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Informal employment from migration shocks

Marica Valente∗ Timm Gries† Lorenzo Trapani‡

Abstract

We propose a new approach to detect and quantify informal employment re-

sulting from irregular migration shocks. Focusing on a largely informal sector, agri-

culture, and on the exogenous variation from the Arab Spring wave on southern

Italian coasts, we use machine-learning techniques to document abnormal increases

in reported (vs. predicted) labor productivity on vineyards hit by the shock. Mis-

reporting is largely heterogeneous across farms depending e.g. on size and grape

quality. The shock resulted in a 6% increase in informal employment, equivalent to

one undeclared worker for every three farms on average and 23,000 workers in total

over 2011-2012. Misreporting causes significant increases in farm profits through

lower labor costs, while having no impact on grape sales, prices, or wages of formal

workers.
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Introduction

The informal sector, where irregular migrants are overrepresented, employs over

sixty percent of the world’s working population (ILO, 2023). How can we detect

and quantify the impact of irregular migration on informal employment? Esti-

mation is inherently difficult due to lack of data on both populations. Previous

studies, like Warren and Passel (1987) and Borjas (2017), develop methods to es-

timate the number of irregular migrants from census and survey data, and study

their labor supply. Yet, the effects of irregular migration on firms remain un-

explored, and several important questions arise. Which firms are more likely to

employ informal workers after a migration shock? What are the economic im-

plications on formal employment, consumer prices, firm profits, and tax evasion?

Answering these questions is of pivotal importance in order to inform immigration

policy debates, design policies that foster formalization, and improve inspection

targeting and audit effectiveness.

In this paper, we estimate the amount of informal employment arising from

irregular migration at the firm level, and examine its impact on firm outcomes and

fiscal revenues. To the best of our knowledge, this is the first paper to do this.

Specifically, we develop a two-stage method to quantify the extent of labor under-

reporting. In the first stage, we estimate labor productivity functions in terms of

firm characteristics, in the absence of a migration shock. Labor productivity of

unskilled (substitutable) labor tends to be relatively stable over time,1 and it is

predictable using ensemble methods. As we show, these new techniques in machine

learning allow to flexibly control for a large number of covariates, and achieve high

predictive performance by combining predictions from multiple models. In the

second stage, we infer labor underreporting after a migration shock from positive

differences between reported and predicted (“true”) labor productivity.

Our study uses data on vineyards in the Italian agriculture sector, which em-

ploys a large number of unskilled and, often, foreign harvest labor.2 Focusing on

the exogenous variation from the 2011 Arab Spring migration shock on southern

Italian coasts, we find that the supply shock of irregular migrants caused large

increases in reported (vs. predicted) labor productivity for farms exposed to the

1See, e.g., discussions in Jorgenson and Griliches (1967) and Lamouria et al. (1963).
2Italian farms employ around 270k foreign workers (32%), mainly seasonal and unskilled (INEA,
2012). Similar statistics are reported for e.g. Germany, Spain, France and Poland (EU, 2021).
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shock. The average effect amounts to one undeclared worker each three farms, or

23,000 workers over 2011-2012. This figure is in line with the number of detected

migrants that have disappeared from first aid centers. Compared to the amount

of formal employment, the migration shock causes a 6% increase in informal em-

ployment. We detect the highest level of misreporting in small farms, located in

remote areas, and producing grapes for quality wines. These findings indicate that

farmers’ benefits from misreporting and their perceived risk of detection could be

key factors influencing the amount of informal employment. We find that misre-

porting increases farm profitability by 6.3% on average, and that it has no effect on

grape sales, prices, and hourly wages of formal workers. Given that quantities are

unaffected, our results imply a substitution of formal with informal labor within

farms. Based on minimum wages, we estimate labor tax evasion for about 75 mil-

lion euros, which is 5% of the total agricultural revenues collected in 2011-2012

(INEA, 2015).

Data and Context.– Our analysis uses a rich panel of Italian farms supplied

by the European Farm Accountancy Data Network (EU-FADN), combined with a

large agro-meteorological dataset (Agri4Cast). The FADN sample is representative

of the economically relevant population of Italian farms due to stratified sampling

and weighting methods developed in 2010 (CREA). The final database is a panel

of 2,997 Italian vineyards over the sample period 2010-2012. In each year, the

sample of farms represents about 100,000 vineyards located throughout Italy, of

which 19,600 in Sicily and 19,000 in Apulia.

We focus on the rapid, large, and unexpected flows of Arab Spring migrants

across the Mediterranean Sea into the southern Italian regions of Apulia, Calabria

and Sicily.3 Lacking resources for detection, aid and identification of thousands of

migrants, Italy declared a state of emergency (Ghizzi, 2015). In line with other

studies (e.g., Tumen, 2016), we treat these unexpected flows as an exogenous shock

to the labor markets of the recipient regions. We expect to observe labor market

effects in the grape growing sectors of Sicily and Apulia, because they often rely on

informal labor supplied by migrants landing undetected.4 Italy’s informality rate

is around 20%, similar to Southern and Eastern European countries like Spain,

3With 64,000 detected and further undetected landings, it was the largest wave of the previous
decades crossing the central Mediterranean Sea (FRONTEX, 2016; INEA, 2014).
4We exclude Calabria as most of its vineyard holdings are too small to be covered in our data.
Only 1% of Italian vineyards are in Calabria vs. 18% in Sicily and 16% in Apulia (quattrocalici.it).
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Greece, and Poland, as well as other nations relying on seasonal migrant workers

such as France, Austria, Germany, Ireland, and the UK (World Bank, 2011).

Empirical Strategy.– As mentioned above, we use a two-stage method to quantify

the extent of misreporting and its confidence bounds. Firstly, we estimate the labor

productivity functions in terms of farm and weather characteristics. To this end, we

use data of exposed farms before the shock (or “treatment”), and data of unexposed

farms before and after the shock. All farms in Sicily and Apulia – the only recipients

of large flows of irregular migrants – are considered as “treated”. Thus, we define

the comparison groups (Sicily and Apulia vs. the rest) by treatment assigned

rather than treatment received, as in intent-to-treat analyses.5

Secondly, we infer misreporting (i.e. the amount of treatment) from positive

gaps between reported and predicted labor productivity; in the case of misreporting

following a shock, reported outcomes will systematically deviate from predicted

outcomes. Hence, our inference on misreporting is based on testing whether labor

productivity gaps of treated farms are significantly larger than those of untreated

farms. Our methodology hinges on having a good predictor for untreated outcomes.

Individual prediction models may be subject to misspecification bias of unknown

form, and provide unstable predictions (Stock and Watson, 2004). Therefore, we

propose to combine several machine learning methods, building on an idea that

dates back to Bates and Granger (1969). We use a least-squared based criterion

known as Super Learner (SL) (Van der Laan et al., 2008). This procedure has

been shown to lead to substantial improvements in prediction accuracy with little

added computational costs (Bajari et al., 2015).

Finally, we explore heterogeneity in misreporting using causal forest algorithms

(Athey et al., 2019). We construct confidence intervals for our estimates of hetero-

geneous effects using a novel test we develop which, differently than the standard

bootstrap, is robust to multiple hypothesis testing issues and the algorithmic spec-

ification. Hence, we analyze the effects of the shock on farm profits, sales, costs,

prices and hourly wages of misreporting farms (vs. non-treated farms) using the

“residualization” approach by Chernozhukov et al. (2018), a common practice for

confounding adjustment in machine learning applications. As farm covariates may

predict both farm outcomes as well as the decision to misreport after the shock

5As vineyards are anonymized, we cannot use continuous treatment variables relying on, e.g.,
farms’ distance to the landing areas.
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(self-selection), we use lasso to partial out the effect of covariates in two separate

regressions, and use the residuals as the new inputs for a final regression.

Identification.– Our main identifying assumption is that firms share common

labor productivity functions and are unaffected by other major technological or

labor market shocks, a common assumption in causal inference methods including

synthetic controls (Abadie et al., 2015). In our analysis, we show accurate pre-

diction of labor productivity for all farms (treated or not) in the absence of the

shock. Finally, we quantify the amount of underreported labor from the estimated

increases in productivity under the assumption that additional informal labor em-

ployed after the shock is equally productive as the existing formal labor. This is

consistent with findings by La Porta and Shleifer (2014, 2008) and especially plau-

sible for farm jobs with negligible returns on experience. We also evaluate possible

spillover effects between exposed and unexposed farms, which could introduce a

downward bias into our estimates. By conducting placebo tests, we ascertain that

there are negligible effects on farms in unexposed regions, thus ensuring that we

are not underestimating the impact of the shock. Finally, through leave-one-out

estimation, we show that our estimates are unaffected by the inclusion of farms

from any region in the non-treated sample.

Contribution.– This paper contributes to three strands of research. First, we

build on the literature that aims to estimate the amount of the undocumented la-

bor force using census and survey data (see, e.g., Borjas, 2017; Warren and Passel,

1987; Kelly, 1977). The methodology offered here thus shares with this research

the goal to “count the uncountable” from observed statistics. Our contribution

to this literature is threefold. First, we provide a new approach to detect and

quantify informal employment arising from irregular migration at the firm level;

in doing this, we overcome the inherent challenge of estimating this unobserved

phenomenon. Second, we identify firm characteristics associated with the highest

increase in informality. Third, we provide first evidence of the effects of irregular

migration on firm outcomes, consumer prices, and fiscal revenues. Our approach

can be applied to settings where there is no available data on irregular migrants

as well as informal workers, or previous estimates thereof. Moreover, it can be ex-

tended to other labor-intensive sectors characterized by large demands for unskilled

(substitutable) labor such as construction, manufacturing, and services.

Second, we add to a small but rapidly growing literature on machine learning
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for causal inference. This is the first study to show how ensemble methods can be

used to detect data misreporting from observed statistics; prior work has focused

on the use of similar Super Learning methods for demand estimation (Bajari et al.,

2015), detection of cyber attacks (Rabbani et al., 2021), and prediction of users’

movie rating on Netflix (Toescher et al., 2009). As a by-product, we also make a

theoretical contribution by proposing a novel, alternative method to the bootstrap

to compute confidence intervals for causal forests estimates (see Athey et al., 2019).

This method relies on a completely different approach (thus allowing to check if

the results obtained with the bootstrap are robust to the specifications of the

resampling scheme), and it is designed to avoid the multiple hypothesis testing

problem (see Section 2.3 and Appendix B for details).

Third, our study relates to the large literature on the effects of irregular mi-

gration on the labor market. Using existing estimates of informal migrant labor

on farms, a body of work shows that migrant informal workers compete with, and

substitute, formal workers due to the unskilled, homogeneous nature of farm la-

bor (see, e.g., Venturini and Villosio, 2008; Vaiou and Hadjimichalis, 1997; Lianos

et al., 1996). Further, a related set of contributions use survey data in order to

analyze the labor market impacts of the refugee flows into Turkey caused by the

2011 Syrian civil war (see, e.g., Tumen, 2016; Balkan and Tumen, 2016), conclud-

ing that the combination of prevalent informal employment, along with a supply

shock of irregular refugees, causes labor displacement. Altındağ et al. (2020) infer

increased informality post-migration from abnormal increases in firm energy use,

particularly among small firms operating in largely informal sectors like construc-

tion and services. For Italy, Labanca (2020) uses survey data around the Arab

Spring events to show displacement of formal native workers by formal migrant

workers from heavily affected countries, without effects on wages. Our results

align with these studies, offering a novel methodology for quantifying effects on

informal employment and conducting a comprehensive analysis of firm outcomes.

The paper is structured as follows: Section 1 provides background information,

Section 2 outlines the empirical strategy, Section 3 describes the data, Sections 4

and 5 present the results and robustness checks, and Section 6 concludes.
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1 Background

In this section, we discuss irregular migration and informal farm labor in Italy, fo-

cusing on the 2011 migration shock in Sicily and Apulia. We then explain migrants’

incentives to enter informal channels and how they obtain informal jobs.

In Italy, over 400,000 informal farm workers of which, mostly, undocumented

migrants are estimated to be part of caporalato, a widespread illegal system to re-

cruit underpaid workforce through mediators known as caporali (Assosomm, 2016;

FLAI, 2014).6 The estimated value produced by these workers is around 4.8 bil-

lion euros,7 and the estimated loss to national revenues is around 1.8 billion euros

per year (FLAI, 2018). Overall, informal farm workers (in and outside caporalato)

produce an estimated value of 15 billion euros (1% GDP) and losses for 7.2 billion

euros per year (IDOS, 2019). Aggregated data on farm inspections show informal

employment in more than half of the inspected farms (INL, 2012).8 Informal em-

ployment in agriculture is a widespread phenomenon, especially in southern Italy.

For instance, up to 70% of total agricultural labor in Sicily (114,000 workers) and

Apulia (110,000 workers) is estimated to be informal as opposed to 30% at the

national level (FLAI, 2012). Further, about one fourth of the total farm workers of

Sicily and Apulia (58,000) are non-EU nationals who typically perform unskilled

harvest labor in tree crops (grapes and olives), have no fully legal employment, and

are paid wages below the legal floor (INEA, 2012). The 2011 migration shock in

southern Italy might have further increased informal employment in these regions

by raising the number of workers willing to work informally (either new informal

workers or previous formal workers). An investigation of the National Institute

of Agricultural Economics estimates large increases of foreign agricultural workers

in Sicily and Apulia post-migration: the largest estimate is for Sicily where the

increase amounts to 213% or 20,000 additional foreign workers of which only a

small fraction is legally employed or resident (INEA, 2012).

Landed migrants have strong incentives to enter informal labor channels. Many

migrants land on Italian shores undetected (INEA, 2014). Detected migrants ob-

6Wages vary between 1.60 and 3 euros per hour over a 12 to 16-hour working day. In addition,
workers pay intermediaries for transportation, food, and shelter (Palmisano and Sagnet, 2016).
7This is 6% of the total value produced by all estimated informal workers in Italy – which are
3.5 millions and produce a value of 77 billion euros or 5% GDP (ISTAT, 2017).
8This data is not available before 2012.
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tain first aid in emergency shelters called hotspots. In 2011, of the approximately

64,000 detected and further undetected9 landings on southern Italian shores, only

around 55,000 arrivals were recorded at the hotspots (SPRAR, 2011). Further

11,700 migrants seem to have disappeared in the initial months of 2011 (La Re-

pubblica, 2011). Thus, undetected migrants from the 2011 wave amount to at

least 20, 700. Most often, landed migrants want to reach other EU destinations,

however, undocumented traveling causes higher risks of detection and expulsion.

