX A. RESULTS ON THE OPTIMAL STOPPING GAME

Proof of Theorem 3.1. Let (x, i, θ) ∈ O × R+ and τ, σ ∈ T given and fixed. We aim at applying

Theorem 2.1 in [44], and for this we first notice that

Ĵ(x, i; τ, σ, θ) = Ê(x,i)

[ ∫ τ∧σ

0
e
∫ t

0 bx(X̂s,Ys)dsπx(X̂t, θ)dt+ k1e
∫ τ

0 bx(X̂s,Ys)ds1{τ≤σ}

+ k2e
∫ σ

0 bx(X̂s,Ys)ds1{σ<τ}

]
= Ê(x,i)

[ ∫ ∞

0
e
∫ t

0 bx(X̂s,Ys)dsπx(X̂t, θ)dt

−

∫ ∞

τ∧σ
e
∫ t

0 bx(X̂s,Ys)dtπx(X̂t, θ)dt+ k1e
∫ τ

0 bx(X̂s,Ys)ds1{τ≤σ} + k2e
∫ σ

0 bx(X̂s,Ys)ds1{σ<τ}

]

= Ê(x,i)

[ ∫ ∞

0
e
∫ t

0 bx(X̂s,Ys)dsπx(X̂t, θ)dt

]
− Ê(x,i)

[
Ê(x,i)

[ ∫ ∞

τ∧σ
e
∫ t

0 bx(X̂s,Ys)dsπx(X̂t, θ)dt

∣∣∣∣Fτ∧σ

]]

+ Ê(x,i)

[
k1e

∫ τ

0 bx(X̂s,Ys)ds1{τ≤σ} + k2e
∫ σ

0 bx(X̂s,Ys)ds1{σ<τ}

]
.

Then, defining

G0(x, i; θ) := Ê(x,i)

[ ∫ ∞

0
e
∫ t

0 bx(X̂s,Ys)dsπx(X̂t, θ)dt

]
,
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by the strong Markov property of (X̂t, Yt)t≥0 we obtain

(A.1) Ĵ(x, i; τ, σ, θ) = G0(x, i; θ)− Ê(x,i)

[
e
∫ τ∧σ

0 bx(X̂s,Ys)dsG0(X̂τ∧σ, Yτ∧σ; θ)

]

+ Ê(x,i)

[
k1e

∫ τ

0 bx(X̂s,Ys)ds1{τ≤σ} + k2e
∫ σ

0 bx(X̂s,Ys)ds1{σ<τ}

]
.

Therefore,

(A.2) Ĵ(x, i; τ, σ, θ) = G0(x, i; θ) + Ê(x,i)

[
e
∫ τ

0 bx(X̂s,Ys)ds
(
k1 −G0(X̂τ , Yτ ; θ)

)
1{τ≤σ}

]

+ Ê(x,i)

[
e
∫ σ

0 bx(X̂s,Ys)ds
(
k2 −G0(X̂σ, Yσ; θ)

)
1{σ<τ}

]
;

that is,

Ĵ(x, i; τ, σ, θ) = G0(x, i; θ) + Ê(x,i,1)

[
G1(X̄t; θ)1{τ≤σ} +G2(X̄t; θ)1{σ<τ}

]
,

where we have setG1(x, i, z; θ) := z(k1−G0(x, i; θ)), G2(x, i, z; θ) := z(k2−G0(x, i; θ)), we have

introduced the 3-dimensional right-continuous strong Markov process

(A.3) X̄t := (X̂t, Yt, Zt),

withZt := z·e
∫ t

0 bx(X̂s,Ys)ds, and Ê(x,i,1) is the expectation with the respect to P̂(x,i,1)[ · ] := P̂[ · |X̂0 =
x, Y0 = i, Z0 = 1]. We observe that by Condition (3) in Assumption 2.1 and Condition (5) in

Assumption 2.2,

Ê(x,i,1)

[
sup
t≥0

∣∣Gi(X̄t; θ)
∣∣] <∞, i = 0, 1, 2,

where as well as, G2(X̄t; θ) ≤ G1(X̄t; θ) for any t ≥ 0. Also,

lim
t↑∞

G1(X̄t; θ) = 0 and lim
t↑∞

G2(X̄t; θ) = 0, P̂(x,i,1)-a.s.

Hence, we can apply Theorem 2.1 from [44] and complete the proof. �

Proof of Proposition 3.2. We argue by contradiction and we suppose that Sθ
sup = ∅. This implies that

σ∗ = ∞, P̂(x,i)-a.s. and for any (x, i) ∈ O, and we thus obtain that

k2 < v(x, i; θ) = inf
τ∈T

Ê(x,i)

[ ∫ τ

0
e
∫ t

0 bx(X̂s,Ys)dsπx(X̂t, θ)dt+ k2e
∫ τ

0 bx(X̂s,Ys)ds

]

≤ Ê(x,i)

[ ∫ ∞

0
e
∫ t

0 bx(X̂s,Ys)dsπx(X̂t, θ)dt

]
.

By Condition (4) and Condition (5) in Assumption 2.2 we reach a contradiction with k2 > 0 by taking

x ↑ x. The proof of Sθ
inf 6= ∅ follows by similar arguments. �

The next result, which will be used in the proof of Proposition 3.3. below, provides the so-called

semiharmonic characterization of v (see [44]). Its proof is direct consequence of Theorem 2.1 in [44].

