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Abstract

We analyze jointly optimal carbon pricing and leverage regulation in a model

with financial constraints and endogenous climate-related transition and physical

risks. The socially optimal emissions tax is below the Pigouvian benchmark (equal

to the direct social cost of emissions) when emissions taxes amplify financial con-

straints, or above this benchmark if physical climate risks have a substantial impact

on collateral values. Additionally introducing leverage regulation can be welfare-

improving only if tax rebates are not fully pledgeable. A cap-and-trade system or

abatement subsidies may dominate carbon taxes because they can be designed to

have a less adverse effect on financial constraints.

Keywords: Pigouvian tax, carbon pricing, financial constraints, climate risk, financial

regulation

JEL classifications: D62, G28, G32, G38, H23
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Non-technical Summary

Tackling climate change requires large-scale emissions reductions and investments in clean

technologies, which have to be incentivized by environmental policies such as carbon

taxes. The associated costs of transitioning to a low-carbon economy may imply sig-

nificant losses for polluting firms and financial institutions exposed to “brown” assets.

At the same time, physical damages caused by more frequent extreme weather events

may hit asset values. This paper studies how these transition and physical climate risks

interact with financial frictions and derives implications for optimal environmental policy

and financial regulation.

We develop a tractable model in which financially constrained borrowers with pollut-

ing assets can decrease emissions through costly abatement investments or by liquidating

assets, but liquidations are inefficient due to liquidation losses. Absent financial con-

straints, a carbon tax equal to the social cost of emissions (referred to as a Pigouvian

tax in reference to the pioneering work by Pigou, 1932) can incentivize borrowers to

invest in abatement and thereby implement the first-best allocation. This is no longer

the case when borrowers are financially constrained. In this case, the optimal carbon

tax differs from the benchmark Pigouvian solution because a regulator needs to trade

off the intended emissions reduction against the side-effect the policy has on borrowers’

financial constraints. Intuitively, an environmental regulator needs to take into account

that increasing carbon taxes constitutes a materialization of climate transition risk that

can trigger inefficient asset liquidations by constrained borrowers. As a result of these

effects, the optimal carbon tax may be set below the benchmark Pigouvian rate.

A key insight from our analysis is that physical climate risks can reverse the relation-

ship between emissions taxes and financial constraints. If physical climate risks have a

substantial effect on collateral values, borrowers may benefit from an increase in pledge-

able income when the aggregate level of emissions is brought down by a higher carbon

tax. This collateral externality of emissions is not internalized by borrowers, and there-

fore optimal carbon taxes may alternatively be above the Pigouvian benchmark rate if

the collateral effects of physical climate risk dominate the effects of transition risk.

Given that financial constraints can hinder the efficient implementation of optimal

environmental policy, we also ask whether complementing emissions taxes with ex-ante

leverage regulation can help. Doing so, we derive an important necessary condition: for
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any additional policy tool to improve welfare, it needs to be the case that carbon taxes

have a direct effect on borrower’s financial constraints. This is only the case if taxes are

not fully rebated to borrowers (for example, through a “carbon dividend”), or if such

tax rebates are not fully pledgeable to outside investors. Analogously, in a cap-and-trade

system purchases of pollution permits only have a direct effect on financial constraints

if pollution permits are not 100% allocated for free to borrowers. This is the case, for

example, in the EU Emissions Trading System where the number of freely allocated

permits has been significantly reduced over recent years.

If tax rebates cannot be fully pledged to outside investors, then there is scope to

complement carbon taxes with other policies. We show that a leverage mandate that

requires borrowers to contribute either a minimum or a maximum level of own capital

can be socially beneficial in this case. Whether a minimum (floor) or a maximum (ceiling)

on capital is needed depends on the effect that relaxing financial constraints has on total

emissions, which depends on whether looser constraints mostly induce borrowers to avoid

liquidating polluting assets, or increase abatement. As an alternative policy, subsidies on

firm’s abatement activities can (somewhat trivially) improve on the solution achieved with

carbon taxes if the subsidy redistributes resources from unconstrained economic agents

to constrained borrowers. The model also highlights an important role the financial

sector can play in enabling more efficient environmental policy in equilibrium, namely

by offering hedging contracts that reduce financial frictions in high-social-cost-of-carbon

states of the world, which in turn enables more efficient carbon pricing in equilibrium.

In summary, this paper sheds light on the relationship between environmental policy,

financial regulation, and the green transition. It highlights the importance of considering

financial frictions when designing environmental policies and demonstrates that optimal

policies depend on the relative importance of climate-related transition and physical

risks in a given economy. Furthermore, the paper establishes a key necessary condition

for the effectiveness of supplementing environmental regulations with other policies when

borrowers may face financial constraints.
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1 Introduction

Tackling climate change requires large-scale emissions reductions and investments in clean

technologies. Absent other frictions, such investments can be incentivized through emis-

sions taxes set at a rate equal to the social cost of emissions, also known as Pigouvian

taxes in reference to the pioneering work by Pigou (1932). However, during the transi-

tion to a low-carbon economy firms and financial institutions may suffer significant losses

due to stranded assets that become technologically obsolete. At the same time, physical

damages caused by more frequent extreme weather events may hit asset values. Such

losses can aggravate financing frictions, limit the ability of firms to make the necessary

investments in green technologies, and constrain regulators in designing environmental

policies (see Hoffmann et al., 2017; Oehmke and Opp, 2022b; Biais and Landier, 2022).

Accordingly, the risks posed by climate change have moved up the agenda of investors

and policy makers.1

We contribute to the debate by providing an analytical evaluation of jointly optimal

carbon pricing and financial regulation in a setting with financial constraints and endoge-

nous climate-related transition and physical risks. Our analysis shows that the relative

strength of these two climate-related risks crucially affects the way in which emissions

taxes interact with financial constraints. We draw implications for optimal environmen-

tal policy and derive necessary conditions under which it can be welfare-improving to

complement emissions taxes with ex-ante leverage regulation. The model also underlines

the role of the financial sector in hedging climate-related risks, which may enable more

efficient environmental policy in equilibrium.

In the model there are three dates and two types of agents: borrowers and deep-

pocketed, risk-neutral lenders. Borrowers have an initial endowment and access to an

investment project. At the initial date, they finance the project with a mix of inside

equity and debt. Equity financing is costly because borrowers have a quasi-linear utility

function and a limited initial endowment. The borrower’s project generates a pecuniary

1For example, the European Central Bank and the Bank of England now include climate risks in their
stress tests (see Alogoskoufis et al., 2021; Brunnermeier and Landau, 2022), and institutional investors
view climate change as an important source of risk that they seek to mitigate (Krueger et al., 2020).
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return as well as carbon emissions at the final date. The social cost of emissions is not

known ex-ante, reflecting the uncertainty evident in the wide range of estimates of the

social cost of carbon (e.g., see Nordhaus, 2018). At the interim date, all agents learn

whether the economy is in a good state with a low social cost of emissions, or a bad state

with a high cost of emissions. After learning the social cost, emissions can be reduced

through costly abatement activities undertaken by borrowers at the interim date. At the

same time, borrowers need to roll-over debt raised in the initial period, but new debt

issuance is limited by a financial constraint because the project’s returns are not fully

pledgeable to outside investors. Cash-constrained borrowers can liquidate part of the

initial investment at the interim date to generate resources and at the same time reduce

emissions, yet liquidations are inefficient due to liquidation losses.

Borrowers are exposed to two different types of climate-related risks. First, we con-

sider an environmental regulator imposing state-contingent emissions taxes to incentivize

costly abatement activities, which represent the costs of transitioning to a low-carbon

economy (often referred to as “transition risk” in the literature).2 Second, we assume

that the return of the project may decrease in the level of aggregate emissions to cap-

ture a borrower’s exposure to financial losses due to environmental damages caused by

a warming climate (often termed as “physical risk”).3 Both climate-related risks are en-

dogenous in the model: transition risk is a consequence of emissions taxes optimally set

by an environmental regulator, and financial losses due to physical climate risks depend

on aggregate emissions that are a function of abatement activities and investment de-

cisions by borrowers. This allows us to explore the differences in how these two types

of climate-related risks interact with financial frictions and affect optimal environmental

and financial policies in equilibrium.

2Consistent with transition risks being priced in financial markets, recent evidence documents that
firm-level carbon emissions are priced in corporate bonds (see Seltzer et al., 2020), stocks (see Bolton and
Kacperczyk, 2021), and options (see Ilhan et al., 2021), and that the risk of stranded fossil fuel assets is
priced in bank loans (see Delis et al., 2019).

3Several contributions document the relevance of physical risk for asset prices and firm financing. For
example, Giglio et al. (2021) find that the value of real estate in flood zones responds more to changes
in climate attention, and Issler et al. (2020) document an increase in delinquencies and foreclosures after
wildfires in California. Evidence in Ginglinger and Moreau (2019) indicates that physical climate risks
affect a firm’s capital structure. For a review discussing climate risks, see Giglio et al. (2021).
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As a benchmark, we show that a state-contingent emissions tax equal to the social

cost of emissions (i.e., a Pigouvian tax) implements the first-best allocation if financial

constraints are slack in all states. In the first-best allocation, there are no liquidations

and the optimal abatement scale trades off the social benefit of lower emissions against

abatement costs. However, in equilibrium the financial constraint may bind (particularly

in the bad state where a high social cost of emissions necessitates high emissions taxes and

abatement investments). In this case, Pigouvian taxes cannot implement the first best,

and optimal emissions taxes generally differ from the Pigouvian benchmark. The reason

is that a constrained borrower has a limited ability to finance abatement and therefore

needs to inefficiently liquidate some of the project at the interim date. Consequently, the

socially optimal emissions tax needs to trade off the benefit of lower emissions against

the cost of triggering inefficient liquidations. This implies an optimal emissions tax below

the Pigouvian benchmark because borrowers are “too levered for Pigou”.4

A key insight from our analysis is that physical climate risks can reverse the rela-

tionship between emissions taxes and financial constraints. If physical climate risk has a

substantial effect on collateral values, borrowers may benefit from an increase in pledge-

able income when the aggregate level of emissions is brought down by a higher emissions

tax.5 Because of this collateral externality the optimal emissions tax may be above the

Pigouvian benchmark rate if the effects of physical climate risk dominate the effects of

transition risk. More broadly, we show that financial constraints call for a generalized

Pigouvian tax that takes climate-induced collateral externalities into account.

To evaluate whether it may be welfare-improving to combine emissions taxes with

other policy tools, we analyze under what conditions the allocation implemented with

emissions taxes is constrained efficient (i.e., equivalent to an allocation chosen by a planner

maximizing social welfare subject to the same constraints as private agents). In a first

4The mechanism behind this result is consistent with recent evidence documenting that financial con-
straints affect firm abatement activities and emissions, see Xu and Kim (2022) and Bartram et al. (2021).

5This effect is similar to collateral externalities in models with pecuniary externalities, where bor-
rowers do not internalize the effect of their choices on the financial constraints of other agents through
prices (for a detailed discussion, see Dávila and Korinek, 2018). In our setting, the collateral externality
operates through the physical costs of environmental damages caused by higher emissions, which reduce
a borrowers’ pledgeable income.
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step, we consider a benchmark where emissions taxes are fully rebated to borrowers, and

tax rebates are fully pledgeable to outside investors, so that emissions taxes have no direct

effect on financial constraints. In this case, the competitive equilibrium with optimally

set emissions taxes is constrained efficient. This implies that, while financial constraints

generally imply optimal emissions taxes different from a Pigouvian benchmark, there is

no scope to improve welfare using additional policy instruments when tax rebates are

fully pledgeable.

By contrast, when tax rebates are partially non-pledgeable, the allocation is not con-

strained efficient, and combining emissions taxes with other policy tools can be welfare-

improving. Given the central role of financial constraints, we consider a leverage mandate

that allows the regulator to fix the initial level of equity of borrowers at a given level. Such

a policy can be implemented through direct leverage mandates or, alternatively, through

taxes and subsidies on initial leverage. To understand the role of leverage regulation in

the model, note that, (i) when emissions taxes have a direct effect on financial constraints

there remains a wedge between the social and the private cost of emissions even when

emissions taxes are set optimally; and (ii) a borrower’s initial leverage affects emissions

because they affect financial constraints and therefore liquidations and abatement activ-

ities at the interim date. Together, these two points imply that borrowers make socially

inefficient leverage choices, and consequently there is a role for leverage regulation to

improve welfare.

The model focuses on an environment in which the presence of financial constraints

alone does not motivate financial regulation. This is important because it allows us to

establish the conditions under which the environmental externality provides a rationale

for leverage regulation. We thus contribute to the debate on whether financial regu-

latory frameworks should consider climate-related risks beyond the prudential motive

behind current regulatory frameworks (such as moral hazard problems due to govern-

ment guarantees or pecuniary externalities, see, for example, Dewatripont and Tirole,

1994; Hellmann et al., 2000; Lorenzoni, 2008; Martinez-Miera and Repullo, 2010; Bahaj

and Malherbe, 2020). While we are agnostic about whether borrowers in the model are
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non-financial firms or financial institutions, interpreting borrowers as firms may be more

appealing given firms are the final holders of polluting assets and pay emissions taxes.