Under Italian law, migrant illegal entry and stay is a crime punished with detention

and expulsion (Penal Code, 2009).10 Consequently, irregular migrants are likely to

remain in the landing area in the short run.11 As a way to make money and obtain

forged documents, undetected migrants often find informal jobs in the agricultural

sectors of the landing regions through, e.g., caporalato (La Repubblica, 2017).

How can we envisage the transition between entering the country irregularly,

leaving first aid camps, and finding informal employment on farms? When undoc-

umented migrants leave camps or detention centers, they often seek protection in

nearby communities of migrants sharing family ties and language. These commu-

nities, often located close to farmlands, provide informal labor to farmers, as well

as transportation of and assistance to workers (e.g. accommodation, healthcare,

food, and credit for remittances). The matching between supply and demand of

informal labor is facilitated by mediators (caporali) who also live in these com-

munities and are often migrants themselves. To provide an insider’s perspective

on this process, we report the firsthand account of an irregular migrant providing

informal harvest labor in Apulia, interviewed in August 2011.

“When I landed in Lampedusa [Sicily], I was with other people from Gambia,

and I heard everyone saying “Gambia, Gambia,” so I also said “Gambia”, thinking

that I might obtain political asylum. So they sent me to the CARA [first aid camp]

to Borgo Mezzanone [Apulia] where I applied for asylum. But it was rejected. [...]

So I went to the Grand ghetto [a migrant community nearby]. [...] I did not have

money, and one “caporale” from Senegal like me asked if I wanted to work for him.

I accepted.” [Translated from Sacchetto and Perrotta, 2012].

9As reported in several studies (see, e.g., INEA, 2012), the official number of landings underes-
timates the actual dimension of the 2011 migration shock.
10In summer 2011, Italy strengthened the law (129/2011) to forcibly remove irregular individuals
and non-compliant migrants, while also allowing longer detention periods (from 6 to 18 months).
11We discuss the case of asylum seekers in the Appendix A.
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2 Empirical Strategy

In this section, we discuss the main stages of our empirical strategy. We begin

by laying out our model and assumptions (Section 2.1). We then discuss model

estimation through the so-called “super learner”(Section 2.2). Finally, we show

how to carry out inference on the local average treatment effects (Section 2.3).

2.1 Model and assumptions

We begin by defining the labor productivity {yi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}, for farm
i at year t as

yi,t =
Yi,t
Li,t

, (1)

where {Yi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T} and {Li,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T} denote total

grape production in tons, and labor input in hours, respectively. Labor produc-

tivity is modelled as a function µ : Rp → R of a p-dimensional vector of covariates

Xi,t:

yi,t = µ (Xi,t) + ui,t, (2)

where ui,t is an error term representing the “natural” misspecification of the func-

tional form µ (·).
However, we entertain the possibility that farms may cheat by underreporting

the true labor Li,t, instead underreporting it as L′
i,t, in order to save labor costs

in terms of social contributions and labor taxes. By the same token, farms may

also misreport the true output Yi,t as Y
′
i,t. Hence, we can assume that the observed

labor productivity y′i,t deviates from yi,t by an additive random shock ηi,t,
12 which

12The additive form of equation (3) comes from a straightforward application of Taylor’s expansion
– indeed, it is easy to see that there exists a c0 > 0 such that

Yi,t

Li,t
−

Y ′
i,t

L′
i,t

=
Yi,t

Li,t
−

Yi,t

L′
i,t

+
Yi,t

L′
i,t

−
Y ′
i,t

L′
i,t

=
Yi,t

Li,t

1−
(
1 +

L′
i,t − Li,t

Li,t

)−1
+

Yi,t − Y ′
i,t

L′
i,t

=
Yi,t

Li,t

(
1−

(
1− c0

L′
i,t − Li,t

Li,t

))
+

Yi,t − Y ′
i,t

L′
i,t

= c0
Yi,t

Li,t

L′
i,t − Li,t

Li,t
+

Yi,t − Y ′
i,t

L′
i,t

= −ηi,t.
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captures baseline measurement errors and misreporting in productivity, viz.

y′i,t = yi,t + ηi,t. (3)

Further, we allow for possible misspecification of the functional form µ (·), and for

the possibility that the covariates Xi,t may be measured with an error, or not be

reported, or be omitted, via

y′i,t = µ′ (X ′
i,t

)
+ ηi,t + ui,t + µ (Xi,t)− µ′ (X ′

i,t

)
(4)

= µ′ (X ′
i,t

)
+ εi,t + µ (Xi,t)− µ′ (X ′

i,t

)
= µ′ (X ′

i,t

)
+ ε∗i,t,

where X ′
i,t is a p′-dimensional vector, p′ ≤ p, whose coordinates are (some of)

the coordinates of Xi,t plus a possible measurement error, and µ′ : Rp′ → R. We

note, as a final remark, that in (4), µ (Xi,t)−µ′ (X ′
i,t

)
is the misspecification of the

functional form µ (·) arising from errors and omissions in Xi,t.

As we mentioned above, in 2011 and 2012 vineyards in Sicily and Apulia expe-

rienced a sudden increase of irregular migration - i.e., an exogenous shock. Hence,

we regard vineyards in Sicily and Apulia during 2011 and 2012 as treated as in

intent-to-treat analyses; vineyards in Sicily and Apulia before 2011 are pre-treated

units; finally, all other vineyards in all periods are never-treated (or non-treated).

Evidence of treatment is provided in Section 1. Hence, model (4) is valid for the

untreated sample, given by the union of all pre-treated and never-treated units;

conversely, when treatment occurs, we denote this through the binary variable Di,t

which is equal to 1 or 0 according as vineyard i at time t was exposed to the

informal labor supply shock or not. This adds13 an additional misreporting to (4)

y′i,t = µ′ (X ′
i,t

)
+ ε∗i,t + δi,tDi,t. (5)

Heuristically, if treated farms underreport labor after the shock Di,t, then the

reported labor productivity y′i,t will be inflated, with δi,t > 0. Indeed, if farms also

underreported quantities, this would attenuate the impact of the shock Di,t, i.e. it

would attenuate δi,t > 0. To ensure the absence of downward bias in our estimates,

13The additive form of (5) arises from the same arguments as for (3).

10



we analyze the impact of the shock on sales and prices of affected farms, and find no

effects (see Section 4.4). We would like to point out that having Di,t equal to 1 only

for the treated units, and zero otherwise, relies on the “canonical” assumption of no

spillovers (more precisely, the SUTVA or Stable Unit Treatment Value Assumption

as in Rosenbaum and Rubin 1983; Imbens and Rubin 2015). We evaluate possible

spillover effects between exposed and unexposed farms, which would also attenuate

the impact of the shock Di,t, by conducting placebo tests within the non-treated

sample. We ascertain that there are negligible effects of the shock on farms in

unexposed regions, thus ensuring that we are not underestimating δi,t. To show

robustness of our estimates against the inclusion of farms from any region in the

non-treated sample, we perform leave-one-out estimation (see Section 5).

Equation (5) is our main working model. Defining y′0,i,t and y
′
1,i,t as the outcomes

of y′i,t in the absence and presence of treatment respectively, and noting that y′0,i,t =

µ′ (X ′
i,t

)
+ ε∗i,t, an alternative formulation of (5) is the canonical potential outcome

representation

y′i,t = y′0,i,t +
(
y′1,i,t − y′0,i,t

)
Di,t. (6)

We make the following assumptions.

Assumption 2.1. It holds that: (i) E |µ (Xi,t)| <∞ and E
∣∣µ′ (X ′

i,t

)∣∣ <∞ for all

i and t; and (ii) E
(
µ (Xi,t)− µ′ (X ′

i,t

))
is constant across i and t.

Assumption 2.2. It holds that (i) {εi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T} and {Di,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}
are two mutually independent groups; (ii)

{
µ (Xi,t)− µ′ (X ′

i,t

)
, 1 ≤ i ≤ N, 1 ≤ t ≤ T

}
and {Di,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T} are two mutually independent groups;

(iii) {δi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T} and {Di,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T} are two mutually

independent groups.

Some comments on Assumptions 2.1 and 2.2 are in order. We begin by stress-

ing that our main aim will be to estimate δi,t in (5), whereas we do not attempt

– or even need – to estimate µ (·) at any stage. Hence, our assumptions do not

reflect the classical set-up which one would expect to have in the context of es-

timating a nonlinear model in the presence of covariates with measurement error

(see Schennach, 2016 for a review on this important, but unrelated, topic).

Considering Assumption 2.1, the main requirement is – essentially – that the

“residual” µ (Xi,t) − µ′ (X ′
i,t

)
is, on average, homogeneous across i and t: indeed,
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we do not require that its mean be zero, but merely that it exists and that it is

the same across all units, especially across treated and non-treated units alike. In

other words, we require farms to have common labor productivity functions. This

assumption is verifiable and, as we show, farm labor productivity can be accurately

predicted for all farms (treated or not) in absence of the shock. Similarly, we do not

require any form of independence across i and t at this stage; note that T < ∞,

so – even as far as estimation is concerned – we do not require any restriction

on serial dependence. Note that we do not require E (εi,t) = 0 in our procedure.

Hence, we can allow for “cheating”; e.g., as mentioned above, farms may misreport

productivity, whence ηi,t > 0 which, in turn, may result in E (εi,t) > 0.

In Assumption 2.2, we do not assume independence between the covariate X ′
i,t

and the treatment Di,t, which would be standard in ANCOVA. All we require is

that the “residual” µ (Xi,t) − µ′ (X ′
i,t

)
and the treatment dummy Di,t are inde-

pendent. In order to shed more light on the plausibility of this assumption, note

that, in general, the coordinates of X ′
i,t consist of labor productivity determinants

such as e.g. weather and farm characteristics. In order to ensure the validity of

our assumption, we have selected farm characteristics which can be regarded as

exogenous, i.e. whose reporting is unlikely to be affected by a sudden migrant

inflow. In other words, assuming no effect of the migration shock on capital, as-

sets, and other farm covariates is plausible in the short run as the migrant wave

was unexpected. By the same token, we point out that the reporting of weather

data can be (plausibly) assumed to be independent of migration. Moreover, at

the same time of migration, there was no other major technological or labor mar-

ket shock that could create dependence between the treatment dummy and the

residual productivity.

Let now µ̂′ (·) be an estimate of µ′ (·), and let

ŷ′0,i,t = µ̂′ (X ′
0,i,t

)
,

ŷ′1,i,t = µ̂′ (X ′
1,i,t

)
,

where, with obvious notation, X ′
0,i,t and X

′
1,i,t are the explanatory variables for the

(non-treated and treated) unit i and time t. In essence, ŷ′0,i,t and ŷ
′
1,i,t are the values

of y′0,i,t and y
′
1,i,t predicted using µ̂′ (·) and neglecting the presence of treatment.

The next result offers an in-population justification of our estimators.
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Theorem 2.1. We assume that Assumptions 2.1-2.2 are satisfied, and that

E
[
µ̂′ (X ′

0,i,t

)
− µ′ (X ′

0,i,t

)]
= E

[
µ̂′ (X ′

1,i,t

)
− µ′ (X ′

1,i,t

)]
. (7)

Then it holds that

E
(
y′1,i,t − ŷ′1,i,t

)
− E

(
y′0,i,t − ŷ′0,i,t

)
= E (δi,t) ,

where E (δi,t) is the Average Treatment Effect (ATE).

Theorem 2.1 suggests that E (δi,t) can be estimated as follows. Let 1 ≤ i ≤
N1, 1 ≤ t ≤ T1 denote the cross-sectional and time series sizes of the treated

sample, and 1 ≤ i ≤ N0, 1 ≤ t ≤ T0 denote the cross-sectional and time series sizes

of the non-treated sample. Similarly, let 1 ≤ i ≤ NPT , 1 ≤ t ≤ TPT denote the

cross-sectional and time series sizes of the untreated sample (which also includes

pre-treatment values of treated units). Also, denote with µ̂′
PT (·) an estimate of

µ′ (·) obtained using the untreated sample 1 ≤ i ≤ NPT , 1 ≤ t ≤ TPT . We then

denote the predicted values of y′i,t for the non-treated and treated units as

ỹ′0,i,t = µ̂′
PT

(
X ′

0,i,t

)
, and ỹ′1,i,t = µ̂′

PT

(
X ′

1,i,t

)
.

Then, the sample analogue of Theorem 2.1 is

δ̂ =
1

N1T1

N1∑
i=1

T1∑
t=1

(
y′1,i,t − ỹ′1,i,t

)
− 1

N0T0

N0∑
i=1

T0∑
t=1

(
y′0,i,t − ỹ′0,i,t

)
. (8)

As a final step, we quantify the amount of underreported labor from the esti-

mated increases in productivity. We do so under the assumption that additional

informal labor employed after the shock is equally productive as the existing for-

mal labor. We believe this is a plausible assumption for farm jobs with negligible

returns on experience. More generally, this is consistent with findings by La Porta

and Shleifer (2014, 2008) showing that differences in the human capital of formal

and informal workers are small.
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2.2 Estimation: the Super Learner

The first step of our analysis is to have an estimate of µ′ (·) which is “as good as

it gets”. We estimate µ′ (·) using the untreated observations, and then apply it to

predict y′i,t for both treated and non-treated farms. Hence, we need an estimate of

µ′ (·) which is particularly good at forecasting. This is not a trivial task: whilst

there is a plethora of non-parametric estimators (see e.g. the review of Fan and

Gijbels, 2018), all these are notoriously unreliable as far as out-of-sample perfor-

mance is concerned. This is further compounded by the fact that, in our case, the

set of covariates X ′
i,t is large-dimensional.

In order to ensure predictive ability, we use an ensemble method known as Super

Learner (SL) (Polley, 2021). Whilst the details are reported below, we summarize it

as a two-stage algorithm. In the first stage, several user-chosen estimators of µ′ (·)
are run; in order to enhance the predictive ability of the estimated functions, we

heavily rely on cross-validation in this step. After performing this first part of the

analysis, we construct an aggregate predictor, by combining the previous estimators

into a weighted average. Weights are chosen so as to minimise a predictive loss

function, thus ensuring an optimal combination of the estimators employed in

the first stage. Essentially, the SL is based on forecast averaging, and thus its

origins can be traced at least as far back as the seminal contribution by Bates

and Granger (1969). Combining forecasts is understood to often deliver superior

forecasting ability, and we refer to the paper by Elliott (2011) for a comprehensive

review and analysis of the issue.

