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Abstract

A principal allocates a single good to one of several agents whose values are pri-

vately and independently distributed, employing an optimal mechanism. The

principal shapes the distribution of the agents’ values within general classes

of constraints. Divisive product designs, which are either highly favored or

met with indifference, can simultaneously enhance surplus and diminish in-

formation rents by making agents’ values more readily discernible. However,

such designs also reduce competition among agents. Divisive designs are op-

timal under various design constraints, as the main drivers of revenue lie in

increasing surplus and minimizing information rents, while competition plays

a secondary role.

Keywords: Value Design, Mechanism Design, Differentiation

JEL Codes: D82, D46, L15

1 Introduction

Mechanisms are utilized across numerous markets for the allocation of goods, with

collectibles, like art, antiques, or vintage cars frequently auctioned. Service con-

tracts are commonly procured through government auctions. In these contexts, the
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their insightful questions and comments. All remaining errors are ours. First draft: February 2020.
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principal not only determines the allocation mechanism but also has the ability to

select or design the goods being auctioned, thereby influencing the agents’ values for

those goods. Traditional contributions in canonical mechanism design have primar-

ily focused on identifying optimal methods for allocating goods (Myerson (1981),

Bulow and Roberts (1989)), while neglecting the question of which goods should be

offered for sale.

We grant the principal the power to both implement the optimal mechanism and

influence valuations through product design. The principal necessarily faces some

limitations in his product design and thus is restricted in the value distributions

he can induce. We consider numerous different classes of constraints and provide

a comprehensive characterization of jointly optimal value and mechanism design.

Our study reveals that the principal consistently finds it advantageous to create

dispersion in values within and across agents. Value dispersion is profitable as it

can simultaneously increase surplus (the value of the agent with the highest willing-

ness to pay) and enhance value predictability, which reduces the information rent.

Consequently, divisive goods emerge as the optimal choice under various general

constraints on the principal’s ability to design values.

The design constraints faced by a principal depend on the specific context at

hand. For instance, when a painter sells their artwork through a mechanism, they

have the ability to shape the product’s features. They can either create a piece of

art that appeals to a broad range of clients or focus on a more niche customer base,

crafting a divisive product that perfectly caters to their specific desires. Similarly,

in the realm of collectibles, an auctioneer can choose to showcase peculiar pieces or

those that have a wider appeal. Another feature of the good to be designed may

be its location. If the designer selects where to sell a product, the distance from

the venue selected will affect customer or bidders values for the product. In the

context of service contracts, the location of where the work is carried out influences

a potential contractor’s value of the project. However, choosing a location closer to

one agent necessarily implies greater distance to the other.

In all these scenarios, there exists an inherent limit to how desirable a good can

be made by the principal. Moreover, a natural trade-off arises between creating
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a good that strongly appeals to a few individuals but is less appealing to others,

as opposed to a good that moderately satisfies a larger number of agents. Taking

these factors into consideration, we delve into the discussion of optimal value design

under a variety of broad and abstract constraints that capture the limitations and

trade-offs in valuations.

Similar to the approach taken in Myerson (1981), the principal uses an optimal

mechanism to allocate the designed product, encouraging agents to truthfully dis-

close their private values for the good. The mechanism determines both the transfers

made from the agents to the principal and the probability of allocating the good

to each agent based on the induced profile of valuations. Through product design,

the principal shapes the distribution of agents’ values, which has three effects: (i) it

directly affects agents’ valuations and contributes to the overall surplus, (ii) it influ-

ences the allocation probability, thereby impacting the transfers, and (iii) it alters

the information rents provided by the principal, incentivizing agents to truthfully

reveal their induced valuations and ensuring incentive compatibility of the mecha-

nism. These factors collectively determine the optimal value design for the principal,

within the bounds of constraints.

These constraints can be categorized as separable and joint constraints. Sepa-

rable design constraints pertain to limitations on the distribution of a single agent,

while joint design constraints revolve around restrictions on the joint distribution of

agents’ valuations. Separable constraints capture scenarios in which the principal

can affect an agent’s willingness to pay for the product without affecting the value

of others. On the other hand, joint constraints allow the principal to redistribute

valuations among agents (increasing the value for some at the expense of reducing

the value for others), and they are useful in modeling situations where the principal

cannot affect an agent’s desire for the product without affecting the value of others.1

Separable Design Constraints As a benchmark, we examine a scenario in which the

principal possesses the capability to generate any distribution for the agents. In this

1It is worth noting that if the principal can increase valuations for all agents, they will always
do so. Conversely, they will never reduce values for all agents. Therefore, we focus on the more
nuanced case where an increase in valuation for one agent is accompanied by a reduction in value
for another agent. This aligns with our motivating examples.
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setting, minimizing the information rents would involve rendering the agents’ values

deterministic, thereby making them fully predictable. This would enable complete

surplus extraction and eliminate information rents. Since higher values correspond

to higher transfers, the principal also aims to maximize the value of the highest-

ranked agent as much as possible, thereby increasing the surplus. However, certain

values may be impractical or unattainable, which necessitates imposing an upper

bound on the product’s value, denoted as v. In such cases, it is optimal to design a

product that is valued at v by at least one agent with certainty. The principal can

then set v as the transfer required to obtain the good, thereby extracting the entire

surplus. Given that the principal cannot achieve a better outcome than obtaining

the full surplus, having a single agent with a high value suffices.

Next, we consider scenarios in which the principal faces more stringent design

constraints, allowing the generation of any value distribution with an expected value

below a constant k < v. This constraint aligns with the concept of “Bayes’ plau-

sibility” proposed by Kamenica and Gentzkow (2011). Under such constraints, the

optimal value design entails binary value distributions for all agents, where mass is

concentrated solely at the highest possible value, v, and is zero elsewhere, with a

mean equal to k. The principal benefits from increasing the expected value, and

therefore designs products that, on average, all agents value at k, the upper bound.

To extract the entire surplus, the principal creates a binary distribution with pos-

itive mass assigned to exactly one positive value, reducing the information rent to

zero. Furthermore, the designed value distributions influence the probability of al-

locating the good to competing agents. Since an agent wins the object only by

paying the exact high value, the principal aims to decrease the likelihood of this

event to engage in more frequent trading with competing agents. By doing so, the

competitors’ expected transfers to the principal increase, despite the reduction in

competition when the designed agent has a low value. Consequently, the principal

optimally sets the high value at the maximum possible value, v, thereby minimizing

the probability of an agent having a high value.

Contrary to the widespread belief that higher variance increases agents’ infor-

mation rents, we demonstrate that this is not necessarily the case. Variance among
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non-excluded values diminishes revenue, as it limits the ability to extract values

due to agents’ private information. However, variance in the overall distribution of

values, across both excluded and non-excluded values can actually benefit the prin-

cipal. This occurs when the overall increase in variance enhances the predictability

of values with positive allocation probability, allowing the principal to learn and

extract the agent’s value during trade.

The optimal value design when the constraint imposes a cap on the mean, given

by a binary spread with mass at v and zero, that averages to k, is second-order

stochastically dominated by any distribution with a mean of k. Therefore, the opti-

mal design under the bounded mean remains optimal even under design constraints

that restrict the principal to generating distributions that are second-order stochas-

tically dominated by an arbitrary distribution with a mean of k. Opting for a riskier

distribution consistently benefits the principal. However, if the principal is limited

to creating distributions that are first-order stochastically dominated by a specified

distribution, they refrain from making any adjustments. In such cases, reducing the

information rent of the agent by increasing the predictability of their value comes

at the cost of diminishing values and surplus, with the surplus motive prevailing.

Thus, the principal selects the bounding distribution as the optimal value design for

all agents, since he cannot benefit from damaging the product.

Joint Design Constraints When design constraints are not separable, the principal

is tasked with jointly generating value distributions for all agents and may have the

ability to reallocate value across them. Such constraints are natural and can arise,

for example, when the principal decides where to sell the good, benefiting agents

who are closer to the venue while potentially disadvantaging others. We begin by

assuming that the sum of the expected values of all agents cannot exceed a certain

constant. This constraint resembles the first constraint analyzed in the separable

design case, making it a sensible starting point. In this setting, the principal assigns

all the value to a single agent, effectively reducing the values of the other agents to

zero. The intuition behind this result aligns with the benchmark case without any

constraints: having one agent with a known valuation is sufficient to extract the

entire surplus. This once again leads to the creation of a divisive product that is
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highly favored by a few and largely disliked by the majority. However, in contrast

to the earlier case, the principal now distributes values across agents rather than

within agents.

The outcome of this result is striking and prompts further inquiry into its general

applicability. To investigate this, we consider a scenario with two agents (without

loss of generality) and define an arbitrary measure with a mass of two, represented by

the cumulative function H(v), where v denotes the induced value for the good. The

principal can design any two value distributions for the two agents, provided that

their cumulative distribution adds up to H(v) pointwise. Once again, the optimal

strategy involves creating divisive goods with maximally distinct value distributions.

Specifically, one agent’s values are confined solely below the median of H(v), while

the other agent’s values lie exclusively above the median of H(v). By designing such

maximally distinct distributions, the principal not only increases the total surplus

but also extracts higher transfers by reducing the agents’ information rents. Maximal

differentiation renders the values of both agents more predictable compared to any

other design, resulting in lower information rents for the agents. While this designed

inequality diminishes the transfer received from the disadvantaged agent, the gain in

transfer from the advantaged agent more than compensates for it, making maximally

divisive designs the optimal choice.

Our findings provide valuable insights into why principals should introduce dis-

persion either within or across agents whenever feasible. Specifically, principals

should strategically design niche products that not only maximize their ability to

learn about the underlying values of agents but also maintain a high level of total

surplus.

As a result, it is optimal for principals to create goods that are divisive in nature,

appealing to a select few while being met with indifference by a larger audience.

This phenomenon can be observed in various contexts, such as the art market,

where individual pieces often attract significant attention from a small number of

collectors but fail to resonate with the wider public.
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Related Literature Our contribution adds to the existing literature on value, or

product, design in markets and mechanisms. The initial key insights in this area were

developed by Johnson and Myatt (2006), focusing on environments where a price-

setting monopolist can influence the market demand for the good it sells through

the choice of product features or advertising. Their analysis centers on reshaping

demand through rotations and shifts. They demonstrate that both value distri-

butions with minimal dispersion (mass products) and distributions with maximal

demand dispersion (niche products) can be optimal. Similarly, our approach allows

the seller to determine both the features of the product sold and the mechanism to

allocate this. However, we consider settings with multiple buyers, thereby changing

the mechanism used for selling (from a posted price to an optimal independent pri-

vate value mechanism), and we consider several different classes of design constraints

which can encompass demand rotations. Our findings diverge as we establish that

dispersion in values within and across buyers generally benefits the designer.

Our results, demonstrating the optimality of maximally divisive value designs,

rely on the assumption that the seller has the ability to simultaneously design the

mechanism and the value distributions. Moreover, we allow for surplus to vary.

Contrary to our finding, Cantillon (2008) shows that when surplus is fixed, revenue

is reduced by asymmetric value designs in first and second price auctions without

exclusion.2

We further complement Condorelli and Szentes (2020, 2022). Their earlier work

focuses on buyer-optimal value design with a single buyer, while the subsequent

paper can be leveraged to characterise the optimal profit arising from differ demand

functions in Cournot competition.3 Adding to this strand, we consider seller-optimal

designs with multiple buyers while focusing on optimal designs.

Methodologically, some of the insights derived for separable design problems with

mean bounds depend on the convexity of surplus in n-buyer allocation problems, and

2In contrast to our focus on designing value distributions, Deb and Pai (2017) fix value designs
and establish that symmetric mechanism can heavily discriminate between agents when their value
designs differ.

3The analysis in Condorelli and Szentes (2022) is closely related to the pioneering work of
Bergemann, Brooks, and Morris (2015) who first identified all combinations of consumer surplus
and producer surplus that can arise in a monopoly setting, with posted prices, if the seller designs
the information that buyers receive about their value for the product.
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are conceptually linked to majorization results in Kleiner, Moldovanu, and Strack

(2021). Results concerning separable design problems with pointwise bounds closely

resemble a result in Hart and Reny (2015) establishing that a seller never benefits

from selecting first order stochastically dominated designs in single buyer settings.

We generalize this result to settings with multiple buyers while having to devise a

new proof strategy, as optimal allocation rules become more intricate when multiple

buyers compete for the object.

Finally, our work can be viewed through the lens of information design.4 The

key difference lies in the broader classes of design constraints that we can entertain,

which can encompass Bayes plausibility but are more general. Instead of merely pro-

viding information about the features of the good, as in Bergemann and Pesendorfer

(2007), Eso and Szentes (2007), Sorokin and Winter (2018) , and Ganuza and Pe-

nalva (2019), the principal can design product features in our setting. Despite these

differences, Ganuza and Penalva (2019) obtain an insight that complements some

of ours. They show that the principal discloses more information as the number

of bidders grows, when information disclosure is public. Our results on separable

designs instead imply that when the product sold is optimally designed, the prin-

cipal discloses the private value of the product fully to all but possibly one bidder

(for any possible number of bidders), while the remaining bidder may or may not

be informed of the private value (learning only their mean value for the product).

Therefore, their insights align with our finding that maximally spread values are

optimal, connecting the two approaches of value versus information design.

Section 2 presents our model and the key design constraints. Section 3 solves the

optimal value design problems. It first considers a benchmark design problem where

the principal does not face constraints in Section 3.1. Then, we analyse separable

design problems in which the principal faces a design constraint for each agent in

Section 3.2. We turn to joint design constraints where value can be redistributed

across agents in Section 3.3. Section 4 concludes.

4For instance, Roesler and Szentes (2017) and Bobkova (2019) examine trade environments
with a single buyer and a single seller, and characterize the buyer-optimal information designs and
the costs associated with information acquisition.
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2 A Model of Constrained Value Design

We begin by revisiting classical independent private value mechanism design insights

that will be used in our analysis. Then, we present the value design problems at the

heart of the paper. Results and the model are presented for two agents for sake of

clarity, but extensions to n-agents settings are discussed throughout the paper.