Under this interpretation, the model prescribes that leverage regulation (or taxes and

subsidies) should be directly applied to firms. Alternatively, we show in the appendix

that the model is equivalent to one in which borrowers are banks that make loans to firms,

which use these loans to finance investment, abatement costs, and emissions taxes (this

equivalence holds if there is no friction between banks and firms, and banks capture all

surplus). Under this interpretation, leverage regulation can be applied directly to banks

within the current Basel regulatory framework.

In additional analyses we consider alternative policy tools. In a frictionless world,

emissions taxes are equivalent to a cap-and-trade system with tradable pollution per-

mits, such as the EU Emission Trading System (EU ETS) (see Montgomery, 1972). We

show that in the presence of financial constraints this equivalence only holds if the pledge-

ability of tax rebates is equal to the fraction of freely allocated permits. This implies

that freely allocating pollution permits can eliminate the direct effect of carbon pricing

on financial constraints and implement a constrained-efficient allocation. This is an im-

portant policy insight given real-world cap-and-trade systems (including the EU ETS)

typically do not allocate 100% of permits for free.

Perhaps trivially, the most effective policy tools create financial slack by transferring

resources from unconstrained investors to constrained borrowers. Such transfers can im-

plement the first-best allocation and can either be implemented directly, or indirectly

through abatement subsidies financed with taxes paid by unconstrained agents. We also

show that hedging can have a positive effect on equilibrium environmental policy. When

borrowers can hedge climate-related risks, financial constraints are less binding in the

bad state and may even become slack, which may enable the environmental regulator to

implement the first-best allocation using Pigouvian taxes. This highlights an important

role the financial sector can play in the transition to a low-carbon economy, distinct from

socially responsible investing that aims to reduce emissions by taking environmental and

social factors into account in investment decisions (e.g., see Pástor et al., 2021; Oehmke
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and Opp, 2022b; Goldstein et al., 2022; Gupta et al., 2022).

This paper relates to several recent contributions that study environmental externali-

ties and green investment under financial and other economic frictions (Tirole, 2010; Biais

and Landier, 2022). Recent contributions by Hoffmann et al. (2017), Oehmke and Opp

(2022b), and Heider and Inderst (2022) also find that, in the presence of financial con-

straints, Pigouvian taxes cannot implement a first-best allocation, and optimal emissions

taxes generally differ from the standard Pigouvian solution.6 Relative to these papers,

our contribution is that we analyze jointly optimal carbon pricing and leverage regulation,

and that our model features endogenous climate transition and physical risks. This allows

us to derive novel insights on how these two climate-related risks differ in their impact on

environmental and financial policies.7 Another related contribution is Oehmke and Opp

(2022a), who analyze capital requirements as a tool to incentivize bank lending to green

firms when emissions taxes are not available. Dávila and Walther (2022) more generally

study optimal regulation when policy instruments are imperfect, with an application to

risk-weighted capital requirements that take environmental externalities into account. In

contrast, we take optimally-set emissions taxes as a starting point, and ask under what

conditions it may be beneficial to complement emissions taxes with leverage regulation in

a setting in which there is no motive for financial regulation absent environmental exter-

nalities. Another related strand of literature uses DSGE models with financial frictions

to simulate the effect and optimal design of macroprudential and monetary policies in

the presence of environmental externalities (Carattini et al., 2021; Dafermos et al., 2018;

Diluiso et al., 2020; Ferrari and Landi, 2021). We contribute by providing analytical

results that allow to pinpoint the friction motivating financial regulation in this context.

6The literature also shows that a Pigouvian solution may be sub-optimal in the presence of hetero-
geneity or interaction between several externality-generating activities (Diamond, 1973; Rothschild and
Scheuer, 2014). Moreover, a wedge between the optimal tax rate and the marginal social cost emerges
when the planner seeks to regulate an externality in the presence of other distortionary taxes (Sandmo,
1975; Lee and Misiolek, 1986; Bovenberg and Goulder, 1997; Bovenberg and De Mooij, 1997; Barrage,
2020) or when consumers have self-control problems (Haavio and Kotakorpi, 2011). In these cases, as in
our setting, the indirect effects of the policy motivate the deviation from the Pigouvian solution.

7Hoffmann et al. (2017) also consider credit subsidies that support abatement investment. These
policy instruments are different from the ex-ante leverage regulation we consider but are similar to the
abatement subsidy explored in Section 4.5. Both credit and abatement subsidies transfer resources to
constrained agents while motivating green investment.
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Section 2 describes the model setup and derives the first best benchmark. Section 3

solves the competitive equilibrium, and Section 4 analyzes optimal financial and environ-

mental regulation. Section 5 concludes.

2 Model Setup

There are three dates, t = 0, 1, 2, a unit mass of investors, and a unit mass of borrowers.

At t = 1 all agents learn whether the economy is in a good state (s = G) with a low

social cost of emissions, or in a bad state (s = B) with a high social cost of emissions.

The state of the world is drawn from a binomial distribution with the probability of the

bad state given by q.

Preferences and Endowments. Investors are risk-neutral and deep-pocketed in that

they have a large endowment Ait at t = 0 and t = 1. Borrowers have a limited endowment

Ab0 only at t = 0 and quasi-linear utility over consumption. There is no discounting and

all agents suffer disutility from aggregate carbon emissions Ea
s at t = 2:

U i = ci0 + ci1s + ci2s − γusE
a
s ,

U b = u(c0) + c1s + c2s − γusE
a
s ,

where γus is a parameter governing the cost of emissions in agent’s utility, which depends

on the state of the world s ∈ {G,B}. In the bad state γus takes a high value γuB > γuG. In

the good state, we normalize γuG = 0.

The quasi-linear utility function introduces a meaningful trade-off for borrowers in how

much own funds they contribute. To ensure an interior solution we assume that u(c0)

satisfies the Inada conditions, i.e., that u(c0) is strictly increasing and strictly concave,

and that in the limit u′(0) = ∞ and u′(∞) = 0. Agents are atomistic, so that they do

not internalize the effect of their decisions on aggregate carbon emissions Ea
s .
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Technology. At t = 0 borrowers can invest in a productive technology with a fixed

scale at an investment cost I0. At t = 1 borrowers can liquidate some of the initial

investment and adjust the investment scale to I1s ≤ I0. The project generates a return

of R(I1s, E
a
s , γ

p
s ) = ρI1s− γpsE

a
s at t = 2, and liquidations generate a payoff µ(I0 − I1s) at

t = 1, with µ < 1.

The parameter γps captures the project’s exposure to physical climate risk from envi-

ronmental damages. Just as the utility cost of emissions, the exposure to physical risk

depends on the realized state of the world s, with γpB ≥ 0 and γpG = 0. Thus, the total

social cost of emissions consists of a direct utility cost as well as losses in asset values from

environmental damages, γs = 2γus + γps . The social cost of emissions is uncertain from an

ex-ante perspective, capturing the uncertainty evident in the wide range of estimates of

the social cost of carbon (for example, see Nordhaus, 2018).8

The project emits carbon emissions E(Xs, I1s) at t = 2, which aggregate to Ea
s and

may be subject to emissions taxes τs.
9 Emissions can be reduced by abatement invest-

ments, denoted by Xs, at a cost C(Xs, I1s) paid at t = 1. We offer two possible interpre-

tations of this setup. Borrowers may represent non-financial firms that directly invest in a

polluting asset, such as manufacturing firms investing in polluting plants. Alternatively,

we show in Appendix B.2 that, under certain conditions, the setup is equivalent to one

in which borrowers are financial institutions that lend to firms with polluting assets. In

the latter case, borrowers pay for emissions taxes and abatement costs indirectly through

the profitability of their loan portfolios.

We make the following functional form assumptions.

Assumption 1. E(X, I1) and C(X, I1) satisfy

1. ∂E(X,I1)
∂X

≤ 0, ∂E(X,I1)
∂I1

≥ 0, ∂C(X,I1)
∂X

≥ 0, ∂C(X,I1)
∂I1

≥ 0,

2. E(X → ∞, I0) = E(X, 0) = 0, E(0, I0) = Ē, C(0, I1) = C(X, 0) = 0,

8While uncertainty is not a necessary model ingredient for our baseline results, it allows us to study
the role that financial markets can play in facilitating the use of more efficient environmental policy by
enabling hedging of climate risks (see Section 4.6). The framing also permits us to study how future
environmental policy may affect long-run investments and result in stranded assets.

9Formally, using b to index individual borrowers, Ea
s =

∫ 1

0
E(Xb

s , I
b
1s)db. To simplify notation,

throughout the paper we do not use superscripts to index borrowers.
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3. ∂2E(X,I1)
∂X2 = 0, ∂2C(X,I1)

∂X2 > 0.

Assumption 1.1 ensures that abatement investments are costly but reduce emissions,

and that a higher final investment scale is associated with higher emissions and abatement

costs. Assumption 1.2 defines boundaries such that costs and emissions are non-negative,

and there is an upper bound Ē on emissions. Assumption 1.3 implies that emissions are

linear in abatement, which simplifies the exposition, but that the cost of abatement is

strictly convex, so that the borrower’s optimal abatement choice has an interior solution.

Environmental Regulation. After production takes place, an environmental regula-

tor can observe emissions and impose a state-contingent emissions tax τs per unit of emis-

sions.10 Emissions taxes are rebated lump-sum to borrowers, Ts = τsE
a
s . Section 4 derives

socially optimal emissions taxes and discusses efficiency. Subsections 4.4 and 4.5 also con-

sider other environmental policies in the form of a pollution permit market and an abate-

ment subsidy. Given the role of financial constraints in the model, in Subsection 4.3 we

study whether there is scope for financial regulation to complement environmental policy.

Financing. Borrowers need to finance the upfront investment I0 at t = 0 and abatement

Xs at t = 1. At t = 0 they can contribute their own funds as inside equity financing

e ≤ Ab0. Additionally, borrowers can raise debt financing d0 and d1s from investors at

t = 0, 1. In Section 4.6 we also allow hedging and derive interesting additional insights

on how it can affect equilibrium environmental policy.

Borrowing is limited by a moral hazard problem. We assume that borrowers can

abscond with any resources except a fraction θ ∈ [0, 1] of asset returns, and a fraction

ψ ∈ [0, 1] of tax rebates at t = 2. Thus, there is a wedge between the project’s re-

turn and pledgeable income, with pledgeable project returns given by R̃(I1s, E
a
s , γ

p
s ) =

θR(I1s, E
a
s , γ

p
s ) (as in Rampini and Viswanathan, 2013, among others). We introduce a

separate pledgeability parameter for tax rebates to be able to perform key comparative

10We only consider a linear tax because there is no heterogeneity among borrowers, and therefore a non-
linear tax cannot improve upon a linear tax. See Hoffmann et al. (2017) for a model with heterogeneity,
in which a non-linear tax can be a superior policy instrument because it transfers less resources from
more to less constrained firms.
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statics exercises. For example, when ψ = 1 tax rebates are fully pledgeable and emissions

taxes have no direct effect on financial constraints, while the opposite holds when ψ < 1.

At the interim date the liquidation proceeds µ(I0−I1s) can be seized by investors who

provided t = 0 financing (that is, liquidation proceeds are pledgeable). Investors can de-

mand liquidation if they choose not to roll over their debt and are not fully repaid at t = 1.

Variable Definitions. For the further analysis it will be useful to introduce the fol-

lowing variable definitions and assumptions:

Definition 1. The project’s private net marginal return r(τ,X, I1) and pledgeable net

marginal return r̃(τ,X, I1) are respectively defined as

r(τ,X, I1) = ρ− µ− ∂C(X, I1)

∂I1
− τ

∂E(X, I1)

∂I1
,

r̃(τ,X, I1) = θρ− µ− ∂C(X, I1)

∂I1
− τ

∂E(X, I1)

∂I1
.

Assumption 2. Project returns ρ are sufficiently large and pledgeability θ sufficiently

small such that, given a threshold τ̄ ≥ γB,

1. r(τ,X, I1) > 0, ∀X, I1, τ ≤ τ̄

2. r̃(0, X, I1) < 0, ∀X, I1.

The first condition ensures that continuing the investment project has positive NPV

at t = 1 as long as emissions taxes do not exceed some threshold τ̄ . Throughout the

paper we focus on the interesting case τB ≤ τ̄ , such that it is efficient to continue rather

than liquidate the project even in the bad state with a high social cost of carbon. The

second condition ensures that liquidation proceeds µ exceed the loss in pledgeable income

due to a reduced investment scale. This implies that, while inefficient, liquidations relax

financial constraints.
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2.1 First-Best Benchmark

Proposition 1. In the first-best allocation I1s = I0, and optimal t = 0 consumption by

borrowers, c0, and optimal abatement, Xs, are defined by the following conditions:

u′(c0) = 1,

γs
∂E(X, I1s)

∂Xs

= −∂C(Xs, I1s)

∂Xs

.

Proof. See Appendix A.1

In the first-best allocation, the optimal abatement equates the marginal gain from

lower emissions to the marginal cost of abatement. The borrower’s consumption is at

a level that ensures the marginal utility is equalized across agents and time. Crucially,

there are no liquidations because liquidations are inefficient by Assumption 2. The next

section shows that this may be different in the competitive equilibrium, where financially

constrained borrowers may need to liquidate some of their initial investment.

3 Competitive Equilibrium

This section solves the problem of borrowers and defines a competitive equilibrium given

a state-contingent emissions tax τs but without financial regulation. We analyze optimal

emissions taxes and compare the allocation to an equilibrium with financial regulation

and other policy tools in the next section.