Proposition A.1. For any (x, i) ∈ O, we have under P̂(x,i) that

(1)

(∫ t∧τ∗(θ)
0 πx(X̂t, θ)dt+e

∫ t∧τ∗(θ)
0 bx(X̂t,Yt)dtv(X̂t∧τ∗(θ), Yt∧τ∗(θ))

)

t≥0

is an F-submartingale;

(2)

(∫ t∧σ∗(θ)
0 πx(X̂t, θ)dt+e

∫ t∧σ∗(θ)
0 bx(X̂t,Yt)dtv(X̂t∧σ∗(θ), Yt∧σ∗(θ))

)

t≥0

is an F-supermartingale;

(3)

(∫ t∧τ∗(θ)∧σ∗(θ)
0 πx(X̂t, θ)dt+e

∫ t∧τ∗(θ)∧σ∗(θ)
0 bx(X̂t,Yt)dtv(X̂t∧τ∗(θ)∧σ∗(θ), Yt∧τ∗(θ)∧σ∗(θ))

)

t≥0
is an F-martingale.
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Proof of Proposition 3.3. The proof is organized in several steps.

Step 1: We start by proving that v(·, i; θ) ∈ C0(I), for any (i, θ) ∈ Y × R+. Letting (x, i, θ) ∈

O × R+ and ǫ ∈ (0, 1), we recall the optimal stopping times τ∗(θ) = inf{t ≥ 0 : X̂t ≤ αYt(θ)},

σ∗(θ) = inf{t ≥ 0 : X̂t ≥ βYt(θ)} P̂(x,i)-a.s. and define σ∗ǫ (θ) := inf{t ≥ 0 : X̂t ≥ βYt(θ)}

P̂(x+ǫ,i)-a.s., analogously τ∗ǫ (θ). Then we have that
∣∣v(x+ ǫ, i; θ)− v(x, i; θ)

∣∣

≤
∣∣Ĵ(x+ ǫ, i; τ∗(θ), σ∗ǫ (θ), θ)− Ĵ(x, i; τ∗(θ), σ∗ǫ (θ), θ)

∣∣

≤

∣∣∣∣Ê
[ ∫ τ∗(θ)∧σ∗

ǫ (θ)

0

(
e
∫ t

0 bx(X̂
x+ǫ
s ,Y i

s )dsπx(X̂
x+ǫ
t , θ)− e

∫ t

0 bx(X̂x
s ,Y

i
s )dsπx(X̂

x
t , θ)

)
ds

]∣∣∣∣

+ k1

∣∣∣∣Ê
[(
e
∫ τ∗(θ)
0 bx(X̂

x+ǫ
s ,Y i

s )ds − e
∫ τ∗(θ)
0 bx(X̂x

s ,Y
i
s )ds

)
1{τ∗(θ)<σ∗

ǫ (θ)}

]∣∣∣∣

+ k2

∣∣∣∣Ê
[(
e
∫ σ∗

ǫ (θ)
0 bx(X̂

x+ǫ
s ,Y i

s )ds − e
∫ σ∗

ǫ (θ)
0 bx(X̂x

s ,Y
i
s )ds

)
1{σ∗

ǫ (θ)<τ∗(θ)}

]∣∣∣∣
=: Aǫ + k1B

ǫ(τ∗(θ)) + k2B
ǫ(σ∗ǫ (θ)).(A.4)

We bound the first term as follows,

Aǫ ≤ Ê

[ ∫ ∞

0
e
∫ t

0 bx(X̂
x+ǫ
s ,Y i

s )ds
∣∣πx(X̂x+ǫ

t , θ)− πx(X̂
x
t , θ)

∣∣ds
]

(A.5)

+ Ê

[ ∫ ∞

0

∣∣e
∫ t

0 bx(X̂
x+ǫ
s ,Y i

s )ds − e
∫ t

0 bx(X̂x
s ,Y

i
s )ds

∣∣ ·
∣∣πx(X̂x

t , θ)
∣∣dt

]
.

Thanks to Condition (3) in Assumption 2.1, (A.5) gives

Aǫ ≤ Ê

[ ∫ ∞

0
e−ct

∣∣πx(X̂x+ǫ
t , θ)− πx(X̂

x
t , θ)

∣∣dt
]

(A.6)

+ Ê

[ ∫ ∞

0

∣∣e
∫ t

0 bx(X̂
x+ǫ
s ,Y i

s )ds − e
∫ t

0 bx(X̂x
s ,Y

i
s )ds

∣∣ ·
∣∣πx(X̂x

t , θ)
∣∣dt

]
.

Following the same arguments as in Theorem 38 from Chapter V.7 in [46], we can prove that x 7→ X̂x
t

is continuous P̂⊗ dt-a.s., so that

(A.7)
∣∣e

∫ t

0 bx(X̂
x+ǫ
s ,Y i

s )ds − e
∫ t

0 bx(X̂x
s ,Y

i
s )ds

∣∣ → 0, ǫ ↓ 0 P̂⊗ dt-a.s.

