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CONVERGENCE OF INFINITESIMAL GENERATORS AND

STABILITY OF CONVEX MONOTONE SEMIGROUPS

JONAS BLESSING*!, MICHAEL KUPPER*? AND MAX NENDEL**3

ABSTRACT. Based on the convergence of their infinitesimal generators in the mixed
topology, we provide a stability result for strongly continuous convex monotone semi-
groups on spaces of continuous functions. In contrast to previous results, we do not
rely on the theory of viscosity solutions but use a recent comparison principle which
uniquely determines the semigroup via its ['-generator defined on the Lipschitz set and
therefore resembles the classical analogue from the linear case. The framework also
allows for discretizations both in time and space and covers a variety of applications.
This includes Euler schemes and Yosida-type approximations for upper envelopes of
families of linear semigroups, stability results and finite-difference schemes for convex
HJB equations, Freidlin—Wentzell-type results and Markov chain approximations for
a class of stochastic optimal control problems and continuous-time Markov processes
with uncertain transition probabilities.
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2 STABILITY OF CONVEX MONOTONE SEMIGROUPS

1. INTRODUCTION

In this article, we consider sequences (Sy)nen of convex monotone semigroups on
spaces of continuous functions and give explicit conditions under which convergence
of their infinitesimal generators (A,)n,en guarantees convergence of the semigroups
(Sn)nen. In the linear case, such results are classical, cf. Kurtz [66] and Trotter [$1],
and can be applied, for instance, to obtain convergence results for Markov processes,
see, e.g., Ethier and Kurtz [35], Kertz [55,50] and Kurtz [68]. In addition, based on the
Crandall-Liggett theorem, c.f. Crandall and Liggett [20], the results can be extended
to nonlinear semigroups which are generated by m-accretive or dissipative operators,
see Brézis and Pazy [11] and Kurtz [67]. While this approach closely resembles the
theory of linear semigroups, the definition of the nonlinear resolvent typically requires
the existence of a unique classical solution of a corresponding fully nonlinear elliptic
PDE. As pointed out in Evans [36] and Feng and Kurtz [10], the necessary regularity
of classical solutions is, in general, delicate. This observation was, among others, one of
the motivations for the introduction of viscosity solutions, cf. Crandall et al. [25] and
Crandall and Lions |27]. In contrast to classical solutions, the latter have the stability
property that, under mild conditions, limits of viscosity solutions are again viscosity so-
lutions. A prominent example in this context is the vanishing viscosity method, where
smooth solutions of semilinear second order equations converge uniformly to the unique
viscosity solution of a fully nonlinear first order equation. Another remarkable stability
property of viscosity solutions is that every monotone approximation scheme, which is
consistent and stable, converges to the exact solution provided that the latter is unique,
cf. Barles and Souganidis [3]. Based on this result, it is possible to derive explicit con-
vergence rates for several numerical schemes for HJB equations, see, e.g., Barles and
Jakobsen |1, 2], Briani et al. [10], Caffarelli and Souganidis [18], Jakobsen et al. [53]
and Krylov [60-62]. Returning to the convergence of nonlinear semigroups, we would
like to discuss the results from Feng and Kurtz [10] which are motivated by the large
deviations principle for Markov processes. The approach in [10] combines results on
dissipative operators with key arguments from viscosity theory and has been applied
and extended in Feng [38], Feng et al. [39], Kraaij |57, 58] and Popovic [78]|. Here, the
resolvent equation (id —AA)u = f for the limit operator Au := lim,_, Ayu is solved
in the viscosity sense and needs to satisfy a comparison principle which does not hold
a priori but has to be verified on a case-by-case basis. Since the existence of a solution
is always guaranteed, the limit semigroup can then be constructed via the Euler for-
mula S(t)f := lim,—eo R(#/n)" f, where R(\)f denotes the unique viscosity solution of
the resolvent equation. By construction, the semigroup (S(t)):>0 is generated by the
operator A and one can show that S(¢)f = lim, o0 Sn(t) f.

In contrast to the previously mentioned results, the present approach neither relies
on the existence of nonlinear resolvents nor on the theory of viscosity solutions. Instead,
the key arguments are based on a recent comparison principle for strongly continuous
convex monotone semigroups, cf. Blessing et al. [10] and Blessing and Kupper |1 1] which
uniquely determines semigroups via their I'-generators defined on their Lipschitz sets.
Furthermore, due to an approximation procedure, it is typically sufficient to determine
the generators for smooth functions. These results allow us to proceed in the follow-
ing way. First, the limit semigroup is defined as S(t)f := lim;_,o Sy, () f for all (¢, f)
in a countable dense set, where the convergence for a subsequence (n;);en is guaran-
teed by a relative compactness argument. Since we only require convergence w.r.t. the
mixed topology rather than convergence w.r.t. the supremum norm, the latter can be
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verified by means of Arzéla-Ascoli’s theorem. After an extension to arbitrary (t, f), we
then show that the generator of (S(t))i>0 is given by Af = lim,_, A, f for smooth
functions f. At this point we would like to emphasize that the semigroups (S, )nen
satisfy the comparison principle from [10, 11| which transfers to (S(t)):>0. In particu-
lar, the limit semigroup does not depend on the choice of the convergent subsequence
(n7)ien and therefore satisfies S(t) f = lim, o0 Sy (t) f. This stability result for convex
monotone semigroups is stated in Theorem 2.3 while Theorem 2.7 also allows for dis-
cretizations in time and space. The latter covers a variety of approximation schemes
of the form S(t)f = lim, oo I¥* f, where (I,)nen is a family of one-step operators
describing the dynamics on a discrete time scale of size h,, > 0 with h, — 0 and
knhyn — t, see Theorem 2.9. This extension of the classical Chernoff approximation, cf.
Chernoff |22, 23], includes finite-difference methods for HJB equations, cf. Barles and
Jakobsen [2], Bonnans and Zidani [13] and Krylov [61,62], and Markov chain approxi-
mations for stochastic control problems, cf. Dupuis and Kushner [33] and Fleming and
Soner [11]. Moreover, Theorem 2.9 allows to construct nonlinear semigroups without
relying on the existence of nonlinear resolvents, e.g., in the context of upper envelopes
for families of linear semigroups, cf. Denk et al. [30], Nendel and Rockner [71] and Ni-
sio [73]. Finally, we remark that our notion of a strongly continuous convex monotone
semigroup coincides with the one in Goldys et al. [19], where it is shown that the func-
tion u(t) := S(¢)f is a viscosity solution of the abstract Cauchy problem dyu = Au with
initial condition u(0) = f. Hence, our approach is consistent with the theory of viscos-
ity solutions and thus Chernoff-type approximations can be seen as monotone schemes.
We refer to Fleming and Soner |11, Chapter I1.3] for a broad discussion on the relation
between semigroups and viscosity solutions and to Yong and Zhou [33, Chapter 4| for
an illustration of the interplay between the dynamic programming principle and vis-
cosity solutions in a stochastic optimal control setting. In addition, convex monotone
semigroups appear in the context of stochastic processes under model uncertainty, cf.
Coquet et al. [24], Criens and Niemann [28], Fadina et al. [37], Hu and Peng [51], Krak
et al. [59], Kiihn [63], Neufeld and Nutz [72| and Peng [77]. In many situations, these
semigroups admit a stochastic representation via BSDEs and 2BSDEs, cf. Cheridito et
al. [21], El Karoui et al. [34], Kazi-Tani et al. [54] and Soner et al. [30]. For stability
and approximation results for BSDEs, we refer to Briand et al. [15], Hu and Peng [52],
Geiss et al. [17] and Papapantoleon et al. [7].

The abstract results are illustrated in a variety of applications which we briefly discuss
at this point. In Subsection 3.1, we derive an implicit Euler formula and a Yosida
approximation for upper envelopes of families of linear semigroups. Here, we would
like to emphasize that difficulties in defining the resolvent of the supremum of linear
operators are avoided by considering the supremum over linear resolvents rather than
the nonlinear resolvent. We refer to Budde and Farkas [17], Cerrai [19], Kithnemund [6]
and Pazy [75] for the corresponding results on linear semigroups in different settings.
In Subsection 3.2 and Subsection 3.3, we study finite-difference methods, cf. Barles and
Jakobsen [2], Bonnans and Zidani [13], Dupuis and Kushner [33] and Krylov [61,62],
as well as the stability of convex HJB equations, cf. Barron and Jensen [/, 5], Crandall
and Lions [27], Frankowska [12] and Kraaij [58]. In Subsection 3.4, we consider explicit
Euler schemes for Lipschitz ODEs with an additive noise term, where the distribution
of the noise can be uncertain. Depending on the scaling of the noise this can either be
seen as a robustness result which states that, regardless of possible numerical errors,
the Euler scheme still converges to the solution of the ODE or as an Euler—-Maruyama
scheme for SDEs driven by G-Brownian motions, cf. Geng et al. [18, Section 3|, Hu et
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al. [50] and Peng [76,77]. The analysis of randomized Euler schemes is continued in
Subsection 3.5, where we focus on asymptotic convergence rates by means of a large
deviations approach, cf. Dupuis and Ellis [32], Dembo and Zeitouni [29], Feng and
Kurtz [10] and Varadhan [32] leading to Freidlin-Wentzell-type results, cf. Feng and
Kurtz [10] and Freidlin and Wentzell [13]. Finally, in Subsection 3.6 and Subsection 3.7,
we provide Markov chain approximations for a class of stochastic control problems, cf.
Dupuis and Kushner [33], Fleming and Soner [11] and Krylov [60], and continuous-
time Markov processes with uncertain transition probabilities, cf. Bartl et al. [$] and
Fuhrmann et al. [15].

2. SETUP AND MAIN RESULTS

2.1. The mixed topology and basic notations. Let x: R? — (0,00) be a bounded
continuous function with

k(x)

Ck := Sup sup < 00, (2.1)

z€R? |y|<1 K(z —y)
and denote by C,(RY) the space of of all continuous functions f: R? — R satisfying

[fllx = sup |f(z)]r(z) < oc.
zE€Rd
We endow C,(R%) with the mixed topology between || - ||,, and the topology of uniform
convergence on compacts sets, i.e., the strongest locally convex topology on CH(Rd) that
coincides on || - ||,-bounded sets with the topology of uniform convergence on compact
subsets. It is well-known, see [10, Proposition A.4|, that a sequence (fy,)nen C Cr(R9)
converges to f € C(RY) w.r.t. the mixed topology if and only if

sup || fulls <oo and lim [|f — fulleo,x =0

for all compact subsets K € RY, where ||f|oox = Supyex |f(x)|. Similarly, for a
family of functions (fs)s>0 C Cw(R?%) and t > 0, it holds f; = lim,_,¢ fs if and only if
SUP|s_¢|<s, | fslls < oo for some dg > 0 and, for every e > 0 and K & R?, there exists
d > 0 with || fs — ft]loo,x < € for all |s —t| < 6. Subsequently, if not stated otherwise,
all limits in C,(R?) are understood w.r.t. the mixed topology and compact subsets are
denoted by K € R%. We point out that the mixed topology is, in general, not metrizable
but generated by the uncountable family of seminorms
Plan),(Kn)(f) = sup sup an|f(2)|s(x),
neNxeK,

where (an)neny C (0,00) is a sequence with a, — 0 and (K,)nen is a sequence of
compact sets K, € R%. Moreover, the mixed topology has no neighbourhood of zero
which is || - [|x-bounded or, equivalently, bounded in the mixed topology. Nevertheless,
for monotone operators S: C,(R?) — C,(R?), sequential continuity is equivalent to
continuity and continuity is equivalent to continuity on || - || s-bounded subsets, see [70].
We further remark that the mixed topology coincides with the Mackey topology of the
dual pair (C,(R?), M, (R%)), where M, (R%) denotes the space of all countably additive
signed Borel measures p with

[ ) <

R K ()

where |p| denotes the total variation measure of p, see, e.g., [19]. In particular, the
mixed topology belongs to the class of strict topologies, c.f. [11,65,79]. Finally, relative
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compactness w.r.t. the mixed topology can be characterized by means of Aréla Ascoli’s
theorem and, due to the Stone—Weierstraf theorem, there exists a countable set of
smooth functions with compact support which is dense in C(R).

For functions f,g: R? — R, we write f < g if and only if f(z) < g(z) for all z € R?
In addition, let f*(z) := max{f(z),0} be the positive part and (7..f)(y) := f(z +y)
be the shift of a function f: R? — R for all z,y € R%. Closed balls with radius > 0
around zero are denoted by

Be, (ray(r) = {f € CRY: ||fll« <r} and Bga(r):={zeR%: |z| <7},

where | - | denotes the Euclidean distance. The space Lipy,(R?) consists of all bounded
Lipschitz continuous functions f: R? — R and, for every r > 0, the set of all r-Lipschitz
functions f: RY — R with sup,cga |f(z)| < r is denoted by Lipy,(R%,r). Moreover, we
define C{°(R?) as the space of all bounded infinitely differentiable functions f: R — R
such that the partial derivatives of all orders are bounded. Let Ry := {z € R: = > 0}.

2.2. Stability of convex monotone semigroups.

Definition 2.1. A strongly continuous convex monotone semigroup is a family (S(¢))>0
of operators S(t): Cx(RY) — C,(R%) satisfying the following conditions:
(i) S(0) =idc, (re) and S(s+t)f = S(s)S(t)f for all s,¢ > 0 and f € Cr(R9).
(i) S(t)f < S(t)g for all t > 0 and f,g € C(R?) with f < g.
(iii) S@E)Af + (1 —Ag) < AS@H)f + (1 —N)S(t)g for all t > 0, f,g € C.(R%) and
A€ [0,1].
(iv) The [mal])ping R, — C(RY), t+— S(t)f is continuous for all f € C,(RY).
Furthermore, the generator of the semigroup is defined by
d _S(h)f - f
A: D(A) = C,(RY), f l}g}g —
where the domain D(A) consists of all f € C,(R%) such that the previous limit exists.
The Lipschitz set £° consists of all f € C.(R?) such that there exist ¢ > 0 and tg > 0
with
1S@E)f — fllx <ct forall t |0,
while the upper Lipschitz set EfL consists of all f € C,(R?) such that there exist ¢ > 0
and ty > 0 with
I(S@E)f—F)Tllx <ct foralltel0,t).
We say that a set C C Cy(R?) is invariant if S(t): C — C for all ¢ > 0.

By definition, we have D(A) C £°% C L. Furthermore, in contrast to the theory
of strongly continuous linear semigroups, the domain D(A) is, in general, not invariant
under the nonlinear semigroup, see [31, Example 5.2]. This observation motivated the
study of invariant Lipschitz sets [12] and the upper I'-generator to obtain a comparison
principle for convex monotone semigroups [10,11]. The invariance of the sets £% and
Li and the comparison principle are stated in Theorem 2.3 and Theorem 2.4 below.

Assumption 2.2. Let (S, )nen be a sequence of strongly continuous convex monotone
semigroups (Sy,(t))i>0 on Cx(R?) with S, (£)0 = 0 for all n € N and ¢ > 0. We denote
by A, the generator of .S,, and impose the following conditions:

(i) For every r, T > 0, there exists ¢ > 0 with

HSn(t)f - Sn(t)an < CHf - g“/{
forall n € N, t € [0,7T] and f,g € Bg, (a)(7).
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(ii) For every € >0, r,T > 0 and K € R?, there exist ¢ > 0 and K’ € R? with

15 () f = Sn(t)gllco.ic < cllf = glloorr + €
forall n € N, ¢ € [0, 7] and f, g € B, (ra(r)-
(iii) For every f € Lipy(R?) and ¢ > 0, there exist §,t9 > 0 and (f,)nen C Cx(R9)
with f, — f and
150 (#) (T2 fn) — T Sn(t) full < et

for alln € N, t € [0,tp] and = € Bga(J).
(iv) For every f € Lip,(R?) and T > 0, there exists r > 0 with S,,(¢)f € Lip,(R%,r)
for all n € N and ¢t € [0, 7.

(v) For every f € C°(R?), there exists a sequence (fy)nen With f, € D(A,) for all
n € N and f, — f such that the sequence (A, f,)nen converges in C,(R%).

The following theorem is a consequence of the more general result that will be proved
in the next subsection.

Theorem 2.3. Let (Sy,)nen be a sequence satisfying Assumption 2.2. Then, there exists
a strongly continuous convex monotone semigroup (S(t))i>0 on Cx(RY) with

St f = lim Sp(tn)fu for all (f.t) € C.(RY) x Ry,

where (tn)neny C Ry and (fn)nen C Co(R?Y) are arbitrary sequences with t, — t and
fn = f. Furthermore, the semigroup (S(t)):>0 has the following properties:

(i) Let f € Co(R?) and (fn)nen be a sequence with f, € D(A,) for all n € N and

fn — f such that the sequence (Ay fn)nen converges in C.(RY). Then, it holds
f € D(A) and Af = limy—s00 Anfn. In particular, this is valid for all f € CS°(RY).