3.1 Borrower Problem

The borrower’s expected utility is given by

E[U b] = u(c0) +
∑

k∈{G,B}

Pr[s = k] (c1k + c2k − γukE
a
k) .
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Borrowers maximize their expected utility subject to the following constraints:

c0 = Ab0 − e ≥ 0, (1)

c1s = (I0 − I1s)µ+ d1s − (I0 − e)− C(Xs, I1s) ≥ 0, (2)

c2s = R(I1s, E
a
s , γ

p
s )− τsE(Xs, I1s)− d1s + Ts ≥ 0, (3)

d1s ≤ R̃(I1s, E
a
s , γ

p
s )− τsE(Xs, I1s) + ψTs, (4)

I1s ∈ [0, I0]. (5)

Equations (1), (2) and (3) are non-negativity constraints on consumption at t = 0, 1, and

2, respectively. Eq. (4) is a financial constraint that ensures t = 1 borrowing does not ex-

ceed pledgeable income, which implies borrowers have no incentive to abscond at t = 2.11

Using the budget constraints to eliminate c0, c1s, c2s, d0, and d1s, the borrower’s

problem can be formulated as a Lagrange function of e,Xs, I1s as well as Lagrange mul-

tipliers λs for the t = 1 financial constraint in state s, and κ’s serving as multipliers for

lower and upper bounds on variables. The Lagrangian is formally stated in Eq. (18) in

Appendix A.2.1.

3.2 Borrower Decisions at t = 1

At t = 1 borrowers observe the realization of the aggregate state s, and then choose Xs

and I1s. In principle, borrowers could also default on t = 0 debt, yet the following lemma

shows that this is never optimal:

Lemma 1. Borrowers prefer to roll-over t = 0 debt by raising d1 ≥ d0, rather than

defaulting on t = 0 debt.

Proof. In Appendix A.2.2

The intuition is that investors can recoup t = 0 debt by forcing liquidation of the

project, so that borrowers are better off rolling over the debt to avoid forced liquidations.

11Eq. (4) is equivalent to an incentive-compatibility condition c2s ≥ (1− θ)R(I1s, E
a
s , γ

p
s ) + (1−ψ)Ts.
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Xs and I1s are chosen according to the following first order conditions:

(1 + λs)

(
τs
∂E(Xs, I1s)

∂Xs

+
∂C(Xs, I1s)

∂Xs

)
= 0, (6)

r(τs, Xs, I1s) + λsr̃(τs, Xs, I1s)− κIs + κIs = 0. (7)

In Eq. (6) borrowers choose abatement trading off the tax bill associated with carbon

emissions against the cost of abatement. Eq. (7) is the first order condition with respect

to I1s, which uses Definition 1 of private net marginal return and pledgeable net marginal

return, r(·) and r̃(·). Together with the following condition,

λs[R̃(I1s, E
a
s , γ

p
s )− τsE(Xs, I1s) + ψTs + e− I0 + µ(I0 − I1s)− C(Xs, I1s)] = 0, (8)

which combines the complementary slackness conditions of the financial constraint (4) and

non-negativity constraint of c1s (2), these conditions define the optimal state-contingent

t = 1 allocations I1s, Xs, and λs for a given τs and e (the optimality condition for equity

is derived below).

Lemma 2. Borrowers do not liquidate any investment if the financial constraint (4) is

slack. That is, if λs = 0, then I1s = I0. In contrast, if λs > 0, then borrowers liquidate

some investment so that I1s < I0.

Proof. In Appendix A.2.3

Lemma 2 follows from Assumption 2, which implies that the net marginal return is

positive and therefore it is optimal to continue the project without any liquidations, i.e.,

the optimum is a corner solution with I1s = I0 and κIs = r(τs, Xs, I1s) > 0. By contrast, if

the financial constraint is binding, λs > 0, the pledgeable income under the full investment

scale is insufficient to support the required borrowing. Since liquidations relax financial

constraints (by Assumption 2.2), in this case borrowers reduce the investment scale at

t = 1 by choosing I1s < I0.
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3.3 Borrower Decisions at t = 0

At t = 0 borrowers decide on their capital structure by choosing the optimal equity e

(debt financing follows as the residual d0 = I0 − e). The first order condition of the

borrower’s problem w.r.t. e is given by

u′(Ab0 − e) =1 + κe + (1− q)λG + qλB. (9)

Condition (9) shows that borrowers contribute equity trading off the marginal utility cost

of lower t = 0 consumption on the left-hand side against the marginal utility of t = 1

consumption plus the expected shadow cost of the financial constraint on the right-hand

side. The first order conditions and complementary slackness condition together define

the competitive equilibrium:

Definition 2. Given a state-contingent emissions tax τs, the competitive equilibrium

is the set of allocations I∗1s(τs), X
∗
s (τs), λ

∗
s(τs), e

∗(τG, τB), defined by Equations (6), (7),

(8), and (9). Aggregate emissions are given by Ea
s (τs) = E(X∗

s , I
∗
1s). The allocations

c∗0(τG, τB), c
∗
1s(τs), c

∗
2s(τs), and d

∗
0(τG, τB) follow as residuals from Eqs. (1), (2), (3), and

d0 = I0 − e.

For brevity we sometimes omit the dependence of equilibrium allocations on τs. For

instance, we refer to X∗
s (τs) as X

∗
s , or to e

∗(τG, τB) as e
∗.

3.4 Pigouvian Benchmark

Proposition 2. If λ∗s(γs) = 0, ∀s ∈ {G,B}, then the competitive equilibrium with τs = γs

is equivalent to the first-best allocation.

Proof. With λ∗s(γs) = 0, ∀s ∈ {G,B}, it follows from Lemma 2 that I∗1s = I0. This

investment level, as well as the FOCs of borrowers w.r.t. Xs and e in Eqs. (6) and (9),

are then equivalent to those in the first best given in Proposition 1.

Proposition 2 establishes an important benchmark result. If the financial constraint is

slack in all states, then by Lemma 2 borrowers can avoid inefficient liquidations, and the
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optimal Pigouvian emissions tax can implement the first-best allocation. Accordingly,

throughout we refer to a tax τs = γs ∀s ∈ {B,G} as the Pigouvian benchmark. In the

next section we depart from this benchmark and analyze optimal emissions taxes when

the financial constraint binds.

4 Carbon Pricing and Financial Regulation

To analyze optimal emissions taxes in the presence of financial constraints, we consider

the problem of an environmental regulator who sets a state-contingent emissions tax τ ∗s

after observing the social cost of emissions at t = 1. We then show under what conditions

the resulting equilibrium allocation is constrained efficient, and ask whether there is a

case to combine emissions taxes with leverage regulation.

4.1 Socially Optimal Emissions Tax

To derive the optimal τs, we solve the problem of a regulator choosing the optimal tax

at t = 1 so as to maximize social welfare. This problem can be written as the following

Lagrangian with κτs the multiplier on the non-negativity constraint on τs:

max
τG,τB

W = Ai0 + Ai1 + u(Ab0 − e∗) + e∗ − I0 + κe(e
∗ − I0 + µI0)

+
∑

k∈{B,G}

Pr[s = k] {R(I∗1k, Ea
k , γ

p
k) + µ(I0 − I∗1k)− 2γukE(X

∗
k , I

∗
1k)− C(X∗

k , I
∗
1k) + κτkτk} .

(10)

The regulator’s first order condition with respect to τs can be written as:

r(γs, X
∗
s , I

∗
1s)
∂I∗1s
∂τs

− (γs − τs)
∂E(X∗

s , I
∗
1s)

∂X∗
s

∂X∗
s

∂τs
+ κτs = 0. (11)

In this condition, the final investment scale I∗1s and abatement X∗
s are optimal choices

by private agents that respond to changes in emissions taxes. In setting the emissions

tax, the regulator takes into account the effect of the tax on these equilibrium allocations.
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4.1.1 The Effect of Taxes on Equilibrium Allocations

Higher emissions taxes increase the cost of polluting, which incentivizes borrowers to

invest more in abatement. But higher emissions taxes also affect the tightness of financial

constraints, which may induce borrowers to abate less. Through this indirect effect,

emissions taxes can have a perverse effect and decrease abatement due to tightening

financial constraints. To focus on the interesting case in which emissions taxes are a

useful tool to incentivize abatement to begin with, we introduce parameter assumptions

that ensure the direct effect of emissions taxes on abatement dominates.

Assumption 3. Model parameters are such that ∂X∗
s

∂τs
> 0 ∀τs, as characterized in Ap-

pendix A.3.1.

The following Lemma additionally clarifies how liquidations and therefore the equi-

librium investment scale I∗1s responds to emissions taxes.

Lemma 3. If the financial constraint is slack, λ∗s(τs) = 0, then
∂I∗1s
∂τs

= 0 and ∂X∗
s

∂τs
> 0.

Under Assumption 3, if the financial constraint binds, λ∗s(τs) > 0, then ∂X∗
s

∂τs
> 0 and there

exists a threshold characterized by γ̂ps (τs) =
ψ
θ
τs+

(1−ψ)
θ
E(X∗

s , I
∗
1s)

∂2C(X∗
s ,I

∗
1s)

∂(X∗
s )

2 /
(
∂E(X∗

s ,I
∗
1s)

∂X∗
s

)2
,

such that

• ∂I∗1s
∂τs

< 0 if γps < γ̂p(τs),

• ∂I∗1s
∂τs

= 0 if γps = γ̂p(τs),

• ∂I∗1s
∂τs

> 0 if γps > γ̂p(τs).

Proof. See Appendix A.3.1

Only if the financial constraint binds, λ∗s(τs) > 0, borrowers need to liquidate invest-

ments to be able to roll-over their debt. Interestingly, higher emissions taxes can result

in more or less liquidations, depending on how strongly asset values are affected by phys-

ical climate risk, as captured by γps . The overall effect of emissions taxes on the final
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investment scale follows from totally differentiating (8) with respect to τs:

∂I∗1s
∂τs

=

Direct effect︷ ︸︸ ︷
(1− ψ)E(X∗

s , I
∗
1s)+

Collateral externality︷ ︸︸ ︷
(θγps − ψτs)

∂Ea
s

∂X∗
s

∂X∗
s

∂τ

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s)

(12)

This equation highlights that emissions taxes affect the final investment scale via two

channels that operate through financial constraints. First, changes in the tax directly

affect the size of the tax bill and the tax rebate. Since only a fraction ψ of the tax

rebate is pledgeable this direct effect of the emissions tax on the tightness of the financial

constraint is proportional to (1− ψ)E(X∗
s , I

∗
1s).

Second, changes in abatement also affect the aggregate level of emissions, which im-

pact borrowers’ pledgeable income via two collateral externalities. Physical climate risk

represents a negative collateral externality because higher aggregate emissions result in

larger physical damages to borrowers’ assets, decreasing pledgeable income by θγps . Thus

in the presence of physical climate risk higher emissions taxes partly relax financial con-

straints. At the same time, there is a positive collateral externality because tax rebates

are a function of aggregate emissions. This implies that lower aggregate emissions reduce

the tax rebate, decreasing pledgeable income by ψτs.

Overall, the effect of emissions taxes on financial constraints and liquidations depends

on the relative strength of the direct effect of taxes on pledgeable income, and the indirect

effects due to collateral externalities.12 When borrowers’ exposure to physical climate risk

is low such that γps < γ̂p, the direct effect and tax rebate externality dominate, so that

higher emissions taxes imply tighter constraints and more liquidations. If borrowers’

exposure to physical climate risk is high such that γps > γ̂p, the equilibrium effect of

emissions taxes that lowers the physical risk dominates, so that higher emissions taxes

12Note that, because higher taxes induce an endogenous change in abatement by borrowers, they also
affect abatement costs. On one hand, higher abatement increases abatement costs, tightening financial
constraints. On the other hand, higher abatement reduces emissions and thereby the tax bill, easing
financial constraints. Therefore, an additional term that shows up in the numerator of Eq. (12) is

−
(

∂C(X∗
s ,I

∗
1s)

∂X∗
s

+ τ
∂E(X∗

s ,I
∗
1s)

∂X∗
s

)
∂X∗

s

∂τ . However, by the borrower’s optimal abatement choice in Eq. (6), this

term is equal to zero, so that this channel has no marginal effect on financial constraints and drops out
from Eq. (12).
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relax financial constraints and result in fewer liquidations.

4.1.2 Optimal Emissions Tax

Because emissions taxes interact with financial constraints, the regulator considers not

only the direct effect of taxes on emissions, but also their side effect on asset liquidations.