Furthermore,

(A.8)
∣∣e

∫ t

0 bx(X̂
x+ǫ
s ,Y i

s )ds − e
∫ t

0 bx(X̂x
s ,Y

i
s )ds

∣∣ ≤ 2e−ct.

Hence, combining (A.7), (A.8) with Condition (5) in Assumption 2.2 we obtain that the second ex-

pectation on the right-hand side of (A.6) vanishes as ǫ ↓ 0. On the other hand, one can prove a version

of comparison principle for hybrid-SDEs 1, i.e. X̂x
t ≤ X̂x+ǫ

t , P⊗ dt-a.s. and using that πx(x, θ) ≥ 0
for any (x, θ) ∈ I × R+ and x 7→ πx(x, θ) is decreasing for any θ ∈ R+, we obtain

(A.9)
∣∣πx(X̂x+ǫ

t , θ)− πx(X̂
x
t , θ)

∣∣ ≤ 2πx(X̂
x
t , θ), P̂⊗ dt-a.s.

Therefore, using again Condition (5) in Assumption 2.2, we can let ǫ ↓ 0 and we observe that

also the first expectation on the right-hand side of (A.5) converges to zero, due to the dominated

convergence theorem.

1Writing [0,∞) =
⋃∞

n=1[τn−1, τn), where τn is a F-stopping when Y makes a jump, thus applying Proposition 5.2.18

from [36] to each [τn−1, τn), n ∈ N and using the flow property of (X̂t)t≥0 we obtain the result.



ERGODIC MFGS OF SINGULAR CONTROL WITH REGIME-SWITCHING 25

Now we focus on the two other terms on the right-hand side of (A.4). By the differentiability of the

map x 7→ X̂x (cf. Theorem 39 Chapter V.7 of [46]) and by the mean value theorem, for x̃ǫ ∈ (x, x+ǫ),
we have that,

(A.10)

e
∫ t

0 bx(X̂
x+ǫ
s ,Y i

s )ds−e
∫ t

0 bx(X̂x
s ,Y

i
s )ds = ǫe

∫ t

0 bx(X̂ x̃ǫ

s ,Y i
s )ds

(∫ t

0
bxx(X̂

x̃ǫ

s , Y
i
s )∂xX̂

x
s

∣∣
x=x̃ǫds

)
, P̂⊗dt-a.s.

This, combined it with Assumption 2.1-(3) gives us, for fixed η ∈ T ,

Bǫ(η) ≤ ǫÊ

[∣∣∣∣e
∫ η

0 bx(X̂ x̃ǫ

s ,Y i
s )ds

(∫ η

0
bxx(X̂

x̃ǫ

s , Y
i
s )∂xX̂

x
s

∣∣
x=x̃ǫds

)∣∣∣∣
]

(A.11)

≤ ǫÊ

[
e−cη

∫ η

0

∣∣bxx(X̂ x̃ǫ

s , Y
i
s )
∣∣∂xX̂x

s

∣∣
x=x̃ǫds

]

≤ ǫÊ

[ ∫ ∞

0
e−cs

∣∣bxx(X̂ x̃ǫ

s , Y
i
s )
∣∣∂xX̂x

s

∣∣
x=x̃ǫds

]
,

hence sending ǫ ↓ 0 in (A.11) by Assumption 2.2-(6) invoking dominated convergence theorem we

can exchange limit with expectation and we obtain (cf. (A.4))

lim
ǫ↓0

(
k1B

ǫ(τ∗(θ)) + k2B
ǫ(σ∗ǫ (θ))

)
= 0.

Step 2: Let (i, θ) ∈ Y × R+. By Theorem 3.1, we know that v(·, i; θ) = k1, x ∈ (x, αi(θ))
and v(·, i; θ) = k2, x ∈ (βi(θ), x) for any (i, θ) ∈ Y × R+. Hence, it is sufficient to show that

v(·, i; θ) ∈ C2(Cθ), for any (i, θ) ∈ Y× R+. We then define the following boundary value problem:

(A.12)

{
L
X̂
w(x, i; θ) + (bx(x, i)− qii)w(x, i; θ) = f(x, i; θ), (x, i) ∈ Cθ

w(αi(θ), i; θ) = v(αi(θ), i; θ), w(βi(θ), i; θ) = v(βi(θ), i; θ),

where L
X̂
w(x, i; θ) := 1

2σ
2(x, i)wxx(x, i; θ) + (b(x, i) + σσx(x, i))wx(x, i; θ) and f(x, i; θ) :=

−
∑

j 6=i qijv(x, j; θ)− πx(x, θ). Using Condition (4) in Assumption 2.1 we conclude that (A.12) has

a unique classical solution w(·, i; θ) ∈ C2(αi(θ), βi(θ)) (see Theorem 6.13 in [28]). We then define

the function w : (αi(θ), βi(θ))× Y× R+ 7→ R by:

w̄(x, j; θ) :=

{
w(x, i; θ), j = i

v(x, j; θ), j 6= i,

and the stopping time τY := inf{t ≥ 0 : Y i
t 6= i}. Hence, setting η(θ) := τY ∧ τ∗(θ) ∧ σ∗(θ), from

Dynkin’s formula we have:

(A.13)

w̄(x, i; θ) = w(x, i; θ) = Ê(x,i)