(ii) For every r,T >0, there exists ¢ > 0 with

1S@)f = SW)gllx <cllf —gllx forallt €[0,T] and f,g € Be, ga)(r)-

Furthermore, it holds S(t)0 = 0 for all t > 0.

(i4i) For everye >0, r,T >0 and K € R?, there exist ¢ > 0 and K' € R? with

1St f = St)glloo,ix < cllf = glloo,re +€

for allt € [0,T] and f,g € B, e (r).-

(iv) For every f € Lip,(R?) and & > 0, there exist 6,tg > 0 with

1SE) (12 f) = TaS@E) fll < et

for all t € [0,t9] and x € Ba(9).
(v) The sets £, LS and Lipy,(RY) are invariant.

Due to the comparison principle in [10,11], the semigroup (S(¢))¢>0 from the previous
theorem is uniquely determined by its infinitesimal generator. For later reference, we
state the results from |10, 11] in the following from.

Theorem 2.4. Let (Si(t))i>0 and (S2(t))i>0 be two strongly continuous conver mono-
tone semigroups on Cx(R?) with S;(t)0 = 0 and generators Ay and As, respectively,
such that the following conditions are satisfied for i = 1,2:

(i) It holds C*(RY) C D(A;) and A1 f = Asf for all f € C°(RY).

(ii) For every r, T >0, there exists ¢ > 0 with

15:(t)f = Si(t)gllx < cllf —gllx for allt €[0,T] and f,g € Be, ga)(r)-
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(i4i) For everye >0, r,T >0 and K € R?, there exist ¢ > 0 and K' € R? with
1S:(t) f = Si(t)glloo, i < cllf = glloo,rcr +€
for allt € [0,T] and f,g € B, @) (7).
(iv) For every f € Lip,(R?) and & > 0, there exist 6,tg > 0 with
||S’L(t)(7_xf) - Tsz(t)me < et

for all t € [0,tp] and x € Bga(6).
(v) It holds S;(t): Lip,(R%) — Lipy, (R?) for all t > 0.
Then, it holds S1(t)f = S2(t)f for allt > 0 and f € Cx(RY).

Proof. Tt follows from [11, Theorem 2.5| that

L5 N Lipy(RY) = £52 N Lip,, (RY) (2.2)
and therefore [10, Corollary 2.11] implies
S1(t)f = Sa(t)f for all (f,t) € CF(RY) x Ry. (2.3)

Indeed, the semigroups (S1(t))¢>0 and (S2(t))i>0 clearly satisfy [10, Assumption 2.4]
while equation (2.2), condition (ii) and condition (v) imply £ N Lip, (R?) C /Jf? and

S1(t): £ N Lip,(RY) — £ N Lipy,(RY)  for all ¢t > 0.

Moreover, due to condition (i) and (iv), we can apply |10, Lemma 3.6] to conclude that
(S1(t))i>0 and (S2(t))¢>0 have the same upper I'-generator on £ N Lipy, (RY). Hence,

Si(t)f < Sa(t)f forallt>0and f e CPRY

and reversing the roles of (S1(t)):>0 and (S2(t))¢>0 yields that equation (2.3) is valid.
Since C°(RY) C C,(R?) is dense, it follows from condition (iii) that

Si(t)f = Sa(t)f for all (f,t) € Cx(RY) x Ry. O

2.3. Discretization in time and space. Let (7, )nen and (X, )nen be two sequences
of subsets T, € Ry and X,, C R? such that, for every ¢t > 0 and = € R?, there exist
tn € Tn and x,, € X, with ¢, — ¢ and z,, — x, respectively. We assume that 0 € 7, and
stteT, foralln € Nand s, t € T, with s > t. If h,, := inf(7, \ {0}) > 0, it follows
that 7, = {kh,: k € No} is an equidistant grid. Otherwise, the set 7, is already dense.
In addition, the sets X,, are supposed to be closed and satisfy x +y € X,, for alln € N
and z,y € X,. The space C,(X,,) consists of all continuous functions f: X,, — R with

[fllk,x,, := sup [f(z)[k(z) < oc.
z€Xn

Let Be, (x,)(r) == {f € Cu(Xn): |fllx,x, <7} for all > 0. Moreover, for a sequence
(fo)nen with f, € Cr(X,,) and f € C.(R?), we define f :=lim,_,o0 f, if and only if

sup ”an/i,Xn <oo and lim ||f— anOO,Kn =0
neN n—o0

for all K € R?® with K N X, # () for all n € N, where K,, := K N X,,. The continuity
of f guarantees that the previous limit is uniquely determined. Indeed, assume by
contradiction that there exists another function g € C,{(Rd) with g = lim,, o0 fr and
f # g. Then, there exists € > 0 with A := {z € R%: |f(z) —g(z)| > e} #0. Fixz € A
and choose a sequence (2, )nen With z, € X, and z,, — x. Since A is open, there exists
ng € N with z,, € A for all n > ng. For K := {z,: n € N} U {z}, we obtain

e<|f _QHOO,Kn <|If - anOO,Kn + | fn — QHOO,Kn —0 asn — oo
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In addition, we also fix a family {S,(t): n € N,t € T,} of operators
Sn(t): Cu(Xpn) — Cr(Xn),

and define S, (t) f := Sn(t)(f]x,) foralln € N, t € T,, and f € C.(R%), i.e., we consider

C.(RY) as a subset of C,(X,,) using the possibility to restrict functions from R to X,.

Similar to Definition 2.1, a family (S, (¢)):e7;, is called convex monotone semigroup on

Cr(X,) if the operators S,(t): Cx(X,) — Ck(X,) are convex and monotone for all

n € N and t € T,, where the space C(X,,) is endowed with the pointwise order, and

satisfy S, (0)f = f and Sp(s+t)f = Sn(s)S(t)f foralln € N, s,t € T, and f € Cr(Xy,).
If inf(7,\{0}) > 0, the generator of (S, (t))ieT;, can not be defined as the limit

This observation motivates the following rather technical definition and corresponding
condition (v) in Assumption 2.6. However, if 7, = R, for all n € N, it is sufficient to
show that, for every f € C°(R?), there exist f, € D(A,) with f,, — f such that the
sequence (A, fn)nen converges in Cy(RY). Moreover, for Chernoff-type approximations,
we only have to verify that the approximation scheme satisfies a reasonable consistency
condition. For details, we refer to Theorem 2.7 and Theorem 2.9 below.

Anf =1i
f=

Definition 2.5. The asymptotic Lipschitz set Ly consists of all f € C,(R?) such that
there exist ¢ > 0 and sequences (tn)nen and (fn)nen with ¢, € To\{0}, fn € Cr(Xn),
fn— f and

|Sn(t) fn — follk,x, <ct forallmeNandtel0t,NT,. (2.4)

Furthermore, the asymptotic domain Dy consists of all f € C,(R?) such that there exist
g € C.(RY) and a sequence (fy)nen with f, € Cx(X,) and f, — f which satisfy the
following conditions:

(i) There exist ¢ > 0 and (t5)nen With ¢, € 7,\{0} such that inequality (2.4) is valid.
(ii) For every K € R?, there exists (hy)nen with Ay, € (0,t,] N Ty, by — 0 and
Sn(hn)fn - fn —g

h” 00,Kn,

For every n € N and r > 0, we denote by Lipy (X,,r) the set of all r-Lipschitz
functions f: X,, — R with || f|leo,x,, <.

nh%rrolo ‘ = 0. (2.5)

Assumption 2.6. Suppose that (S, )ncn is a sequence of convex monotone semigroups
(Sn(t))teT, on Ck(Xy) with Sp(¢)0 = 0 for all n € N and t € 7,. In addition, the
following conditions are satisfied:

(i) For every r,T" > 0, there exists ¢ > 0 with
15 (@) f = Sn(t)gllxx, <clf —g
foralln € N, t € [0,T]N Ty, and f, g € Be, (x,)(r)-
(ii) For every € >0, r,T > 0 and K € R?, there exist ¢ > 0 and K’ € R? with
150 () f = Sn(t)gllo, i < €llf = glloo,iy, +€
foralln € N, t € [0,T]N Ty, and f, g € Be, (x,)(r)-

(iii) For every f € Lipy(R%) and ¢ > 0, there exist 6,#y > 0 and a sequence (fy)nen
with f, € Cx(X,) for all n € N, f,, — f and

HSTL(t)(Txfn) - TxSn(t)anm,Xn <et

K, Xn
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foralln e N, t € [0,t9] N Tn, v € Bx, (d) and y € X,,.

(iv) For every f € Lip,(RY) and T > 0, there exists r > 0 with S,(t)f € Lipy,(Xy,7)
forallme Nand t € [0,7]NT,.

(v) It holds C°(R?%) C Dy.

The following theorem is the main result of this article.

Theorem 2.7. Let (Sy,)nen be a sequence satisfying Assumption 2.6. Then, there exists
a strongly continuous convexr monotone semigroup (S(t))i>0 on Cx(RY) with

S(t)f = lim Sy(tn)fn for all (f,1) € Co(RY) x Ry, (2.6)

where (tp)nen and (fn)nen are arbitrary sequences with t, € T and fp, € Ck(Xy,) for
alln €N, t,, — t and f, — f. Furthermore, the semigroup (S(t))t>0 has the following
properties:

(i) It holds Lo C L5 and Dy C D(A). Moreover, for every f € Dy and K € R,

Sn(hn fn - fn _ AfH — 0, (2.7)

n

~

lim
n—oo

>

OO7K7L
where (hp)nen and (fn)nen are arbitrary sequences satisfying the conditions (i)
and (ii) in Definition 2.5. In particular, (2.7) is valid for all f € C°(RY).

(ii) For every r,T >0, there exists ¢ > 0 with

1S(@)f = SW)gllx < cllf —gllx forallt €[0,T] and f,g € Be, gra)(r)-
Furthermore, it holds S(t)0 = 0 for all t > 0.
(i4i) For everye >0, r,T >0 and K € R?, there exist ¢ > 0 and K' € R? with
1S(t)f = St)glloo,ix < cllf = glloo,rer +€
for allt € [0,T] and f,g € B, (7).
(iv) For every f € Lip,(R?) and & > 0, there exist 6,tg > 0 with
1S@)(7ef) = TS flln < et
for all t € [0,ty] and x € Bga(9).
(v) The sets £, LS and Lipy(RY) are invariant.

Proof. First, we construct the family (S(t))i>0 of operators S(t): Cy(R?) — C,(R?).
Let D C C°(R?) and T C Ry be countable dense sets with 0 € 7. Moreover, for every
t €T, let (tn)nen be a sequence with ¢, € T, and t,, — t. For t = 0, we choose t,, := 0
for all n € N. Since Assumption 2.6(i) and (iv) imply that the sequence (Sy(tn) f)nen is
bounded and uniformly equicontinuous, we can use Lemma A.1 and a diagonalization
argument to choose a subsequence (1;);eny C N such that the limit

S(0)f = lim Sy, (tn)[ € C.(RY) (2.8)

exists for all (f,t) € D x T. In the order to extend the family (S(¢))ic7 to arbitrary
points in time, we fix f € D and T > 0. Since f € Loy, there exist ¢; > 0 as well
as sequences (hy)nen and (fp)neny with h, € T,\{0} and f, € Cx(X,,) for all n € N,
fn— f and

lex, <cih foralln € Nand h € [0, hy] N Ty
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Let s,t € [0,T]NT with s < t. We choose s,,t, € T, with s,, — s and t,, — ¢ and
define k,, := max{k € Ng: kh,, <t, — s,,} for all n € N. By Assumption 2.6(i), there
exists co > 0 with
|Sn(8n) fr — Sn(tn)anN,Xn = [1Sn(8n)Sn(tn — sn) fr — Sn(sn)anK,Xn
< c2||Sn(tn — sn)fn — fn”H,Xn

< C2||Sn(knhn)8n(tn — Sp — knhn)fn - Sn(knhn)fn 5, Xn

kn—1
+ 2 Z 155 (i) S () fro = Sn(ibn) fullx,x.,

i=0

< Clcg(tn — Sp — k’nhn) + CganSn(hn)fn - fn”n,Xn

< C(tn - Sn)

for all n € N and ¢ := 2¢;c2. Equation (2.8) yields
|S(s)f —St)fllx <c|ls—t| foralls,te0,T]NT. (2.9)

Now, let ¢ € [0, T] be arbitrary and choose a sequence (f,)nen C [0, 7] NT with £, — ¢.
Inequality (2.9) guarantees that the limit

S(t)f = lim S(t,)f € C.(RY) (2.10)

exists and does not dependent on the choice of the approximating sequence (£, )pen. In
order to extend (S(t));>0 to the whole space C,(R?), we fix t > 0 and f € C,(R?). By
Assumption 2.6(ii) and the previous construction, for every e > 0, r > 0 and K € R,
there exist ¢ > 0 and K’ € R? with

1S(t)g1 — S(t)g2lloo,x < cllgr — g2lloo,x” + € (2.11)

for all g1, 92 € Be, ray(r) ND. Let (fn)nen C D be a sequence with f, — f. Due to
Assumption 2.6(i) and equation (2.10), the sequence (S(t)fn)nen is bounded. Hence,
by inequality (2.11), the limit

S(t)f := lim S(t)f, € Cx(R?)
n—oo
exists and does not dependent on the choice of the approximating sequence (fy,)nen-
The family (S(t))s>0 consists of convex monotone operators S(t): C.(R%) — C,(R9)
which have the desired properties (ii) and (iii) such that S(t): Lipy,(R?) — Lip,(R%) for
all t > 0. Indeed, these properties are an immediate consequence Assumption 2.6 and

the previous construction.
Second, we show that the family (S(t)):>0 is strongly continuous and satisfies

St f = lli>r<r)10 Sy (tn,)f for all (f,t) € Co(RY) x T, (2.12)

where (t,,)ien is the same sequence as in equation (2.8). To do so, let f € C.(R9),
t>0,e>0and K € R? Furthermore, let (f,)nen C D be a sequence with f, — f
and 7 := sup,,c || fullx. Due to property (iii), there exist ¢ > 0 and K’ C R? with

15(s)g1 — S(5)92llco,x < cllg1 — 92loo,x7 + §
for all s € [0,¢ + 1] and g1, g2 € Be, (ray(7). Subsequently, we fix n € N with

GCHf - fn”oo,K’ <e.
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Due to inequality (2.9) and inf e k() > 0, there exists 6 € (0,1] with
1S(8)f = St flloo,x < IS(8)f = S(8) fulloo, i + 1S(8) fr — S(t) frlloo,.
+[[S(t) frn — S(t) flloo,x
<2¢|f = falloogr + 15(8) frn = S(t) fulloo,x <€

for all s > 0 with |s — t| < § which shows that the mapping Ry — C,(R%), t — S(t)f
is continuous. In order to verify equation (2.12), we fix f € C.(R%), t € T, ¢ > 0 and
K € R Let (fu)nen C D be a sequence with f, — f and define r := sup,,cy || fnlx-
Due to Assumption 2.6(ii) and property (iii), there exist ¢ > 0 and K’ € R? with
[Sn(tn)g1 — Sn(tn)gellc i, < cllgr — g2lloo,x’ + %7
1591 — St)g2llo0.rc < cllgr — galloo.x” + § (2.13)

for all n € N and g1, 92 € Bg, (re)(r). Subsequently, we fix k € N with
GCHf - kaoo,K’ <e.
Equation (2.8) yields Iy € N with
1S@) f& — Sny(tn) frlloo, i, < §  forall i > lo. (2.14)
We combine inequality (2.13) and inequality (2.14) to obtain
1S@)f = Sy (tn) flloo,r6n, < IS = S@) frlloo,x + [1S@) fi = Sy (Eny) fill oo, 1o,
+ HSnz (tnz)fk — Sn, (tnl)fHOO7Knl
< 2C||f - fk“oo,K’ + ”S(t)fk - Snl(tnl)fknoo,Knl + % <e
for all I > Iy and therefore S(t)f = lim;_,o0 Sy, (tn,) f-
Third, for every ¢t > 0 and f € C,(R?), we show that
S(0)f = Jim Sy (tn) f (215)

where (t,)nen and (fn)nen are arbitrary sequences with ¢, € 7T, and f,, € C,(X,) for
alln € N, ¢, — t and f,, = f. We define T := sup,,en tn and r := sup,en x|l follr, X0
where ¢, is defined by equation (2.1). Let e > 0 and K € RY. Due to Assumption 2.6(ii),
there exist ¢ > 0 and K’ € R? with
150 (8)g1 = Sn(8)g2llo, i, < cllgr — g2llos, ks, + %
15®)g1 = S(t)g2lloc, i < cllgr = g2lloo,x” + % (2.16)
foralln € N, s € [0,7]N T, and g1, g2 € Bc, (x,)(r). Moreover, there exist ng € N and
g e BCH(R‘i) (T‘) N C?(Rd) with
max{(|f = glloo 7 [[fn = glloo.ry } < 7; forall n.>mnyg. (2.17)

Indeed, let 7: R — R be an infinitely differentiable function with > 0, supp(n) C
Bga(1) and [gqn(z)da = 1. For every n € N and = € R?, we define

@)= [ ((FGe =) Am)V (=)o) d,

where 7,(y) := nn(ny). It holds g, € CP(RY), || f — gnllco.x’ — 0 and equation (2.1)
implies ||gn|lx < ¢kl fllx <7 for all n € N. In combination with || f — fulloo,xz — O this
proves equation (2.17). It follows from the proof of equation (2.9) and inf,c g k(z) > 0
that there exists § > 0 with

HSH(Sl)g - Sn(52)g||oo,Kn < % (218)
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for all n € N and s1,s2 € [0, 7] N T, with |s1 — s2| < . Furthermore, since (S(t))>0 is
strongly continuous, we can fix s € [0, 7] N7 with |s — t| < § and

15(s)g — S(t)glloo,ic < - (2.19)

By equation (2.12), there exist a sequence (S, )nen with s, € [0,7]N 7T, and Iy € N with
ny, > no, | — ty,| < and

1S, (50,)9 = S(8)glloo,rc,, < 5 for all 1 > lo. (2.20)
We combine the inequalities (2.16)-(2.20) to obtain
1Sy (tny) friy = S (&) fllso, K,
< ||Sny (tny) fry — Shy (tnz)QHOO,Knl + 1S, (tn,)g — Snz(snz)gHOO,Knl
+ 15n, (8n,)g = S(8)9lloc 16, + [15(s)g = S()glloc.rc + 1S(t)g — S(E) flloo. i
< cllfur = gl +ellf = gllooc + F <€

for all [ > lg. This implies Sy, (tn,) fn, — S(t)f.
Fourth, we show that (S(t)):>0 is a semigroup. Clearly, it holds S(0) = id¢, (ra). In

order to show the semigroup property, let s,¢ > 0 and f € C,(R?). Choose s,,t, € T,
with s, — s and t,, — t. For every [ € N,

S(s+t)f—S(s)St)f
= (S(S + t)f - Sm(sm + tnz)f) + (Sm(snz)snz (tnz)f - Sm(snz)s(t)f)
+ (S, (sn,) S f — S(8)S(E)f).

