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Abstract

This paper studies the global synchronicity of technology and its impact

on the economy. We employ dynamic factor analysis to decompose patent

data in different digital technologies for various countries into global and

country-specific factors. Our findings confirm the existence of global and

local technology cycles. We further find a significant positive correlation

between the estimated global technology index and a country’s economic

performance. This positive effect is stronger in countries with broad tech-

nological exposure. However, a concentration in only few dominant techno-

logical fields seems to reduce the positive impact of the global technology

cycle on a country’s economic performance.
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1 Introduction

Global inventive activities play a crucial role in the productivity growth of coun-

tries, (e.g, Grossman and Helpman, 1991; Rivera-Batiz and Romer, 1991; Eaton

and Kortum, 1996). Especially, since countries can benefit from knowledge gen-

erated elsewhere, for example, through international trade, foreign direct in-

vestment (FDI), migration and social networks (see, e.g., Keller, 2010, for an

overview). However, while the empirical literature focuses on bilateral relation-

ships to measure the benefits of international knowledge flows (e.g., Coe and

Helpman, 1995; Keller, 2002; Branstetter, 2001; Peri, 2005), there is little evi-

dence on multilateral interactions between technological activities worldwide.

This paper proposes an empirical model that accounts for the overall international

innovation dynamics simultaneously. Since international knowledge flows happen

concurrently between countries, this model can provide new insights compared

to models of bilateral knowledge flows. More specifically, we extract global and

country-specific technology indices using international patent data for the period

from 1980 to 2015. We employ a structural dynamic factor model to decom-

pose percentage changes in patent counts of seven technology fields and across

29 countries into world, country and idiosyncratic components. The world factor

represents the co-movement in percentage changes in patent counts at the global

level. The country factor captures the joint development that take place across

different technologies within a country. The idiosyncratic component measures

the technology specific dynamics. To the best of our knowledge, there are no

previous applications of a dynamic factor model to account for (international)

innovation dynamics. The closest attempt to ours appears to be an effort by

Blackman Jr., Seligman and Sogliero (1973) who used three independent factor

models creating an innovation index from multiple variables at the industry level

from the first factor for three calendar years. In our analysis, we focus on the

development of digital technologies, which is extensive in our sample period.

In a further step, we use the estimated factors and each country’s exposure to

these factors to study the effects of global and country-specific technology cy-

cles on economic performance. More specifically, we regress gross value added,

employment, wages and labour productivity in each country’s ICTs industry on

the world and country factor. We adjust for exposure to these factors, which

we derive from a variance decomposition of the patent count data based on our
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dynamic factor model. In addition, we include a Gini coefficient measuring the

breadth of technological exposure to the global and domestic factor.

Our empirical findings suggest that the global technology index plays an im-

portant role in various digital technologies across countries. The world factor

explains a large total fraction of the variance in patents in, for example, the U.S.,

Canada, Germany and France. Moreover, in several countries digital communi-

cation and computer technologies load strongly on the global technology index,

whereas fluctuations in the audio-visual technologies are rather country-specific.

Further, we find that our world factor is highly correlated with past international

knowledge flows measured by international citation counts. This suggests that

current global dynamics in invention activities rely strongly on the concurrent

flow of knowledge between countries.

We additionally find a significant and positive correlation between our global tech-

nological index and the economic performance of the ICT sectors. We further see

that increased dependence on international knowledge flows without respective

domestic invention activities reduces this positive correlation. However, the pos-

itive performance effect increases if a country’s technological global exposure is

broad, i.e. if the development of as many digital technologies as possible is syn-

chronised globally and benefits from international knowledge flows. The selective

exposure of individual technological areas, on the other hand, reduces the posi-

tive influence of an internationally synchronous digital technology cycle. Thus,

countries appear to benefit most from participating in international innovation

efforts when their ICT sector is technologically diverse. Countries that rely on

expertise in only a few technologies gain less from the global technology cycles,

even when their few technologies are strongly associated with the global factor.

Our contribution to the existing literature is twofold. The results highlight the

characteristics of multilateral international technological knowledge flows and

their economic implications. We document the economic consequences related

to the connectedness of a country’s activities in various digital technologies to

the global and country specific knowledge dynamics. This extends the findings

from the aforementioned literature on innovation and growth (e.g., Eaton and Ko-

rtum, 1996; Peri, 2005), where the exchange of innovative ideas covers exclusively

bilateral knowledge flows. Moreover, our method allows to distinguish between

global and local dynamics of technological activities, accounting for complex in-
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teractions between countries. In this way, we are able to independently identify

the contribution of global and local invention activities on the performance of do-

mestic ICT industries. One important condition for positive performance effects

are broad domestic invention activities. This is a precondition to successfully

absorb international knowledge for imitation activities or the generation of new

inventions (see, e.g., Cohen and Levinthal, 1990).

Further, we contribute to the literature on measuring aggregate technological in-

novation by estimating global and country-specific innovation indices. Previous

research in this area has focused on using patent text similarity (e.g., Kelly et al.,

2021), estimated patent market value (e.g., Kogan et al., 2017), per capita patent

counts (e.g., Shea, 1999), and is restricted to only one country, i.e., the United

States. To the best of our knowledge, we are the first to compute a time series in-

novation index at the global level distinct from the dynamics at the country level.

The paper is structured as follows. Section 2 specifies the dynamic factor model

and describes the resulting world and country indices. Section 3 introduces the

econometric analysis and describes the respective results. Section 4 concludes

the paper. The appendix contains robustness checks for regression analyses and

further results from the dynamic factor model.

2 Measuring Global and Local Technological Innovation

To decompose patent dynamics in various ICT technologies of a large group of

countries into global, country-specific and idiosyncratic technology components,

we suggest a dynamic factor model in the spirit of Sargent and Sims (1977) and

Geweke (1977). Kose, Otrok and Whiteman (2003) apply a similar model to

study business cycle co-movements across countries, regions and the world. The

global technology factor captures the patent fluctuations that are common across

the different technologies and countries. The country-specific technology factor

measures the co-movement between the patents for various technologies within a

country. The idiosyncratic technology factor picks up only the technology specific

movements.
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Thus, percentage changes in patent counts at time t, in country i and for tech-

nology j for t = 1, 2, ..., T , for i = 1, 2, ..., N and j = 1, 2, ...,M can be expressed

as

pi,j,t = αi,j + βworld
i,j κworld

t + βcountry
i,j κcountryi,t + εi,j,t, (1)

where the percentage changes in patent counts pi,j,t are computed using the first

difference of log levels of patent counts, κworld
t is the world technology factor,

κcountryi,t represent the country-specific technology factors, βworld
i,j and βcountry

i,j are

factor loadings that link the world and country-specific technology factors to the

particular patent counts and εi,j,t are i.i.d. normally distributed errors with mean

zero and variance σ2
i,j.

For the technology factors κworld
t and κcountryi,t we assume the following AR(q)

processes

κworld
t = φ1κ

world
t−1 + ...+ φqκ

world
t−q + ηworld

t , (2)

κcountryi,t = φi1κ
country
i,t−1 + ...+ φiqκ

country
i,t−q + ηcountryi,t , (3)

where ηworld
t and ηcountryi,t are i.i.d. and follow a normal distribution with zero

mean and variance (σworld)2 and (σcountry
i )2. In the empirical application, we set

q = 2.

Before moving on to the estimation procedure, we first have to address some iden-

tification issues that are present in the dynamic factor model described above.1

These are summarized by the sign, scale and rotational indeterminacy. We solve

the sign and scale indeterminacy of the model by restricting the factor loadings

of the first N + 1 factors to be positive and the variance in the factor equation to

be equal to one. Moreover, the number of zero restrictions on the factor loading

matrix that is implied by the global and country-specific decomposition fixes the

rotational indeterminacy.

We estimate the model using Bayesian methods.2 To obtain draws from the

posterior distribution, we make use of the Gibbs sampling algorithm (see, e.g.

Gelfand and Smith, 1990 and Kim and Nelson, 1999 for a textbook treatment).

Our Gibbs sampler consists of two blocks. In the first block, conditional on the

1See, e.g., Bai and Wang, 2015, for a more detailed discussion of the identification in
Bayesian dynamic factor models.

2The R Code for the estimation procedure is available upon request.
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data and the factors we draw the parameters from a Normal-Gamma distribution.

In the second block, conditional on the data and parameters we draw the factors

using the efficient simulation smoothing approach of Chan and Jeliazkov (2009).

We specify diffuse priors for the parameters of the model.

2.1 Data

This work is primarily based on patent statistics from the global patent dataset

PATSTAT (spring 2019 edition) and industry statistics from the STAN database

by the OECD (2020 edition). To decompose patenting behavior for specific tech-

nological fields into global and country-specific innovations, we depend on country

level location information for each priority filing. We obtain this information by

using inventor fractional counts, meaning that a patent is accounted to countries

according to its share of inventors from this specific country.

We use an imputation strategy for inventor locations suggested by Rassenfosse

et al. (2013), including locations provided by de Rassenfosse, Kozak and Seliger

(2019). Accordingly we prioritizes inventor location over applicant location and

patent office location and impute information from the patent family in respective

order, if the preferred data is not available in the first filing itself. Additionally,

we impute missing location information from the additional data made available

through the above cited global geocoding effort.

We select seven ICT related technologies out of 35 technological fields defined by

the World Intellectual Property Organization (WIPO): digital communication,

audio-visual technology, telecommunications, basic communication processes, com-

puter technology, IT methods for management and semiconductors. Our decom-

position into global and country-specific technological innovations is based on 29

countries for the years 1980 to 2015.

