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Abstract

We study whether the response of the economy to structural shocks changes at the

zero lower bound. Monte Carlo evidence suggests that VARs have a limited ability

to detect changes in impulse response functions at the ZLB compared to the standard

environment with positive interest rates. This issue is confounded given the short

sample lengths that characterize ZLB episodes. This is especially the case for time-

varying parameter VARs, whose estimates are two-sided, and therefore tend to smooth

changes across regimes. In contrast, fixed-coefficient VARs estimated by sub-sample

exhibit greater power. Pooled estimates from panel VARs for six countries based on

(long-run and) sign restrictions detect in several instances changes in the IRFs. This

evidence is, however, weaker than it appears. Based on (long-run and) sign restrictions

we find that prior and posterior IRFs are often close, so that the concern raised by

Baumeister and Hamilton (2015) appears to be relevant. Evidence from a multivariate

permanent-transitory decomposition of GDP shocks is markedly sharper. It points

towards material changes in the IRFs: at the ZLB the IRFs of GDP and unemployment

exhibit more inertia, the response of prices is flatter, and the responses of interest rates

are weaker.
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1 Introduction

The key response of central banks to the Global Financial Crisis (GFC) was to lower their

policy rates to the zero lower bound (ZLB) and pursue additional stimulative measure by

means of quantitative easing (QE), that is, the purchase of government and sometimes private

assets with newly created money (or reserves). The ZLB period lasted well into the 2010s

for most central banks and covered an even longer time span in the case of Japan. The last

decade also saw very low inflation, solid, but not spectacular GDP growth and very strong

labor markets, with unemployment falling below historical averages in many countries. This

unusual constellation has given rise to the notion of “missing inflation” and a “flat Phillips

curve”. It naturally raises the question whether the dynamics of the economy at the ZLB

are different from more standard times and whether QE can be considered a substitute for

policy accommodation below the ZLB.

In this paper, we assess whether this is, in fact, the case and to what extent the data

can be informative in resolving this question. We estimate a battery of statistical models

in the class of Bayesian vector autoregressions (VARs), using a variety of specifications and

identifying assumptions, for a group of advanced economies. We highlight the problems

posed by the short duration of ZLB episodes in a Monte Carlo analysis and advocate and

implement a panel VAR to overcome this issue. In addition, we address the concern that prior

choice can materially affect outcomes in Bayesian structural VARs in terms of the impulse

response functions (IRFs). We suggest a multivariate permanent-transitory decomposition

to ameliorate this issue. Overall, our main finding is that the response of the economy

to structural shocks at the ZLB is different from the standard environment with positive

interest rates.

We approach the question of changing dynamics at the ZLB by estimating Bayesian VARs

that we identify via a combination of long-run and sign restrictions. We provide evidence for

five countries that differ in the length of their respective ZLB periods and the extent of QE.

Our main conclusion from this exercise is that evidence of changes in the IRFs at the ZLB

is weak and inconclusive. We argue that there are two reasons for this. First, and perhaps

most importantly, ZLB samples are quite short, which limit the extent how sharp inference

can be. The second reason is that a comparison between prior and posterior IRFs shows

that the latter are often quite close to the former. This suggests that the concern raised by

Baumeister and Hamilton (2015) appears relevant.

We demonstrate by means of a Monte Carlo analysis that the small sample issue is quite

prevalent. We show the difficulty that time-varying parameter VARs (TVP-VAR) have in

identifying shifts in the dynamic behavior as they happen. In contrast, when we estimate
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fixed-coefficients VARs on simulated samples they show more cleanly changes in the IRFs,

even based on the quite short ZLB sample periods. This evidence is, however, weaker than

it appears. Based on our preferred identification using long-run and sign restrictions we find

that prior and posterior IRFs are often quite close.

This evidence cannot necessarily be taking at face value because of the concern raised

by Baumeister and Hamilton (2015). Specifically, we show that the prior can have undue

influence on outcomes, that is, the posterior, when the structural VAR is identified with sign

restrictions. This makes the comparison between prior and posterior IRFs as in Arias et al.

(2018) and Inoue and Kilian (2022) potentially problematic. As an alternative, we therefore

re-estimate the Bayesian VARs using a Blanchard-Quah decomposition for shock identifi-

cation. Notably, it is not subject to the Baumeister-Hamilton criticism of sign restrictions.

The resulting evidence points toward weaker responses of prices and interest rates for ZLB

sample periods. We confirm via a Monte Carlo analysis that this is partly due to small-

sample issues. Overall, we find that the evidence for changing dynamics at the ZLB is not

strong when estimated for individual countries.

In order to address the small-sample concern, we perform joint estimation of the VAR

for all countries within a panel VAR framework. We apply the same identification schemes

as in the individual country VARs and assess again the presence of small-sample issues

by means of a Monte Carlo analysis. Although this solves the small-sample problem and

produces sharper inference, it does not eliminate the Baumeister-Hamilton critique, which

is still quite widespread as confirmed by a Monte Carlo analysis. In order to remedy this

aspect, we implement a multivariate permanent-transitory decomposition of GDP shocks

within the panel VAR framework.

The evidence produced by this approach is markedly sharper. Importantly, it underlies

our conclusion that there are material changes in the IRFs at the ZLB. In particular, we find

that the responses of GDP and unemployment exhibit more inertia than in an environment

with positive interest rates. In addition, the response of prices is flatter, which offers a

potential explanation for the missing inflation during the 2010s. Finally, we also find that

responses of interest rates are weaker. Overall, our main conclusion is therefore that the

response of the economy to structural shocks at the ZLB is, in fact, different from more

normal times.

The theoretical literature established fairly early, much before the widespread ZLB

episodes in the 2010s that there could be qualitatively important changes to the dynam-

ics when the economy is at its ZLB. The simple reason is that the ZLB imposes a non-linear

constraint in environments that are (close to) linear so that the dynamics change by neces-

sity when compared to a fully linear setting away from the ZLB. The literature started with
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the seminal contribution by Benhabib et al. (2001), who showed in a standard monetary

model that there is an equilibrium at the ZLB that features different dynamics from what is

typically assumed in standard non-ZLB equilibria. Numerous papers build on this insight,

develop analytical tools for studying such dynamics and investigate policy responses such as

forward guidance, for instance, Benhabib et al. (2002), Eggertsson and Woodford (2003) or

Werning (2011) among many others.

During the GFC and the recovery, issues surrounding the ZLB received new attention for

obvious reasons. Christiano et al. (2011) show that the government expenditure multiplier at

the ZLB can be exceedingly large and thereby a powerful policy instrument. They also shift

the focus towards the effects of a variety of shocks on several economic variables in a simulated

dynamic stochastic equilibrium (DSGE) model that reveals sizeable dynamic changes. Their

findings were confirmed and refined by Fernandez-Villaverde et al. (2015) who emphasize

the fundamental non-linear aspect of the ZLB, which materially affects dynamics. Boneva

et al. (2016) raise come concern about their conclusion, emphasizing the improtance of the

specific solution method for the non-linear system. They conclude that quantitatively the

differences between ZLB and non-ZLB influenced dynamics are minor.

Empirical studies of ZLB dynamics are more sparse. An important contribution is Aruoba

et al. (2017) who estimate a New Keynesian DSGE model with two steady states as in Ben-

habib et al. (2001) using likelihood-based methods. They generally confirm the prevalence

of different dynamics near the ZLB but highlight the dependence of this finding on model

specification. Nevertheless, imposing the ZLB constraint has become a central feature in

medium- to large-scale DSGE models that are used for policy analysis at central banks, such

as Del Negro et al. (2015).

The closest precursor to our paper is Debortoli et al. (2020). They provide evidence from

a time-varying parameter VAR (TVP-VAR) for the US that the IRFs at the ZLB are not

significantly different from the IRFs for the period with positive interest rates. They inter-

pret their findings as compatible with the notion that the Federal Reserve’s unconventional

monetary policies were effective in compensating for the fact that the federal funds rate was

held in a narrow range slightly above the ZLB during and for an extended period after the

Great Recession.