Equation (2.15) implies that the first and third term on the right-hand side conver-
gence to zero as | — o0o. Moreover, for every ¢ > 0 and K € R¢, it follows from
Assumption 2.6(i) and (ii) that there exist ¢ > 0 and K’ € R? with

1Sy (800 ) Sy (Eny ) f = Sy (50) S () fllow, 16, < €llSny (Eny) f = S(8) flloo ey, + €
for all | € N. Hence, we can use equation (2.15) to obtain
1t (S, (50,) S, (b ) — S (30,)S(0)) = 0
and therefore S(s + t)f = S(s)S(t)f. In particular, for every ¢t > 0 and f € £, there
exist ¢ > 0 and hg > 0 with
1S(h)S()f = S@) fllx < cllS(h)f — fllx < ch  for all h € (0, ho]

which shows that S(t): £5 — £ for all ¢+ > 0. Furthermore, the invariance of £7 is
guaranteed by Lemma B.2.
Fifth, we show that, for every f € Lip,(R%) and € > 0, there exist §,%y > 0 with

[SE)(7af) = 72S@) flln < et

for all t € [0,t0] and @ € Bga(d). Let f € Lip,(R%) and € > 0. By Assumption 2.6(iii),
there exist d,tg > 0 and a sequence (fy,)nen With f, € Cx(X,), frn — f and

190(t) (T fn) = TwSn(t) fullw,x, < et (2.21)

forallm € N, t € [0,t0] N Ty, « € Bx, (0) and y € X,,. Let ¢t € [0,¢0], 2 € Bra(d) and
y € RZ. Choose t,, € [0,t] N Ty, and 2,y € X, with t,, — ¢, 2, — = and ,, — y. For
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every [ € N,

1S() (72 f) — 7S () f1(y)

< (SO (/) Y) = (SE(T2) (Yn) | + S @) (7 f) = Sy (b)) (T, ) (i)
+ [Sn, (tnz)(Txnlf) Ta:nl i (tny) 1 (Yny) + |7'acnl Sy (tn)) f — Txnls(t)f’(ym)
+ (T, S ) n) — (7S5 () ) (w)]-

The first and the last term on the right-hand side converge to zero because S(t)(7.f)
and S(t)f are continuous functions while equation (2.15) guarantees that the second

and fourth term Vanish as well. Moreover, due to inequality (2.21), the third term can

be bounded by ( ) which converges to % We obtain

[(S(E)(72f))(y) — (7S(6) ) ()|s(y) < et.

Sixth, we show that £y C £% and Dy C D(A). In addition, for every f € Dy and
K € R%, we prove that

lim HS”(h”)f” - AfH (2.22)
n—oo hoy, 0, Fn
where (hp)nen and (fy)nen are arbitrary sequences satisfying the conditions (i) and (ii)
in Definition 2.5. Inequality (2.4), Assumption 2.6(i) and equation (2.15) guarantee
that Lo C £5. In the sequel, we fix f € Dy and K € R Let (fp)nen and (t,)nen be
sequences as in the definition of the asymptotic domain. Furthermore, we also fix € > 0
and define T' := sup,,cytn. Assumption 2.6(i) and the fact that x > 0 is continuous
yield Ao € (0, 1] with

sup sup ollSu(®) fullex, < inf “EE (2.23)
neN¢€[0,T]N Ty zeK
We fix A € (0, Ag] with AT" < ¢ and use inequality (2.4) to define
n h n - Jn
ri=sup = sup Snlh)fn = fn + fn < 00. (2.24)
neN he(0,tn]NTn Ah K, Xn
Assumption 2.6(ii) guarantees the existence of ¢ > 0 and K’ € R¢ with
£
150 ()g1 = Sn(t)g2lloc, 16, < €llgr = g2lloc, iy, + 3 (2.25)

3

for all n € N, t € [0,T] N T, and g1,92 € Be,(x,)(r). Choose g € C,(R?) as in the
definition of the asymptotic domain and a sequence (hy,)nen with hy, € (0,t,] N T, and
hy,, — 0 satisfying equation (2.5) with K’. In particular, there exists ng € N with

' Sn(hn)fn - fn . QH

hay,
In the sequel, all functions are evaluated at a fixed point x € K. For every n > ng and
k € N with kh,, < T, we use the semigroup property of (Sy(¢))tc7,, Lemma B.1 and

<

£ foralln > ny. (2.26)
co,K!  3C
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inequality (2.23) to estimate

k

Su(khn) fo = o =Y (Sn((i = 1)hn)Sn(hn) fr = Su((i = 1)hn) fn)

< )\hnzk: (Sn((i —1)hy) (W + fn> — Sn((i — l)hn)fn)

k
< A Y Sn((i = 1)hn) <W + fn> + k};”’f.

Furthermore, it follows from equation (2.24) and inequality (2.25) that

k
M 3 S0 = 1)) (Sn(’%)fn—fn N fn> | ke
=1

Ay, 3
y 1 khne
= hn n((2 —1)hy 3 n -
A ;s ((i—1)h )</\g+f>+ 3
- Sulhn)fn = f 1
n L ((i — 1Dh, Zn\mjin  Jn ) =S, ((i— Dhy) | = L
+ Ah ;(S’((z )h)( e +f> Sn((i )h)<)\g+f>>
k
. 1 Sn(hn)fn - fn 2khy,e
< n n —1 n N\ n (O | .
< Ah ;S((z )h)(/\g+f>+ckh . OOVK;IJF 3
Combining the previous estimates with inequality (2.26) yields
k
. 1
Su(kha) = fo < Ao 3 Su((G = D) (S0 )+ bhae. - 220)
i=1

Fix t € [0,T] and define k,, := max{k € Ny: kh,, < t} for all n € N. In addition, we
define i := max{i € N: (i — 1)h,, < s} for all s € [0,¢] and n € N. Since kyh, — t and
it — s for all s € [0, ¢], we can use equation (2.15), inequality (2.27), Assumption 2.6(i)
and the dominated convergence theorem to conclude

S(t)f - f = lliglo (Snl(knlhm)fnl - fnl)
t knl 1
< ll—if&)\/o Zzl Spy ((6 = 1)ha,) ()\g + fm) ]l[(i—l)hnl,ihnl)(s) ds + et

—00 A

_ )\/Ot S(s) (}\g + f> ds + <t. (2.98)

t 1
_ )\/ lim Sy, (33, ~ Dha) <g + fm> ds + ¢t
0

The previous estimate holds uniformly for all A € (0, \o] with AT < A\g and ¢ € [0, T,
where \g depends on € > 0 and K € R?. Concerning the lower bound, we observe that
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the semigroup property and Lemma B.1 imply
Sn(khn)fn - fn

k
=1
k
> N 3 (006 1) (S0 = ) s, iy, )

i=1
for all k,n € N and A > 0 with Ah,, < 1. Hence, similar to the previous arguments, one
can show that there exists A\; € (0, 1] with

St f—f> —)\/OtS(s) (—ig—l—f) ds —et (2.29)

for all A € (0,\] with AT" < A; and t € [0,7], where \; also depends on £ > 0 and
K € R% Since inequality (2.28) and inequality (2.29) hold uniformly for all 2 € K, it
follows from the strong continuity of (S(¢));>0 that

S(h)f—f y

lim H
h o0, K

hl0

=0.

Note that the function g € C,(R?) does neither depend on the choice of K’ € R? nor
on £ > 0. Since K € R? was arbitrary, we obtain f € D(A) with Af = g.

Sixth, we verify equation (2.6) by showing that the semigroup (S(t))i>0 does not
depend on the choice of the convergent subsequence in equation (2.8). For every subse-
quence (N )ren C N, there exist a further subsequence (7, );en and a strongly continu-

ous convex monotone semigroup (S(t));>0 which has the properties (i)-(v) and satisfies
St f = Jim S, (tay, ) f, for all (f,1) € Cu(R?) x Ry,

where (t,)nen and (fn)nen are arbitrary sequences with t, € T, and f,, € Cx(X,,) for
alln € N, t, — t and f, — f. Hence, we can apply Theorem 2.4 to obtain
S(t)f = S(t)f for all (f,t) € Cx(RY) x Ry.

Since every subsequence has a further subsequence which converges to a limit that is
independent of the choice of the subsequence, we conclude

S(t)f = lim Sp(tn)fn forall (f,1) € C.(R%) x R,

where (t,)nen and (fn)nen are arbitrary sequences with ¢, € 7, and f,, € C,(X,) for
alneN, t, > tand f, — f. d

Theorem 2.3 follows immediately from Theorem 2.7 if we verify that C%O(Rd) C Dy.

Proof of Theorem 2.3. Let f € C.(RY) and (f,)nen be a sequence with f, € D(A,)
for all n € N and f,, — f such that the sequence (A, f,,)nen converges in C, (R?). For
every n € N and ¢ > 0, it follows from |11, Lemma 2.3] that

Sn(t) fr — fn < /0 (Sn(8)(fn + Anfn) — Sn(s) fn) ds. (2.30)

In the sequel, we argue similarly to obtain a lower bound. Due to f, € D(A,) C £ and
Assumption 2.2(i), the mapping [0,00) = R, ¢ — (Sp(t)fn)(x) is Lipschitz continuous
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and therefore satisfies

(Su(®) fo — fu) (@) = /0 %(Sn(s) f)(x)ds for all £ > 0 and o € RY.

Moreover, for every n € N, t > 0 and h € (0, 1], we can use Lemma B.1 to estimate

Sn(t) frn = Sn(t)Sn(h) fr

- Sn(t>(fn - Anfn) - Sn(t)fn

h
< 8,00 (2250 5,08 ) - 8,0, (08 + 8,08, = 8,0 — Au)
< 3500 (2 (8u0 o~ fut Aufy = FOI L) g )

1
- §Sn(t)(fn - Anfn) - Sn(t)sn(h)fn + Sn(t)fn-
The strong continuity of (S, (t))r>0, Assumption 2.2(ii) and f,, € D(A,) imply that the
right-hand side converges to zero as h — 0. Hence,

Su(t)fo — fu > — /0 (Su(5) (foa — Anfa) — Su(s) /) ds (2.31)

for all n € N and ¢ > 0. Since (A, fn)nen is bounded, it follows from inequality (2.30),
inequality (2.31) and Assumption 2.2(i) that there exists ¢ > 0 with
|Sn(t) fn — fullx < ct foralln € Nand ¢t € [0,1].

This shows that f € £o. Furthermore, the limit g := lim, o0 A, fn € Cw(R?) exists by
assumption. Hence, for every n € N and K € R%, we can choose h,, € (0, 1] with

el W
< Anfa = glloorx + 5 — 0.
This shows that f € Dy. In particular, Assumption 2.2(v) implies C{°(R?) C Dy. Now,
the claim follows from Theorem 2.7. O

- Anfn

+ ”Anfn - g”oo,K
00, K

2.4. Chernoff-type approximations. Subsequently, we focus on the case, where 7,
is an equidistant grid. For this purpose, let (h,)nen C (0, 00) be a sequence with h,, — 0
and define 7, := {khy,: k € Ny} for all n € N. Furthermore, let (X,,),en be a sequence
of closed sets X,, C R? with = + y € X,, for all 2,y € X,, such that, for every z € R,
there exist =, € X,, with z,, — =. Then, every semigroup (S(t)):e7;, is of the form

Sp(khp) =IFf = (I,0...01,) f with I,f:=S(hn)f,
D e ——
k times

where I0f := f. Hence, the corresponding limit semigroup (S(t));>o from Theorem 2.7
is obtained by iterating a sequence (I, )ncn of one-step operators. In many applications,
the latter have an explicit representation from which one can derive properties of the
one-step operators that are transferred to the limit semigroup. In the case X, = RY,
this procedure has been used to construct and approximate nonlinear semigroups, see,
e.g., [10-12] and the references therein. Now, due to the possibility of discretizing the
space via a sequence of subsets X,, C R?, we can show that, under reasonable stability
and consistency conditions, every approximation scheme consisting of convex monotone
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operators converges to a convex monotone semigroup. Moreover, the latter is uniquely
determined by its infinitesimal generator which satisfies

Af = lim /=]

n—oo Ay,

for all f € C°(RY).

In the sequel, we consider a sequence (I,)nen of operators I,: C,(X,,) — Cx(X,) and
impose the following assumption. Note that, apart from condition (ii), all the required
properties are preserved during the iteration. Moreover, in Subsection 2.5, we discuss
sufficient conditions on the one-step operators I, which guarantee that the iterated
operators I,]’f are uniformly equicontinuous on bounded sets w.r.t. the mixed topology.

Assumption 2.8. The operators (I,,)nen are convex and monotone with 7,0 = 0 for
all n € N. Furthermore, they satisfy the following conditions:

(i) There exists w > 0 with

NI f — Inglle,x, < e || f — 9llk,x, forallneNand f,g e Cy(Xy,).
1) For every e > 0, r, 7" > 0 an € R, there exist ¢ > 0 an S wit
i) F 0, 7,7 >0and K € R% th i 0 and K’ € R? with

1Ef = Tiglloo s, < cllf = gllocscs, +€
for all k,n € N with kh,, <T and f,g € BCN(XR)(T‘).
(iii) There exist dp € (0, 1] and L > 0 with
||In(Tzf) - Tac[anH,Xn < L?“hn|l‘|

for all n € N, x € Bx, (o), r > 0 and f € Lip, (X, 7).
(iv) It holds I,,: Lipy,(Xy,7) — Lipy, (X, e?" ) for all » > 0 and n € N.
(v) For every f € C°(RY), there exists g € Cy(R?) with g = limy, o0 %
We recall from Subsection 2.3 that the convergence in condition (v) means that
Inf = f Inf - f
T Y

H =0 forall K € R%
hn n 00, Kn,

sup
neN

< oo and lim’
n—oo

K, Xn
We obtain the following result that will be frequently used in the rest of this article.

Theorem 2.9. Let (I,)nen be a sequence satisfying Assumption 2.8. Then, there exists
a strongly continuous conver monotone semigroup (S(t))i>0 on Cyx(R?) with S(t)0 = 0
such that

S()f = lim I¥f for all (f,t) € Co(RY) x Ry,
where (k!)nen C N and (fn)nen with f, € Cu(Xy) are arbitrary sequences satisfying
ki hy, — t and f, — f. Moreover, the following statements are valid:
(i) It holds C*(R?) C D(A) and

Af = lim In‘];n_f

n—o0

(i3) It holds ||S(t)f — S(t)gllx < e“!||f — gllx for allt >0 and f,g € C.(R%).
(1ii) For everye >0, r,T >0 and K € R?, there exist ¢ > 0 and K' € R? with

1S(t)f = St)glloc,xx < €llf — glloo,r + €
for allt € [0,T] and f,g € B, (7).

for all f € CRP(R?).!

IThe statement is valid for all fe C,{(Rd) such that the limit g := lim, o % € C, exists.
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(iv) For every r,t >0, f € Lip,(r) and x € Bga(do),
IS(t) (7o f) = 7aS(E) fllx < Lrte’|a].