2.2 Global and Local Technology Indices

Figure 1 shows the global technological index for the years 1980 to 2015. At the

beginning of the observation period there are strong fluctuations without a clear

trend, which could be related to the relatively low patent activities in some of

the analysed areas of digital technologies (e.g. audio-visual technologies, digital

communication, IT management). Only with the liberalisation of telecommu-

nications markets towards the end of the 1990s in many OECD countries the
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Figure 1: Global ICT technology index. The blue solid line represents the poste-
rior mean and the shaded area contains 90% of the posterior probability.

incentives to innovate and to patent new developments in the field of digital tech-

nologies increased (see Polemis and Tselekounis, 2021). Consequently, we start

to observe a clearer pattern. The global technological index implies a growth in

global patent activity until 2001 and then drops significantly as a consequence of

the ICT crisis in 2001. Subsequently, we notice an overall downward tendency

including minor moments of growth. For example, there is no clear increase in

the technology index immediately after the great financial crisis in 2008 and a

decline during the crisis. Moreover, after the liberalisation of telecommunication

markets in most OECD countries, the fluctuations are much smaller than before.

Overall, it is interesting to see that there is a global cycle for the development of

digital technologies.

Table B4 reports the share of the variance in changes in patent counts explained
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by to the global technology index for each technology field and country.3 The

global technology index explains a significant fraction in a couple of technology

fields in many countries. The fraction of variance explained by the world factor in

the fields of computer technology and digital communication is exceptionally high

in various countries. These high shares indicate a strong international linkage of

invention activity in these fields.

The local technological indices are different across countries (see Figure 2 and

Figure 3).4 However, there are also some commonalities: We see a significant

drop in technological activity related to the 2008 financial crisis (USA, Germany,

Japan). In other countries, like the UK, this connection can hardly be observed.

Also common to the countries shown is the significant decline in technological

development activities as a consequence of the ICT-driven economic downturn

in 2001. The variance decomposition in Table B4 reveals that a large fraction

of the patent count dynamics can be explained by the country-specific factors.

Especially, the technology fields in various countries in audio-visual and IT man-

agement seem to be driven locally by the country factors, mostly isolated from

the international innovation developments.

2.3 Innovation Dynamics and Knowledge Flow

To comprehend the mechanism leading to the observed common innovation dy-

namics, we analyze them from a perspective of invention and imitation behaviour.

While overall technological progress depends on the leading innovative countries

pushing the technological frontier, follower countries benefit from the possibility

of comparably cheaper imitation. This leads to patterns of joint innovation and

imitation activities, resulting in convergence of growth between innovating and

imitating countries (Barro and Sala-i-Martin, 1995). According to the empiri-

cal literature, flows of ideas from innovative countries help to stimulate growth

elsewhere (e.g., Coe and Helpman, 1995; Keller, 2002; Branstetter, 2001; Peri,

2005). Peri (2005) shows that accessible inbound knowledge flows can have an

effect on innovation 50% to 80% as large as the domestic R&D stock. Further,

3Given orthogonal factors, the variance of each patent in technology field j and country i
can be described as

var(pi,j,t) = (βworldi,j )2var(κworldt ) + (βcountryi,j )2var(κcountryi,t ) + var(εi,j,t).

Thus, the share of variance due to, for example, the global technology index is
(βworld

i,j )2var(κworld
t )

var(pi,j,t)
.

4See also the additional figures in Appendix A.
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Figure 2: ICT technology indices for the U.S. (upper-left panel), Japan (upper-
right panel), Germany (lower-left panel), and France (lower-right panel). The
blue solid line represents the posterior mean and the shaded area contains 90%
of the posterior probability.

Eaton and Kortum (1996) find that countries’ domestic productivity growth is to

a large extent affected by ideas originating abroad. However, there are significant

differences regarding this effect with technological leaders being less dependent

on foreign knowledge input.

Our data shows that the United States and Japan have a substantially higher

share in domestic knowledge sourcing (around 70% of citations are domestic)

compared to the other countries in our sample. Germany, China, and South
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Figure 3: ICT technology indices for Great Britain (upper panel), Italy (lower-
left panel), Canada (lower-right panel), and China (lower-right panel). The blue
solid line represents the posterior mean and the shaded area contains 90% of the
posterior probability.

Korea follow with 38%, 25%, and 19% domestic knowledge sourcing, respectively.

Tracking the flow of knowledge between countries via patent citations, we see

that past international knowledge flows, measured by backward citations between

patents, are highly correlated with current global innovation dynamics (see Figure

4).5 Shifting the world factor backwards we see that the correlation to the citation

time series peaks after a five year lag with a correlation coefficient of .78. Using

5We use backward citations between patent families using the same sample as to compute
the dynamic factor model.

10



−2

−1

0

1

2

1980 1985 1990 1995 2000 2005 2010 2015

In
di

ce
s

Global Technology Index Global Citation Share JP+US Citation Share

Figure 4: World latent ICT technology index and demeaned international share
of patent citations. The blue solid line represents the cumulative sum of the
world index. The green dotted line represents the international citation share of
all countries. The read dashed line represents the share of international citations
of the Japan and the United States.

the same approach, the correlation between the world factor and the international

citation shares of the United States and Japan reaches almost exactly the same

coefficient, but only after a -6 year shift. This suggests that the two technology

leaders source their inbound knowledge earlier than the other countries. The

joint global activity captured by the dynamic factor model might therefore arise

due to simultaneous imitation behaviour, as a result of knowledge absorption

from technological leaders by follower countries. The adoption and imitations of

specific technology additionally leads to growth in product market size for the

respective technology, potentially benefiting the leading countries. The empirical

insight into the strong correlation between past knowledge flows and the global

innovation dynamics establishes a strong connection to the theory on innovation
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and economic growth. This constitutes the basis for the interpretation of our

subsequent analysis regarding innovation dynamics and economic growth.

3 Common Innovation Dynamics and Economic Growth

In this section we analyze the economic implications of global and domestic inno-

vation dynamics in three parts. First, we analyze the overall effect of world and

country-specific technology factors on performance of ICT producing industries.

Second, we shed light on the economic implications regarding the differences in

exposure to the world and domestic innovation dynamics. Third, we investi-

gate the role of technological specialization with regard to global and domestic

exposure. By using the Gini coefficient to measure concentration among techno-

logical fields within a country’s ICT industry, we analyze the role of technological

breadth with regard to global and domestic innovation dynamics.

3.1 The Impact of Global and Local Innovation Dynamics

In the previous section, we decomposed technological activities in the ICT indus-

tries into global and domestic dynamics and broke down the variance in patents

explained by the respective components. In this section, we investigate the rela-

tionship between the global and domestic innovation activities and the economic

performance of the country level ICT industries.6 We regress the growth rate

of economic performance y in the ICT industry of a specific country i at time t

on the lagged world and country-specific innovation indices κworld and κcountry,

respectively:

yit = b0 + b1κ
world
t−1 + b2κ

country
it−1 + ci + eit (4)

where ci are fixed effects for the country-specific ICT-industries and eit are iid

error terms.7,8 We assume that the ICT producing industries are the main driv-

ing force for the development of digital technologies in a country. They are thus

responsible for the potential correlation between economic performance and the

global and domestic innovation indices.

For the econometric panel analysis we use the above mentioned PATSTAT and

STAN databases. We apply deflators provided by the OECD to adjust variables

6According to the OECD definition the ICT industries comprise ISIC rev. 4 codes 26, 61,
62-63.

7We do not include time fixed effects due to multicollinearity with the world index
8We present heteroscedasticity robust standard errors in all estimations.
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where necessary. We use the variables value added in volumes (Value Added;

growth rate), full-time equivalents - total engaged (Employment), wages and

salaries (Wage), and value added per full-time equivalent (Labor Productivity)

from the STAN database.9 We provide basic statistics for this set of variables in

Table A3 and Table A2. The performance variables are highly correlated. The

correlation coefficients vary between 0.497 and 0.779. The average growth rates

also fluctuate considerably for the different dependent variables. Value added

grows on average by 6.5%, employment by 2.1% and wages by 5.1%. Labour

productivity grows by only 2.4% on average for all countries and years observed.

In our main estimation we observe the technological and economic development

of 17 countries over a period of 35 years (1982 to 2016).

Table 1: Baseline Regressions

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 0.764∗∗∗ 0.433∗∗∗ 0.683∗∗∗ 0.290∗

(0.193) (0.116) (0.167) (0.139)
L.Country Factor -0.005 0.005 -0.006 -0.004

(0.005) (0.003) (0.005) (0.003)
Constant 0.064∗∗∗ 0.021∗∗∗ 0.050∗∗∗ 0.023∗∗∗

(0.000) (0.000) (0.000) (0.000)
N 357 164 329 162
Countries 14.00 8.00 14.00 7.00
F 23.32∗∗∗ 8.38∗∗ 14.76∗∗∗ 3.09
r2 0.05 0.05 0.05 0.02

Coefficient estimates, standard errors (in brackets) and significance levels (∗ p < 0.05, ∗∗ p <
0.01, ∗∗∗ p < 0.001) from estimating Equation (4) using OLS. The sample contains country-
level ICT industry indicators, where the respective industry performance measures are used as
dependent variables. The independent variables, world and country factor, are derived from
the dynamic factor model described in Section 2. The estimation includes country-specific fixed
effects. Reported standard errors are heteroscedasticity robust.