2.1 The Environment and the Optimal Mechanism

Two agents, A and B, compete for a good. The value of the good for agent i ∈

{A,B} is denoted by vi. Agents are privately informed of their value, and values

are independently distributed. The cumulative distribution of value vi is denoted

Fi and its support is denoted by Vi ⊂ R+
0 . Let vi and vi respectively identify the

smallest and the largest value in the support Vi. The distributions of values FA and

FB are commonly known by the two agents and by the principal. The preferences of

each agent are separable in value and transfers, as standard in optimal mechanisms

(Myerson (1981)). They simply amount to the value for the good minus the transfers

made to the principal if the agent wins the good and to minus the transfer made to

the principal otherwise.

The principal maximizes revenue by allocating the good with an optimal mecha-

nism.5 By the revelation principle, it is without loss of generality to focus on direct,

incentive compatible (IC) and individually rational (IR) mechanisms to allocate the

object.6 A direct mechanism specifies an allocation rule x as well as a transfer t,

(x, t) : VA × VB → ∆2
− × R2. (1)

The allocation rule x(v) = (xA(v), xB(v)) identifies the probability with which

agents A and B win the good for any profile of reported values v ∈ VA × VB. These

probabilities are contained in ∆2
−, the set of allocation probabilities. The transfer

5We set the cost of sourcing the good to zero, which implies that revenue equals profit. Our
analysis would be unchanged if the principal faced a fixed cost of sourcing the good, as this would
merely lower profits.

6The revelation principle states that for any mechanism and any Bayes Nash equilibrium of
that mechanism, there exists a Bayes Nash equilibrium in a corresponding direct mechanism with
the same outcomes and in which all agents participate and reveal their value truthfully.
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rule t(v) = (tA(v), tB(v)) identifies the transfer of each agent to the principal for

any profile of reported values v ∈ VA×VB. The allocation probabilities and transfers

are such that the mechanism is IR and IC, meaning that there exists a Bayes Nash

equilibrium in which all agents participate and report their type truthfully.7

The characterization of the optimal mechanism further relies on the revenue

equivalence theorem which states that revenue in an incentive compatible mecha-

nism, in which the lowest type of each agent is indifferent between participating and

not, amounts to expected virtual surplus,

EF [
∑

i ti(v)] = EF [
∑

i ψi(vi)xi(v)] , (2)

where ψi(vi) denotes the virtual value of agent i which depends on the distribution

of the value, Fi, and where the expectation EF is taken over the joint distribution

of values. A direct mechanism is therefore optimal if it maximizes expected virtual

surplus subject to (i) the interim allocation rule xi(vi) being non-decreasing (which

ensures incentive compatibility) and (ii) the lowest type of each agent being indif-

ferent between participating or not (which combined with incentive compatibility

implies individual rationality).8

Value distributions shape expected virtual surplus by affecting both the joint

distribution of values F , and the virtual values, ψi(vi). For any player i and any

value vi at which the cumulative Fi is differentiable, the virtual value is defined as

ψi(vi) = vi −
1− Fi(vi)

fi(vi)
, (3)

where fi(vi) = F ′
i (vi) denotes the density. We refer to the difference between the

value and the virtual value as the information rent.

7For completeness, we formalise an agent’s decision. With a slight abuse of notation (as we
use the same operator to denote the ex-post rules and the interim rules), denote the interim
(or expected) allocation probability for agent i with value vi ∈ Vi by xi(vi) = EF−i [xi(v)] =∫ v−i

v−i
xi(v)dF−i(v−i). Similarly for the transfer rule denote the interim (or expected) transfer by

ti(vi) = EF−i [ti(v)] =
∫ v−i

v−i
ti(v)dF−i(v−i). When cumulative distributions are discontinuous on

the support, Riemann-Stijltes integrals will be used to calculate the expectations implicitly. IR
and IC for agent i with value vi then together require that vixi(vi) − ti(vi) ≥ max{vixi(zi) −
ti(zi), 0} for any zi ∈ Vi.

8The agent with the lowest type is indifferent for a transfer t(vi) = vixi(vi).
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To establish our results when cumulative distributions are not continuously differ-

entiable on their support, we translate the problem to the quantile space as needed,

following an approach pioneered in Bulow and Roberts (1989).9 For any distribu-

tion Fi, define the quantile associated with value vi ∈ Vi as qi(vi) = 1 − Fi(vi).

Similarly, define the value vi(q) associated with any quantile q ∈ [0, 1] as vi(q) =

inf {vi ∈ Vi|q ≥ 1− Fi(vi)}. This definition encompasses cases in which the cumula-

tive distribution is discontinuous or contains atoms.10 At quantiles q at which vi(q)

is differentiable, the virtual value can be defined in the quantile space as

ϕi(q) = ψi(vi(q)) = vi(q) + v′i(q)q =
∂ (vi(q)q)

∂q
. (4)

Similarly, the interim allocation probability for agent i in the quantile space can be

defined as yi(q) = xi(vi(q)) and must be non-increasing by incentive compatibility.

2.2 The Value Design Problem

Having discussed key properties of the optimal mechanism used in our results, we

now turn to the value design problem at the heart of the analysis. To keep the prob-

lem compact, we posit throughout that the principal can only design distribution of

values with support contained in [v, v] for some v ≥ 0 and some v < ∞ – where v

and v represent respectively the lowest and the highest possible values for the good.

We refer to any pair of distributions (FA, FB) with supports contained in [v, v] as a

value design. The principal’s value design problem in the quantile space amounts to

max
FA,FB

R (FA, FB) = E [ϕA(q)yA(q) + ϕB(q)yB(q)] (5)

s.t. Distributional Constraints,

where E denotes the expectation of the quantile relative to the uniform distribution.

We consider several abstract and general design restrictions. These constraints cap-

ture limitations that the principal may face when sourcing and producing products,

9See Hartline (2013) for a recent comprehensive survey.
10When a cumulative distribution is continuous and strictly increasing, vi(q) = F−1

i (1− q).
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and can reflect costs.

In all the design problems considered, we posit that the principal cannot increase

the value for the good infinitely and that all agents’ values remain bounded– a natu-

ral assumption in the context of product design. However, the limitations in product

design depend on the specific good considered. To capture a wide range of potential

limitations, we consider both design constraints disciplining only the expectation

of agents’ value distributions, and design constraints disciplining the value designs

pointwise. The former gives the principal substantial freedom in choosing value de-

signs, the latter will be more demanding on the set of feasible designs restricting

the likelihood of any given value. Design restrictions can further be parsed in two

classes: separable design constraints and joint design constraints. The former class

considers constraints affecting the distribution of values for each agent in isolation.

The latter class considers restrictions that jointly constrain the design of the value

distributions for all agents, thereby allowing for value reallocation across agents.

Separable constraints may be more appropriate in settings where product design

affects consumers in the same manner, while joint designs imply trade offs across

consumers.11

Our analysis of separable designs focuses on two key constraints. The first of

these constraints allows the principal to choose any value design (FA, FB) such that

the expected value of the distribution lies below some constant k ∈ [v, v]. Formally,

the constraint allows the principal to select any value design satisfying for all i ∈ A,B

EFi
[v] ≤ k, (6)

where EFi
[v] denotes the expected value of the distribution Fi. In an information

design interpretation, this constraint allows for all all value designs satisfying Bayes

Plausibility given some prior with mean k. But the designer can do more in our

setting, as they may destroy value or alter the support of the true value distribution.

Results will also establish why constraint (6) encompasses the set of distributions

11Of course, value designs increasing values for all agents would be desirable for the principal.
Our analysis will focus on scenarios in which all such designs have been implemented and the
remaining options lower value for one agent whenever the value for the other agent increases.
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that are second order stochastically dominated by some bounding distribution G

with EG[v] = k.

The second natural constraint considered in this class is first order stochastic

dominance which allows the principal to design any distribution of values Fi for

agent i satisfying

Fi(v) ≥ G(v) for all v ∈ [v, v], (7)

where the cumulative distribution G provides a pointwise upper-bound on the dis-

tributions that the principal can choose to design.

Our analysis of joint designs focuses on two additional constraints. These capture

settings in which values can be reallocated across agents, meaning that enhancing the

distribution of values of one agent comes at the cost of deteriorating the distribution

of values for the other agent.

Mirroring constraint (6) in the separable design problem, we first allow the prin-

cipal to generate any two distributions for which the sum of expected values across

distributions is below some constant k ∈ [v, v]. Formally, any two distributions of

values must satisfy

EFA
[v] + EFB

[v] ≤ k. (8)

To account for distributional constraints, we then take an arbitrary measure with

mass two and an associated cumulative distribution H(v), and ask how the principal

would split such a measure to create the two value distributions for the two agents.12

In essence, we allow the principal to design any pair of value distributions satisfying

FA(v) + FB(v) = H(v) for all v ∈ [v, v]. (9)

This design constraint would endogenously arise in a costly design setting with

design costs fulfilling a weak form of linearity, as explained in Appendix B.

12Formally, let H denote the measure and define H(v) = H([v, v]).
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2.3 Discussion of Modelling Assumptions

IPV Design In our modelling interpretation, the principal can directly affect

agents’ value distributions while realised values remain independent and private.

Such assumptions appear palatable for several applications in which the principal

can design goods while carrying out research to measure the appetite for the good

conditional on observable characteristic of the agents, but cannot fully learning the

value for the good of agents. Maintaining the independence of value distributions

across design problems is a natural assumption if one believes that the underlying

preferences of agents are an independent trait that cannot be affected. One natural

interpretation is that the designer faces agents whose types are uniformly distributed

between zero and one and he can lay over this innate type a value distribution.13

Independence further leads to a more challenging problem, as it requires accounting

for agents’ information rents rather than focusing purely on surplus design. In

Appendix A, we consider extensions to setting in which the agents’ values are not

independent, and show that our results carry over to these environments.

Costs of Value Design To provide a clear characterisation of the forces at play

in the value design problem, the analysis abstracts from cost considerations. In-

stead, we characterize the optimal distributions that maximize revenue in the opti-

mal mechanism subject to design constraints that capture the principal’s ability to

disperse, destroy, or reallocate value across agents. The principal will freely choose

among all possible distributions of values, FA and FB, subject to natural restrictions.

These constraints are related to assumptions on design costs as will be discussed in

Appendix B.

3 Optimal Value Design

To provide a benchmark, we begin by characterising the optimal distribution when

no constraints are in place, and then analyse the separable and joint design problems

introduced in the previous section. All proofs of propositions and corollaries can be

13In particular, the quantile space approach lends itself to such an interpretation.
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found in Appendix D. The proofs of remarks are omitted as they follow immediately

from other results.

3.1 Designing Value without Constraints

Suppose the principal can design any value distributions with support in [v, v]. Then

the principal’s optimal value designs are the ones in which at least one agent values

the good at v with certainty. Such value designs are optimal as the surplus cannot

exceed the maximal value for the good v. If an agent has this value with probability

one, the principal can simply allocate the good to that agent with certainty while

asking them to transfer v, thereby extracting the maximal surplus.

Remark 1. In any optimal value design, there is at least one agent with a value

distribution satisfying v(q) = v for all quantiles q ∈ [0, 1].

The result highlights two forces at play which re-emerge throughout our further

analysis. First, the principal would like to increase total surplus (or equivalently the

maximal value for the good) as much as possible, because a higher value induces a

higher transfer. Second, the principal would like for the value of the agents to be

as predictable as possible, because knowing precisely the agent’s value reduces the

information rent that the principal pays to the agent to ensure incentive compat-

ibility. To see this, note that in the quantile space, the information rent satisfies

vi(q) − ϕi(q) = v′i(q)q, and thus equals zero when the value does not change in the

quantile space. Therefore, creating a more narrow distribution and making the value

easily recognisable, increases the revenue of the principal.

It suffices to increase the value for one agent to v, as the principal, knowing

the value of that agent with certainty, is able extract the full surplus from them

without ever selling to the other agent. If the principal adjusts the distribution

of both agents, then one agent obtains the good with probability p ∈ [0, 1], while

the other receives it with probability 1 − p. This reduces the transfer of the agent

who previously obtained the good with certainty, while simultaneously increasing

the transfer of the agent who never received the good, by the same amount. Thus,

the revenue is the same, independently of whether the principal increases the value
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for one or more agents.

3.2 Separable Design Constraints

We turn our attention to optimal value distributions for the separable design prob-

lems set out earlier. We begin by considering constraint (6), which bounds the mean

of the possible distributions by a constant k ∈ [v, v].

To state results it is useful to define a class of two-atom distributions with atoms

at values h ∈ [k, v] and v, and mean k. Formally, for any h ∈ [k, v], let the probability

distribution P h satisfy

P h(v) =

 h−k
h−v

if v = v

k−v
h−v

if v = h,
(10)

where P h(v) denotes the probability that the value equals v. Let F h denote the

cumulative distribution associated to P h. With this definition note that F v co-

incides with the maximally spread two-atom distribution, while F k amounts to a

distribution with a single atom at the mean k.

The first key result for distributions fulfilling constraint (6) establishes that in

any optimal design, the principal designs a good that is divisive for at least one

agent. For that agent, the expected value of the good amounts to the mean bound

k, but the realized value of the good is either maximal or minimal. For the other

agent, several two-atom designs can be optimal when the minimal value equals 0,

but the unique optimal design for positive minimal values is one in which the value

equals the mean bound k with certainty.

Proposition 1. A value design, (F ∗
A, F

∗
B), is optimal among all designs satisfying

EFi
[v] ≤ k for all i ∈ {A,B}, if and only if

(1) F ∗
i = F v for some agent i ∈ {A,B},

(2) F ∗
j = F h for agent j ̸= i with h = k if v > 0 and h ∈ [k, v] if v = 0.