[
v(X̂η(θ), Yη(θ); θ)e

∫ η(θ)
0 bx(X̂s,Ys)ds+

∫ η(θ)

0
e
∫ t

0 bx(X̂s,Ys)dsπx(X̂t, θ)dt

]

because w̄(X̂η(θ), Yη(θ); θ) = v(X̂η(θ), Yη(θ); θ), and, on s < η(θ),

1

2
σ2(X̂s, Ys)w̄xx(X̂s, Ys; θ)+(b(X̂s, Ys)+σσx(X̂s, Ys))w̄x(X̂s, Ys; θ)+(bx(X̂s, Ys)−qii)w̄(X̂s, Ys; θ) =

1

2
σ2(X̂s, Ys)wxx(X̂s, Ys; θ)+(b(X̂s, Ys)+σσx(X̂s, Ys))wx(X̂s, Ys; θ)+(bx(X̂s, Ys)−qii)w(X̂s, Ys; θ)

= f(X̂s, Ys; θ), P̂(x,i)-a.s..

However, η(θ) ≤ τ∗(θ)∧σ∗(θ), P̂(x,i)-a.s., which, by the martingale property (3) in Proposition A.1,

gives

v(x, i; θ) = Ê(x,i)

[
v(X̂η(θ), Yη(θ); θ)e

∫ η(θ)
0 bx(X̂s,Ys)ds+

∫ η(θ)

0
e
∫ t

0 bx(X̂s,Ys)dsπx(X̂t, θ)dt

]
= w(x, i; θ).
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Since the latter holds for every x ∈ (αi(θ), βi(θ)) and for arbitrary i ∈ Y, we obtain v ≡ w, which

finally yields that v(·, i; θ) ∈ C2((αi(θ), βi(θ)).

Step 3: Thanks to the previous steps, it is now sufficient to prove the continuity of vx(·, i; θ) only

across the free boundaries αi(θ) and βi(θ), for any (i, θ) ∈ Y × R+. We prove this only for αi(θ),
being the proof across βi(θ) similar. Notice that from (A.4) we have

∣∣∣∣
v(x+ ǫ, i; θ)− v(x, i; θ)

ǫ

∣∣∣∣ ≤
1

ǫ
Aǫ +

k1
ǫ
Bǫ(τ∗(θ)) +

k2
ǫ
Bǫ(σ∗ǫ (θ)).(A.14)

We recall that the map x 7→ X̂x is differentiable and by regularity of profit the function (cf. Assump-

tion 2.2), for xǫ1 ∈ (x, x+ ǫ) we have that,

(A.15)
∣∣πx(X̂x+ǫ

t , θ)− πx(X̂
x
t , θ)

∣∣ ≤ ǫ
∣∣πxx(X̂xǫ

1
t , θ)

∣∣∂xX̂x
∣∣
x=xǫ

1
, P̂⊗ dt-a.s.

Using (A.15) in the first expectation on the right-hand side of (A.6), and applying the mean value

theorem in the second expectation (cf. (A.10)), we can find xǫ2 ∈ (x, x+ ǫ) such that

1

ǫ
Aǫ ≤ Ê

[ ∫ τ∗(θ)∧σ∗
ǫ (θ)

0
e−ct

∣∣πxx(X̂xǫ
1

t , θ)
∣∣∂xX̂x

s

∣∣
x=xǫ

1
ds

](A.16)

+ Ê

[ ∫ τ∗(θ)∧σ∗
ǫ (θ)

0

(
e
∫ t

0 bx(X̂
xǫ2
s ,Y i

s )ds ·
∣∣πx(X̂x

t , θ)
∣∣ ·

∣∣∣∣
∫ t

0
bxx(X̂

xǫ
2

s , Y i
s )∂xX̂

x
s

∣∣
x=xǫ

2
ds

∣∣∣∣
)
dt

]
.

On the other hand, by (A.11), for any η ∈ T , we have

1

ǫ
Bǫ(η) ≤ Ê

[ ∫ ∞

0
e−cs

∣∣bxx(X̂ x̃ǫ

s , Y
i
s )
∣∣∂xX̂x

s

∣∣
x=x̃ǫds

]
,(A.17)

for some xǫ ∈ (x, x+ ǫ). Hence, sending ǫ→ 0, we can interchange limits and expectation thanks to

Conditions (5) and (6) in Assumption 2.2, and find from (A.14) that (cf. (A.16) and (A.17))

0 ≤ |vx(x, i; θ)| ≤ Ê

[ ∫ τ∗(θ)∧σ∗(θ)

0
e−ct|πxx(X̂

x
t , θ)|∂xX̂

x
t ds

](A.18)

+ Ê

[ ∫ τ∗(θ)∧σ∗(θ)

0
e−ct ·

∣∣πx(X̂x
t , θ)

∣∣ ·
(∫ t

0

∣∣bxx(X̂x
s , Y

i
s )
∣∣∂xX̂x

s ds

)
dt

]

+ k1Ê

[
e
∫ τ∗(θ)
0 bx(X̂x

s ,Y
i
s )ds

(∫ τ∗(θ)

0

∣∣bxx(X̂x
s , Y

i
s )
∣∣∂xX̂x

s

∣∣
x
ds
)]