Table 1 shows that global digital technological activities are significantly and

positively related with the growth in value added. A 1% increase in the world

index in t-1 increases value added growth by 0.76%-points. We also see simi-

lar growth effects for wages and lower growth effects for employment and labor

9For more information about the STAN database and the construction of the variables, see
Horvát and Webb (2020).
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productivity.10 Independent of the lag structure, country-specific digital techno-

logical cycles tend to be unimportant for economic growth in the ICT industries

of a country. These results indicate that the domestic ICT industries benefits

from joint dynamics in global technological developments. The domestic tech-

nology cycles, capturing the activity decoupled from international development

only measuring within country dynamics, do not appear to be related with the

economic performance indicators at hand. In line with the above reasoning on

innovation-imitation and adoption dynamics we argue that the positive influence

of joint global activity are possibly due to the adoption of technologies developed

by technological leaders, the benefits of less costly imitation by follower countries,

as well as the overall growth in markets for the respective technologies.

3.2 Global vs. Local Technological Exposure

In our second analytical step, we shed light on the role of relative exposure to

global and domestic innovation dynamics. We exploit the results from the vari-

ance decomposition, which attributes the share of variance in a country’s tech-

nological activities (patenting) explained by the world factor (global technology

index), the country factors (domestic technology index), and an idiosyncratic

term. By building the ratio ξi between the variance explained by the global and

the domestic index, we obtain a measure of country’s relative exposure to global

and domestic technological activities.

yijt = b0 + b1κ
world
t−1 + b2κ

world
t−1 × ξi

+b3κ
country
it−1 + b4κ

country
t−1 × ξi + ci + eit

(5)

Here again y indicates the economic performance of the ICT industry in a specific

country i at a specific point in time t and κworld and κcountry indicate the world

and the domestic technological index. Additionally, we interact the innovation

indicators with the relative technological exposure to world and country factors

ξi. Similar to the previous section eit is the error term. Regression results are

contained in Table 2.

Our results show that the global over domestic exposure ratio qualifies the results

of the global and domestic innovation dynamics. Inspecting the global dynamics,

we see that the contribution of global technology dynamics to growth decreases

10The dependent variables measure the growth between t and t+1. The significant relation-
ship between the growth rates and the world factor remains even without a time lag, i.e. when
we measure the world factor in t (see Table C5 in appendix section C.1.)
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Table 2: Regressions with Ratio ξi

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 1.414∗∗∗ 0.646∗∗∗ 1.190∗∗∗ 0.735∗∗

(0.316) (0.162) (0.208) (0.297)
L.World Factor × W/C -1.031∗∗∗ -0.310 -0.835∗∗∗ -0.599∗

(0.280) (0.199) (0.175) (0.283)
L.Country Factor -0.024∗∗ -0.005 -0.018∗ -0.000

(0.008) (0.005) (0.010) (0.005)
L.Country Factor × W/C 0.026∗∗∗ 0.013∗∗ 0.016∗ -0.004

(0.006) (0.005) (0.008) (0.005)
Constant 0.064∗∗∗ 0.021∗∗∗ 0.050∗∗∗ 0.023∗∗∗

(0.000) (0.000) (0.000) (0.000)
N 357 164 329 162
Countries 14.00 8.00 14.00 7.00
F 20.66∗∗∗ 19.36∗∗∗ 12.77∗∗∗ 10.37∗∗∗

r2 0.08 0.06 0.06 0.03

Coefficient estimates, standard errors (in brackets) and significance levels (∗ p < 0.05, ∗∗ p <
0.01, ∗∗∗ p < 0.001) from estimating Equation (5) using OLS. The sample contains country-
level ICT industry indicators, where the respective industry performance measures are used
as dependent variables. The independent variables extend the base model by two interaction
terms, consisting of the ratio ξi between the variance explained by the global and the domestic
index with the world and country factors, respectively. The estimation includes country-specific
fixed effects. Reported standard errors are heteroscedasticity robust.

when the global technological exposure of the particular country is relatively

high. This could be related to knowledge outflows and consequently to increasing

global competition; however, the net effect remains positive. The contribution

and exposure to the global technological cycle thus increases the performance of

the domestic ICT industry.

The opposite mechanism can be observed for the domestic dynamics where the

contribution to growth increases with a comparatively strong international ex-

posure. We see a similar result for wage growth. This suggests that domestic

ICT industries benefit more from domestic innovation cycles when their world

technology exposure is relatively large. The reason for this positive effect is

likely related to knowledge inflows from global technological developments, as we

observe strong correlations between world dynamics and previous international
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knowledge flows.11

3.3 Technological Specialization and Economic Growth

In our third analytical step, we use the Gini coefficient to measure the technologi-

cal concentration of countries regarding their exposure to the world and domestic

factor. Technological fields based on patent classifications are used to differen-

tiate seven distinct technology fields within ICT. We calculate the ratio γi of

the concentration of world exposure over the concentration of domestic exposure

(Gini ratio). We then investigate whether the performance effect of exposure to

the world and country factors is related to the concentration of the respective

exposure. A high value of this ratio indicates a high concentration of the world

exposure on individual technologies, combined with a broad country exposure

involving diverse technological fields. A low ratio indicates just the opposite, i.e.

country exposure is more concentrated on individual technologies compared to

global exposure.

yijt = b0 + b1κ
world
t−1 + b2κ

world
t−1 × γi+

b3κ
country
it−1 + b4κ

country
it−1 × γi + ci + eit

(6)

In Equation (6), y indicates the economic performance of the ICT industry in a

given country i at a given time t. κworld and κcountry denote world and domestic

technology indices. In addition, the equation contains an interaction term com-

bining technology indicators with the just described ratio of Gini coefficients γi.

eit denotes the error term.

Table 3 shows the results of these estimates. While we still see the significant and

positive impact of the world index, we also find that the interaction effect between

this indicator and the Gini ratio is significant and negative for all performance

variables except for employment growth. This indicates that the positive effect

of global innovation dynamics decreases with relatively concentrated exposure

to individual technologies, but increases with comparatively broader exposure to

the global technology dynamics. Thus, we can add to the above result that it

is not only the relative extent of exposure that matters, but also whether the

global exposure includes a broader range of technologies. The results regarding

11The relationship between the growth rates and the factors remains qualitatively similar
without a time lag. However, the accuracy of the measured relationships is lower (see Table C6
in appendix section C.1)
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the breadth of exposure suggest that a country’s ICT industry being at the global

technological frontier in several digital technologies can benefit more from tech-

nological synergies than it loses from potential diffusion of its own knowledge.

Thus, there are advantages for first mover countries when technological activity

is broad and its ICT industry contributes strongly to the world technological cycle.

Table 3: Regressions with Ratio γi

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 1.852∗∗∗ 1.194∗ 1.516∗∗∗ 1.143∗

(0.383) (0.520) (0.460) (0.575)
L.World Factor × Gini W/C -0.859∗∗∗ -0.677 -0.681∗ -0.755

(0.264) (0.401) (0.332) (0.488)
L.Country Factor -0.032∗ 0.001 -0.025 -0.013∗∗

(0.016) (0.006) (0.018) (0.004)
L.Country Factor × Gini W/C 0.020∗∗ 0.002 0.014 0.008

(0.009) (0.006) (0.010) (0.004)
Constant 0.064∗∗∗ 0.021∗∗∗ 0.050∗∗∗ 0.023∗∗∗

(0.000) (0.000) (0.000) (0.000)
N 357 164 329 162
Countries 14.00 8.00 14.00 7.00
F 22.82∗∗∗ 13.42∗∗∗ 10.67∗∗∗ 3.76∗

r2 0.08 0.06 0.07 0.03

Coefficient estimates, standard errors (in brackets) and significance levels (∗ p < 0.05, ∗∗ p <
0.01, ∗∗∗ p < 0.001) from estimating Equation (6) using OLS. The sample contains country-
level ICT industry indicators, where the respective industry performance measures are used
as dependent variables. The independent variables extend the base model by two interaction
terms, consisting of the ratio γi between the Gini concentration of world exposure over the
Gini concentration of domestic exposure, at the level of seven distinct technological fields.
The exposures are derived from the varianve decomposition above. The estimation includes
country-specific fixed effects. Reported standard errors are heteroscedasticity robust.

If a country’s technological activities exposed to the domestic cycle are less con-

centrated than technological activities exposed to the global cycle, then we see

a less negative impact of a country’s technological activities on value added and

employment growth. This suggests that, regardless of whether the domestic ICT

industry is primarily exposed to global or domestic cycles, it should be diverse

rather than concentrated. This allows a country to benefit from the synergies

between the different areas of digital technologies. However, it can be seen that

stronger exposure to the global technology cycles is preferable to stronger ex-
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posure to the country-specific technology cycle. With additional time lags the

effects for the ICT industries of a country get weaker. 12

3.4 Robustness Checks

We conduct a series of robustness checks using model specifications including

three types of additional control variables, namely patent stocks, economic con-

ditions, knowledge flows. We also check for the sensitivity regarding our lag-

structure. All results are provided in Appendix B. First, regarding robustness of

temporal shifts, models including all independent variables at t = 0 show that re-

sults remain mostly similar to those of the models including time lags. However,

regarding the influence of country factor-based variables, we see a tendency to a

more immediate effect.

Second, we adjusting our three main estimations by including patent stocks as

lagged independent variable. We derive the knowledge stock on patent counts,

applying a 15% depreciation rate. Overall, our results appear robust regarding

the coefficients and statistical significance of the three variables value added, em-

ployment, and wage. However, patent stocks appear explain a significant share of

labor productivity, reducing the explanatory power of our factor related variables.