Proposition 3. The optimal emissions tax τ ∗s solves (11). If λ∗s(γs) = 0 or γs = 0, then

τ ∗s = γs. If λ
∗
s(γs) > 0 and γs > 0, then the optimal emissions tax depends on the strength

of physical risk γps , and on the pledgeability of tax rebates ψ and cash flows θ. If ψ ≥ θ,

the optimal emissions tax is always below the direct social cost of emissions, τ ∗s < γs. If

ψ < θ, then

• τ ∗s < γs if γ
p
s < γ̂p(τ ∗s ),

• τ ∗s = γs if γ
p
s = γ̂p(τ ∗s ),

• τ ∗s > γs if γ
p
s > γ̂p(τ ∗s ),

Proof. See Appendix A.3.2

With binding financial constraints, λ∗s(γs) > 0, the optimal emissions tax generally

differs from the Pigouvian benchmark equal to the direct social cost of emissions γs,

because the regulator needs to account for the effect of the policy on liquidations. To

disentangle the results in Proposition 3, we discuss three polar cases: (i) tax rebates are

not pledgeable and physical climate risk has no effect on collateral values (ψ = γps = 0);

(ii) tax rebates are not pledgeable but physical climate risk has an effect on collateral

values (ψ = 0, γps > 0); and (iii) tax rebates are pledgeable and physical climate risk has

an effect on collateral values (ψ > 0, γps > 0).

(i) No physical risk (ψ = γps = 0). With non-pledgeable tax rebates and absent

physical climate risk effects, there is no collateral externality and emissions taxes affect

financial constraints only through their direct effect on pledgeable income. In this case,

higher taxes trigger inefficient liquidations (see Lemma 3). Internalizing this undesired
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side effect, an environmental regulator sets an emissions tax below the direct social cost

of emissions, τ ∗s < γs. Intuitively, regulators set a lower carbon tax because they under-

stand that higher taxes constitute a realization of climate transition risk for financially

constrained borrowers. Put differently, optimal emissions taxes are below the Pigouvian

benchmark because borrowers are “too levered for Pigou”.

(ii) Physical risk (ψ = 0, γps > 0). Physical climate risk implies that emissions taxes

affect borrower’s financial constraints not only through their direct effect, but also through

a collateral externality. The relative importance of this effect depends on how strongly

collateral values are exposed to physical climate risk, as measured by γps . If γ
p
s < γ̂ps , the

direct effect dominates and the trade-off resembles the one in case (i) above. This case

applies when climate transition risks dominate physical climate risk effects, for example

in economies with large polluting industries. By contrast, if the effect of physical climate

risk on collateral values is sufficiently high such that γps > γ̂ps , then higher emissions

taxes ease financial constraints (see Lemma 3). As a result, the trade-offs faced by an

environmental regulator change fundamentally, implying optimal emissions taxes above

the direct social cost of emissions, τ ∗s > γs. Such a case may apply to economies that are

heavily exposed to the risk of weather disasters such as droughts or floodings that have

a negative effect on asset values.

(iii) Plegeability (ψ > 0, γps > 0). With (partially) pledgeable tax rebates, the over-

all collateral externality effect of emissions taxes depends not only on the impact due

to physical climate risk, but also due to changes in the size of tax rebates. The latter

represents a positive collateral externality of emissions, thereby counteracting the nega-

tive collateral externality due to physical risk. Which of the two collateral externalities

dominates depends on whether tax rebates or asset returns have a greater pledgeability.

If ψ ≥ θ, tax rebates are more pledgeable than the firm’s asset returns, and the positive

collateral externality due to tax rebates dominates. In this case, optimal emissions taxes

are unambiguously below the direct social cost of emissions, τ ∗s < γs, irrespectively of

the level of γps . By contrast, if ψ < θ the optimal emissions tax may be above the direct
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social cost of emissions if γps is sufficiently large, as discussed under case (ii) above.

An interesting implication is that, in economies where firms’ assets have a low pledge-

ability (such as knowledge-based economies with much intangible capital), optimal emis-

sions taxes are lower because the effect of physical risk on collateral values is less relevant

(small θ). Similarly, emissions taxes may be optimally lower in economies where tax

rebates are more pledgeable (large ψ; for example, due to stronger political institutions).

Generalized Pigouvian Tax. The results in Proposition 3 highlight that, in the pres-

ence of financial constraints, the total social cost of emissions includes not only the direct

social cost of emissions γs, but also the indirect costs due to collateral externalities driven

by physical climate risk, λsθγ
p
s , and the pledgeability of tax rebates, λsψτs.

13 Therefore,

another useful benchmark to compare the optimal emissions tax to is a generalized Pigou-

vian tax, defined as the emissions tax that equalizes the private cost of emissions τs to

the total social cost of emissions γs + λsθγ
p
s + λsψτs.

Proposition 4. Let the generalized Pigouvian tax be defined as

τGPs =
γs + λ∗sθγ

p
s

1 + ψλ∗s
.

With λ∗s > 0 and γs > 0, the optimal emissions tax is τ ∗s = τGPs if ψ = 1, and τ ∗s < τGPs

if ψ < 1. With λ∗s = 0 or γs = 0, the optimal emissions tax is τ ∗s = τGPs = γs.

Proof. In Appendix A.3.3

While the optimal emissions tax may be above a standard Pigouvian benchmark equal

to the direct social cost of emissions γs (see Proposition 3), Proposition 4 shows that, if tax

rebates are not fully pledgeable, the optimal emissions tax is always below a generalized

Pigouvian benchmark that accounts for collateral externalities. This highlights that, even

with τ ∗s > γs, the adverse direct effect of emissions taxes on financial constraints can limit

13Collateral externalities can also emerge in models with pecuniary externalities, where borrowers do
not internalize how their choices affect the financial constraint of other agents through their impact on
prices (for a detailed discussion, see Dávila and Korinek, 2018). As in these settings, here borrowers
choose a socially sub-optimal leverage because they do not internalize their impact on financial con-
straints. Unlike in the pecuniary externality literature, in our setting the collateral externality arises due
to the effect of aggregate emissions on borrowers’ pledgeable income.
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the regulator in setting a tax that accounts for all direct and indirect social costs of emis-

sions. The next subsection shows this has implications for the efficiency of the allocation.

4.2 Efficiency

To evaluate efficiency, we compare the allocation that can be implemented with the

optimal emissions tax τ ∗s to the constrained-efficient allocation in which a social planner

can choose Xs, I1s and e directly, subject to the same resource and financial constraints as

private agents. This constrained-efficient allocation is formally defined and characterized

in Appendix A.4.1.

Proposition 5. If ψ = 1, then the competitive equilibrium with a socially optimal emis-

sions tax equal to the generalized Pigouvian tax τGPs = γs+λ∗sθγ
p
s

1+λ∗s
is constrained efficient.

If ψ < 1 and the financial constraint binds in some state, λ∗s > 0, then the competitive

equilibrium with a socially optimal emissions tax τ ∗s is not constrained efficient.

Proof. In Appendix A.4.1

We show in Appendix A.4.1 that the constrained-efficient level of abatement solves

−(γs + λsθγ
p
s )
∂E(Xs, I1s)

∂Xs

= (1 + λs)
∂C(Xs, I1s)

∂Xs

. (13)

When choosing the optimal level of abatement, a constrained social planner trades off the

benefits associated with lower aggregate emissions on the left-hand side against the cost

of abatement on the right-hand side of Eq. (13). The total marginal benefit of lowering

emissions consists of the avoided direct social cost γs, plus the indirect social cost due to

the collateral externality associated with physical climate risk λsθγ
p
s . On the right-hand

side, the marginal abatement cost is scaled by the marginal utility of consumption plus

the shadow cost of the financial constraint, (1 + λs), because spending on abatement

tightens borrowers’ financial constraints.

In contrast to a social planner, the environmental regulator cannot choose abatement

directly, but instead uses emissions taxes as a policy instrument to incentivize abatement.
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If tax rebates are fully pledgeable, the regulator can implement the abatement level de-

fined by Eq. (13) without introducing additional distortions to the final investment scale

by setting the emissions tax equal to the generalized Pigouvian tax τGPs . However, if tax

rebates are not fully pledgeable, ψ < 1, taxes have a direct adverse effect on financial

constraints because τsE(Xs, I1s)−ψTs = (1−ψ)τsE(Xs, I1s) > 0, and the regulator needs

to set an emissions tax below τGPs (see Proposition 4). As a result, emissions taxes can

only implement the constrained-efficient allocation if tax rebates are fully pledgeable.

This result implies that when ψ < 1 there may be scope to improve welfare by com-

plementing emissions taxes with other policies. Since borrowers’ initial leverage directly

affects the tightness of the collateral constraint, ex-ante leverage regulation is a natural

candidate policy we consider in the next subsection. Another way to improve social wel-

fare could be to use an alternative environmental policy instrument with no direct adverse

effect on financial constraints. Section 4.4 explores a cap-and-trade system with tradable

pollution permits and Section 4.5 abatement subsidies instead of emissions taxes.

4.3 Leverage Regulation

This section introduces leverage regulation complementing emissions taxes when tax re-

bates are not fully pledgeable (ψ < 1). We analyze a leverage mandate that fixes the

borrower’s equity at a level ē, which can be implemented through a direct mandate, or

through taxes and subsidies (see Appendix B.1). To streamline the discussion, we focus

on the case in which the model parameters are such that in the competitive equilibrium

the financial constraint binds when s = B and is slack when s = G.

4.3.1 The Effect of a Leverage Mandate on Equilibrium Allocations

To understand the trade-offs faced by the regulator when choosing the leverage mandate,

we first study the effect of leverage on the equilibrium final investment scale I∗1s and

abatement X∗
s .

Lemma 4. If λ∗s = 0, then borrower equity does not affect the final investment scale and

abatement, ∂X∗
s

∂ē
=

∂I∗1s
∂ē

= 0. If λ∗s > 0, then higher borrower equity increases the final

ECB Working Paper Series No 2812 26



investment scale,
∂I∗1s
∂ē

> 0. The equilibrium abatement

• increases in borrower equity, ∂X∗
s

∂ē
> 0, if τ ∗s

∂2E(X∗
s ,I

∗
1s)

∂X∗
s ∂I

∗
1s

+
∂2C(X∗

s ,I
∗
1s)

∂X∗
s ∂I

∗
1s

< 0

• decreases in borrower equity, ∂X∗
s

∂ē
< 0, if τ ∗s

∂2E(X∗
s ,I

∗
1s)

∂X∗
s ∂I

∗
1s

+
∂2C(X∗

s ,I
∗
1s)

∂X∗
s ∂I

∗
1s

> 0

Proof. In Appendix A.4.2

Equity affects the optimal choices of borrowers at t = 1 only if they face a binding

financial constraint. Generally, a greater equity buffer relaxes financial constraints. This

enables borrowers to liquidate less, so that
∂I∗1s
∂ē

> 0 if λ∗s > 0. This change in the invest-

ment scale has an indirect effect on the optimal abatement, as both the marginal cost and

the marginal benefit of abatement (in terms of avoided tax expenditures) depend on I∗1s.

If abatement is more efficient at a higher investment scale, i.e. when the technologies are

such that τ ∗s
∂2E(X∗

s ,I
∗
1s)

∂X∗
s ∂I

∗
1s

+
∂2C(X∗

s ,I
∗
1s)

∂X∗
s ∂I

∗
1s

< 0, then more equity results in a higher equilibrium

level of abatement, ∂X
∗
s

∂ē
> 0. The opposite holds if abatement is less efficient at a higher

investment scale. Combining these effects, the total effect of equity on emissions can be

represented as

dE(X∗
s , I

∗
1s)

dē
=

∂E(X∗
s , I

∗
1s)

∂I∗1s
− ∂E(X∗

s , I
∗
1s)

∂X∗
s

τs
∂E(X∗

s ,I
∗
1s)

∂X∗
s ∂I

∗
1s

+
∂2C(X∗

s ,I
∗
1s)

∂X∗
s ∂I

∗
1s

∂2C(X∗
s ,I

∗
1s)

(∂X∗
s )

2


︸ ︷︷ ︸

=
dE(X∗

s ,I∗1s)
dI∗1s

∂I∗1s
∂ē

.

As equity increases the final investment scale whenever financial constraints bind, the

effect of equity on emissions depends on
dE(X∗

s ,I
∗
1s)

dI∗1s
. The first term in

dE(X∗
s ,I

∗
1s)

dI∗1s
captures

the direct effect of a greater investment scale on emissions. The second term captures

the endogenous response of abatement, through which emissions may decline in equity.

4.3.2 Optimal Leverage Regulation

We now consider the problem of a regulator who sets an equity mandate ē at t = 0 and

state-contingent emissions taxes τs at t = 1, so as to maximize welfare. That is, we

re-consider the optimization problem (10) but allow the regulator to also set e = ē at
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t = 0. The regulator’s first order condition w.r.t. ē is given by

u′(Ab0 − ē)− 1− κe =∑
k∈{B,G}

Pr[s = k]

[
r(τk, Xk, I1k)

∂I∗1k
∂ē

− (γk − τk)
dE(X∗

s , I
∗
1s)

dē

]
.

(14)

In setting the optimal equity mandate, the regulator considers the effect of leverage on

borrower profits and emissions. Since equity increases the final investment scale when the

financial constraint binds, it results in a higher profit earned by borrowers. The regulator

internalizes this effect, similarly to private agents. This is captured by r(τs, Xs, I1s)
∂I∗1s
∂ē

in

the regulator’s FOC. The regulator also accounts for the effect of leverage on emissions and

the marginal social cost that these generate in excess of what is already accounted for by

the borrower, captured by (γs−τs)dE(X∗
s ,I

∗
1s)

dē
. Comparing Eq. (14) with the corresponding

borrower’s FOC in Eq. (9) yields the optimal equity mandate.