However, there are some doubts about the strength of the conclusion. For one, the

ZLB samples are quite short. In addition, the estimates produced by a TVP-VAR are two-

sided and therefore mix the future with the past. This entails smoothing across potentially

different monetary policy regimes, which is arguably not appropriate for the question at

hand. Moreover, the use of a TVP-VAR when estimated over the full sample does not

entirely ameliorate the small-sample problem as we demonstrate in a Monte Carlo exercise.
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While TVP-VARs are in principle capable of detecting structural changes even in short

samples, they do not entirely avoid this issue, especially when the underlying changes are

not large in nature.1

The paper is organized as follows. In section 2, we present our model specification, discuss

the data, and present the different structural identification methods we use throughout the

paper. In the following section we conduct a Monte Carlo analysis to study the ability

of TVP-VARs and fixed-coefficient VARs to detect changes in IRFs to structural shocks

across regimes. We highlight the problems of TVP-VARs along this dimension. In this

section we estimate Bayesian fixed-coefficients VARs by sub-sample, which are identified via a

combination of long-run and sign restrictions. We also explore to what extent the differences

in IRFs across sub-samples are due to the concern raised by Baumeister and Hamilton

(2015) about identification via sign restrictions. In section 4 we attempt to alleviate the

small sample concerns by estimating a panel VAR for all countries in the combined sample.

Section 5 concludes.

2 Methodology

We study the behavior of the economy off and at the ZLB empirically in a VAR framework.

In the following, we describe our VAR specification and discuss our Bayesian approach to

inference. We then present several identification methods for isolating monetary policy

shocks, the responses to which are our key object of interest. Finally, we present and discuss

the data for several countries that had ZLB episodes during the 2010s.

2.1 VAR Specification and Inference

Our baseline specification is the fixed-coefficients VAR:

Yt = B0 +B1Yt−1 + ...+BpYt−p + ut, (1)

where the notation is standard. Yt is an N × 1 vector of variables and ut ∼ N(0,Σ) collects

the reduced-form errors. The Bj are the associated coefficient matrices. We set the lag order

p to two for quarterly data and to six for monthly data.

We estimate the VARs as described in Giannone et al. (2015). By defining β ≡
1Lubik et al. (2016) show in a Monte Carlo study that TVP-VARs have difficulty detecting substantial

structural changes even in longer samples, albeit in a specific example of the labor market.
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vec([B0, B1, ..., Bp]
′) and xt ≡ [1, Y ′

t−1, ..., Y
′
t−p]

′, equation (1) can be rewritten as:

Yt = Xtβ + ut, (2)

where Xt ≡ IN ⊗ x′t. We assume that the prior distribution of the VAR coefficients belongs

to the Normal-Wishart family, namely:

Σ ∼ IW (Ψ; d) (3)

β|Σ ∼ N(b; Σ⊗ Ω), (4)

where the elements of Ψ, d, b and Ω are functions of a lower-dimensional vector of hyperpa-

rameters.

The degree of freedom of the Inverse-Wishart distribution IW is set to d = N +2, which

is the minimum value that guarantees the existence of the prior mean of Σ. We assume that

Ψ is a diagonal matrix with the N × 1 vector of hyperparameters ψ on the main diagonal.

The conditional Gaussian prior for β is of the Minnesota type. In contrast with the standard

specification of random-walk priors, we impose stationarity on the VAR. Consequently, we

assume:

E [(Bs)ij|Σ] =

{
µ if i = j and s = 1

0 otherwise
(5)

We set µ = 0.25 for real GDP growth and inflation, which captures the low serial correlation

of GDP growth and also of inflation during the Great Moderation period. For the other

series we set µ = 0.9. This reflects a prior view that interest rates, the unemployment rate,

and hours worked per capita are stationary, yet highly persistent. We set the prior for the

second moment as:

Cov [(Bs)ij, (Br)hm|Σ] =

{
λ2 1

s2
Σih

ψj/(d−N−1)
if m = j and r = s

0 otherwise
(6)

The hyperparameter λ controls the scale of the variances and covariances, thus determining

the prior’s overall tightness. We set the hyperpriors for λ and ψ as in Giannone et al. (2015).

We estimate the VAR as discussed there, using the MATLAB codes available at Giorgio

Primiceri’s web page. The only difference to their approach is that we impose stationarity

on the VAR. In the MCMC step of the estimation, we move to iteration i + 1 if and only

if the draw for the VAR parameters associated with iteration i is stationary. Otherwise, we

redraw the parameters for iteration i.
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2.2 Identification

We consider three alternative identification strategies. Although these are standard in the

literature we discuss their implementation in what follows. First, we consider joint long-

run and sign restrictions as in Debortoli et al. (2020). Next, we implement a pure sign-

restrictions approach using the methodology of Rubio-Ramirez et al. (2010). Finally, we

consider a permanent-transitory decomposition to address the concern raised by Baumeister

and Hamilton (2015).

Long-run and sign restrictions. We implement joint identification of a permanent

shock to real per-capita GDP and of four transitory shocks as in Debortoli et al. (2020)

by combining zero long-run restrictions and short-run sign restrictions on the direction

of the impulse response functions. Let the structural VAR(p) model be given by Yt =

B0 + B1Yt−1 + ... + BpYt−p + A0ϵt, where A0 is the impact matrix of the structural shocks

at t = 0, and ϵt = A−1
0 ut ≡ [ϵPEt , ϵTEt , ϵTAt , ϵMA

t , ϵMO
t ]′ are the structural shocks. We assume

that the shocks have unit variance and are orthogonal to each other.

We can disentangle the shock ϵPEt from the other four structural disturbances because

it is the only one that is allowed to have a permanent impact on real GDP. The other four

disturbances, ϵTEt , ϵTAt , ϵMA
t , and ϵMO

t are, respectively, ‘technology’, ‘taste’, ‘markup’ and

‘monetary policy’ shocks in the nomenclature of Canova and Paustian (2011). They are

identified and separated from each other by imposing sign restrictions on impact. We report

the set of restrictions in Table 1, where ‘+’ indicates ‘greater than, or equal to zero’, and

‘−’ means ‘smaller than, or equal to zero’. These restrictions are the same as the ‘robust

sign restrictions’ reported by Canova and Paustian (2011) for their benchmark DSGE model

that features sticky prices, sticky wages, and several frictions standard in the literature.2

We choose to impose the sign restrictions only on impact. As Canova and Paustian

(2011) argue, impact restrictions are in general robust. They hold for the vast majority of

sub-classes within a specific class of DSGE models and for the vast majority of plausible

parameter configurations. Restrictions at longer horizons, on the other hand, are generally

not robust across sub-classes of models. Moreover, implementing multi-horizon restrictions

imposes a computational burden to the extent that only a small number of draws from the

identification matrix satisfy these restrictions. Since we are limited by the small sample size

of the ZLB episodes we thus prefer to remain flexible in that direction.

2The differences to the Canova-Paustian restrictions are that their DSGE model is built around the
output gap whereas our VARs feature real GDP growth in per-capita terms and, second, that we consider
the unemployment rate instead of hours per capita.
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Table 1. Impact Sign Restrictions

Shock:

Variable: ϵTEt ϵTAt ϵMA
t ϵMO

t

Real GDP growth per capita + + − −
Inflation − + + −

Unemployment rate + − + +

Monetary policy rate / shadow rate − + + +

For each draw from the posterior distribution of the VAR’s reduced-form parameters we

compute the structural impact matrix A0 of the shocks using the methodology proposed by

Arias et al. (2018). The methodology is described in detail in the online appendix. We set

the number of random rotation matrices to 100, and the number of Gibbs-sampling iterations

to 10.