Furthermore, it holds S(t): Lipy,(r) — Lipy(e“'r) for all v,t > 0.

Proof. We define S, (t) := I,’if forallm € N, t := khy, € T, and f € Cx(X,,). In order to
apply Theorem 2.7, we have to verify Assumption 2.6. The sequence (S,)nen consists
of convex monotone semigroups on C,(X,,) with S,(¢)0 = 0 and Assumption 2.6(ii) is
valid due to Assumption 2.8(ii). For every k,n € N and f,g € C(X,), it follows by
induction from Assumption 2.8(i) that

1% f = Ingllex, < e |1 f = gll x, (2.32)
showing that Assumption 2.6(i) is satisfied. Next, we show by induction that
”Ir]f(Txf) - TzlsfHH,Xn < erhnewkh”x‘

for all k,n € N, z € Bx, (), r > 0 and f € Lip,(Xy,,r). For k = 1, the claim holds
due to Assumption 2.8(iii). Moreover, for the induction step, we use inequality (2.32)
and Assumption 2.8(iv) to obtain

12 (o f) = 7 Iy ™ fllw x,
< Hfﬁfn(mf) - Iﬁ(TmInf)”n,Xn + HIs(TmInf) - Tz[sfnf”n,Xn
< k|| Ly (1o f) = Toln fllex, + Le“  rkhye™ |z
< ek Lrhy || + LrkhpeF Dk 2| < Lr(k + 1) hype*FHhn ||
Hence, Assumption 2.6(iii) is satisfied and Assumption 2.6(iv) and (v) are an immediate

consequence of Assumption 2.8(iv) and (v). Now, Theorem 2.7 yields the claim. O

2.5. Discussion of Assumption 2.6. In the sequel, we discuss sufficient conditions
that guarantee the required uniform equicontinuity on bounded sets w.r.t. the mixed
topology. For families of convex monotone operators, this condition can be equivalently
characterized by continuity from above, see Appendix C. Throughout this section, let
(T)nen and (X, )nen be sequences of subsets 7, € Ry and X,, C R?, respectively, such
that X, is closed for all n € N. Moreover, let {S,(t): n € N,t € T,} be a family of
convex monotone operators Sp(t): Cu(X;) — Fu(X,,) with S, ()0 = 0 and

sup  sup sup |Sn () fllk,x,, < oo forall r,T" > 0. (2.33)
neNte[0,TINTn fEBcy, (x,) (1)

Here, the space F,(X,,) consists of all functions f: R? — R with || f|. < oo.

Lemma 2.10. The following two statements are equivalent:
(i) For every T >0, K € R? and (fi)ren C Cu(RY) with fi, | 0,

sup sup sup (Sp(t)fr)(x) 0 ask — oo.
neN t€[0,T]NTy, z€Kn

(ii) For everye >0, r,T >0 and K € R?, there exist ¢ > 0 and K' € R? with
19 () f = Sn(t)glloo, i, < €llf = glloo,rey, + €
foralln €N, t € [0, TN Ty and f,g € Bc, (x,)(r)-
Proof. Apply Corollary C.2 with I := N x [0,T], X, 4 := X, and @, 4) := Sp(t). O
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The next lemma is, despite its simple nature, very useful in applications to Markovian
transition semigroups under model uncertainty, since it typically reduces to bounding
certain moments.

Lemma 2.11. Let &: R — (0,00) be another bounded continuous function such that,
for every € > 0, there exists K € X with

k)
sup <e.
zeKe ’{(l‘)
Moreover, for every r, T > 0, there exists ¢ > 0 with
190 () fllz.x. < cllfllzx,
foralln € N, t € [0,T]N T, and f € Be, (x,)(r). Then, for every e >0, r,T > 0 and
K € R?, there exist ¢ > 0 and K’ € R? with
150 (t).f = Sn(t)gllo, i < €llf = glloo,icy, + €

foralln €N, t € [0, T]NTy and f,g € Be, (x,)(r)-
Proof. Apply Corollary C.3 with I := N x [0,7], X(,4) := Xpn and @, 4y := Sp(t). O

R

The next lemma characterizes continuity from above by means of suitable cut-off
functions. Remarkably, in many applications, the family ({;).cx can be constructed by
scaling and shifting a single smooth functions with compact support, see the proof of
Corollary 2.14 below. Furthermore, this criterion allows us to guarantee continuity from
above by verifying sufficient conditions for the generators rather than the semigroups,
see Corollary 2.15 and Corollary 2.16 below.

Lemma 2.12. Assume that, for everye >0, r, T >0 and K € R?, there exist a family
(Co)eex of continuous functions Cp: RT — R and K € R? with
(i) 0< (<1 foralzxeK,
(ii) SUP, ¢ e Ce(y) <e forallx € K,
(iti) (Sp()(£(1—=¢p)))(x) <e forallneN,t€[0,T]NT, and x € K,.
Then, for everye >0, r,T >0 and K € R, there exist ¢ > 0 and K’ € R? with

1S (t)f = Sn(t)glloo, i < €llf = glloo,is, + €
foralln €N, t € [0, T]NTy and f,g € Be, (x,)(r)-

Proof. Apply Corollary C.4 with I := N x [0,T], X(,, ;) := X, and @, 4) := Sp(t). O

Subsequently, we derive several corollaries to Lemma 2.12. For the next two results,
we assume that s +¢ € T, for all n € N and s,t € T, with s > t. Let (Sp)nen be
a sequence of convex monotone semigroups (S, (t))ie7, on Ck(X,) with S, (¢)0 = 0.
Moreover, for every r,T > 0, there exists ¢ > 0 with

HSn<t)f - Sn(t>an < CHf - an (2'34)
forallm € N, t € [0,T]N T, and f,g € B, (x,)(r)-
Corollary 2.13. Assume that, for everye >0, r >0 and K € R?, there exist a family
(Co)ecr of continuous functions (p: R — R and K € R? such that
(i) 0<(y <1 and (z(x) =1 forallz € K,
(it) sup,cge Ca(y) <€ for allw € K,
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(111) there exists (tn)nen with t, € T,\{0} and

[(Sn@®) (51 = G)) = 21 =G, x, <et
foralln € N, t €[0,t,]NT, and x € K,,.
Then, for everye >0, r,T >0 and K € R%, there exist ¢ > 0 and K' € R? with
||Sn(t)f - Sn(t)gHoo,Kn < CHf - g”OQK{L +e€
foralln €N, t € [0,T]N T, and f,g € Be, (x,)(r)-
Proof. Let ¢ > 0, r,T > 0, K € R? and ((;)zex be a family of continuous functions
(o: R? — R satisfying the conditions (i)-(iii) with ¢/c. Let n € N and t € [0,T] N 7y..
Since T, is closed under addition and subtraction, there exist t1,t2 € [0, o] N T, and

k € Nwith t = kt; +t2. Let z € K and f := (1 —(;). We use the semigroup property,
inequality (2.34) and condition (iii) to obtain

150 (@) f = flisx, < HS (k‘tl)S (t2)f — Sn(kt1)

+ZHS (it1)Sn(t1) f — Su(it1) fllsx,

< CHSN(t2)f - f”n,Xn + ckl|Sn(t1) f — f”ri,Xn < et.

Now, the claim follows from f(z) =0, infzcx £(z) > 0 and Lemma 2.12. O

The next result is particularly useful when the generators are differential operators.
Furthermore, the condition imposed on « is clearly satisfied if k = 1. For every infinitely
differentiable function f: R? — R and i € N, let

1D*flli := Y 1D £l € [0, 00],

|a|=i

where Df := Ogl---0g¢f and |a| := Z?:l aj for all a := (a1,...,a4) € N&. The
space C°(R?) consists of all infinitely differentiable functions f: R — R with compact
support.

Corollary 2.14. Suppose that the function 1/x is infinitely differentiable and, for every
e >0, there exists K € R? with

sup [(D*L)k|(z) <e foralll < |al < N.
zeKc¢

Furthermore, there exist a sequence (hp)nen with hy, € T\{0}, N € N and a non-
decreasing function p: Ry — Ry with p(e) = 0 as e — 0 such that

N
j Saii= 1), (Z HDian) (2.35)
=1

h
foralln € N, h € (0,h,] N Ty, and f := (1 —¢) with r > 0 and ¢ € CL(RY). Then,
for every e >0, r,T >0 and K € R?, there exist ¢ > 0 and K’ € R? with

150 () f = Sn(t)glloo, i < €llf = glloo iy, +€
foralln €N, t € [0, T]NTy and f,g € Be, (x,)(r)-

K, Xn
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Proof. Let € > 0, r > 0 and K € R?. Moreover, let £: R? — R be infinitely differen-
tiable with compact support, 0 < ¢ <1 and £(z) =1 for all z € Bga(1). Choose dg > 0
with dor < ¢/2 and

Sor > ( )HDﬁ;HHHDa—%Hw < % for all 1 < |a| < N. (2.36)
B<a
Furthermore, there exists K € R? with sup, e |(D*L)k|(z) < 6p for all 1 < |af < N.
Let & € (0, 0] with |y — z| < 1 for all (z,) € K x K and define (,(y) := £(0(y — z))
for all (z,y) € K x RY. We verify the conditions (i)-(iii) from Corollary 2.13.

(i) Clearly, it holds 0 < (, <1 and (;(x) =&£(0) =1 for all x € K.
(ii) Choose R > 0 with supp({) C Bga(R) and K C Bra(R). For every x € K and
y € Bra(R + R/5)¢, it holds 6(y — x) > R and therefore (;(y) = £(d(y — x)) = 0.
(iii) For every x € K and f := ©(1—(;), we use the product formula, inequality (2.36)
and the fact that (1 — ¢,)(y) = 0 for all (z,y) € K x K to obtain

D f|r < Z( )\Dﬁ )D* (1 — ()|

B<a

_TZ< > Dﬁ%)ﬂ‘glafﬁupafﬁf‘

B<a
<oy (O‘) |DP L]0l D¢ | + | (D 1)e|(1 = C,)
B<a B

< sup 7[(D*})k|(y) +
yeKe

I
5 €

Combining the previous estimate with inequality (2.35) yields

&I(h)hf_f < p(ce) foralln e Nand h € (0,h,] N Ty,

K

where ¢ := Zf\il #{a € N¢: |a| = i}. Furthermore, it holds p(cg) — 0 as & — 0.
Now, the claim follows from Corollary 2.13. O

For discrete time 7, := {kh,: k € Ny} with h, > 0, the semigroups are given by
Sp(khy) :=1F=1T,0---0 I with I, := S,,(hy,) and the verification of condition (iii) in
Corollary 2.13 and Corollary 2.14 only requires knowledge of the one-step operators I,
rather than the entire semigroups 5,. Furthermore, in many applications, the operators
I, have an explicit representation that is very useful in the verification of condition (iii).
However, in the continuous-time case, explicit representations for the semigroups S,, are
not available or rather complicated. Here, it is important to replace condition (iii) in
the previous results by a corresponding condition on the infinitesimal generators. For
the following two corollaries, we assume that 7, := R for all n € N. Let (S,,)nen be a
family of strongly continuous convex monotone semigroups (S, (t))¢>0 on C,(R?) with
Sn(t)0 = 0 satisfying inequality (2.34). Here, it is crucial to require norm convergence
in equation (2.37) rather than convergence w.r.t. the mixed topology.

Corollary 2.15. Assume that, for everye > 0,7 >0 and K € R?, there exist a family
(Co)eer of continuous functions (p: R — R and K € RY such that

(i) 0<(y <1 and (z(x) =1 forallz € K,

(it) sup e Ca(y) <€ for allw € K,
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(iii) the function f := (1 — () satisfies f € D(Ay), [[Anf|x <€ and

Sn(h)f B f o

i

lim

i =0 forallneNandzc K. (2.37)

K, Xn

Then, for everye >0, r,T >0 and K € R%, there exist ¢ > 0 and K' € R? with

1S ()f = Sn(t)glloo, i < €llf = glloo,is, + €
foralln €N, t€[0,T] and f,g € Bc, (x, ().
Proof. Let € >0, r,T > 0 and K € R%. We choose ¢ > 0 such that inequality (2.34) is
satisfied with 7 + & and a family ((;)zex of continuous functions ¢, : R? — R satisfying
the conditions (i)-(iii) with ¢/c. Let € K and f := =(1 — (;). For every n € N and

t € [0, 77, similar to inequality (2.30) and inequality (2.31), one can use inequality (2.34)
and equation (2.37) to show that

t
0

(Su()f — f)k < / (Su(8)(F + Anf) — Su(s)f) s ds,
(Sn(t)f — k> —/0 (Sn(s)(f — Anf) — Sn(s)f)rds.

Hence, inequality (2.34) and condition (iii) imply
—et < —c[|[Anfllx < ISn(@)f = fllx < cl|Anflst < et.

Now, the claim follows from f(x) =0, infzex k(z) > 0 and Lemma 2.12. O

Corollary 2.16. Suppose that the function 1/« is infinitely differentiable and, for every
e >0, there exists K € R% with

sup [(D*L)k|(z) <e foralll < |al < N.

reKc¢
For every r > 0 and ¢ € C(R?), the function f:= (1 — () satisfies f € D(Ay) and
lim M—Anf =0 forallneN.
h10 h K. X0

Furthermore, there exist N € N and a non-decreasing function p: Ry — Ry with
p(e) = 0 as e — 0 such that

N
[Anfllxx, <p (Z HDian>

i=1
for alln € N and f := =(1 — () withr > 0 and ¢ € C®(RY). Then, for every e > 0,
r,T >0 and K € R?, there exist ¢ > 0 and K’ € R? with
HSn(t)f - Sn(t)gHoo,Kn S CHf - g”oo,K;L +e€
foralln €N, t € [0, T]NTy and f,g € Be, (x,)(r)-
Proof. Using Corollary 2.15, one can proceed similar to the proof of Corollary 2.14. [

Remark 2.17. In many applications, it is easy to show that S, (¢): Cx(X,) — Fu(Xy)
but verifying the continuity of S, () f is more complicated. However, due to the proofs
of the corollaries 2.13-2.16 it is sufficient to require that

Sn(t)(£(1 - Cx)) € CH(XH) and Sn(s +t)(£(1 - Coc)) = Sn(s)sn(t)(£(1 - C:c))
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Furthermore, it is often straightforward to show that S, (¢): Lip,(X,) — Lipy(Xp).
Hence, for every f € C,.(R%), we can choose a sequene (fi)ren C Lipy,(RY) with fr — f
to obtain Sy, (¢)f = limg 00 Sn(t) fx € Cx(X,,) for all n € N and t € T,. In particular,
in the case x = 1, one can usually choose Z(1 — (;) € Lip,(R%).

3. EXAMPLES

3.1. Euler formula and Yosida approximation for upper envelopes. In this
subsection, we derive an Euler formula and a Yosida-type approximation for upper
envelopes of families of linear semigroups. The construction uses the supremum of linear
resolvents rather than the resolvent of the supremum of linear operators as it is common
both in the classical theory of m-accretive operators and the theory of viscosity solutions.

We refer to [17] and [64] for an Euler formula for bi-continuous linear semigroups as
well as to [19] for a Hille-Yosida theorem for weakly continuous linear semigroups on
the space of bounded uniformly continuous functions and to [75] for the classical Yosida

approximation. To that end, we consider a non-empty family (A%)gce of linear operators
A% D(A%) — C.(RY) with domain D(A?) c C.(R?%) and resolvent o(A%) C C. In the
sequel, we provide certain nonlinear versions of the classical Euler formula and the
Yosida approximation in order to construct a strongly continuous convex monotone
semigroup (S(t))i>0 on C,(R?) whose generator is given by
Af =sup Af  for all f e CP(RY).
USS)

Assumption 3.1. Suppose that the conditions (i)—(iv) or the conditions (i), (ii’), (iii)
and (iv) from the following list are satisfied:

(i) There exists w € R with (w,00) C (Nyeg 0(A?) such that, for every A € (w, o)

and 0 € O,

1A = w)A = A) " flloo < [[flloo for all f € Lipy,(RY),
1A =w) A=A flle < I flls for all f € Cu(RY).