Third, extending our models by a global economic conditions index (Baumeister,

Korobilis and Lee, 2022), as well as country-level GDP, we see that those eco-

nomic indicators explain some variance in our performance indicators, partially

reducing our effect size and statistical certainty. However, there remains strong

explanatory power regarding our factor indicators. Given the literature on the

cyclicality of innovation activity (see, e.g., Barlevy, 2007) documenting , it ap-

pears intuitive that previous economic conditions explain some of the variance

else explained by our innovation dynamics indicators.

Fourth, including lagged knowledge flow indicators based on patent citations (see

Section 2.3) into our models, we see that our results remain largely robust. We

use two different aggregations of knowledge inflow. One for only Japan and the

United States, and the other for the remaining counties in our sample. We see

that knowledge flows towards Japan and the US has on average negative implica-

12The relationship between the growth rates and the factors remains qualitatively similar
without a time lag (see Table C7 in appendix section C.1).
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tions for the countries in our sample, while the implications is positive for inflows

into the remaining countries. This is strongly in line with the discussed literature,

stating the positive implications of inbound knowledge flows. Unfortunately, it

is not possible to estimate the implication of knowledge flows originating from

Japan and the US onto the two countries performance metrics.

Finally, combining all additional indicators as controls into our main models, we

see that still a modest share of our factor-based variables yield significant results.

However, it is mostly variables related to the world-factor remaining statistically

significant. We can see that in the combined models the long-run effects of six

year lagged knowledge flows remains. This result agrees with the high time-series

correlation of international knowledge flows and the world factor. It is also in

line with the regression results in Table C23, where we use the world and country

factors as dependent variables, including all the indicators used in our robustness

checks as independent variables.

4 Conclusion

Using a dynamic factor model, we identify a single world factor measuring the

joint technological activities at the global level in the ICT sectors. In addition

to the world factor, we also identify multiple country level factors that capture

the local technological activities. We find that the global factor is highly cor-

related with past inbound international knowledge flows measured by backward

patent citations. Therefore, current global technology dynamics appear to be

strongly related to previous knowledge sourcing. Our regression results show

that current global technology dynamics are positively associated with most of

our local (country) economic performance indicators for the ICT sectors. This

can be explained by the knowledge inflow from innovation leaders allowing for

imitation of technology (e.g., Coe and Helpman, 1995; Keller, 2002; Branstetter,

2001; Peri, 2005), which benefits the technological development and performance

in the focal industry. At the same time, the exposure to the global cycle tends

to increase market competition, which has the potential to deteriorate the posi-

tive performance effects from knowledge inflows (e.g., Bloom, Schankerman and

Van Reenen, 2013). However, our results show that the positive knowledge effect

outperforms the negative competition effect.

We further scrutinize the relation by analyzing the role of international and do-
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mestic innovation exposure based on a variance decomposition of patent activity.

Here we see that the degree of international openness of innovation activities,

which we define as the relationship between global and domestic exposure, is im-

portant. High global innovation dynamics have negative economic implications in

countries with a tendency towards international innovation exposure. In contrast,

the country specific innovation dynamics do have positive economic implications

in more internationally oriented countries.

These results suggest that a strong exposure to the world factor - and related

knowledge flows - essentially leads to positive performance effects if the ”absorp-

tive capacity” of the local industry is relatively large. Absorptive capacity is

usually high if there is a strong local technological development. This is a nec-

essary prerequisite for being able to effectively process international knowledge

flows and to develop new, internationally competitive technologies (Cohen and

Levinthal, 1990). Therefore, the technological dynamics of the domestic industry

is crucial for the positive relationship of the world factor to the performance indi-

cators. At the same time, however, the results show that a strongly domestically

oriented technological development, which is independent of the international

knowledge flows or the previously generated knowledge of other countries, has no

performance effects.

The results derived from the global over domestic exposure ratio can be further

qualified by our insights on country level specialization, using a ratio of global and

domestic Gini coefficients over technological fields. Overall, the results show that

increased technological specialization in combination with a tendency towards

international exposure has mostly negative economic implications. This is proba-

bly due to a lack of positive synergies resulting from a technologically diversified

ICT industry. A technologically diverse ICT industry seems to be necessary to

be able to process the flow of knowledge from abroad comprehensively and to de-

velop internationally competitive technologies in the individual areas. Products

and services based on such technologies are more difficult to imitate due to their

technological complexity. This leads to sustainable competitive advantages and

the observed positive relationship between diverse technological activities in the

context of a strong exposure to the world factor, and the performance of the local

ICT industry.
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Appendix

A Descriptive Statistics

Table A1: Variable Descriptions

Name Description

Value Added Value added in volumes

Employment Full-time equivalents - total engaged

Wage Wages and salaries

Labor Productivity Value added per full-time equivalent

World Factor First component of the dynamic factor model

Country Factor Second component of the dynamic factor model

W/C Ratio of world variance over country variance ex-
plained by a variance decomposition of the respective
factors.

Gini W/C Gini coefficient of the W/C Ratios at the technology
field level.

Patent Stock We derive the knowledge stock on patent counts, ap-
plying a 15% depreciation rate.

Global GDP Global economic conditions index by Baumeister,
Korobilis and Lee (2022).

Country GDP Country level GDP.

Knowledge Inflow
excl. JP & US

Aggregated international knowledge inflow into sam-
ple countries, excluding Japan and the United States
as receiver countries

Knowledge Inflow
JP & US

Aggregated international knowledge inflow into
Japan and the United States only.

Table provides a brief description of the variables used in the main estimations, as well as
additional variables used in robustness checks.
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Table A3: Summary Statistics - Main Variables

mean sd p50 min max count
Value Added 0.065 0.081 0.053 -0.241 0.520 343
Employment 0.021 0.040 0.020 -0.106 0.132 155
Wage 0.051 0.079 0.039 -0.136 0.531 311
Labor Productivity 0.024 0.050 0.020 -0.097 0.179 155
World Factor 0.000 0.021 -0.005 -0.033 0.068 343
Country Factor -0.045 0.724 -0.036 -4.509 2.694 343
W/C 0.647 0.427 0.477 0.156 1.571 343
Gini W/C 1.307 0.502 1.184 0.635 2.403 343

Table provides a summary statistics for the variables used in our main models. It contains the
mean, standard deviation, median, minimum, maximum, and count of observations.
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Figure B1: ICT technology indices for Denmark (left) and Korea (right). The
blue solid line represents the posterior mean and the shaded area contains 90%
of the posterior probability.
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Figure B2: ICT technology indices for Poland (upper-left), Hungary (upper-
right), Finland (middle-left), Ireland (middle-right), Spain (lower-left), and New
Zealand (lower-right). The blue solid line represents the posterior mean and the
shaded area contains 90% of the posterior probability.
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Figure B3: ICT technology indices for India (upper-left), Romania (upper-right),
Isreal (middle-left), Austria (middle-right), Norway (lower-left), and Belgium
(lower-right). The blue solid line represents the posterior mean and the shaded
area contains 90% of the posterior probability.
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Figure B4: ICT technology indices for South Africa (upper-left), Bulgaria (upper-
right), Brazil (middle-left), Switzerland (middle-right), the Netherlands (lower-
left), and Australia (lower-right). The blue solid line represents the posterior
mean and the shaded area contains 90% of the posterior probability.
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Figure B5: ICT technology indices for Sweden. The blue solid line represents the
posterior mean and the shaded area contains 90% of the posterior probability.

Table B4: Variance Decomposition

World Country Idiosyncratic

Denmark Digital comm. 0.08 0.65 0.27

Denmark Audio-visual 0.00 0.41 0.58

Denmark Telecomm. 0.03 0.45 0.52

Denmark Basic comm. 0.05 0.54 0.41

Denmark Computer tech. 0.22 0.10 0.68

Denmark IT manag. 0.01 0.17 0.82

Denmark Semicond. 0.03 0.18 0.79

Korea Semicond. 0.05 0.01 0.93

Korea Audio-visual 0.02 0.77 0.21

Korea Telecomm. 0.01 0.03 0.96

Korea Digital comm. 0.07 0.59 0.34

Korea Basic comm. 0.02 0.27 0.72

Korea Computer tech. 0.04 0.24 0.72

Korea IT manag. 0.06 0.75 0.19

Poland Computer tech. 0.05 0.21 0.74

Poland Audio-visual 0.07 0.57 0.36

Poland Telecomm. 0.04 0.07 0.89

Poland Digital comm. 0.21 0.45 0.34

Poland Basic comm. 0.02 0.23 0.76
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Poland IT manag. 0.08 0.68 0.24

Poland Semicond. 0.04 0.04 0.92

Hungary Digital comm. 0.31 0.42 0.27

Hungary Audio-visual 0.19 0.52 0.30

Hungary Telecomm. 0.16 0.01 0.83

Hungary Basic comm. 0.03 0.13 0.84

Hungary Computer tech. 0.04 0.02 0.94

Hungary IT manag. 0.13 0.57 0.30

Hungary Semicond. 0.24 0.01 0.74

Finland Digital comm. 0.18 0.06 0.75

Finland Audio-visual 0.02 0.60 0.37

Finland Telecomm. 0.01 0.22 0.77

Finland Basic comm. 0.07 0.06 0.87

Finland Computer tech. 0.03 0.04 0.93

Finland IT manag. 0.04 0.52 0.44

Finland Semicond. 0.03 0.02 0.95

Ireland Computer tech. 0.34 0.30 0.36

Ireland Audio-visual 0.01 0.34 0.65

Ireland Telecomm. 0.03 0.08 0.89

Ireland Digital comm. 0.11 0.03 0.87

Ireland Basic comm. 0.01 0.04 0.96

Ireland IT manag. 0.03 0.07 0.90

Ireland Semicond. 0.07 0.15 0.78

Spain Computer tech. 0.16 0.11 0.72

Spain Audio-visual 0.08 0.57 0.35

Spain Telecomm. 0.21 0.04 0.76

Spain Digital comm. 0.20 0.24 0.56

Spain Basic comm. 0.02 0.04 0.94

Spain IT manag. 0.02 0.60 0.38

Spain Semicond. 0.03 0.03 0.94

New Zealand Computer tech. 0.01 0.46 0.54

New Zealand Basic comm. 0.04 0.47 0.49

New Zealand Audio-visual 0.04 0.04 0.92

New Zealand Telecomm. 0.01 0.21 0.77

New Zealand Digital comm. 0.08 0.15 0.77

New Zealand IT manag. 0.02 0.54 0.44
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New Zealand Semicond. 0.01 0.21 0.78

