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Abstract

We study the effects of low short-term interest rates on the optimal portfolio allocation in

Markowitz portfolios and Risk parity portfolios. We propose a measure of Portfolio Instabil-

ity, gauging the amount of optimal portfolio shifts needed to respond to exogenous shocks to

the expected risk and return of the risky portfolio assets. Portfolio Instability, i.e. the selling

pressure on riskier asset holdings, is found to be stronger the lower the risk-free interest rate.

Heightened portfolio instability in the presence of low rates is found to emerge through two

channels both of which incentivise the build-up of large and leveraged risky asset shares

during calm periods which need to be unwound in the event of higher market volatility:

first, low rates (mechanically) augment the excess return to be gained by investing in riskier

assets and second, they are found to dampen volatility of riskier assets in the portfolio. The

inverse relationship between portfolio instability and the risk-free rates is found to increase

the closer the risk-free rate approaches the effective lower bound. Counterfactual analyses of

the behaviour of optimal multi-asset portfolios demonstrate that the sell-off in riskier asset

classes during the Covid crisis in March 2020 was more severe than would have been in the

presence of higher short-term interest rates.

JEL Codes: C58, E52, G11, G12

Keywords: CAPM, Counterfactual analysis, portfolio optimization
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Non-technical summary

Owing to various structural macro-economic factors weighing on the natural rate of interest, low

short-term interest rates had, throughout approximately a decade, become a steady condition in

financial markets of most advanced economies. By elevating riskier asset prices, low rates cheap-

ened the internal and external financing conditions of non-financial companies. Moreover, low

rates incentivised financial institutions to engage in search-for-yield behaviour, thereby adding

risk to the asset side of their balance sheets. This search-for-yield behaviour has been widely

studied for banks and is increasingly also studied for the non-bank financial sector. In this

paper, we take the perspective of portfolio-optimising speculative multi-asset investors to study

the implications of low interest rates on financial stability. We do so by gauging the extent to

which they build-up of risky portfolio positions, including leveraged ones, during calm periods

and the extent to which they subsequently re-allocate away from riskier assets into cash in the

event of higher volatility, thereby amplifying the downward pressure on prices of riskier assets in

the presence of adverse shocks to market returns and volatility. To achieve that, we propose a

measure, coined Portfolio Instability, that gauges the aggregate shifts in the portfolio shares of

Markowitz optimising investors, incurred by standardized shocks to asset price volatility under

different interest rate regimes. As expected, portfolio instability rises with the share of risky

assets which would have to be sold to an increasing amount if an external shock hampers their

risk-return profile. Thereby, low rates favour higher risky asset shares via two channels: first,

by mechanically widening the excess return offered by risky assets and second, by lowering risky

asset volatility, thereby further ameliorating the risk/return profile of risky assets. We provide

empirical evidence from a GARCH-M model that also the latter channel is at play.

We then investigate the economic significance of the amplifying effect of low risk-free rates

in a market sell-off in a semi-natural experiment. To achieve that, we measure the amount

of asset sales (in share terms) in multi-asset Markowitz and risk parity portfolios, incurred by

the volatility shock posed by the Covid pandemic in March 2020 using historical benchmark

price data of representative asset classes (equity, government and corporate bonds). Mirroring

the experience of many speculative investment funds during that period, the simulated optimal

portfolios featured initial levels of leverage and large subsequent outflows when the Covid shock
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arrived. Conversely, in counterfactual scenarios with higher initial levels of interest rates, initial

leverage ratios of and subsequent risky asset sales from the optimal portfolios are significantly

smaller. Thereby, the maginitude of the effects are inversely and non-linearly related to the

interest rate level, implying that portfolio instability in such portfolios increases disproportion-

ately as interest rate approach the effective lower bound of interest rates. Overall our results

suggest, that the low level of interest rate contributed substantially to the severity in the market

swings observed during that period.

We conclude that the low rate environment provides incentives for high levels of risk-taking,

in principle by all portfolio optimising investors, but in particular by leveraged investment funds

as these positions have to be suddenly unwound to preserve an optimal asset allocation. In

fact, these dynamics might have amplified the market turmoil that was triggered by the Covid

pandemic.