In addition, the operators (A — A%)~1: C,(R%) — C,(R?) are monotone for all
A€ (w,00) and 6 € O.
(ii) There exists a bounded continuous function &: R? — (0, 00) with

Fi(x) 0y—1
m ——==0 and |[|[A—w)A=A")"fllz <Ifllz
tim 2 [~ @)h = 4%l < 1]

for all A € (w,00) and f € C,(R?).
(ii") For every e > 0,7 >0 and K € RY, there exist a family ((;)zer of continuous

functions ¢, : R — R and K € R? such that

(a) 0< (s <land p,(z)=1forall z € K,

(b) sup,c e Ga(y) < e forallz € K,

(c) =(1 =¢2) €MNpeo D(AH) and supycg HA9(£(1 —(2))|ls <eforall z € K.
(iii) There exists L > 0 with

A =)A= AN = (A = A) " (7 f) |l < Lrlz]

for all 7 > 0, f € Lip,,(R%,7), z € RY, )\ € (w,00) and 6 € O.
(iv) It holds C°(R?) C Npeo D(A?). Moreover, for every f € Ci°(R?) and K € R,

sup |A%f|l. < oo and  lim [[(A —w)A— A)TLAYF — A f| i = 0.
0O A—00
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The previous conditions are, for instance, satisfied for suitably bounded families of
generators of Lévy processes, Ornstein—Uhlenbeck processes and geometric Brownian
motions. In these cases, it is straightforward to verify the respective conditions for the
transition semigroups and use the Laplace transform in order to transfer them to the
resolvents. For a detailed illustration how the conditions can be verified for a large class
of transition semigroups, we refer to [71, Section 6.3 and Section 7]. At this point we
would like to emphasise that the nonlinear semigroups in [71] are not constructed via
the resolvents but as so-called Nisio semigroups. Furthermore, due to Lemma 2.11 and
Corollary 2.13, the conditions (ii) and (ii’) both guarantee that Assumption 2.8(ii) is
valid. While condition (ii) is satisfied for Ornstein—Uhlenbeck processes and geometric
Brownian motions, it does not cover Lévy processes with non-integrable jumps. On the
other hand, condition (ii’) applies to Lévy processes with possibly non-integrable jumps
but neither to Ornstein—Uhlenbeck processes nor geometric Brownian motions. In the
sequel, let (A)nen C (w,00) be a sequence with A, — oo and

h, = for all n € N.

Anp — W
For every n € N and f € C,(R%), we define

Inf :==sup Ap(A, — A) 1S
0cO

Moreover, let X,, := R% and T, := {kh,,: k € Ng} for all n € N. For every n € N and
f € C.(R?), the resolvent identity implies

Inf = f+sup A\, — A%) 71 f.

0O
Moreover, for every f € (o D(AY), it follows that
I.f = f +sup(\, — A%)~14%F. (3.1)
0cO

Theorem 3.2. Suppose that Assumption 3.1 is satisfied. Then, there exists a strongly
continuous convex monotone semigroup (S(t))i>0 on Cx(R?) with S(t)0 = 0 given by

St f = Lm I¥f  for all (f,t) € Co(RY) x Ry,
n—oo
where (k!)nen C N is an arbitrary sequence satisfying ki h, — t, such that

CP(RY € D(A) and Af =supA°f  for all f € CP(RY).
0cO

Moreover, the conditions of Theorem 2.4 are satisfied.

Proof. In order to apply Theorem 2.9, we have to verify Assumption 2.8. First, we show
that I,,: Lip,(R%,7) — Lipy,(R%, e#Pr) for all n € N and r > 0, where

Bi=w+

and Ag:=min\, > w.
/\0 —w neN

For every n € N and f, g € Lip,,(R%), it follows from Assumption 3.1(i) that

An w
1] = Inglloo < = If = glloe = (L wha)1f = gloo < €1 = glloc

Moreover, it holds I,,0 = 0 and Assumption 3.1(iii) implies

LA, L\
HIn(Txf) - T:cIanoo < \ T’hn’m‘ < 0

n — W 0 — W

rhy|z] (3.2)
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for allm € N, 7 > 0, f € Lip,(R%,7) and x € R%. Hence, for every z,y € R?,
((Inf)(@ +y) = (Inf) W) < melnf — (T F)(Y) + [ In(72f) — Infl(y)

<

0
L)
= <1 + (w + 0 ) hn> rlz| < etz
Ao —w

We obtain that I,,f € Lip,(R%, %" r) and therefore Assumption 2.8(iv) is satisfied.
Furthermore, inequality (3.2) and the fact that ||k| < co yield Assumption 2.8(iii).
Second, we show that I,,: C.(R%) — C,(R?) for all n € N. Assumption 3.1(i) yields

A
warhn|a:| + (1 + why)r|z|

Hnf = Ingllx < I =gl = A+ wha)llf = glle < 1 f = gl

An

and thus Assumption 2.8(i) is satisfied. Moreover, the operators I,,: C(R%) — F,(R%)
are convex and monotone with I,,0 = 0. Let f € C,(R?) and (fx)ren C Lip,(R?) be a
sequence with fy — f. In case that Assumption 3.1(ii) is valid, Corollary C.3 implies
Lf = limy_so0 Infi € Cx(RY) and thus I,,: C.(R?) — C.(R?). In addition, it follows
by induction that || I f||z < e*hn||f||z for all k,n € N and f € C,(R?). Hence, we can
apply Lemma 2.11 to obtain that Assumption 2.8(ii) is satisfied. If Assumption 3.1(ii")
is valid, we can use Corollary 2.13 and Remark 2.17 instead. Indeed, equation (3.1) and
Assumption 3.1(i) imply

15 (51 = 6)) = 51 = G, < sup | (A — AT (R (1= @),
<supHA9( (1—1¢z) )Hmhngshn.

Third, we verify Assumption 2.8(v). Let f € C2*(R?) and define
Inf — f
h

n

for all n € N.

Anf =

For every n € N, it follows from equation (3.1) that
Anf = Sup (()‘n - W))‘n(An - Ae)—lf) - ()‘n - w) = Sup()‘n - w)(An - AQ)_lAGf‘

0cO 0eO

Hence, for every n € N and K € R?, Assumption 3.1(i) yields
1Anfllx < sup (A = w)(An — A”) T A f||,c < sup | A £,
0co 0cO
[Anf — Aflloo,x < Sug [(An = w)(An — Ae)ilAaf - AafHOO,K-
€

and Assumption 3.1(iv) guarantees that Assumption 2.8(v) is satisfied. Now, the claim

follows from Theorem 2.9, where property (iv) holds with the constants L and w + L
rather than py >‘° and B because of the fact that A\, — oo. O

For the Yosida approximation, we additionally have to require norm convergence of
the generators in condition (iv).

Assumption 3.3. Suppose that the conditions (i)-(iii) or the conditions (i), (ii’)
and (iii) from Assumption 3.1 are satisfied. Furthermore, the following statement is
valid:
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(iv’) It holds C°(R?) C Npeo D(A?). Moreover, for every f € Ci°(R?),
sup || A%f||x < oo and  lim sup|[(A —w)(A — A%)7TA%F — A%f|. = 0.
0€® A—00 gco

For every n € N and 6 € ©, we define
AP = (N, —w)A%(\, — AL,
Since AY: C,(RY) — C,(R?) is a bounded linear operator, we can define

Jnf :=sup eh”AgLf for all n € N and f € C,.(R%),
0O

where the operator exponential is given as the power series

hoa? o~ (hnA9)F
ot = 30 (nda)”
k=1
Since the resolvent identity
hnAzf = )‘n(>\n - Ae)_lf - f (3'3)
holds for all n € N, f € C.(R?%) and 0 € O, we obtain
Jof = e Lsup e’\”(’\"_Ae)ilf for all n € N and f € C.(R?). (3.4)

0cO
Theorem 3.4. Suppose that Assumption 3.3 is satisfied. Then, there exists a strongly
continuous convex monotone semigroup (T(t))¢>0 on Cx(R?) with T(t)0 = 0 given by
T(t)f = lim JEf o for all (f,t) € Co(RY) x Ry, (3.5)
n—oo

where (k!)nen C N is an arbitrary sequence satisfying k! h, — t, such that
CPX(RY € D(B) and Bf =sup A%f  for all f € C°(RY).2
0cO

Moreover, the conditions of Theorem 2.4 are satisfied and therefore
S@t)f =T(t)f forallt>0 and f € C.(RY).
Proof. First, for every n € N, r > 0, f € Lip,(R% r) and 2 € R?, we show that

L)\()egho

ITednf — In(T2f) oo < X — w Thn ||, (3.6)

where

and Ap:=min A\, > w.
)\0 —Ww neN

Subsequently, we write B, g 1= A\p(Ay — AN~ for all n € N and # € ©. For every
n €N, r>0, f €Lip,(R%r), » € R and € ©, Assumption 3.1(iii) implies

L\

e Buof = Buo(Tef)lloo < 5=

0o— W

B=w+

rhy|z|. (3.7)

Furthermore, by induction, it follows from Assumption 3.1(i) that

1Bnof — Bnpglloo < (1 +why)*||f — gllso- (3.8)

for all k,n € N, f,g € Lip,(R?) and § € ©. Hence, similar to the proof of Theorem 3.2,
one can show that

B, 9 Lip,(R%, 1) — Lipy (R%, (1 + Bhy,)*r). (3.9)

2Here, we denote by B the generator of (T'(t))e>o0-
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for all n € N, r > 0 and # € ©. Combining the inequalities (3.7)-(3.9) yields
k
I7eBrof = Bro(mef)loo < 3 1By (7o Bhgf) = Bug' Buo(maByy f)lloc

k
< (1 + wh)* e BngBh ) f — Bro(te Bl ) oo

k

=1

k(1 + Bhy)k1

L
k_lA(l + ﬁhn)l_lrhn|x]
—w

L)
b,
o Pl

for all n € N, » > 0, f € Lip,(R% r), € R? and 0 € ©. Equation (3.4) implies

1Taduf = Ja(Taf)lloo < €t sup [[rpens — B (7, )|

0cO
1 > HTwBrliﬁf - Bge(%f)Hoo
< e "sup
Eh k!

1+Bh Lo
Z v wrhn|:c\

L)\[) whn, L)\()eUJhO
= m(ﬁ ’I”hn|$’ = )\077'}1 ‘l’|

for alln € N, 7 > 0, f € Lip,(R%,7) and = € R?.
Second, we verify Assumption 2.8. We have already shown that Assumption 2.8(iii)
is satisfied. Moreover, it follows from equation (3.4) and equation (3.9) that

Jy: Lip, (R, 7) — Lip,(R?, e®" 1) for all n € N and r > 0.
Similarly, one can derive from Assumption 3.1(i) that

[T f = Jnglle < e[| — gl for all n € N and f,g € Cw(R).
Moreover, the operators I,,: Cx(R%) — F,(R?) are convex and monotone with I,,0 = 0.
Let f € Cx(RY) and (f)ren C Lip,(R?) be a sequence with f;, — f. In case that
Assumption 3.1(ii) is valid, Corollary C.3 implies I, f = limp_o0 Infx € Ci(R?) and thus
I,: Co(RY) — C.(RY). In addition, it follows by induction that || I¥f|z < e“* | f|lz
for all k,n € N and f € C.(R%). Hence, we can apply Lemma 2.11 to obtain that
Assumption 2.8(ii) is satisfied. If Assumption 3.1(ii’) is valid, we can use Corollary 2.13

and Remark 2.17 instead. Indeed, Assumption 3.1(i) implies

1
(0= ) = 20 ol < sup [ e 4o, a8 (0 - o) s

< supe“h, HAG( 1-— Cgc))H’_i < e“hoch,.
6cO
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It remains to verify Assumption 2.8(v). For every n € N, f € C(R%) and 0 € O, we
use Assumption 3.1(i) and equation (3.3) to estimate

[
ot s

40
A

1
0
< ety - g,

= /01 et A2 A% — A
< e | AR A f

= e[ A (A — A)TTATf — A

< &M |(A = w) (A = A°) AT f — AP f |+ wh || A7)
Assumption 3.3(iv’) and equation (3.4) imply

lim U sup A%f|| =o.
n—oo n 0cO K
Now, the claim follows from Theorem 2.9 and Theorem 2.4. O

3.2. Finite-difference schemes for convex HJB equations. In this subsection, we
provide finite-difference approximations for convex HJB equations. For simplicity, we
focus on the one-dimensional case and constant coefficients and refer to [2,13,33,61,62]
for the multi-dimensional case with Lipschitz coefficients. We fix kK = 1 and denote by
Cp(R) the space of all bounded continuous functions f: R — R. Let (dp)nen, (An)nen
and (oy,)nen be sequences in (0, 00) with d,, h, — 0 and 0,, — oo. Furthermore, let
¢: Ry — [0, 00] be a function. We show that the finite-difference scheme

(Inf)(-f) — f((l?) +h, sup (0-2 f(x +(5n) — Qf(x) + f(x — (Sn) B (p(U)) ’

oc€[0,0n] 2 57%

which is defined for all n € N, f € C,(R) and = € R, converges to a strongly continuous
convex monotone semigroup (S(t))s>0 on Cp(R) whose generator is given by

Af =sup (102]"" - gp(a)) for all f € Cp°(R).
a>0 \2

Assumption 3.5. Suppose that the following conditions are satisfied:

(i) For every n € N, there exists o € [0, 0, with ¢(c) = 0.
(ii) It holds lim,_,o #(9)/62 = 0.

(iii) Tt holds % < 1 for all n € N.
Condition (iii) is classical and guarantees that the finite-difference scheme is stable

w.r.t. the supremum norm on the grid. Due to Theorem 2.4, the semigroup (S(¢)):>0
appearing in the following theorem is unique.

Theorem 3.6. Suppose that Assumption 3.5 is satisfied. Then, there exists a strongly
continuous conver monotone semigroup (S(t))t>0 on Cp(R) with S(t)0 = 0 given by

S(t)f = lim I¥f for all (f,t) € Ch(R) x Ry,
where (k!)nen C N is an arbitrary sequence satisfying k! h, — t, such that

CP(RY c D(A) and Af =sup (%azf” — cp(a)) for all f € CP(RY).

o>0

Moreover, the conditions of Theorem 2.4 are satisfied.
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Proof. We verify Assumption 2.8. For every n € N, f € Cp(R) and x € R,
o2h, o2h,
(@)= s (1T ) 560) + G (7o 20) + o 260)) = 9(0)).
oec|0,0n n n

Hence, Assumption 3.5(iii) yields I,,: Lipy,(R?,7) — Lip, (R, 7) for alln € N and 7 > 0
while the identity I,(7,f) = 7.1, f holds by definition for all f € Cy(R). Moreover, the
convex monotone operators I,,: Cp(R) — Fy(R) satisty 1,0 = 0 and

nf = Inglle < |If = gllso for all n € N and f, g € Cy(R).
Now, let f € Ci°(R). It follows from Taylor’s formula that

(72 5n — —5n 02 on " "
 flo ) = 2/ (0) + 1z >:252/0 (0w — ) (f"(@ + ) + "(w — 5))ds

for all n € N, 0 > 0 and = € R. Hence, by Assumption 3.5(ii), there exists r > 0 with

o€0,r]

for all n € N. Moreover, by increasing r > 0, we can assume that
1 1

sup (702]”” — gp(a)) = sup (*O'Qfl, — cp(a)).

020 \2 oef0r] N2

We obtain

Inf — f 1 2 pn
™ — 21;8 (50 1= gp(a)) as n — oo.

Moreover, for every n € N,

5.

and therefore we obtain from Assumption 3.5(1i), Corollary 2.14 and Remark 2.17 that
I,: Ch(R) = Cp(R) for all n € N and that Assumption 2.8(ii) is satisfied. O

< Sup 0’||f lloo — ‘P(U))'

3.3. Vanishing viscosity and stability of convex HJB equations. In this subsec-
tion, we provide a stability result for convex HJB equations which covers, as a special
case, the vanishing viscosity method. We fix & = 1 and denote by Cp,(R?) the space
of all bounded continuous functions f: RY — R. Let (¢n)nen be a sequence of func-
tions oy, : Si x R? — [0, 0c], where Si consists of all symmetric positive semi-definite
d X d-matrices, and define

1
H,(a,b) := sup ( tr(aa’) + 07V — on(d, b')) for all (a,b) € R4 x RY,
(a’,b')eSE xRY

Here, we denote by tr(aa’) the matrix trace and by b the euclidean inner product.
Under the assumption that H, — H, we will show that a sequence of semigroups
(Sn(t))t>0, whose generators are given by

(Anf)(@) = Ho(D?f(x),Df(x)) for all f € C*(RY),
converges to a semigroup (S(t))i>0 with generator Af = H(D?f, Df).

Assumption 3.7. Suppose that the following conditions are satisfied:
(i) For every n € N, there exists (a,b) € S2 x R? with ¢, (a,b) = 0.
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(ii) The penalization functions grow superlinearly, i.e.,

b
lim inf n(a, b) = 00
|a|+|b|—o0 neN |a| + |b]

(iii) There exists a function H: R4 x R — R with

lim sup |H,(a,b)— H(a,b)| =0 forall K €S% x R%

N0 (4b)eK

In particular, condition (ii) guarantees that (H,),en is a sequence of real-valued
functions. Note that all the semigroups appearing in the following theorem are unique
due to Theorem 2.4.

Theorem 3.8. Suppose that Assumption 3.7 is satisfied. Then, there erists a sequence
(Sn)nen of strongly continuous convex monotone semigroups (Sy(t))i>o0 on Cp(R?) with
C(RY) € D(A,) and Anf = Ho(D*f,Df)

foralln e Nand f € C?(Rd) satisfying Assumption 2.6. Hence, there exists another
strongly continuous convex monotone semigroup (S(t))i>0 on Cp(R?) with

S(t)f = lim Su(t)f for all (f,t) € Cp(RY) x Ry
satisfying C*(RY) C D(A) and Af = H(D?f,Df) for all f € CZ(RY).