India Computer tech. 0.01 0.10 0.89

India Audio-visual 0.03 0.37 0.60

India Telecomm. 0.02 0.07 0.91

India Digital comm. 0.15 0.02 0.83

India Basic comm. 0.07 0.01 0.92

India IT manag. 0.01 0.28 0.71

India Semicond. 0.14 0.20 0.66

China Computer tech. 0.01 0.25 0.74

China Audio-visual 0.11 0.02 0.87

China Telecomm. 0.14 0.47 0.38

China Digital comm. 0.24 0.40 0.36

China Basic comm. 0.02 0.33 0.65

China IT manag. 0.17 0.23 0.61

China Semicond. 0.11 0.37 0.52

Romania Computer tech. 0.03 0.02 0.95

Romania Audio-visual 0.03 0.26 0.70

Romania Telecomm. 0.01 0.05 0.94

Romania Digital comm. 0.03 0.36 0.61

Romania Basic comm. 0.01 0.03 0.96

Romania IT manag. 0.08 0.30 0.62

Romania Semicond. 0.07 0.01 0.91

Isreal Computer tech. 0.03 0.21 0.76

Isreal Audio-visual 0.03 0.36 0.61

Isreal Telecomm. 0.03 0.10 0.87

Isreal Digital comm. 0.57 0.03 0.40

Isreal Basic comm. 0.08 0.06 0.86

Isreal IT manag. 0.15 0.30 0.55

Isreal Semicond. 0.11 0.03 0.86

Austria Computer tech. 0.05 0.01 0.94

Austria Audio-visual 0.03 0.22 0.75

Austria Telecomm. 0.03 0.02 0.95

Austria Digital comm. 0.23 0.22 0.54

Austria Basic comm. 0.05 0.05 0.90

Austria IT manag. 0.03 0.24 0.73

Austria Semicond. 0.01 0.08 0.91
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Norway Computer tech. 0.19 0.04 0.77

Norway Audio-visual 0.05 0.01 0.93

Norway Telecomm. 0.01 0.12 0.87

Norway Digital comm. 0.08 0.03 0.89

Norway Basic comm. 0.01 0.16 0.83

Norway IT manag. 0.01 0.03 0.96

Norway Semicond. 0.03 0.04 0.94

Belgium Digital comm. 0.01 0.02 0.97

Belgium Audio-visual 0.01 0.16 0.83

Belgium Telecomm. 0.03 0.08 0.88

Belgium Basic comm. 0.06 0.08 0.87

Belgium Computer tech. 0.04 0.05 0.91

Belgium IT manag. 0.04 0.14 0.83

Belgium Semicond. 0.01 0.08 0.91

South Africa Audio-visual 0.01 0.03 0.96

South Africa Semicond. 0.08 0.28 0.65

South Africa Telecomm. 0.09 0.11 0.80

South Africa Digital comm. 0.02 0.25 0.74

South Africa Basic comm. 0.11 0.46 0.43

South Africa Computer tech. 0.10 0.25 0.65

South Africa IT manag. 0.07 0.45 0.49

Bulgaria Computer tech. 0.02 0.06 0.92

Bulgaria Telecomm. 0.00 0.13 0.87

Bulgaria Audio-visual 0.01 0.08 0.91

Bulgaria Digital comm. 0.00 0.06 0.94

Bulgaria Basic comm. 0.01 0.02 0.97

Bulgaria IT manag. 0.05 0.17 0.78

Bulgaria Semicond. 0.00 0.03 0.97

Brazil Telecomm. 0.05 0.07 0.88

Brazil Audio-visual 0.07 0.24 0.69

Brazil Digital comm. 0.03 0.14 0.83

Brazil Basic comm. 0.01 0.06 0.93

Brazil Computer tech. 0.19 0.21 0.60

Brazil IT manag. 0.11 0.16 0.73

Brazil Semicond. 0.05 0.07 0.89

Switzerland Computer tech. 0.14 0.06 0.81
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Switzerland Audio-visual 0.01 0.27 0.72

Switzerland Telecomm. 0.09 0.18 0.73

Switzerland Digital comm. 0.07 0.26 0.67

Switzerland Basic comm. 0.08 0.10 0.82

Switzerland IT manag. 0.01 0.36 0.64

Switzerland Semicond. 0.02 0.02 0.96

Italy Computer tech. 0.11 0.10 0.79

Italy Audio-visual 0.04 0.27 0.69

Italy Telecomm. 0.09 0.04 0.88

Italy Digital comm. 0.03 0.23 0.75

Italy Basic comm. 0.02 0.19 0.79

Italy IT manag. 0.04 0.20 0.77

Italy Semicond. 0.03 0.02 0.95

Netherlands Computer tech. 0.08 0.01 0.91

Netherlands Audio-visual 0.11 0.09 0.80

Netherlands Telecomm. 0.03 0.17 0.80

Netherlands Digital comm. 0.12 0.07 0.81

Netherlands Basic comm. 0.01 0.02 0.97

Netherlands IT manag. 0.07 0.14 0.79

Netherlands Semicond. 0.01 0.02 0.97

Australia Computer tech. 0.27 0.03 0.70

Australia Audio-visual 0.04 0.08 0.88

Australia Telecomm. 0.01 0.08 0.91

Australia Digital comm. 0.01 0.08 0.91

Australia Basic comm. 0.45 0.01 0.53

Australia IT manag. 0.13 0.14 0.73

Australia Semicond. 0.05 0.02 0.93

Canada Computer tech. 0.06 0.06 0.88

Canada Audio-visual 0.24 0.10 0.66

Canada Telecomm. 0.02 0.03 0.94

Canada Digital comm. 0.25 0.04 0.72

Canada Basic comm. 0.10 0.03 0.87

Canada IT manag. 0.06 0.10 0.84

Canada Semicond. 0.12 0.02 0.86

Germany Audio-visual 0.05 0.09 0.86

Germany Telecomm. 0.12 0.11 0.77
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Germany Digital comm. 0.01 0.16 0.83

Germany Basic comm. 0.01 0.15 0.84

Germany Computer tech. 0.17 0.17 0.66

Germany IT manag. 0.32 0.02 0.66

Germany Semicond. 0.15 0.16 0.68

France Computer tech. 0.45 0.11 0.43

France Audio-visual 0.01 0.22 0.77

France Telecomm. 0.01 0.26 0.73

France Digital comm. 0.32 0.05 0.63

France Basic comm. 0.12 0.03 0.85

France IT manag. 0.09 0.02 0.89

France Semicond. 0.01 0.04 0.95

Great Britain Computer tech. 0.01 0.05 0.94

Great Britain Audio-visual 0.01 0.12 0.87

Great Britain Telecomm. 0.01 0.09 0.90

Great Britain Digital comm. 0.03 0.07 0.89

Great Britain Basic comm. 0.01 0.10 0.88

Great Britain IT manag. 0.01 0.01 0.98

Great Britain Semicond. 0.05 0.11 0.84

Japan Audio-visual 0.01 0.14 0.85

Japan Telecomm. 0.00 0.17 0.82

Japan Digital comm. 0.03 0.05 0.92

Japan Basic comm. 0.08 0.12 0.80

Japan Computer tech. 0.01 0.10 0.89

Japan IT manag. 0.01 0.02 0.97

Japan Semicond. 0.06 0.08 0.86

Sweden Telecomm. 0.16 0.10 0.74

Sweden Audio-visual 0.03 0.04 0.93

Sweden Digital comm. 0.03 0.05 0.92

Sweden Basic comm. 0.02 0.05 0.93

Sweden Computer tech. 0.03 0.05 0.93

Sweden IT manag. 0.04 0.01 0.95

Sweden Semicond. 0.01 0.06 0.94

United States Telecomm. 0.15 0.00 0.85

United States Computer tech. 0.10 0.06 0.84

United States Audio-visual 0.05 0.08 0.88
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United States Digital comm. 0.04 0.07 0.89

United States Basic comm. 0.09 0.07 0.84

United States IT manag. 0.12 0.05 0.83

United States Semicond. 0.05 0.09 0.86

Fraction of variance explained by the world factor, country factor and idiosyncratic component.
The variance decomposition is based on the posterior mean of the parameters. See Footnote 3
for more details on the calculation of the variance decompositions.
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C Robustness Checks Regression Estimations

C.1 Main Estimations – Contemporary Time

Table C5: Baseline Regressions at Contemporary Time

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

World Factor 0.770∗∗∗ 0.850∗∗∗ 0.950∗∗∗ -0.077
(0.250) (0.214) (0.258) (0.172)

Country Factor 0.002 0.010∗∗ -0.002 0.003
(0.005) (0.004) (0.004) (0.004)