Before discussing the applied relevance and content of the result, we provide some

intuition for the proof of the result. The proof begins by characterizing value designs
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maximizing total surplus (or gains from trade).14 It does so by fixing the distribution

of values for one agent j and a realized value for the other agent i, and by establishing

that the expected total surplus is convex in the realized value of agent i. The latter

observation coupled with the linearity of constraint (6) is then exploited to show

that a surplus maximizing design for player i must be the maximally spread two-

atom distribution F v. Further when Fi = F v, total surplus is only affected by the

mean of j’s value distribution, because when vi = v, surplus amounts to the value

of player i as vi ≥ vj for any realized value for player j, and when vi = v, surplus

amounts to the expected value of player j distribution as vj ≥ vi for any realized

value for player j. The proof then concludes by showing that all the designs in the

statement maximize surplus and leave no information rent to agents (argued below),

and therefore maximize revenue, while all other surplus maximizing designs would

have to pay an information rent to agents to fulfill incentive compatibility. As a

result, in all optimal designs, there is no conflict between reducing information rents

and increasing surplus.

The optimal design is unique up to agents’ permutations as long as minimal

values are strictly positive, v > 0. But when minimal values equal zero, v = 0,

and competitor i has a maximally spread design, F ∗
i = F v, multiple designs can be

optimal for the remaining agent j. All these designs assigns mass to exactly one

strictly positive value h with h ∈ [k, v] and have expected value k. In these designs

if i’s valuation is v, the principal awards the good to agent i at transfer v and no

information rent is paid. While if i’s valuation equals v, the principal awards the

good to agent j only if they agree to pay a transfer h. So, the principal extracts k

in expectation from j conditional on not trading with i, and no information rent is

paid – irrespective of the exact value of h.

The optimal mechanism used for any of such optimal designs is simple and

requires first offering the good to agent i at to price v and if i rejects offering the good

to agent j at price h. In these value designs, the principal designs a product that

is divisive for one of the two agents because volatility in values increases surplus

by adding variance. To highlight that volatility in valuations is a key feature of

14Total surplus can formally be defined as EF [max{vA, vB}].
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optimal designs when design constraints affect only the mean valuation, consider

the generalization of the previous statement to settings with n + 1 agents. Let

N ⊂ N denote a set of n + 1 agents. In any optimal design, n agents exhibit a

maximally dispersed two atom distribution, while the remaining agent’s distribution

is as described in Part (2) of Proposition 1.

Remark 2. A value design is optimal among designs satisfying EFi
[v] ≤ k for all

i ∈ N , only if: F ∗
i = F v for all agents i ̸= j for some j ∈ N .

The revenue loss from a sub-optimal value design in which all agents draw value

from distribution F v amounts to at most P v(v)n+1v, and converges to 0 as n→ ∞.

The previous insight establishes that in large markets a designer seeks to design

or source goods that are divisive for all but possibly one agent. Further, it shows

that the loss from making the good divisive for all agents is small, and non-existent

when minimal values equal zero. Recognizing that values in this setting represent

the willingness or ability to pay, divisive goods can be interpreted as goods that are

highly valued by some types and that are undesirable or unaffordable to the rest.

For instance, in luxury good markets, mark-ups are often extremely high meaning

that goods have been designed for a handful of potential buyers with extremely high

valuations while the remaining buyers are priced out of the market, and have thus a

low willingness to pay. These insights are consistent with our value design analysis

when v is large and consequently P v(v) is small. Optimal designs naturally lead to

a high variance in observed transfers to the principal and are exploitative to agents,

leaving all of them without any surplus. However, these designs deliver the highest

possible revenue, which is worth approximately (n+1)k when v is large and v = 0.

Before progressing to the analysis of pointwise design constraint, it is instructive

to fix a distribution for agent A and focus on the optimal design for agent B given

FA. This can be relevant if the principal’s product only influences the distribution

of one of his customers, while the other customer remains unaffected. We argue

that this is a useful benchmark as product design may not impact all customers

equally. Therefore, we ask what happens if the other customer is not affected, be-

fore analysing the joint design problem where catering to one consumer alienates
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the other. Throughout this benchmark analysis, we assume that v = 0. Yet hav-

ing minimal values equal zero seems most natural in the context of a value design

problem, because a principal should always be able to make the good less desirable

at no cost.

Proposition 2. Fixing FA, value design F
∗
B = F v is optimal among all value designs

satisfying EFB
[v] ≤ k. Further, such a design is uniquely optimal when FA ̸= F v.

But when FA = F v, any design F ∗
B = F h for some h ∈ [k, v] is also optimal.

The result is closely related to the earlier multi-agent results, yet the proof strategy

differs considerably, because information rents may have to be paid to the agent

whose distribution is not being designed. It relies on the minimal value v being

equal to zero, because when v > 0 and FA is dispersed, the optimal design may not

be maximally spread, but rather maximally concentrated, as shown in Proposition 1

for FA = F v. From a mechanism design perspective, the result is perhaps surprising

since it demonstrates an optimal design can maximize variance (the next corollary

makes this point explicit). But by maximizing the volatility of valuations, the

principal minimizes the dispersion in valuations (and consequently the information

rent) for non-excluded types of the agent who win the good with positive probability.

Further, since the principal does not care about agents who never win the good, he

awards them with the smallest possible value so as to not lose surplus.

To gain intuition for the result, note that the principal has once again two,

possibly conflicting, motives: maximizing surplus and reducing information rents.

In the proposed design problem, these motives are again aligned. The first motive

is driven by the principal’s desire to design a good which is highly valued in order

to extract more surplus from the agents through their transfers. This aim is met

by selecting the maximally spread distribution of values F v for which constraint (6)

binds, as shown in Proposition 1. The second motive is driven by the principal’s

desire to make the agent’s valuation easily identifiable in order to minimize the

information rent paid to agents for truthfully revealing their type. As the value

of player B is deterministic whenever gains from trade are strictly positive, no

information rent is left to the agent. As the principal does not benefit by leaving

any value to types that never win the good, the lower atom must be at zero. This
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establishes that a bimodal distribution is optimal, with one atom at a strictly positive

value and another zero. The strictly positive value is generically equal to v, because

a change in B’s distribution affects the allocation probability for both agents. As

we keep the expected value of B’s distribution at k, having the positive atom at a

higher value decreases the probability that the value is positive and not zero which

in turn increases probability that A obtains the good and consequently A’s transfer.

It is worth noting that Proposition 2 also establishes that F v is the optimal design

relative to any other distribution that is second order stochastically dominated by

a distribution G with mean EG[v] = k. This follows by two insights. First, any

distribution FB that is second order stochastically dominated by G satisfies

∫ v

0

G(t)dt ≤
∫ v

0

FB(t)dt for all v ∈ [v, v], (11)

and therefore has a lower mean than G, fulfilling constraint (6). Second, F v is second

order stochastically dominated by G. Thus, F v is also the optimal distribution

among all FB satisfying constraint in (11).

Corollary 2.1. Fixing FA, the value design F ∗
B = F v is optimal among all value

designs satisfying (11). It is the unique optimal design if FA ̸= F v.

Thus, the principal always prefers a riskier value distribution for agent B given that

it is always possible to use the other agent to hedge such risk.

Proposition 2 also implies that in any optimal design the principal is unwilling

to reduce the expected valuation for the good. This raises the question of whether

the principal would ever be willing to adjust the value distribution for a agent if

this necessarily came at the expense of a reduction in the expected value. The next

remark exploits the proof of Proposition 2 to show that this is indeed the case, as

long as the reduction in expected value is sufficiently small. Define the two-atom

probability distribution with atoms at values h and v and mean m ∈ [v, h],

P h
m(v) =

 h−m
h−v

if v = v

m−v
h−v

if v = h
(12)
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where P h
m(v) denotes the probability that the value equals v. Let F h

m denote the

cumulative distribution associated to P h
m.

Remark 3. Consider any value design (FA, FB). For any m ≥ EFB
[max{ψB(v), 0}],

value design (FA, F
v
m) increases revenue compared to the initial value design (FA, FB).

Condition m ≥ EFB
[max{ψB(v), 0}] guarantees that any reduction in expected

value, EFB
[v]−m, is more than compensated by the reduction in information rent,

EFB
[v]− EFB

[max{ψB(v), 0}]. Thus, even if the principal loses some surplus on av-

erage by reducing the mean, doing so still increases the revenue due to the reduction

in information rents.

Next, we turn to the other separable value design problem, namely the one

requiring designed value distributions to be first order stochastically dominated by

an arbitrary distribution G. As in the previous design problem, we begin by fixing

the value distribution of agent A and characterising the optimal design for agent

B subject to G(v) ≤ FB(v) for all v. First order stochastic dominance implies a

ranking of quantiles qG(v) and qB(v) – so that for all v ∈ [v, v]:

qG(v) = 1−G(v) ≥ 1− FB(v) = qB(v). (13)

It follows that for any given quantile, the value under distribution G is higher

than under any other distribution that is first order stochastically dominated by

G, formally vG(q) ≥ vB(q) for any q ∈ [0, 1]. This observation is summarised in

Figure 1, and is instrumental in proving the next optimality result.

Proposition 3. The optimal value design, (F ∗
A, F

∗
B), among all designs satisfying

Fi(v) ≥ G(v) for all v ∈ [v, v] and all i ∈ {A,B} is (F ∗
A, F

∗
B) = (G,G).

We begin by establishing that F ∗
B = G is optimal for all FA, before turning to

the design of both distributions. If the principal can only design distributions that

are first order stochastically dominated by G, agent B is assigned the bounding

distribution G in the unique optimal design. In this design problem, designs differing

from G may be able reduce information rents by making the agent’s value more

predictable, but at the expense of reducing values and thus surplus. The result
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Figure 1: G FOSD FB
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establishes that any gain in information rent cannot outweigh the loss in value.

Proposition 2 in Hart and Reny (2015) establishes the same result for one-bidder

settings. Our result generalizes theirs by showing that first order stochastically

dominated distributions yield lower revenues even with competition and no matter

what the competitors’ value distributions are. Thus, damaging a product for all

types of an agent cannot be optimal even in competitive setting.

To gain more intuition for the result, consider any design FB that differs from

G and is first order stochastically dominated by G. The proof establishes that if

so, it is always possible to construct an alternative design, F̂B, which is first order

stochastically dominated by G, but first order stochastically dominates FB, and that

is associated to a higher revenue. The change in distribution, from FB to F̂B, has

two effects, it affects the virtual value for the agent whose value is being designed

and it affects the probability of winning the good for both agents. Our proof strategy

fixes the allocation rule that was optimal for value design (FA, FB) and shows that

revenue increases when B’s distribution is transformed to F̂B due to the adjustment

of virtual values. Formally, the key step of the proof establishes the second inequality
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in the following expression

E[ϕ̂B(q)ŷB(q)]︸ ︷︷ ︸
Distribution:F̂B , Allocation:F̂B

≥ E[ϕ̂B(q)yB(q)]︸ ︷︷ ︸
Distribution:F̂B , Allocation:FB

> E[ϕB(q)yB(q)]︸ ︷︷ ︸
Distribution:FB , Allocation:FB

(14)

The first inequality holds since revenue under the old allocation rule, associated with

value design (FA, FB), and new virtual value, derived from F̂B, is a lower bound on

revenue obtained from the optimal allocation rule for the design (FA, F̂B). This

follows as an adjustment of the allocation rule cannot decrease revenue, or else the

principal would select the old allocation rule. We then turn to a comparison of

virtual values, to show that E
[(
ϕ̂B(q)− ϕB(q)

)
yB(q)

]
> 0. Integrating by parts

leads to a comparison of values, as ϕ(q) = ∂(v(q)q)
∂q

. First order stochastic dominance

implies that the value associated to each quantile under distribution F̂B exceeds the

value under distribution FB, see also Figure 1. As such a distribution F̂B can be

constructed for any distribution FB which is first order stochastically dominated by

G, it follows that the optimal value design for agent B is in fact G.

This result immediately implies that when both agents’ distributions can be

designed the principal will find the design (G,G) to be optimal and generalizes to

n-agent settings. It establishes that consistently destroying value by a first order

stochastic dominance shift in the distribution relative to upper-boundG can never be

optimal, since direct losses in surplus are never compensated by gains in information

rents.

Our contributions on separable value design problems establish that whereas

destroying value is never optimal for the principal, spreading value always is. In

particular, the principal will seek to create divisive bimodal value designs in which

agents either value the good very highly or not at all. For applications, this insight

implies that different types display distinct valuations for a good and trade with

vastly different likelihoods, as designed goods will be loved by few types and met

with indifference by most.
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3.3 Joint Design Constraints

We now turn to settings where the principal designs the values of their agents jointly.

As demonstrated earlier, if the principal could design a good that was deemed more

appealing by all agents, then he would do so. We therefore focus on scenarios in

which various designs reallocate value across agents – meaning that, increasing the

valuation for one agent will have to be compensated by decreasing the valuations

for other agents.

The first design problem posits that any design (FA, FB) is feasible as long as the

sum of expected values does not exceed a given bound, EFA
[v]+EFB

[v] ≤ k for some

k ∈ [2v, v+v].15 Under this constraint in any optimal design, the principal allocates

all the disposable value to only one agent, leaving the disadvantaged agent with

the smallest possible value v with certainty. The optimal design for the favoured

agent allows the principal to extract all the value from the agent eliminating the

information rent by selecting designs that either assign value k− v with certainty to

the agent, or take on only two values, namely v and some value h ∈ (k− v, v], while

having k − v as a mean. Recall that we defined the class of two atom distributions

with a given mean in expression (12).

Proposition 4. A value design, (F ∗
A, F

∗
B), is optimal among all designs satisfying

EFA
[v] + EFB

[v] ≤ k:

(1) for k ∈ [2v, v + v] if and only if F ∗
i = F h

k−v with h ∈ [k − v, v] for some agent

i ∈ {A,B}, while v∗j (q) = v for all quantiles q ∈ [0, 1] for agent j ̸= i;

(2) for k ∈ (v + v, 2v] if and only if v∗i (q) = v for all quantiles q ∈ [0, 1] for some

agent i ∈ {A,B}.