Although the details are in the paper by Van der Laan et al. (2008), imple-

menting the SL requires some tuning, and we summarize hereafter how we have

designed it. Recall that we denote the dimensionality of X ′
i,t as p

′, i.e. X ′
i,t ∈ Rp′ ;

recall that we use the notation 1 ≤ i ≤ NPT , 1 ≤ t ≤ TPT to denote the time

and cross-sectional sample sizes of the untreated sample, given by the union of

the non-treated units and the pre-treatment values of treated units - such union is

henceforth denoted as S.

In the first step of the algorithm, we run 1 ≤ j ≤ l estimators of µ′ (·) : Rp′ → R

(see below for a list thereof), and denote each estimator as µ̂′
j (·). As mentioned

above, each estimator is chosen through cross-validation. To do so, and considering

the fact that NPT is large, whereas TPT is not, we do not partition across t, but only
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across i. Some notation is required at this stage. We use 1 ≤ v ≤ V folds,14 and we

denote V (v) and R (v) as the validation and training samples for fold v respectively.

For each v, as is customary, it holds that V (v)∪R (v) = S and V (v)∩R (v) = ∅;

similarly, we construct V (v), 1 ≤ v ≤ V , as a partition, i.e. V (vi) ∩ V (vj) = ∅

for all i ̸= j, and
V⋃
i=1

V (vi) = S. We use the notation vi to denote those units

i which, for fold v, belong in the validation sample. Hence, for each estimator

µ̂′
j (·), we predict y′i,t; note that the estimator µ̂′

j (·), when predicting y′i,t ∈ V (vi),

is constructed using R (vi). Hence, we denote, with short-hand notation

ŷ′(j),i,t = µ̂′
j

(
X ′

i,t

)
,

where it is understood that X ′
i,t ∈ V (vi) and µ̂

′
j (·) is obtained using the training

sample R (vi).

Defining the l-dimensional vector of predictions zi,t =
(
ŷ′(1),i,t, ..., ŷ

′
(l),i,t

)′
, we

note that this defines a mapping ψ : Rp′ → Rl such that zi,t = ψ
(
X ′

i,t

)
. Finally, we

define the super learner as the mapping ϕ : Rl → R such that the predicted value

ŷ′i,t is given by

ŷ′i,t = ϕ (zi,t) = ϕ ◦ ψ
(
X ′

i,t

)
. (9)

Since (9) is an aggregation of l predictions via ϕ, it makes sense to choose the

mapping ϕ̂ from a class of functions Φ such that

ϕ̂ = argmin
ϕ∈Φ

NPT∑
i=1

TPT∑
t=1

L
(
y′i,t, ŷ

′
i,t

)
, (10)

where L
(
y′i,t, ŷ

′
i,t

)
is a loss function. A common choice could be the L2-norm loss

(i.e. a quadratic loss function), viz.

L
(
y′i,t, ŷ

′
i,t

)
=
(
y′i,t − ŷ′i,t

)2
. (11)

Similarly, a computationally convenient choice for ϕ could be a linear mapping, so

14We have used, as suggested in the paper by Polley (2021), V = 10.
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that (10) becomes

ŵN,T = argmin
w∈[0,1]l,s.t.∥w∥=1

NPT∑
i=1

TPT∑
t=1

(
y′i,t −

p∑
j=1

wj ŷ
′
(j),i,t

)2

. (12)

The output of (12) is an l-dimensional vector w = (w1, ..., wl)
′, whose coordinates

represent the weight assigned to each individual predictor µ̂′
j

(
X ′

i,t

)
in constructing

the SL, which in this context has the interpretation of being a weighted average

of the individual predictors. A consequence of using the SL is that ŵN,T has the

“oracle property”, in that it performs at least as well as the best of the 1 ≤ j ≤ l

estimators.

As far as implementation is concerned, we have used the following “learners”: a

random forest, extreme gradient boosting, regularized regression, neural networks

and support vector machines; we provide details on the implementation of these

algorithms in the Appendix F.

2.3 Inference on the local ATEs

We now propose an estimate of the δi,t’s for 1 ≤ i ≤ N1, i.e. for the treated units.

Let, µ̃′ (·) be the estimate of µ′ (·) based on the SL defined above, viz.

µ̃′ (·) =
l∑

j=1

wjµ̂
′
j (·) ,

and define, for short

ỹi,t = y′i,t − µ̃′ (X ′
i,t

)
,

i.e. the residual obtained through µ̃′ (·). We now propose a “smoothed” estimate

of the individual δi,t, 1 ≤ i ≤ N1, based on equation (7) in Athey and Wager

(2019):

δ̂i,t =

∑T
t=1

∑N0+N1

i=1 αi,t

[
ỹi,t − µ̃′(−i,t)

(
X ′

i,t

)] [
Di,t − ê(−i,t)

(
X ′

i,t

)]∑T
t=1

∑N0+N1

i=1 αi,t

[
Di,t − ê(−i,t)

(
X ′

i,t

)]2 . (13)

In (13), the notation is as follows: αi,t are the nearest-neighbor weights estimated

by an auxiliary forest, as defined in equation (6) in Athey and Wager (2019), based
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on the frequency with which treated units fall in the same leaves as untreated units;

µ̃′(−i,t)
(
X ′

i,t

)
is the prediction of y′i,t based on the super learner µ̃′ (·), estimated

missing out the observations corresponding to the (i, t)-th unit from the estimation

sample; and ê(−i,t)
(
X ′

i,t

)
is an estimate of the propensity score P

(
Di,t|X ′

i,t

)
, ob-

tained missing out the (i, t)-th unit from the estimation sample. Using (13) serves

the double purpose of getting rid of two types of endogeneous variations (con-

founding): the variation of residual due to X ′
i,t, and differences between treated

and untreated that can be ascribed to X ′
i,t. This can be illustrated heuristically

by noting that

ỹi,t =
[
µ′ (X ′

i,t

)
− µ̃′ (X ′

i,t

)]
+ δi,tDi,t + ε∗i,t,

and recalling that, by Assumption 2.2, ε∗i,t is independent of X ′
i,t. Then, ỹi,t −

µ̃′(−i,t)
(
X ′

i,t

)
partials out the effect of

[
µ′ (X ′

i,t

)
− µ̃′ (X ′

i,t

)]
from ỹi,t (thus, in

essence, yielding an estimate of δi,tDi,t); and Di,t − ê(−i,t)
(
X ′

i,t

)
removes the ef-

fect of X ′
i,t from Di,t. Then, modulo the error term ε∗i,t, δ̂i,t in (13) may be viewed

as a local, Least Squares estimate of δi,t after partialling out the effect of X ′
i,t.

After “extracting” the δi,ts via (13) for each treated unit 1 ≤ i ≤ N1 and period

1 ≤ t ≤ T1, we can carry out inference on δi,t. We are interested in “significance

tests” for the null

H0 : δi,t = 0, (14)

for each 1 ≤ i ≤ N1 and 1 ≤ t ≤ T1; and we subsequently develop a methodology

to construct confidence intervals for each estimate of δi,t. When testing for (14),

two potential issues need to be addressed. Firstly, confidence intervals for δ̂i,t are

computed using bootstrap (Athey et al., 2019). This requires some tuning, and

therefore different specifications of the bootstrap algorithm may potentially result

in different outcomes. This issue requires, at a minimum, some sensitivity analysis.

Secondly and more importantly, in our empirical analysis we run tests for hundreds

of treatment effects δi,t; hence, our results are bound to be affected by the multiple

testing problem. As a consequence, over-rejection of H0 in (14) may occur, which,

in turn, would spuriously indicate that too many δi,t are different from zero. This

issue is more difficult to tackle than the previous one: some form of correction of

the nominal level of the individual tests could be implemented, but using e.g. a

Bonferroni correction may be overly conservative, thus understating the number of

δi,t that are found to be nonzero. Hence, again, the need to carry out some further
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analysis to assess the sensitivity of our results to the specification of the nominal

level of the tests.

Thus, as a way to ensure that our results are robust to both issues (sensitivity

to the bootstrap specifications, and the multiple testing problem), we develop a

novel methodology to obtain confidence intervals for δ̂i,t. Whilst the details of

such a methodology are relegated to Appendix B to avoid overshadowing the main

discussion, we would like to point out that results obtained by the bootstrap-

based approach and by our method align, indicating that our empirical findings

are robust, in that they do not depend on the methodology employed.

3 Data

Using data on Italian vineyards from the Farm Accountancy Data Network (EU-

FADN) and gridded agro-metereological data (Agri4Cast), we construct a new

farm level dataset with information on labor hours, grape quantity and type, la-

bor productivity (main outcome) as well as physical, structural, economic and

financial determinants of labor productivity. The EU-FADN database is accessible

to authorized users through a formal request and confidentiality agreement. The

EU-FADN provides representative, high quality and consistent datasets from indi-

vidual countries, while maintaining anonymity of the data (Latruffe et al., 2017).

It stands as the sole provider of microeconomic data that follows harmonised book-

keeping principles. This comprehensive dataset is extensively utilized in the field

of agricultural economics (Ciaian et al., 2021). The database includes annual ac-

counting information for commercial farms rotating over several years, typically

five; therefore, the datasets are unbalanced panels.

Our dataset is representative of the economically relevant population of Italian

farms in each year due to stratified sampling and weighting (CREA).15 Stratifica-

tion ensures high overall FADN coverage of the whole agricultural population not

only in terms of output, but also area and farm labor (EU-FADN, 2018). The data

contain 2,997 Italian vineyards over the sample period 2010-2012.16 It includes 634

observations for Sicily and Apulia (the treated group) and 2,363 observations for

15Economic relevance is defined by farms’ annual output equal to at least 8,000 euros. Stratifica-
tion is based on selected covariates such as agricultural output, area, and labor units.
16We exclude farms with missing covariate data and years before 2010 because of a change in the
way European farms are classified and selected (EU-FADN, 2018).
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the rest of Italy. The stratified (and representative) sample of farms changes every

year, however, the number of observations is stable across years and treatment

group. For instance, treated farms are 209 in 2010, 223 in 2011, and 202 in 2012.

The sample of treated farms represents about 19,600 vineyards in Sicily and 19,000

vineyards in Apulia each year. The sample of non-treated farms represents about

58,200 vineyards located throughout Italy.

The shock of informal labor supply, the treatment, takes place in 2011. As

shown in Figure 3.1, there was a sudden, large rise in the number of irregular

migrants arriving on the southern Italian coast during the spring of 2011. By

the end of that year, a total of 64,000 border crossings were detected, along with

additional undetected landings (INEA, 2012).
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Figure 3.1: Detected illegal border crossings on the Central Mediterranean route
(own illustration, source: FRONTEX, 2016)

3.1 Summary statistics

Table 3.1 compares key attributes of treated and non-treated farms over the sample

period 2010-2012. The main outcome is labor productivity as tons of grape over

labor hours. Full definitions and summary statistics of the included covariates are

presented in Tables C.1 and C.2 in Appendix. Relevant predictors are discussed

in the next section.
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Table 3.1: Summary statistics for key attributes of treated vs. non-treated farms over the
sample period 2010-2012. Observations equal 2,363 for non-treated farms and 634 for treated

farms.

Treated farms Non-treated farms

Obs. 2,997 Mean Min Max SD Mean Min Max SD

labor prod 0.04 2e-04 0.34 0.03 0.02 2.1e-05 0.48 0.02
labor hours 4170 200 112285 8488 3427 320 58400 3275
grape quantity (tons) 157 0.3 4500 324 76.95 0.1 2836 135.32
land prod 16.88 0.01 55.15 10.18 11.53 0.02 35.60 5.18
vineyard land (ha) 11.48 0.51 415 25 6.91 0.01 171.48 10.86
capital intensity 3775 0 37224 4011 7376 0 348204 13348
table grapes only (0/1) 0.17 0 1 0.37 0.003 0 1 0.06
grapes for PDO wine only (0/1) 0.28 0 1 0.45 0.73 0 1 0.45

Labor productivity values of treated farms lie within the range of the non-treated

farms. Labor productivity is slightly higher for treated farms on average. Treated

farms are on average more labor intensive (employ more labor hours) and less

capital intensive than non-treated farms. The latter produce on average about

half of the grapes produced by treated farms. This is partly due to the fact that,

compared to non-treated farms, a larger share of treated farms (17% vs. 0.3%)

produce table grapes which are much heavier than wine grapes. Controlling for

the types of grapes produced is, therefore, crucial to predict labor productivity

differences. When considering grape quality, only 28% of treated farms cultivate

grapes for quality wine with Protected Denomination of Origin (PDO), whereas

73% of non-treated farms do so. Average quantities and labor hours mask variation

across farms, as indicated by large standard deviations relatively to the mean.

However, this variability is not as pronounced when it comes to labor productivity

values. Lastly, when it comes to land, treated farms exhibit larger vineyard areas

on average and higher land productivity in comparison to non-treated farms.

Table 3.2 compares grape quantities and labor hours before and after the shock

separately for treated and non-treated farms. While grape quantities remain stable

on average in the two periods, we observe a decrease (increase) in reported labor

hours for treated (non-treated) farms on average after the shock. The observed

changes in reported labor hours in treated farms raise several questions. After par-

tialling out the impact of weather and farm inputs, do we observe abnormal spikes

in labor productivity in treated farms? What role do farm characteristics play

in driving these gaps? Finally, how does labor misreporting affect farm economic

outcomes, wages of formal workers, consumer prices, and labor tax revenues?
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Table 3.2: Before-and-after comparison of grape quantities and labor hours of treated units vs.
non-treated units over the sample period 2010-2012. Observations equal 2,363 for non-treated

farms and 634 for treated farms.

Before After
Obs. 2,997 Mean Sd Mean Sd
Treated farms: Grape tons 157.6 322.0 156.7 325.4

Labor hours 4351.8 10022.1 4080.5 7632.1
Non-treated farms: Grape tons 76.5 127.0 77.2 139.7

Labor hours 3374.7 2764.4 3454.8 3522.0

3.2 Determinants of vineyard labor productivity

Determinants of labor productivity are possibly many and of different nature.

Our dataset provides comprehensive information on physical, structural, economic,

financial, and agro-metereological determinants of labor productivity. We include

more than 400 variables chosen to be exogenous, i.e., unaffected by the sudden

inflow of irregular migrants.