Constant 0.065∗∗∗ 0.022∗∗∗ 0.051∗∗∗ 0.024∗∗∗

(0.000) (0.000) (0.000) (0.000)
N 343 156 316 155
Countries 14.00 8.00 14.00 7.00
F 11.43∗∗∗ 11.98∗∗∗ 9.80∗∗∗ 0.71
r2 0.05 0.17 0.08 0.00

Results from adjusted baseline model (Table 1) with removed temporal lags from the indepen-
dent variables, estimating coefficients at current time. Coefficient estimates, standard errors
(in brackets) and significance levels (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001) from estimating the
adjusted model using OLS. Sample and variables remain the same as in the main model. The es-
timation includes country-specific fixed effects. Reported standard errors are heteroscedasticity
robust.
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Table C6: Regressions with Ratio ξi at Contemporary Time

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

World Factor 1.186∗ 1.593∗∗∗ 1.389∗∗ 0.321∗

(0.567) (0.248) (0.483) (0.164)
World Factor × W/C -0.654 -0.917∗∗∗ -0.676 -0.488∗∗∗

(0.557) (0.230) (0.490) (0.122)
Country Factor -0.008 0.007 -0.003 0.005

(0.009) (0.007) (0.008) (0.013)
Country Factor × W/C 0.014 0.004 0.003 -0.002

(0.008) (0.006) (0.009) (0.011)
Constant 0.065∗∗∗ 0.022∗∗∗ 0.051∗∗∗ 0.024∗∗∗

(0.000) (0.000) (0.000) (0.000)
N 343 156 316 155
Countries 14.00 8.00 14.00 7.00
F 7.30∗∗∗ 40.84∗∗∗ 6.61∗∗∗ 13.60∗∗∗

r2 0.06 0.19 0.09 0.01

Results from adjusted ratio ξi model (Table 2) with removed temporal lags from the indepen-
dent variables, estimating coefficients at current time. Coefficient estimates, standard errors
(in brackets) and significance levels (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001) from estimating the
adjusted model using OLS. Sample and variables remain the same as in the main model. The es-
timation includes country-specific fixed effects. Reported standard errors are heteroscedasticity
robust.
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Table C7: Regressions with Ratio γi at Contemporary Time

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

World Factor 2.206∗∗∗ 1.867∗ 2.144∗∗ 1.492∗

(0.569) (0.792) (0.714) (0.754)
World Factor × Gini W/C -1.129∗∗ -0.830 -0.955∗ -1.322∗

(0.434) (0.614) (0.444) (0.589)
Country Factor -0.028∗ -0.020∗∗ -0.008 0.003

(0.015) (0.008) (0.011) (0.030)
Country Factor × Gini W/C 0.023∗∗ 0.025∗∗∗ 0.006 -0.002

(0.009) (0.007) (0.007) (0.023)
Constant 0.065∗∗∗ 0.022∗∗∗ 0.051∗∗∗ 0.024∗∗∗

(0.000) (0.000) (0.000) (0.000)
N 343 156 316 155
Countries 14.00 8.00 14.00 7.00
F 13.54∗∗∗ 36.40∗∗∗ 9.57∗∗∗ 8.94∗∗

r2 0.09 0.19 0.10 0.02

Results from adjusted ratio γi model (Table 3) with removed temporal lags from the indepen-
dent variables, estimating coefficients at current time. Coefficient estimates, standard errors
(in brackets) and significance levels (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001) from estimating the
adjusted model using OLS. Sample and variables remain the same as in the main model. The es-
timation includes country-specific fixed effects. Reported standard errors are heteroscedasticity
robust.
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C.2 Patent Stocks as Control Variable

Table C8: Baseline Regressions Including Patent Stocks

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 0.760∗∗ 0.482∗∗∗ 0.777∗∗ 0.075
(0.293) (0.110) (0.276) (0.149)

L.Country Factor -0.007 0.006∗ -0.007 -0.007∗

(0.005) (0.003) (0.006) (0.004)
L2.Patent Stock 0.152 -0.031 0.009 0.261∗∗∗

(0.217) (0.047) (0.208) (0.039)
Constant 0.054∗∗∗ 0.023∗∗∗ 0.049∗∗∗ 0.006∗

(0.014) (0.003) (0.014) (0.003)
N 343 160 317 158
Countries 14.00 8.00 14.00 7.00
F 17.89∗∗∗ 8.70∗∗∗ 19.94∗∗∗ 21.37∗∗∗

r2 0.08 0.06 0.06 0.13

Results from extended baseline model (Table 1), adding country-industry level patent stocks
to control for possible level effects. Coefficient estimates, standard errors (in brackets) and
significance levels (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001) from estimating the adjusted model
using OLS. Sample and variables remain the same as in the main model. The estimation
includes country-specific fixed effects. Reported standard errors are heteroscedasticity robust.
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Table C9: Regressions with Ratio ξi Including Patent Stocks

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 1.462∗∗∗ 0.648∗∗∗ 1.368∗∗∗ 0.580∗

(0.423) (0.174) (0.344) (0.289)
L.World Factor × W/C -1.072∗∗∗ -0.240 -0.950∗∗∗ -0.680

(0.302) (0.246) (0.225) (0.356)
L.Country Factor -0.024∗∗ -0.004 -0.021∗ 0.000

(0.009) (0.005) (0.011) (0.004)
L.Country Factor × W/C 0.024∗∗ 0.014∗∗ 0.020∗ -0.009∗∗

(0.009) (0.005) (0.011) (0.003)
L2.Patent Stock 0.131 -0.036 -0.004 0.266∗∗∗

(0.217) (0.051) (0.210) (0.041)
Constant 0.055∗∗∗ 0.024∗∗∗ 0.050∗∗∗ 0.005

(0.014) (0.003) (0.014) (0.003)
N 343 160 317 158
Countries 14.00 8.00 14.00 7.00
F 20.63∗∗∗ 279.64∗∗∗ 13.10∗∗∗ 51.25∗∗∗

r2 0.10 0.07 0.08 0.14

Results from adjusted ratio ξi model (Table 2), adding country-industry level patent stocks
to control for possible level effects. Coefficient estimates, standard errors (in brackets) and
significance levels (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001) from estimating the adjusted model
using OLS. Sample and variables remain the same as in the main model. The estimation
includes country-specific fixed effects. Reported standard errors are heteroscedasticity robust.
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Table C10: Regressions with Ratio γi Including Patent Stocks

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 2.004∗∗∗ 1.186∗ 1.786∗∗ 0.893
(0.641) (0.517) (0.684) (0.791)

L.World Factor × Gini W/C -0.972∗∗ -0.622 -0.817∗ -0.748
(0.375) (0.426) (0.425) (0.617)

L.Country Factor -0.030∗ -0.002 -0.023 0.003
(0.016) (0.008) (0.019) (0.006)

L.Country Factor × Gini W/C 0.018 0.006 0.013 -0.010
(0.011) (0.008) (0.012) (0.006)

L2.Patent Stock 0.134 -0.035 -0.002 0.265∗∗∗

(0.210) (0.050) (0.204) (0.042)
Constant 0.055∗∗∗ 0.023∗∗∗ 0.050∗∗∗ 0.005

(0.014) (0.003) (0.013) (0.003)
N 343 160 317 158
Countries 14.00 8.00 14.00 7.00
F 19.09∗∗∗ 13.56∗∗∗ 19.69∗∗∗ 11.05∗∗∗

r2 0.10 0.07 0.08 0.14

Results from adjusted ratio γi model (Table 3), adding country-industry level patent stocks
to control for possible level effects. Coefficient estimates, standard errors (in brackets) and
significance levels (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001) from estimating the adjusted model
using OLS. Sample and variables remain the same as in the main model. The estimation
includes country-specific fixed effects. Reported standard errors are heteroscedasticity robust.
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C.3 World and Country GDP as Control Variable

Table C11: Baseline Regressions Including GDP

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 0.342∗∗ 0.160∗ 0.312∗∗∗ 0.185
(0.156) (0.077) (0.084) (0.155)

L.Country Factor -0.008 0.002 -0.010 -0.004
(0.005) (0.003) (0.006) (0.003)

L2.Global GDP 0.023∗ 0.015∗∗ 0.026∗∗ -0.014
(0.011) (0.006) (0.009) (0.009)

L2.Country GDP -0.000∗∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗

(0.000) (0.000) (0.000) (0.000)
Constant 0.155∗∗∗ 0.049∗∗∗ 0.113∗∗∗ 0.061∗∗∗

(0.026) (0.009) (0.024) (0.014)
N 329 156 306 154
Countries 14.00 8.00 14.00 7.00
F 8.02∗∗∗ 3.74∗ 4.86∗∗ 4.83∗∗

r2 0.20 0.11 0.14 0.08

Results from extended baseline model (Table 1), adding the global economic conditions index,
as well as country-level GDP, to control for economic conditions at levels corresponding to our
factors. Coefficient estimates, standard errors (in brackets) and significance levels (∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001) from estimating the adjusted model using OLS. Sample and variables
remain the same as in the main model. The estimation includes country-specific fixed effects.
Reported standard errors are heteroscedasticity robust.
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Table C12: Regressions with Ratio ξi Including GDP

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 0.995∗∗∗ 0.118 0.893∗∗∗ 0.745∗

(0.293) (0.210) (0.182) (0.353)
L.World Factor × W/C -0.951∗∗∗ 0.014 -0.902∗∗∗ -0.699∗

(0.294) (0.258) (0.219) (0.340)
L.Country Factor -0.017∗∗ -0.010∗∗ -0.018∗∗ -0.001