Proof. First, we construct the semigroups (S, (t)):>0 by applying Theorem 2.9. To do
so, for every n € N, t > 0, f € C,(R?%) and x € R?, we define

(L) f)(@) = sup  (E[f(z+vaW; +bt)] - en(a, b)t),

(a,b)eSE x R4

where \/a € S¢ denotes the unique matrix with /ay/a = a. It is straightforward to
show that the operators I,,(): Cp(R?) — Cp(R?) are well-defined and satisfy
I,,(t) is convex and monotone with [,,(¢)0 = 0 for all n € N and ¢ > 0,
I 1n(t) f — Ln(t)glloo < I|f — glloo for all m € N, £ > 0 and f, g € C,(RY),
L,(t) (1o f) = 7ol (t) f for alln € N, t > 0, f € Cp(R?) and x € RY,
L,(t): Lip, (R, r) — Lip,(R%,r) for all n € N and r,¢ > 0.
Let n € N and f € C°(R?). Due to Assumption 3.7(ii), there exists 7 > 0 with

H,(D2f(x), Df(x)) = s (%m«(w? F(@)) + 5 Df(x) ~ pnlab)),

(In(t) f)(x) = i (E[f(z + VaW; +bt)] — pn(a, b)t)

for all £ > 0 and = € R%. Hence, for every h > 0, Ité’s formula implies

L(h)f — 1 [h

(s =1 = sup [(E / (f tr(aD*f + bTDf> (- ++VaWs + bs)ds| — @n(a,b)
h la|+[bl<r hJo \2

and the right-hand side converges to H,(D?f, Df) as h — 0. The previous equation

also yields the estimate

IL(h)f — 1
();ff’ s - sup (§|a\ 1D flloe + 0] - 1D flloc — @nla, b)).
oo (a,b)eSt xR4

In the sequel, we fix n € N and choose a sequence (hy)reny C (0, 00) with hy — 0. Define
Lnif = In(hg)f for all f € C,(R?). Due to the previous arguments and Corollary 2.14,
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the sequence (I, ;)ren satisfies Assumption 2.8. Hence, by Theorem 2.9, there exists a
strongly continuous convex monotone semigroup (S, (t))i>0 on Cp(R?) with S,,(t)0 = 0
such that

Su(t)f = lim (Inp)™ f for all (f,t) € Cb(RY) x Ry,

where (m};)keN C Nis an arbitrary sequence satisfying m}éhk — t as k — oo. Moreover,
the following statements are valid:

(i) C(RY) € D(Ay) and A, f = H,(D?f,Df) for all f € C(RY).
(ii) [|Sn(t)f — Sn(t)glloo < If — glloo for allm € N, ¢ > 0 and f, g € Cp(RY).
(iii) For every ¢ >0, r,7 > 0 and K € R?, there exist ¢ > 0 and K’ € R? with

HSn(t)f - Sn(t)gHoo,K < ch _gHoo,K’ +e

for all t € [0,7] and f,g € Be, (ra)(r)-
(iv) Sp(t)(T2f) = 7Sn(t)f for alln € N, ¢ > 0, f € Cp(R?) and x € R
(v) Sp(t): Lip,(R%,r) — Lip,(R%,r) for all n € N and r,t > 0.

In particular, due to Theorem 2.4, the semigroup (Sy(t))¢>0 does not depend on the
choice of the sequence (hg)gen-

Second, we note that the conditions (i), (iii) and (iv) of Assumption 2.2 are clearly
satisfied and that Assumption 3.7(iii) yields condition (v). Moreover, Assumption 3.7(ii)
and Corollary 2.16 guarantee that Assumption 2.2(ii) is also valid. Hence, the claim
about the semigroup (S(t));>0 follows from Theorem 2.3. Again, due to Theorem 2.4,
the latter is unique. O

3.4. Randomized Euler schemes for Lipschitz ODEs. Let ): R? — R? be a
bounded Lipschitz continuous function. The aim of this subsection is to show that the
unique solution of the parameter dependent ordinary differential equation

owu(t,z) = Y(u(t,z)), t>0,
{umfi)):x,w( o) e RY, (3.10)

can be approximated by a randomized Euler scheme under model uncertainty. For
that purpose, let (hp)neny C (0,00) be a sequence with h, — 0 and let (&,)nen be a
sequence of i.i.d. random variables on a sublinear expectation space (2, H, £) satisfying

E[|€1]?] < oo and E[a&;] = 0 for all @ € RY. If £[-] = E[-] is a linear expectation, then
there exists a unique probability measure p on B(R?) with

E[f(&)] = /Rd f(&)du forall n € N and f € Ch(RY).

Furthermore, if the distribution p of the random variables (&, )nen is uncertain, a worst
case approach consists in taking the supremum over a set of measures, i.e.,

Elf(&)] ==sup [ f(&)dp.

neEM JRd

For more details, we refer to [77] and |11, Appendix B]. For every n € N, § >0, ¢ >0
and z € R?, we recursively define a randomized explicit Euler scheme under model
uncertainty by
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and show that ngi"f — u(t, x) weakly for all (t,x) € Ry x R, where (0,)nen C (0, 00)

and (k! )nen C N are arbitrary sequences with 6, — 0 and k! h,, — t. To be precise, we
show that

£ [f (ngijj)} = flu(t,z)) for all f e Cy(RY).
This means that, regardless of possible numerical errors, the Euler scheme still converges
to the solution of (3.10). Furthermore, in the case that d,, — § > 0, the Euler scheme

converges to the solution of a stochastic differential equation which might be driven by
a G-Brownian motion. We define

(oo f)(@) =& [f (24 huto(@) + 53/ R )|
foralln € N, § > 0, f € Cp(R?) and = € R?%. Let L be the Lipschitz constant of 1.

Theorem 3.9. Let (0p)nen C (0,00) with §, — § € Ry. Then, there exists a strongly
continuous convex monotone semigroup (Ss(t))i>0 on Cp(R?) with S(t)0 = 0 such that

Ss(t)f = lim (L5, )" fu = Tim & [f (X550 ) | for all (f,1) € Cy(RY) x Ry,

where (k!)nen C N is an arbitrary sequence with kih, — t. Moreover, the following
statements are valid:

(i) It holds C*(RY) C D(As) and
(As) (@) = 5 €€ D f@)a] + D) () for all [ € e (RY)

(i3) It holds ||S5(t) f — Ss(t)glloo < |If — glloo for allt >0 and f,g € Cp(RY).
(i4i) For everye >0, r,T >0 and K € R?, there exist ¢ > 0 and K' € R? with
1S5(t) f — S5(t)gllo,ic < cllf = glloo,xr + €

for allt € [0,T] and f,g € Bg, gay(r).
(iv) For every r,t >0, f € Lipy,(r) and x € R,

1S5(6) (72 f) = TS5(8) fllw < Letrta].
Furthermore, it holds Ss5(t): Lipy(r) — Lipy,(eX'r) for all r,t > 0.
In particular, we obtain (Ss(t)f)(x) = E[f(Xf’x)] forallt >0, f € CL(R?) and v € RY,

where Xf’x denotes the unique solution of the parameter dependent ordinary (stochastic)
differential equation

dXO% = (X2®)dt + 6d £ >
{ t ’lzz)( t ) +5 Wt’ —07 (311)

Xg’x =z, x € RY,
which is driven by a G-Brownian motion (W) with EWIWI| = E[&1€7].

Proof. In order to apply Theorem 2.9, we have to verify Assumption 2.8. It is straight-
forward to show that the operators I,, 5, : Cp,(R?) — Cp,(R?) are well-defined and satisfy

e I, 5, is convex and monotone with I,, 5, (£)0 = 0 for all n € N,

o [Tosf — Ingnlloo < [If — glloe for all n € N amd £, g € Cy(RY),

o |7ulns, f— Ing, (Tof)lloo < Lrhy|z| for all n € N, f € C,(R?) and 2 € RY,
e I,,5 : Lipy(R%, r) — Lip,(R%, (1 + Lhy,)r) for all n € N and r > 0.
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Moreover, for every n € N, f € C?(Rd) and x € R?, Taylor’s formula yields
f(@+ bt (@) + 6/ hnéa)
= f(z) + Df (@) (hntp(x) + 00/ hn1)
+ 50t (@) + 00/ ) D? (@) () + hdns) + (Rl f, 7, 62),

where the reminder term can be estimated by

| tp(2) + InvPné1
6

3
Ro(f.2.60)| < D% e

Since E[a&1] = 0 for all a € R?, we obtain

(s = ) _ £+ had(a) + 0,0/Fns) — f(2)
hn hy,
2
= D)) + BE [EDF@)E] + (Ralf,2,€1),

where the reminder term can be estimated by

E[|Rn(f,2,61)]
hn

By, 0] < o) D? () (a) | +
Since £[|€1]3] < oo and ||¢|ee < o0, We obtain

Inéhﬂ — Df()Ty + 6225 [ D?f()e]  forall f e CF(RY).

n

Moreover, the previous estimates and Corollary 2.14 guarantee that Assumption 2.8(ii)
is satisfied and, since the random variables (&,),en are iid, we obtain

(Ins,)fn=¢ [f (XZhi”)}

for all k,n € N, f € Cp(R?) and 2 € R Finally, by relying on the strong Markov
property for stochastic differential equations driven by G-Brownian motions [50], one
can show that (T5(t)f)(z) := E[f (Xf )] defines a strongly continuous monotone semi-

group on Cp,(RY) satisfying the conditions of Theorem 2.4. Now, the claim follows from
Theorem 2.9 and Theorem 2.4. 0

Corollary 3.10. Let § > 0 and (d,)nen C Ry be a sequence with 6, — 6. Then,

Ss(t)f = lim S5, (6)f for allt >0 and f € Ch(RY).

Proof. Theorem 3.9 and Corollary 2.16 guarantee that Assumption 2.2 is satisfied. In-
deed, it follows from the proof of Theorem 3.9 that

I sf —
lim ‘ Insf =1 —A(;f‘ =0 forall feCPRY
n—00 hn, o
and therefore [12, Theorem 4.3] implies
|| Ss(h)f = f d
| — A = for all 2 (RY).
i : 5foo 0 forall f & CF(R")

Hence, the claim follows from Theorem 2.3. O
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3.5. Large deviations for randomized Euler schemes. We continue our analysis
of randomized Euler schemes from the previous subsection and focus on the convergence
rate of the scheme by means of a large deviations approach, see [29,32,10,82]. While
the choice of the parameters §,, and h, is still arbitrary, the choice of the additional
parameter «, depends on J, and h,. Moreover, we obtain a large deviations result
for stochastic differential equations in the spirit of Freidlin—-Wentzell [13]. Let (hy,)nen,
(6n)nen and (ap )nen be sequences in (0, 00). Moreover, let (&,)nen be a sequence of i.i.d.
random variables on a sublinear expectation space (£, H, £) satisfying £[|£1]?] < oo and
Ela&y] = 0 for all @ € R%. For every n € N and f € Cp(R?), we define

Jnf = ai log (Inea"f),
where I,,: C,(RY) — Cp,(R?) is given by
(1 f)(@) = & £ (w4 huto (@) + 0u/hu )|

In addition, for every n € N, § > 0, t > 0 and z € R?, we recursively define
Xnéx =2z and X&if)h = X,Zh(;gc + hptp ( n(;x) —|—5\/7§k+1

Theorem 3.11. Assume that there exists d,~v > 0 with d, — & and an(s,% — . Fur-
thermore, let hy, — 0 and ayhy, — 0. Then, there exists a strongly continuous convex
monotone semigroup (T 5(t))i>0 on Cp(R?) with T, 5(t)0 = 0 such that

Yot f = hm Jk f— lim ilog (5 {exp <anf (X:ti" ))D

n—00 Qup,

for allt >0, f € C,(R?Y) and sequences (k!)nen C N with k!, — t. Moreover, the
following statements are valid:

(i) It holds C*(RY) C D(B,5) and

(Bysf)(a) = SE[P€] D (@) +1Df ) &) + Df () ()

for all f € C2(R?) and x € RY.
(i1) Tt holds | Ty 5(8) f — Ty g(t)gl0 < | — gllow for all t >0 and f,g € Cy(RA).
(i4i) For everye >0, r,T >0 and K € R?, there exist ¢ > 0 and K' € R? with

1Ty5(t)f = Ty glloo,x < cllf — glloor +€
for allt € [0,T] and f,g € Bg, gay(r).
(iv) For every r,t >0, f € Lipy(r) and x € R?,
IT,.5(8) (72 f) = 2Ty 6 (0 fllx < Lert]a].
Furthermore, it holds T, 5(t): Lipy(r) — Lipy,(eXr) for all r,t > 0.

Proof. By relying on the estimates in the proof of Theorem 3.9, it is straightforward to
show that the operators .J,,: Cp(R?) — Cp,(R?) are well-defined and satisfy

Jp is convex and monotone with J,(¢)0 = 0 for all n € N,

[0 f = Tngllse < If = glloo for all n € N and f, g € Cy(R?),

| Tednf — Jn(Tef)|loo < Lrhy|z| for all n € N, f € CL(R?) and 2 € RY,
Jp: Lip,(R%, 1) — Lip,(R%, (1 4 Lhy,)r) for all n € N and 7 > 0.
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Indeed, one can show that J,(f +¢) = Jpf +cand J,(Af + (1 —)N)g) < max{J,f, Jn.g}
for alln € N, f,g € Cp(R?), c € R and A € [0,1]. Hence,

(Jn(Af + (1= X)9) (@) = A(Jaf) (@) = (1 = A)(Jng)(2)

= (Ja(A = (@) + (1= X9 = (Jag)(@))) ) (@)

< max { (Jn(f = (Juf)(@))) (@), (9 — (Jng)(2))) (2)} =0
for alln € N, f,g € Cp,(R%) and X € [0, 1] which shows that .J,, is convex. Moreover,

Jnf < Jn(g+‘|f_g||00) = Jng+||f_g”oo

and reversing the roles of f and g yields ||J,f — Jnglloo < ||f — glloo- The remaining
properties can be obtained similarly.
For every n € N, f € C“(Rd) and x € R?, Taylor’s formula yields

exp (an(f(x+hn¢ )+ 60/ hné) — ))

= 1+ anDf (@) (hnth (@) + 60 v/ hn1) + ”IDf )" (hatp(2) + 8/ hrny) |
+ S (@) +6nm§?D2f<:c><hn () mﬁa + Rn(f,2, &),

where the reminder term can be estimated by

3 3 ‘
Rulfy )] < 2nltnt@) £ VARG (Z IIDZfllm>
=1

6

for a suitable function p: Ry — Ry which satisfies p(e) — 0 as ¢ = 0. We use the fact
that £[a&;] = 0 for all a € R to conclude

E{exp (an(f(x-i—hnl/f + 0 \F&) ))]

2h2
=1+ aphyDf (@) (x) + 22 D f (@) (@)l +

anh?

5 (@) D f(a)y(x)
E[andi| D (x) (@) + 02T D* f()61] + Rul(f, 2, 1),

where the reminder term can be estimated by |R,(f,z,&1)| < E[|Rn(f,z,&1)[]. More-
over, by assumption, it holds h, — 0 and a,h, — 0. Hence, Taylor’s formula implies

Jnf—f _ 1 log(g[exp<an(f(a;+hnw ) + 0/ hné1) — ))D

hn, aphy,
() (@) + %wx)TD?f(:c)wx)

n aphy,

= Df(a) () + 22

+ SE[andal D) G + 86T D2 ()] + Bulf, 2,6,

where the reminder term can be estimated by

3
|Rulfo2.61) < p (Z ||Dif||oo> rn
i=1

for a suitable function p: Ry — Ry satisfying p(e) — 0 as ¢ — 0 and a sequence
(Tn)nen C Ry with 7, — 0. Since 8§, — &, @62 — 7, hp, — 0 and ayh, — 0, we obtain

II =T e[ D2 ()6 +1IDS @) 6] ~ Df (@) ()

n

=0

lim ’
n—oo
o
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for all f € Cp° (RY). In addition, the previous estimates and Corollary 2.14 guarantee
that Assumption 2.8(ii) is satisfied and, since the random variables (&, )nen are iid, we
obtain

(750) ) = o (€ [exp (anf (X3007))])
for all k,n € N, f € C,(RY) and = € R%. Now, the claim follows from Theorem 2.9. [
If the limit is a Hamilton—Jacobi semigroup, we obtain the following Laplace principle.
Corollary 3.12. Let (8,)nen C (0,00) be a sequence with 6, — 0 and 62n — oo. Then,
o log € lexp (;zf <5"Zn:£>>] — sup (f(y) — ¢(y))
n vn i—1 y€ERI
for all f € CL(R?), where the rate function p: R — [0, 00] is given by

p(y) = sup (y'z = 3&[|" &)
z€R4

Proof. Applying Theorem 3.11 with h,, := 1/n, a, := 1/62, and ¢ = 0 yields

o 1 o .
Tio(t)f = nh_{go 5 log &€ [exp <5721f -+ % ;fi for all f € C,(RY,

Biof = SEIDF@)T & for all f € CP(RY).

