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Abstract

I use Bayesian VARs to forecast global temperatures anomalies until the end

of the XXI century by exploiting their cointegration with the Joint Radiative

Forcing (JRF) of the drivers of climate change. Under a ‘no change’ scenario,

the most favorable median forecast predicts the land temperature anomaly to

reach 5.6 Celsius degrees in 2100. Forecasts conditional on alternative paths for

the JRF show that, given the extent of uncertainty, bringing climate change

under control will require to bring the JRF back to the level reached in the early

years of the XXI century. From a methodological point of view, my evidence

suggests that previous cointegration-based studies of climate change suffer from

model mis-specification.
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1 Introduction

For more than a decade global temperatures have been consistently breaking records

nearly every year. Against this background, the scorching summer of 2022, associ-

ated with heatwaves and droughts of an unprecedented spread and intensity especially

across Europe and North America, highligthed in the starkest possible way the sever-

ity of the threat posed by climate change. How will global temperatures evolve going

forward? And what are the reductions in greenhouse gases’ emissions that will be

required in order to bring climate change under control?

In this paper I use Bayesian VARs in order to forecast global temperature anom-

alies for both the land and the ocean, and different latitudes, until the end of the XXI

century, by exploiting their cointegration with the Joint Radiative Forcing (JRF) of

the drivers of climate change. I obtain three main sets of results:

first, evidence suggests that previous cointegration-based studies of climate change

suffer from model mis-specification. There are two issue involved. First, Stock and

Watson’s (1996, 1998) tests applied to the first differences of climate change series

uniformly and strongly suggest that they contain a non-negligible random-walk com-

ponent, so that their levels are in fact I(2). The vast majority of previous studies,

however, have not considered this possibility, and they have rather assumed that the

series are only integrated of order one. Second, Monte Carlo evidence shows that

fixed-coefficients I(2) cointegrated VECM models, which have been used in a small

number of previous studies, are also at odds with the data, whose first differences

exhibit random-walk time-variation in the mean. I model this feature of the data via

a multivariate random-walk specification for the means of the first differences of the

series, subject to the restrictions imposed by cointegration between their levels, a

feature that is in fact compatible with the data.

Second, under a ‘no change’ scenario, the most favorable median forecast predicts

the land temperature anomaly to reach 5.6 Celsius degrees in 2100, with the 90%-

coverage credible set stretching from 3.6 to 8.7 degrees. In order to put these numbers

into context it is worth recalling that the average increase in temperatures associated

with the Paleocene-Eocene Thermal Maximum (PETM), about 55.5 million years

ago, is estimated to have been between 5 and 8 Celsius degrees. During that period

Antarctica was covered with tropical forests, and Arctic waters pullulated with alli-

gators. Further, and crucially, the period of sustained carbon increase that led to the

PETM is estimated to have lasted between 20 thousand and 50 thousand years. If the

land temperature anomaly were to reach 5.6 Celsius degrees (or possibly even higher

values) within less than eight decades, the extent to which society could adapt, or

whether it could adapt at all, is entirely open to question. Forecasts for alternative

latitudes highlight a dramatic extent of variation, with median projected increases for

the year 2100 ranging from 2.8 Celsius degrees for the Equator, to 4 and 5.8 degrees

for the 30 and 60 degrees North latitudes.

Third, forecasts conditional on alternative paths for the JRF show that, given the
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extent of uncertainty, bringing climate change under control will require to bring the

JRF back to the levels reached in the early years of the XXI century.

In the climate science literature, long-horizon forecasts for global temperatures

are routinely produced via (ensembles of) large-scale models that describe in great

detail, and with a significant extent of granularity, a large array of features of the

dynamics of Earth’s climate. Within the present work, on the other hand, I produce

global temperatures forecasts based on comparatively small cointegrated VECMs,

featuring at most four series. The contrast between the two approaches bears some

similarities with the corresponding contrast, within Economics, between structural

VAR (SVAR) methods and DSGE models. Broadly conceptually in line with large-

scale climate science models, DSGE models aim to provide a detailed description of

all of the interactions taking place in the economy. In line with the approach adopted

in the present work, on the other hand, SVAR methods start with a plausible time-

series representation of the data, and impose upon this structure a minimal set of

restrictions that allows to make meaningful inference.

Although, to the very best of my knowledge, all previous cointegration-based stud-

ies of climate change have been based on Classical methods, there are several reasons

behind my adoption of a Bayesian approach. In particular, this approach allows a

researcher to reject models (i.e. draws from the posterior distribution) exhibiting im-

plausible features. For example, it is well known that on average ocean temperatures

have reacted to the increase in the JRF much more slowly than land temperatures.

This feature can be easily imposed in estimation by (e.g.) rejecting all models for

which the impulse-response function (IRF) of the ocean temperature anomaly to a

permanent shock to the JRF index converges to the new steady-state faster than the

corresponding IRF of the land anomaly. A Bayesian approach therefore allows to

narrow down the set of plausible models, thus producing comparatively more precise

inference and forecasts. Further, Bayesian methods provide a natural way of incor-

porating information from previous studies. This could pertain (e.g.) to the long-run

equilibrium relationship between the JRF index and global temperatures (i.e. what

in the climate science literature is referred to as ‘climate sensitivity’). In the present

work I do not exploit this possibility since, as previously pointed out, my evidence

suggests that previous cointegration-based studies of climate change suffer from mis-

specification. In principle, however, this is an important advantage of a Bayesian

approach.

The paper is organized as follows. The next section discusses the data sources; how

I address the issue of linking data based on continuous, direct observations (which

are available for the most recent past) with data that have been spline-interpolated

based on discontinuous observations (which are the only data that are available for

the more distant past); and the construction of the index of Joint Radiative Forcing.

Section 3 presents statistical evidence on the stochastic properties of the series under

investigation: the Joint Radiative Forcing index, and the temperature anomalies. I

present evidence from unit root tests; Stock andWatson’s (1996, 1998) tests of the null
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hypothesis of time-invariance against the alternative of random-walk time-variation

applied to the first differences of the series; and Wright’s (2000) tests of the null

hypothesis of cointegration between the JRF index and the temperarture anomalies.

Section 4 discusses my econometric approach, paying particular attention to the issue

of modelling the common I(2) component shared by the series. Section 5 discusses

the evidence: impulse-response functions to a permanent shock to the level of the JRF

index; forecasts up to the end of the XXI century conditional on data up to 2022,

but without imposing any other restriction; and forecasts over the same time span

conditional on alternative possible paths for the future evolution of the JRF index.

Section 6 concludes, and outlines possible directions for future research.

2 The Data

2.1 Data sources

Annual data for the global land and ocean temperature anomalies since 1850 (January-

December averages, in Celsius degrees) are from the website of the National Oceanic

and Atmospheric Administration (NOAA) at: https://www.ncei.noaa.gov/. They

are expressed as deviations from the 1901-2000 average. Since the standard reference

period used first and foremost by the Intergovernmental Panel on Climat Change

(IPCC) is 1850-1900, I adjust the NOAA series by rescaling them accordingly.

By the same token, annual data since 1850 for the global temperature anomalies

at three different latitudes (0, and either 30 or 60 degrees North) are from the website

of NOAA. Any of the three series has been computed as the average of the global

temperature anomalies at that latitude for a grid of 38 possible longitudes, from -180

to +180 degrees.1 Since all of the series for the temperature anomalies pertaining

to alternative combinations of latitude and longitude are expressed as deviations

from the 1991-2020 average, I rescale them in such a way that, once again, they are

expressed as deviations from the standard reference period 1850-1900.