+ k2Ê

[
e
∫ σ∗(θ)
0 bx(X̂x

s ,Y
i
s )ds

(∫ σ∗(θ)

0

∣∣bxx(X̂x
s , Y

i
s )
∣∣∂xX̂x

s ds
)]
,

where we have also used that σ∗ǫ (θ) → σ∗(θ) P̂(x,i) ⊗ dθ-a.s. Finally, sending x ↓ αi(θ), τ
∗(θ) →

0, P̂(x,i) ⊗ dθ-a.s. so that v(·, i; θ) is C1 across αi(θ). �

Finally, arguing as in the proofs of Steps 1 and 3 in the proof of Proposition 3.3, one can evaluate

upper and lower bounds for 1
ǫ

(
v(x+ ǫ, i; θ)− v(x, i; θ)

)
, which, after taking limits as ǫ ↓ 0 yield the

following probabilistic representation of vx.
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Lemma A.1. Under the Assumptions 2.2-(5) and (6)-(2.1), the representation

vx(x, i; θ) =Ê

[ ∫ τ∗(θ)∧σ∗(θ)

0
e
∫ t

0 bx(X̂x
s ,Y

i
s )ds

(
πxx(X̂

x
t , θ)∂xX̂

x
t

+
(∫ t

0
bxx(X̂

x
s , Y

i
s )∂xX̂

x
s ds

)
πx(X̂

x
t , θ)

)
dt

]

+ k1Ê

[
e
∫ τ∗(θ)
0 bx(X̂x

s ,Y
i
s )ds

(∫ τ∗(θ)

0
bxx(X̂

x
s , Y

i
s )∂xX̂

x
s ds

)
1{τ∗(θ)<σ∗(θ)}

]

+ k2Ê

[
e
∫ σ∗(θ)
0 bx(X̂x

s ,Y
i
s )ds

(∫ σ∗(θ)

0
bxx(X̂

x
s , Y

i
s )∂xX̂

x
s ds

)
1{σ∗(θ)<τ∗(θ)}

]

holds for any (x, i, θ) ∈ O×R+, where τ∗(θ) = τ∗(x, i; θ) and σ∗(θ) = σ∗(x, i; θ) are as in Theorem

3.1.

APPENDIX B. SKOROKHOD REFLECTION PROBLEM WITH REGIME-SWITCHING AND PROOF OF

THEOREM 3.2

In this section we focus on the existence and uniqueness of a solution to SP(α, β, x, i) as defined

in Definition 3.1. Then we show a comparison result and finally we prove Theorem 3.2.

Recall I as in (3.16) and denote by Γ : D[0,∞) → D[0,∞) the following operator

Γ(X)t := I(X)t −max

{(
x− βi(θ)

)+
∧ inf

s≤t

(
I(X)s − αYs(θ)

)
,

sup
s≤t

((
I(X)s − βYs(θ)

)
∧ inf

u∈[s,t]

(
I(X)u − αYu(θ)

))}
=: I(X)t − Ξ(X)t.(B.1)

We first prove that the operator has a fixed point.

Proposition B.1. There exists unique solution to Skorokhod problem SP(α, β, x, i).

Proof. Let T > 0 and X,X ′ ∈ D[0,∞), then using the inequalities

max
{
α1, β1

}
−max

{
α2, β2

}
≤ max

{
α1 − α2, β1 − β2

}
∣∣ sup
s≤t

|f(s)| − sup
s≤t

|g(s)|
∣∣ ≤ sup

s≤t

∣∣f(s)− g(s)
∣∣

∣∣ inf
s≤t

|f(s)| − inf
s≤t

|g(s)|
∣∣ ≤ sup

s≤t

∣∣f(s)− g(s)
∣∣,

we obtain that

(B.2) sup
s≤t

∣∣Γ(X)s − Γ(X ′)s
∣∣2 ≤ 4 sup

s≤t

∣∣I(X)s − I(X ′)s
∣∣2, t ∈ [0, T ].

We now derive an estimate for sups≤t

∣∣I(X)s − I(X ′)s
∣∣2. In particular, we have that

E
[
sup
s≤t

∣∣I(X)s − I(X ′)s
∣∣2] ≤ 2E

[
sup
s≤t

∣∣∣∣
∫ s

0

(
b(Xs, Ys)− b(X ′

s, Ys)
)
ds

∣∣∣∣
2

+ sup
s≤t

∣∣∣∣
∫ s

0

(
σ(Xs, Ys)− σ(X ′

s, Ys)
)
dWs

∣∣∣∣
2]
.
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By an application of Hölder’s inequality in the drift term and an application of Burkholder-Davis-

Gundy’s inequality to the local martingale Mt :=
∫ t

0

(
σ(Xs, Ys)− σ(X ′

s, Ys)
)
dWs, we find that

E

[
sup
s≤t

∣∣I(X)s − I(X ′)s
∣∣2
]
≤ E

[
C(T + 1)

∫ t

0

∣∣b(Xs, Ys)− b(X ′
s, Ys)

∣∣2ds
]

≤ CK2(1 + T )E

[ ∫ t

0
sup
u≤s

∣∣Xu −X ′
u

∣∣2ds
]
,

where the last inequality is due to the Lipschitz property of b and σ. Finally, for a constant C1 =
C1(K,T ) > 0 it holds

(B.3) E

[
sup
s≤t

∣∣Γ(X)s − Γ(X ′)s
∣∣2
]
≤ C1E

[ ∫ t

0
sup
u≤s

∣∣Xu −X ′
u

∣∣2ds
]
, t ∈ [0, T ].