Only sign restrictions. Sign restrictions pertain in principle to the infinite long-run.

Consequently, the reliability of an identification strategy based on long-run restrictions is

a matter of concern, see Faust and Leeper (1997). When we work with the 4-variables

VAR we therefore identify the four shocks listed in Table 1 based on a pure sign restrictions

approach that we implement as discussed in Rubio-Ramirez et al. (2010). The methodology

is described in detail in the online appendix. We set the number of random rotation matrices

to 100. Again, for the reasons discussed previously we impose the sign restrictions only on

impact.

Permanent-transitory decomposition. One concern about identification via long-run

and sign restrictions is that the posterior distribution of the shocks’ impulse responses largely

reflects the priors implicit in the sign restrictions imposed by the researcher. For instance,

Baumeister and Hamilton (2015) argue that uniform priors over the random rotation angles

that are the key inputs in the standard algorithms for imposing such restrictions do not map

into corresponding uniform priors for the IRFs. Because of the highly non-linear nature of the

problem, they imply in general informative priors for the IRFs, sometimes quite remarkably

so. In our results below, a comparison of prior and posterior IRFs as in Inoue and Kilian

(2022) and Arias et al. (2022) reveals that this concern is, in several instances, materially

relevant. This is especially the case for the comparatively short ZLB samples.

We therefore consider a third identification strategy, which is not vulnerable to the

Baumeister and Hamilton (2015) criticism and relies on point identification. As in the first
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identification approach we identify a permanent GDP shock as the only disturbance with a

permanent impact on real per-capita GDP. Conditional on the identification of this shock,

the remaining transitory GDP disturbances are then rotated as in Uhlig (2005) in order

to isolate the most important transitory shock for GDP at the business-cycle frequencies;

that is, the shock that explains the largest fraction of the residual variance of GDP within

this frequency band. In line with the literature we take the business-cycle frequency band

to encompass fluctuations with periods between 2 and 8 years. We find that this identi-

fication scheme essentially performs a multivariate permanent-transitory decomposition of

GDP shocks since the fraction of forecast error variance of GDP jointly explained by the two

identified shocks is very close to 100 percent for all countries, samples, and horizons.3

2.3 Data

In the empirical analysis we consider a set of countries that had extended ZLB episodes

during and after the global financial crisis. These include Denmark, the Euro area, Japan,

Switzerland, the UK, and the US. For all countries and sample periods we study two al-

ternative VARs that are specified for four and five variables, respectively. The 4-variables

system features the log-differences of real per-capita GDP and the GDP deflator, a short-

term nominal interest rate, where we use the central bank’s monetary policy rate for the

pre-ZLB period and a ‘shadow rate’ for the ZLB period, and finally the unemployment rate.

The 5-variables system additionally contains a long-term nominal interest rate. The data

and their sources are described in detail in the online appendix.

The data used in the estimation are at quarterly frequency. Since the ZLB samples are

quite short, less than 10 years in most cases, concerns about inference in small samples is

consequently quite valid. We address these concerns by pooling the country data into a panel

VAR in section 4. In the case of the US, the relevant series are also available at the monthly

frequency. In order to obtain more precise estimates we therefore work with monthly US

data and report these as the baseline. The corresponding evidence based on quarterly data

is qualitatively the same and is available in the online appendix.

Figure 1 shows the respective central bank’s monetary policy rate together with the

shadow rate.4 The graphs reveal the substantial decline of policy rates long before the onset

of the GFC, where an underlying factor is certainly the overall decline in real rates of interest.

When the financial crisis hit, central banks rapidly dropped rates to zero with the exception

3We report respective evidence in the online appendix. A partial exception is Switzerland for which this
fraction is between 90 and 100 percent in the pre-ZLB sample.

4The shadow rate for Denmark is not depicted because it is an internal estimate of the Danish central
bank and has kindly provided to us on a confidential basis.
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Figure 1: Monetary policy rates and shadow rates

of Japan, which had been at its ZLB since the mid-1990s. It is also notable that Denmark

and Switzerland tested out the limits of their interest rate policy by imposing negative rates

for an extended period. The figure also shows the shadow rates, which in several cases have

gone into substantially negative territory, for instance to almost - 6 percent in the Euro

Area.5

Table 1 reports the sample periods together with the average values of the policy rate

and the shadow rate. During the ZLB period in either the US, the UK or Japan the policy

rate has never become negative. It has oscillated, respectively, between 0.07 and 0.24, 0.25

and 0.5, and 0.10 and 0.75 percent. In the other three countries it fell below zero, reaching

a minimum of -0.75 percent in Denmark, -0.85 percent in Switzerland, and -0.40 percent in

the Euro area. Although the peak value of the policy rate during the ZLB period has been

above zero in the UK and Japan, we choose to include both countries in the analysis because

of the sharp contrast between the average values over the ZLB/sub-zero sample (0.47 and

0.34 per cent, respectively) and the corresponding values for the pre-ZLB period (7.57 and

4.19, respectively). While not ideal, the evidence provided by either country should still

be informative in assessing whether the transmission mechanism of structural shocks at the

ZLB is different.

5The gap between actual and shadow rates signal the extent of accommodation that central banks provided
during and after the recession. It also hints at the severity of the constraint that the ZLB poses in pursuing
policy. From a different perspective, QE is seen as providing a substitute for interest rate policy to the
tune of $100 billion in asset purchases being the equivalent of a 25 basis points drop in the policy rate. See
Krishnamurthy and Vissing-Jorgensen (2011) for extended discussion on this point.
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Table 2. Sample periods and average monetary policy and

shadow rates

Average Average

Country Sample (quarters) policy rate shadow rate

Pre-ZLB

Denmark 1983Q2-2010Q2 (109) 5.94 –

Euro area 1980Q2-2012Q2 (129) 6.58 –

Japan 1980Q3-1995Q3 (61) 4.19 –

Switzerland 1983Q2-2008Q4 (103) 3.40 –

United Kingdom Feb. 1983-Feb. 2009 (104) 7.57 –

United States Feb. 1983-Nov. 2008 (103) 5.36 –

ZLB/sub-zero

Denmark 2010Q3-2019Q4 (38) -0.23 –

Euro area 2012Q3-2019Q4 (30) -0.10 -3.55

Japan 1995Q4-2017Q1 (86) 0.34 -1.32

Switzerland 2009Q1-2019Q4 (44) -0.27 -1.65

United Kingdom Mar. 2009-Jul. 2018 (43) 0.47 -3.74

United States Dec. 2008-Dec. 2015 (28) 0.13 -1.21

3 Monte Carlo Evidence

We now turn to the Monte Carlo evidence on the ability of the fixed-coefficients Bayesian

VAR estimator of Giannone et al. (2015) and of the TVP-VAR estimator of Del Negro and

Primiceri (2015) used by Debortoli et al. (2020) to allow the corresponding SVARs to identify

changes in the shocks’ IRFs across regimes. We first describe the set-up of our Monte-Carlo

procedure and the data-generating process we use for the question at hand. We then report

results from the estimation on simulated data and then estimate VARs on the set of countries

discussed above.

3.1 Monte Carlo Framework

Our data-generating process (DGP) is a standard New Keynesian model with both forward-

and backward-looking components in the Euler-equation and the Phillips curve. It is based

on the model estimated in Benati (2008). The main difference in our set up is that we

assume that the log of real GDP has a unit root component that evolves as a random-walk
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with drift as in Watson (1986). The model contains three variables, real GDP, inflation, and

a short-term interest rate. The economy is driven by three shocks: a monetary shock ϵR,t, a

permanent shocks to real GDP vt, and a transitory supply shock ut. We discuss the model

and the Bayesian estimation methodology in the online appendix. The left-hand panels of

2 show the IRFs of the DSGE model we use as data generation process (DGP) under two

alternative parameterizations.