Data sources for CO2, CH4, and N2O are as follows. As for CO2, data before

1958 have been spline-interpolated based on the data retrieved from the Scripps

CO2 Program (at http://scrippsco2.ucsd.edu ). Since 1958, they are based on direct

measurements from the Mauna Loa observatory. As for CH4, until 1997 data are from

Robertson at el. (2001). Since then they are from NOAA. As for N2O, until 2017

data are from https://www.n2olevels.org/. Since then they are from NOAA. The

levels of CO2, CH4, and N2O have been converted into radiative forcing (expressed

in Watts per square meter) based on the formulas found in Table 1 of Butler and

Montzka (2018).

1So, to be clear, e.g., the global temperature anomaly for the 30 degrees North latitude has been

computed as the average of the temperature anomalies for 30 degrees North and -180 degrees; 30

degrees North and -170 degrees; ...; 30 degrees North and +170 degrees; and 30 degrees North and

+180 degrees.
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Data on the radiative forcing of chlorofluorocarbons (CFC11 and CFC12) are from

Stern and Kaufmann (2014), and they have been updated based on data from NOAA

and the formulas for radiative forcing found in Stern and Kaufmann (2000, p. 435).

A series for the radiative forcing of anthropogenic sulfur emissions (SOx) is from

Stern and Kaufmann (2014), and it has been updated based on data from the OECD

and the formulas for radiative forcing found in Stern and Kaufmann (2000, p. 435).

The radiative forcing of El Niño and La Niña (El Niño-Southern Oscillation, hence-

forth ENSO) is from Dergiades, Kaufmann, and Panagiotidis (2016) until 2011, and

it has been updated based on data from NOAA.

Data on solar irradiance are from Coddington et al. (2015) and Kopp et al. (2016)

until 2014. Since then they are from the SORCE Total Irradiance Monitor (TIM).2

I convert the resulting index of solar irradiance into radiative forcing based on the

formula found on p. 435 of Stern and Kaufmann (2000), which in turn is based on the

IPCC (see Shine et al. 1991). Since solar irradiance features an 11-years cycle which

is irrelevant for the present purposes, I remove it via the band-pass filter proposed

by Christiano and Fitzgerald (2003).3

2.2 Linking data based on continuous observations with in-

terpolated data based on discontinuous observations

For three climate change drivers–CO2, NH4, and N2O–I link spline-interpolated

data based on discontinuous observations with data based on continuous direct ob-

servations. One obvious concern with doing this is that the two types of data that are

being linked are not exactly comparable, and performing econometrics based on the

resulting linked series may therefore produce unreliable results. As it is routinely done

in the climate science literature, for either CO2, NH4, or N2O I therefore address this

issue as follows.

To fix ideas, let us focus on CO2 (the logic for NH4 and N2O is the same). The

spline-interpolated series based on data from the Scripps CO2 program is available

until 2018, whereas the series based on direct measurements from the Mauna Loa

observatory is available since 1958. Over the common sample period, 1958-2018, I

estimate an AR(1) process for the difference between the two series. Then, based

on standard resampling methods, I bootstrap (i.e., stochastically simulate) the esti-

mated AR(1) process for a sample equal to the length of the sample for the spline-

interpolated data (i.e. 1880-2018) and I add it to the spline-interpolated series. In

this way I obtain for the 1880-2018 period a series that mimics the stochastic proper-

ties of the series based on direct measurement from Mauna Loa for the period since

1958. (This is what in the climate science literature is labelled as ‘adding red noise ’

2Details of the TIM design and calibrations are given in Kopp and Lawrence (2005) and Kopp

et al. (2005).
3Specifically, since I am working at the annual frequency, I remove the frequency band associated

with fluctuations between 10 and 12 years.
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to an interpolated series.) Finally, I construct the linked series for the overall period

1880-2022 by linking the thus constructed, partially simulated series (until 1957) and

the Mauna Loa series (since 1958). For NH4 and N2O I proceed in the same way.

2.3 Construction of the index of Joint Radiative Forcing

Once each driver of climate change has been converted into radiative forcing, I con-

struct the aggregate index of Joint Radiative Forcing (JRF) by simply summing up

the individual components, with the single exception of El Niño and La Niña (ENSO),

which I ignore for the reasons I discuss in Appendix A.1.4 As shown by Kaufmann,

Kauppi, and Stock (2006, see Table II and the discussion on page 261), it is indeed

not possible to reject the null hypothesis that ‘the temperature effect of a unit of

radiative forcing (e.g. W/m2) is equal across forcings’.

2.4 A look at the raw data

Figure 1 shows the radiative forcing of individual climate change drivers; the JRF

index, either including or excluding the radiative forcing of anthropogenic sulfur emis-

sions (SOx); and the global land and ocean temperature anomalies.

As I discuss in Section 2.4, the series for CO2, NH4, and N2O are in part stochas-

tically simulated over the first portions of the respective sample periods, by adding to

spline-interpolated data bootstrapped (i.e. stochastically simulated) red noise based

on estimated AR(1)’s. With the exception of solar irradiance and the CFCs, all of

the series shown in the first two panels of Figure 1 pertain therefore to a single sto-

chastic simulation. It is to be stressed, however, that because of the comparatively

small magnitude of the estimated red noise compared to the level of the series, the

difference between individual stochastic simulations is very small (then, for either

CO2, NH4, or N2O the second part of the sample, being based on direct measure-

ments, is by definition the same). This means that, in practice, what is shown in

Figure 1 is representative of the entire universe of simulations. Figure A.2 in the Ap-

pendix provides simple evidence on this. The figure shows, for CO2, NH4, and N2O,

the maximum and the minimum among the sorted partially simulated paths out of

100,000 simulations, together with the difference between them. Evidence is very

clear: over the first portions of the sample (until 1960, 1980, and 1980, respectively),

the simulated paths had been very close. This had especially been the case for CH4,

and just slighty less so for CO2 and N2O.

Two main findings are clearly apparent from the figure. First, since 1850 CO2,

CH4 and SOx have been by far the dominant drivers of climate change. Second,

4In brief, (1) ENSO features virtually no spectral power at frequencies beyond 25 years, and

(ii) it is extraordinarily noisy compared to the other drivers of climate change. The implication is

that including in the JRF index the radiative forcing of ENSO would uniquely add a large amount

of comparatively high-frequency noise, whereas it would bring essentially no information about the

long-horizon developements that are the focus of the present work.
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Figure 1  The raw data 



until about the early 1990s SOx had been playing an important moderating role in

the overall increase in the JRF index. Since then, however, its previous moderating

contribution has gone into reverse, as efforts to remove anthropogenic sulfur emissions

from the atmosphere have started to bear fruits. As a result, over the last three

decades the evolution of the SOx radiative forcing has contributed to the overall

increase in the JRF index.

The second panel of Figure 1 illustrates this point in an especially stark way.

Normalizing the JRF index to zero in 1850, excluding the impact of SOx the JRF

index would have increased much faster than it has historically been the case. To

the extent that efforts to remove anthropogenic sulfur emissions from the atmosphere

will continue and will be successful, the radiative forcing of SOx shown in the first

panel will converge to zero, and the overall JRF index will therefore be more and

more dominated by the remaining drivers.

Finally, the third panel illustrates the well-known lag that the ocean temperature

anomaly has consistently exhibited over the last five decades compared to its land

counterpart. Whereas the two anomalies had been fluctuating pretty much in synch

between the early XX century and the 1970s, since then a sizeable divergence has

developed, with the ocean anomaly consistently lagging behind its land counterpart.

2.5 Integrating out simulated red noise via Monte Carlo in-

tegration

As discussed, over the first part of the sample period the linked series for CO2, NH4,

and N2O are random, as they depend on the specific realizations of the bootstrapped

red noise processes. I therefore address this issue as follows.