Let {X(n)}n∈N be a F-adapted process such that
{
X

(0)
t := x, t ∈ [0, T ]

X
(n)
t := Γ(X(n−1))t, t ∈ [0, T ].

Then, by (B.3) we have that

(B.4) E

[
sup
s≤t

∣∣Γ(X(n))s − Γ(X(n−1))s
∣∣2
]
≤ C1E

[ ∫ t

0
sup
u≤s

∣∣X(n−1)
u −X(n−2)

u

∣∣2ds
]
,

which yields

(B.5) E

[
sup
s≤t

∣∣Γ(X(n))s − Γ(X(n−1))s
∣∣2
]
≤

(Rt)n

n!
,

where E
[
sups≤t |X

(1)
s − x|2

]
≤ Rt. Hence, by using (B.5) and Markov inequality, we obtain that

∫ t

0
b(X(n)

s , Ys)ds+

∫ t

0
σ(X(n)

s , Ys)dWs →

∫ t

0
b(Xs, Ys)ds+

∫ t

0
σ(Xs, Ys)dWs,

uniformly in compact sets of [0, T ] as n ↑ ∞. Defining X := limn→∞ Γ(X(n)), and taking ξ =
ξ+ − ξ− = Ξ(X), we write Xξ = I(Xξ) + ξ so that the pair (Xξ, ξ) satisfies the properties of

Skorokhod problem in Definition 3.1 for every t ∈ [0, T ]. To extend the solution to [0,∞), we

observe that (B.3) does not depend from the initial conditions. Hence, the result holds on each interval

with length T and, by writing [0,∞) :=
⋃∞

n=1[(n− 1)T, nT ), the proof is complete. �

The next Proposition establishes a comparison principle for the optimally controlled state with

respect to the mean-field parameter.

Proposition B.2. Let x1, x2 ∈ I and θ1, θ2 ∈ R+ such that x1 ≤ x2 and θ1 ≤ θ2 then it is true that:

(B.6) X
x1,ξ

∗(θ1)
t ≤ X

x2,ξ
∗(θ2)

t , P⊗ dt-a.s.

Proof. Let {X(n,x,θ)}n∈N to be a sequence of F-adapted processes such that

(B.7) dX
(n,x,θ)
t =

(
b(X

(n,x,θ)
t , Yt) + g(θ)n (X

(n,x,θ)
t , Yt)

)
dt+ σ(X

(n,x,θ)
t , Yt)dWt,

where,

g(θ)n (x, i) :=





0, x ∈ [αi(θ), βi(θ)]

−n(x− αi(θ)), x < αi(θ)

−n(x− βi(θ)), x > βi(θ).
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Let {τk}k∈N be the sequence of random times where the jumps of Y occurred. Thanks to Proposition

5.2.18 in [36] and Lemma 4.1, by an induction argument we find

X
(n,x1,θ1)
t ≤ X

(n,x2,θ2)
t , P-a.s. for any t ∈ [τk, τk+1), for any k ∈ N0.

Then, using Theorem 1.4.1 in [45] (with estimates as in Proposition 2.3 in [51]), we obtain, P⊗dt-a.s.,

X
x1,ξ

∗(θ1)
t = lim

n↑∞
X

(n,x1,θ1)
t ≤ lim

n↑∞
X

(n,x2,θ2)
t = X

x2,ξ
∗(θ2)

t ,

thus completing the proof. �

We are now in the position to provide the proof of Theorem 3.2

Proof of Theorem 3.2. By Proposition B.1, there exists a unique solution to SP(α(θ), β(θ), x, i), de-

noted by (Xξ∗(θ), ξ∗(θ)). This satisfies the properties collected in Definition 3.1. We prove that

ξ∗(θ) ∈ Ae and verify that the optimal policy has the form as in (3.18). By Property (1) in Definition

3.1, we have that

X
ξ∗(θ)
t ∈ [αYt(θ), βYt(θ)], ∀t ≥ 0 P(x,i) − a.s. ,

so that

(B.8) lim sup
T↑∞

1

T
E(x,i)

[
|X

ξ∗(θ)
T |

]
= 0.

It remains to show that E
[
|ξ∗T (θ)|

]
< ∞ for any T < ∞. To that end, let T < ∞ and ψ : O → R be

any classical solution of

(B.9)

{
L(X,Y )ψ(x, i) = 0, x ∈ (αi(θ), βi(θ)), i ∈ Y

ψx(αi(θ), i) = 1, ψx(βi(θ), i) = −1.

Applying Itô-Meyer’s formula to {ψ(X
ξ∗(θ)
t , Yt)}t≥0 on [0, T ] we obtain

E(x,i)

[
ψ(X

ξ∗(θ)
T , YT )

]
=ψ(x, i) + E(x,i)

[ ∫ T

0
L(X,Y )ψ(X

ξ∗(θ)
t , Yt)dt

]

+ E(x,i)

[ ∫ T

0
ψx(X

ξ∗(θ)
t , Yt)dξ

∗
t (θ)

]
,

and by using the fact that ψ is a solution to (B.9) we conclude that

E(x,i)

[
ψ(X

ξ∗(θ)
T , YT )

]
= ψ(x, i) + E(x,i)

[
|ξ∗T (θ)|

]
.