For our Monte Carlo simulations we draw 10,000 times from the posterior distribution of

the structural model parameters. Each draw represents a statistical ‘model’. We select the

two models, i.e., draws i and j, for which the following measure of distance between the two

set of IRFs is maximized:

N∑
v=1

N∑
s=1

H∑
h=0

∣∣IRF i
v,s,h − IRF j

v,s,h

∣∣ , (7)

where v, s, and h index, respectively, the variable, the shock and the horizon. We set H

equal to 10 years, which is roughly the average duration of the ZLB episodes of the countries

in our sample. In most cases there is a sharp difference between the IRFs under the two

parameterizations, which suggests that this is an appropriate DGP for exploring the ability

of a VAR to detect differences in the IRFs across sub-periods.

We conduct the following Monte Carlo experiment. We generate 1000 artificial samples

of length T = T1 + T2 for inflation, the short rate, and real GDP from the DGP. The first

sub-sample of length T1 is generated under parameterization 1, whereas the second with

length T2 is generated under parameterization 2. We adapt the size of the simulated sample

to its empirical counterpart under investigation. Our frame of reference is Debortoli et al.

(2020), who use the TVP-VAR specification of Del Negro and Primiceri (2015). Their overall

estimation sample runs from 1953Q2-2015Q4, so that we use T1 = 222 and T2 = 28. We also

estimate the fixed-coefficients specification of Giannone et al. (2015) and set the sub-sample

lengths corresponding to the minimum lengths (in quarters) of the pre-ZLB and ZLB samples

reported in Table 2. This implies T1 = 61 and T2 = 28. This choice is designed to assess the

ability of fixed-coefficients SVARs estimated by sub-sample to detect differences in the IRFs

within the specific empirical settings used in the present work under a worst-case scenario.6

We jointly identify the permanent output shock and the two transitory shocks by com-

bining long-run and sign restrictions as described in 2.2. In case of the fixed-coefficients

6In our estimation of the fixed-coefficient VARs we follow Giannone et al. (2015) as described in 2.1.
Similarly, the implementation of the TVP-VAR is as in Debortoli et al. (2020) with the difference that we
impose stationarity on a quarter-by-quarter basis as in, e.g., Cogley and Sargent (2005). We are grateful to
Giorgio Primceri for providing us with the Matlab codes.
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Figure 2: Impulse responses of the data-generating process
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VAR this is done for each draw from the posterior distribution reduced-form VAR estimates

based on the two sub-samples. The successful draws, that is, those for which the sign restric-

tions are satisfied, are retained. We compute IRFs to the three shocks for each them and

then store the median IRFs and the 16th and 84th percentiles of their respective posterior

distributions. In case of the TVP-VAR estimation of the simulated data we replicate the

empirical setup of Debortoli et al. (2020). As before, we identify the three shocks, compute

the IRFs and extract their medians and 16th and 84th percentiles. This is done for each

draw from the posterior and each quarter for both the second sub-sample of length T2 and

the corresponding sub-sample of length T2 ending at T2 − 1. Just as in their paper, the ZLB

sub-sample for which we compute the IRFs is of length T2.

The results of the Monte Carlo analysis are shown in Figure 3. We report the averages

across simulations of the median and the 16th and 84th percentiles of the posterior distri-

butions of the IRFs. We find that the TVP-VAR does not systematically detect differences

in the IRFs across sub-periods. The Monte Carlo averages of the median estimated IRFs

and the 16-84 percent credible sets based on the two parameterizations are consistently very

close to each other for nearly all shocks and all variables. The immediate interpretation

of this finding is that the estimates produced by TVP-VARs are two-sided and therefore

automatically tend to smooth changes across regimes. If both sub-samples were sufficiently

long, TVP-VARs would likely detect differences in the IRFs across parameterizations.7 In

our case, the ZLB sample is quite short at 28 quarters, however. It is perhaps not surprising

that the TVP-VARs do not seem to detect differences in the IRFs because the estimates for

the second sub-sample end up being dominated by the first one.

Evidence for the fixed-coefficients VAR estimated by sub-sample is just slightly better.

In particular, the main difference compared to the TVP-VAR are the responses of the short

rate and output to ut and the responses of the short rate and inflation to vt. In all other

instances the difference between the estimated IRFs for the two parameterizations is small

or almost negligible.

7Lubik et al. (2016) show, however, via simulation for a parameter shift in a labor market search-and-
matching model that sample size would have to be considerably longer than the typical macroeconomic
post-World War II sample.
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Overall, the evidence in Figure 3 suggests that VARs as employed by Debortoli et al.

(2020) have a limited statistical ability to detect changes in IRFs at the ZLB compared to

the standard environment with positive interest rates, even when such changes are sizeable.

This issue is compounded by the short sample lengths that characterize ZLB episodes. We

find that this is especially the case for time-varying parameter VARs, whose estimates are

two-sided and therefore tend to smooth changes across regimes. This leads us to conclude

that within this specific context the evidence for structural changes in the dynamic behavior

at the ZLB is likely unreliable.

In principle, one avenue that can be pursued is to perform pooled estimation of all

countries jointly. Assuming that the responses of individual countries to the structural

shocks are sufficiently similar, this allows to effectively increase the sample size and therefore

improve the precision of the estimates. When pooling all of the six countries together, the

sum of their individual sample sizes is 290 quarters. Figure 4 shows evidence from the same

exercise performed in Figure 3 for fixed-coefficients VARs for T1 = T2 = 290. The evidence

seems straightforward: with such a large sample size, the fixed-coefficient specification can

in principle detect differences in the IRFs across periods. In particular, for either ut or vt

differences are notably detected for all variables, whereas for ϵR,t they are still detected, but

less clearly.

3.2 Evidence from Individual Country Estimates

For completeness, we report the estimates for individual countries, using different specifi-

cations of the VAR and different identification approaches. We discuss the main insights

from this exercise here, but the figures are relegated to the online appendix. The figures in

appendix A show evidence for individual countries from long-run and sign restrictions based

on Arias et al. (2018). The first half of the graphs depicts the estimated impulse-response

functions to individual shocks, while the remainder shows the prior and posterior IRFs to

individual shocks for the pre-ZLB and ZLB samples. The other figures in that section re-

port the same evidence based on the pure sign restrictions approach of Rubio-Ramirez et al.

(2010).

The main message emerging from the two groups of figures is that evidence of changes

in the IRFs at the ZLB is weak and inconclusive. There are two reasons for this. First, ZLB

samples are quite short. Second, a comparison between prior and posterior IRFs shows that

the latter are often quite close to the former, so that the problem highlighted by Baumeister

and Hamilton (2015) appears to be relevant. In order to address the first problem, in the

next section we perform joint estimation of the VAR for all countries within a panel VAR
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Figure 4: Monte Carlo simulation: Estimated IRFs based on fixed-coefficient VAR. Pooled
Sample
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framework. Although this solves the small-sample problem and produces sharper inference,

it does not eliminate the Baumeister-Hamilton problem, which is still quite widespread.

This will motivate our next step, i.e. implementing a multivariate permanent-transitory

decomposition of GDP shocks within the panel VAR framework.

4 Panel VAR Evidence

Any empirical study of the dynamic behavior of macroeconomic aggregates during the ZLB

period has to contend with the fact that across countries these episodes were of short dura-

tion, especially when compared with the generally short length of macroeconomic time series.

Debortoli et al. (2020) attempt to circumvent this aspect by estimating a TVP-VAR, which

is designed to capture structural changes in the underlying time series, while using the infor-

mation from the full sample and not just the ZLB sub-sample. Our results in the previous

section indicate, however, that this small-sample issue also affects their inference. Moreover,

our own sub-sample estimates with three different identification assumptions reveal weak

inference, so that any conclusions drawn are likely to be unreliable.