Proposition 6. If in the competitive equilibrium the borrower’s financial constraint is

slack when s = G and binding when s = B, then the optimal equity mandate coincides

with the borrower’s choice of equity if and only if

dE(X∗
s , I

∗
1s)

dI∗1s
[γB − τ ∗B + λB (θγpB − ψτ ∗B)]︸ ︷︷ ︸

T-SCC wedge

= 0. (15)

If ψ < 1 the T-SCC wedge is positive and the optimal equity mandate ē∗ is

• ē∗ > e∗(τ ∗G, τ
∗
B) if

dE(X∗
B ,I

∗
1B)

dI∗1B
< 0,

• ē∗ = e∗(τ ∗G, τ
∗
B) if

dE(X∗
B ,I

∗
1B)

dI∗1B
= 0,

• ē∗ < e∗(τ ∗G, τ
∗
B) if

dE(X∗
B ,I

∗
1B)

dI∗1B
> 0.

Proof. See Appendix A.4.3

What motivates leverage regulation is the difference in the marginal social and private

costs of changes in emissions induced by higher levels of equity. The left-hand side of

Eq. (15) captures this intuition, consisting of
dE(X∗

s ,I
∗
1s)

dI∗1s
and the expression in square
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brackets labeled T-SCC wedge, where T-SCC stands for total social cost of carbon. The

T-SCC wedge is the difference between the total social cost and private cost of emissions

and consists of two components. First, γB−τB is the wedge between the direct social cost

of emissions γB and the private cost of emissions τB. Second, λB (θγpB − ψτB) is the effect

of emissions on pledgeable income caused by the collateral externalities due to physical

climate risk and tax rebates.

The optimal equity mandate can be above or below the level in the competitive equi-

librium, depending on the effect of borrower equity on emissions. From Proposition 4, the

optimal emissions tax is below τGPB if ψ < 1, which implies a positive T-SCC wedge. This

positive T-SCC wedge results in a socially inefficient leverage choice by borrowers and

motivates an equity mandate. If higher equity primarily results in more abatement rather

than lower liquidations, such that
dE(X∗

s ,I
∗
1s)

dI∗1s
< 0, then the regulator opts for an equity level

that is above the privately optimal level of equity, ē∗ > e∗. By contrast, if
dE(X∗

s ,I
∗
1s)

dI∗1s
> 0,

then higher equity implies higher emissions, and the optimal equity mandate is below a

borrower’s optimal choice of equity in the competitive equilibrium, ē∗ < e∗.

4.3.3 A Motive to Include Climate Externalities in Financial Regulation

The finding in Proposition 6 that leverage regulation can improve welfare may not seem

surprising given the large body of literature that shows how financial constraints can

motivate financial regulation (for an overview, see Dewatripont and Tirole, 1994). Yet

the following corollary shows that the financial constraint in itself does not motivate

leverage regulation in our model:

Corollary 1. If γus = γps = 0, then ē∗ = e∗ regardless of whether λ∗B = 0 or not.

Proof. Follows from the result in Proposition 3 that τs = 0 if γus = γps = 0, which implies

a zero T-SSC wedge as defined in Proposition 6.

In the absence of environmental externalities there is no benefit to introducing lever-

age regulation – irrespective of whether the financial constraint binds or not. This is

important because it implies that financial constraints alone are not enough to moti-

vate leverage regulation in our model. Instead, the motive for implementing an equity
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mandate ē comes from the interaction between environmental externalities and financial

frictions because binding financial constraints imply that the optimal emissions tax is

below the total social cost of emissions. The results in Proposition 6 thus contribute to

the debate on whether environmental externalities should be included in the mandate of

financial regulatory frameworks (also see Oehmke and Opp, 2022a).

4.4 Cap and Trade

An alternative policy that a regulator could use is a cap-and-trade system with a limited

quantity Qs of tradeable pollution permits (similar to the EU ETS). For each unit of

emissions borrowers need to surrender a permit to the regulator. Remaining permits can

be sold at the market price ps. Absent other frictions, such pollution permit markets are

equivalent to emissions taxes (see Montgomery, 1972). In what follows we show under

what conditions the pollution permit market is equivalent to emissions taxes when the

financial constraint binds and explore whether a pollution permit trading system can

achieve higher welfare than emissions taxes.

A key feature of a pollution permit trading system is the mode through which polluters

acquire the permits. We assume that a share ϕ of all permits Qs is freely allocated to

borrowers ex-ante and that the remaining (1 − ϕ)Qs permits need to be purchased by

the borrower at the market price ps. Note that with freely allocated permits borrowers

have the same incentives to invest in abatement because of the opportunity cost of selling

unused permits. For now, the regulator takes the freely allocated share ϕ as given. Later

we discuss the welfare-maximizing level of ϕ. The budget constraints of the borrower

under the pollution trading scheme are:

c1s = µ(I0 − I1s) + d1s + e− I0 − C(Xs, I1s) + ps(ϕQs − E(Xs, I1s)) ≥ 0, (2’)

c2 = R(I1s, E
a
s , γ

p
s )− d1s ≥ 0, (3’)

d1s ≤ R̃(I1s, E
a
s , γ

p
s ). (4’)

The first order conditions of the borrower stated in Appendix A.4.4 are equivalent to
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those in the baseline problem, with ps taking the place of τs. The borrower’s FOC

with respect to abatement given by (6’) in Appendix A.4.4 determines the relationship

between the privately optimal level of abatement and ps, and mirrors (6) of the original

problem. This condition, together with the market clearing for permits, Qs = Ea
s , jointly

determine a mapping from ps to E
a
s . Thus, the regulator can implement a desired market

price of permits by altering the total amount of permits. Consequently, we can express

the regulator’s problem as maximizing social welfare by choosing ps in each state s =

{B,G}. Appendix A.4.4 reports the first order condition of the regulator. As in the

baseline setting, the regulator internalizes the effect of the policy on borrowers’ profits

and emissions. Comparing the FOC under the cap-and-trade system with the one in the

original problem yields the following result.

Proposition 7. The allocation implemented with a pollution permit market in which the

quantity of permits is chosen to implement a permit price ps = τs and a fraction ϕ of

permits are allocated freely, is equivalent to the allocation implemented with an emissions

tax τs if the fraction of freely allocated permits is equal to the fraction of tax rebates that

can be pledged, ϕ = ψ.

Proof. See Appendix A.4.4

In both the baseline setting and the current extension the regulator’s policy amounts

to choosing the private marginal cost of emissions represented either by the tax rate τs

or the price of permits ps. The direct effect of the policies on the financial constraints

depend, respectively, on ψ, the pledgeability of the tax rebates, and ϕ, the share of freely

allocated permits. Pollution permits have a direct effect on the financial constraint if the

borrower needs to purchase some of them ex-ante (i.e. if 1 − ϕ > 0). This corresponds

to the direct effect of the tax bill on pledgeable income under emissions taxes. The price

of permits also affects the tightness of the financial constraint through the collateral

externalities, which mirror those discussed in Section 4.1.2.

So far we assumed that the regulator takes the share of freely allocated permits as

given. However, the advantage of using a cap-and-trade system instead of emissions taxes
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is that the regulator can choose ϕ optimally. The equivalence result in Proposition 7

implies that a version of Proposition 5 in which τs = ps and ψ = ϕ holds in the current

setting, giving rise to the following corollary.

Corollary 2. The regulator can implement a constrained-efficient allocation by setting

ϕ = 1 and issuing a quantity of permits that implements a permit price p∗s =
γs+λ∗sθγ

p
s

1+λ∗s
.

The regulator can avoid the problem of the carbon price’s direct effect on borrowers’

financial constraints by allocating all permits for free and setting ϕ = 1. In this case,

the shadow cost of permits induces borrowers to engage in a constrained-efficient level

of abatement. As in the baseline with ψ = 1, the optimal policy is below the Pigouvian

benchmark p∗s < γs whenever the financial constraint binds (see Proposition 3).

An important policy implication is that a pollution permit market with free allowances

may be a superior policy instrument when financial constraints are a first-order concern,

and that such a pollution permit market can render financial regulation unnecessary.

Yet, in practice emissions permit markets often do not allocate permits for free. For

example, the EU ETS (the largest emissions permit market in the world), only grants

free allowances equal to a fraction of total emissions, and is gradually reducing the amount

of free allowances over time.14

We acknowledge that there may be considerations outside our model that motivate

these real-life policy choices.15 For example, it may be difficult for regulators to correctly

allocate free permits if polluters were privately informed about heterogeneous abatement

costs, potentially triggering undesirable distributional consequences. Similarly, deter-

mining the amount of freely allocated emissions by past emissions (a policy referred to

as “grandfathering”), may weaken incentives to reduce emissions as firms may want to

avoid a reduction in the amount of freely allocated permits in the future (see Clò, 2010).

Modeling these frictions is beyond the scope of our model. In as far as they constrain

the regulator’s ability to allocate all permits for free, the results in Propositions 6 and 7

14For example, the manufacturing industry received 80% of its allowances for free in 2013. This
proportion has been decreased down to 30% in 2020, see European Commission website.

15The European Commission states that it reduces the amount of free allowances “to reflect more
accurately the technological progress and to incentivize further deployment of innovative low-carbon
technologies”, see European Commission website.
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suggest potential benefits from complementing permit markets with leverage regulation

in this case.

4.5 Abatement Subsidy

Another alternative policy is a subsidy to abatement investments instead of a tax on

emissions. To analyze such a policy in the context of our baseline model, suppose that

τs = 0 and consider instead a subsidy σs on abatement financed by lump-sum taxes. For

now, suppose these lump-sum taxes are fully financed by borrowers and that −σsXs = Ts.

Borrowers have to raise financing at the beginning of t = 1 to pay the lump-sum taxes

and invest in abatement, then receive the subsidy σs per unit of abatement. To map the

subsidy to the baseline model, we assume that a fraction ψ of the subsidy is pledgeable

to outside investors, and borrowers can absond with 1−ψ. The first order condition with

respect to Xs in Eq. (6) becomes

(1 + λs)

(
σs −

∂C(Xs, I1s)

∂Xs

)
= 0.

This equation is equivalent to the original first order condition (6) when setting σs =

τs
∂E(Xs,I1s)

∂Xs
. Whether the subsidy can implement the constrained-efficient allocation de-

pends on ψ, as can be seen from the complementary slackness condition (8), which now

becomes

λs

[
R̃(I1s, E

a
s , γ

p
2) + ψσsXs − Ts + e− I0 + µ(I0 − I1s)− C(Xs, I1s)

]
= 0.

In equilibrium, this condition maps to Eq. (8) with −(1−ψ)Ts replaced by −Ts+ψσsX.

This implies that the results from the baseline model apply. Notably, Proposition 5 still

holds, so that the allocation is constrained efficient only if the subsidy is fully pledgeable,

i.e., if ψ = 1.

Transfers. A subsidy may dominate emissions taxes if it is financed through taxes

raised from unconstrained investors. In this case, the subsidy constitutes a net transfer
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Ts = σXs from unconstrained to constrained agents, and it can implement the first-best

allocation if the transfer is sufficiently large to ensure the financial constraint is slack in

all states.

More generally, consider the baseline model with a generic transfer Ts to borrow-

ers paid at t = 1, financed by lump-sum taxes from investors. With this transfer the

complementary slackness condition (8) becomes

λs

[
R̃(I1s, E

a
s , γ

p
2)− τE(Xs, I1s) + ψTs + Ts + e− I0 + µ(I0 − I1s)− C(Xs, I1s)

]
= 0.

Clearly, if Ts is sufficiently large, then the financial constraint becomes slack. As shown

in Proposition 2, this implies that an emissions tax equal to the Pigouvian benchmark

can implement the first best. Perhaps trivially, complementing Pigouvian emissions taxes

with transfers from unconstrained investors to constrained borrowers can circumvent the

financial constraint.

4.6 Hedging

In the baseline model, borrowers can take out non-state-contingent debt and cannot

hedge. This extension allows fairly-priced hedging contracts that pay hB in the bad

state and hG in the good state. Such contracts can also be implemented through state-

contingent financing, for example, bonds that write off some of the principal when the

social cost of emissions or taxes are high. Fair pricing of the hedging contract requires

that

(1− q)hG + qhB = 0. (16)

Using this expression, the problem of borrowers can be expressed in terms of choosing the

optimal hG, while hB follows as hB = − (1−q)hG
q

. The borrower’s problem with hedging

is formally shown in Appendix A.4.5. The first order conditions are the same as in the

baseline model, except for the new first order condition w.r.t. hG, which states that
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borrowers equalize the shadow cost of the financial constraints across states:

λG = λB. (17)

This implies that borrowers optimally shift resources from the good, low SCC state to

the bad, high SCC state. If this allows borrowers to ensure that financial constraints are

slack in both states (λG = λB = 0), then a Pigouvian emissions tax τs = γs,∀s ∈ {B,G}

can implement the first best allocation (see Proposition 2). By allowing firms to hedge

climate-related transition risk, the financial sector can enable efficient emissions taxation

in equilibrium. This result highlights that hedging of climate-related risks may be an

important role the financial sector can play in supporting the transition to a low-carbon

economy, distinct from socially responsible investing that aims to direct firm policies by

taking into account environmental and social factors in investment decisions (e.g., see

Pástor et al., 2021; Oehmke and Opp, 2022b; Goldstein et al., 2022; Gupta et al., 2022).