1 Introduction

The level of short-term risk-free rates has implications for risk premia of financial assets, on

balance sheets of financial intermediaries and ultimately on financial stability. Low interest rates

invite raising the leverage on financial institutions’ balance sheets and increased investment in

riskier financial assets, thereby lowering their risk premia and reducing their volatility (Drechsler

et al., 2018). But as investors reach for yield during extended spells of low rates, their portfolios

are increasingly prone to shocks as volatility spikes. As investors de-leverage and reduce their

riskier positions - that is, as they run for the exit - they exacerbate the asset price deflation

and inflict even higher volatility on their portfolios. Figure 1 documents this noticeable drop in

riskier positions held by euro area based investors.

This paper provides evidence that a simple Markowitz portfolio (Markowitz, 1952) is able

to replicate this very mechanism. We propose an indicator of portfolio instability measuring

the variability of optimal portfolio shares in response to external shocks. We show empirically

that low rates boost excess returns but also reduce asset price volatility, thereby raising optimal

leverage ratios and risky asset shares in the portfolio. As a result, these portfolios are noticeably

more sensitive to changes in the model parameters (expected mean return and variance) in the
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Figure 1: Quarterly aggregate evolution of Fund shares and Long-term debt in the Euro Area
investors’ portfolios. Amounts are in billions of euros, as retrieved from the ECB’s Security and
Holdings Statistics - by Sector (SHSS) database.

presence of low interest rates. Moreover, we provide a real-world example of our model prediction

showing how portfolio shares were affected by the Covid shock as opposed to a counterfactual

scenario in which the initial interest rate level was higher.

Finally, we extend our analysis to Risk-Parity portfolios introduced in Maillard et al. (2010),

an increasingly popular approach to risk diversification in the portfolio selection. This approach

is more robust to estimation errors in multi-asset portfolios (Cesarone et al., 2020). The re-

sults suggest that the interest rate level impact on portfolio instability is not limited to the

mean-variance portfolio, but it is important also for investors who engage in volatility targeting

strategies. In the appendix, we show that the results are robust across different regions.

This paper contributes to the a vast literature that studies the effects of low rates on risk-

taking in (financial) asset markets. Low rates are not only conducive to a lower price of risk

for equity (Bernanke and Kuttner, 2005; Laine, 2020), corporate credit markets (Gertler and

Karadi, 2015) and real assets (Hanson and Stein, 2015), but their dampening effect on volatility

additionally boosts the attractiveness of riskier assets from a mean/variance viewpoint. Drech-

sler et al. (2018) show that as the financial sector increases investments in riskier positions,

volatility increases in the long run as shocks trigger larger sales of riskier assets than in a high

interest rate world. Campbell (1987) and Glosten et al. (1993) provided empirical evidence of
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this causal link between interest rates and volatility empirically. Finally, our findings confirm

empirical research on investors’ portfolio decisions in response to expansionary monetary policy

shocks as one of the drivers behind low interest rates. Evidence by Cecchetti et al. (2017) sug-

gests that borrowing by banks and insurance companies increases with the length of the period

of monetary easing. As for asset managers, Giuzio et al. (2021) show how investment fund

investors reshuffle parts of their portfolios towards higher yielding and less liquid asset classes

following a monetary easing shock, seeding the risk of more violent market swings in the advent

of adverse shocks (Bubeck et al. (2018)) note that most of the portfolio shifts towards riskier

assets occur passively, that is via out-performance of riskier assets over safer assets within in-

vestors’ portfolios after a monetary easing shock.. Hau and Lai (2016) provide related evidence

from a cross-country perspective, noting that shifts from safer money market fund shares to

riskier equity fund shares are particularly evident in countries with low real interest rates. Also

insurance companies increase the risk profile of their assets when funding conditions are loose

(Becker and Ivashina, 2015) and increasingly venture into highly illiquid asset classes, including

real estate or private equity (Fache Rousová and Giuzio, 2019).