Since Xξ∗(θ) ∈ [αYt(θ), βYt(θ)], for any t ≥ 0 P(x,i)-a.s., we obtain that

E(x,i)

[
ψ(X

ξ∗(θ)
T , YT )

]
≤ max

i∈Y
max

x∈[αi(θ),βi(θ)]
|ψ(x, i)| <∞,

and therefore

(B.10) E(x,i)

[
|ξ∗T (θ)|

]
≤ E(x,i)

[
ψ(X

ξ∗(θ)
T , YT )

]
+ ψ(x, i) <∞, for any T <∞.

Combining (B.8) and (B.10) we conclude that ξ∗ ∈ Ae. Finally, defining

ξ̂+t (θ) := sup
0≤s≤t

(
αYs(θ)−I(X

ξ̂(θ))s+ξ̂
−
s (θ)

)+

and ξ̂ −
t (θ) := sup

0≤s≤t

(
I(X ξ̂(θ))s+ξ̂

+
s (θ)−βYs(θ)

)+

it is easy to see that ξ̂(θ) := ξ̂+(θ)− ξ̂−(θ) satisfies the properties in Definition 3.1. Since, however,

the solution to SP(α(θ), β(θ), x, i) is unique, it follows that ξ∗,+ ≡ ξ̂+ and ξ∗,− ≡ ξ̂−. �
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APPENDIX C. PROOF OF (1) IN THEOREM 4.1: THE FOKKER-PLANCK COUPLED SYSTEM

We follow closely the proof of Theorem 1 in [23]. Let µθ be the cumulative distribution function of

the stationary distribution νθ (cf. Proposition 4.2). To simplify the notation, we drop the dependence

on θ; that is, we set µ := µθ as well as αi := αi(θ), βi := βi(θ) for any i ∈ Y. We divide the rest of

the proof in three steps.

Step 1. We first derive a variational equation for the function µ. To this end, introduce the generator

Lα,β

(X,Y ) of the process (Xξ, Y ), where Xξ is reflected at the boundaries (α, β) := {(αi, βi)}i∈Y.

Namely, for any φ := (φ(·, i))i∈Y ∈ C2(I;Rd) define

Lα,β

(X,Y )φ(x, i) :=
1

2
σ2(x, i)φxx(x, i) + b(x, i)φx(x, i) +

∑

j∈Y

qijφ̂(x, j), (x, i) ∈ O,

where φ̂(x, i) := φ(α−
i ∨ x ∧ βi, i). From Chapter IV in [24], we have that µ solves the equation

(C.1)
∑

i∈Y

∫ βi

α−
i

Lα,β

(X,Y )φ(x, i)dµ(x, i) = 0, for any φ := (φ(·, i))i∈Y ∈ C2(I;Rd).

Hence, by Theorem 5.3.4 in [6] we obtain that µ is absolutely continuous with respect to the Lebesgue

measure with density function µx.

Next, split the interval [mini∈Y αi,maxi∈Y βi] in the disjoint sub-intervals

Ik = (lk−1, lk), k = 1, ..,K,

with l0 = mini∈Y{αi}, lK = maxi∈Y{βi} and

lk+1 = min
i∈Y:
αi>lk

{αi} ∧ min
i∈Y:
βi>lk

{βi}.

Introduce the set of test functions

(C.2) V :=
{
φ ∈ C2(I;Rd) : φx(x, i) = φxx(x, i) = 0, x ∈ I \ (αi(θ), βi(θ)), for any i ∈ Y

}
.

Since µ(α−
i , i) = 0, for φ ∈ V we observe that

∫ βi

α−
i

φ̂(x, j)dµ(x, i) = µ(βi, i)φ̂(βj , j)−

∫ βj

αj

µ(α−
i ∨ x ∧ βi, i)φx(x, j)dx,

so that, exchanging the indexes in th sum, we find

∑

i∈Y

∑

j∈Y

qij

∫ βi

α−
i

φ̂(x, j)dµ(x, i) =
∑

i∈Y

∑

j∈Y

qijµ(βi, i)φ̂(βj , j)(C.3)

−
∑

i∈Y

∑

j∈Y

qji

∫ βi

αi

µ(α−
j ∨ x ∧ βj , j)φx(x, i)dx.

By substituting (C.3) in (C.1) and rearranging the terms, for any φ ∈ V , we obtain

(C.4)
∑

i∈Y

(
Iiw(µ, φ) + Σi(µ, φ)

)
= 0,
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where

I iw(µ, φ) :=

∫ βi

αi

1

2
σ2(x, i)µx(x, i)φxx(x, i)dx

+

∫ βi

αi

(
b(x, i)µx(x, i)−

∑

j∈Y

qjiµ(α
−
j ∨ x ∧ βj , j)

)
φx(x, i)dx,

Σi(µ, φ) :=
∑

j∈Y

qjiµ(βj , j)φ̂(βi, i).