Farm size is measured by the total land area, which allows us to account for

economies of scale. Additionally, we consider the proportion of land that is uti-

lized and owned. Since farm size and managerial quality are often intertwined,

the inclusion of land variables partially controls for management quality. Further-

more, the share of vineyard areas and other crops is taken into account to assess

the level of specialization and control for economies of scope. The type of har-

vested grape is likely to have an impact on labor productivity. Specifically, grapes

intended for quality wines with Protected Designation of Origin (PDO) require

greater attention and care compared to grapes for other types of wines. Conse-

quently, the harvest of PDO grapes can be more labor-intensive. To account for

this variation, we include controls for the specific type of grapes produced, distin-

guishing between table grapes, grapes for PDO wine, grapes for non-PDO wine

including table wine and wine with Protected Geographic Indication (PGI), and

grapes for other wines. Additionally, the productivity of vineyard labor can be

influenced by organic farming practices that involve reduced reliance on fertilizers

and synthetic chemicals for vine disease prevention. Thus, we account for whether

farms practice organic farming or are transitioning to organic methods. In terms of

capital, we measure capital intensity by considering the book values of machinery

per hectare. Capital intensity plays a crucial role in determining both labor pro-
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ductivity and the effectiveness of grower management techniques. These factors

can impact labor productivity in activities such as grape harvesting and grapevine

pruning (Lamouria et al., 1963). Furthermore, these variables also account for the

variations in the use of grape harvesting machines, which can be more prevalent

in certain regions. Finally, to address any unobserved differences in labor produc-

tivity across different regions and years, we incorporate region and year dummies

into our analysis.17

Climate and weather conditions play a crucial role in determining grape yield

and, consequently, the productivity of vineyard labor. Extensive research, as sum-

marized by Ashenfelter and Storchmann (2016), supports this relationship. To

address the impact of weather, we incorporate various weather-related variables

across different time periods and locations. To control for weather effects over

time and across farms, we consider factors such as temperature, wind speed, radi-

ation, precipitation, and snow depth. Monthly and bimonthly averages, medians,

and deviations are calculated to capture fluctuations in labor productivity caused

by weather variations. Additionally, we account for specific weather events that

significantly influence wine production. This includes identifying the first instance

in a year when the temperature exceeds 10 degrees Celsius and recording the num-

ber of days in a year when the temperature falls below 0 degrees Celsius.

For a comprehensive description of all these variables, please refer to Table C.1

in the Appendix.

4 Results

We use the SL to estimate labor productivity functions based on training samples

of untreated observations over 2010-2012.18 The training sample is about 75% of

the original sample, and it is built by drawing untreated observations at random.

To increase prediction accuracy, untreated observations include 161 observations of

treated farms before the shock. Similar to the synthetic control literature (see, e.g.,

Bueno and Valente, 2019; Abadie et al., 2015), estimation of counterfactual out-

comes uses pre-treatment data to better approximate the data generating process

17These dummies do not preempt the treatment effect as the estimation process does not rely on
outcomes that are directly affected by the treatment.
18We use the software R-4.0.3 and the SuperLearner package version 0.10.0 (Polley, 2021).
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of treated outcomes in absence of the treatment. The resulting training sample

contains 1,946 untreated observations. As mentioned in Section 2.2, the SL is

trained using five different base learners: penalized regressions (glmnet), random

forests (RF), gradient boosting (xgboost), support vector machines (SVM), and

neural nets (nnet). The best predictive algorithms are glmnet (lasso) and xgboost

followed by RF which receive, respectively, a coefficient of 0.50, 0.47 and 0.03.19

SVM and nnet are assigned coefficients equal to zero. The resulting SL achieves

an out-of-sample prediction accuracy of 99% for labor productivity of non-treated

farms and 98% for farms in Sicily and Apulia. As estimation uses mostly data of

non-treated farms, this means that non-treated farms can well approximate labor

productivity of treated farms in absence of the treatment.

The optimal combination of algorithms building the SL may give an insight

into the true functional form of vineyard labor productivity. Typically, SVM and

nnet work well when the function to approximate is complex (e.g., highly nonlin-

ear) and the data is unstructured (e.g., text and image recognition). Differently,

xgboost, RF and, especially, glmnet work well when the target function is rather

simple. This seems to be the case for vineyard labor productivity which can be

well predicted by the included set of farm characteristics and weather factors.

4.1 Migration effects on misreporting at regional level

In the previous step we have obtained accurate predictions of labor productivity

for all farms unexposed to the migration shock. Now we use the estimated labor

productivity functions to predict labor productivity for farms in Sicily and Apu-

lia after the migration shock, i.e., counterfactual outcomes of treated farms had

migration not happened. If farms employed more informal labor after shock, we

expect an increase of unreported labor hours and, thus, a positive gap between

reported and predicted labor productivity. For robustness, we predict outcomes

also for non-treated farms, expecting no significant differences between reported

and predicted labor productivity. For this, we use the test sample including 1,051

observations of which 578 for non-treated farms and 473 for treated farms.

19As altering default tuning parameters does not yield any remarkable increase in prediction
accuracy, we proceed with the default values of the individual base learners. For RF, we test
number of trees = {number of variables/3 [default], 10, 50, 200, and 500 percent of the default
value}, and node size = {5 [default], 2, 3, 10, 25}. For glmnet, we test penalty term ={lasso
[default], ridge}, and penalty strength = {100 [default], 10, 50, 200, 500}.
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Table 4.1 shows that reported labor productivity is higher than predicted labor

productivity in the treated group in terms of mean and distribution. Differences

are statistically significant after the shock but not before the shock. Non-treated

farms, instead, show no significant differences between reported and predicted labor

productivity neither before nor after the shock (Table D.1 in Appendix).

Table 4.1: Reported versus predicted labor productivity (y versus ŷ) for the treated group.
Gaps are computed using observations in the test sample (not used for training the SL). After

the migration shock in 2011, all observations are in the test sample.

Year (obs.) Mean y Mean ŷ
K-S test
(two-sided)

K-S test
(one-sided)

t-test
Wilcoxon
test

2010 (n = 48) 0.034 0.032 0.853 0.472 0.520 0.740
2011 (n = 223) 0.037 0.030 2.28e-04*** 1.14e-04*** 0.003*** 2.45e-04***
2012 (n = 202) 0.036 0.030 0.0012*** 8.58e-04*** 9.21e-04*** 0.028**

Notes: ***p=.01; **p=.05; *p=.1

Columns 4-7 in Table 4.1 report results (p-values) of statistical tests. The two-

way Kolmogorov-Smirnov (K-S) test rejects the hypothesis of equality of empirical

cumulative distribution functions (eCDF), while the one-way K-S test rejects the

hypothesis that eCDFs of reported labor productivity are below predicted labor

productivity’s eCDF. T-tests indicate significantly greater means of reported than

predicted labor productivity. Further, medians of reported labor productivity are

generally higher than medians of predicted labor productivity. We use a non-

parametric Wilcoxon rank sum test to test for a shift in location (mean ranks).

While before the shock we find no significant difference in location, after the shock

the distribution of reported labor productivity is significantly shifted (to the right)

with respect to the distribution of reported labor productivity. In sum, statistical

tests provide evidence of abnormally high reported labor productivity of farms in

Sicily and Apulia after the migration shock.

Figure 4.1 plots post-migration labor productivity gaps, i.e., estimated differ-

ences between reported and predicted labor productivity aggregated by region.

The plot shows that mean squared labor productivity gaps in Sicily and Apulia

(treated group) are larger than in the other Italian regions (non-treated group).

Differently, gaps are rather similar across treatment groups before the shock. Re-

sults are summarized in Table D.2 in Appendix.
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Figure 4.1: Mean squared labor productivity gaps. Estimated differences between reported and
predicted labor productivity post-migration aggregated by region.

We proceed comparing distributions of labor productivity gaps. Summary

statistics show that gaps are larger for treated farms than for non-treated farms

after the shock. Statistics are, instead, comparable across treatment groups be-

fore the shock. Table 4.2 reports means, medians, and higher percentiles of labor

productivity gaps.

Table 4.2: Summary statistics for labor productivity gaps by treatment group and year. Mean
gap, median gap, and highest percentiles (perc.).

Year Group (obs.) Mean gap Median gap 75th perc. 85th perc. 95th perc.

2010 Treated (n = 48) 0.002 5.27e-04 0.011 0.014 0.024
Non-Treated (n = 188) 0.003 6.89e-04 0.006 0.010 0.020

2011 Treated (n = 223) 0.007 0.005 0.014 0.019 0.031
Non-Treated (n = 215) 0.002 3.36e-04 0.004 0.008 0.020

2012 Treated (n = 202) 0.004 0.003 0.012 0.018 0.030
Non-Treated (n = 175) 7.79e-04 -9.14e-05 0.003 0.006 0.013

For a visual representation, Figure D.1 in Appendix plots the distribution of stan-

dardized gaps for treated and non-treated farms before and after the shock. From

Figure D.1 and Table 4.2 we observe similar distributions before the shock. Differ-

ently, after the shock, distribution of gaps for treated farms is more skewed to the

left compared to non-treated farms, and shows more extreme gaps in the positive

domain.

We test for differences in labor productivity gaps between treated and non-

treated farms statistically. Table 4.3 reports the results.
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Table 4.3: Differences in labor productivity gaps between treated and non-treated farms by
year.

Year (obs.)
K-S test
(two-sided)

K-S test
(one-sided)

t-test
Wilcoxon
test

2010 (n = 236) 0.070 0.100 0.825 0.978
2011 (n = 438) 3.93e-10*** 0.654 2.94e-04*** 2.04e-04***
2012 (n = 377) 5.84e-07*** 0.214 0.005*** 0.002***

Notes: ***p=.01; **p=.05; *p=.1

K-S tests show that gap distributions (eCDFs) of treated and non-treated farms

(two-sided test) differ statistically, and the eCDF of non-treated farms is not above

the eCDF of treated farms (one-sided test). T-tests show unequal means after but

not before the shock. Non-parametric Wilcoxon rank-sum tests reject equality of

mean ranks, showing that the location of the two distributions is shifted.

We estimate by how much gaps in Sicily and Apulia abnormally increase post-

migration, on average. We use a difference-in-differences regression. We are inter-

ested in the effects of the interaction term between a treatment dummy (Treat=1

for Sicily and Apulia) and a post-migration dummy (Post=1 for 2011 and 2012)

on labor productivity gaps. Model (1) in Table 4.4 shows that gaps in the landing

regions are about 23% higher than gaps in other regions post-migration.20 Model

(2) shows that this increase is slightly higher for farms in Sicily (24%) than in

Apulia (22%).

20Since some gaps are negative, we take log(y)−log(ŷ). Since y/ŷ ≈ 1, we can interpret coefficients
as percent changes, in particular, as exp(0.206)− 1 = 0.23 or 23%.
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Table 4.4: Results from difference-in-differences regression by treatment group (1) and treated
region (2). Results are robust to the inclusion of year and region fixed effects.

Gaps (log)

Obs. 1,051 (1) (2)

Treat∗Post 0.206∗∗∗

(0.069)

Apulia∗Post 0.201∗∗

(0.082)

Sicily∗Post 0.218∗∗

(0.105)

Adjusted R2 0.04 0.04
F Statistic 16.3∗∗∗ 9.8∗∗∗

Notes: ∗∗p<0.05; ∗∗∗p<0.01

We conclude that there is statistical evidence of abnormally high labor productivity

gaps in the landing regions post-migration. We will now assess which of these

individual gaps is statistically significant and what drives gap heterogeneity or, in

other terms, which type of farm misreports the most post-migration.

4.2 Migration effects on misreporting at farm level

In line with our theoretical predictions, reported labor productivity of farms in

Sicily and Apulia shows abnormal increases after the migration shock. In par-

ticular, the difference-in-differences estimation showed higher labor productivity

gaps for treated farms on average. We now turn to a farm-level analysis of labor

productivity gaps. Which treated farm does actually misreport labor input? And

which are the characteristics of farms misreporting the most?

We pin down significant differences in labor productivity gaps after matching

treated with non-treated farms based on their characteristics. A number of farm

characteristics may drive differences in misreporting among treated farms. Plausi-

bly, farms misreport when the benefit from reducing labor costs through informal

employment are higher than the costs of detection. This depends on the detection

probability. For instance, smaller farms located in remote areas face a lower prob-

ability to be inspected. Also, the benefit from reducing labor costs is larger for

farms producing products of higher marginal value. Thus, we match on 16 vari-
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ables capturing farm size and location as well as profitability measures unaffected

by the amount of misreporting such as land productivity, type of harvested grapes,

and the share of land used to cultivate other crops.

We estimate differences in misreporting at the farm level using causal forests

(Athey et al., 2019). These algorithms estimate conditional average causal effects

(local ATE’s) using matching weights assigned to each treated farm based on their

resemblance to non-treated farms. We refer to Section 2.3 for a coarse description

of this estimator, and to Valente (2023) for implementation details.

We begin the analysis by estimating migration causal effects on labor produc-

tivity gaps for farms in Sicily and Apulia. Figure 4.2 presents the distribution of

the estimated percent increases in labor productivity gaps post-migration for all

treated farms in the sample.21 The hypothesis of effect homogeneity (zero variance)

is rejected statistically (Levene, 1960).

Figure 4.2: Farm level estimates of migration causal effects on labor productivity gaps in Sicily
and Apulia over 2011-2012. Effects are measured as percent increases in labor productivity

gaps post-migration.

On average, we find that labor productivity gaps are 23% higher post-migration

compared to their counterfactual. This result aligns with the average effect ob-

tained in Table 4.4, which indicates that controlling for a large number of covari-

ates and removing confounding via a three-step algorithm22 does not invalidate

the difference-in-differences estimator. Figure 4.2 also shows that the estimated

21For the farm level analysis, we truncate the sample at the 5th and 95th percentiles to remove
outliers. Treated observations drop from 425 to 356.
22See Section 2.3 for more details. This estimator builds on residualization (Robinson, 1988) and
is also known as R-learner (Nie and Wager, 2021).

28



causal effects on labor productivity gaps post-migration are all positive, i.e., labor

productivity gaps are always larger than their counterfactual for all treated farms.

Pointwise confidence intervals show that causal effects on labor productivity

gaps post-migration are statistically significant for about 80% of treated farms.

We interpret these abnormal (statistical significant) increases on labor productivity

gaps as labor misreporting caused by the migration shock. Figure D.2 in Appendix

plots the estimated causal effects with their 95% confidence intervals for farms in

Sicily and Apulia over 2011-2012.