(0.006) (0.004) (0.007) (0.005)
L.Country Factor × W/C 0.014∗∗∗ 0.017∗∗∗ 0.012 -0.002

(0.004) (0.004) (0.007) (0.004)
L2.Global GDP 0.020∗ 0.015∗∗ 0.025∗∗ -0.016

(0.011) (0.006) (0.009) (0.009)
L2.Country GDP -0.000∗∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗

(0.000) (0.000) (0.000) (0.000)
Constant 0.153∗∗∗ 0.050∗∗∗ 0.112∗∗∗ 0.060∗∗∗

(0.025) (0.009) (0.024) (0.014)
N 329 156 306 154
Countries 14.00 8.00 14.00 7.00
F 9.28∗∗∗ 357.96∗∗∗ 10.27∗∗∗ 69.10∗∗∗

r2 0.21 0.12 0.15 0.09

Results from adjusted ratio ξi model (Table 2), adding the global economic conditions index,
as well as country-level GDP, to control for economic conditions at levels corresponding to our
factors. Coefficient estimates, standard errors (in brackets) and significance levels (∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001) from estimating the adjusted model using OLS. Sample and variables
remain the same as in the main model. The estimation includes country-specific fixed effects.
Reported standard errors are heteroscedasticity robust.
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Table C13: Regressions with Ratio γi Including GDP

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 1.470∗∗∗ 0.701 1.399∗∗ 1.363
(0.436) (0.685) (0.508) (0.820)

L.World Factor × Gini W/C -0.848∗∗ -0.472 -0.857∗ -1.029
(0.311) (0.556) (0.425) (0.596)

L.Country Factor -0.018 0.002 -0.018 -0.005
(0.012) (0.009) (0.013) (0.003)

L.Country Factor × Gini W/C 0.009 -0.000 0.008 0.000
(0.007) (0.009) (0.008) (0.003)

L2.Global GDP 0.020 0.015∗ 0.025∗∗ -0.015
(0.012) (0.006) (0.009) (0.009)

L2.Country GDP -0.000∗∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗

(0.000) (0.000) (0.000) (0.000)
Constant 0.153∗∗∗ 0.049∗∗∗ 0.112∗∗∗ 0.061∗∗∗

(0.025) (0.009) (0.024) (0.013)
N 329 156 306 154
Countries 14.00 8.00 14.00 7.00
F 23.54∗∗∗ 14.60∗∗∗ 4.95∗∗∗ 138.04∗∗∗

r2 0.22 0.11 0.16 0.09

Results from adjusted ratio γi model (Table 3), adding the global economic conditions index,
as well as country-level GDP, to control for economic conditions at levels corresponding to our
factors. Coefficient estimates, standard errors (in brackets) and significance levels (∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001) from estimating the adjusted model using OLS. Sample and variables
remain the same as in the main model. The estimation includes country-specific fixed effects.
Reported standard errors are heteroscedasticity robust.
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C.4 Knowledge Inflow as Control Variable

Table C14: Baseline Regressions Including Knowledge Inflow, omitting US and
JP

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 0.375∗∗ 0.127 0.299∗∗ 0.203
(0.146) (0.102) (0.101) (0.131)

L.Country Factor -0.007 0.002 -0.008∗ -0.005
(0.005) (0.004) (0.005) (0.003)

L6.Knowledge Inflow excl. JP & US 0.563∗∗ 0.359∗ 0.548∗∗ 0.101
(0.218) (0.160) (0.244) (0.087)

Constant -0.075 -0.065 -0.084 -0.002
(0.054) (0.038) (0.060) (0.021)

N 357 164 329 162
Countries 14.00 8.00 14.00 7.00
F 12.83∗∗∗ 6.44∗∗ 8.86∗∗∗ 2.15
r2 0.16 0.15 0.16 0.03

Results from extended baseline model (Table 1), adding aggregated knowledge inflows measured
by patents’ backward citations (see, Section 2.3) for all countries in the sample, besides Japan
and the United States. Coefficient estimates, standard errors (in brackets) and significance
levels (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001) from estimating the adjusted model using
OLS. Sample and variables remain the same as in the main model. The estimation includes
country-specific fixed effects. Reported standard errors are heteroscedasticity robust.
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Table C15: Baseline Regressions Including Knowledge Inflow to US and JP only

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

World Factor 0.394∗ 0.686∗∗∗ 0.633∗∗∗ -0.370∗∗∗

(0.198) (0.171) (0.186) (0.082)
Country Factor -0.005 0.008∗∗ -0.007 -0.000

(0.005) (0.003) (0.004) (0.003)
L5.Knowledge Inflow JP & US -1.114∗∗∗ -0.302∗∗∗ -0.867∗∗∗ -0.537∗∗∗

(0.221) (0.084) (0.252) (0.100)
Constant 0.872∗∗∗ 0.240∗∗∗ 0.679∗∗∗ 0.412∗∗∗

(0.159) (0.061) (0.183) (0.073)
N 343 156 316 155
Countries 14.00 8.00 14.00 7.00
F 30.69∗∗∗ 10.86∗∗∗ 5.10∗∗ 40.99∗∗∗

r2 0.23 0.21 0.20 0.11

Results from extended baseline model (Table 1), adding aggregated knowledge inflows measured
by patents’ backward citations (see, Section 2.3) for Japan and the United States only. Coef-
ficient estimates, standard errors (in brackets) and significance levels (∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001) from estimating the adjusted model using OLS. Sample and variables remain the
same as in the main model. The estimation includes country-specific fixed effects. Reported
standard errors are heteroscedasticity robust.
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Table C16: Regressions with Ratio ξi Including, omitting US and JP

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 0.960∗∗∗ 0.261 0.750∗∗∗ 0.634∗

(0.298) (0.249) (0.183) (0.295)
L.World Factor × W/C -0.898∗∗∗ -0.200 -0.725∗∗∗ -0.570∗

(0.277) (0.218) (0.180) (0.278)
L.Country Factor -0.020∗∗∗ -0.007 -0.016∗∗ -0.001

(0.006) (0.004) (0.007) (0.005)
L.Country Factor × W/C 0.018∗∗∗ 0.013∗∗ 0.011 -0.004

(0.005) (0.005) (0.006) (0.005)
L6.Knowledge Inflow excl. JP & US 0.541∗∗ 0.357∗ 0.538∗∗ 0.094

(0.222) (0.162) (0.247) (0.089)
Constant -0.069 -0.064 -0.081 0.000

(0.055) (0.039) (0.060) (0.021)
N 357 164 329 162
Countries 14.00 8.00 14.00 7.00
F 27.13∗∗∗ 10.68∗∗∗ 8.14∗∗∗ 22.19∗∗∗

r2 0.18 0.16 0.16 0.04

Results from adjusted ratio ξi model (Table 2), adding aggregated knowledge inflows measured
by patents’ backward citations (see, Section 2.3) for all countries in the sample, besides Japan
and the United States. Coefficient estimates, standard errors (in brackets) and significance
levels (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001) from estimating the adjusted model using
OLS. Sample and variables remain the same as in the main model. The estimation includes
country-specific fixed effects. Reported standard errors are heteroscedasticity robust.
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Table C17: Regressions with Ratio ξi Including Knowledge Inflow to US and JP
only

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 0.859∗∗∗ 0.353∗ 0.750∗∗∗ 0.349
(0.281) (0.166) (0.132) (0.323)

L.World Factor × W/C -0.773∗∗ -0.164 -0.680∗∗∗ -0.406
(0.278) (0.204) (0.179) (0.301)

L.Country Factor -0.021∗∗∗ -0.007 -0.015∗ -0.003
(0.006) (0.004) (0.008) (0.007)

L.Country Factor × W/C 0.015∗∗∗ 0.013∗∗ 0.007 -0.004
(0.004) (0.004) (0.007) (0.006)

L5.Knowledge Inflow JP & US -1.082∗∗∗ -0.353∗∗∗ -0.893∗∗∗ -0.464∗∗∗

(0.213) (0.090) (0.266) (0.123)
Constant 0.849∗∗∗ 0.277∗∗∗ 0.698∗∗∗ 0.359∗∗∗

(0.155) (0.065) (0.193) (0.089)
N 357 164 329 162
Countries 14.00 8.00 14.00 7.00
F 9.48∗∗∗ 326.47∗∗∗ 7.89∗∗∗ 18.00∗∗∗

r2 0.24 0.12 0.19 0.11

Results from adjusted ratio ξi model (Table 2), adding aggregated knowledge inflows measured
by patents’ backward citations (see, Section 2.3) for Japan and the United States only. Coef-
ficient estimates, standard errors (in brackets) and significance levels (∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001) from estimating the adjusted model using OLS. Sample and variables remain the
same as in the main model. The estimation includes country-specific fixed effects. Reported
standard errors are heteroscedasticity robust.
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Table C18: Regressions with Ratio γi Including Knowledge Inflow, omitting US
and JP

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 1.370∗∗∗ 0.836 1.100∗∗∗ 1.049
(0.268) (0.522) (0.338) (0.610)

L.World Factor × Gini W/C -0.771∗∗∗ -0.640 -0.646∗ -0.746
(0.235) (0.401) (0.340) (0.480)

L.Country Factor -0.026∗∗ 0.009 -0.021 -0.012∗∗

(0.011) (0.007) (0.013) (0.004)
L.Country Factor × Gini W/C 0.014∗∗ -0.007 0.010 0.005

(0.006) (0.009) (0.007) (0.003)
L6.Knowledge Inflow excl. JP & US 0.546∗∗ 0.360∗ 0.541∗∗ 0.096