For  = 1, 2, 3, ...,, with = 1,000, I generate partially simulated5 series for the

concentration of CO2, NH4, and N2O in the atmosphere, I convert them into radiative

forcing, and I sum them to the radiative forcings of the remaining drivers of climate

change, thus obtaining a partially simulated series for the JRF index. Based on this

and on the series for the temperature anomalies (which are based on continuous direct

observations over the entire sample period) I then estimate the cointegrated VECM

models I describe in Section 4, and I compute the median, and the 16-84 and 5-95

percentiles for all of the objects if interest (impulse-response functions to a permanent

shock to the level of JRF; unconditional and conditional forecasts; etc.). Finally, I

integrate out the uncertainty deriving from the fact that for CO2, NH4, and N2O

the first part of the sample has been partially simulated by computing the average

(corresponding to the expected value) of the objects of interest across all of the 

simulations. This Monte Carlo integration procedure allows to perform the empirical

analysis by effectively controlling for the fact that three of the radiative forcing series

have been partially stochastically simulated.

5Based on the previous discussion, ‘partially simulated’ refers to the first part of the sample, for

which we only have spline-interpolated data.
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3 Preliminary Statistical Analysis

My econometric approach, which is based on Bayesian cointegrated VARs, is predi-

cated on the following two assumptions:

(I) both the JRF index and all of the temperature anomalies series are integrated

processes. In particular, they are all I(2).

(II) The JRF index is cointegrated with any of the temperature anomaly series.

In particular, cointegration pertains to the levels of the series, so that (e.g.) for the

land anomaly in a long-run equilibrium  Land =  +  , where the notation is

obvious.

As I discuss in the next four sub-sections, these assumptions are either validated

by, or at the very least clearly compatible with, evidence from unit root tests; Stock

and Watson’s (1996, 1998) tests for the null of time-invariance against the alternative

of random-walk time-variation in the mean of the first differences of the series; and

Wright’s (2000) tests of the null of cointegration.

3.1 Unit root tests

Tables 1-1 show bootstrapped -values for Elliot, Rothenberg, and Stock’s (1996)

unit root tests for both the levels and the first differences of the JRF index, and of

the land and ocean temperature anomalies, whereas Table A.1 in the Appendix shows

the corresponding evidence for the temperature anomalies for the three mentioned

latitudes. For the temperature anomalies series, for which we have data based on

continuous observations for the entire sample since 1850, I perform the unit root

tests in the standard way, bootstrapping them as in Diebold and Chen (1996) based

on the first difference of the series that is being tested (i.e., either the level or the first

difference of either of the two anomalies). I consider five possible lag orders, from 1

to 5.

For the JRF index, on the other hand, I generate 10,000 partially simulated se-

ries as previously described (i.e., by adding bootstrapped red noise to the spline-

interpolated data for the first part of the sample), and based on each of them I

perform the same unit root tests I perform for the temperature anomalies. Table 1

reports the means and the medians of the Monte Carlo distributions of the boot-

strapped -values across the 10,000 simulations, together with the fraction of Monte

Carlo replications for which the -values are smaller than 10%.

For any of the six series the null of a unit root cannot be rejected in levels, either

including or not including a time trend, and based on any of the five lag orders.

The only partial exception is the temperature anomaly for the 0 degrees latitude, for

which lack of rejection is very strong when a time trend is not included, whereas it

is weak when it is included. The obvious explanation is that, as it is well known, the

impact of climate change in terms of increases in temperatures is greater the higher

the latitude, and it is therefore maximum at the Poles and minimum at the Equator.
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In differences evidence is mixed: for all of the temperature anomalies a unit root is

strongly rejected, whereas for the JRF index it is rejected at the 10 per cent level

only for lag orders smaller than or equal to 3.

Table 1a Bootstrapped p-values for Elliot, Rothenberg, and Stock’s

(1996) unit root tests for the land and ocean temperature anomalies

=1 =2 =3 =4 =5

Land

In levels, without time trend 0.6824 0.9052 0.9750 0.9904 0.9940

In levels, with time trend 0.1526 0.3048 0.7162 0.7180 0.7308

In first differences, without time trend 0.0000 0.0000 0.0000 0.0000 0.0000

Ocean

In levels, without time trend 0.4682 0.7256 0.9120 0.9296 0.9588

In levels, with time trend 0.1278 0.4878 0.5440 0.5558 0.6766

In first differences, without time trend 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1b Bootstrapped p-values for Elliot, Rothenberg, and Stock’s

(1996) unit root tests for the JRF index

=1 =2 =3 =4 =5

Mean of Monte Carlo

distribution of -values

In levels, without a time trend 1.0000 1.0000 1.0000 1.0000 1.0000

In levels, with a time trend 0.9995 0.9994 0.9992 0.9997 0.9999

In first differences, without time trend 0.0001 0.0032 0.0379 0.1313 0.3018

Median of Monte Carlo

distribution of -values

In levels, without a time trend 1.0000 1.0000 1.0000 1.0000 1.0000

In levels, with a time trend 0.9995 0.9995 0.9995 1.0000 1.0000

In first differences, without time trend 0.0000 0.0030 0.0375 0.1305 0.3010

Fraction of Monte Carlo distribution

of -values smaller than 10 per cent

In levels, without a time trend 0.0000 0.0000 0.0000 0.0000 0.0000

In levels, with a time trend 0.0000 0.0000 0.0000 0.0000 0.0000

In first differences, without time trend 1.0000 1.0000 1.0000 0.0425 0.0000
 Based on10,000 Monte Carlo simulations of joint radiative forcing.

Based on the evidence in Tables 1-1 and A.1 a reasonable characterization of the

data, which has in fact been adopted by the vast majority of the cointegration-based

studies on climate change, is that all of the series are I(1). As the evidence in the

next sub-section shows, this conclusion would however most likely be incorrect, since

Stock and Watson’s (1996, 1998) tests applied to the first differences of the series

clearly suggest that they all contain a random-walk component.
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Figure 2  Fifty-years rolling averages of the first differences of the series 

 
 



3.2 Searching for random-walk time-variation in the first dif-

ferences of the series

Figure 2 shows rolling averages of the first differences of the JRF index and of the

land and ocean temperature anomalies for 50-years samples. The evidence is unmis-

takeable: the average level of all of the three series has exhibited a broad upward trend

over the sample period. For both the JRF index and the land temperature anomaly

this is especially apparent since the end of the 1970s, when the contribution of SOx

to the JRF index turned from negative to positive. As for the ocean anomaly the

range of variation is significantly smaller than for the land anomaly, but the overall

pattern of increase is more regular, as we would expect from the fact that the ocean

anomaly behaves essentially as a low-frequency component of the land anomaly. Ev-

idence for the temperature anomaly series pertaining to the three different latitudes

is qualitatively the same, and it is available upkn request.

This evidence questions the notion that the first differences of the series are in fact

I(0), and therefore that the series themselves are I(1). From I(0) series one would not

expect such a consistent pattern of progressive increase at the very low frequencies

over such a long period of time. Rather, the evidence in Figure 2 naturally suggests

that the first differences of the series feature an I(1) component which is too small to

be detected by standard unit root tests, but in fact it is sufficiently sizeable to induce

a progressive increase in the average level of the series’ first differences.

Table 2 Simulated p-values for Stock and Watson’s tests for

the null of time-invariance against the alternative of random-

walk time-variation in the mean of the first differences of the

series

JRF index Temperature

Fraction anomalies

HAC correction: Mean Median below 10% Land Ocean

Trimming: 0.15

Newey and West (1987) 0.0448 0.0148 0.8590 0.000 0.049

Andrews (1991) 0.0531 0.0209 0.8590 0.000 0.112

Trimming: 0.25

Newey and West (1987) 0.0409 0.0120 0.8480 0.001 0.041

Andrews (1991) 0.0480 0.0171 0.8480 0.000 0.088

Trimming: 0.33

Newey and West (1987) 0.0754 0.0488 0.7740 0.003 0.044

Andrews (1991) 0.0864 0.0591 0.7700 0.001 0.094
 Mean and median of the Monte Carlo distribution of -values, and

fraction of -values smaller than 10%.