We estimate significant heterogeneity in misreporting across farms. In order to

understand what drives larger misreporting, we linearly project farm level estimates

of misreporting (gap increases) on farm characteristics using lasso regression. We

include all 16 farm characteristics and their interaction terms, for a total of 136

covariates (120 interactions plus 16 variables). Lasso selects variables that largely

explain differences in misreporting and drops unimportant variables. To obtain

unbiased coefficients, we run OLS on individual variables selected by lasso.23 Table

4.5 shows OLS coefficients of variables selected via post-lasso.

Table 4.5: OLS coefficients of farm characteristics explaining misreporting (after selection via
lasso). Misreporting is defined by statistically significant increases in labor productivity gaps.

Reference category for table and quality wines only is other wines only.

Obs. 277 Causal Effects Std. Errors

utilized agricultural area (uaa, log ha) −0.245∗∗∗ (0.007)

share land uaa for vine crops 0.146∗∗∗ (0.031)

share land uaa for other crops 0.087∗∗∗ (0.020)

altitude zone: high (>600m) 0.077∗∗∗ (0.030)

table grapes only (0/1) 0.006 (0.015)

grapes for PDO wine only (0/1) 0.045∗∗∗ (0.013)

n. grape types (table, PDO) −0.027∗∗ (0.012)

Adjusted R2 0.85
F Statistic 221.7∗∗∗

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In our findings, we observe a negative relationship between misreporting and farm

23The selected interactions cause multicollinearity issues in the OLS regression post-lasso. We
include individual variables selected as interactions and we exclude highly collinear variables.
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size as measured by utilized agricultural area, all else being equal. It’s important to

note that agricultural land on farms can serve multiple purposes, such as woodland

or other non-crop cultivation. We find that misreporting tends to be higher for

farms that allocate larger shares of agricultural areas for growing vines or other

crops like olives and vegetables. This suggests a potentially greater need for labor

during harvest activities. Furthermore, misreporting is relatively more pronounced

for remote farms, particularly those situated at higher altitudes (above 600 meters)

categorized as the high altitude zone. Lastly, the type of grape being harvested

also plays a role, with greater misreporting for farms that produce a single product,

especially grapes for quality wines with Protected Designation of Origin (PDO).

Since grapes for quality wine are worth more, this may indicate that farms have

stronger incentives to misreport when the marginal income from misreporting is

higher.

While the tendency for informal firms to be smaller in size has already been

documented in previous studies (La Porta and Shleifer, 2014, 2008), the finding

that economies of scope, remoteness, and product value correlate with the amount

of informal employment are novel in the literature.

We perform placebo tests to show robustness of our estimates. We use causal

forests to estimate migration causal effects on labor productivity gaps of farms

in Sicily and Apulia pre-migration (2010). We find negligible and statistically

insignificant effects for all farms, as expected. Figure D.3 in Appendix plots the

estimated farm level causal effects in 2010 with their 95% confidence intervals.

4.3 Migration effects on labor hours at farm level

We transform our estimated increases in labor productivity gaps into estimates

of unreported labor hours employed on Sicily’s and Apulia’s vineyards. To do

so, we focus on positive labor productivity gaps of treated farms for which we

estimated statistically significant increases post-migration. We perform simple

back of the envelope calculations in the following way. We calculate the estimated

number of unreported hours for each misreporting farm as δ̂(y−ŷ)
ŷ

h, where (y −
ŷ) is the estimated labor productivity gap, δ̂ is the forest-based estimate of the

(statistically significant) percent gap increase caused by the migration shock, and
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h is the number of reported labor hours.24

Figure 4.3 shows the distribution of unreported hours and workers in misreport-

ing farms.

Figure 4.3: Farm level estimates of informal labor employment post-migration in Sicily and
Apulia.

On average, farms misreport about 193 labor hours or 0.4 workers. Lower and

upper bounds of the 95% confidence intervals for these estimates equal to, re-

spectively, 88 and 313 unreported hours or 0.2 and 0.6 workers on average. As

misreporting is significant in about 80% of farms exposed to the shock, our aver-

age estimate translates into 154 labor hours or 0.32 workers per farm in Sicily and

Apulia. In other terms, the informal labor supply shock caused one in three farms

to employ one worker informally. Mean estimates are on average higher in 2011

than in 2012 (219 vs. 165 hours) and higher in Apulia than in Sicily (206 vs. 171

hours), though differences are small.

Our data contains farm weights that make our sample of farms representative

of the whole sector. The estimated number of misreporting farms equals to around

13,700 in Apulia and 11,200 in Sicily on average each year, with higher figures in

2011 (26,400) than in 2012 (23,000). We weigh the distribution of unreported labor

hours at the farm level to obtain estimates at the sector level. We estimate a total

of 11 millions unreported hours, of which 3.3 millions in Sicily and 7.7 millions in

Apulia over 2011-2012. The share of unreported hours over reported hours is 6%.

These estimates translate into about 23,000 workers informally employed in total

over 2011-12, of which 14,000 workers in 2011 and 9,000 workers in 2012. This is

24This calculation is described in Table D.3 in Appendix.
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6% (in 2011) and 4% (in 2012) of the total number of formal agricultural workers

(224,000) in Sicily and Apulia reported by official national statistics, which is in

line with the estimated shares using our data (INEA, 2012).25 All upper and lower

bound estimates of unreported hours and workers at farm and sector level for each

region and year are reported in Appendix D.4.

These numbers may seem large compared to the official number of migrant

landings in 2011 (64,000). Yet several studies, including INEA (2012), indicate a

much larger scale for the migration shock which involved thousands of undetected

migrants and at least 20,700 who escaped from aid camps and detention centers.

Moreover, increased competition from migrant workers may have led many formally

contracted workers to opt for informal employment.

Assuming minimum agricultural wages (net 7 euros per hour) and a 60-day 8-

hour harvesting season, we estimate tax evasion for unpaid income taxes and social

contributions for about 75 million euros.26

4.4 Migration effects on farm outcomes

We analyze changes in farms’ economic outcomes caused by the increase of mis-

reporting post-migration. Informal employment reduces farm production costs

through saved labor taxes and net wages likely below the legal floor. Lower pro-

duction costs may drive consumer prices down. In this case, part of the margin

generated with informal employment would be redistributed to consumers. Dif-

ferently, in the presence of some monopoly power, we expect producers to keep

setting the same prices. This may also occur if producers are rather price takers

because they sell mostly wholesale and not via private negotiations.

We estimate changes in farm outcomes causal to the migration shock using a

residualized regression approach. For an intuitive illustration of this approach,

consider the following causal diagram which graphically summarizes our data gen-

erating process:

2595% confidence intervals around these estimates equal to [13k; 35k] total workers over 2011-2012.
26We calculate income taxes as the difference between gross and net salaries which amount to,
respectively, 10 and 7 euros per hour, social contributions as 31% of total gross salaries, and
complementary social contributions as total gross salaries divided by 13.5 (Danea, 2011).
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• X = (observed) exogenous covariates: farm level (land, capital, altitude, etc.)

+ year and region fixed effects (to capture e.g. regions’ inspection policy);

• E = (unobserved) farm expected payout (net benefit) from misreporting:

expected benefits of misreporting net of expected costs of misreporting based

on farmers’ subjective probability of being caught;

• M = (estimated in a previous step) decision to misreport labor (increase in

informal employment);

• G = (observed) farm gains (profitability).

The causal diagram shows that farm gains (G) are determined by both misreport-

ing (M) and exogenous covariates (X) which include farm characteristics, region

and year effects. Further, as shown by the heterogeneity analysis in the previous

section, misreporting can be largely explained by farm characteristics. Realisti-

cally, X affect M through E, the unobservable expected payout from misreporting.

E is how profitable a farmer might reasonably expect misreporting to be before

hiring labor informally.27 Given this diagram, the next steps are pretty clear. We

need to get rid of the variation of G and M due to X in order to isolate just the

variation we need.

27As mentioned in the Results, the marginal benefit of misreporting is higher if, e.g., land is more
productive and farmers grow grapes for quality wine. The marginal cost of misreporting is based
on the probability that farmers assign to being caught, which depends on factors such as location
and the region’s inspection policy.
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The residualized regression approach consists in partialling out the confounding

effects of X in three steps. First, we estimate propensities to misreport by regressing

the (binary) treatment variable M on X and saving the residuals, γ̂m ≡ M − M̂ .

As we set M = 1 for all misreporting farms in the treated group and M = 0

for non-treated farms, we can interpret M̂ as propensity scores.28 Second, we

estimate the conditional outcome mean by regressing farm gains G on X and

saving the residuals, γ̂g ≡ G − Ĝ. Third, we regress residualized outcomes γ̂g on

the residualized treatment variable γ̂m to remove the endogenous variation of G

and M due to X. This method is based on Robinson (1988) and the Frisch-Waugh-

Lovell theorem. In high-dimensional settings, this approach to estimate average

causal effects has been generalized by Chernozhukov et al. (2018) under the name

of “double machine learning”.

We study the effects of misreporting labor hours on farm profitability in terms

of Return On Assets (ROA, profits over assets). Dividing profits by fixed assets

is a standard approach to capture differences in profits due to farm size. Further,

since assets are fixed and cannot be altered in the short term, we can exclude

migration effects on this outcome. To understand what drives changes in profits,

we decompose the effect on ROA into an effect on sales and costs over assets. The

effect on costs can be further decomposed into an effect on labor costs (total wages)

and other costs.

Summary statistics of farm outcomes are reported in Table D.5 in Appendix.

Compared to pre-migration, post-migration outcomes of misreporting farms and

non-treated farms change in the same direction, with the median ROA growing by 3

percent points for misreporting farms and 1 percent point for non-treated farms. As

shown by the causal diagram above, the question is to what extent this increase in

ROA is causal to the migration shock once we control for the endogenous variation

of outcomes and misreporting decisions with farm characteristics and fixed effects.

We predict farm outcomes using the full high-dimensional set of covariates (see

Table C.1 in Appendix). We predict the treatment variable (=1 for misreporting

farms post-migration) using the set of farm characteristics that possibly explain

heterogeneity in misreporting (see Section 4.2). We control for fixed variation

across years and regions with year and region fixed effects. As suggested by Cher-

28As before, misreporting farms are defined by statistically significant increases in labor produc-
tivity gaps after migration compared to their predicted gaps in absence of migration.
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nozhukov et al. (2018), we use lasso for prediction.29 This approach has been

successfully applied to a variety of settings (see, Chernozhukov et al., 2016, and

references therein).

Table 4.6 shows the OLS coefficients of the third-stage regression of the residu-

alized outcome γ̂g, on the residualized treatment variable γ̂m.30

Table 4.6: Effects of misreporting post-migration (γ̂m) on farm outcomes. Third-stage model
estimates (2010-2012). Models include high-dimensional set of covariates, year and region fixed
effects. Robust double clustered standard errors (Driscoll and Kraay). The sample includes

non-treated farms and misreporting farms in Sicily and Apulia observed in all periods.

Obs. 840 Profit
Assets

Sales
Assets

Costs
Assets

Labor Costs
Assets

Other Costs
Assets Price(log) Wage/h

γ̂m 0.063∗∗∗ 0.0002 −0.071∗∗ −0.061∗ −0.012∗∗∗ 0.010 −0.114
(0.024) (0.013) (0.035) (0.036) (0.005) (0.023) (0.116)

Notes: ***p=.01; **p=.05; *p=.1

Results shows that the migration shock had significant and positive effects on prof-

its for misreporting farms in the landing regions. This effect is mostly driven by

lower labor costs, rather than by higher sales or grape prices. In particular, misre-

porting significantly increases farm profitability by on average 6.3 percent points,

ceteris paribus. While sales remain unaltered (+0.02 percent points, insignificant),

costs significantly decrease by 7.1 percent points. This effect is largely explained

by lower labor costs (-6.1 percent points).

These results seem plausible in light of how grape prices are set. The price

fixation in wholesale markets is undertaken by the chamber of commerce based

on production costs of landholdings. Thus, farmers are price takers when selling

wholesale. Differently, farmers fix prices in private negotiations when trading, es-

pecially, higher quality (less substitutable) grapes. As we find that misreporting is

higher for farms producing grapes for quality wine, ceteris paribus, farmers plau-

sibly keep similar prices also when misreporting their labor inputs. In conclusion,

we find that misreporting only benefits farm producers, without any positive effect

on consumer prices.

Finally, we look at a possible declining effect on hourly wages. In fact, com-

petition between formal and informal labor may lower wages of formal workers.

In this direction, we find a small insignificant decrease in hourly wages of 11 euro

29We use the software R-4.0.3 and the hdm package version 0.3.1 (Chernozhukov et al., 2016).
30As for two-stage OLS, we do not report R2 as it has no statistical meaning.
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cents. This small effect is not surprising as most wages in the grape growing sector

already touch the minimum floor admitted by law (INPS, 2011).31

5 Robustness checks

5.1 Placebo tests

Do we obtain comparable results if, instead of Sicily and Apulia, we consider other

regions as treated? Inspired by the synthetic control literature (Abadie et al.,

2015), we perform placebo tests by applying the SL to each non-treated region

in the sample. If the estimated labor productivity gap in the treated regions is

large relative to the one estimated for a non-treated region chosen at random,

it is possible to conclude that the migration shock had a significant impact on

misreporting in the treated regions. The probability of finding migration effects as

high as in the treatment regions is reported as the fraction of non-treated units for

which mean labor productivity gaps post-migration are larger or equal to the mean

gap of the treated regions. Placebo tests account for the prediction accuracy of

the estimated labor productivity before the shock, in particular, we do not include

control regions for which the estimated mean gap is higher than the one obtained

for the treated regions (in absolute terms). Figure 5.1 shows the density of the

distribution of the estimated mean labor productivity gaps after the migration

shock for the actual treated regions and for each placebo test.

Figure 5.1: Placebo mean labor productivity gaps post-migration (grey) versus (black) actual
gap for the treated regions (in absolute values).

Reassuringly, we find that the treated regions exhibit the largest estimated mean

31Hourly wages in our sample are mostly below 7.7 euros (third quartile).
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labor productivity gap among all placebo tests. Figure D.4 in Appendix plots post-

migration gaps against pre-migration gaps, showing that no control unit assigned

to treatment has a higher gap post-migration as well as a lower gap pre-migration.

Additionally, we run placebo difference-in-differences (as in Table 4.4) using the

estimated labor productivity gaps before and after the shock for farms in control

regions assigned to treatment. We find that the coefficient of the treatment dummy

post-migration is not significant in any of the placebo regressions.32

Overall, placebo tests provide evidence that vineyard labor productivity in other

Italian regions is not affected by the migration shock as, instead, is the case for

Sicily and Apulia.