In this section, we address the small-sample issue by implementing joint estimation over

all countries in the sample. Since individual countries’ sample periods are quite short we

pooled the countries together and estimated a panel VAR. Naturally, the countries in our

sample are quite different, especially in terms of size, economic structure and international

openness. Nevertheless, we would expect that shocks at the ZLB would induce broadly sim-

ilar behavior for the key aggregates despite these differences. In order to sharpen inference,

we allow a limited degree of heterogeneity in the specification of the panel VAR.

Specifically, we estimate a fixed-coefficients VAR as before:

Yt = B0 +B1Yt−1 + ...+BpYt−p + ut, (8)

where the Yt vector now contains the individual country series stacked on top of each other.

The Bi matrices are adapted conformably, as is the vector ut of reduced-form errors. We allow

for the fact that different countries have different unconditional sample means of real GDP

growth and other variables so that the intercept vector B0 is different for each country. The

rest of the panel specification is identical for each country, namely the coefficient matrices

B1, B2, ..., Bp as is the covariance matrix of of shocks.

These are strong restrictions, which are arguably not exactly satisfied. The trade-off in-

volved is that a completely unrestricted panel specification likely results in no precision gain,

while our specification is potentially misspecified. However, our focus is on the information
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gain from joint estimation of the pooled countries. As our results below indicate is that the

qualitative picture that emerges from the restricted panel specification is quite similar to the

individual countries, while at the same time alleviating the small-sample issues.

Figure 5 shows the impulse responses based on long-run and sign restrictions for the

ZLB period and for the previous period. There are notable differences in several cases, for

instance, the impact of a transitory taste shock on the price level. However, in many cases

the differences are minor. At any rate, in order to properly assess these results we need to

take into account that samples for the pre-ZLB period are much longer than for the second

sub-sample. Moreover, the Baumeister-Hamilton critique that we identified as potentially

relevant for the question at hand is likely at play here, too. That is, we need to assess

whether the posterior IRFs are sufficiently different from the prior IRFs.

We first address the issue of different sample sizes. Figure 6 shows the posterior IRFs

for the ZLB period (in red) together with results from a Monte-Carlo simulation. We depict

the means of the percentiles of the IRFs computed under the null hypothesis that the data-

generating process for the ZLB period is the same as for the previous period. We implement

the Monte-Carlo procedure as follows.

Joint estimation over the pre-ZLB period produces a posterior distribution for the SVAR

in equation (8). where ut = A0et. We take N draws of the VAR coefficient matrices and

the SVAR’s impact matrix of the structural shocks A0. For each draw j = 1, 2, ..., N , we

simulated the SVAR (8) for a sample length equal to the overall sample in the ZLB period,

i.e., the sum of the individual countries’ sample lengths. Innovations are drawn from the

standard normal distribution for et. Based on each simulated sample we estimated and

identified the SVAR using the same long-run and sign restrictions as for the actual data.

This process produces a set of N percentiles for the IRFs. We compute the mean of the

percentiles of the IRFs across all of the N Monte Carlo simulations, which we show in Figure

6 (in black).

By construction, the difference between these IRFs and the corresponding black IRFs in

Figure 5 stems from the fact that those in Figure 6 are based on a shorter sample period,

equal to the actual overall length of the ZLB episode. The difference between the two sets

of black IRFs in Figures 5 and 6 is quite small, however. At the same time, they paint the

same picture qualitatively. We therefore conclude that the difference between the IRFs for

the two periods in Figure 5 does likely not originate from the fact that the ZLB periods are

shorter.

We address the concerns raised by Baumeister and Hamilton (2015) in Figure 7. It

depicts the same IRFs (in red) for the ZLB period, that is, the posterior IRFs obtained from

the actual data. In addition, the graph shows the prior IRFs (in black). These are computed
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Figure 5: Evidence from long-run and sign restrictions based on joint estimation: median
and 16th and 84th percentiles of the posterior distributions of the estimated impulse-response
functions to the structural shocks

by first drawing from the prior distribution of the reduced-form coefficients of the VAR in

equation (8) based on the estimator of Giannone et al. (2015). We then use the Arias et al.

(2018) methodology to impose the sign restrictions.8

The key insight from Figure 7 is that in several cases the Baumeister-Hamilton critique

8Arguably, this is the correct way of computing the prior IRFs as discussed by Inoue and Kilian (2022).
It differs from the procedure followed by Watson (2020), who applied the second step to the maximum
likelihood point estimate of the VAR, rather than to each of the draws from a prior distribution of the
VAR’s coefficients.
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Figure 6: Evidence from long-run and sign restrictions based on joint estimation for the
ZLB/sub-zero period: median and 16th and 84th percentiles of the posterior distributions
of the estimated impulse response functions to the structural shocks, and comparison with
the Monte Carlo distribution under the null of no change.

appears to be relevant, for instance, the effect of monetary and markup shocks on short rates

and shadow rates; or the impact of taste shocks on GDP and the price level. Only in a few

cases are prior and posterior IRFs clearly different. Contrary to the examples provided by

Inoue and Kilian (2022) this shows that the Baumeister-Hamilton criticism seems to bite in

this specific example.

This observation thus motivates an estimation strategy based on point identification to

avoid vulnerability to this aspect of Bayesian estimation. Specifically, we pursue a multi-
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Figure 7: Comparison between prior and posterior IRFs for the ZLB sub-zero period based
on joint estimation: median and 16th and 84th percentiles of the distributions of the impulse
response functions to the structural shocks.

variate permanent-transitory decomposition as in the individual country examples. The first

two columns of Figure 8 show the results, respectively, for the ZLB and pre-ZLB periods.

In the last two columns we depict the ZLB IRFs together together with the means from an

exercise analogous to that shown in Figure 6.9

A comparison between the results from the first two and the last two columns shows that

9We took 10,000 draws from the posterior distribution of the SVAR identified using the multivariate
permanent-transitory decomposition. The panel VAR is estimated on the pre-ZLB sample. We then simulate
the VAR for a length equal to the actual joint sample length for the ZLB period. This is then estimated
based on Giannone et al. (2015), and we compute the identified IRFs. For each draw this produces a set of
percentiles for the IRFs to the 2 shocks. The means of the percentiles across all of the N simulations are
shown in Figure 8 in black.
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Figure 8: Evidence from a multivariate permanent-transitory decomposition of GDP shocks
based on joint estimation: median and 16th and 84th percentiles of the posterior distributions
of the estimated impulse-response functions to GDP shocks.

small-sample issue do not play much of a role here. The posterior IRFs for the pre-ZLB

period are very close to the means of the Monte Carlo distributions computed under the

null hypothesis of no change in the DGP (i.e., the DGP for the ZLB is the same as for the

pre-ZLB period). As the figure shows, the evidence produced by this approach is markedly
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sharper, especially when compared to earlier results. It points towards material changes in

the IRFs at the ZLB. In particular, the responses of GDP and unemployment exhibit more

inertia than in the standard environment with positive interest rates. Second, the response

of prices is flatter. This is especially clear for transitory GDP shocks and slightly less so for

permanent shocks. Finally, the responses of interest rates are weaker. Overall, this suggests

that there are differences between the ZLB period and the previous period of interest rates

away from the lower bound.

5 Conclusion

The financial crisis of the late 2000s and the ensuing recovery during the 2010s is a remarkable

period in economic history that has raised a host of questions and issues, not the least of

which are the effects of extremely accommodative monetary policy during this time. Central

banks held their policy rates at or even below the zero lower bound for extended periods in

combination with massive asset purchases. The key question in this context is whether the

behavior of the economy is, in fact, different at the zero lower bound not just in terms of

the effectiveness of monetary policy but also in terms of the transmission of other shocks.

In this paper we address this issue from a purely empirical perspective. While economic

theory delivers a fairly unequivocal answer, namely that dynamics change because of the non-

linearity imposed on the economy at the ZLB, finding empirical support is more complicated.

The main issue is that the length or ZLB episodes is considerably shorter than the sample size

that is typical in macroeconomic data. Consequently, inference is fraught with considerable

uncertainty. A related issue is that the changes in the dynamics may be too small to be

reliably picked up statistical models.