In order to explore this issue, Tables 2 and A.2 in the Appendix report evidence

from Stock andWatson’s (1996, 1998) tests of the null hypothesis of no time-variation
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in the mean for the first differences of any of the series, against the alternative of

random-walk time variation. In implementing Stock and Watson’s approach I closely

follow Stock and Watson (1996, 1998). The methodology is described in detail in

Appendix B, and it is exactly the same I used in Benati (2007). I consider three

alternative values of ‘trimming’, i.e. the standard 15% and, in order to give more

power to the tests, either 25% or 33%. I control for the possible autocorrelation

and/or heteroskedasticity of the residuals via either Newey and West’s (1987) or

Andrews’ (1991) covariance matrix estimator. For any of the temperature anomalies,

which are based on continuous measurements, I simply report the simulated -values

produced by Stock andWatson’s methodology. For the JRF index, which as discussed

is partially stochastically simulated, I report the mean and the median of the Monte

Carlo distribution of the simulated -values, together with the fraction of the -values

smaller than 10% across all of the 10,000 Monte Carlo simulations.

Overall, I detect strong evidence of random-walk time-variation for all series.6

This suggests that although the I(1) component is too small to be detected based on

standard unit root tests, in fact it is sufficiently large to be detected based on the

approach proposed by Stock and Watson (1996, 1998).

Table 3 Monte Carlo evidence on the plausibility that a fixed-coef-

ficients I(2) cointegrated VECM model may have produced the re-

sults in Table 2: mean and median of the Monte Carlo distribution

of the simulated p-values for Stock and Watson’s tests, and fraction

of replications for which the p-values are smaller than 10%

HAC correction: Newey and West (1987) Andrews (1991)

JRF Land Ocean JRF Land Ocean

index anomaly anomaly index anomaly anomaly

Trimming: 0.15

Mean 0.5884 0.0490 0.1705 0.8228 0.0388 0.2027

Median 0.5750 0.0140 0.1130 0.8950 0.0080 0.1280

Fraction below 10% 0.0050 0.8659 0.4615 0.0270 0.9049 0.4324

Trimming: 0.25

Mean 0.6845 0.0897 0.2463 0.6399 0.0713 0.3094

Median 0.6720 0.0250 0.1580 0.8040 0.0140 0.2300

Fraction below 10% 0.0010 0.7417 0.3604 0.2072 0.8078 0.3003

Trimming: 0.33

Mean 0.6765 0.1059 0.2628 0.6483 0.0862 0.3270

Median 0.6620 0.0290 0.1800 0.7960 0.0170 0.2530

Fraction below 10% 0.000 0.7177 0.3433 0.1872 0.7708 0.2853

6A partial exception is the temperature anomaly series for the 0 latitude. As shown in Table A.2,

strong evidence of random-walk time-variation is detected based on 25 and 33% trimming, but not

based on 15% trimming. Once again, the obvious explanation is that the impact of climate change

is greater the higher the latitude, and it is therefore minimum at the Equator.
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3.3 Interpreting the results from Stock and Watson’s (1996,

1998) tests

The natural interpretation of the evidence in Figure 2 and especially Tables 2 and

A.2 is that the equilibrium levels of the first differences of the series follow a multi-

variate random-walk process driven by the progressive increase in the first difference

of the JRF index. In principle, however, an alternative possible interpretation of this

evidence might be that the data-generation process (DGP) is a time-invariant I(2)

VAR. As I now show via Monte Carlo, however, this clearly seems not to be the case.

Table 3 reports results fom the following exercise. I generate, as previously de-

scribed, 1,000 partially simulated series for the JRF index. Based on any of them and

the land and ocean temperature anomalies I then estimate I(2) cointegrated VECM

models via Bayesian methods as described in Appendix C, by combining the likeli-

hood of the data with a minimal set of priors designed in order to impose a meaningful

structure upon the VECM.7 For each of the 1,000 samples this produces 1,000 draws

from the posterior distribution, thus resulting in a total of 1 million models. I then

stochastically simulate each of the 1 million models for samples of length equal to the

length of the actual sample I am working with (1850-2022), and based on each of them

I perform the same Stock and Watson’s (1996, 1998) tests I have performed based on

the actual data. In estimation I either impose the restriction that the land and ocean

temperature anomalies share a common cointegration vector with the JRF index, or

I allow the two cointegration vectors to be different. The results in Table 3 are based

on allowing for distinct cointegration vectors, but the corresponding evidence based

on imposing a common cointegration vector are qualitatively the same, and they are

available upon request.

Table 3 reports, for any of the three series, the mean and the median of the

Monte Carlo distribution of the simulated -values, together with the fraction of

simulations for which the -values have been below 10%, out of the 1 million Monte

Carlo simulations. The evidence in the table is very clear: if the true DGP had been

the I(2) cointegrated VECM model, obtaining the results reported in Table 2 would

have been extremely unlikely. For the sake of the argument, let us focus on the results

based on 25% trimming and Newey and West’s (1987) HAC correction. For two series

out of three (the JRF index and the ocean anomaly) both the mean and the median

of the Monte Carlo distributions of the -values are materially beyond 10%, and the

fractions of Monte Carlo simulations for which the -values are below 10% are equal

to 0.0010 for the JRF index, and to 0.3604 for the ocean anomaly. Only for the land

anomaly the evidence in Table 3 is compatible with the notion that the DGP is an

I(2) cointegrated VECM model.

7In particular, the main information I impose pertains to (i) the cointegration coefficient between

the JRF index and either of the two temperature anomalies, with the prior being calibrated based

on the estimates reported in Table II of Kaufmann, Kauppi, and Stock (2006); and (ii) the fact that,

as it is well known, the reaction of the ocean anomaly to increases in radiative forcing is significantly

slower than the corresponding reaction of the land anomaly.
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Evidence based on non-cointegrated I(2) VAR models is qualitatively the same,

and it is available upon request. My preference for the evidence based on I(2) cointe-

grated VECMmodels originates from the fact that, as I show in the next sub-section,

the data quite clearly point towards cointegration between the JRF index and tem-

perature anomalies, so that non-cointegrated I(2) VAR models are significantly less

empirically plausible. Finally, evidence for the system featuring the JRF index and

the three temperature anomalies pertaining to the 0, 30 degrees North, and 60 degrees

North latitudes is qualitatively the same, and it is available upon request.

I now turn to testing for cointegration between the JRF index and either temper-

ature anomaly.

3.4 Evidence from Wright’s (2000) cointegration tests

Based on the climate science literature, the relevant null hypothesis to be tested is that

the level of the JRF index is cointegrated with the levels of any of the temperature

anomalies, so that even if the series are I(2), the residual from the cointegrating

regressions

 = +  +  (1)

where  is one of the temperature anomaly series, is I(0). I therefore proceed as

follows.

To fix ideas, let us focus on the land temperature anomaly. I start by generating,

as previously described, 1,000 partially simulated series for the JRF index, 

 ,

with  = 1, 2, ..., 1,000. Then,

(1) based on each pair {

 , 

Land
 },  = 1, 2, ..., 1,000, I perform a Wright

(2000) test for the null hypothesis of cointegration between 

 and  Land .

(2) Based on each triplet {

 , 

Land
 , Ocean },  = 1, 2, ..., 1,000, I estimate

either the cointegrated VECM model discussed in the next section, featuring a mul-

tivariate random-walk specification for the time-varying equilibrium levels of the first

differences of the three series, or the previously mentioned I(2) cointegrated VECM

model. For each sample  = 1, 2, ..., 1,000, this produces  = 1, 2, ..., 1,000 draws

from the posterior distribution.

(3) For each  = 1, 2, ..., 1,000, I then stochastically simulate each of the 1,000

 models (i.e. draws from the posterior), thus obtaining a Monte Carlo distribution

of Wright’s (2000) test under the null hypothesis that (i) the three series are I(2),

(ii) they are cointegrated, and (iii) the cointegration residual in levels is I(0). Based

on this, I compute as in Wright (2000) the 90%-coverage confidence intervals for the

cointegration coefficient.