If under optimal hedging λG = λB > 0, then emissions taxes are different from the

Pigouvian benchmark, see Proposition 3. Appendix A.4.5 shows that in this case the

efficiency results in Proposition 5 apply, so that emissions taxes alone can implement a

constrained-efficient allocation only if tax rebates are fully pledgeable.

5 Conclusion

This paper provides an analytical framework to shed light on how to design and combine

carbon pricing with other regulatory tools when firms are subject to financial constraints

and to endogenous climate-related transition and physical risks. We find that emissions

taxes alone can only implement a constrained-efficient allocation if tax rebates are fully

pledgeable. Otherwise, welfare can be improved by complementing emissions taxes with

leverage regulation, or by replacing emissions taxes with a cap-and-trade system with

ex-ante freely allocated pollution permits.

Another important insight is that the way in which financial constraints interact with

emissions taxes critically depends on the relative strength of climate-related transition
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and physical risks on pledgeable income. Higher emissions taxes tighten financial con-

straints if borrowers are exposed to climate transition risk, but they can ease financial

constraints if borrowers’ assets are exposed to physical climate risk, because lower emis-

sions have a positive effect on their collateral value. Optimal emissions taxes need to

account for climate-induced collateral externalities, and thus may be either above or

below a Pigouvian benchmark rate equal to the direct social cost of emissions.
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A Appendix

A.1 First Best (Proposition 1)

Proof. The first best allocation corresponds to the abatement, investment and consump-

tion levels that maximize social welfare defined by the sum of agent’s utilities

max
I1s,Xs,c0,ci0,cts,c

i
ts

W = u(c0) + ci0

+ (1− q)
[
c1G + ci1G + c2G + ci2G − γGE(XG, I1G)

]
+ q

[
c1B + ci1B + c2B + ci2B − γBE(XB, I1B)

]
,

subject to I1s ≤ I0, c0 ≥ 0, ci0 ≥ 0, cts ≥ 0,cits ≥ 0 and the aggregate resource constraints

c0 + ci0 = Ab0 + Ai0 − I0,

c1s + ci1s + C(Xs, I1s) = Ai1 + µ(I0 − I1s),

c2s + ci2s = ρI1s − γsE(Xs, I1s),

for all s ∈ {G,B}. Eliminating ci0, c1s, c
i
1s, c2s + ci2s the problem can be formulated as:

max
I1s,Xs,c0

W = u(c0) + Ab0 + Ai0 − I0 − c0

+ Ai1 + µ(I0 − (1− q)I1G − qI1B)− (1− q)C(XG, I1G)− qC(XB, I1B)

+ (1− q)ρI1G + qρI1B − γBE(XB, I1B)

+ (1− q)κ̄I1G(I0 − I1G) + qκ̄I1B(I0 − I1B),
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with κ̄I1s the Lagrange multiplier on the constraint that I1s ≤ I0. The first order condi-

tions w.r.t. c0, I1s and Xs are given by, respectively,

u′(c0) = 1,

ρ− µ− γs
∂E(Xs, I1s)

∂I1s
− ∂C(Xs, I1s)

∂I1s
− κ̄I1s = 0,

γs
∂E(Xs, I1s)

∂I1s
+
∂C(Xs, I1s)

∂I1s
= 0.

By Assumption 2 liquidations are inefficient, which implies κ̄I1s > 0 and I1s = I0.

A.2 Competitive Equilibrium

A.2.1 Borrower’s Lagrangian

The non-negativity constraint for c0 is always satisfied since we assume that u′(0) = ∞.

Moreover, due to the financial constraint (4) c2s is always positive, so that (3) never

binds.

The problem of borrowers can be stated as the following Lagrangian:

max
Xs,I1s,d1s,e

L = u(Ab0 − e)

+
∑

k∈{G,B}

Pr[s = k] [µ(I0 − I1k) + e− I0 − C(Xk, I1k) +R(I1k, E
a
k , γ

p
s )− τkE(Xk, I1k) + Tk]

+
∑

k∈{G,B}

Pr[s = k]
{
λk

[
R̃(I1k, E

a
k , γ

p
s )− τkE(Xk, I1k) + ψTk − d1k

]
+ κIkI1k + κIk[I0 − I1k]

}
+

∑
k∈{G,B}

Pr[s = k]κc1k [d1k + µ(I0 − I1k) + e− I0 − C(Xk, I1k)] ,

(18)

where λs is the Lagrange multiplier for the financial constraint and κ’s are the multipliers

for lower and upper bounds on variables. The first order condition w.r.t. d1s implies that

the multiplier on the non-negativity constraint for c1s is equal to the multiplier on the

financial constraint. If the financial constraint binds, borrowers are at a corner solution

and do not consume at t = 1, so that c1s = 0 and λs = κc1s > 0. The FOC’s given in

Section 3 follow.
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A.2.2 Proof of Lemma 1

Consider two cases: (i) d0 ≥ µI0 and (ii) d0 < µI0.

(i) If d0 ≥ µI0, then defaulting on t = 0 debt implies that investors force liquidation

of the entire project, i.e. I1 = 0. This implies a residual payoff to the borrower of

0 plus tax rebates the borrower can abscond with (1 − ψ)Ts. Not defaulting, the

borrower can do at least as well because the borrower may not have to liquidate the

entire project, so that I1 ≥ 0. Consequently, the borrower can earn R̃(I∗1s, E
a
s , γ

p
s )

plus (1− ψ)Ts and is therefore weakly better off not defaulting.

(ii) If d0 < µI0, defaulting on t = 0 debt implies that investors force liquidation s.t.

d0 = µ(I0 − I1). The borrower can then decide to continue the project, abate and

potentially raise new debt d1, subject to the constraint that liquidations are at least

s.t. d0 = µ(I0−I1). But the borrower can already achieve this by not defaulting and

instead rolling over d0. Therefore, defaulting introduces an additional constraint on

how much the borrower at a minimum needs to liquidate. Again, the borrower is

weakly better off not defaulting to avoid this constraint.

A.2.3 Proof of Lemma 2

Proof. Equation (7) evaluated at λs = 0 is r(τs, Xs, I1s)−κIs+κIs = 0. By Assumption 2.1

r(τs, Xs, I1s) > 0, which implies that the solution requires κIs > 0 (i.e., I0 = I∗1s).

The complementary slackness condition (8) can be reformulated as

λsS(τs, Xs, I1, e, γ
p
s ) = 0. (8’)

Assumption 2.2 implies that liquidating investments eases financial constraints. Thus,

if the financial constraint is slack at full investment scale, S(τs, Xs, I0, e, γ
p
s ) ≥ 0, it is

slack for any I1s. If the reverse holds, S(τs, Xs, I0, e, γ
p
s ) < 0, such that the pledgeable

resources are insufficient to cover the expenses at t = 1 in the absence of liquidations,

then the financial constraints binds, λs > 0. In this case the complementary slackness

condition (8’) requires that borrowers liquidate the investment up to the point where
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S(τs, Xs, I
∗
1s, e, γ

p
s ) = 0. Thus, if λs > 0 it must be that I∗1s < I0 and κIs = 0.

A.3 Optimal Policy

A.3.1 Proof of Lemma 3 and statement of Assumption 3

Recall that X∗
s (τs) is pinned down by:

τs
∂E(X∗

s , I
∗
1s)

∂X∗
s

= −∂C(X
∗
s , I

∗
1s)

∂X∗
s

, (6)

Totally differentiating (6) with respect to τs allows us to find ∂X∗
s

∂τs
:

∂X∗
s

∂τs
=

∂E(X∗
s ,I

∗
1s)

∂X∗
s

− ∂2N(X∗
s ,I

∗
1s,τs)

∂X∗
s ∂I

∗
1s

∂I∗1s
∂τs

−∂2C(X∗
s ,I

∗
1s)

∂(X∗
s )

2

(19)

where N(Xs, I1s, τs) = −τsE(Xs, I1s) − C(Xs, I1s) and we use that ∂2E(X,I1)
(∂X)2

= 0. If the

financial constraint is slack, λ∗s(τs, ē) > 0, then I∗1s = I0, so
∂I∗1s
∂τs

= 0 and ∂X∗
s

∂τs
> 0. If the

financial constraint is binding, λ∗s(τs, ē) > 0, then the interior solution of I∗1s(τs) follows

from:

R̃(I∗1s, E
a
s , γ

p
s ) + µ(Ī0 − I∗1s) + ē− I0 − C(X∗

s , I
∗
1s)− τE(X∗

s , I
∗
1s) + ψTs = 0 (8)

Totally differentiating (8) with respect to τs allows us to find
∂I∗1s
∂τs

:

∂I∗1s
∂τs

=
(1− ψ)E(X∗

s , I
∗
1s)− (ψτs − θγps )

∂E(X∗
s ,I

∗
1s)

∂X∗
s

∂X∗
s

∂τ

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s)

(20)

To further simplify, we use a shorthand notation: E(X∗
s , I

∗
1s) = E, E ′

x =
∂E(X∗

s ,I
∗
1s)

∂X∗
s

,

N ′′
wv =

∂2N(X∗
s ,I

∗
1s,τs)

∂Ws∂Vs
and r̃(τs) = r̃(τs, X

∗
s , I

∗
1s). Moreover, we use (19) and (20) to get:

∂I∗1s
∂τs

=
(1− ψ)EC ′′

x2 + (ψτs − θγps )(E
′
x)

2

r̃(τs(1− ψ) + θγps )C ′′
x2 + (ψτs − θγps )E ′

xN
′′
xI

(21)

∂X∗
s

∂τs
=

(1− ψ)EN ′′
xI − r̃(τs(1− ψ) + θγps )E

′
x

r̃(τs(1− ψ) + θγps )C ′′
x2 + (ψτs − θγps )E ′

xN
′′
xI

(22)
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Assumption 3 requires that the model parameters are such that ∂X∗
s

∂τs
> 0. This is the

case when the numerator and the denominator of (22) have the same sign.

Notice that the denominator of (22) is negative for ψ = 0 and γps = 0. More generally,

this expression is negative if and only if r̃(τs − τsψ + θγps )C
′′
x2 < −(ψτs − θγps )N

′′
xIE

′
x.

The numerator of (22) is negative if r̃(θγps )E
′
x > (1 − ψ)(τsE

′
IE

′
x + EN ′′

xI). This is

true whenever ψ = 1. Since the RHS of the inequality is monotone in ψ, the numerator

of (22) is negative across the full range of ψ if r̃(θγp)E ′
x > τsE

′
IE

′
x + EN ′′

xI

Thus, Assumption 3 can be restated as:

• r̃(θγps , X
∗
s , I

∗
1s)

∂E(X∗
s ,I

∗
1s)

∂X∗
s

> E(X∗
s , I

∗
1s)

∂2N(X∗
s ,I

∗
1s,τs)

∂X∗
s ∂I

∗
1s

+ τs
∂E(X∗

s ,I
∗
1s)

∂X∗
s

∂E(X∗
s ,I

∗
1s)

∂I∗1s

∀X∗
s (τs), I

∗
1s(τs), τs < τ̄

• r̃(τs − τsψ + θγps , X
∗
s , I

∗
1s)

∂2C(X∗
s ,I

∗
1s)

∂(X∗)2
< −(ψτs − θγps )

∂2N(X∗
s ,I

∗
1s,τs)

∂X∗
s ∂I

∗
1s

∂E(X∗
s ,I

∗
1s)

∂X∗
s

∀X∗
s (τs), I

∗
1s(τs), τs < τ̄

Lemma 3 follows from observing that the numerator of equation (21) which defines
∂I∗1s
∂τs

is negative if γps >
ψ
θ
τs+

(1−ψ)EC′′
x2

θ(E′
x)

2 = γ̂p(τs) and positive if γps < γ̂p(τs). The denominator

of (21) is the same as that of ∂X∗

∂τs
, i.e. negative under Assumption 3.

A.3.2 Proof of Proposition 3

The first order condition of the regulator with respect to τ is given by:

(
ρ− µ− γs

∂E(Xs, I1s)

∂I1s
− ∂C(Xs, I1s)

∂I1s

)
∂I∗1s
∂τs

−
(
γs
∂E(Xs, I1s)

∂Xs

+
∂C(Xs, I1s)

∂Xs

)
∂X∗

s

∂τs
+ κτ = 0

Using (6) and the definition of r(τ,X, I1) the above simplifies to (11).

Since ∂X∗
s

∂τs
> 0 and r(τs, Xs, I1s) > 0 the optimal tax:

• is lower than the direct social cost of carbon τs < γs if
∂I∗1s
∂τs

< 0 and γs > 0

• is equal to the direct social cost of carbon τs = γs if
∂I∗1s
∂τs

= 0 or if
∂I∗1s
∂τs

< 0 and

γs = 0

• is higher than the direct social cost of carbon τs > γs if
∂I∗1s
∂τs

> 0
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Using Lemma 3 to determine the sign of
∂I∗1s
∂τs

yields the result in Proposition 3.