The intuition follows from insights developed in the benchmark case and in the

separable design case with a bound on the mean of the designed distributions. As

in the benchmark case, the principal only needs one agent to have a high valuation

and therefore selects agent i to receive all the disposable expected value k−v, while

the other agent’s expected value is reduced to the lower-bound v with certainty.

As in the separable design case, the principal can opt for designs with different

15Note that by restrictions on possible values, we must have that k ∈ [2v, 2v].
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volatility for the favoured agent provided he can extract the full surplus in any of

these. Consequently, a principal facing two potentially identical agents will induce

sharp differences in how they value the good – for instance, by designing divisive

products that cater to only one of the agents. Similar insights would go through

in a multi-agent extension with all the disposable value being allocated to a single

agent. When the mean bound k ∈ [v + v, 2v], some disposable value must be given

to both players by feasibility. In any optimal design one agent is given the maximal

value v with certainty, while the other agent is left with any other distribution, as

the principal can extract the maximal surplus from the favoured agent.

The result demonstrates that it is profitable for the principal to allocate as

much value as possible to one agent, while keeping the other agent at minimum

value. It raises questions as to whether divisive goods would also be optimal when

values can be reallocated, but more stringent constraints are imposed on the joint

design. To address this, we allow for any design (FA, FB) to be feasible as long as

FA(v) + FB(v) = H(v) for all v, where H(v) is the cumulative associated to an

arbitrary measure with mass two, with v ∈ [v, v]. It turns out that in this setting

divisive designs remain optimal as long as the measure H assigns mass to more than

one value – a symmetric design cannot be optimal. Rather, the principal maximizes

revenue by creating two maximally differentiated value distributions. To state the

result, it is useful to define the median for the measure H, as the value vM such

that
∫ vM

v
dH(v) = 1, when such value exists. As such value may not exist when H

is atomic, in these instances the median will instead be defined as the smallest value

vM such that
∫ vM

v
dH(v) ≥ 1.

Proposition 5. The value design, (F ∗
A, F

∗
B), is optimal among all designs satisfying

FA(v) + FB(v) = H(v) for all v ∈ [v, v] if for some j ∈ {A,B} and i ̸= j

F ∗
i (v) = H(v)− 1 if v ∈ [vM , v],

F ∗
j (v) = H(v) if v ∈ [v, vM ].

Maximally divisive goods, with one agent’s values below the median of H and the

other agent’s values above the median of H, yield a higher revenue than any other

design fulfilling the constraint. Such a design has two benefits. First, it maximizes
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surplus, E[max{vA, vB}], since it generates the highest possible expected value for

one of the agents. This is better than any other design, which necessarily yields more

similar expected values, due to the convexity of the maximum operator. Second,

a maximally divisive design narrows the support of both agents’ distributions, and

thereby reduces information rents.

Such a design however increases the probability that the good is allocated to the

agent with high values thereby increasing their willingness to pay, and decreases the

probability that the good is allocated to the agent with low values thereby reducing

their willingness to pay. In spite of the decreased competition, the gains in transfers

from the high value agent more than compensate the losses from the low value

agent. The key takeaway of this design problem is that when value redistribution is

possible, the principal benefits from divisive designs that treat agents differently and

discriminates between them. This provides a novel rationale for designing products

catering only to a subset of the market. The result generalizes to n-agent settings,

but in those settings only the distribution of the two agent with highest values would

be pinned down by optimality – with one agent receiving all the highest values with

mass 1, another agent receiving all the remaining highest values with mass 1, while

the distributions of the remaining agents would be arbitrary but for the need to

fulfill the constraint.

To establish the optimality of maximally divisive designs, the proof first posits

that H is differentiable and compares optimal revenue in such a design to revenue

in any other design (FA, FB) in which two distributions FA and FB have the same

support. An example of an alternative design is provided in Figure 2a. The proof

then carries out the same comparison but for designs (FA, FB) in which the supports

of the of the two distributions are disjoint supports, while allowing the measure H

to be atomic. One instance of such a comparison is given in Figure 2b. The proof

then concludes by establishing that the maximally divisive design necessarily leads

to higher revenue than any design belonging to one of these two classes, and by

arguing that the revenue in any other design simply amounts to linear combination

of revenue in two designs belonging respectively to each of these two classes.

Next, we provide some intuition for the proof of the result for the case in which H
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Figure 2: Alternative Distributions
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is differentiable and the supports of the designed distributions coincide. To capture

an arbitrary split of the density h(v) = H ′(v), consider any design (F̂A, F̂B) assigning

a share aA(v) ∈ (0, 1) of the density h(v) to F̂A, and the remaining share aB(v) =

1−aA(v) to F̂B. Derive allocation probabilities, x̂A(v) and x̂B(v), for such a setting.

We compare the revenue generated by this arbitrary design to the revenue generated

by a maximal divisive design. This is challenging as we need to keep track of the

differences in virtual values as well as allocation probabilities.

To do so, it is useful to rank the two allocation probabilities x̂A(v) and x̂B(v) for

each possible value v according to magnitude. If the value is above the median, then

the maximum over x̂A(v) and x̂B(v) is assigned to xA(v) and the minimum becomes

xB(v). If the value is below the median, then the maximal allocation probability

is absorbed by xB(v), while the minimum is now xA(v). After this change, for any

value v, it is possible to identify the ranking of the allocation probabilities.

With this relabelling, we can the show that the revenue for maximally divisive

design is higher than revenue at any alternative design by establishing that

E[ψ∗
A(v)x

∗
A(v)] + E[ψ∗

B(v)x
∗
B(v)]︸ ︷︷ ︸

Distribution:F ∗
A,F ∗

B , Allocation:x∗
A,x∗

B

≥ E[ψ∗
A(v)xA(v)] + E[ψ∗

B(v)xB(v)]︸ ︷︷ ︸
Distribution:F ∗

A,F ∗
B , Allocation:xA,xB

(15)

≥ E[ψA(v)xA(v)] + E[ψB(v)xB(v)]︸ ︷︷ ︸
Distribution:FA,FB , Allocation:xA,xB

= E[ψ̂A(v)x̂A(v)] + E[ψ̂B(v)x̂B(v)]︸ ︷︷ ︸
Distribution:F̂A,F̂B , Allocation:x̂A,x̂B

,

where ψ is the virtual value associated with x̄. The first inequality follows again by

replacing the optimal allocation probabilities x∗ for the maximally divisive design
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with the constructed allocation probabilities, x. The allocation probabilities x∗

must be associated with a weakly higher revenue – otherwise they would not be

optimal. However, it is not necessarily the case that xA(v) and xB(v) are feasible

allocation probabilities under the new distributions. In Appendix D, we verify that

these expected allocation probabilities are indeed interim feasible (Border (1991))

and can be be derived by taking expectations over a well-defined allocation rule,

thus validating our approach.

The key to establishing the result then remains the second inequality in expres-

sion (15) since the last equality holds by definition as we only relabelled allocation

probabilities and associated virtual values. Rewriting the relevant inequality from

(15), yields

∫ v

vM
ψ∗
A(v)xA(v)h(v)dv +

∫ vM

v

ψ∗
B(v)xB(v)h(v)dv

>

∫ v

v

(
aA(v)ψA(v)xA(v) + aB(v)ψB(v)xB(v)

)
h(v)dv. (16)

Observe that the density for each v in each integral is identical. This allows us to

compare integrands pointwise for each v. Further, we assume for now that virtual

values are positive, which yields

ψ∗
i (v)xi(v)− aA(v)ψA(v)xA(v)− aB(v)ψB(v)xB(v)

≥
(
ψ∗
i (v)− aA(v)ψA(v)− aB(v))ψB(v)

)
xi(v), (17)

where the inequality follows from the ranking of the allocation probabilities. For

v > vM , xA(v) > xB(v) and so we can replace xB(v) by xA(v). Similarly, for

v < vM , xA(v) < xB(v), allowing us to replace xA(v) with xB(v). This simplifies

the problem to comparing virtual values under the maximally divisive design to the

average auxiliary virtual value. If the difference in virtual values is positive for both

agents and all values v, revenue is higher in the divisive design compared to the

chosen design. This is straightforward, and we obtain that the difference in virtual

values is zero for values above the median vM , while it is equal to one for values

below the median. This implies that gains in marginal transfer contributions occur
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for values below the median. Above the median, the sum of information rents paid

to agents coincide for any design chosen by the principal. But for values below the

median, the sum of information rents paid to agents is minimized by assigning all

such value to a single agent as this maximizes at once both F (v) and f(v) for the

agent to whom such values are assigned.

If the virtual values are not positive, then more involved arguments, along the

lines made above are necessary. These are provided in Appendix D.

We follow a similar approach to establish that designs with disjoint supports that

differ from the maximally divisive design are sub-optimal. This follows because the

maximally divisive design minimizes the information rent paid to agents with values

below the median at the cost of increasing the information rent for agents above the

median. For any other value design, the gain in information rent for higher values

cannot make up for the loss at lower values – because the information rent is highest

when values are low.

With disjoint supports, we also allow for atoms, and because of this, the proof for

this case is developed in the quantile space. This approach is appealing since proofs

can be stated in terms of values rather than virtual values, as the mapping between

the two is straightforward. We therefore specify revenue in the quantile space, and

using the same strategy as with split densities, we replace the allocation probabilities

for the optimal design with those of some arbitrary designs. This creates a lower

bound on revenue for the maximally divisive design. We then compare this lower

bound to different designs, proving for each of them that the maximally divisive

design is associated with a lower information rent, verifying its optimality.

Our proof establishes that the maximally divisive design increases virtual values

by minimizing information rents. The increase in virtual values does not necessarily

translate into a higher transfer from both agents. It is straightforward to show that

the transfer for the low value agents will decrease as the value distributions become

more unequal.16 Transfers depend on both virtual values and allocation probabil-

ities. The latter deteriorate for low values, ultimately triggering the reduction in

16A worked out example that includes transfers was included in a previous version and is available
upon request.
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transfer for the low value agent. Recall that the expected virtual surplus is given by

E[ψA(v)xA(v)] + E[ψB(v)xB(v)]. (18)

Unequal distributions which favor A at the expense of B imply that xA increases,

while xB decreases. Crucially, this is beneficial, as A’s virtual values are higher than

B’s, again due to the distribution favouring A. Therefore, a divisive design leads to

a higher allocation probabilities to higher values, while matching low virtual values

with low allocation probabilities. This is another force as to why maximally divisive

goods are optimal, and the reason why we can just fix the allocation probabilities:

allowing them to adjust would only strengthen the result. In practice, this implies

that the principal is better off by facing two agents, with distinct value distributions,

instead of facing two agents with some average value distribution. Once again,

inequality between agents is profitable for the principal, indicating that it is better

to focus on goods that are divisive.

4 Conclusion

For separable design problems, bimodal divisive product designs are optimal when

the constraint restricts the induced expected valuation or when the induced distri-

bution is second order stochastically dominated by a given distribution. Increasing

revenue is never achieved by destroying value in a first order stochastically domi-

nated sense. Surplus growth plays a pivotal role in all value design problems, and

first order stochastically dominated distributions result in reduced surplus, render-

ing them sub-optimal. In joint design problems, our focus lies in reallocating value,

and we find that the principal once again favors divisive designs that make the good

most appealing to only one agent at the expense of others.

In all such optimal divisive designs, the principal introduces inequalities within

agents’ types and across agents, as these inequalities reduce the information rents

of the agents by making the valuation of the good more predictable during trade.

Given that such divisive product designs prove to be profitable under a wide range
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of constraints, we anticipate their emergence in real-world economic settings. For

example, auctioneers are likely to source goods that are highly valuable to a small

group of agents but undesirable or unaffordable for the majority, especially when

the cost of sourcing products depends solely on their mean valuation. Such designs

enable the principal to focus on types for which the good is most appealing by

setting high reserve prices, thereby increasing revenue, as observed in our separable

design constraint with mean bounds. When the principal possesses knowledge of

the agents’ preferences and can favor one agent over others through the design or

sourcing of goods, they do so by selecting products that cater exclusively to that

agent, thereby enhancing predictability of their value. This pattern is evident in

both of our joint design problems.

Our approach abstracts from costs, which we explore further in Appendix B. We

focus on independent values, arguing that every agent values each good indepen-

dently. Correlated values simplify our problem as we demonstrate in Appendix A,

reducing our analysis to surplus-maximizing value design.

Last, there is the question of implementation. Following the principles outlined

in Myerson (1981), a winner-pay implementation of the optimal mechanism may

be a good fit for trade settings, but all-pay or other implementations may be more

desirable in other applications.
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A Correlated Private Values

Maintaining the independence of value distributions across design problems is a nat-

ural assumption if one believes that a bidder should not be able to infer anything for

his value about values of his competitors, irrespective of the value design. The inde-

pendence assumption further leads to a more challenging problem, as it requires ac-

counting for agents’ information rents rather than focusing purely on surplus design.

However, our results carry over to a setting in which signals are not independent

and bidders have some information about the value of their competitors.

Consider such a correlated information setting (Crémer and McLean (1985))

in which revenue coincides (generically) with surplus, E[max{vA, vB}]. To provide

some insight while remaining close to the core of the analysis, we allow the principal

to design marginal value distributions for both bidders, but not the correlation

structure between their values which is fixed. Further, we assume that bidders know

their value and have some information about their competitors’ values too. The

approach coincides with our baseline analysis where the principal designed marginal

value distributions for both agents, but was unable to affect the independence of

agents’ values.

To fix the correlation structure, take any joint distribution in the quantile space

Q : [0, 1]2 → [0, 1]. The joint distribution Q(qA, qB) has uniform marginal distri-

butions by construction, but can display arbitrary correlation structures – such as

independence, perfect positive correlation (concordance), and perfect negative cor-

relation (discordance). Posit that Q determines the underlying correlation of tastes

across agents and cannot be affected by the principal, as was the case in the original

setup where we always had that Q(qA, qB) = (1− qA)(1− qB). As before, what the

principal designs are the values associated to each quantile for both agents, vA(qA)

and vB(qB). This is equivalent to designing the two marginal value distributions,

FA(vA) and FB(vB). We consider this to be a suitable approach when quantiles

reflect the underlying preferences of agents, since the correlation in tastes across

agents cannot be designed.
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Separable Design Insights: When designing marginal distributions subject to

the mean-bound constraint EFi
[vi] ≤ k for all i, extreme bimodal designs remain

optimal. This follows because variance increases the expected value of the maximum

of two random variables, E[max{vA, vB}] by the convexity of the maximum operator.