5.2 Leave-one-out estimations

To evaluate the importance of including farms from a specific region outside of

Sicily and Apulia when predicting treated outcomes following the shock, we per-

form Leave-One-Out estimations (LOO). This involves re-estimating labor produc-

tivity gaps for Sicily and Apulia while excluding farms from one non-treated region

at a time.

Statistical tests show no significant differences between LOO estimates and ac-

tual estimates of labor productivity gaps in any year, neither in terms of mean

(t-tests, p-values>0.3) nor distribution (K-S tests, p-values>0.4). Figure D.5 in

Appendix plots LOO estimates versus actual estimates, revealing a strong overlap.

In conclusion, the results indicate that the inclusion of farms from any region

in the non-treated sample does not influence our findings.

5.3 Alternative to bootstrap inference on misreporting

Whilst the bootstrap approach used in Section 2.3 is arguably the workhorse

methodology for this type of applications, results obtained with it are potentially

sensitive to the bootstrap algorithm specifications. Hence, as mentioned at the

end of Section 2.3, we also estimate confidence intervals for the labor produc-

tivity gaps using an approach based on inverting randomised tests (Horváth and

Trapani, 2019) – we refer to Appendix B for the full-blown description of this

methodology. We find that our estimates of misreported labor hours are robust

32Results of all placebo regressions are available upon requests.

37



to the specific methodological choice. In particular, results from randomised tests

show that causal effects on labor productivity gaps post-migration are statistically

significant for about 85% of treated farms (vs. 80% using bootstrap confidence

intervals). Full results with upper and lower bounds of 95% confidence intervals

constructed via de-randomised inference are reported in Table D.6. These findings

are in line with our main estimates in Table D.4.

6 Conclusions

This paper provides a new approach to detect and quantify informal employment

at the firm level resulting from irregular migration shocks. Our estimates pro-

vide novel insights into the economic implications of irregular migration on formal

employment, firm outcomes, consumer prices, and labor tax evasion.

By employing machine learning techniques and balance sheet data of Italian

vineyards, we find that the deviations in reported labor productivity compared to

predicted values for vineyards affected by the migration shock are significant. Our

estimates reveal that the shock resulted in a 6% increase in informal employment,

equivalent to one undeclared worker for every three farms on average and a total of

23,000 additional workers over 2011-2012. The underreporting of labor hours leads

to lower labor costs and higher farm profitability, without affecting grape sales,

prices, or hourly wages of formal workers. We estimate that labor tax evasion

amounted to approximately 75 million euros, representing around 5% of the total

agricultural revenues collected during 2011-2012. In terms of policy relevance, we

believe that our methodology, which does not require data on irregular migrants

or informal workers, could be useful for developing more effective policies that

promote formalization in a wide set of labor-intensive sectors beyond agriculture

(e.g., manufacturing, construction, and services).
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Online Appendix

A Background Appendix

In 2011, the Italian regions of Sicily, Apulia and Calabria hosted a large number of

undetected migrants as well as asylum seekers. Asylum seekers are kept in Centers

for First Assistance (aka CDA) and Centers for Assistance of Asylum Seekers (aka

CARA). About 95% of asylum seekers in CDA and CARA are in Sicily, Apulia,

and Calabria (SPRAR, 2012). As a consequence of the 2011 migration wave, Sicily

and Apulia each hosted around 10,000 asylum seekers more than in 2010. No such

increase was observed in other Italian regions.33 Therefore, we may expect that,

despite surveillance, only migrants hosted in asylum centers of Sicily, Apulia, and

Calabria may leave camps in large numbers and enter informal labor channels in

these regions. This is further reinforced by anecdotal evidence indicating many

cases of migrant fleeing asylum centers (see, e.g., L’Espresso, 2015).

The relocation of asylum seekers may cause shocks to the local formal and/or

informal agricultural labor market of other Italian regions. However, official statis-

tics reveal that Italian regions did not experience abnormal arrivals or departures

of asylum seekers in their SPRAR34 centers over the years 2010-2012. Table A.1

shows the share of asylum seekers hosted in SPRAR centers in each Italian region

over 2010-2012.

33Some regions (e.g., Lazio, Marche, and Friuli Venezia Giulia) even reduced the number of hosted
migrants from around 2,100 on average in 2010 to 1,600 on average in 2011 (SPRAR, 2012).
34SPRAR is the System for Protection of Asylum Seekers and Refugees.
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Table A.1: Share of asylum seekers hosted in SPRAR reception centers in each Italian region
over 2010-2012 (SPRAR, 2010, 2011, 2012)

2010 2011 2012 2010 2011 2012

North-East North-West
Friuli V.G. 4.8 4.6 4.2 Aosta V. 0.0 0.0 0.0
Veneto 4.7 5.8 4.0 Piedmont 4.6 5.3 4.5
Trentino A.A. 0.6 0.6 0.4 Lombardy 16.5 5.7 16.8
Emilia R. 6.2 7.8 6.8 Liguria 2.7 3.0 2.2
Center South
Tuscany 4.4 4.5 4.6 Abruzzo 0.5 0.5 0.6
Marche 4.2 4.5 3.5 Molise 0.5 0.6 0.6
Lazio 22.4 26.2 21.2 Campania 2.9 3.2 2.0
Umbria 2.0 2.7 2.0 Basilicata 0.7 0.6 0.7
Islands Apulia 7.1 8.0 6.2
Sicily 11.4 11.3 14.6 Calabria 3.5 4.7 4.9
Sardinia 0.4 0.4 0.3 Total 7056 7598 7823

In addition to SPRAR centers, Italy distributed a total of 17,859 asylum seek-

ers in hotels and apartments of each region according to its population (DPC,

2011).35 As a result, each region received a relatively low number of migrants. Ta-

ble A.2 shows that the relocated migrants per region are around 1,000 on average.

We claim that asylum seekers and refugees have no incentives to put their status

at risk by working illegally: hosted migrants cannot take unjustified daily leaves

and are not allowed to work.36 Also, in addition to board and lodging, asylum

seekers receive pocket money and temporary documents to access health care ser-

vices (ANCI, 2011). Therefore, it does not seem plausible that relocated migrants

illegally worked on vineyards in other parts of Italy.

Finally, approved asylum seekers may cause spillovers by working in other Italian

regions. In this respect, most of the approved asylum seekers seem to have left

Italy after receiving a positive verdict (Labanca, 2020). However, as of November

2012, many pending and rejected asylum seekers did not leave migrant facilities

whilst waiting for asylum decisions or appeals (Lambruschi, 2012). Thus, the

Italian government offered an accelerated procedure to regularize asylum applicants

through concession of a humanitarian visa (Interior Ministry, 2012). Thereby, from

2013 onward, rejected asylum seekers, in particular, may have entered illegal labor

35I.e., 10,000 migrants for 100,000 inhabitants.
36While asylum seekers are officially prohibited from working for six months after submitting their
request, obtaining work permits remains challenging in practice, even up to 12 months following
the initial request (MPP, 2013).
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channels to avoid expulsion (Giangrande, 2017). For this reason we do not extend

our empirical analysis after 2012.

Table A.2: Number of Arab Spring asylum seekers and refugees relocated across Italian regions
in apartments and hotels (L’Espresso, 2012).

N. People Share Pop.∗ N. People Share Pop.∗

North-East North-West
Friuli V.G. 397 0.02 1.2 Aosta V. 20 0.00 0.1
Veneto 1274 0.07 4.9 Piedmont 1549 0.09 4.4
Trentino A.A. 172 0.01 1.1 Lombardy 2548 0.14 10
Emilia R. 1585 0.09 4.5 Liguria 540 0.03 1.6
Center South
Tuscany 1141 0.06 3.7 Abruzzo 11 0.00 1.3
Marche 462 0.03 1.5 Molise 116 0.01 0.3
Lazio 1790 0.10 5.9 Campania 2155 0.12 5.8
Umbria 338 0.02 0.9 Basilicata 200 0.01 0.6
Islands Apulia 1071 0.06 4.1
Sicily 1110 0.06 5.1 Calabria 956 0.05 2.0
Sardinia 424 0.02 1.6 Total 17,859 60.5

∗ Total regional population in million people

B Methodology Appendix

As mentioned in Section 2.3, confidence intervals for δ̂i,t have been constructed

using the bootstrap approach presented in Athey et al. (2019); hence, results may

be sensitive to the specifications of the algorithm, and also be affected by the

multiple testing problem.

In order to tackle both issues, we propose the following approach, which is based

on randomised tests, and which has been developed in a series of contributions

albeit in different contexts (we refer in particular to Horváth and Trapani, 2019,

Massacci et al., 2021, and Massacci and Trapani, 2022). Consider the individual

estimates δ̂i,t defined in (13), and consider a sequence sN1 such that

lim
N1→∞

sN1 = ∞.

When estimating δ̂i,t through (13), we follow Athey and Wager (2019), and use

a Generalised Random Forest where trees are grown on subsamples of size m =

O
(
Nβ
)
, where β < 1 is chosen according to equation (13) in Athey et al. (2019).

Hence, we make the following assumption on sN1 .
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Assumption B.1. It holds that limN1→∞ sN1 = ∞ with

sN1 = O

((
N1

m

)1/2−ε
)
,

for a user-chosen ε > 0.

Heuristically, note that Theorem 5 in Athey et al. (2019) entails that

δ̂i,t − δi,t = OP

(√
m

N1

logp
(
N1

m

))
,

for some p > 0. Hence, by Assumption B.1, it follows immediately that

sN1

(
δ̂i,t − δi,t

)
= oP (1) .

More importantly, when testing for

H0 : δi,t = δ0i,t,

HA : δi,t ̸= δ0i,t,

Assumption B.1 entails that

lim
N1→∞

P
(
sN1

∣∣∣δ̂i,t − δ0i,t

∣∣∣ = 0
)

= 1 under H0,

lim
N1→∞

P
(
sN1

∣∣∣δ̂i,t − δ0i,t

∣∣∣ = ∞
)

= 1 under HA.

(Significance) testing for H0 : δi,t = δ0i,t

We now consider the construction of the significance tests for H0 of (14). To

this end, we define the sequences

ϕi,t (N1) = exp


sN1

∣∣∣δ̂i,t − δ0i,t

∣∣∣
σδ

−1
− 1, (15)

where σδ is a scaling factor which we discuss later on. Based on Assumption B.1,
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it is easy to see that

lim
N1→∞

P (ϕi,t (N1) = ∞) = 1 under H0,

lim
N1→∞

P (ϕi,t (N1) = 0) = 1 under HA;

that is, we have a statistic, ϕi,t (N1), which diverges under the null and drifts to

zero under the alternative. In order to use it in a test, we propose the following

randomisation algorithm (see also Corradi and Swanson, 2006).

Step 1 Generate an artificial sample {ξi,t,m, 1 ≤ m ≤M}, i.i.d. across i, t,m with

ξi,t,1 ∼ N (0, 1).

Step 2Define the Bernoulli random variable ζi,t,m (u) = I
(√

ϕi,t (N1)× ξi,t,m ≤ u
)
.

Step 3 Define the test statistic

Si,t (M,N1) =
1√
2π

∫ ∞

−∞
[ςi,t (u)]

2 exp

(
−1

2
u2
)
du, (16)

where

ςi,t (u) =
2

M1/2

M∑
m=1

(
ζi,t,m (u)− 1

2

)
.

Let P ∗ denote the conditional probability with respect to the sample {
(
y′i,t, X

′
i,t

)
, 1 ≤

i ≤ N, 1 ≤ t ≤ T}; we use the notation “
D∗
→” and “

P ∗
→” to define conditional con-

vergence in distribution and in probability according to P ∗. Finally, χ2
1 denotes a

chi-square with one degree of freedom.

Theorem B.1. We assume that Assumption B.1 is satisfied and thatM = O (N1).

If H0 holds, then, as min (N1,M) → ∞, it holds that Si,t (N1,M)
D∗
→ χ2

1, with

probability tending to 1, for all 1 ≤ i ≤ N1 and 1 ≤ t ≤ T1. Under HA, it holds

that M−1Si,t (N1,M)
P ∗
→ c0 > 0, with probability tending to 1, for all 1 ≤ i ≤ N1

and 1 ≤ t ≤ T1.

Theorem B.1 reports the limiting distribution of the test statistics Si,t (N1,M)

under the null H0 : δi,t = δ0i,t. In essence, the theorem states that, when carrying

out tests for H0 : δi,t = δ0i,t, the value of Si,t (N1,M) should be contrasted with a

critical value from a χ2
1 distribution. Also, according to the theorem, tests based

on Si,t (N1,M) will reject the null for large values of the test statistic.
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Whilst the proof of the theorem is reported later on, here we offer a heuristic

description of how the test works. We begin by considering what happens under the

null. Since in this case ϕi,t (N1) diverges, the Bernoulli random variable ζi,t,m (u)

has, for every u, success probability 1/2, as well as being independent across m by

construction. Thus, by the CLT, ςi,t (u) should behave approximately as a standard

normal asM → ∞, and consequently its square, Si,t (N1,M), follows a chi-squared

distribution with one degree of freedom. Under the alternative, ϕi,t (N1) drifts

to zero, and therefore ζi,t,m (u) does not have success probability 1/2. Therefore,

when constructing ςi,t (u), there is a bias term which grows proportionally toM1/2,

whence the divergence of Si,t (N1,M) at rate M .

Technically, we note that the mode of convergence of Si,t (N1,M) is the same

as in the case of the bootstrap (see Bickel and Freedman, 1981), i.e. Si,t (N1,M)

converges to χ2
1 in distribution “in probability conditional on the sample”.

De-randomised inference and confidence intervals

In (20), a crucial choice is the level of the individual tests, α. In our analysis,

we want to check if E (δi,t) > 0 for all treated units. In this case, we need to

control the family-wise rejection rate of our procedure, and using a “traditional”

nominal level such as e.g. α = 0.05 would lead to over-rejection and, consequently,

to a spurious detection of significant treatment effects. In our case, we can correct

this upon noting that, by construction (and conditionally on the sample), the test

statistics Si,t (N1,M) are i.i.d. across i, t. Thus, we can propose a Bonferroni

correction, whereby - in order to ensure control of the family-wise rejection rate -

we use

αN1 =
c

N1

,

where c is the desired family-wise rejection rate. Then, letting cα,N1 be defined as

P (χ2
1 ≥ cα,N1) = αN1 , αN1 ∈ (0, 1), it is immediate to see that, if δi,t = 0 for all

1 ≤ i ≤ N1 and 1 ≤ t ≤ T1, then it follows that

lim
min(N1,M)→∞

P ∗
(
max
i,t

Si,t (N1,M) ≥ cα,N1

)
= c, (17)

a.s. conditional on the sample. The test statistic Si,t (N1,M) can be used directly

to test for

H0 : δi,t = 0,
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and to construct confidence intervals for δ̂i,t.