Optimal emissions tax

The interior solution to the optimal emissions-taxation problem solves:

r(γs, X
∗
s , I

∗
1s)[(1− ψ)EC ′′

x2 + (ψτs − θγps )(E
′
x)

2]

(1− ψ)EN ′′
xI − r̃(τs(1− ψ) + θγps , X∗

s , I
∗
1s)E

′
x

= (γs − τs)E
′
X (23)

which can be rewritten as the following polynomial:

τ 2(1− ψ)

(
E ′′
xI

E ′
x

− E ′
I

)
+

τ

[
ρ(θ − ψ)− w(1− ψ)− (θγp − γ)E ′

I +
1− ψ

E ′
x

E(C ′′
xI − γE ′′

xI)

]
+

θγpr(γ)− γr̃(θγp)− 1− ψ

(E ′
x)

2
E(γE ′

xC
′′
xI − r(γ)C

′′2
x ) = 0

(24)

A.3.3 Proof of Proposition 4

Focusing on the interior solution (κτk = 0) to Eq. (11) and using Eq. (12) yields:

− r(γs, X
∗
s , I

∗
1s)

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s)

(1− ψ)E(X∗
s , I

∗
1s) =

∂E(X∗
s , I

∗
1s)

∂X∗
s

∂X∗
s

∂τs

[
τs − γs +

(θγps − ψτs)r(γs, X
∗
s , I

∗
1s)

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s)

]

With some algebra this simplifies to:

r(γs, X
∗
s , I

∗
1s)(1− ψ)E(X∗

s , I
∗
1s) =

∂E(X∗
s , I

∗
1s)

∂X∗
s

∂X∗
s

∂τs
[γs − τs + λ∗s(θγ

p
s − γτs)] r̃(τs, X

∗
s , I

∗
1s)

If ψ = 1, then the LHS of the above is equal to zero, so the tax must solve γs − τs +

λ∗s(θγ
p
s − τs). If ψ < 1, then the LHS of the above is positive, so it must be that

γs − τs + λ∗s(θγ
p
s − τs) > 0.

If γs = 0 then τs = 0 and κτk > 0 solve Eq. (11).
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A.4 Efficiency and Other Policies

A.4.1 Proof of Proposition 5

As a first step, we define the constrained efficient allocation in which a social planner can

choose Xs, I1s and e directly without any policy instruments, but subject to the same

constraints as private agents. The planner’s problem can be written as a Lagrangian

similar to the borrower’s Lagrangian in Eq. (18):

max
Xs,I1s,d1s,e

L = Ai0 + Ai1 + u(Ab0 − e) + e− I0

+
∑

k∈{B,G}

Pr[s = k] {R(I1k, Ea
k , γ

p
k) + µ(I0 − I1k)− 2γukE(Xk, I1k)− C(Xk, I1k)}

+
∑

k∈{B,G}

Pr[s = k]λSPk

{
R̃(I1k, E

a
k , γ

p
k) + µ(I0 − I1k)− C(Xk, I1k) + e− I0

}
+

∑
k∈{B,G}

Pr[s = k] [κIkI1k + κIk(I0 − I1k)] .

(25)

The first order condition with respect to Xs, I1s, and e are given by, respectively,

−(γs + λSPs θγps )
∂E(Xk, I1s)

∂Xs

− (1 + λSPs )
∂C(Xs, I1s)

∂Xs

= 0 (26)

r(γs, Xs, I1s) + λSPs r̃(θγps , Xs, I1s) + κIk − κIk = 0 (27)

−u′(Ab0 − e) + 1 + κe +
∑

k∈{B,G}

Pr[s = k]λk = 0 (28)

The complementary slackness condition in state s is given by

λSPs [R̃(I1s, E
a
s , γs)− I0 + µ(I0 − I1s) + e− C(Xs, I1s)] = 0. (29)

Definition 3. The constrained efficient allocation is the set of allocations ISP1s , X
SP
s , λSPs , eSP ,

defined by Equations (26), (27), (29), and (28). Aggregate emissions are given by Ea =

E(XSP
s , ISP1s ). The allocations cSP0 , cSP1s , c

SP
2s , and d

SP
0 follow as residuals from Eqs. (1),

(2), (3), and dSP0 = I0 − eSP .

The equilibrium is constrained efficient if and only if X∗
s (τ

∗) = XSP
s , I∗1s = ISP1s and
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e∗ = eSP . We first establish when X∗
s (τ

∗) = XSP
s and then move to the remaining

conditions.

Using the private FOC’s wrt. Xs given by (6) to find the level of τSP that would

implement the constrained efficient level of abatement X∗
s = XSP

s consistent with (26)

we get: γs + λSPs θγps = (1 + λSPs )τSPs , where:

λSPs = −r(γs, X
SP
s , ISP1s ) + κIs − κIs

r̃(θγps , XSP
s , ISP1s )

Focusing on the case when ISP1s is in the interior solution, the emissions tax that imple-

ments the constrained efficient allocation is

τSPs =
γsr̃(θγ

p
s , X

SP
s , ISP1s )− θγpsr(γs, X

SP
s , ISP1s )

r̃(θγps , XSP
s , ISP1s )− r(γs, XSP

s , ISP1s )
. (30)

To determine whether the equilibrium level of X∗
s is constrained efficient, we plug in the

tax that can implement the constrained efficient allocation τSPs into the condition that

defines the optimal tax set by the regulator (23).

r(γs, X
∗
s , I

∗
1s)[(1− ψ)Ec′′x2 + (ψτSPs − θγps )(E

′
x)

2]

(1− ψ)EN ′′
xI − r̃(τSPs (1− ψ) + θγ.s, X

∗
s , I

∗
1s)E

′
x

= (γs − τSPs )E ′
x (31)

which can be rewritten as:

(1− ψ)
[
r(γs, X

∗
s , I

∗
1s)
(
Ec′′x2 − τSPs (E ′

x)
2
)
− (γs − τSPs )

(
E ′
xEN

′′
xI + (E ′

x)
2τSPE ′

I

)]
= 0

(32)

The LHS of (32) is equal to zero whenever ψ = 1. In this case τSPs corresponds to the tax

implemented by the regulator. To show that when ψ = 1 also I∗1s = ISP1s notice that the

complementary slackness condition (8) collapses to (29). Moreover, private and planner’s

FOC’s with respect to e are equal whenever

−r(γs) + κSPsI − κSPsI
r̃(θγps )

= −r(τ
SP
s )− κsI + κsI
r̃(τSPs )

(33)
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which is holds at τSPs defined in (30). Thus, if ψ = 1 the competitive equilibrium is

constrained efficient.

If ψ < 1 then the LHS of (32) is equal to zero only if:

(τs)
2E ′

x[E
′
xE

′
I − EE ′′

xI ]+

τsE
′
x[E(γE

′′
xI − C ′′

xI)− r(0, X∗
s , I

∗
1s)E

′
x]+

[r(γ,X∗
s , I

∗
1s)EC

′′
x2 + γE ′

xEC
′′
xI ] = 0

(34)

Let τs = τ̃as and τs = τ̃ bs denote the solutions of (34). Given that LHS is quadratic

in τs, if the solution to (34) exists τ̃as and τ̃ bs are functions of ∂2C(X,I1)
∂X∂I1

, ∂2E(X,I1)
∂X∂I1

and

∂2C(X,I1)
(∂X)2

. Notice that the tax rate that is needed to implement the constrained efficient

level of abatement, τSP , given in (30) does not depend on these cross- and second-order-

derivatives. Thus, condition (34), which ensures that X∗
s = XSP

s is generally not satisfied

except in a knife’s edge case in which the values of these derivatives are coincidentally

such that τ̃as = τSP . This implies that the allocation implemented by the tax optimally

set by the regulator is constrained inefficient when ψ < 1.

A.4.2 Proof of Lemma 4

Totally differentiating (6) with respect to ē allows us to find ∂X∗

∂ē
are:

[
∂2C(X∗

s , I
∗
1s)

∂(X∗
s )

2

]
∂X∗

s

∂ē
+

[
τs
∂2E(X∗

s , I
∗
1s)

∂X∗
s∂I

∗
1s

+
∂2C(X∗

s , I
∗
1s)

∂X∗
s∂I

∗
1s

]
∂I∗1s
∂ē

= 0

Which can be simplified using N(Xs, I1s, τs) = −τsE(Xs, I1s)− C(Xs, I1s) to yield:

∂X∗
s

∂ē
=

∂2N(X∗
s ,I

∗
1s,τs)

∂X∗
s ∂I

∗
1s

∂2C(X∗
s ,I

∗
1s)

∂(X∗
s )

2

∂I∗1s
∂ē

(35)

If the financial constraint is slack, λ∗s(τs) > 0, then I∗1s = I0, so
∂I∗1s
∂ē

= 0 and ∂X∗
s

∂ē
= 0 .

If the financial constraint is binding, λ∗s(τs) > 0, then the interior solution of I∗1s(τs) is
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pinned down by (8). By totally differentiating (8) with respect to ē we get:

∂I∗1s
∂ē

=
−1− (ψτs − θγps )

∂E(X∗
s ,I

∗
1s)

∂X∗
s

∂X∗
s

∂τs

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s)

(36)

Combining (35) and (36) and using the shorthand notation introduced in Appendix A.3.1,

yields:

∂I∗1s
∂ē

=
−C ′′

x2

r̃(τs(1− ψ) + θγps )C ′′
x2 + (ψτs − θγps )E ′

xN
′′
xI

(37)

∂X∗
s

∂ē
=

−N ′′
xI

r̃(τs(1− ψ) + θγps )C ′′
x2 + (ψτs − θγps )E ′

xN
′′
xI

(38)

The denominator of (38) is negative by Assumption 3, Therefore ∂X∗
s

∂ē
> 0 if and only if

N ′′
xI > 0, i.e. τ ∗s

∂2E(X∗
s ,I

∗
1s)

∂X∗
s ∂I

∗
1s

+
∂2C(X∗

s ,I
∗
1s)

∂X∗
s ∂I

∗
1s

< 0.

A.4.3 Proof of Proposition 6

The first order conditions of the regulator with respect to ē is:

u′(Ab0 − ē)− 1 =

+
∑

Prob[s = k]

[(
ρ− µ− γs

∂E

∂I1s
− ∂C

∂I1s

)
∂I∗1s
∂ē

−
(
γs
∂E

∂Xs

+
∂C

∂Xs

)
∂X∗

s

∂ē

] (39)

Using the private FOC wrtX and the fact that r(γs, X
∗
s , I

∗
1s) = r(τs, X

∗
s , I

∗
1s)+τs

∂E(X∗
s ,I

∗
1s)

∂I∗1s
−

γs
∂E(X∗

s ,I
∗
1s)

∂I∗1s
, yields (14).

If the financial constraint binds only in the bad state s = B then the regulator’s and

borrowers FOCs can be restated using the shorthand notation introduced in Appendix

A.3.1 as, respectively:

u′(Ab0 − ē)− 1 =
−r(τB)C ′′

x2 + (γB − τB)[E
′
IC

′′
x2 + E ′

xN
′′
xI ]

r̃(τB(1− ψ) + θγpB)C
′′
x2 + (ψτB − θγpB)E

′
xN

′′
xI

(40)

u′(Ab0 − e)− 1 =
−r(τB)
r̃(τB)

(41)
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Thus, borrowers choose a lower level of equity than the regulator if and only if:

−r(τB)C ′′
x2 + (γB − τB)[E

′
IC

′′
x2 + E ′

xN
′′
xI ]

r̃(τB(1− ψ) + θγpB)C
′′
x2 + (ψτB − θγpB)E

′
xN

′′
xI

>
−r(τB)
r̃(τB)

Since under Assumption 3 r̃(τB(1 − ψ) + θγpB)C
′′
x2 + (ψτB − θγpB)E

′
xN

′′
xI < 0, and by

Assumption 2 r̃(τ) < 0 the above can be rewritten as:

(
E ′
I + E ′

x

N ′′
xI

C ′′
x2

)[
(γB − τB)−

r(τ)

r̃(τ)
(θγpB − ψτB)

]
< 0.

Borrowers choose a higher level of equity than the regulator if the LHS is larger than

zero. This yields condition (15) in Proposition 6.

To see that the borrower’s choice of equity corresponds with that of the regulator

when ψ = 1, plug in the optimal emissions tax τ ∗B into (15). If ψ < 1, there is a motive

for leverage regulation as long E ′
I + E ′

x
N ′′

xI

C′′
x2

̸= 0 because, as we have shown in Appendix

A.4.1, the optimal tax set by the regulator τ ∗B ̸= γB+λ∗Bθγ
p
B

1+λ∗B
in this case.

If ψ = 0 and γpB < γ̂p(τ ∗B) then borrowers choose too little equity if E ′
xN

′′
xI+E

′
IC

′′
x2 < 0

and too much equity if E ′
xN

′′
xI + E ′

IC
′′
x2 > 0.

If τ ∗B = γB (which is optimal when γB = 0 or λ∗B = 0) the regulator’s FOC (14’) is

identical to the borrower’s FOC (9’), so the regulator does not regulate leverage.