As an example, let quantiles be discordant, so that qA = 1 − qB for any pair of

quantiles (qA, qB) in the support of Q. Additionally assume that v = 2, and that k =

1. If so, surplus, or equivalently revenue, is maximized by a value design (FA, FB) in

which both agents value the good at vi(qi) = 2 if qi ≤ 1/2 and at vi(qi) = 0 otherwise.

Such design corresponds to maximal dispersion as described in Proposition 2. Under

such a maximally spread two-atom distribution, surplus is exactly equal to 2, as at

least one agent must value the good at 2. Thus, revenue also equals 2, and the

principal secures such a surplus by awarding the good with certainty to the agents

with realized value equal 2. No other value design can lead to higher surplus, as

values never exceed 2. Therefore, designs in which both distributions are maximally

spread are optimal when values are negatively correlated.

With concordance, the design in which an agent always values the good at the

mean, k = 1, while the other is maximally spread, as by Proposition 1, yields a

surplus of 1.5. This exceeds the surplus from the design in which both agents are

maximally spread which instead yields a surplus of 1. Similarly, if both agents

have mass at the mean, the surplus equals 1. With positively correlated values the

principal is better off when one agent has all mass at the mean, whereas the other

agent’s values are maximally spread. In this case, the designed distributions are

maximally distinct subject to the constraint to ensure that surplus is extracted even

when one agent has low value. Therefore, allowing for such positive value correlation

strengthens our insight that the principal benefits from inequalities.

Joint Design Insights: When designing marginal distributions subject to the re-

allocation constraint FA(v) +FB(v) = H(v) for all v, maximally divisive designs re-

main optimal. This follows because such designs increases surplus, E[max{vA, vB}],

by minimizing the chance of having two agents with high values. As an example,

let quantiles be concordant, so that qA = qB for any pair of quantiles (qA, qB) in the
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support of Q. Additionally assume that v = 2, and that H(v) = v for all v ∈ [0, 2].

If so, surplus with a maximally divisive design simply amounts to the expected

value, EF ∗
i
[vi], of the agent i with the high marginal distribution F ∗

i (vi) = H(vi)−1,

which is equal to 1.5. Thus, revenue also amounts to 1.5. Such a transfer can be

obtained by never awarding the good to bidder j ̸= i and awarding the good to

bidder i only when his transfer coincides with his reported value, and the values

reported by the two bidders are associated to the same quantile, qA(vA) = qB(vB).

In minimally divisive designs, Fi(vi) = H(vi)/2 for all i, surplus simply amounts to

the expected value of one of the two agents, EFi
[vi], which is equal to 1. In such

joint design settings, the maximally divisive value designs, discussed in Proposition

5, remain optimal irrespective of correlation. But other designs may also be opti-

mal for specific correlation structure. For instance in the example discussed above,

when quantiles are discordant and qA = 1− qB, the minimally divisive design yields

the same surplus as the maximally divisive one. But discordance generally benefits

surplus in the minimally divisive design, as the principal is certain to face an agent

with values in excess of the median in such settings.

B Cost of Value Design

Our approach focuses on design constraints rather than costs to highlight the effects

of different designs on the principal’s revenue (net of design costs). Nevertheless,

our two main results are robust to costly design.

Value Dispersion Conceptually, constraint (6) posits that any distribution with

a mean at or below k costs the same and we characterise the optimal distribution

under this assumption. It may be sensible to posit that value distributions with

lower means should have a lower design cost. In such settings, there would be a

force pushing towards distributions that have a lower mean and with it a lower

cost. The shape of the cost function would determine the mean set by the principal,

which would be positive unless costs are prohibitively high. Setting a mean at zero

would lead to zero valuation among agents and nobody would compete for the good.
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Therefore, it seems sensible to assume that the principal will select some positive k.

Given a positive mean chosen by the principal, he would still choose distributions

that display maximal dispersion. We also explicitly consider the case where the

principal incurs a fixed cost from adjusting the distribution in our analysis, see

Remark 3.

Value Reallocation We then turn to the case of reallocating values across agents.

Although the assumption on redistribution implicit in this model may seem strong,

similar insights would naturally arise in settings in which designing is costly, and

costs satisfy a weak linearity property requiring that any two value distributions

having the same sum to cost the same. This assumption would be fulfilled by

common design cost functions such as entropy, and would be met for instance by

integrable cost functions satisfying

∫ v

0

c(v)d[FA(v) + FB(v)]. (19)

for some function c : [v, v] → R+.

Thus, even in a model of costly design, we would get maximally divisive products

and maximal dispersion as features of optimal designs.

C An Example Of Jointly Optimal Distributions

For the purpose of this example, we allow the principal to generate the value dis-

tributions for two agents, A and B, adding up to H(v) = 2(v−1)
3

with v ∈ [1, 4]. We

contrast the revenue if the principal treats their two agents equally and generates

cumulative distribution functions F (v) = (v−1)
3

for both agents, with revenue in the

maximally divisive design. The latter design consists of two maximally distinct dis-

tributions, where one agent receives all the values below the median of H(v), his

distribution equals FB(v) = H(v) for v < 5
2
, while the other agent’s distribution is

given by FA(v) = H(v)− 1 for v > 5
2
. These distributions are depicted in Figure 3.

The principal implements a mechanism which specifies the probability of good as

well as a transfer level for each induced valuation such that agents find it optimal to
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(a) Minimally Divisive Design
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(b) Maximally Divisive Design

Figure 3: Minimally and Maximally Divisive Designs

reveal their net value for the good (instead of pretending they have a different in-

duced value). We follow Myerson (1981) in mapping value distributions into transfer

and good probabilities. He shows that maximizing the sum of transfers is equivalent

to maximizing the expected virtual surplus, which is a function of allocation proba-

bilities and virtual values. The virtual value for distributions with defined densities

is given by ψ(v) = v− 1−F (v)
f(v)

. The virtual surplus for a given profile of values vA, vB

is then ψA(vA)xA(vA, vB)+ψB(vB)xB(vA, vB), where xA and xB specify the expected

good probabilities for A and B, respectively.17 The agent with the highest realised

virtual value receives the good, if his virtual value is positive. Otherwise, the good

is not allocated.

We depict the expected virtual surplus of each agent, given his realised value,

in Figure 4a. We calculate for each value the virtual value and the probability that

the agent obtains the good. The expected virtual surplus for each value with the

maximally divisive design is above the expected virtual surplus if distributions are

equal. However, there are two individuals with distribution F , but only one with

FA and FB, each.

Two agents with distribution F and realised values close to four generate a higher

expected surplus, compared to two agents whose valuations are drawn from FA and

FB. Nevertheless, the maximally divisive design yields a higher expected surplus

if one takes the densities of the different values into account, determined by their

17When calculating the probability of obtaining the good, the agent knows his valuation, but
only the distribution of the other agent’s values. Note that the expected virtual surplus here
is calculated for a given value v. That is, the expectation is taken over the other agent’s value
distribution. In our main analysis, we refer to expected virtual surplus when taking expectations
over all value distributions.
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respective distributions. Formally, we want to show the following:

∫ 4

5
2

ψA(v)xA(v)h(v)dv +

∫ 5
2

1

ψB(v)xB(v)h(v)dv > 2

∫ 4

1

ψ(v)x(v)f(v)dv.

Note that 2f(v) = h(v) = H ′(v) by definition and so the previous inequality simpli-

fies to

∫ 4

5
2

ψA(v)xA(v)h(v)dv +

∫ 5
2

1

ψB(v)xB(v)h(v)dv >

∫ 4

1

ψ(v)x(v)h(v)dv.

It is as if one is comparing both FA and FB agents with one agent with distribution

H as each value is associated with the same density. Therefore, 4a does in fact

reveal that the maximally divisive design is associated with a higher virtual surplus

and in turn a higher transfer.

Figure 4: Expected Virtual Surplus vs Transfer

(a) Expected Virtual Surplus

v

Expected Virtual Surplus

1 5
2

4

4

FA

FB

F

(b) Transfer

v

Transfer

1 5
2

4

43
16

FA

FB

F

Note: Expected Virtual Surplus of agent i: ψi(vi)xi(vi). The light, dashed line
represents F , the solid line FB and the dashed dotted line FA.

The transfer is made explicit in Figure 4b. The maximally divisive design generates

a higher transfer from those with high valuations, a lower transfer for intermediate

values and a higher transfer for low values. The last effect is due to different exclusion

thresholds. The maximally divisive design leads to fewer values being excluded, as

the information rent is lower for each value. This is evident from Figure 4a: the
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value for which the expected virtual surplus becomes positive is higher if both agents

have the same distribution compared to maximally distinct distributions. If there

is no exclusion, the maximally divisive design reduces the transfer of the agent with

lower values. However, this reduction is more than compensated for by the increase

in transfer by the high value agent, making divisive designs optimal.

D Mathematical Proofs

Proof of Remark 1: No Constraints Note first that it is not possible to obtain

a revenue higher than v:

E [ϕA(q)yA(q)] + E [ϕB(q)yB(q)] ≤ v, (20)

where the inequality follows from ϕi(q) ≤ v for all i ∈ {A,B}, and E [yA(q)] +

E [yB(q)] ≤ 1 for any allocation rule. Thus, as long as at least one agent has value

v with certainty, the principal extracts the highest possible revenue. ■

Proof of Proposition 1: Two-Agent Value Dispersion The proof proceeds

in three steps: first it finds value designs maximizing surplus; then, it argues that

the optimal value designs proposed in the statement indeed maximize surplus and

consequently revenue; and finally, it establishes why no other value design can be

optimal.

Consider any design (FA, FB) fulfilling the constraint. Total surplus amounts to

S =

∫ vA

vA

∫ vB

vB

max{vA, vB}dFB(vB)dFA(vA), (21)

where Riemann-Stijltes integrals are used to calculate the expectations implicitly.
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Conditional on any realized value of vA ∈ [vB, vB], surplus amounts to

S(vA) =

∫ vB

vB

max{vA, vB}dFB(vB) =

∫ vA

vB

vAdFB(vB) +

∫ vB

vA

vBdFB(vB) (22)

= vAFB(vA) + [vBFB(vB)]
vB
vA

−
∫ vB

vA

FB(vB)dvB (23)

= vB −
∫ vB

vA

FB(vB)dvB, (24)

where the first equality is algebraic, the second follows from calculations and integra-

tion by parts, and the third equality simply factors redundant terms. For vA ≥ vB,

surplus amounts to SA(vA) = vA since max{vA, vB} = vA. While for vA ≤ vB,

surplus amounts to SA(vA) = k since max{vA, vB} = vB. Observe that S(vA) is

differentiable in vA ∈ [vA, vA], and is increasing since for vA ∈ [vB, vB],

S ′(vA) = − d

dvA

∫ vB

vA

FB(vB)dvB = FB(vA) (25)

by Leibniz rule; while S ′(vA) = 1 for vA > vB and S ′(vA) = 0 for vA < vB.

Finally, S(vA) is convex since S(vA) − S(v′A) ≥ (vA − v′A)S
′(v′A) for any values

vA, v
′
A ∈ [vA, vA]. To show this, assume without loss that vA ≥ v′A and observe that:

when v′A > vB

S(vA)− S(v′A) = vA − v′A = (vA − v′A)S
′(v′A), (26)

given that A’s values always exceed B’s; when vB ≥ vA ≥ v′A ≥ vB

S(vA)− S(v′A) =

∫ vA

v′A

FB(vB)dvB ≥
∫ vA

v′A

FB(v
′
A)dvB (27)

= (vA − v′A)FB(v
′
A) = (vA − v′A)S

′(v′A), (28)

where the inequality follows because FB is increasing; when vA > vB ≥ v′A ≥ vB

S(vA)− S(v′A) = vA − vB + S(vB)− S(v′A) ≥ vA − vB + (vB − v′A)S
′(v′A) (29)

≥ (vA − v′A)S
′(v′A), (30)
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where the equality follows because vB = S(vB), the first inequality follows from

(27), and the second inequality follows from S ′(vA) ≤ 1 and vA > vB; when vA > vB

and vB > v′A

S(vA)− S(v′A) = vA − k ≥ 0 = (vA − v′A)S
′(v′A), (31)

where then inequality follows as k ∈ [vB, vB] and VA > vB; when vB ≥ vA ≥ vB > v′A

S(vA)− S(v′A) ≥ 0 = (vA − v′A)S
′(v′A), (32)

where the inequality follows because surplus is increasing; while for vB > vA we

have that

S(vA)− S(v′A) = (vA − v′A)S
′(v′A) = 0, (33)

given that B’s values always exceed A’s. Thus, surplus, S, conditional on vA is

globally convex in vA.

The surplus maximizing design FA given FB must solve

max
FA

∫ v

v

S(vA)dFA(vA) subject to

∫ v

v

vAdFA(vA) ≤ k. (34)

Because the objective function of the problem is convex and increasing in vA while

the constraint is linear, there always exists a surplus-maximizing design which is

maximally spread and has mean k – meaning that setting FA = F v maximizes

surplus for any FB. In particular, surplus will be maximized by any design (FA, FB)

satisfying Fi = F v for some i ∈ {A,B} and
∫ v

v
vjdFj(vj) = k for j ̸= i. For any such

design, surplus would amount to

S∗ = P v(v)

∫ vj

vj

max{v, vj}dFj(vj) + P v(v)

∫ vj

vj

max{v, vj}dFB(vj) (35)

= P v(v)

∫ vj

vj

vdFj(vj) + P v(v)

∫ vj

vj

vjdFj(vj) (36)

=
k − v

v − v
v +

v − k

v − v
k, (37)
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where the first equality follows from the definition of surplus, the second follows

because vB ∈ [v, v], and the third as
∫ vj
vj
vjdFj(vj) = k.