We confirm this suspicion by means of a Monte Carlo analysis of VAR models with al-

ternative identification schemes. No approach can reliably detect differences between ZLB

periods and non-ZLB periods in terms of the response to structural shocks, least of all

TVP-VARs. Subsequently, we show that pooling information from several countries that

underwent ZLB episodes can sharpen the inference. When we estimate a panel VAR some

differences between episodes emerge, but not as sharply as perhaps hoped. We argue that

this can be partially alleviated by being mindful of the prior choice by addressing the con-

cerns raised in Baumeister and Hamilton (2015). We show that a specific identification

scheme based on a permanent-transitory decomposition is able to hone in on some differ-

ences, although they are not large.

The obvious resolution to small-sample issues is to get more data. We considered the case

of the US ZLB period where we had monthly data available for the key variables but neither
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qualitatively nor quantitatively we could identify differences with the quarterly case. It is

possible to go to higher-frequency data for financial variables and price variables, but there

is a limit to what can be effected with real quantity data. Nevertheless, a mixed-frequency

implementation of our study seems a fruitful direction to pursue.
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A Data Appendix

A.1 Euro area

All data are obtained from the European Central Bank, with the exception of a

monthly series for the Wu-Xia ‘shadow rate’, which is from Cynthia Wu’s website, at:

https://sites.google.com/site/jingcynthiawu/shadowrate ECB.xls. The shadow rate has

been converted to quarterly frequency by taking averages within the quarter. The sam-

ple periods used for estimation are 1988Q2-2009Q4 and 2010Q1-2019Q4.

A.2 Denmark

Quarterly seasonally adjusted series for nominal and real GDP are from Statistic Denmark.

A monthly series for the monetary policy rate is from Statistic Denmark. It has been

converted to quarterly frequency by taking averages within the quarter. In 2012Q3 the

monetary policy rate fell below zero. For the subsequent periods, we thus use Wu-Xia’s

shadow rate for the Euro area, as proxy for the shadow rate. The rationale for doing so is

that the monetary policy of Danmarks National Bank aims at keeping the exchange rate of

the Danish Krona relative to the Euro essentially fixed, within a ±0.15% tolerance band.

The implication is that the monetary policy stance of Danmarks National Bank should be

regarded as essentially the same as that of the European Central Bank. A monthly series for

the yield on long-term Danish government bonds is from Kim Abildgren’s database, available

at https://sites.google.com/view/kim-abildgren, and it has been converted to the quarterly

frequency by taking averages within the quarter. A monthly seasonally adjusted series for

the harmonized unemployment rate (‘Total: All Persons for Denmark, Percent, Quarterly,

Seasonally Adjusted’) is from the OECD Main Economic Indicators. The series has been

converted to the quarterly frequency by taking averages within the quarter. The sample

periods used for estimation are 1991Q2-2010Q2 and 2010Q3-2019Q4.

A.3 Japan

A quarterly seasonally adjusted series for real GDP is from the Department of National

Accounts of the Economic and Social Research Institute, Cabinet Office, Government of

Japan. A quarterly seasonally adjusted series for the GDP deflator (‘GDP Implicit Price

Deflator in Japan, Main Economic Indicators, JPNGDPDEFQISMEI, Index 2010=100’)

is from the OECD Main Economic Indicators. A quarterly seasonally adjusted series for

hours worked per capita is from the Ohanian and Raffo (2012) dataset. The series is
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available for the period 1960Q2-2017Q1, which dictates the end of the ZLB estimation

period. A quarterly seasonally unadjusted series for the monetary policy rate has been

constructed by linking the monthly Bank of Japan’s discount rate series, up until 1994Q4,

and since 1995Q1 the monthly ‘shadow rate’ series produced by Leo Krippner, available at

his website (https://www.ljkmfa.com/test-test/international-ssrs/). The resulting monthly

linked series has been converted to the quarterly frequency by taking averages within the

quarter. A monthly seasonally unadjusted series for the 10 year government bond yield

(‘Japan - YIELD, SECOND.MKT, INT.-BEARING GOVT.BONDS,10 YRS,(O.T.C.),M-

END BISM.M.HGCA.JP.01’) is from the Bank for International Settlements. The series

has been converted to the quarterly frequency by taking averages within the quarter. The

sample periods used for estimation are 1980Q3-1995Q3 and 1995Q4-2017Q1.

A.4 Switzerland

Quarterly seasonally adjusted series for real GDP (‘Gross domestic product, expenditure

approach, seasonally and calendar adjusted data, in Mio. Swiss Francs, at prices of the

preceding year, chained values, reference year 2010’) and the GDP deflator (‘Gross domes-

tic product, expenditure approach, seasonally and calendar adjusted data, implicit chain

price indexes’) are from SECO, the Swiss Statistical Agency. A quarterly series for the

monetary policy rate has been constructed by linking the monthly discount rate of the

Swiss National Bank for the period 1960Q1-1988Q1; the monthly 3 months LIBOR rate

from 1989Q2 until 1994Q4; and since 1995Q1 the monthly ‘shadow rate’ series produced

by Leo Krippner, available at his website (https://www.ljkmfa.com/test-test/international-

ssrs/). The resulting monthly linked series has been converted to the quarterly frequency

by taking averages within the quarter. A quarterly seasonally unadjusted series for a long

rate (‘IRLTLT01CHM156N: Long-Term Government Bond Yields: 10-year: Main (Including

Benchmark) for Switzerland, Percent, Monthly, Not Seasonally Adjusted’) is from the St.

Louis FED’s internet data portal, FRED II. A quarterly seasonally adjusted series for the

unemployment rate (‘Registered Unemployment Rate for Switzerland’) is from the OECD

Main Economic Indicators. A quarterly seasonally unadjusted population series (‘POP-

TOTCHA647NWDB: Population, Total for Switzerland, Persons, Not Seasonally Adjusted’)

is from the St. Louis FED’s internet data portal, FRED II. The sample periods used for

estimation are 1983Q2-2008Q4 and 2009Q1-2019Q4.
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A.5 United Kingdom

Monthly data A monthly seasonally unadjusted series for the core CPI (‘CPIH Index:

Excluding Energy, food, alcoholic beverages & tobacco 2015=100’, acronym is L5KB) is from

the Office for National Statistics (ONS), and it has been seasonally adjusted via ARIMA

X-12 as implemented in Eviews. A monthly series for the 20-year government bond yield is

from the ONS (the series’ code is AJLX). A monthly series for the monetary policy rate has

been constructed by linking the Bank of England ’s rate (i.e., the ‘Bank rate’) and Wu-Xia’s

‘shadow rate’ from Cynthia Wu’s website. Specifically, the resulting monetary policy rate

series is equal to the Bank rate up until the collapse of Lehman Brothers (September 2008),

and it is equal to Wu-Xia’s ‘shadow rate’ after that. A monthly seasonally adjusted series

for real GDP is from the National Institute for Economic and Social Research (NIESR),

and it has been kindly provided by Garry Young. A monthly seasonally adjusted series for

the unemployment rate has been constructed by linking the series ‘Monthly administrative

unemployment rates and levels 1881-2015’, from the spreadsheet of very long-run statistics

millenniumofdata v3 final.xls, which is available at the Bank of England’s website (until

December 2015), and the series ‘Unemployment rate (aged 16 and over, seasonally adjusted)’

(the series’ acronym is MGSX) since then. The sample periods used for estimation are

January 1983-March 2009 and April 2009-December 2019.

Quarterly data Quarterly seasonally adjusted series for real GDP (‘ABMI: Real GDP at

market prices, £ million at chained volume measures’) and the GDP deflator (‘L8GG: Implied

GDP deflator at market prices: SA Index’) are from the Office for National Statistics (ONS).