For either the land or the ocean temperature anomaly Wright’s (2000) cannot

reject the null hypothesis of cointegration for any  = 1, 2, ..., 1,000. Finally, as

discussed in Section 2.5 I integrate out the randomness associated with the simulated

red noise I have added to the JRF index over the first part of the sample period by

13



computing the average, across all ’s, of the confidence intervals for the cointegration

coefficient.

Based on the model featuring a multivariate random-walk specification for the

time-varying equilibrium levels of the first differences of the three series and allow-

ing for different cointegration vectors between the JRF index and either the land or

the ocean temperature anomaly, the 90%-coverage confidence interval for the coin-

tegration coefficient for the land anomaly is [-0.9521 -0.6000], whereas for the ocean

anomaly it is [-2.2411 -1.4546], reflecting the much slower rate of warming of the

oceans over the sample period. The corresponding confidence intervals based on the

model imposing a common cointegration vector are [-0.9529 -0.5990] and [-2.2827 -

1.4090], respectively. Notice that in either case the confidence intervals for the land

and ocean anomaly are not overlapping. Taken at face value this would imply that

the land and ocean anomaly, although both cointegrated with the JRF index, exhibit

different long-run equilibrium relationships with it. Another possible interpretation

is that, in response to a permanent increase in the JRF index, the two temperature

anomalies ultimately increase by exactly the same amount, so that they share the

same cointegration vector with the JRF, but that the sample period since 1850 is

simply too short to capture this. Accordingly, in what follows I will consider both

possibilities.

Evidence for the system featuring the JRF index and the temperature anomalies

at different latitudes is qualitatively the same. In particular, the 90%-coverage confi-

dence intervals for the cointegration coefficients for the latitudes 0, 30 degrees North,

and 60 degrees North are equal to [-3.9105 -0.6002], [-3.0715 -0.5049], and [-1.7727

-0.3265] respectively, reflecting the well-known fact that the higher the latitude, the

greater the increase in temperatures has been.

Evidence based on the I(2) cointegrated VECM model is qualitatively the same,

and it is available upon request. I now turn to discussing my econometric approach.

4 The Econometric Approach

I start by discussing the standard cointegrated VECM model for I(1) series detailed

(e.g.) in Hamilton (1994), and I then turn to the modification I propose in order to

take into account of the fact that, as previously shown, the first differences of the

series feature random-walk time-variation in their means.

4.1 The I(1) cointegrated VECM model

Let the standard cointegrated VECM representation for a (N×1) vector of I(1) series
 be

∆ = 0 +1∆−1 + +∆− + 0−1 +  (2)
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where  is the matrix of the cointegration vectors,  is the matrix of the loading

coefficients, [0] = Σ, and the rest of the notation is standard. By defining as 

the time-invariant unconditional mean of ∆, with 0 = [ −1− −] , this

expression can be rewritten as

∆ − = 1(∆−1 −) + +(∆− −) + 0−1 +  (3)

As shown in Section 3.2, evidence from Stock andWatson’s (1996, 1998) tests suggests

that within the present context,  features random-walk time-variation. The next

sub-section describes how I address this issue.

4.2 An I(2) cointegrated VECM model with random-walk

time-variation in the means of the series’ first differences

The natural way of modelling random-walk time-variation in  is to postulate that

it evolves according to a multivariate random walk specification, subject to the re-

strictions imposed by cointegration between the levels of the series. To fix ideas, let

us focus on the trivariate system featuring the JRF index and the land and ocean

temperature anomalies, so that  = [, 
Land
 , Ocean ]0. For systems featuring

alternative temperature anomalies indices the logic is exactly the same. As shown in

the previous section, the levels of both temperature anomalies are cointegrated with

the level of the JRF index. This implies that the system features a single I(2) stochas-

tic trend, originating from the progressive increase of the JRF, and two cointegration

vectors. Within the present context, the natural rotation of the cointegration space

is obtained by defining the matrix of the cointegration vectors as

 =

⎡⎣ 1 1

−Land 0

0 −Ocean

⎤⎦  (4)

which implements the previously discussed restrictions.

As discussed e.g. in Kleibergen and van Dijk (1994) and Bauwens and Lubrano

(1996), for the  cointegration vectors to be uniquely identified, each of the  columns

of  ought to feature at least  restrictions. Within the present context this is indeed

the case, as each of the two columns features two restrictions, and in fact either of

them depends on a single cointegration coefficient.

Finally, the fact that the three series are cointegrated, with the matrix of cointe-

gration vectors given by (4), imposes the following restrictions on :

 =

⎡⎣ 1
1

Land
1

Ocean

⎤⎦ (5)

 = −1 +  (6)
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where  is a scalar random-walk process capturing the common stochastic trend

driving the frequency-zero dynamics of ∆, with  ∼ (0, 2). Since, in equation

(5),  has been normalized on the JRF index, in fact it captures the I(1) stochastic

trend in the first difference of , i.e. the sources of anthropogenic climate change.

When jointly considered, (4), (5) and (6) imply that the JRF index and the two

temperature anomalies maintain a long-run equilibrium relationship in response to

permanent shocks to both the level of the JRF index, and its first difference.

Finally, as previously mentioned, I consider two alternative model specifications,

in which I either allow Land to be different from Ocean, or I impose the restriction

that they be the same.

4.3 Estimation

I estimate all of the models the model via Bayesian methods, by combining the

log-likelihood of the data with a minimal set of inequality restrictions (discussed in

the next sub-section) on the impulse-response functions (IRFs) of the series to a

permanent shock to the JRF index. In practice, this means that I perform MLE

estimation subject to the restriction that I reject models (i.e. draws) that do not

satisfy the restrictions on the IRFs. So, although I adopt a Bayesian approach, which

allows me to reject draws that do not satisfy the restricitions on the IRFs, in fact I

do not specify a single prior for any parameter.

I numerically maximize the restricted log-likelihood of the data (where by ‘re-

stricted’ I mean that it is subject to the just-mentioned restrictions on the IRFs)

via simulated annealing exactly as in Benati (2008). Following Goffe, Ferrier, and

Rogers (1994) I implement simulated annealing via the algorithm proposed by Corana,

Marchesi, Martini and Ridella (1987).8 I then stochastically map the restricted log-

likelihood based on Random Walk Metropolis (RWM). In implementing the RWM

algorithm I exactly follow An and Schorfheide (2007, Section 4.1), with the only dif-

ference that the jump to the new position in the Markov chain is accepted or rejected

based on a rule which does not involve any Bayesian priors on the modfel’s coeffi-

cients, as it uniquely involves the restricted likelihood of the data.9 I calibrate the

covariance matrix’s scale factor based on the methodology proposed by Benati (2008,

8I set the key parameters to 0 =100,000,  = 0.9,  = 5,  = 20,  = 10−6, and  = 4,

where 0 is the initial temperature,  is the temperature reduction factor,  is the number of

times the algorithm goes through the  loops before the temperature starts being reduced,  is

the number of times the algorithm goes through the function before adjusting the step size, is the

convergence (tolerance) criterion, and  is the number of times convergence is achieved before the

algorithm stops.
9So, to be clear, the proposal draw for , ̃, is accepted with probability min[1, (−1, ̃ |  ,

)], and rejected otherwise, where −1 is the current position in the Markov chain, and

(−1 ̃ | ) =
(̃ | )

(−1 | )
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Appendix C).

I run a burn-in pre-sample of 1,000,000 draws which I then discard. I then generate

10,000,000 draws, which I ‘thin’ by sampling every 1,000 draws in order to reduce

their autocorrelation. This leaves 10,000 draws from the ergodic distribution which

I use for inference. The fraction of accepted draws is very close to the ideal one, in

high dimensions, of 0.23 (see Gelman, Carlin, Stern, and Rubin, 1995).