In addition, similar to the proof of |11, Theorem 3.4, one can show that (T4 0(t))i>0
can be represented by the Hopf-Lax formula
(Tv0(t)f)(x) = sup (f(z+ty) —@(y)t) forallt>0and f € Cp(RY). O
z€R4

Moreover, we obtain a Laplace principle corresponding to the Freidlin-Wentzell large
deviations principle [13] which characterizes the convergence rate of the solution Xf * of
the SDE (3.11), driven by a standard Brownian motion, to the solution Xto’x = u(t,x)

of the ODE (3.10). In the sublinear case, where the solution Xt‘;’x of the SDE (3.11) is
driven by a G-Brownian motion, we refer to [20,40] for corresponding large deviations
principles.

Corollary 3.13. Let (6p)nen C (0,00) be a sequence with 6, — 0. Then,

1 x
oplog (€ |exp (= f (X — sup (f(y) — ¢(y))
J
n yER4
for all f € CL(R?Y), where the rate function p: R — [0, 00] is given by
p(y) = sup (y'z = 3&[|" &al’]).
z€R4
Proof. For every n € N, be denote by (Ss, (t))t>0 the corresponding semigroup from

Theorem 3.9. Moreover, for a fixed n € N, we choose «j, := 1/62 for all £ € N and
choose a sequence (hg)gen C (0, 00) with hy — 0o. Define

(Ik,énf)(x) =& [f <$ + h,ﬂb(l‘) + 5n\/h7n51)} and Jkﬁn = O}k; log (I]wgneakf)
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for all k,n € N, f € Cp(R?%) and x € R?. Theorem 3.9 and Theorem 3.11 imply

1 .
62 log <5 {exp <52f (Xf’ ))}) = 42 log (S(;n (t)ef/‘s%)
s 2 mt f/s2
= kli)ngo 9z log <(Ik,5ne )
= lim (Jis,)"* f = Ti5, (1)
k—o0
for all t > 0, f € Cp(RY) and sequences (m})reny C N with m!hy — t. Furthermore,

Theorem 3.11 and Corollary 2.16 guarantee that Assumption 2.2 is satisfied. Indeed, it
follows from the proof of Theorem 3.11 and |12, Theorem 4.3| that
T _
hl0 h

—BLofH =0 forall f & CP(RY).

Hence, the claim follows from Theorem 2.3 and the representation of (T4 (t))s>0 by the
Hopf-Lax formula from Corollary 3.12. U

3.6. Discretization of stochastic optimal control problems. In this subsection,
we fix a Borel measurable function ¢: S‘i xR? — [0, o0] and consider the value function
of a dynamic stochastic control problem with finite time horizon given by

t t t

(T(@)f)(x) == sup (E i+ [ vasaws [oas)] B[ [ oot dsD ,
(a,b)eA 0 0 0

where (W})¢>0 is a d-dimensional standard Brownian motion on a complete filtered

probability space (€2, F, (Ft)e>0, P) satisfying the usual conditions and A consists of all

predictable processes (a,b): Q x Ry — §% x R? such that

¢
E[/ asl+|bs|ds}<oo for all ¢ > 0.
0

The aim of this subsection is to approximate T'(t) f by iterating a sequence of discrete
static control problems given by

(Inf)(x) == sup (E [f(a: + v ahp&, + bhn)] — gon(a,b)hn),

(CL,b)GAn
where A, C Si xR% 2 € X, C R and ¢,,: A, — [0,00]. To be precise, we show that

T(t)f = lim IFnf for all (f,t) € Ch(RY) x Ry,

where hy, — 0 and k! h,, — t.

Subsequently, we formalize the definition of the operators (I,)nen and impose suf-
ficient conditions to guarantee the convergence. Let (hy)neny C (0,00) be a sequence
with h, — 0 and define 7, := {kh,: k € No} for all n € N. Moreover, let (X,)nen
be a sequence of closed sets X,, C R¢ with z +y € X, for all z,y € X, such that,
for every = € R?, there exists x, € X, with x,, — z. We choose random variables
€n: Q — R with E[¢,] = 0, E[6,£7] = 1 € R4 and sup,,cy E[|€,]3]] < oo and subsets
A, € S% x R% Suppose that

x + v/ ahp&y(w) + bh, € X,
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foralln e N, z,y € X,,, (a,b) € A, and w € Q. Finally, let (¢,)nen be a sequence of
functions ¢, : A, — [0, 00] and define

1
©f: R« RY 5 R, (a,b) —  sup < tr(aa’) + b0’ — @n(d’, b’)) ,
(a/,b/)EAn

1
©*: R xR S R, (a,b) — sup < tr(aa’) + bb' — ¢(d’, b')> .
(a’,b’)ESiXRd
Assumption 3.14. Suppose that the following conditions are satisfied:
i) There exists (a*,b*) € S¢ x R? with ¢(a*,b*) = 0.
+ ¥

. ) b
(ii) Tt holds limy,| 1 jp|—s00 % = 00.
(iii) For every n € N, there exists (a),b}) € A, with ¢y (a), b)) = 0. Furthermore, it

s On n» Yn
holds supy,en(lag,| 4 [b7,]) < oo.

(iv) Tt holds 1img| p|—se0 Infren % - .

(v) It holds limy,—s o0 SUP|4) 4 pj<r [¥5 (@, b) — ¢*(a,b)| = 0 for all r > 0.

Theorem 3.15. Suppose that Assumption 3.14 is satisfied. Then, there exists a strongly
continuous convex monotone semigroup (S(t))i>0 on Cp(RY) with S(t)0 = 0 given by

S(t)f = lim I¥of o for all (f,t) € Co(RY) x Ry,
where (k!)nen C N is an arbitrary sequence with kb h, — t, such that

C®(RY € D(A) and Af=  sup (1tr(ap2f(x))+bTDf(x)—¢(a,b))
(a,b)eSE xR?

forall f € Cgo(Rd). Moreover, the conditions of Theorem 2.4 are satisfied and therefore
S)f=T{)f forallt>0 and f € Cyx(R?).

Proof. In order to apply Theorem 2.9, we have to verify Assumption 2.8. It is straight-
forward to show that the operators I,,: C(X,) = Cp(X,,) are well-defined and satisfy

I,, is convex and monotone with 1,0 = 0 for all n € N,

HInf - IngHoo,Xn < Hf - g”oo,Xn for all n € N and fag € Cb(Xn)7
Tolnf = Ly(1of) for all m € N, f € Cp(X,,) and z € X,

I,: Lipy(Xy,r) — Lipy(Xy,r) for all n € N and r > 0.

Now, let f € C°(R?). For every n € N and z € X,
f(x 4+ v/ahy&, + bhy) — f(x)
1
= / Df(x +t(\/ahn&n + bhn)) T (VVahnépn + bhy) dt
0
1 1
:/ Df(x + t(r/ahn&n + bhy))bhy dt+/ Df(z + tbhy)) T \/ah,&, dt
0 0

1 1
+/ / Vahn €L D? f(x 4 st\/ahn&n + thhy)\/ahp&at ds dt.
0 JO

Since E[¢,] = 0 and E[|¢,]?] = d, we obtain

(I&F = F)(@) = pnla, b)hy, < (;dla ID* flloo + [b] - 1D flloo = %(ay”)> fon
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for all n € N, (a,b) € A, and z € X,,, where (I&"f)(z) := E[f(x + valhn&n + bhy)).
Hence, due to Assumption 3.14(iv), there exists r > 0 with

IL,f = sup (Ig’bf — nla, b)hn) for all n € N, (3.12)
(a,b)eAr

where A7 :={(a,b) € A,: |a| + |b| < r}. By increasing r > 0, we can assume that

D). DS @) = s (Gu@D* (@) + DI ~ pulat)) (313
(a,b)e AT

for all n € N and = € RY. For every n € N, (a,b) € A%, and = € X,,, Taylor’s formula
yields

f(x + vahn&, +bhy,) = f(z) + (v ahnén + bhy) ' Df(2)
+ %(\/M +bha) T D? f () (Vahn&n + bhn) + Ru(f, 260),

where the remainder term can be estimated by

IVahn&n + bhy |3
6

It follows from E[£,,] = 0 and E[£,£]] = 1 that

L= f o [F@+ Valn + bha) - f()
hn, h,

= bTDf(l') —+ %tl‘ (aD2f(£B)) + Rn(fa m?&ﬂ))

where the remainder term can be estimated by
- 1
[Bn(f, 2, €n)] < 5161 R D* £ (2)] + B[ Ru(f, 2, &)1

Hence, we can use equation (3.12), equation (3.13), the condition sup,,cy E[|6,]3] < 0o
and Assumption 3.14(v) to obtain

Inf_f_

li
1m hn

n—oo

©*(D?f, Df)H =0 forall fe CZ(RY).

o0

Moreover, the previous estimates and Corollary 2.14 guarantee that Assumption 2.8(ii)
is satisfied while the results in |10, Subsection 5.1| yield that the semigroup (T'(¢))i>0
satisfies the assumptions of Theorem 2.4. Now, claim follows from Theorem 2.9 and
Theorem 2.4. O

3.7. Markov chain approximations for perturbed transition semigroups. Let
(¢1)¢>0 be a family of functions 1;: R? — R? and (j1)i>0 C Pp(R?), where P,(RY)
consists of all probability measures p: B(R?) — [0, 1] with [p, [z[P p(dz) < co. In [8,15],
the authors studied Wasserstein perturbations of the linear transition semigroup

(RODE = [ F01(a)+ i)
which can be constructed as the monotone limit

(T(0))(w) = inf D = lim T2,
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where the one step operators are defined by

(J(Of)(z) == sup (/ (f (o) + y)v(dy) — ty (W))
veP, (R \JR?
for all t > 0, f € Cp(R?) and = € R?. Here, we denote by

1

Wy(p,v) = ( inf / |z — y|Pr(da, dy)) ? for all u,v € Py(RY)
m€ll(p,v) JRA xR

the p-Wasserstein distance, where the set II(u, ) consists of all probability measures
on B(R? x RY) with first marginal y and second marginal v. Furthermore,

tw%wz{Q ol

00, c¢#0,t=0,

for a non-decreasing function ¢: Ry — [0,00]. In this context, the family (R(t))i>0 is
called the reference model and (7'(t))¢>0 is referred to as the perturbed transition semi-
group. For related distributionallly robust optimization problems and the description of
nonparametric uncertainty using Wasserstein disctances, we refer to [7,9,69].

The aim of this subsection is to provide a Markov chain approximation for the per-
turbed transition semigroup. To that end, let (hy)nen C (0,00) be a sequence with
hn — 0 and define T, := {kh,: k € Ny} for all n € N. Moreover, let (X,),en be a
sequence of closed sets X, C R? with = +y € X,, for all z,y € X,,, such that, for every
z € R%, there exists z,, € X,, with z,, — z. For every n € N, the set P,(X,,) consists
of all probability measures p: B(Xy) — [0,1] with [ [z[P u(dz) < oo and is endowed
with the p-Wasserstein distance

WXn (i, v ;:( inf / z — y|P n(dz, d >p
o (s v) ot anan y[? m(dz, dy)

Let (¢n)nen be a sequence of functions ¥, : X;,, — X, and (un)nen be a sequence of
measures fi, € Pp(X,). For every n € N, f € C,(X,,) and « € X,,, we define

Xn 14
(Inf)(x) ==  sup < [ fnla) + ) ) o (V"p(“n)> hﬂ)_

VEP(Xn) hn,
Furthermore, we define

Ao D(A0) = Col®, 7> T ([ ()40 - 1)

n—oo hn
where D(Ap) consists of all functions f € Cp,(R?) such that the previous limit exists.

Assumption 3.16. Suppose that the following conditions are satisfied:
(i) 1t holds ¢(0) = 0 and lim,_, &< = cc.

c

(i) Tt holds limy o0 [y 9] pn(dy) = 0.
(iii) There exists L > 0 such that, for every n € N and x,y € X,,,

() — Yn(y)| < ez —y| and  |Pn(z +y) — 2 — ¥nu(y)| < Lhn|a.

Moreover, we assume that sup,c [¢n(z) — 2| — 0 for all K € R%.

(iv) For every r > 0, there exists a sequence (0p)nen C (0,1] with §,, | 0 such that,
for every A € Ba(r), there exists a sequence (Ap)nen with A, € X, and

[An]

An
— = A <4, and ¢ |— ) —p(A) <, forallneN.
ho, hy
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(v) It holds C°(RY) C D(Ap). Moreover, there exist N € N and a non-decreasing
function p: Ry — R4 with

N
Pl 4l - 1| < (Z HDifHoo> i
oo =1

I8
for all n € N and f € C°(RY).
Assumption 3.16(i) guarantees that
©*(a) :=sup (ab — ¢(b)) < oo for all a > 0.
b>0
In particular, the real-valued convex function ¢*: Ry — Ry is continuous. Moreover,

the following conditions from [10, Section 5.3] guarantee that the semigroup (7'(¢)):>0
satisfies the assumptions of Theorem 2.4.

Assumption 3.17. Suppose that the following conditions are satisfied:
(i) It holds lim¢ o [pa [yl dpe(y) = 0.
(ii) There exist r > 0 and ¢ > 0 with p(Bgra(r)€) < ct for all ¢ € [0, 1].
(iii) It holds (0) = 0 for all ¢ > 0 and there exists ¢ > 0 with
[Ye(x) = hi(y) — (& —y)| < ctfe -y
for all z,y € R? and ¢ € [0, 1].
(iv) It holds Agf = limpg R(h;l = forall f € Ce(RY).

Theorem 3.18. Suppose that Assumption 3.16 is satisfied. Then, there ezists a strongly
continuous convex monotone semigroup (S(t))i>0 on Cp(RY) with S(t)0 = 0 given by

S()f = lim I¥a g, for all (f,t) € Cp(RY) x Ry,

where (k)nen C N is arbitrary sequence with kL h, — t, such that
CR(RY C D(A) and Af = Aof +¢*(IDf]) for all f € Ci°(RY).
Moreover, the conditions of Theorem 2.4 are satisfied and therefore
S@t)f =T(t)f forallt>0 and f € Cx(RY).

Proof. In order to apply Theorem 2.9, we have to verify Assumption 2.8. For every
n €N, r >0, f € Lip,(X,,r) and z,y € X, it follows from Assumption 3.16(iv) that

(Inf) (@) = (Inf)W)] < 7l (x) = Yaly)] < e rrlz —y],
[TeInf — In(mef)|(y) < rln(z +y) — 2 — Pn(y)| < Lrhg|a|.
The operators I,,: Cp(X,) — F,(X,,) are convex and monotone with 7,0 = 0 such that
10 f = Inglloo, X < IIf = glloc,x,, foralln € Nand f,g € Cp(Xp).