We would like to point out however that Si,t (N1,M) is constructed using a

randomisation which does not vanish asymptotically, and therefore, under the null,

different researchers using the same data will obtain different values of Si,t (N1,M)

and, consequently, different p-values. Although reproducibility can be guaranteed

if the researchers reported the seed of their random number generator, we also

propose to “de-randomise” Si,t (N1,M), in a similar way as proposed in Horváth

and Trapani (2019). This can be done as follows. Each researcher, instead of

computing Si,t (N1,M) just once, will compute the test statistic B times, at each

iteration b using a sequence
{
ξ
(b)
i,t,m, 1 ≤ m ≤M, 1 ≤ b ≤ B

}
independent across

i, t,m and b, thence defining, for the generic null hypothesis H0 : δi,t = δ

Qi,t (δ;αN1) = B−1

B∑
b=1

I
[
Si,t,b (N1,M) ≤ cαN1

]
. (18)

The function Qi,t (δ;αN1) is related to the notion of “fuzzy confidence interval”

studied in Geyer and Meeden (2005). Massacci and Trapani (2022) show that

limmin(B,M,N1)→∞ P ∗ (Qi,t (δ;αN1) = 1− αN1,T1) = 1 for δi,t = 0,

limmin(B,M,N1)→∞ P ∗ (Qi,t (δ;αN1) = 0) = 1 for δi,t ̸= 0.
(19)

Equation (19) stipulates that, as B → ∞, averaging across b in (18) washes out

the added randomness in Qi,t (δ;αN1): all researchers using this procedure will

obtain the same value of Qi,t (δ;αN1), thereby ensuring reproducibility. The func-

tion Qi,t (δ;αN1) corresponds to (the complement to one of) the “fuzzy decision”, or

“abstract randomised decision rule” reported in equation (1.1a) in Geyer and Mee-

den (2005). Geyer and Meeden (2005) provide a helpful discussion of the meaning

of Qi,t (δ;αN1): the problem of deciding in favour or against H0 may be modelled

through a random variable, say D, which can take two values, namely “do not

reject H0” and “reject H0”. Such a random variable has probability Qi,t (δ;αN1)

to take the value “do not reject H0”, and probability 1 − Qi,t (δ;αN1) to take the

value “reject H0”. In this context, (19) states that (asymptotically), the probabil-

ity of the event {ω : D = “reject H0”} is α when H0 is satisfied, for all researchers

– corresponding to the notion of size of a test; see also the quote from Corradi

and Swanson (2006) reported above. Conversely, under H1, the probability of the
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event {ω : D = “reject H0”} is 1 (asymptotically), corresponding to the notion of

power.

Based on Qi,t (δ;αN1), it is possible to propose a decision rule to decide in

favour or against H0, based e.g. on thresholding Qi,t (δ;αN1). A possible threshold,

suggested in Massacci and Trapani (2022), is based on the Law of the Iterated

Logarithm

Qi,t (δ;αN1) ≥ 1− αN1 −
√

2αN1 (1− αN1)
ln lnB

B
do not reject H0

Qi,t (δ;αN1) < 1− αN1 −
√

2αN1 (1− αN1)
ln lnB

B
reject H0

, (20)

which corresponds to (marginally) conservative confidence intervals. Alternatively,

repeating the proof of Theorem 3.3 in Massacci and Trapani (2022), it is easy to

see that, upon using B = o (M), the confidence intervals defined as

Cα
N1

(δ) =

{
δ : Qi,t (δ;αN1) ≥ 1− αN1 − c̃αN1

√
αN1 (1− αN1)

B

}
,

where P
(
Z ≥ c̃αN1

)
= 1− αN1 and Z ∼ N (0, 1), satisfy

lim
min(B,M,N1)→∞

P ∗
(
δi,t ∈ Cα

N1
(δ)
)
= 1− αN1 .

For the sake of reproducibility, we now describe in detail how we have imple-

mented our tests and the construction of confidence intervals.

In the computation of the statistics (15), we use sN1 = ln lnN1, and we estimate

σδ as suggested in Athey et al. (2019). Tests are always carried out at a family-wise

nominal rejection level of αN1 =
0.05
N1

.

Randomisation is implemented with M =
⌊
N

1/2
1

⌋
, and B = ⌊M/ ln lnM⌋. We

would like to point out that the choice of M is quite conservative (according to

Theorem B.1, M could even be proportional to N1), which is likely to result in a

conservative test, less prone to over-rejecting the null that δi,t = 0. This, combined

with the Bonferroni correction proposed above, should ensure that no spurious

detection of significant δi,t occurs. We compute the integral in (16) by using a
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Gauss-Hermite quadrature with

Si,t (M,N1) =

nS∑
s=1

wsςi,t(
√
2zs),

where the zss, 1 ≤ s ≤ nS, are the zeros of the Hermite polynomial HnS
(z) and

the weights ws are defined as

ws =
2nS−1 (nS − 1)!

nS [HnS−1 (zs)]
2 .

Thus, when computing ςi,t(u) in Step 2 of the algorithm, we construct nS of these

statistics, each using u = ±
√
2zs. The values of the roots zs, and of the corre-

sponding weights ws, are tabulated e.g. in Salzer et al. (1952). In our case, we

have used nS = 4, which corresponds to w1 = w4 = 0.05 and w2 = w3 = 0.45, and

u1 = −u4 = 2.4 and u2 = −u3 = 0.75.

Our code is written in GAUSS 21, and random numbers are generated with seed

equal to 513.

C Data Appendix

Table C.1: Variable description.

Variable name Variable description

Farm characteristics All farms classified as vineyards according to the Euro-

pean classification (i.e. the standard gross production

from vineyards exceeds two thirds of the total)

grape quantity (tons) Total grape quantity in tons

labor hours Labor inputs in hours

labor prod Grape quantity (tons) / labor hours

vineyard land (ha) Area in ha used to produce grape products (log trans-

formed for estimation)

land prod Grape quantity / vineyard land (log transformed for es-

timation)

Continued on next page
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Table C.1 – Continued

Variable name Variable description

utilized agricultural area

(uaa)

Total utilized agricultural area (uaa) in ha (log trans-

formed for estimation). Does not include areas used for

mushrooms, land rented for less than one year, woodland

and other farm areas

share of vineyards / total land Vineyard area in ha / (land uaa + land non uaa)

share land uaa for vine crops Vineyard area in ha / land uaa

share land uaa for other crops Non-vineyard area for other field crops in ha (e.g., cere-

als, olives, vegetables, flowers, other crops) / land uaa

share land uaa owned utilized agricultural area in owner occupation in ha /

land uaa

capital intensity Machinery in EUR / land uaa (ha)

n. grape types (table, PDO) Number of grape types produced: 2 (1) if both (either)

table grapes and (or) grapes for PDO wines, 0 otherwise

table grapes only Dummy=1 if farm produces only table grapes

grapes for PDO wine only Dummy=1 if farm produces only grapes for quality wine

(PDO, Protected Designation of Origin)

grapes for other wines only Dummy=1 if farm produces only grapes for other wines

than table wines, PGI and PDO wines

grapes for non-PDO wine only Dummy=1 if farm produces only grapes for non-PDO

wine including table wines, PGI and other wines

organic farming (1/2/3) Categorical variable for not organic, organic, or convert-

ing into organic farming

altitude zone (1/2/3) Categorical variable for the altitude zone: low (<300

meters), medium (300-600m), or high (>600m)

Weather characteristics Monthly and bimonthly means/medians, and deviations

thereof

max temp Maximum air temperature (°C)
min temp Minimum air temperature (°C)
temp Mean air temperature (°C)
wind speed Mean daily wind speed at 10m (m/s)

precipitation Sum of precipitation (mm/day)

radiation Total global radiation (KJ/m2/day)

snow depth Snow depth (cm)

month pass 10 degree First month in the year with temperature >10 ◦C

mean days below 0 degree Mean number of days with temperature < 0 ◦C

dev (...) Deviations of monthly and bimonthly means/medians
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Table C.2: Descriptive statistics for treated and untreated farms over 2010-2012.

Treated farms Untreated farms

Variable name Mean Min Max SD Mean Min Max SD

Farm characteristics

grape quantity (tons) 157 0.3 4500 324 76.95 0.1 2836 135.32

labor hours 4170 200 112285 8488 3427 320 58400 3275

labor prod 0.04 2e-04 0.34 0.03 0.02 2.1e-05 0.48 0.02

vineyard land (ha) 11.48 0.51 415 25 6.91 0.01 171.48 10.86

land prod 16.88 0.01 55.15 10.18 11.53 0.02 35.60 5.18

utilized agricultural area (uaa) 0.51 484 36.74 13.08 0.27 358.39 23.15

share of vineyards / total land 0.65 0.05 1 0.27 0.64 0.01 1.00 0.30

share land uaa for vine crops 0.67 0.09 1 0.27 0.64 0.01 1.00 0.30

share land uaa for other crops 0.48 0 1.63 0.42 0.41 0 1.71 0.34

share land uaa owned 0.93 0 1 0.23 0.70 0 1 0.40

capital intensity 3775 0 37224 4011 7376 0 348204 13348

n. grape types (table, PDO) 0.57 0 2 0.53 0.84 0 2 0.39

table grapes only (0/1) 0.17 0 1 0.37 0.003 0 1 0.06

grapes for PDO wine only (0/1) 0.28 0 1 0.45 0.73 0 1 0.45

grapes for other wines only (0/1) 0.44 0 1 0.50 0.17 0 1 0.38

grapes for non-PDO wine only (0/1) 0.44 0 1 0.50 0.17 0 1 0.38

organic farming (1/2/3) 1.13 1 3 0.40 1.04 1 3 0.21

altitude zone (1/2/3) 1.15 1 3 0.41 1.25 1 3 0.48

Weather characteristics

mean temp march 11.67 8.97 12.72 0.83 9.65 -0.37 13.55 1.76

mean max temp march 15.72 12.27 17.4 1.15 14.5 2.76 18.97 2.37

mean min temp march 5.16 8.5 0.81 4.81 -3.53 9.88 1.75

mean precipitation march 2.14 0.94 4.94 0.88 1.84 0.01 5.77 1.2

mean radiation march 14657 12321 16679 1102 13012 10933 17645 1743

mean wind speed march 4.04 2.69 5.41 0.54 2.52 1.39 6.25 0.67

median temp march 11.9 9.2 12.9 0.71 9.97 0.2 13.4 1.64

median max temp march 16.03 12.7 18 1.14 14.92 2.8 19.4 2.31

median min temp march 7.88 5.4 8.6 0.81 4.97 -2.9 9.9 1.79

median precipitation march 0.01 0 0.2 0.04 0 0 0.2 0.01

median radiation march 15249 11783 17987 1368 13644 10395 18014 1734

dev mean wind speed march 3.65 2.1 4.6 0.6 2.17 1.3 5.6 0.61

dev mean temp march 0.07 -0.55 1.56 0.55 0.26 -1.62 3.75 1.28

dev mean max temp march 0.14 -0.79 2.12 0.84 0.29 -2.26 4.86 2.07

dev mean min temp march -0.01 -1.2 1 0.56 0.23 -1.11 3.24 0.68

dev mean precipitation march 0.09 -1.36 2.35 0.88 -0.12 -2.37 3.23 1.19

dev mean radiation march 313.3 -759.16 2365 916.87 198.77 -1993 3698 1729

dev mean wind speed march -0.14 -1.74 1.32 0.47 -0.03 -0.92 1.79 0.38

dev mean snow depth march 9.64 -45.69 55.79 32.29 -18.2 -105.46 50.6 24.24

month pass 10 degree 2.26 1 4 0.89 3.49 1 6 0.71

mean days below 0 degree 0 0 0.17 0.02 0.35 0 20.32 1.65

. . . up to about 400 variables
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D Results Appendix

D.1 Migration effects on misreporting at regional level

Table D.1: Reported versus predicted labor productivity for non-treated farms (y versus ŷ).

Year (obs.) Mean y Mean ŷ
K-S test
(two-sided)

K-S test
(one-sided)

t-test
Wilcoxon
test

2010 (n = 188) 0.022 0.019 0.504 0.256 0.134 0.497
2011 (n = 215) 0.022 0.020 0.672 0.351 0.250 0.744
2012 (n = 175) 0.021 0.020 0.692 0.400 0.593 0.967

Notes: ***p=.01; **p=.05; *p=.1

Table D.2: Mean squared labor productivity gaps estimated for treated and non-treated farms
in the test set.

Year Group (obs.) MSE

2010 Treated (n = 48) 2.10e-04
Non-Treated (n = 188) 1.94e-04

2011 Treated (n = 223) 4.23e-04
Non-Treated (n = 215) 9.33e-05

2012 Treated (n = 202) 2.71e-04
Non-Treated (n = 175) 5.77e-05
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Figure D.1: Labor productivity gaps by treatment group before (2010) and after the shock
(2011, 2012). Gaps are standardized, i.e., divided by their standard deviation.
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D.2 Migration effects on misreporting at farm level

Figure D.2: Farm level estimates of migration causal effects on labor productivity gaps for
farms in Sicily and Apulia over 2011-12. Effects are measured as percent increases in labor

productivity gaps post-migration. The length of the error bars is a 95% confidence interval for
the point estimates. About 80% of the estimated effects are statistically significant at the 5%

level.

Notes. Causal effects estimates for each farm on the x-axis are ranked from the lowest to the

largest. The estimated effects are statistically significant for about 80% of farms in Sicily and

Apulia (highlighted in orange). Wilcoxon rank-sum test, K-S tests and t-tests show that causal

effects estimates on labor productivity gaps do not statistically differ across regions and years.
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Figure D.3: Farm level estimates of migration causal effects on labor productivity gaps in Sicily
and Apulia in 2010 (placebo test). Effects are measured as percent increases in labor

productivity gaps post-migration. The length of the error bars is a 95% confidence interval for
the point estimates.

Notes. In 2010 (pre-migration) the estimated effects are small and statistically insignificant for
all farms in Sicily and Apulia.

D.3 Back of the envelope calculations

Table D.3: Variable definition to transform labor productivity gap estimates into estimates of
the unreported (illegal) hours employed on Sicily’s and Apulia’s vineyards.