I check convergence of the Markov chain based on Geweke’s (1992) inefficiency

factors (IFs) of the draws from the ergodic distribution for each individual parameter.

The IFs are defined as the inverse of the relative numerical efficiency measure of

Geweke (1992),

 = (2)−1
1

(0)

Z
−

() (7)

where () is the spectral density of the sequence of draws from RWM for the para-

meter of interest at frequency . I estimate the spectral densities via the lag-window

estimator as described in chapter 10 of Hamilton (1994). I also considered an es-

timator based on the fast-Fourier transform, and results were very similar. For all

parameters the IFs are equal to at most 3-4, well below the values of 20-25 which are

typically taken to indicate problems in the convergence of the Markov chain.

4.4 Restrictions imposed in estimation

In estimation I impose the restrictions that for each parameters’ draw a permanent

shock to the level of the JRF index generates non-negative impulse-response functions

(IRFs) for all series at all horizons. Further, for the system featuring the JRF index

and the land and ocean temperature anomalies I impose the restriction that, once the

individual series’ IRFs have been normalized by their respective long-run impacts,

(I) at all horizons the response of the ocean temperature anomaly is slower than

the response of the land temperature anomaly (i.e. at all horizons the normalized

IRF of the latter lies below the normalized IRF of the former), and by the same token

(II) at all horizons the response of the land temperature anomaly is slower than

the response of the JRF index (i.e. at all horizons the normalized IRF of the latter

lies below the normalized IRF of the former).

The rationale for (I) is the well-known lag of the ocean temperature anomaly on

its corresponding land counterpart. As for (II), its rationale is that, as matter of

logic, the JRF index ought to respond faster to its own shocks than either of the two

temperature anomalies.

which uniquely involves the restricted likelihood. With Bayesian priors it would be

(−1 ̃ | ) =
(̃ | ) (̃)

(−1 | ) (−1)
where  (·) would encodes the priors about .
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Figure 3  First difference of joint radiative force, and two-sided estimate 
             of Mu(t) (median, and 16-84 and 5-95 credible set) 
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Figure 4  Impulse-response functions to a permanent shock to the level of joint radiative force 
             (median, and 16-84 and 5-95 credible set) 
 
 
 



As for the other systems, the only restriction I impose is that at all horizons the

normalized IRFs of all temperature anomalies lie below the normalized IRF of the

JRF index. On the other hand, I do not impose any restriction among the temperature

anomalies’ IRFs themselves.

I impose all of the previously discussed restrictions by rejecting all draws that do

not satisfy them. I now turn to discussing the evidence.

5 Evidence

Figure 3 shows the first difference of the JRF index and the two-sided median estimate

of , together with the 16-84 and 5-95 credible sets of the posterior distribution.
10

The estimate of  has been computed via the Monte Carlo integration procedure

proposed by Hamilton (1986). Two facts are readily apparent from the figure. First,

as it was to be expected based on the normalization in (5),  behaves as a sort of

time-varying equilibrium level of the first difference of the JRF index. Second,  had

been fluctuating around zero until about the 1970s, whereas since then it has been

increasing rapidly. This is consistent with the dramatic acceleration of climate change

over the most recent period.

5.1 Impulse-response functions to a permanent shock to the

JRF index

Figure 4 shows the IRFs of the JRF index, and of the land and ocean temperature

anomalies to a permanent shock to the level of the JRF index. The response of

the JRF index itself is essentially flat at all horizons, thus clearly suggesting that

the JRF index is a pure unit root process. The responses of the two temperature

anomalies series are as expected, and they reflect the restrictions I imposed upon

them. In particular, the response of the ocean anomaly is slower than that of the

land anomaly, which in turn converges to its new long-run equilibrium only about

40-50 years after the shock.

5.2 Unconditional forecasts based on data up to 2022

Figure 5 shows results from the following exercise. I ‘freeze’ the state of the system (in

particular, the estimate of ) to 2022, and I then stochastically simulate the model

forward in time until the end of the XXI century conditional on data up to 2022. The

evidence from the exercise is sobering. Starting from the model imposing a common

cointegration vector for the land and ocean temperature anomalies (top row), the

10The estimate in Figure 3 is based on the model allowing for different cointegration vectors

for the land and ocean anomalies. Estimates based on the alternative model imposing a common

cointegration vector is qualitatively the same.
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Figure 5  Forecasts under a ‘no change’ scenario conditional on data up to 2022 
             (median, and 16-84 and 5-95 credible set) 
 
 



forecasts for the two series are, as expected, very close to each other, with median es-

timates for the year 2100 equal to 5.6 and 5.5, respectively, and 90%-coverage credible

sets equal to [3.6, 8.7] and [3.6, 8.5], respectively. In order to put these numbers into

context it is worth recalling that the average increase in temperatures associated with

the Paleocene-Eocene Thermal Maximum (PETM), about 55.5 million years ago, is

estimated to have been between 5 and 8 Celsius degrees. During that period Antarc-

tica was covered with tropical forests, and Arctic waters pullulated with alligators.

Further, and crucially, the period of sustained carbon increase that led to the PETM

is estimated to have lasted between 20 thousand and 50 thousand years. If the land

temperature anomaly were to reach 5.5-5.6 Celsius degrees (or possibly even higher

values) within less than eight decades, the extent to which society could adapt, or

whether it could adapt at all, is entirely open to question.

The rationale for imposing a common cointegration vector between the two tem-

perature anomalies and the JRF index is that basic physics suggests that, in the very

long run, a given increase in the JRF should produce an identical increase in the land

and the ocean temperature anomalies. For the purpose of producing comparatively

short-horizon projections such as those in Figure 5, however, there is the risk that this

may distort the forecasts. Intuitively, if the one-for-one long-run equilibrium between

the land and the ocean anomalies reasserts itself over periods of centuries, the impo-

sition of a common cointegration vector upon a model estimated based on just 172

years might distort the projections. At the end of the day, as the raw data for the two

anomalies plotted in the third panel of Figure 1 clearly show, since 1850 the ocean

anomaly has increased much less than the land anomaly. Even if we can be certain

that (say) 10,000 years after a shock to the JRF index the two anomalies will have

increased by exactly the same amount, the fact that they have materially deviated

from one another for 172 years raises questions about the reliability of projections

obtained by imposing a common cointegration vector.

Because of this it makes sense to also consider forecasts produced by the model

allowing for different cointegration vectors for the two anomalies. These projections

are shown in the bottom row of Figure 5. As it should be logically expected, they

extrapolate into the future the marked divergence between the behaviour of the two

series that has been going on since 1850. Whereas the median projection for the ocean

anomaly in 2100 is equal to ‘just’ 3.4 Celsius degrees, the corresponding forecast for

the land anomaly, at 6.9 degrees, is roughly around the middle of the range of the

estimates of the increase in temperatures that had taken place during the PETM,

about 55.5 million years ago.

5.3 Conditional forecasts based on alternative assumptions

about the future path of the JRF

Figures 6 and 7 show, based on the models imposing a common cointegration vector

for the land and ocean anomalies and, respectively, allowing instead for different
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Figure 6  Cointegrated VECM with random-walk drift and a common cointegration vector for the land and ocean 
             temperature anomalies: Forecasts conditional on data up to 2022 and alternative scenarios for the evolu- 
             tion of joint radiative force (median, and 16-84 and 5-95 credible set) 
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cointegration vectors, evidence from the following exercise. I ‘freeze’ the state of the

system to 2022 as in the previous sub-section, and I then stochastically simulate the

model forward in time until the end of the XXI century conditional on (1) data up

to 2022, and (2) alternative possible paths for the evolution of the JRF until the end

of the century. I compute the conditional forecasts as in Waggoner and Zha (1999).