Next note that for any value design surplus bounds revenue from above since

S(FA, FB) = R(FA, FB) + UA(FA, FB) + UB(FA, FB) ≥ R(FA, FB), (38)

where the inequality follow from individual rationality of the two players. So, the

revenue never strictly exceeds the value of surplus in a surplus-maximizing design.

But for any proposed optimal design in the statement of the result, we have that

R(FA, FB) = S∗, and thus these designs must indeed be optimal.

We conclude by arguing why no other design can be optimal. Consider any

surplus maximizing design satisfying Fi = F ∗ for some i ∈ A,B and
∫ v

v
vjdFj(vj) = k

for j ̸= i. Observe that revenue at such design amounts to

R(FA, FB) = P v(v)ψi(v) + P v(v)

∫ vj

vj

max{ψj(vj), ψi(v), 0}dFj(vj) (39)

=
k − v

v − v
ψi(v) +

v − k

v − v

∫ vj

vj

max{ψj(vj), ψi(v), 0}dFj(vj). (40)

Further, for any of the optimal designs in the statement of the result, we have that

R(FA, FB) = S∗: because ψi(v) = v; because for v > 0, in the unique optimal design

F k, we have that

∫ vj

vj

max{ψj(vj), ψi(v), 0}dFj(vj) =

∫ vj

vj

max{k, ψi(v), 0}dFj(vj) = k, (41)

where the first equality follows as ψj(vj) = vj = k and the second equality follows

since k ≥ v ≥ max{ψi(v), 0}; and because for v = 0, in any optimal design F h, we

have that

∫ vj

vj

max{ψj(vj), ψi(v), 0}dFj(vj) =

∫ vj

vj

max{ψj(vj), 0}dFj(vj) (42)

= P h(h)h+ P h(0)0 = k, (43)

where the first equality follows as ψi(v) ≤ v = 0, the second one holds as ψj(vj) =
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vj = h and ψj(0) ≤ 0, while the third one hold by definition.

However, no other surplus-maximizing design can be optimal, because the only

way to secure a revenue equal to S∗ requires guaranteeing that ψi(v) = v and

∫ vj

vj

max{ψj(vj), ψi(v), 0}dFj(vj) =

∫ vj

vj

vjdFj(vj) = k. (44)

But for the latter to hold, Fj can have either a single atom at the mean k, or only

two atoms with one atom at 0 and the other above the mean k – which is only

possible if v = 0. In any other surplus-maximizing design, the designer would need

to pay an information rent to bidder j to get them to reveal their type truthfully.

■

Proof of Proposition 2: One-Agent Value Dispersion We compare revenue

under F ∗ to revenue when setting some other distribution FB such that EFB
[v] = k.

In a quantile setting, for q = 1 − F ∗(0), the virtual value for the distribution F ∗

amounts to

ϕ∗
B(q) =

 v if q < q

0 if q > q
. (45)

revenue under distribution F ∗ is given by

E [ϕA(q)y
∗
A(q)] + E [ϕ∗

B(q)y
∗
B(q)] , (46)

while the transfer under any alternative FB amounts to

E [ϕA(q)yA(q)] + E [ϕB(q)yB(q)] . (47)

The change from FB to F ∗ has two effects: (i) it affects the virtual valuation of

agent B; and (ii) it affects the optimal allocation rule for the good. We begin by

keeping the allocation rule fixed in the quantile space and show that a change from

FB to F ∗ increases revenue under the optimal allocation rule for distribution FB.
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Such insight then immediately delivers the result, since optimality implies that

E [ϕA(q)y
∗
A(q)] + E [ϕ∗

B(q)y
∗
B(q)] ≥ E [ϕA(q)yA(q)] + E [ϕ∗

B(q)yB(q)] . (48)

Note that fixing the allocation rule in the quantile space to y(q) = x(v(q)) implies

that interim allocation rules are also unchanged in the quantile space, since yi(qi) =∫ 1

0
yi(q)dqj, which was implicitly assumed in the previous expression.

Therefore, to prove the result, it suffices to establish that

E [ϕ∗
B(q)yB(q)]− E [ϕB(q)yB(q)] ≥ 0. (49)

For any q < q, it must be that ϕ∗
B(q) = v ≥ ϕB(q), since ϕB(q) = vi(q) + v′i(q)q ≤

vi(q) ≤ v. Instead, for q ≥ q and yB(q) > 0, it must be that ϕB(q) ≥ ϕ∗
B(q) = 0,

since the good will only be given to a agent with a non-negative virtual value. As

incentive compatibility requires yB(q) to be non-increasing, we have that if

E [ϕ∗
B(q)−max{ϕB(q), 0}] ≥ 0 ⇒ E [(ϕ∗

B(q)− ϕB(q))yB(q)] ≥ 0. (50)

Moreover, by construction, the expected virtual values satisfy

E [ϕ∗
B(q)] = E [v∗B(q)] = qv = E [vA(q)] = E [vB(q)] . (51)

The result then obtains, because expected virtual value for FB satisfies

E [vB(q)] ≥ E [max {ϕB(q), 0}] , (52)

given that max {ϕB(q), 0} ≤ vB(q) for all q > 0 since vB(q) ≥ 0 and ϕB(q)−vB(q) =

qv′B(q) ≤ 0.

This establishes that it is never optimal to select a distribution for B with an

expected virtual value which is strictly smaller than the expected value. However,

there are multiple distribution that allow for the expected value to be equal to

the expected virtual value, E [vB(q)] = E [ϕB(q)]. Note that it is never optimal

to allocate mass to more than two values v > 0. Suppose to the contrary, the
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principal chose such a distribution. Then, the allocation probability would need to

differ across the different valuations for the mechanism to be incentive compatible.

Otherwise a agent with a higher valuation would pretend to be a agent with a lower

valuation and still obtain the good with the same probability. It follows that with

such a distribution it would not be feasible to extract the entire valuation, yielding

the contradiction.

To show that F ∗ is the unique optimum when FA ̸= F ∗, consider any other

distribution FB with mean k and a single atom on positive values at vB, meaning

that

FB(v) =

 1 if v = vB

1− k
vB

if v < vB
. (53)

Letting pB = k/vB denote the probability of having value vB, revenue can be rewrit-

ten as

E[ϕA(q)yA(q)] + E[ϕB(q)yB(q)] (54)

= (1− pB)

∫
VA

max{ψA(vA), 0}dFA(vA) + pB

∫
VA

max{ψA(vA), vB}dFA(vA) (55)

= (1− pB)

∫
VA

max{ψA(vA), 0}dFA(vA) +

∫
VA

max{pBψA(vA), k}dFA(vA). (56)

The first equality follows as the optimal mechanism allocates the good to A when

their virtual valuation is positive and vB = 0, and when their virtual valuation

exceeds vB if vB = vB.
18

The last expression is differentiable in pB. Next we differentiate such expression

with respect to pB and establish that revenue decreases in pB, meaning that the

the optimal distribution will set pB to be as small as possible, or equivalently vB as

large as possible. Letting V+(k) = {vA ∈ [0, v]|ψA(vA) ≥ k} for k ≥ 0 denote the set

18If FA was not regular, the previous expression for revenue would still apply. In such scenarios,
FA would denote the ironed distribution of values yielding the same revenue, rather than FA itself
– see Hartline (2013), Theorem 3.14, p.78.
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of values for which A’s virtual valuation weakly exceeds k, we find that

∂E[ϕA(q)yA(q) + ϕB(q)yB(q)]

∂pB
= −

∫
V+(0)

ψA(vA)dFA(vA) +

∫
V+(vB)

ψA(vA)dFA(vA) ≤ 0,

(57)

where the inequality holds, since V+(vB) ⊆ V+(0). Moreover, the inequality is strict

whenever ψA(vA) ∈ (0, vB) for some vA ∈ VA. Thus, it is optimal to minimize pB

which is accomplished by setting vB = v ≥ vA. This establishes the uniqueness

result when FA ̸= F ∗. To prove tho optimality of designs FK for K ∈ [k, v] when

FA = F ∗, it suffices to show that any design FK yields the same revenue as F ∗,

which is immediate and thus omitted. ■

Proof of Corollary 2.1: Second Order Stochastic Dominance We show

that F ∗ is second order stochastically dominated by G. If G = F ∗, then F ∗ is

second order stochastically dominated by G trivially. If G ̸= F ∗, it must be that for

some v in the support of G and all v ∈ [0, v),

∆(v) = G(v)− F ∗(v) < 0, (58)

since F ∗ places the maximal possible measure on v = 0 amongst all distributions

with mean equal to k. It follows that for any v ∈ [0, v), we have that

∫ v

0

∆(s)ds =

∫ v

0

G(s)− F ∗(s)ds < 0. (59)

Moreover at v, Riemann Stieltjes integration by parts yields

∫ v

0

∆(s)ds = [s (G(s)− F ∗(s))]v0 −
∫ v

0

sd (G(s)− F ∗(s)) = 0. (60)

To establish second order stochastic dominance, it then suffices to show that ∆(v)

is non-decreasing, since that implies
∫ v

0
∆(s)ds < 0 for all v ∈ [0, v). This holds

as G is non-decreasing and F ∗ is constant up until v. Therefore, G second order

stochastically dominates F ∗. The proof then follows because any distribution that

is second order stochastically dominated by G must have a lower mean than G, and
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because F ∗ was optimal among all distributions with mean lower than G. ■

Proof of Proposition 3: First Order Stochastic Dominance Suppose by

contradiction that the principal found it optimal to set FB ̸= G, which implies that

FB(v) > G(v) for some v. We show that in this case, there exists a profitable

deviation to a distribution F̂B, such that FB(v) ≥ F̂B(v) with strict inequality for

some v and F̂B(v) ≥ G(v).

As in the proof for value dispersion, the change from FB to F̂B has two effects:

(i) it affects the virtual valuation of agent B and (ii) it affects the optimal allocation

rule for the good. We again begin by keeping the allocation rule fixed and show that

a change from FB to F̂B increases revenue under the same allocation rule. Recall

that optimal revenue is given by19

E[ϕA(q)yA(q)] + E[ϕB(q)yB(q)] =

∫ 1

0

ϕA(q)yA(q)dq +

∫ 1

0

ϕB(q)yB(q)dq. (61)

As the allocation rule is unchanged, E[ϕA(q)yA(q)] is not affected, and we only need

to establish that

E[ϕ̂B(q)yB(q)] ≥ E[ϕB(q)yB(q)] ⇔
∫ 1

0

(
ϕ̂B(q)− ϕB(q)

)
yB(q)dq ≥ 0. (62)

Denote by D ⊆ [0, 1] the set of points at which yB in non-differentiable, and by

C = [0, 1] \ D. The interim allocation rule yB can be discontinuous, when the

distribution FB is not continuously differentiable and if there are gaps in the support.

We first consider the case where only the allocation rule is discontinuous, before

turning to gaps in valuations. Integration by parts using Riemann Stieltjes integrals

implies that

E[ϕB(q)yB(q)] = vByB(1) +
∑
q∈D

qvB(q) (−J(q))−
∫
C

qvB(q)dyB(q), (63)

where J(q) = y+B(q)− y−B(q) ≡ limϵ→0[yB(q + ϵ)− yB(q − ϵ)] < 0 and the inequality

19If there are gaps in the support, the following expression requires a slight amendment, which
does not affect results, but adds additional notation.
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follows from yB being decreasing. Exploiting the latter, we find that

E[(ϕ̂B(q)− ϕB(q))yB(q)] =

∫ 1

0

(ϕ̂B(q)− ϕB(q))yB(q)dq (64)

= (v̂B − vB)yB(1) +
∑
q∈D

q(v̂B(q)− vB(q)) (−J(q)) +
∫
C

(qv̂B(q)− qvB(q)) (−y′B(q)) dq.

(65)

As F̂B first order stochastically dominates FB, we know that v̂B ≥ vB and that

v̂B(q) ≥ vB(q). Thus, since the allocation probability is decreasing in q by incentive

compatibility, y′B(q) ≤ 0, it follows that

E[ϕA(q)yA(q)] + E[ϕ̂B(q)yB(q)] ≥ E[ϕA(q)yA(q)] + E[ϕB(q)yB(q)]. (66)

Moreover, if the principal was allowed to set the allocation rule ŷ(q) optimally,

revenue would further increase

E[ϕA(q)ŷA(q)] + E[ϕ̂B(q)ŷB(q)] ≥ E[ϕA(q)yA(q)] + E[ϕ̂B(q)yB(q)], (67)

or else the principal would prefer to leave allocation rule unchanged.

Suppose now FB(v) has gaps in its support. Then, for each of these discontinu-

ities in D, we need to show that

v−B(q)y
−
B(q)− v+B(q)y

+
B(q) ≤ v̂−B(q)y

−
B(q)− v̂+B(q)y

+
B(q), (68)

where v−B(q) and v+B(q) are defined in line with the allocation probabilities. If

G(v) does not have gaps in its support, there always exists a distribution F̂B

that first order stochastically dominates FB and has continuous support. In this

case, v̂−B(q)y
−
B(q) − v̂+B(q)y

+
B(q) = v̂−B(q) (−J(q)) and as values are decreasing in q,

v̂−B(q) (−J(q)) > v−B(q)y
−
B(q)−v

+
B(q)y

+
B(q). Thus, there exists once again a deviation

that leads to a higher revenue.

Last, suppose the support of the distribution G has gaps. In this case, for a

given q, there can be a jump for FB, a jump for F̂B or a jump for both. If there is

a jump for exactly one distribution, first order stochastic dominance implies that v̂
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lies above v (v̂+, v̂− > v or v+, v− < v̂). If there is a jump for both distributions

at the same q with the jump in values is larger under FB, then inequality (68) is

violated. We therefore require a more sophisticated approach. In this case, we need

to amend expression (63) to

E[ϕB(q)yB(q)] = vByB(1) +
∑
q∈D

q
[
v−B(q)y

−
B(q)− v+B(q)y

+
B(q)

]
−
∫
C

qvB(q)dyB(q).