A monthly series for the 20-year government bond yield is from the ONS (series code AJLX).

The series has been converted to quarterly frequency by taking averages within the quarter.

A monthly series for the monetary policy rate has been constructed by linking the Bank

of England’s rate (i.e., the ‘Bank rate’) and the Wu-Xia ‘shadow rate’ from Cynthia Wu’s

website. Specifically, the resulting monetary policy rate series is equal to the Bank rate up

until the collapse of Lehman Brothers (September 2008), and it is equal to Wu and Xia’s

‘shadow rate’ after that. The resulting linked series has been converted to the quarterly

frequency by taking averages within the quarter. A quarterly seasonally adjusted series for

total hours worked has been constructed by linking the series from Ohanian and Raffo (2012)

and the series ‘HOUR03: Average actual weekly hours of work by industry sector2: People

all in employment seasonally adjusted’ from the ONS (the resulting linked series is equal to

the one from Ohanian and Raffo (2012) until 2016Q4, and to that from the ONS since then).

Over the period of overlapping the two series are identical, which justifies their linking. The
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sample periods used for estimation are 1983Q1-2009Q1 and 2009Q2-2019Q4.

A.6 United States

Monthly data A monthly seasonally adjusted series for the core PCE deflator (‘Per-

sonal Consumption Expenditures Excluding Food and Energy (Chain-Type Price Index)’)

is from the US Bureau of Economic Analysis. A seasonally adjusted monthly series for real

is from Stock and Watson (2012) until 2010, and from IHS Markit, after that (available

at: https://ihsmarkit.com/products/us-monthly-gdp-index.html) IHS Markit’s production

notes for its monthly real GDP series states:

‘Note: IHS Markit’s index of Monthly GDP (MGDP) is a monthly indicator

of real aggregate output that is conceptually consistent with real Gross Domestic

Product (GDP) in the NIPA’s. The consistency is derived from two sources.

First, MGDP is calculated using much of the same underlying monthly source

data that is used in the calculation of GDP. Second, the method of aggregation

to arrive at MGDP is similar to that for official GDP. Growth of MGDP at

the monthly frequency is determined primarily by movements in the underlying

monthly source data, and growth of MGDP at the quarterly frequency is nearly

identical to growth of real GDP.’

A monthly series for the monetary policy rate has been constructed by linking the federal

funds rate series from FRED II (series name FEDFUNDS) and the Wu-Xia ‘shadow rate’

from Cynthia Wu’s website. Specifically, the resulting monetary policy rate series is equal

to the federal funds rate up until the collapse of Lehman Brothers (September 2008), and it

is equal to Wu-Xia’s ‘shadow rate’ after that. A monthly seasonally adjusted series for the

unemployment rate is the ‘Civilian Unemployment Rate’ series from the Bureau of Labor

Statistics. The series is available from FRED II, and the series name is UNRATE. A monthly

seasonally unadjusted series for the 10-year Treasury constant maturity rate is from the

Board of Governors of the Federal Reserve System, and is available from FRED II (series

name is GS10). A monthly seasonaly unadjusted series for the civilian non-institutional

population is from the Bureau of Labor Statistics, and is available from FRED II (series

name is CNP16OV).

Quarterly data A monthly series for the monetary policy rate has been constructed by

linking the federal funds rate from St. Louis FED (‘FEDFUNDS: Effective Federal Funds

Rate, Monthly, Not Seasonally Adjusted, Percent’) and Wu-Xia’s ‘shadow rate’ from Cynthia
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Wu’s website. Specifically, the resulting monetary policy rate series is equal to the federal

funds rate up until the collapse of Lehman Brothers (September 2008), and it is equal to Wu-

Xia’s ‘shadow rate’ after that. The resulting linked series has been converted to the quarterly

frequency by taking averages within the quarter. A monthly seasonally unadjusted series

for the 10-year government bond yield (‘GS10: 10-Year Treasury Constant Maturity Rate,

Percent, Monthly, Not Seasonally Adjusted’) is from St. Louis FED. It has been converted

to the quarterly frequency by taking averages within the quarter. A quarterly seasonally

adjusted series for real GDP (‘GDPC1: Real Gross Domestic Product, Billions of Chained

2012 Dollars, Quarterly, Seasonally Adjusted Annual Rate’) are from the Bureau of Economic

Analysis. A quarterly seasonally adjusted series for the GDP deflator (‘GDPCTPI: Gross

Domestic Product: Chain-type Price Index’) are from the Bureau of Economic Analysis. A

quarterly seasonally adjusted series for working age population (i.e., aged 15-64) has been

constructed by linking the series from Ohanian and Raffo (2012) and the series ‘Working

Age Population, Aged 15-64, Noninstitutional, non-armed forces Population for the United

States, Persons, Quarterly, Seasonally Adjusted’ from the OECD’s Main Economic Indicators

database (the resulting linked series is equal to the one from Ohanian and Raffo (2012)

until 1999Q4, and to that from the OECD since then). Over the period of overlapping the

two series are identical, which justifies their linking. A quarterly seasonally adjusted series

for hours of all persons in the non-farm business sector is from the U.S. Bureau of Labor

Statistics. The sample periods used for estimation are 1983Q1-2008Q3 and 2008Q4-2015Q4.

B Computing the VAR’s Structural Impact Matrix of

the Shocks

B.1 Long-run and sign restrictions

When identifying the VARs by combining zero and sign restrictions we compute the VAR’s

structural impact matrix of the shocks using the methodology proposed by Arias et al. (2018).

The approach is exactly the same as in Benati (2015), with the only difference that we are

here imposing a different set of long-run and sign restrictions on a different set of variables.

Let Bj
0, B

j
1, ..., Bj

p, and Ωj be the j-th draw from the posterior distribution for the

intercept, the VAR matrices, and the covariance matrix of reduced-form innovations of the

VAR, for j = 1, 2, 3, ..., J . Let PjDjP
′
j be the eigenvalue-eigenvector decomposition of

Ωj. We start by computing an initial estimate of Aj0, denoted Ã
j
0, as Ã

j
0 = PjD

1
2
j with the

corresponding matrix of long-run impacts of the structural shocks L̃j = [IN − Bj(1)]−1Ãj0,
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where N is the number of series in the VAR, and Bj(1) = Bj
1 + Bj

2 + ... + Bj
p. Based

on the Gibbs-sampling algorithm described in Arias et al. (2018), we then draw Z random

orthonormal matrices of dimension N ×N from the uniform distribution, conditional on the

zero restrictions on the long-run impacts on real GDP of the four transitory shocks. Let Qj
z,

z = 1, 2, 3, ..., Z, be the z-th random orthonormal matrix, with Qj
z(Q

j
z)

′ = IN . we then

combine each of the Z random orthonormal matrices with the initial estimate of the long-run

impact of the structural shocks, L̃j, in order to obtain a randomly rotated long-run impact

matrix, Lzj = L̃jQ
j
z. By construction, each Lzj , z = 1, 2, 3, ..., Z, satisfies the zero long-run

restrictions pertaining to the four transitory shocks. By applying the Qj
z, z = 1, 2, 3, ...,

Z, to the initial estimate of the VAR’s structural impact matrix of the shocks, Ãj0, we then

obtain the corresponding candidate estimates of the structural impact matrix, Az0,j = Ãj0Q
j
z.

Finally, we check whether Az0,j satisfies the sign restrictions reported in Table 1 in the main

text of the paper, and out of the Z candidate structural impact matrices we only keep, for

draw j, those satisfying the sign restrictions. For each draw from the posterior we consider

100 random rotation matrices. Finally, we set the number of Gibbs-sampling iterations in

the algorithm to L = 10.

B.2 Pure sign restrictions

When identifying the VARs based on a pure sign restrictions approach we compute the

structural impact matrix of the shocks via the methodology proposed by Rubio-Ramirez

et al. (2010).