I consider five possible scenarios for the evolution of the JRF:

• the JRF being stabilized in 2050, with its first difference progressively decreasing
starting in 2023, and reaching zero in 2050;

• a qualitatively similar scenario in which the stabilization takes place in 2030;
and

• three scenarios in which the JRF peaks in 2050 and it is then brought back, in
2100, to the level it had reached in 1990, 2000, and 2010 respectively.

Starting from the projections produced by the model imposing a common coin-

tegration vector, stabilization of the JRF in either 2050 or even 2030 leaves open

the possibility that warming will reach levels that in the climate science community

are widely regarded as dangerous. For example, the 90%-coverage credible sets for

the land and ocean temperature anomalies for the year 2100 associated with stabi-

lizing the JRF in 2030 are equal to [0.8, 2.8] and [1.0, 3.0] respectively. Further,

for both anomalies most of the mass of the posterior distribution lies beyond 1.5 de-

grees, which rightly or wrongly is regarded as the benchmark threshold beyond which

warming will truly become dangerous. Evidence from the corresponding exercise in

which the JRF is stabilized in 2050 are, as expected, even more ominous, with the

90%-coverage credible sets for the two anomalies for the year 2100 being equal to

[1.2, 3.6] and [1.4, 3.7] respectively. Evidence from the corresponding exercise based

on the model allowing for different cointegration vectors is, as expected, better for

the ocean anomaly, but materially worse for the land anomaly. In particular, the

90%-coverage credible set for the land anomaly for 2100, equal to [1.6, 3.9], now lies

entirely beyond 1.5 degrees.

Turning to the set of projections obtained by allowing the JRF index to peak

in 2050, and then bringing it back to the levels it had reached in 1990, 2000, and

2010, evidence suggests that given the extent of uncertainty involved bringing cli-

mate change under control will require to scale the JRF back to the level it had

reached in the early years of the XXI century. Specifically, based on the model im-

posing a common cointegration vector, the 90%-coverage credible sets for the land

and ocean temperature anomalies for the year 2100 are equal to [-0.3, 1.2] and [-0.4,

1.6] respectively if the JRF were to be brought back to the level of 2000, whereas the

corresponding sets obtained by bringing it back to the level of 2010 are equal to [0,

1.5] and [0, 2] respectively. Based on the model allowing for different cointegration

vectors the corresponding credible sets for the land anomaly obtained by bringing
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Figure 8  Cointegrated VECM with random-walk drift for the temperature anomalies at different latitudes: 
             Forecasts under a ‘no change’ scenario conditional on data up to 2022 (median, and 16-84 and 
             5-95 credible set) 
 
 
 
 



the JRF back to the levels of 2000 and 2010 are [0.1, 1.6] and [0.4, 2.0] respectively,

whereas those for the ocean anomaly are [0.1, 1.0] and [0.3, 1.2]. Clearly, to the extent

that bringing climate change under control requires keeping the increases in global

temperatures below 1.5 degrees, only a level of the JRF equal to that reached in the

early years of the XXI century can provide sufficient reassurance that this will be the

case.

6 Forecasts for different latitudes

Figure 8 shows results from the same exercise as in Figure 5, but this time for the

global temperature anomalies (i.e., jointly for the land and the ocean) at three differ-

ent latitudes: the Equator (latitude 0), and either 30 or 60 degrees North. The main

finding in the figure pertains to the dramatic extent of variation in the predicted in-

creases in temperatures at different latitudes under the ‘no change’ scenario. Whereas

the median forecast for the Equator for the year 2100 is equal to 2.9 Celsius degrees,

with a 90%-coverage credible set equal to [0.4, 6.2], the corresponding objects for the

30 and 60 degrees North latitudes are 4.2 and [1.2, 8.2], and 5.7 and [1.1, 12] respec-

tively. This obviously reflects the fact that, as it is well known, the impact of climate

change in terms of increases in temperatures is greater the higher the latitude, and

it is therefore maximum at the Poles and minimum at the Equator.

7 Conclusions

In this paper I have used Bayesian VARs in order to forecast global temperature

anomalies until the end of the XXI century, by exploiting their cointegration with

the Joint Radiative Forcing of the drivers of climate change. My main results can be

summarized as follows. The response of the JRF index to a permanent shock to its

own level, which is essentially flat at all horizons, clearly suggests that the JRF is

very close to a pure unit root process. By contrast, the responses of global land and

ocean temperature anomalies are delayed and drawn out. In particular, in response

to the shock the land temperature anomaly fully converges to its new long-run value

in about 50 years, whereas the response of the ocean anomaly is even more drawn

out. Under a ‘no change’ scenario, the most favorable median forecast predicts the

land temperature anomaly to reach 5.6 Celsius degrees in 2100. Forecasts conditional

on alternative paths for the JRF show that, given the extent of uncertainty, bringing

climate change under control will require to bring the JRF back to the level reached

in the early years of the XXI century.

From amethodological point of view, my evidence suggests that previous cointegration-

based studies of climate change suffer from model mis-specification. First, climate

change series are clearly I(2), whereas the vast majority of studies have not tested

for this possibility, and have rather assumed that they are only integrated of order

21



one. Second, evidence suggests that fixed-coefficients I(2) cointegrated VECMs are

at odds with the data, whose first differences exhibit random-walk time-variation in

the mean. I model this feature via a multivariate random-walk specification for the

means of the first differences, subject to the restrictions imposed by cointegration

between the levels.
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A Why Excluding El Niño and La Niña

Figure A.1 shows the radiative forcing of El Niño and La Niña (ENSO), together with

its estimated normalized spectral density with 90%-coverage bootstrapped confidence

bands.11 Two main findings are clearly apparent from the figure:

(1) the radiative forcing of ENSO is extraordinarily noisy compared to the radia-

tive forcing of the other drivers of climate change. For example in Figure 1 in the

main text of the paper the radiative forcing of the dominant driver of climate change,

CO2, goes from zero (by normalization) in 1880 to nearly 2 in 2022. By contrast,

the ENSO radiative forcing in Figure 2 has a standard deviation of 1.0742, and since

1850 it has oscillated from a minimum of -2.6940 to a maximum of 2.3704.

(2) As the second panel of Figure A.1 clearly illustrates, ENSO’s radiative forcing

has essentially no spectral power at frequencies beyond 25 years.

The implication of (1) and (2) is that, for the present purposes, including in the

JRF index the radiative forcing of ENSO shown in the first panel of Figure A.1 would

uniquely add a large amount of comparatively high-frequency noise, whereas it would

bring essentially no information about the long-horizon, low-frequency developements

that are the focus of the present work. To put it differently, this would uniquely

complicate the analysis, whereas it would not bring any benefit whatsoever. Because

of this, in the construction of the JRF index I have decided to ignore the El Niño and

La Niña phenomenon.

B Stock and Watson’s (1996, 1998) Methodology

for Searching for Random-Walk Time-Variation

Section 3.2 in the main text of the paper presents evidence from tests for the null

hypothesis of time-invariance against the alternative of random-walk time-variation

for the first difference of either the JRF index, the land temperature anomaly, or the

ocean temperature anomaly, based on Stock and Watson’s (1996, 1998) TVP-MUB

methodology applied to the AR() model

 = + 1−1 + 2−2 + + − +  = 0 +  (B.1)

where  is the first difference of any of the three series. I select the lag order, , as

the maximum among the lag orders selected by the Akaike and Schwartz information

criteria, for a maximum possible number of lags =20 years. In implementing the

11I estimate the spectral density by smoothing in the frequency domain the Fast-Fourier-Transform

(FFT)-based estimator of the series’ periodogram via a Bartlett spectral window. The bandwidth

is selected automatically via the procedure proposed by Beltrao and Bloomfield (1987). Spectral

bootstrapping is implemented via the procedure proposed by Franke and Hardle (1992). I implement

10,000 bootstrap replications.
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TVP-MUB methodology I closely follow Stock and Watson (1996, 1998). Letting