If τ ∗B < γB the RHS of regulator’s FOC (14’) is higher than the RHS of borrower’s FOC

(14’) if and only if:

∂E(X∗
B, I

∗
1B)

∂I∗1B
+
∂E(X∗

B, I
∗
1B)

∂X∗
B

∂2N(X∗
B ,I

∗
1B ,τB)

∂XB∂I
∗
1B

∂2C(X∗
B ,I

∗
1B)

∂(X∗
B)2

< 0 (42)

If the RHS of regulator’s FOC (14’) is higher than the RHS of borrower’s FOC (14’) then

the regulator prefers a higher level of equity than the borrower. In this case, regulator

implements binding leverage regulation.
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A.4.4 Optimal Price of Permits

The first order conditions of the borrower’s problem are given by:

(1 + λs)

(
ps
∂E(Xs, I1s)

∂Xs

+
∂C(Xs, I1s)

∂Xs

)
= 0, (6’)

ρ(1 + λs(1− θ))− (1 + λs)

[
µ+

∂C(Xs, I1s)

∂I1s
+ ps

∂E(Xs, I1s)

∂I1s

]
− κIs + κIs = 0, (7’)

u′(Ab0 − e)− 1− (1− q)λG − qλB = 0. (9’)

The complementary slackness condition of borrower’s problem is now

λ[R̃(I1s, E
a
s , γ

p
s ) + I0 + µ(I0 − I1s) + e− C(Xs, I1s) + ps(ϕQs − E(Xs, I1s))]. (8’)

The first order condition of the regulator is:

r(γs, X
∗
s , I

∗
1s)
∂I∗1s
∂ps

− (γs − ps)
∂E(X∗

s , I
∗
1s)

∂X∗
s

∂X∗
s

∂ps
+ κp = 0 (11’)

To find ∂X∗
s

∂ps
, we take a total derivative of (6’) with respect to ps. This yields:

∂X∗

∂p
=

∂E(X∗,I∗1 )

∂X∗ − ∂2N(X∗,I∗1 ,ps)

∂X∗∂I∗1

∂I∗1
∂p

∂2C(X∗,I∗1 )

∂(X∗)2

(19’)

To find
∂I∗1s
∂ps

take a total derivative of (8’) with respect to ps, keeping in mind that

Qf
s = ϕQs = ϕEa

s .

∂I∗1s
∂ps

=
(1− ϕ)E(X∗

s , I
∗
1s)− (ϕps − θγps )

∂E(X∗
s ,I

∗
1s)

∂X∗
s

∂X∗
s

∂ps

r̃(ps(1− ϕ)− θγps , X∗
s , I

∗
1s)

(20’)

Let’s define:

∂X∗
s

∂τs
= gX(τs)

∂I∗1s
∂τs

= gI(τs)
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Comparing (19) with (19’) and (20) with (20’), it is straightforward that ∂X
∗
s

∂ps
= gX(ps) and

∂I∗1s
∂ps

= gI(ps) Thus, the first order condition of the regulator’s problem in the baseline

model (11) is equivalent to the first order condition of the problem of choosing Qs to

implement ps taking as given ϕ, given by (11’).

A.4.5 Hedging

With hedging as described in Section 4.6, the borrower’s problem can be written as the

following Lagrangian:

max
Xs,I1s,d1,e,hs

L = u(Ab0 − e)

+
∑

k∈{G,B}

Pr[s = k] [µ(I0 − I1k) + e+ hk − I0 − C(Xk, I1k) +R(I1k, E
a
k , γ

p
s )− τkE(Xk, I1k) + Tk]

+
∑

k∈{G,B}

Pr[s = k]
{
λk

[
R̃(I1k, E

a
k , γ

p
s )− τkE(Xk, I1k) + ψTk + hk − d1k

]
+ κIkI1k + κIk[I0 − I1k]

}
+

∑
k∈{G,B}

Pr[s = k]κc1k [d1k + µ(I0 − I1k) + e+ hk − I0 − C(Xk, I1k)]

(43)

The problem and first order conditions are equivalent to the problem in the main text (18),

except that now additionally borrowers choose hs subject to the fair pricing condition

(16). Using (16) to substitute hB = − (1−q)hG
q

, the first order condition w.r.t. hG is given

by

λG = λB.

Constrained Efficiency With hedging, the problem of a constrained social planner is

similar to Eq. (25), but with hs as an additional choice variable, analogous to the updated
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borrower problem (43).

max
Xs,I1s,d1s,e,hs

L = Ai0 + Ai1 + u(Ab0 − e) + e− I0

+
∑

k∈{B,G}

Pr[s = k] {R(I1k, Ea
k , γ

p
k) + µ(I0 − I1k) + hk − 2γukE(Xk, I1k)− C(Xk, I1k)}

+
∑

k∈{B,G}

Pr[s = k]λSPl

{
R̃(I1k, E

a
k , γ

p
k) + hk + µ(I0 − I1k)− C(Xk, I1k) + e− I0

}
+

∑
k∈{B,G}

Pr[s = k] [κIkI1k + κIk(I0 − I1k)] .

(44)

Using (16) to substitute hB = − (1−q)hG
q

, the first order condition w.r.t. hG is equivalent

to the borrower’s first order condition:

λSPG = λSPB .

All other first order conditions are the same as in the model without hedging. This

implies the efficiency properties of the equilibrium allocation are the same as in the

baseline model without hedging, as outlined in Proposition 5.
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B Extensions and Additional Results

B.1 Implementation of the Capital Mandate through Taxes on

Leverage

This appendix shows that a capital mandate ē derived in Section 4.3 can alternatively

be implemented through a tax τd on t = 0 debt (or a subsidy if τd < 0). Given that

capital requirements in the Basel Accord apply to financial institutions, leverage taxes

and subsidies may be a more likely tool seen in the real world if borrowers in the model

are interpreted as non-financial firms (such as manufacturing firms). Tax proceeds are

fully rebated to borrowers via a lump-sum rebate T b0 .

With a leverage tax τd, the t = 0 budget constraint is given by I0 = e+d0(1−τd)+T b0 ,

which can be re-arranged to d0 =
I0−e−T b

0

(1−τd)
. With this budget constraint, the borrower’s

problem (18) is now given by the following Lagrangian:

max
X,I1,d1,e

L = u(Ab0 − e)

+
∑

k∈{G,B}

Pr[s = k]

[
µ(I0 − I1k)−

I0 − e− T b0
1− τd

− C(Xk, I1k) +R(I1k, E
a
k , γ

p
s )− τkE(Xk, I1k) + Tk

]
+

∑
k∈{G,B}

Pr[s = k]
{
λk

[
R̃(I1k, E

a
k , γ

p
s )− τkE(Xk, I1k) + ψTk − d1k

]
+ κIkI1k + κIk[I0 − I1k]

}
+

∑
k∈{G,B}

Pr[s = k]κc1k

[
d1k + µ(I0 − I1k)−

I0 − e− T b0
1− τd

− C(Xk, I1k)

]
,

(45)

The first order conditions with respect to Xs and I1s are equivalent to those in the main

text and given by (6) and (7), respectively. By contrast, the first order condition with

respect to equity e is different from the main text Eq. (9), and is now given by

u′(Ab0 − e) =
1 + (1− q)λG + qλB

1− τd
.

From this equation it is clear that a higher tax on debt induces borrowers to choose a

higher level of e, i.e., lower leverage. By fully rebating the taxes, such that T b0 = τdd0, a

regulator can ensure that the tax does not affect any constraints. Consequently, a equity
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mandate ē∗ can be implemented by setting a leverage tax τ ∗d such that

u′(Ab0 − ē∗) =
1 + (1− q)λG + qλB

1− τ ∗d
.

B.2 Interpretation of Borrowers as Financial Institutions

This appendix derives a version of the model in which borrowers are banks that make

loans to non-financial firms. A continuum of firms run by risk-neutral owners have access

to the same investment project as described in Section 2. Firms have no own funds and

must obtain a loan from a bank. Banks have the same preferences and the same limited

endowment Ab0 as borrowers in the baseline model. Banks can also raise financing from

investors as in the baseline model. In contrast, each firm is matched with a bank and can

only obtain financing through a loan from its bank, i.e., firms cannot obtain funding from

other investors or banks. There is no friction between a firm and its bank, but banks are

constrained by the same financial constraint (4) as borrowers in the baseline model. That

is, banks can fully seize the firm’s assets at t = 2 but can only pledge R̃(I1, E
a) of the

seized asset returns to outside investors. In this version of the model, “borrowers” are

split into a financial and a real sector, where banks finance loans to bank-dependent firms

through bank equity and outside financing, and firms use loans to finance real investment

and abatement. We assume that firm owners are risk-neutral and bank owners have the

same quasi-linear utility as borrowers in the baseline model. For simplicity, we focus on

the case ψ = 0.

Firm problem. Banks make a take-it-or-leave-it offer to firms, offering a loan lt at

t = 0 and t = 1, and repayment D due at t = 2. Firms can decide to accept or reject the

loan but conditional on accepting take lt and D as given. When rejecting the loan, the

outside option for firms is not to finance the project.

Firms have no own funds, so that I0 = l0. At t = 1 firms can liquidate some initial

investment to generate a liquidation value µ(I0 − I1s), and invest in abatement Xs at a
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cost C(Xs, I1s). Firm owner’s consumption is given by

cf0 = l0 − I0

cf1s = µ(I0 − I1s)− C(Xs, I1s) + l1s

cf2s = R(I1s, E
a
s , γ

p
s )− τE(Xs, I1s) + Ts −D

The firm’s problem is to choose I1s and Xs so as to maximize cf0 + cf1 + cf2 subject

to I0 ≥ I1s ≥ 0 and non-negativity constraints on consumption. This problem can be

written as follows:

max
Xs,I1s,l1s,l0

L = l0 − I0

+
∑

k∈{G,B}

Pr[s = k] [R(I1k, E
a
k , γ

p
k)− τkE(Xk, I1k) + Tk −D + l1k + µ(I0 − I1k)− C(Xk, I1k)]

+ κcf0
(l0 − I0) +

∑
k∈{G,B}

Pr[s = k]κcf1k
[µ(I0 − I1k)− C(Xk, I1k) + l1k]

+
∑

k∈{G,B}

Pr[s = k]
[
κcf2k

[R(I1k, E
a
k , γ

p
k)− τkE(Xk, I1k) + Tk −D] + κIkI1k + κIk(I0 − I1k)

]
.

(46)

The first order conditions with respect to I1s and Xs are, respectively,

(1 + κcf2s
)

(
ρ− τ

∂E(Xs, I1s)

∂I1s

)
− (1 + κcf1s

)

(
µ+

∂C(Xs, I1s)

∂I1s

)
+ κIs − κIs = 0, (47)

− τs
∂E(Xs, I1s)

∂Xs

− ∂C(Xs, I1s)

∂Xs

= 0. (48)

The first order condition with respect to Xs is the same as in the baseline model, cf.

Eq. (6). By Assumption 2 (liquidations are inefficient) and the fact that κcf2s
≥ 0, it also

follows that (1 + κcf2s
)
(
ρ− τ ∂E(Xs,I1s)

∂I1s

)
−
(
µ+ ∂C(Xs,I1s)

∂I1s

)
> 0. This implies that either

κIs > 0 or κcf1
> 0, so that I1s is either I1s = I0 or is pinned down by cf1 = 0, which

defines I1s(l1s).
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Bank problem. The bank chooses l0, l1s, D, d1s and d0, subject to the financial con-

straint (4).

c0 = A− e

c1 = d1s − d0 − l1s

c2 = D − d1s

Firm participation requires that cft ≥ 0. Banks optimally choose D, l1s and l0 such

that the participation constraints bind, which implies l0 = I0 = e + d0, l1s = −µ(I0 −

I1s) + C(Xs, I1s), and D = R(I1s, E
a
s )− τE(Xs, I1s) + Ts.

If the firm’s investment is pinned down by I1s(l1s) (defined by cf1 = 0), the bank’s

problem can be expressed as:

max
l1s,d1s,e

L = u(A− e)− I0 + e

+
∑

k∈{G,B}

Pr[s = k] [µ(I0 − I1k(l1k))− C(Xk, I1k(l1k)) +R(I1k(l1k), E
a
k , γ

p
k)− τkE(Xk, I1k(l1k)) + Tk]

+
∑

k∈{G,B}

Pr[s = k]λk

(
R̃(I1k(l1k), E

a
k , γ

p
k)− τkE(Xk, I1k(l1k))− d1k

)
+ κc0(A− e)

+
∑

k∈{G,B}

Pr[s = k] [κc1k (d1k − I0 + e+ µ(I0 − I1k(l1k))− C(Xk, I1k(l1k)))]

+
∑

k∈{G,B}

Pr[s = k] [κc2k (R(I1k(l1k), E
a
k , γ

p
k)− τkE(Xk, I1k(l1k)) + T − d1k)] .

(49)

The first order conditions read:

u′(A− e) = 1− κc0 + (1− q)κc1G + qκc1B (50)

κc1s − κc2s − λs = 0 (51)

− (1 + κc1s)

(
µ+

∂C

∂I1s

)
+ (1 + κc2s)

(
∂R

∂I1s
− τs

∂E

∂I1s

)
+ λs

(
∂R̃

∂I1s
− τs

∂E

∂I1s

)
= 0 (52)

Due to the assumptions on u′(c0), it is never optimal to have A−e = 0, so κc0 = 0. Because

d1s ≤ R̃(I1s, E
a
s ) − τsE(Xs, I1s), c2s > 0 and κc2s = 0. It follows that λs = κc1s > 0, so
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the FOCs simplify to:

u′(c0) = 1 + (1− q)λG + qλB (53)

λs = −r(τs, Xs, I1s)

r̃(τs, Xs, I1s)
(54)

which are the same as the conditions as (7’) and (9) in the baseline model. Since also

Eq. (48) is equivalent to Eq. (6), in this case all first order conditions and therefore the

equilibrium allocations are the same as in the baseline model.
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