Variable name Variable description

Q reported grape quantity
QT true grape quantity
y(L) true labor productivity of legal labor
y(IL) true labor productivity of illegal labor
h(L) reported hours of legal labor
h(IL) estimated hours of illegal labor
ŷ predicted labor productivity
y reported labor productivity

Notes. Total grape output Q∗ is a function of labor productivity y and labor input h such
that QT = y(L)∗h(L) + y(IL)∗h(IL). We observe Q = y∗h(L) and Q = QT (no additionally
unreported grape quantity). Solving for h(IL) delivers the illegal input as a function of the

observed values of output and legal labor input: h(IL) = Q−y(L)∗h(L)
y(IL) . We then substitute

each element for either its observed or estimated counterpart. First, we substitute for Q =

y∗h(L) and factor out h(L). We obtain h(IL) = y−y(L)
y(IL) h(L). Second, as the true labor

productivity of legal and illegal input is not observed, we substitute y(L) for the estimated
true labor productivity of legal labor input. This is given by predicted labor productivity
in absence of the migration shock, ŷ. Further we assume y(IL) = y(L) in order to obtain

estimates of the number of illegal labor hours as ĥ(IL) = y−ŷ
ŷ h(L). Misreporting is defined

by statistically significant increases in labor productivity gaps, δ̂. As a result, we estimate

significant increases of illegal labor hours post-migration as ĥ(IL) = δ̂(y−ŷ)
ŷ h(L).
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D.4 Migration effects on labor hours at farm level

Table D.4: Summary statistics for the estimated number of unreported labor hours for each
farm in Sicily and Apulia post-migration. Upper and lower bounds of 95% confidence intervals

use standard errors estimated via causal forests (Athey et al., 2019).

Farm Sector
Region Year Mean Median SD Total

Point estimates Apulia 2011 242.4 237.5 163.3 5,049,184.9
Sicily 2011 164.2 147.1 117.4 1,642,333.6
Apulia 2012 156.4 113.9 122.6 2,665,125.0
Sicily 2012 175.9 158.4 116.4 1,651,688.2

Upper bounds Apulia 2011 388.4 368.0 245.7 7,595,784.3
Sicily 2011 280.7 242.5 201.0 2,669,199.1
Apulia 2012 246.4 190.5 186.4 4,068,767.2
Sicily 2012 290.5 260.9 181.5 2,711,767.7

Lower bounds Apulia 2011 113.7 93.9 105.1 2,821,602.2
Sicily 2011 61.8 41.7 69.0 740,855.7
Apulia 2012 77.1 51.9 71.0 1,444,772.3
Sicily 2012 75.0 63.2 67.9 728,309.6

Notes. Results come from 214 observations with positive labor productivity
gaps over 2011-12. At the sector level, these observations represent about
13,700 farms in Apulia and 11,200 farms in Sicily on average each year.

D.5 Migration effects on farm outcomes

Table D.5: Descriptive statistics of farm outcomes for misreporting farms and non-treated
farms. Misreporting farms are defined by statistically significant increases in labor productivity

gaps after migration compared to their predicted gaps in absence of migration.

Before After
Obs. 840 Median Sd Median Sd
Misreporting farms: Grape profit/assets 0.05 0.10 0.08 0.18

Input costs/assets 0.04 0.09 0.04 0.07
Grape sales/assets 0.09 0.14 0.12 0.23
Grape prices 285.46 190.66 335.68 173.60
Hourly wages 6.50 1.37 6.98 2.15

Non-treated farms: Grape profit/assets 0.05 0.24 0.06 0.56
Costs/assets 0.02 0.23 0.03 0.80
Grape sales/assets 0.07 0.41 0.09 0.50
Grape prices 366.2 300.8 428.9 344.9
Hourly wages 9.11 3.84 9.61 4.61

Notes. Grape profits are sales minus input costs (labor + crop production).
Observations equal 840 (262 treated + 578 non-treated farms).
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D.6 Robustness checks

Figure D.4: Placebo tests for treated and non-treated regions. Mean gaps are reported in
absolute values. The shaded area shows that, compared to the treated, no region assigned to

treatment has a higher gap post-migration (y-axis) as well as a lower gap pre-migration (x-axis).
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Figure D.5: LOO estimates of labor productivity gaps versus actual estimates before (2010) and
after the shock (2011, 2012). Gaps are standardized, i.e., divided by their standard deviation.
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Table D.6: Summary statistics for the estimated number of unreported labor hours for each
farm in Sicily and Apulia post-migration. Upper and lower bounds of 95% confidence intervals

are estimated via de-randomised inference (as described in Appendix B).

Farm Sector
Region Year Mean Median SD Total

Point estimates Apulia 2011 232.8 216.3 161.8 5,078,300.6
Sicily 2011 168.4 148.4 115.0 1,718,049.9
Apulia 2012 154.1 113.9 121.3 2,684,274.8
Sicily 2012 184.6 159.8 124.4 1,681,282.5

Upper bounds Apulia 2011 312.9 296.0 201.3 6,626,648.5
Sicily 2011 268.0 215.9 260.5 2,547,455.2
Apulia 2012 203.3 156.5 154.9 3,481,070.9
Sicily 2012 273.4 221.6 223.2 2,442,836.6

Lower bounds Apulia 2011 137.1 125.8 125.7 3,635,061.9
Sicily 2011 74.4 56.8 77.5 1,024,942.7
Apulia 2012 91.2 63.2 89.0 1,869,938.7
Sicily 2012 94.2 79.3 84.2 1,019,102.2

Notes. Results come from 227 observations with positive labor productivity
gaps over 2011-12. At the sector level, these observations represent about
13,900 farms in Apulia and 11,250 farms in Sicily on average each year.

E Proofs and derivations

Proof of Theorem 2.1. The proof is fairly standard. We begin by noting that, by

definition

E
(
y′1,i,t − ŷ′1,i,t

)
= E (εi,t)+E

(
µ (X1,i,t)− µ′ (X ′

1,i,t

))
+E

(
µ̂′ (X ′

1,i,t

)
− µ′ (X ′

1,i,t

))
+E (δi,t) ,

and

E
(
y′0,i,t − ŷ′0,i,t

)
= E (εi,t)+E

(
µ (X0,i,t)− µ′ (X ′

0,i,t

))
+E

(
µ̂′ (X ′

0,i,t

)
− µ′ (X ′

0,i,t

))
.

Hence

E
(
y′1,i,t − ŷ′1,i,t

)
− E

(
y′0,i,t − ŷ′0,i,t

)
= E

(
µ (X1,i,t)− µ′ (X ′

1,i,t

))
− E

(
µ (X0,i,t)− µ′ (X ′

0,i,t

))
+E

(
µ̂′ (X ′

1,i,t

)
− µ′ (X ′

1,i,t

))
− E

(
µ̂′ (X ′

0,i,t

)
− µ′ (X ′

0,i,t

))
+E (δi,t) .
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Using Assumption 2.1(ii) and (7), the desired result follows. We also note that,

by (6)

E (yi,t|Di,t = 1)− E (yi,t|Di,t = 0)

= E (εi,t|Di,t = 1) + E
(
µ (X1,i,t)− µ′ (X ′

1,i,t

)
|Di,t = 1

)
+ E (δi,t|Di,t = 1)

−E (εi,t|Di,t = 0)− E
(
µ (X0,i,t)− µ′ (X ′

0,i,t

)
|Di,t = 0

)
= E (εi,t) + E

(
µ (X1,i,t)− µ′ (X ′

1,i,t

))
+ E (δi,t)

−E (εi,t)− E
(
µ (X0,i,t)− µ′ (X ′

0,i,t

))
,

having used Assumption 2.2 in the last passage, and the mean-independence of δi,t

on Di,t in the previous one. Recalling Assumption 2.1(ii), we finally have

E (yi,t|Di,t = 1)− E (yi,t|Di,t = 0) = E (δi,t) , (21)

which proves that E (δi,t) is the ATE.

Proof of Theorem B.1. The proof is the same as that of Theorems 3 and 4 in

Horváth and Trapani (2019), with one major technical difference: whilst in Horváth

and Trapani (2019) the sequence to be randomised diverges under the null and

drifts to zero under the alternative almost surely, in our case we have a weaker

result.

We let Si,t (N1,M) = SN1,M and exp
(
−1

2
u2
)
= F (u) for short, and denote the

distribution function of the standard normal as G (·). We begin by studying the

behaviour of SN1,M under the null. The CLT in Theorem 5 in Athey et al. (2019)

entails that

lim inf
N1→∞

P

((
N1

m

)ϵ′−1/2

sN1

∣∣∣δ̂i,t − δ0i,t

∣∣∣ = 0

)
= 1, (22)

for all ϵ′ < ε. By elementary arguments, this entails that

lim inf
N1→∞

P

(
exp

(
−
(
N1

m

)ε+ϵ′
)
ϕi,t (N1) = 0

)
= 1. (23)
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We now have
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using the fact that G (x) ≤ mG <∞ for all −∞ < x <∞. Now (23) immediately

entails that

lim inf
M,N1→∞
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M

ϕ2
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Similarly, we note that the random variable
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so that ultimately
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on account of (23). Putting all together we receive
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and the desired result now follows from the CLT for Bernoulli random variables.

Under the alternative, it is easy to see that

lim inf
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for all ϵ′ < ε, and therefore
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Now we write
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and we therefore have
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Since E∗ (I (ξi,t,m (u))−G (u))2 <∞, by the Markov inequality it follows that

∫ ∞

−∞

[
M−1/2

M∑
m=1

(I (ξi,t,m (u))−G (u))

]2
dF (u) = OP ∗(1),

with probability going to 1. Hence the proof of Theorem B.1 is complete.

F Algorithms

The validity of our analysis depends on the prediction quality of the super learning

model, which is partly determined by the selection of base learners. Therefore,

we choose learners that have demonstrated good prediction performance across

various settings and prediction competitions. To leverage the benefits of combining

multiple algorithms, we select learners with different characteristics, as outlined

below. This diversification allows us to capture a wide range of potential underlying

data generating processes. The selected algorithms include random forests (RF),

extreme gradient boosting (xgboost), penalized regression (glmnet), neural nets

(NN), and support vector machines (SVMs).

While we choose the input variables based on economic theory, algorithms such

as RF and xgboost perform well regardless of the form of the production function,

as they can account for non-linearities and interactions between input variables.

In the following, we provide a brief description of the selected methods.

We use random forests (RF) based on regression trees, which are non-parametric

supervised methods that estimate regression functions (Breiman, 2001). Regression

trees are grown by recursively splitting the covariate space to minimize the distance

between the values of dependent variables (targets) within each resulting split

(Breiman, 2017). This approach is well-suited to model complex interactions,

including non-linear functions and interaction effects (Hastie et al., 2009). It allows

us to remain agnostic about the specific relationship between labor productivity

and covariates.37 To prevent overfitting, RF incorporates mechanisms such as

random subsampling of data and covariates, out-of-bag estimation, and parameter

tuning. We estimate the forests using the randomForest R package.

37For example, the effect of fertilizer on labor productivity may vary conditional on precipitation.
Trees can model such non-linearities if they are present in the data without the need to specify
them a priori.
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Similarly to random forests, xgboost is a tree-based method. However, instead of

minimizing variance within leaves, xgboost aims to maximize the similarity scores

within leaves. Specifically, each recursive split in xgboost aims to maximize the

gain in similarity scores, grouping similar observations in the same leaves. Xgboost

builds on multiple trees consecutively, with each new tree reducing residuals from

previous trees. This allows us to replace the initial target (labor productivity) with

parts of the target that were not predicted by previous trees. These algorithms

offer properties that facilitate quick data processing and handling of missing data.

More details can be found in Chen and Guestrin (2016). We utilize the R package

xgboost to estimate this base learner.

For penalized regression estimation, we employ the glmnet package. This pack-

age fits a generalized linear model using regularization. The computation is expe-

dited through coordinate descent. Friedman et al. (2010) provide further details on

the procedure. Regularization penalizes the size of coefficients, leading to a shrunk

vector of coefficients resulting from the regression optimization problem. We opt

for regularized regression due to the relatively large covariate space, where stan-

dard linear regression is prone to collinearities and overfitting. The glmnet package

provides options for lasso regularization (Tibshirani, 1996), ridge regression (Hoerl

and Kennard, 2000), and elastic net, which combines both approaches (Zou and

Hastie, 2005). While ridge regression is a continuous shrinkage method, the lasso

performs variable selection, which means it sets individual coefficients of predictors

that are collinear or do not (substantially) help to predict the target to zero. We

perform cross-validation to determine the appropriate strength of penalization for

improved prediction accuracy. A priori, we do not know which method performs

best, and we test that empirically. We select the lasso, as it outperforms the other

methods.

Neural networks (NN) model dependent variables as non-linear functions of

linear combinations of independent variables (predictors). Back-propagation is

employed to re-estimate network parameters and enhance prediction accuracy

(Rumelhart et al., 1986). By leveraging their ability to learn from data, NN can

approximate and generalize complex functions with high accuracy. To mitigate

overfitting, we penalize (regularize) the weights assigned in the network, similar in

spirit to the regularization in glmnet. Hastie et al. (2009) provide a comprehensive

treatment of NN. We implement this method using the nnet package in R.
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Support vector machines (SVMs) are another type of non-parametric machine

learning algorithm that can effectively approximate complex functions. While

they differ in architecture and operation from neural networks, SVMs are capable

of learning and representing nonlinear relationships between inputs and outputs.

While neural networks have gained popularity for their ability to handle large-

scale and highly complex problems, SVMs have been widely used and studied

for their strong theoretical foundations and ability to handle various data types.

They are known for their generalization capabilities and robustness to overfit-

ting. More specifically, SVMs work by mapping the input data (predictors) into a

high-dimensional feature space and finding an optimal hyperplane that maximally

groups similar targets (labor productivity) into the same subspaces. Predictions

are made based on the separation achieved by the hyperplane. SVMs can utilize

transformations of the covariates to achieve this hyperplane separation. SVMs were

introduced for regression by Drucker et al. (1996). For a comprehensive overview,

refer to Wang (2005).38

In summary, we employ a diverse set of estimators that are expected to yield

accurate predictions while accommodating different assumptions about the under-

lying data generating process.

38Scaling the data can affect the solution obtained by support vector machines (e.g., Hastie et al.
2009). However, in our case, we do not employ data scaling as we use the same variables for the
estimation of all base learners and the SL.
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