=[, 1, ..., ]
0, the time-varying parameters version of (B.1) is given by:

 = 0 +  (B.2)

 = −1 +  (B.3)

with   (0+1, 
22), with 0+1 being a (+1)-dimensional vector of zeros;

2 being the variance of ;  being a covariance matrix; and []=0. Following

Nyblom (1989) and Stock and Watson (1996, 1998), I set =[(
0
)]
−1. Under such

a normalisation, the coefficients on the transformed regressors, [(
0
)]
−12, evolve

according to a (+1)-dimensional standard random walk, with 2 being the ratio

between the variance of each ‘transformed innovation’ and the variance of .
12

The point of departure is the OLS estimate of  in (B.1), ̂. Conditional on

̂ I compute the residuals, ̂, and the estimate of the innovation variance, ̂
2, and

I perform an exp-Wald test for a single break in the mean of  at an unknown point

the sample as in (e.g.) Bai and Perron (1998, 2003) by regressing  on a constant,

using either Newey andWest’s (1987) or Andrews’ (1991) covariance matrix estimator

to control for possible autocorrelation and/or heteroskedasticity in the residuals. I

estimate the matrix  as in Stock and Watson (1996) as

̂ =

"
−1

X
=1


0


#−1
.

I consider a 50-point grid of values for  over the interval [0, 0.15], which I call Λ.

For each  ∈ Λ I compute the corresponding estimate of the covariance matrix of 
as ̂=

2
 ̂
2̂, and conditional on ̂ I simulate model (B.2)-(B.3) 10,000 times as in

Stock and Watson (1996, section 2.4), drawing the pseudo innovations from pseudo

random  (0, ̂2). For each simulation, I compute an exp-Wald test (obviously,

without however applying the HAC correction) thus building up its empirical distri-

bution conditional on . Based on the empirical distributions of the test statistic I

then compute the median-unbiased estimate of  as that particular value of  which

is closest to the statistic I previously computed based on the actual data. I compute

the -value based on the empirical distribution of the test conditional on =0. Fi-

nally, for reasons of robustness I consider three alternative values of trimming, 15,

25, and 33 per cent.

In line with the previous discussion, I partially simulate the JRF index 10,000

times, and I implement the previously described procedure based on each partially

simulated series. For the JRF index the table therefore reports the median and the

5th and 95th percentiles of the Monte Carlo distribution of the -values.

12To be precise, given that the Stock-Watson methodology is based on local-to-unity asymptotics,

 is actually equal to the ratio between  , a small number which is fixed in each sample, and T , the

sample length.
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C The I(2) Cointegrated VECM

Let the standard I(1) cointegrated VECM representation for a (N×1) vector of I(1)
series  be (abstracting form the intercept term)

∆ = Γ1∆−1 + + Γ−1∆−+1 +Π−1 +  (C.1)

with Π = 0, where  is the matrix of the cointegration vectors,  is the matrix
of the loading coefficients, [0] = Σ, and the rest of the notation is standard.

Expression (C.1) implies the following restricted VAR() representation in levels for

,

 = Π1−1 + +Π∆− +  (C.2)

The I(2) cointegrated VECM representation for  is then given by

∆2 = Ψ1∆
2−1 + +Ψ−2∆

2−+2 +Π−1 − Γ∆−1 +  (C.3)

with

Ψ = −
−1X
=+1

Γ (C.4)

for  = 1, 2, ..., -2. Based on Γ and the Ψ’s in (C.3), it is possible to recover the

Γ’s in (C.1) as follows. Since

Γ =  −
−1X
=1

Γ (C.4)

it can be shown that

Γ1 = Ψ1 − Γ+ 

Γ2 = Ψ2 −Ψ1

Γ3 = Ψ3 −Ψ2



Γ−2 = Ψ−2 −Ψ−1
Γ−1 = −Ψ−2

I estimate the model via Bayesian methods, by combining the log-likelihood of the

data with a minimal set of inequality restrictions (discussed in sub-section 4.4 of

the main text) on the impulse-response functions (IRFs) of the three series to a

permanent shock to the JRF index. In practice, this means that I perform MLE

estimation subject to the restriction that I reject models (i.e. draws) that do not

satisfy the restrictions on the IRFs. So, although I adopt a Bayesian approach, which

allows me to reject draws that do not satisfy the restricitions on the IRFs, in fact

I do not specify a single prior for any parameter. I numerically maximize the log-

likelihood of the data via simulated annealing exactly as in Benati (2008). Following
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Goffe, Ferrier, and Rogers (1994) I implement simulated annealing via the algorithm

proposed by Corana, Marchesi, Martini and Ridella (1987). I then stochastically map

the log-likelihood based on Random Walk Metropolis (RWM). In implementing the

RWM algorithm I exactly follow An and Schorfheide (2007, Section 4.1), with the

only difference that the jump to the new position in the Markov chain is accepted or

rejected based on a rule which does not involve any Bayesian priors, as it uniquely

involves the likelihood of the data. I calibrate the covariance matrix’s scale factor

based on the methodology proposed by Benati (2008, Appendix C).

I run a burn-in pre-sample of 1,000,000 draws which I then discard. I then generate

10,000,000 draws, which I ‘thin’ by sampling every 1,000 draws in order to reduce

their autocorrelation. This leaves 10,000 draws from the ergodic distribution which

I use for inference. The fraction of accepted draws is very close to the ideal one, in

high dimensions, of 0.23 (see Gelman, Carlin, Stern, and Rubin, 1995).

I check convergence of the Markov chain based on Geweke’s (1992) inefficiency

factors (IFs) of the draws from the ergodic distribution for each individual parameter.

For all parameters the IFs are equal to at most 3-4, well below the values of 20-25

which are typically taken to indicate problems in the convergence of the Markov

chain.
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Table A.1 Bootstrapped p-values for Elliot, Rothenberg, and Stock’s

(1996) unit root tests for temperature anomalies for different latitudes

=1 =2 =3 =4 =5

Latitude: 0

In levels, without time trend 0.0002 0.0485 0.2324 0.4663 0.6551

In levels, with time trend 0.0000 0.0015 0.0084 0.0499 0.1236

In first differences, without time trend 0.0000 0.0000 0.0000 0.0000 0.0000

Latitude: 30 North

In levels, without time trend 0.6392 0.8624 0.9605 0.9796 0.9810

In levels, with time trend 0.3206 0.6153 0.7910 0.8376 0.8038

In first differences, without time trend 0.0000 0.0000 0.0000 0.0000 0.0000

Latitude: 60 North

In levels, without time trend 0.0627 0.3521 0.6822 0.8909 0.9656

In levels, with time trend 0.0027 0.0280 0.1427 0.3346 0.4500

In first differences, without time trend 0.0000 0.0000 0.0000 0.0000 0.0000

Table A.2 Simulated p-values for Stock and

Watson’s tests for the null of time-invariance

against the alternative of random-walk time-

variation in the mean of the first differences

of the series

Latitude:

HAC correction: 0 30 North 60 North

Trimming: 0.15

Newey and West (1987) 0.4040 0.0026 0.0008

Andrews (1991) 0.3680 0.0022 0.0000

Trimming: 0.25

Newey and West (1987) 0.3618 0.0064 0.0002

Andrews (1991) 0.3302 0.0054 0.0000

Trimming: 0.33

Newey and West (1987) 0.3514 0.0158 0.0030

Andrews (1991) 0.3232 0.0118 0.0000
 Mean and median of the Monte Carlo distribution of

-values, and fraction of -values smaller than 10%.
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Figures for Appendix  
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Figure A.1  Radiative force of El Niño-Southern Oscillation: raw series and normalized  
                spectral density (with 90%-coverage bootstrapped confidence bands) 
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Figure A.2  Evidence on the close similarity between alternative partially simulated series 
                for CO2, NH4, and N2O: maximum and minimum among the sorted partially 
                simulated paths out of 100,000 simulations 
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