Moreover, for every » > 0 and € > 0, there exists ng € N with

(Inf)(@) = sup  (I;f)(z) (3.14)

Wik () <e

for all n > no, f € Bg, (x,,)(r) and x € X,,, where

Xn 1%
L)) = [ e+ o) i) — o (W) -
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Indeed, by Assumption 3.16(ii), there exists ng € N with ¢(¢/nn)hy, > 2r and thus
I'f <—r <IKf forall n>ngand Wy(un,v) >c¢

Now, let f € C°(R?). For every n € N, z € X,, and v € Pp(

X,),
Xn U
hi ( f(Wn(@) +y)v(dy) — f(z) = (Wpé“")> hn>
n Xn

n
1

Xn v
hn < . f(hn(z) +y) v(dy) — /Xn f(hn(z) +y) Mn(dy)> s <Wp(un,)>
+ hln ( . f(n(@) + y)pn(dy) — f($)> _

(3.15)

It follows from Assumption 3.16(v), the Kantorowitsch transport duality, the fact that
f is || D f||oo-Lipschitz and Holder’s inequality that

X’IL l/
hi ( f(@n(@) +y)v(dy) = f(z) = <Wffu)> hn>
n Xn N
= W () [Df e (wxn%,
-

V) N .
I phn> +p <; HleHoo>
N .
@ (1D flloo) + p (Z ||D,Lf||oo>

i=1

forall n € N, z € X, and v € Pp(X,,) and therefore

Inf = fH < *(IIDf11s0) +p<2||p f||oo> for all n € N,

(3.16)
Next, we show that, for every K € R? and e > 0, there exists ng € N with
Inf - f *
L) (@) < Aof (@) + ¢ (IDS ()] +¢) +2 (3.17)

for all n > ng and = € K,,. Since Df is continuous, there exists § € (

0,¢/4] with
[Df(z) = Df(z +y) <5

$ forallz € K and y € Bga(46). (3.18)

Furthermore, by Assumption 3.16(i) and equation (3.14), we can choose ny € N with

1
wn(Bx, (6)°) < S and / ly| i (dy) < S foralln > ng (3.19)
" 4 5 Jx, 1
such that
(I, f)(z) = sup (Iy f)(z) forall n >ngand z € X,,.
Wf" (pim ) <82

(3.20)
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Let n > ng, v € K, and v € Py(Xy) with WX (uu,, ) < 6%, For an optimal coupling

m € (v, puy) and q := = 1, Holder’s 1nequahty 1mphes

1 Wgn(ﬂnyV)
n </XL f(Wn(z) + y) v(dy) — . f(n(z) + 2) Mn(dz)> o <h>

n

1 Wf”(ﬂnﬂ))

= fn(x) +y) = f(¢hn(2) + 2) w(dy,dz) — ¢ (

XnXxXn

1 Xn v
e [ DR bty = ) - (e - (VW)

1
v » WX (i,
< Gl2) ( / |y—z|pw<dy,dz>)” —s@(p e ”)
n XnxXn n

W (i, v) (wgfn(nmu)
Botlnt) _,, (Lo tV?)

n

by,

) < o (a(a), (521

1 :
a’(z) = / </ |IDf(tn(x) +y+tly — 2)|? w(dy, dz)) dt.
0 XnxXp,
It remains to show that
ay(z) < |Df(x)|+¢e for all n > ng. (3.22)
For every n > 0 and ¢ € [0, 1], Minkowski’s inequality and inequality (3.18) yield

1

( [ @y i - z>|q7r<dy,dz>) " Di)
XnXXn

<([ IDfu@ ty+ tty = 2) = Df@ n(anas) )

XnXXn
< (/ [Df(n(z) +y+t(y — 2) —Df(x)lqﬂ(dy,d2)>

BanXn(‘s)
+ 2| D flloom (Bx, xx, (8)°)
< 2| D fllosm (Bx,x X, (9)°) + /4.
Moreover, it follows from inequality (3.19) and Holder’s inequality that
W(BXHXX,L((;)C) < TI'(BX (5)C x X ) +7['(X X BXn(5)C)
= v(Bx, (9)°) +un(BXn(6> )

_5/|y|

e € 35
n (d <5+ - < —.
5W (Hns V) 5/ [yl pn( y)+ t5=7
Moreover, due to Assumption 3.16(v), there exists ny > ng with
1
. ( . f(wn(~)+y),un(dy)—f> — Aof <e foralln>n;. (3.23)
n n OO,Kn
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Combing the equations (3.15) and (3.20) with the inequalities (3.21)-(3.23) yields that
inequality (3.17) is valid. In order to obtain a similar lower bound, we show that, for
every K € R? and ¢ > 0, there exists ng € N with

I,f — X
(1) @ 2 a0r@) - 101D - 22 (3.24)
for all n > ng and z € K,,. By Assumption 3.16(i), there exists r > 0 with
" (IDf(x)]) = sup (ADf(z)—¢(|A])) forallz e RY. (3.25)
AGBRd(T)

Moreover, by Assumption 3.16(iv), there exists a sequence (0p)nen C (0, 1] with d,, | 0

such that, for every A € Bpa(r), there exists a sequence (A, )nen with A, € X, and
% - A‘ <6, and ¢ <‘2n|> —¢(|A]) £ 0, forall n eN. (3.26)

In the sequel, we fix A € Bra(r) and choose such a sequence (\,,)nen. Since the measures
Up i= lin, % 0y, € Pp(Xy,) satisfy satisfy W]‘DX” (tins Vn) = |An|, we obtain

W]‘f("(p,n, VTL))

n

,jn < [ @@ ) nan) - /X fn@) +9) un<dy>) — (

- Al
- /X TWn(e) 3+ ) = (o) + 1) () <hn>

1
— | [ it +u+ i) at (‘2') (3.27)

for all n € N and = € X,,. Moreover, there exists § > 0 with
|IDf(z) — Df(x +y)| < for all z € K and y € Bga(39). (3.28)

£
41+ )
Since inequality (3.26) guarantees |A,| < (1 4+ 7)h, — 0 and due Assumption 3.16(ii)
and (iii), we can choose ng € N such that |\,| <6, sup,ck, |[¥n(r) — 2| <6,

2(L+7)IDfllscpn(Bx,(8)°) < § and (14 [|Dflloc)dn < § (3.29)
for all n > ng. Inequality (3.26), inequality (3.28) and inequality (3.21) imply

e Ao
hn/() /Xn Df(¢hn(x) +y + tAn) pn(dy) dt — ¢ <h) — (ADf(z) — o(|A]))

n

1
! D (Wlx) + -+ 1ha) = D) ()

+o) - (52])

1
> (147) / / D (thn(2) + y+ ) — Df ()] pon(dly)
0 BXH((S)

21+ 1)|Dflltn (B, (0)°) — § > — (3.30)

for alln > ng and z € K,,. Combining equation (3.15), inequality (3.23), equation (3.25)
and inequality (3.30) yields that inequality (3.24) is valid. Hence, from inequality (3.17),
inequality (3.24) and the continuity of ¢*, we obtain

BT mor o) =o.

n 00,Kp,

An
" —A\ Df()

lim

n—oo
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In addition, inequality (3.16), Corollary 2.13 and Remark 2.17 guarantee that the oper-
ators I,: Cp(X,) = Cph(X,,) are well-defined and satisfy Assumption 2.8(ii) while the
results in [10, Subsection 5.3| yield that (T°(t)):>0 satisfies the assumptions of Theo-
rem 2.4. Now, claim follows from Theorem 2.9 and Theorem 2.4. O

APPENDIX A. A VERSION OF ARZELA ASCOLI’S THEOREM

Let (X,)nen be a sequence of subsets X,, C R? such that, for every = € R? there
exists a sequence (p,)nen with z, € X, and x,, — 2. A sequence (fy,)nen of functions
fn: Xy — R is called bounded if sup, ey || fnllx,x,, < 0o. Furthermore, the sequence is
called uniformly equicontinuous if, for every € > 0, there exists d > 0 with

|fn(z) — fu(y)| <e forallneNandz,ye X, and |z —y| <.

Lemma A.1. Let (fn)nen be a bounded uniformly equicontinuous sequence of functions
fn: Xn — R. Then, there exist f € Co(R?) and a subsequence (n;)ieny C N with

hm Hf - meOO,Knl = O
l—00
for all K € RY with K N Xpn, # 0 for all 1 € N. Furthermore, it holds
flz)= llim Fr ()
— 00
for all x € R? and sequences (xn)nen with x, € X, and z, — .

Proof. Let D C R?% be countable and dense. Moreover, for every = € D, let (2,,)nen be
a sequence with x, € X, and x,, — . We use the Bolzano—Weierstrass theorem and a
diagonalization argument to choose a subsequence (1;);eny C N such that the limit

f(z) = ll_i)m fo(xn,) €R

exists for all x € D. This defines a uniformly continuous function f: D — R satisfying
sup,ep |f(z)|k(z) < oo which can be uniquely extended to a uniformly continuous
function f € C.(R?). Moreover, for every = € R? and sequence (2, )nen With z, € X,
and x, — z, it follows from the uniform equicontinuity that f,, (z,,) — f(x). Let
K € X with KN X, # 0 for all | € N. We assume, by contradiction, that there exist
e > 0, a subsequence (n1)ien of (n)ien and @y, , € Kp, , with

| frus (T, ) = f(@n, )| > € foralll €N,

Since K is compact, we can choose a further subsequence (n;2)en of (n,1)eny and
r € R? with Ty, — @. It holds f(xp,,) = f(v) and fp,,(%n,,) — f(x) which leads to
a contradiction. We obtain limy_,e || f — fi, [|oo,k,, = 0 O

APPENDIX B. A BASIC CONVEXITY ESTIMATE

Lemma B.1. Let V' be a vector space and ¢: V — R be a convex functional. Then,

$(v) — dlw) < A <¢ (U_Aw + w) - ¢(w)> for all v,w € V and A € (0,1].
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Proof. We use the convexity to estimate

o0) - o) =6 (A (152 +w) + 1= Vw) - o(w)

v —w

<2 < ; w) (1= N)o(w) — 6(w)

(o (55 ) -0)

for all v,w € V and A € (0,1]. O

Lemma B.2. Let (S(t))i>0 be a convex monotone semigroup on C,(R?) such that, for
every v, T > 0, there exists ¢ > 0 with ||S(t)f — S(t)gllx < c||f — gllx for allt € [0,T]
and f,g € Be, ray(r). Then, it holds S(t): L3 — L5 for allt > 0.

Proof. Let f € Ei and ¢ > 0. By definition, there exists hg > 0 with

_ At
SOIZDT 4 sl < oo

K

and the semigroup property yields S(h)S(t)f = S(t)S(h)f forall h > 0. By Lemma B.1,
the monotonicity and the uniform Lipschitz continuity, there exists ¢ > 0 with

<S(h)5(t)f—S(t)f> . < (S(t) <f+(5(h)fh_f)+> —S(t)f> K

h
< o star=p
- h

r:i= sup
he(0,ho)]

<er forall h € (0, hol. O

K

APPENDIX C. CONTINUITY FROM ABOVE

Let ca;f (R?) be the set of all Borel measures p: B(R?) — [0, 00] with [ dp < oo.
Moreover, the convex conjugate of a functional ¢: C,(R%) — R is defined by

o et @) 00l o sup (uf — o). where ufi= [ fdn
FeCL(RY) R4

In the sequel, let (X;);er be a family of closed sets X; C R? and (¢;)icr be a family of
convex monotone functionals ¢;: C,.(X;) — R with ¢;(0) =0 and

sup  sup |pi(f)] < oo forall > 0. (C.1)
el fEBCH(X,L-)(T)

For every i € I and f € C,(R?), we define ¢;(f) := ¢;(f|x,), i-e., we consider C,(R?) as
a subset of C,(X;) using the possibility to restrict functions from R¢ to X;. Moreover,
let K; :=KNX, forall K@ R% and i € I.

Lemma C.1. The following two statements are equivalent:

(i) It holds sup;c; &i(fn) L O for all sequences (fn)nen C Cx(R?) with f,, | 0.
(i3) For every e >0 and r > 0, there exist ¢ > 0 and K € R? with

Sup 9:(f) — ¢i(9)| < cllf = glloo,r; +

foralli €I and f,g € Be, (x,)(r).
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Proof. First, we assume that condition (i) is satisfied. Let € > 0 and r > 0. Since the

functional ¢;: C.(R%) — R is continuous from above, we can apply [10, Theorem C.1]
to obtain
6i(F) = max (uf — () foralli € 1 and f € B, (), (C2)
14 i

where M; := {p € caf (RY): ¢7(n) < ¢5(%) — 2¢;(—L)}. Furthermore, it holds

K

w(X5)=0 forall p€ M; and i€ I. (C.3)

Indeed, by contradiction, we suppose that there exists p € M; with p(X¢) > 0. Then,
due to Ulam’s theorem, there exists K € X¢ with u(K) > 0. Moreover, by Urysohn’s
lemma, there exists a continuous function f: R? — [0,1] with f(z) = 0 for all z € X;
and f(zx) =1 for all x € K. We use ¢;(A\f) = ¢i(Af|x,) = ¢i(0) = 0 to conclude

;7 () = sup ((Af) — ¢i(Af)) = sup Au(K) = oc.
A>0 A>0
This contradicts the fact that p € M; guarantees ¢} (u) < co. Next, we show that
¢i(f) = max (uf — ¢ () foralli € Iand f € Bo, x(r), (C.4)

where pf = in f dp is well-defined due to equation (C.3). Leti € I and f € Bg, (x,)(r)-
Since X; € R% is closed and fr € Cp(X;), by Tietze’s extension theorem, there exists a
function § € Cp,(R?) with (fx)(z) = g(=) for all € X; and || f&/co.x; = ||§]/co- Hence,
the function g := 1§ € C,(R?) satisfies f(z) = g(z) for all z € X; and || f|lx,x, = [|g]x-
It follows from equation (C.2) and equation (C.3) that

9i(f) = ¢ilg) = max (ug — ¢} (u)) = max (uf — 9} ().
Condition (i) guarantees that the convex monotone functional

¢: Co(RY) = R, fis sup 6(f)

is continuous from above with ¢(0) = 0. In addition, it follows from condition (C.1)
and [0, Theorem 2.2] that

M= {n € et (RY): 6" () < sup (0n(%) —20:(~ 1)) }

is o(ca (R?), C,(R?))-relatively compact and thus Prokhorov’s theorem guarantees the
existence of K € R? with SUPens free %d,u < .. Foreveryi € I and f,g € Bc, (x,)(7),
we use equation (C.4) and M; C M to obtain

|0i(f) — ¢i(g)| < sup |uf — pgl
rEM;

< sup (/ \f—grdu+/ \f—gldu>
pneM; K Ke

2r
< sup (u<K>||f—g||oo,Ki+ / du)
Kc K:

HEM;
<cllf = glloo,k; +,

where ¢ := sup,,e s p(K) < (1) + sup,epr ¢ (1) < oo.
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Second, we assume that condition (ii) is satisfied. Let (fy)nen C Cx(R?) be a se-
quence with f,, | 0 and define r := || f1]|x. For every € > 0, we can choose ¢ > 0 and
K € R with

Sup ¢i(fn) < |l falloo,x + 5 forall n € N.
1

Hence, by Dini’s theorem, there exists ng € N with sup;c; ¢i(f) < e forallm >ng. O

Now, let (®;);cr be a family of convex monotone operators ®;: Cy(X;) — Fu(X;)
with ®;(0) = 0 and

sup  sup  [|®i(f)||x < oo forallr>0. (C.5)
el fGBCH<Xi)(T')

Here, the space F,.(X;) consists of all functions f: X; — R with || f]|, < oc.
Corollary C.2. The following two statements are equivalent:
(i) For every K € R% and (fn)nen C Cx(RY) with f, |0,

sup sup (®;f,)(z) L 0 asn — oc.
el :EEKi

(i4) For everye >0, r >0 and K € R?, there exist ¢ > 0 and K’ € R? with
[®if — Piglloo, ik < cllf = gllo,x; +€  forall f.g € Be, (x,)(r)-
Proof. This follows from Lemma C.1 with I := {(i,z): i € I,z € K;}, X(i,x) := X, and
Gix)(f) = (®if)(x) for all (i,z) € I and f € C(RY). O

Corollary C.3. Let #: R? — (0,00) be another bounded continuous function such that,
for every € > 0, there exists K € X with

R

sup &) <
p <e.
reK*® K;(x)
Moreover, for every r > 0, there exists ¢ > 0 with
1@ fllz,x, < cllfllzx; foralli€l and f € Be,(x,)(r).
Then, for everye >0, r >0 and K € R?, there exist ¢ > 0 and K' € R with
[@if — Piglloo,i; < cllf — glloo,x; +€ foralli €l and f,g € Be,(x,)(r).
Proof. 1t suffices to verify condition (i) from Corollary C.2. To do so, let K € R? and
(fo)nen C Cx(R?) be a sequence with f,, | 0. Let € > 0 and choose K € R? with
sup @ <e.
zeKe® I{(l‘)
By Dini’s theorem, there exists ng € N with f,,(x) < e for all n > ng and = € K. Hence,
_ K(z _
IFalle = sup (@) 7o) + sup o) ) < (sup i) + 1l )
zeK reKe /'i(l’) zeK
We obtain || fn|lz — 0 as n — oo and thus

sup [|®; fnllz = 0 asn — oc.
el

For every K € R?, we use the fact that inf,c #(x) > 0 to conclude

sup sup (®;fn)(z) L 0 as n — oo.
i€l xeK;

Now, the claim follows from Corollary C.2. 0
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Corollary C.4. Assume that, for everye >0, 7 >0 and K € R?, there exist a family
(Co)eerc of continuous functions Cp: RT — R and K € R? with

(i) 0< (<1 foralzxeK,
(it) sup,c ge Ca(y) <€ for allw € K,
(iti) (®;(L(1—¢p)))(z) <e foralliel andz € K.
Then, for everye >0, r >0 and K € R?, there exist ¢ > 0 and K' € R?* with
[Pif = Piglloo,i; < cllf = Glloo,x; +€ forallie I and f,g € B, (x,)(r).

Proof. 1t suffices to verify condition (i) from Corollary C.2. To do so, let K € R? and
(fn)nen C Cu(RY) be a sequence with f,, | 0. Let € € (0,1] and r := 2||f1]|. + 1. It
follows from condition (C.5) and infzex k() > 0 that
c:=sup sup (®;(L))(z)+1 < oco.
el $€Ki

By assumption, there exist a family ((;)zex of continuous functions ¢, : R? — R and
K € R? satisfying the conditions (i)-(iii) with ¢/c. For every i € I and = € K, the
convexity and monotonicity of ®;, condition (i) and condition (iii) imply

(ifn)(x) < 3(Pi(2/nC0)) (@) + 5(Pi(2fn(1 — &))) ()
< 5(®i(2fnta)) (#) + 5.
By condition (i), condition (ii) and Dini’s theorem, there exists ng € N with
2fnCe < ¢ foralln>ngand z € K.

Hence, for every i € I, x € K; and n > ng, we use the fact that ®; is convex and
monotone with ®;(0) = 0 to obtain

(®i(2fuC0)) (@) < (2i(5)) (@) < £(®if) (@) < e 0
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