Let Bj
0, B

j
1, ..., Bj

p, and Ωj be the j-th draw from the posterior distribution for the

intercept, the VAR matrices, and the covariance matrix of reduced-form innovations of the

VAR, for j = 1, 2, 3, ..., J . Let PjDjP
′
j be the eigenvalue-eigenvector decomposition of Ωj.

We start by computing an initial estimate of Aj0—let’s call it Ãj0—as Ãj0 = PjD
1
2
j . Given

Ãj0, we then draw z = 1, 2, ..., Z (N × N) matrices Mz from a Normal(0, 1) distribution,

where N is the number of series in the VAR, and we take the the QR decomposition of Mz,

i.e. thus obtaining matrices Qz and Rz such that Mz = QzRz, with Qz being an orthogonal

matrix and Rz being upper triangular. Finally, we compute the the candidate structural

impact matrix as Az0,j = Ãj0Q
′
z. Finally, we check whether Az0,j satisfies the sign restrictions

reported in Table 1 in the main text of the paper, and out of the Z candidate structural

impact matrices we only keep, for draw j, those satisfying the sign restrictions. For each

draw from the posterior we consider 100 random rotation matrices.
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C The New Keynesian Model Used as a Data Gener-

ating Process

The DSGE model we use as data generation process (DGP) in the Monte Carlo exercise of

Section 3 is the standard New Keynesian model with both forward- and backward-looking

components in either the IS or the Phillips curve estimated, for instance, in Benati (2008),

with the only difference that log real GDP, yt = ln(Yt), is here assumed to feature a unit

root component that evolves as a random-walk with drift as in Watson (1986),

yPt = yPt−1 + δ + vt, vt ∼ WN(0, σ2
v). (C.1)

The rest of the model is standard, and once log-linearized takes the form

πt =
β

1 + αβ
πt+1|t +

α

1 + αβ
πt−1 + κŷt + ut, ut ∼ WN(0, σ2

u) (C.2)

ŷt = γŷt+1|t + (1− γ)ŷt−1 − σ−1(Rt − πt+1|t)− (1− γ)∆yPt (C.3)

Rt = ρRt−1 + (1− ρ)[ϕππt + ϕyŷt] + ϵR,t, ϵR,t ∼ WN(0, σ2
R) (C.4)

where πt and Rt are inflation and the nominal interest rate. Real GDP, Yt, is stationarized

by rescaling it by its unit root component Y P
t , so that ŷt ≡ ln(Yt/Y

P
t ) is the log-deviation

of GDP from its stochastic trend. The rest of the notation is standard: α ∈ [0, 1] is price

setters’ extent of indexation to past inflation; γ ∈ [0, 1] is the forward-looking component in

the intertemporal IS curve; κ and σ are the slope of the Phillips curve and the elasticity of

intertemporal substitution in consumption, respectively; and ρ, ϕπ, and ϕy are the smooth-

ing parameter and the coefficients on inflation and the output gap in the monetary rule,

respectively.

We estimate the model based on U.S. data for the Federal Funds rate, GDP deflator

inflation and log real GDP for the period 1954Q3-2008Q4. Specifically, we calibrate δ =

0.0074, which is the average value taken by the log-difference of real GDP over the sample

period, and we estimate all of the other parameters via standard Bayesian methods exactly

as in Benati (2008). Table D.1 reports, for each parameter, the chosen prior density, its

mode, and its standard deviation, together with the median and 16th and 84th percentiles

of the posterior distribution, which we generate via Random-Walk Metropolis.
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Table D.1 Prior distributions for the structural parameters, and

median and 16th and 84th percentiles of the posterior distribution

Prior Posterior

Standard Median and 16th

Parameter Domain Density Mode deviation and 84th percentiles

σ2
R R+ Inverse Gamma 5×10−3 5×10−3 6.0×10−4 [5.0 7.0]×10−4

σ2
u R+ Inverse Gamma 10−2 10−2 1.3×10−3 [1.1 1.5]×10−3

σ2
v R+ Inverse Gamma 10−2 10−2 3.0×10−3 [2.4 3.4]×10−3

κ R+ Gamma 0.1 0.1 0.089 [0.060 0.131]

σ R+ Gamma 1 2 11.736 [9.281 15.066]

α [0, 1] Beta 0.9 0.05 0.852 [0.772 0.913]

γ [0, 1] Beta 0.5 0.25 0.486 [0.474 0.498]

ρ [0, 1) Beta 0.75 0.1 0.695 [0.633 0.747]

ϕπ R+ Gamma 1.5 0.25 2.386 [2.085 2.706]

ϕy R+ Gamma 0.5 0.15 0.255 [0.190 0.335]

We numerically maximise the log posterior, defined as lnL(θ|Y ) + lnP (θ), where θ is the

vector collecting the model’s structural parameters, lnL(θ|Y ) is the likelihood of θ conditional

on the data, and P (θ) is the prior through simulated annealing. Following Goffe et al. (1994)

we implement simulated annealing via the algorithm proposed by Corana et al. (1987),

setting the key parameters to T0=100,000, rT=0.9, Nt=5, Ns=20, ϵ=10−6, Nϵ=4, where

T0 is the initial temperature, rT is the temperature reduction factor, Nt is the number of

times the algorithm goes through the Ns loops before the temperature starts being reduced,

Ns is the number of times the algorithm goes through the function before adjusting the

stepsize, ϵ is the convergence (tolerance) criterion, and Nϵ is number of times convergence is

achieved before the algorithm stops. Finally, initial conditions were chosen stochastically by

the algorithm itself, while the maximum number of functions evaluations, set to 1,000,000,

was never achieved.

In implementing the Random-Walk Metropolis (RWM) algorithm we exactly follow An

and Schorfheide (2007), with the exception of the method we use to calibrate the covariance

matrix’s scale factor (the parameter c below), for which we follow the methodology we

describe in the next paragraph. Let θ̂ and Σ̂ be the mode of the maximized log posterior

and its estimated Hessian, respectively (we compute Σ̂ numerically as in An and Schorfheide

(2007). We start the Markov chain of the RWM algorithm by drawing θ(0) from N(θ̂, c2Σ̂).

For s = 1, 2, ..., N we then draw θ̃ from the proposal distribution N(θ(s−1), c2Σ̂), accepting

the jump (i.e., θ(s) = θ̃) with probability min[1, r(θ(s−1), θ|Y )], and rejecting it (i.e., θ(s) =
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θ(s−1)) otherwise, where

r(θ(s−1), θ|Y ) =
L(θ|Y ) P (θ)

L(θ(s−1)|Y ) P (θ(s−1))

A key problem in implementing Metropolis algorithms is how to calibrate the covariance

matrix’s scale factor in order to achieve an acceptance rate of the draws close to the ideal

one (in high dimensions) of 0.23. Typically the problem is tackled by starting with some

‘reasonable’ value for c, and adjusting it after a certain number of iterations during the

initial burn-in period. Specifically, given that the draws’ acceptance rate is decreasing in c, c

gets increased (decreased) if the initial acceptance rate was too high (low). A problem with

this approach is that it does not guarantee that after the adjustment the acceptance rate

will be reasonably close to the ideal one. The approach for calibrating c used in this paper,

on the other hand, is based on the idea of estimating a reasonably good approximation to

the inverse relationship between c and the acceptance rate by running a pre-burn-in sample.

Specifically, let C be a grid of possible values for c. In what follows, we consider a grid over

the interval [0.1, 1] with increments equal to 0.05. For each single value of c in the grid, call

it cj, we run n draws of the RWM algorithm, storing, for each cj, the corresponding fraction

of accepted draws, fj. we then fit a third-order polynomial to the fj’s via least squares, and

letting â0, â1, â2, and â3 be the estimated coefficients, we choose c by solving numerically

the equation â0+â1c+â2c
2+â3c

3=0.23. The fraction of accepted draws from RWM, equal to

0.2288, testifies to the good performance of this procedure.
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