(69)

We compare distribution FB to distribution F̂B(v) = FB(v) for v /∈ [v+, v̂+], where

v+ < v̂+. This implies that F̂B(v̂
+) = FB(v

+). Such a FB yields a higher revenue

than another distribution that displays a gap between v+ and v̂+.

We can now flip this expression into the value-quantile-space, which yields

vBxB(1) +
∑
v∈D

vqB(v)
[
x+B(v)− x−B(v)

]
+

∫
VA\D

qB(v)vx
′
B(v)dv, (70)

Integrating over values allows to capture gaps in the support directly and thus a

correction term is no longer needed. Thus, comparing revenue under F̂B and FB

amounts to showing that

∫ v̂+

v+
q̂B(v)vx̂

′
B(v)dv ≥ 0, (71)

which always holds. Note that we keep here x̂′B(v) to emphasise that this is not the

allocation probability xB(v), but rather the allocation probability at the q associated

with vB, which differs from v̂B. ■

Proof of Proposition 4: Reallocating Value, Fixed Mean To begin, we

characterize the optimal designs when EFi
[v] = ki for some i ∈ {A,B} and EFj

[v] =

k − ki for j ̸= i. We will then let the designer choose ki ∈ [v, k − v] to maximize

revenue.

As shown in the first part of proof of result 1, the surplus maximizing design Fi
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given Fj must solve

max
Fi

∫ v

v

S(vi)dFA(vi) subject to

∫ v

v

vidFi(vi) = ki. (72)

As before, because the objective function of the problem is convex and increasing

in vi while the constraint is linear, there always exists a surplus-maximizing design

which is maximally spread and has mean ki – meaning that setting Fi = F v
ki

max-

imizes surplus for any Fj. In particular, surplus will be maximized by any design

(FA, FB) satisfying Fi = F v
ki
for some i ∈ {A,B} and

∫ v

v
vjdFj(vj) = k−ki for j ̸= i.

For any such design, surplus would amount to

S∗(ki) =
ki − v

v − v
v +

v − ki
v − v

(k − ki). (73)

For such designs, surplus S∗(ki) is convex in ki, it is decreasing for ki < k/2 and

increasing thereafter. Maximizing S∗(ki) with respect to ki then establishes that in

any surplus-maximizing design ki is either equal to v or to k − v. For both of these

values of ki, surplus is maximized and equals S+ = k − v.

The latter observation essentially completes the proof as for any of the designs in

the statement of the result R(F ∗
A, F

∗
B) = S+, given that the principal either trades

with j at price h or sells to i at price v. ■

Proof of Proposition 5: Reallocating Value, Fixed Distribution We want

to show that revenue is maximized by selecting the maximally divisive design

F ∗
B(v) = H(v) if v ∈ [v, vM) (74)

F ∗
A(v) = H(v)− 1 if v ∈ [vM , v]. (75)

To simplify notation, we drop the star to indicate the optimal adjustment and simply

refer to these two distributions by FA(v) and FB(v). We proceed as follows:

(i) We first assume that each value v admits a density and show that FA(v) and FB(v)

yield higher transfer than any other two distributions, F̂A(v) and F̂B(v), that allocate

strictly positive density at each v ∈ [v, v] – meaning that min{f̂A(v), f̂B(v)} > 0 for
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all v.

(ii) We prove that FA(v) and FB(v) lead to higher revenue than any other two

distributions with disjoint support. This allows to account for mass points.

(iii) We combine these insights to show that FA(v) and FB(v) yield a higher revenue

than any other two distributions.

Splitting Densities We want to compare revenue with the maximally divisive

design to revenue with split densities, where min{f̂A(v), f̂B(v)} > 0 for all v ∈ [v, v].

Denote by ai(v) the share of the density h(v) assigned to agent i ∈ {A,B}. We

want to show that

∫ v

vM
ψA(v)xA(v)h(v)dv +

∫ vM

v

ψB(v)xB(v)h(v)dv (76)

≥
∫ v

v

ψ̂A(v)x̂A(v)aA(v)h(v)dv +

∫ v

v

ψ̂B(v)x̂B(v)aB(v)h(v)dv. (77)

For convenience, define

xA(v) =

 max{x̂A(v), x̂B(v)} if v ≥ vM

min{x̂A(v), x̂B(v)} if v < vM
, (78)

xB(v) = {x̂A(v), x̂B(v)} \ xA(v). (79)

Similarly, define for any i, j ∈ {A,B} such that i ̸= j

ψi(v) =

 ψ̂i(v) if x̂i(v) = xi(v)

ψ̂j(v) if x̂i(v) ̸= xi(v)
, (80)

ai(v) =

 ai(v) if x̂i(v) = xi(v)

aj(v) if x̂i(v) ̸= xi(v)
. (81)

These definitions immediately imply that

∫ v

v

ψ̂A(v)x̂A(v)aA(v)h(v)dv +

∫ v

v

ψ̂B(v)x̂B(v)aB(v)h(v)dv (82)

=

∫ v

v

ψA(v)xA(v)aA(v)h(v)dv +

∫ v

v

ψB(v)xB(v)aB(v)h(v)dv. (83)
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As in previous proofs, we again compare revenue for distributions FA and FB with

virtual values ψA(v),ψB(v) and allocation probabilities xA, xB to revenue for any

other distribution. To do so, we need to establish that xA and xB satisfy interim

feasibility for distributions FA and FB.

Interim Feasibility Interim feasibility is satisfied if and only if

∫ v

max{v,vM}
xA(v)h(v)dv +

∫ vM

min{v,vM}
xB(v)h(v)dv ≤ 1− FA(v)FB(v), (84)

see Border (1991). First, let v > vM . Then, FB(v) = 1 and the problem simplifies

to

∫ v

v

xA(v)h(v)dv ≤ 2−H(v), (85)

which trivially holds. Next, let v < vM . In this case,

∫ v

vm
xA(v)h(v)dv +

∫ vM

v

xB(v)h(v)dv ≤ 1 (86)

as FA(v) = 0. Therefore, it suffices to show that

∫ v

vm
xA(v)h(v)dv +

∫ vM

v

xB(v)h(v)dv ≤ 1 (87)

Inequality (87) corresponds to the following inequality in the quantile-probability

space:

∫
q

yA(q)dq +

∫
q

yB(q)dq ≤ 1 (88)

We can alternatively integrate over allocation probabilities, which transforms the

inequality to

yA(1) +

∫
yA

qA(y)dy + yB(1) +

∫
yB

qB(y)dy ≤ 1 (89)

The allocation probability for A, yA, lies between 1 and the allocation probability

at the median value yA(1). Inequality (89) takes into account that yA(1) > 0. This
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is as if the allocation probability displays a jump, in which case the quantile does

not change. Formally, if there is a jump at some q we define

y− ≡ lim
ϵ→0

y(q − ϵ) (90)

y+ ≡ lim
ϵ→0

y(q + ϵ) (91)

and for every y ∈ [y−, y+], q(y) remains constant. The probability of good for B at

the median is denoted by yB(0) and it goes down to yB(1).

We can express any qA = q̂A + q̂B and qB = q̂A + q̂B − 1. To see this note that

qA(v) = 1− FA(v) = 2−H(v), qB(v) = 1− FB(v) = 1−H(v) and q̂A(v) + q̂B(v) =

2 − F̂A(v) + F̂B(v) = 2 −H(v). Note that in general, it will not hold that qA(y) =

q̂A(y) + q̂B(y). However, there always exists a y′ such that qA(y) = q̂A(y) + q̂B(y
′).

As we integrate over all y and thus all y′, we omit the dependence on y′. We can

therefore replace qA and qB by q̂A and q̂B as follows:

yA(1) +

∫
yA

(q̂A(y) + q̂B(y)) dy + yB(1) +

∫
yB

(q̂A(y) + q̂B(y)− 1) dy ≤ 1 (92)

Note that
∫
yB
dy = yB(0)− yB(1). This implies

yA(1)− yB(0) + 2yB(1) +

∫
yA

(q̂A(y) + q̂B(y)) dy +

∫
yB

(q̂A(y) + q̂B(y)) dy ≤ 1

(93)

If yA(1) = yB(0), that is there is no jump at the median value, then we can rewrite

inequality (93) as

2yB(1) +

∫ yA(0)

yB(1)

q̂A(y)dy +

∫ yA(0)

yB(1)

q̂B(y)dy ≤ 1 (94)

⇔
∫
q

ŷA(q)dq +

∫
y

ŷB(q)dq ≤ 1, (95)

where the latter holds as ŷA and ŷB are the allocation probabilities for distributions

F̂A and F̂B. If yA(1) > yB(0), that is there is a jump at the median value, inequality
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(93) can be expressed as

yA(1)− yB(0) + 2yB(1) +

∫ yB(0)

yB(1)

q̂A(y)dy +

∫ yA(0)

yA(1)

q̂A(y)dy

+

∫ yB(0)

yB(1)

q̂B(y)dy +

∫ yA(0)

yA(1)

q̂B(y)dy ≤ 1 (96)

Note that yA(1) − yB(0) =
∫ yA(1)

yB(0)
qdy, with q = 1 = q̂A(y) + q̂B(y), for all y ∈

[yB(0), yA(1)]. We can then amend inequality (96) to

2yB(1) +

∫ yA(0)

yB(1)

q̂A(y)dy +

∫ yA(0)

yB(1)

q̂B(y)dy ≤ 1 (97)

⇔
∫
q

ŷA(q)dq +

∫
y

ŷB(q)dq ≤ 1, (98)

where the latter holds once again as we fixed an interim feasible allocation for F̂A

and F̂B.

As xA, xB satisfy interim feasibility, it is sufficient to show that

∫ v

vM
ψA(v)xA(v)h(v)dv +

∫ vM

v

ψB(v)xB(v)h(v)dv (99)

≥
∫ v

v

ψA(v)xA(v)aA(v)h(v)dv +

∫ v

v

ψB(v)xB(v)aB(v)h(v)dv. (100)

This is equivalent to establishing that

∫ v

vM

((
ψA(v)− ψA(v)aA(v)

)
xA(v)− ψB(v)xB(v)aB(v)

)
h(v)dv︸ ︷︷ ︸

Part 1

(101)

+

∫ vM

v

((
ψB(v)− ψB(v)aB(v)

)
xB(v)− ψA(v)xA(v)aA(v)

)
h(v)dv︸ ︷︷ ︸

Part 2

≥ 0. (102)

We first focus on the case of virtual values being weakly positive, both under the

maximally divisive design and the competing design, for all values, and establish

the inequality by signing the two parts in turn.
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Part 1 Note that since xA(v) ≥ xB(v) when v ≥ vM , we have that

∫ v

vM

((
ψA(v)− ψA(v)aA(v)

)
xA(v)− ψB(v)xB(v)aB(v)

)
h(v)dv (103)

≥
∫ v

vM

(
ψA(v)− ψA(v)aA(v)− ψB(v)aB(v)

)
xA(v)h(v)dv = 0. (104)

The right hand side of the last inequality is equal to zero because

ψA(v)− ψA(v)aA(v)− ψB(v)aB(v) = ψA(v)− ψ̂A(v)âA(v)− ψ̂B(v)âB(v) (105)

= v − 1− FA(v)

h(v)
− âA(v)

(
v − 1− F̂A(v)

âA(v)h(v)

)
− âB(v)

(
v − 1− F̂B(v)

âB(v)h(v)

)
(106)

=
1

h(v)

(
1 + FA(v)− F̂A(v)− F̂B(v)

)
= 0, (107)

where the final equality follows from F̂A(v) + F̂B(v) = H(v) and FA(v) = H(v)− 1.

Therefore, the integral in Part 1 is necessarily non-negative as it is bounded below

by zero. Moreover, the integral is strictly positive provided that xA(v) ̸= xB(v) for

a positive measure of v ≥ vM .

Part 2 As in Part 1, note that since xA(v) ≤ xB(v) when v < vM , we have that

∫ vM

v

((
ψB(v)− ψB(v)aB(v)

)
xB(v)− ψA(v)xA(v)aA(v)

)
h(v)dv (108)

≥
∫ vM

v

(
ψB(v)− ψA(v)aA(v)− ψB(v)aB(v)

)
xB(v)h(v)dv =

∫ vM

v

xB(v)dv ≥ 0.

(109)

As in the previous part, the equality in the previous expression follows because

ψB(v)− ψA(v)aA(v)− ψB(v)aB(v) =
1

h(v)

(
1 + FB(v)− F̂A(v)− F̂B(v)

)
=

1

h(v)
,

(110)

where the final equality follows from F̂A(v) + F̂B(v) = H(v) and FB(v) = H(v).

Therefore, the integral in Part 2 is also non-negative as it is bounded below by

zero. Moreover, the integral is strictly positive whenever either xA(v) ̸= xB(v) or
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xB(v) > 0 for a positive measure of v < vM .

The two parts establish that splitting densities is strictly worse than the maximally

divisive design when xB(v) > 0 for some v < vM , since
∫ vM

v
xB(v)dv > 0 given that

xB(v) is increasing by incentive compatibility. However, splitting densities is strictly

worse than the maximally divisive design even when xB(v) = 0 for all v < vM ,

because the optimal allocation under the maximally divisive design must differ from

x given that agent B must be promoted with positive probability when vB is smaller

but close vM – meaning that for such values vB we have that xB(vB) > xB(vB) = 0.

So far we assumed that all virtual values are weakly positive. We relax this as-

sumption and show that even with negative virtual values our result continues to

hold.

Case 1 ψA(v), ψB(v) > 0 for all v, ψi(v) ≥ 0 for all v ≥ vM , ψi(v) < 0 for some

v < vM

First, note that ψB(v) > ψi(v) for all v < vM . In this case, Part 1 remains

unchanged, while Part 2 needs to be amended. If both ψA(v), ψB(v) < 0

for some v, the difference in virtual values for each v is trivially positive. If

ψB(v) > 0 > ψA(v) for some v, then for these values

(
ψB(v)− ψB(v)aB(v)

)
xB(v)− ψA(v)xA(v)aA(v) > 0, (111)

as ψB(v)−ψB(v)aB(v) > 0 and −ψA(v)xA(v)aA(v) ≥ 0. If for some v, ψA(v) >

0 > ψB(v)

(
ψB(v)− ψB(v)aB(v)

)
xB(v)− ψA(v)xA(v)aA(v) (112)

>
(
ψB(v)− ψB(v)aB(v)− ψA(v)aA(v)

)
xB(v) > 0, (113)

where the last inequality holds as ψB(v) > ψA(v)aA(v).