(0.215) (0.162) (0.242) (0.088)
Constant -0.070 -0.065 -0.082 -0.000

(0.053) (0.039) (0.059) (0.021)
N 357 164 329 162
Countries 14.00 8.00 14.00 7.00
F 15.03∗∗∗ 11.82∗∗∗ 9.13∗∗∗ 2.29
r2 0.18 0.16 0.17 0.04

Results from adjusted ratio γi model (Table 3), adding aggregated knowledge inflows measured
by patents’ backward citations (see, Section 2.3) for all countries in the sample, besides Japan
and the United States. Coefficient estimates, standard errors (in brackets) and significance
levels (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001) from estimating the adjusted model using
OLS. Sample and variables remain the same as in the main model. The estimation includes
country-specific fixed effects. Reported standard errors are heteroscedasticity robust.
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Table C19: Regressions with Ratio γi Including Knowledge Inflow to US and JP
only

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 1.180∗∗∗ 0.900 1.031∗∗ 0.751
(0.315) (0.500) (0.361) (0.606)

L.World Factor × Gini W/C -0.632∗∗ -0.583 -0.561 -0.630
(0.244) (0.391) (0.324) (0.492)

L.Country Factor -0.019 0.004 -0.015 -0.010
(0.013) (0.004) (0.015) (0.008)

L.Country Factor × Gini W/C 0.007 -0.002 0.004 0.003
(0.007) (0.006) (0.008) (0.006)

L5.Knowledge Inflow JP & US -1.088∗∗∗ -0.352∗∗∗ -0.897∗∗∗ -0.469∗∗∗

(0.205) (0.086) (0.252) (0.126)
Constant 0.853∗∗∗ 0.276∗∗∗ 0.701∗∗∗ 0.362∗∗∗

(0.148) (0.062) (0.183) (0.092)
N 357 164 329 162
Countries 14.00 8.00 14.00 7.00
F 9.49∗∗∗ 10.46∗∗∗ 8.17∗∗∗ 9.51∗∗∗

r2 0.24 0.12 0.19 0.11

Results from adjusted ratio γi model (Table 3), adding aggregated knowledge inflows measured
by patents’ backward citations (see, Section 2.3) for Japan and the United States only. Coef-
ficient estimates, standard errors (in brackets) and significance levels (∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001) from estimating the adjusted model using OLS. Sample and variables remain the
same as in the main model. The estimation includes country-specific fixed effects. Reported
standard errors are heteroscedasticity robust.
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C.5 Combined Control Variable Model

Table C20: Baseline Regressions Including all Controls

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 0.200 0.085 0.164∗ 0.082
(0.137) (0.104) (0.077) (0.170)

L.Country Factor -0.010∗ 0.003 -0.011∗∗ -0.008
(0.005) (0.004) (0.005) (0.004)

L2.Patent Stock -0.054 -0.124∗∗ -0.178 0.153∗∗

(0.235) (0.050) (0.250) (0.050)
L2.Global GDP 0.011 0.011 0.015∗∗ -0.015

(0.011) (0.006) (0.007) (0.010)
L2.Country GDP 0.000∗ -0.000 0.000∗∗ 0.000

(0.000) (0.000) (0.000) (0.000)
L6.Knowledge Inflow excl. JP & US 0.755∗∗ 0.417∗∗ 0.758∗∗ 0.015

(0.293) (0.149) (0.286) (0.058)
L6.Knowledge Inflow JP & US -0.952∗∗∗ -0.127 -0.987∗∗ -0.560∗∗

(0.290) (0.081) (0.341) (0.190)
Constant 0.542∗∗∗ 0.026 0.542∗∗ 0.393∗∗

(0.162) (0.065) (0.198) (0.128)
N 329 156 306 154
Countries 14.00 8.00 14.00 7.00
F 13.81∗∗∗ 14.57∗∗∗ 3.85∗∗ .
r2 0.30 0.20 0.27 0.18

Results from extended baseline model (Table 1), adding all the above introduced control vari-
ables on patent stocks, economic conditions and knowledge flow. Coefficient estimates, standard
errors (in brackets) and significance levels (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001) from esti-
mating the adjusted model using OLS. Sample and variables remain the same as in the main
model. The estimation includes country-specific fixed effects. Reported standard errors are
heteroscedasticity robust.
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Table C21: Regressions with Ratio ξi Including all Controls

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 0.753∗∗ -0.067 0.626∗∗ 0.581
(0.276) (0.328) (0.212) (0.336)

L.World Factor × W/C -0.802∗∗ 0.145 -0.713∗∗ -0.604
(0.293) (0.386) (0.265) (0.320)

L.Country Factor -0.017∗∗∗ -0.012∗∗∗ -0.019∗∗ -0.001
(0.005) (0.003) (0.007) (0.005)

L.Country Factor × W/C 0.010∗∗ 0.020∗∗∗ 0.012∗ -0.008
(0.004) (0.004) (0.006) (0.005)

L2.Patent Stock -0.059 -0.129∗∗ -0.183 0.158∗∗

(0.234) (0.052) (0.250) (0.054)
L2.Global GDP 0.009 0.011 0.014∗ -0.016

(0.011) (0.006) (0.007) (0.010)
L2.Country GDP 0.000∗ -0.000 0.000∗∗ 0.000

(0.000) (0.000) (0.000) (0.000)
L6.Knowledge Inflow excl. JP & US 0.741∗∗ 0.425∗∗ 0.746∗∗ 0.001

(0.292) (0.154) (0.286) (0.052)
L6.Knowledge Inflow JP & US -0.927∗∗∗ -0.117 -0.966∗∗ -0.546∗∗

(0.291) (0.104) (0.344) (0.207)
Constant 0.529∗∗∗ 0.019 0.531∗∗ 0.386∗∗

(0.161) (0.072) (0.197) (0.138)
N 329 156 306 154
Countries 14.00 8.00 14.00 7.00
F 10.40∗∗∗ . 4.07∗∗ .
r2 0.31 0.22 0.28 0.19

Results from adjusted ratio ξi model (Table 2), adding all the above introduced control variables
on patent stocks, economic conditions and knowledge flow. Coefficient estimates, standard
errors (in brackets) and significance levels (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001) from
estimating the adjusted model using OLS. Sample and variables remain the same as in the
main model. The estimation includes country-specific fixed effects. Reported standard errors
are heteroscedasticity robust.
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Table C22: Regressions with Ratio γi Including all Controls

(1) (2) (3) (4)
Value
Added

Employment Wage
Labor

Productivity
b/se b/se b/se b/se

L.World Factor 1.144∗∗∗ 0.432 1.127∗∗∗ 0.863
(0.323) (0.840) (0.331) (0.886)

L.World Factor × Gini W/C -0.705∗∗ -0.296 -0.756∗∗ -0.676
(0.246) (0.687) (0.321) (0.649)

L.Country Factor -0.015 -0.001 -0.015 -0.009
(0.010) (0.012) (0.012) (0.010)

L.Country Factor × Gini W/C 0.005 0.003 0.005 0.000
(0.007) (0.011) (0.007) (0.009)

L2.Patent Stock -0.059 -0.128∗∗ -0.183 0.146∗∗

(0.227) (0.053) (0.241) (0.052)
L2.Global GDP 0.009 0.010 0.015∗ -0.015

(0.011) (0.006) (0.007) (0.010)
L2.Country GDP 0.000∗ -0.000 0.000∗∗ 0.000

(0.000) (0.000) (0.000) (0.000)
L6.Knowledge Inflow excl. JP & US 0.740∗∗ 0.410∗∗ 0.747∗∗ -0.000

(0.284) (0.146) (0.277) (0.064)
L6.Knowledge Inflow JP & US -0.926∗∗∗ -0.124 -0.962∗∗ -0.549∗∗

(0.276) (0.083) (0.329) (0.214)
Constant 0.529∗∗∗ 0.027 0.529∗∗ 0.392∗∗

(0.154) (0.065) (0.192) (0.139)
N 329 156 306 154
Countries 14.00 8.00 14.00 7.00
F 28.09∗∗∗ . 26.37∗∗∗ .
r2 0.31 0.21 0.29 0.19

Results from adjusted ratio γi model (Table 3), dding all the above introduced control variables
on patent stocks, economic conditions and knowledge flow. Coefficient estimates, standard
errors (in brackets) and significance levels (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001) from
estimating the adjusted model using OLS. Sample and variables remain the same as in the
main model. The estimation includes country-specific fixed effects. Reported standard errors
are heteroscedasticity robust.
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C.6 Dynamic Factor Model Outcomes as Dependent Variable

Table C23: World and Country Factor as Dependent Variables

(1) (2)
World Country
b/se b/se

L.Patent Stock -0.000 0.219
(0.010) (1.173)

L.Global GDP 0.018∗∗∗ 0.296∗∗

(0.000) (0.103)
L.Country GDP -0.000∗∗∗ 0.000

(0.000) (0.000)
L5.Knowledge Inflow excl. JP & US 0.065∗∗∗ 0.400

(0.009) (0.832)
L5.Knowledge Inflow JP & US -0.100∗∗∗ -6.339∗∗

(0.016) (2.624)
Constant 0.064∗∗∗ 4.119∗∗

(0.011) (1.880)
N 408 408
Countries 18.00 18.00
F 1997.12∗∗∗ 3.09∗∗

r2 0.21 0.07

Results from two regression model using world and country factors as dependent variables.
All indicators used for robustness checks are included as independent variables. Coefficient
estimates, standard errors (in brackets) and significance levels (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001) from estimating the adjusted model using OLS. The estimation includes country-
specific fixed effects. Reported standard errors are heteroscedasticity robust.
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