Step 2. The aim of this step is to gradually use the variational equation (C.4) to obtain the system

(4.10) and the proper regularity of µ. We argue as follows:

(1) First, for any i ∈ Y and k such that Ik ⊂ (αi, βi), choose φ(·, j) = 0 for j 6= i and φ(·, i)
such that suppφ(·, i) ⊂ Ik. For such a choice of φ, we have Σi(µ, φ) = 0, so that from (C.4)

we find I iw(µ, φ) = 0. Thus, setting ψ := φx(·, i), we deduce that the function µ(·, i) is a

solution to the variational equation
∫

Ik

(
1

2
σ2(x, i)µx(x, i)ψx(x, i)dx

+
(
b(x, i)µx(x, i)−

∑

j∈Y

qjiµ(α
−
j ∨ x ∧ βj , j)

)
ψ(x, i)

)
dx = 0,

for any ψ ∈ C2
c (Ik). Therefore, by the interior regularity for elliptic equations (see Theorem

8.10 in [28]), we obtain that µ(·, i) ∈ C2(Ik;R). Since the interval Ik is arbitrary, we obtain

(C.5) µ(·, i) ∈ C2
(
(αi, βi) \

⋃

j∈Y

{αj , βj}
)
,

for any i ∈ Y.

(2) Next, for i ∈ Y we use the enumeration lk = αi < lk+1 < ... < lm−1 < lm = βi
and define ∆f(lj , i) = f(l+j , i) − f(l−j , i) for k < j < m, ∆f(lk, i) = −f(l−k , i) and

∆f(lm, i) = f(l+m, i). Since µ(·, i) ∈ C2(Iℓ) for ℓ = k + 1, ...,m, dividing the domain of

integration into the Iℓ’s and applying integration by parts, for φ ∈ V we obtain

Iiw(µ, φ) = Iis(µ, φ) + Ψi
σ(µ, φ),(C.6)

where

Iis(µ, φ) := −

∫ βi

αi

(
1

2
σ2(x, i)µxx(x, i)− (b(x, i)− σσx(x, i))µx(x, i)

+
∑

j∈Y

qjiµ(α
−
j ∨ x ∧ βj , j)

)
φx(x, i)dx,

Ψi
σ(µ, φ) := −

m∑

j=k

1

2
σ2(lj , i)∆µx(lj , i)φx(lj , i).

In particular, for any i ∈ Y and ℓ such that Iℓ ⊂ (αi, βi), by choosing φ(·, j) = 0 for j 6= i
and φ(·, i) such that suppφ(·, i) ⊂ Iℓ, µ solves the equation Iis(µ, φ) = 0. Hence, since the

i, Iℓ are arbitrary, we conclude that

1

2
σ2(x, i)µxx(x, i)− (b(x, i)− σσx(x, i))µx(x, i) +

∑

j∈Y

qjiµ(α
−
j ∨ x ∧ βj , j) = 0,

in (αi, βi), for any i ∈ Y; that is, µ solves the equation (4.10) pointwise.
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(3) Furthermore, using the latter equation, we deduce that Iis(µ, φ) = 0 for any φ ∈ V . Therefore,

by choosing φ ∈ V such that φx(lj , i) = φxx(lj , i) = 0 for any j, i ∈ Y, from (C.4) and (C.6)

we obtain Σi(µ, φ) = 0. Since the values of φ(βi, i) are arbitrary, this in turn implies that
∑

j∈Y

qjiµ(βj , j) = 0, i ∈ Y.

Such a system of equations corresponds to the eigenvector problem with zero eigenvalue of

the matrix Q and its solution is given by the stationary distribution of Y . Hence, we have

µ(βi, i) = p(i) for any i ∈ Y, proving that the boundary conditions of (4.10) are met.

(4) Finally, using I is(µ, φ) = Σi(µ, φ) = 0 in (C.4), we have

∑

i∈Y

m∑

j=k:
lk=αi,
lm=βi

1

2
σ2(lj , i)∆µx(lj , i)φx(lj , i) = 0, for any φ ∈ V ,

from which we deduce (thanks also to (C.5)) that µ ∈ C1(I;Rd).

Concluding, µ(·, i) ∈ C1([αi, βi])∩C
2((αi, βi)\

⋃
j∈Y{αj , βj}) is a classical solution to the boundary

value problem in (4.10).

Step 3. Now we prove that (4.10) admits a unique solution. Assume that (4.10) has two solutions,

denoted by µ1 = (µ1(·, i))i∈Y and µ2 = (µ2(·, i))i∈Y, then the difference µ̃ := µ2 − µ1 = (µ2(·, i)−
µ1(·, i))i∈Y solves (4.10) with µ̃(x, i) = 0 for x ∈ {αi, βi}. Therefore, by Theorem 1 in [48], we

obtain that

(C.7) 0 ≤ sup
(αi,βi)

∣∣µ̃(x, i)
∣∣ ≤ C max

{αi,βi}

∣∣µ̃(x, i)
∣∣ = 0,

which in turn implies that, for any fixed i ∈ Y, µ2(x, i) = µ1(x, i), x ∈ [αi, βi]. Hence, by

Proposition 4.2 the unique stationary distribution ν admits a cumulative function µ which coincides

with the unique solution to (4.10).
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