Case 2 ψA(v), ψi(v) > 0 for v ≥ vM , ψB(v) < 0 for some v < vM

If the virtual value is negative under the maximally divisive design for some v,

it holds that 0 > ψB(v) > ψi(v). Note that the allocation probability must not

necessarily be zero, as regularity is not assumed. Now instead of assigning xB
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to ψB(v), assign xA for all values for which ψB(v) < 0. Given that xA(v) < xB

interim feasibility continues to hold. Then, for these v

ψB(v)xA(v)− ψB(v)aB(v)xB(v)− ψA(v)xA(v)aA(v) (114)

≥ ψB(v)xA(v)− ψB(v)aB(v)xA(v)− ψA(v)xA(v)aA(v), (115)

which, by the same logic as in Part 2 is positive.

Case 3 ψA(v) ≥ 0 for all v ≥ vM , but ψi(v) < 0 for some v ≥ vM . Suppose first

that both ψA(v), ψB(v) < 0. In this case, Part 1 is trivially fulfilled. Assume

next that there exists some v such that ψA(v) < 0 < ψB(v). In this case,

we construct a profitable deviation, that coincides with FA, FB for all values

below some threshold v and with the maximally divisive design above v. We

proceed with this approach until the candidate for the profitable deviation

does not contain negative virtual values above the median anymore, in which

case either Case 1 or Case 2 apply.

To construct such a deviation, note that ψA(v) = ψB(v) = v, by assumption.

This implies that there exists a v, such that for all v > v, ψA(v), ψB(v) > 0.

The mass between v and v is given by m = 2−H(v) > 0. Construct another

cutoff v such that H(v)−H(v) = m. Now consider a distribution F̃A(v), F̃B(v)

which corresponds to FA(v), FB(v) for v < v and

F̃A(v) =


FA(v) ∀ v ≤ v

FA(v) ∀ v < v ≤ v

H(v)− FA(v) ∀ v < v,

(116)

F̃B(v) =


FB(v) ∀ v ≤ v

H(v)− FB(v) ∀ v < v ≤ v

1 ∀ v < v,

(117)

As F̃ and F coincide for values below v, we focus on v > v. Applying the

56



same approach as in Part 1, for v > v it must hold that

1 + F̃A(v)− F̂A(v)− F̂B(v) = 1 +H(v)− FA(v)−H(v) > 0. (118)

Part 2 can be similarly amended. We have now a new candidate for a profitable

deviation F̃ . Repeating the same steps if virtual values are negative for some

values v > vM , ψ̃i(v) < 0 leads again to the maximally divisive design being

optimal.

Case 4 Last, suppose that ψA(v) < 0 for some v ≥ vM . In this case, ψi(v) < 0 for all

i. Assign xB(v) to FA. Then, we obtain

ψA(v)xB(v)− ψA(v)aA(v)xA(v)− ψB(v)xB(v)aB(v) (119)

>
(
ψA(v)− ψA(v)aA(v)− ψB(v)aB(v)

)
xB(v) = 0, (120)

as before.

Disjoint Support This proof allows for distributions H(v) for which densities are

not defined. If the density is defined, we assign each density to one distribution. This

implies that the support of at least one distribution is disjoint. We restrict attention

to alternative distributions with v̂B ∈ [v, s1] ∪ [s2, s3] and v̂A ∈ [s1, s2] ∪ [s3, v], with

v < s1 < s2 < s3 ≤ v. If these distributions do not yield higher revenue than the

maximally divisive design, then splitting the distribution further cannot be optimal

either. Note that s1 < vM < s3.

Recall that revenue in the quantile space if given by

∫
q

ϕA(q)yA(q)dq +

∫
q

ϕB(q)yB(q)dq (121)

Integrating each component by parts yields

vi(q)qyi(q)

∣∣∣∣1
0

+

∫
q

vi(q) (−y′i(q)) qdq (122)

= vi(1)yi(1) +

∫
C

vi(q) (−y′i(q)) qdq +
∑
q∈D

q
[
v−(q)y−(q)− v+(q)y+(q)

]
(123)
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Flipping this to a v − q− space yields

vAxA(vA) +

∫
VA\D

vqA(v)x
′
A(v)dv (124)

+vBxB(vB) +

∫
VB\D

vqB(v)x
′
B(v)dv +

∑
v∈D

qA\B(v)v
[
x+A\B(v)− x−A\B(v)

]
, (125)

which allows us once more to directly account for gaps in the support. We use A\B

to signify that the variable may either belong to distribution A or B.

We consider three distinct cases:

1. both distributions with disjoint support, cutoff s2 below vM , s2 ≤ vM

2. both distributions with disjoint support, cutoff s2 above vM , s2 > vM

3. one distribution with disjoint support: v̂B ∈ [v, s1] ∪ [s2, v] and v̂A ∈ [s1, s2]

We relabel x̂i(v), q̂i(v) as x̃A(v), q̃A(v) if v > vM and as x̃B(v), q̃B(v) if v < vM .

Then, it is sufficient to show that

vM x̃A(v
M) +

∫ v

vM
qA(v)x̃

′
A(v)vdv +

∫ vM

v

qB(v)x̃
′
B(v)vdv +

∑
v∈D

qA\B(v)v
[
x+A\B(v)− x−A\B(v)

]
,

(126)

> s1x̃B(s1) +

∫ v

vM
q̃A(v)x̃

′
A(v)vdv +

∫ vM

v

q̃B(v)x̃
′
B(v)vdv +

∑
v∈D

q̃(v)v
[
x̃+A\B(v)− x̃−A\B(v)

]
.

(127)

Disjoint Support for F̂A, F̂B: s2 ≤ vM In this case inequality (126) can be amended

to

vM x̃A(v
M) +

∫ s3

vM
qA(v)x̃

′
A(v)vdv +

∫ vM

s1

qB(v)x̃
′
B(v)vdv +

∑
v∈D

qA\B(v)v
[
x+A\B(v)− x−A\B(v)

]
,

(128)

> s1x̃B(s1) +

∫ s3

vM
q̃A(v)x̃

′
A(v)vdv +

∫ vM

s1

q̃B(v)x̃
′
B(v)vdv +

∑
v∈D

q̃A\B(v)v
[
x̃+A\B(v)− x̃−A\B(v)

]
,

(129)

as the distributions are identical below s1 and above s3. Note that q̃A(v) = q̂B(v)
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for v ∈ [vM , s3]. Taking the difference yields

∫ s3

vM
(qA(v)− q̂B(v)) x̃

′
A(v)vdv (130)

where

qA(v) = 2−H(v) (131)

while

q̂B(v) = 1− F̂B = 1− (H(v)−H(s2) +H(s1)) (132)

Then, for a given v ∈ [vM , s3]

qA(v)− q̂B(v) = 1−H(v) + (H(v)−H(s2) +H(s1)) = 1−H(s2) +H(s1) > 0

(133)

implying that the difference is constant. Expression (130) then becomes:

(1−H(s2) +H(s1))

∫ s3

vM
x̃′A(v)vdv (134)

We then turn to

∫ vM

s1

(qB(v)− q̃B(v)) x̃
′
B(v)vdv (135)

Between s2 and vM , q̃B(v) = q̂B(v):

qB(v)− q̂B(v) = 1−H(v)− (1− (H(v)−H(s2) +H(s1))) (136)

= 1−H(v)− 1 + (H(v)−H(s2) +H(s1)) = − (H(s2)−H(s1)) < 0

(137)
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which is again constant. For v ∈ [s1, s2], this difference is given by

qB(v)− q̂A(v) = 1−H(v)− (1− (H(v)−H(s1))) (138)

= −H(v) + (H(v)−H(s1)) = −H(s1) (139)

Expression (135) is then equivalent to

∫ vM

s1

(qB(v)− q̃B(v)) x̃
′
B(v)vdv = − (H(s2)−H(s1))

∫ vM

s2

x̃′B(v)vdv −H(s1)

∫ s2

s1

x̃′B(v)vdv

(140)

Collecting all terms leads to the following comparison

vM x̃A(v
M) + (1−H(s2) +H(s1))

∫ s3

vM
x̃′A(v)vdv (141)

− (H(s2)−H(s1))

∫ vM

s2

x̃′B(v)vdv −H(s1)

∫ s2

s1

x̃′B(v)vdv (142)

+ (1−H(s2) +H(s1))
∑

v∈D∩[vM ,s3]

v
[
x̃+A(v)− x̃−A(v)

]
(143)

− (H(s2)−H(s1))
∑

v∈D∩[s2,vM ]

v
[
x̃+B(v)− x̃−B(v)

]
(144)

−H(s1)
∑

v∈D∩[s1,s2]

v
[
x̃+B(v)− x̃−B(v)

]
> s1x̃B(s1) (145)

Rearranging yields

vM x̃A(v
M) +

∫ s3

vM
x̃′A(v)vdv − (H(s2)−H(s1))

∫ s3

s2

x̃′A\B(v)vdv −H(s1)

∫ s2

s1

x̃′B(v)vdv

(146)

+
∑

v∈D∩[vM ,s3]

v
[
x̃+A(v)− x̃−A(v)

]
− (H(s2)−H(s1))

∑
v∈D∩[s2,s3]

v
[
x̃+A\B(v)− x̃−A\B(v)

]
(147)

−H(s1)
∑

v∈D∩[s1,s2]

v
[
x̃+B(v)− x̃−B(v)

]
> s1x̃B(s1) (148)
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As H(s1), H(s2)−H(s1) < 1, it suffices to show that

s3x̃A(s3)−
∫ s3

vM
x̃A(v)dv − (s3x̃A(s3)− s1x̃B(s1)) +

∫ s3

s1

x̃(v)dv > x̃B(s1)s1 (149)

⇔
∫ vM

s1

x̃B(v)dv > 0, (150)

which always holds and establishes that any other disjoint distributions do not yield

a higher revenue. As we integrate over allocation probabilities, potential disconti-

nuities are then once again subsumed.

Disjoint Support for F̂A, F̂B: s2 > vM By the same logic as in the previous case, it

is sufficient to show

vM x̃A(v
M) +

∫ s3

vM
qA(v)x̃

′
A(v)vdv +

∫ vM

s1

qB(v)x̃
′
B(v)vdv (151)

> s1x̃B(s1) +

∫ s3

vM
q̃A(v)x̃

′
A(v)vdv +

∫ vM

s1

q̃B(v)x̃
′
B(v)vdv (152)

We can ignore any potential discontinuities in allocation probabilities here, as we

integrate at the end, meaning the discontinuities will vanish once again. As before,

with a different integration bound below

∫ s3

s2

qA(v)− q̂B(v)x̃
′
A(v)vdv = (1−H(s2) +H(s1))

∫ s3

s2

x̃′A(v)vdv (153)

We turn to

∫ s2

vM
(qA(v)− q̂A(v)) x̃

′
A(v)vdv (154)

qA(v)− q̂A(v) = 2−H(v)− (1− (H(v)−H(s1))) (155)

= 1−H(v) + (H(v)−H(s1)) = 1−H(s1) (156)

Then,

∫ s2

vM
(qA(v)− q̂A(v)) x̃

′
A(v)vdv = (1−H(s1))

∫ s2

vM
x̃′A(v)vdv (157)
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Last,

∫ vM

s1

(qB(v)− q̂A(v)) x̃
′
A(v)vdv = −H(s1)

∫ vM

s1

x̃′B(v)vdv (158)

Collecting terms yields

vM x̃A(v
M) + (1−H(s2) +H(s1))

∫ s3

s2

x̃′A(v)vdv + (1−H(s1))

∫ s2

vM
x̃′A(v)vdv

(159)

−H(s1)

∫ vM

s1

x̃′B(v)vdv > s1x̃B(s1) (160)

As before it is sufficient to show that

s3x̃A(s3)−
∫ s3

vM
x̃A(v)dv − (s3x̃A(s3)− s1x̃B(s1)) +

∫ s3

s1

x̃A\B(v)dv > x̃B(s1)s1

(161)

⇔
∫ vM

s1

x̃B(v)dv > 0 (162)

This establishes that also in this case, the maximally divisive design yields the

highest transfer.

Disjoint Support for F̂B: s2 > vM Similar to the previous case, we can ignore

discontinuities in the allocation probabilities as they will once again vanish in the

end. It is sufficient to show

vM x̃A(v
M) +

∫ s2

vM
qA(v)x̃

′
A(v)vdv +

∫ vM

s1

qB(v)x̃
′
B(v)vdv (163)

> s1x̃B(s1) +

∫ s2

vM
q̃A(v)x̃

′
A(v)vdv +

∫ vM

s1

q̃B(v)x̃
′
B(v)vdv (164)

As before,

∫ s2

vM
qA(v)− q̂A(v)x̃

′
A(v)vdv = (1−H(s1))

∫ s2

vM
x̃′A(v)vdv (165)∫ vM

s1

qB(v)− q̂A(v)x̃
′
A(v)vdv = −H(s1)

∫ vM

s1

x̃′A(v)vdv (166)
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Following the same steps as before establishes that the maximally divisive design

yields higher revenue than this candidate.

Mixing Split Densities and Disjoint Supports It follows that there cannot

be any other design combining mixing split densities and disjoint supports that

yields higher revenue compared to the maximally divisive design. We can always

treat subsets of the distribution as the entire distribution. This just requires an

adjustment of the mass in a certain subset. Then we can perform the same analysis

as we did for a subset, which yields lower revenue for this subset by the same logic

as above.

Therefore, we have established that maximally divisive designs is optimal and yields

highest revenue among all possible distributions.■
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