The remainder of the paper is organized as follows: Section 2 introduces the theoretical

framework and defines the portfolio instability (PI) measure as the volume of net asset trans-

actions triggered by changes in the investors’ expectations. Section 3 studies the sensitivity of

portfolio instability to changes in the risk-free rate, in particular through its effects on risky

asset volatility. Section 4 provides estimates of economic effects by applying the model to a

conceivable risk-parity optimisiation during the recent Covid-19 crisis. Section 5 concludes.

2 Framework

We consider a universe of K assets and an investor who allocates his/her portfolio solving, at

any time t, the asset allocation problem ω∗t = f(θt). θt is the conditioning information set

available to the investor at time t and ω∗t is the K vector of portfolio weights. Henceforth, we

use θ instead of θt for simplicity of notation. In the seminal paper of Markowitz (1952), the
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mean variance investor is introduced assuming that returns are normally distributed and

ω∗ = arg min
ω∈RK

1

2
γω′Σω −

[
ω′µ̃+ (1− ω′1)rf

]
(1)

where 1 is the K-vector of all ones, rft is the risk-free rate, µ̃ is the K vector of expected returns

and Σ is the K ×K covariance matrix. γ is known as risk-aversion parameter. The higher γ,

the lower is the investor’s risk tolerance and the lower is the risk of the optimal portfolio. The

optimization problem (1) has a closed form solution given by

ω∗t =
1

γ
Σ−1µ (2)

where µ = µ̃−rf is the vector of expected excess return. The portfolio in equation (2) is known as

tangency portfolio. The mutual fund theorem of Merton (1972) shows that the optimal portfolio

is a linear combination of the tangency portfolio (2) and the risk-free asset.

In the Markowitz portfolio, the vector of relevant information needed to build the optimal

portfolio is θ = (µ, vech(Σt), γ)′1.

2.1 Portfolio Instability

In the rest of the section, we study the instability of investors portfolios with respect to changes

in the input variables θ. We define the Portfolio Instability (PI) as a measure to evaluate the

amount needed to re-balance the portfolio in the face of a shock. When expectations change, the

investor has to re-balance his/her portfolio and may thereby also amplify market turbulence or

liquidity shortages in order to remain optimally allocated. Let us consider θpre as the vector of

relevant information before the advent of a shock and θpost as the vector of relevant information

after the shock. The external shock to the information vector is defined as v = θpost − θpre.

Portfolio instability is then defined as the directional derivative of the optimal portfolio ω∗(θpre)

1The half-vectorization operator vech converts a matrix into a column vector. Specifically, the half-vectorization
of a symmetric K × K matrix A is the K(K + 1)/2 × 1 column vector obtained by vectorizing only the lower
triangular part of A
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with respect to the shock v;

PIv(θ
pre) = Dvω(θpre) = lim

h→0

ω(θpre + hv)− ω(θpre)

h
=∗ Dω(θpre) · v ∈ RK (3)

where Dω(θ) is the Jacobian and ∗ holds because the solution ω(θ) is differentiable. It’s worth

noting that Dvω(θpre) is a K dimensional vector where the entry i represents the volume of the

portfolio reallocation in the asset i. The higher the absolute value of the element i, the higher

is the instability of the portfolio weight ω∗i to the shock v. The element of v bears a positive

(negative) sign for buy (sell) transactions. We define the Total portfolio Instability (TPI) as the

`2-norm of the vector PIv(θ)

TPIv(θ) = ||PIv(θ)||2 =

√√√√ K∑
i=1

(PIv(θ)(i))2. (4)

The higher the value of TPIv(θ), the higher the turnover induced by the shock v and the higher is

the possible instability that the shock v will cause in the investor’s portfolio. Annex A provides

a practical example of this framework in a universe with two risky assets.

3 The role of short-term risk-free rates for portfolio instability

In this section, we study the sensitivity of portfolio weights and the Total Portfolio Instability

metric with respect to changes in the risk-free rate for the Markowitz allocation (1). Thanks to

the mutual fund theorem, we may restrict our analysis to two assets: one risky asset and one

risk-free asset. We denote with σ2t and rt the variance and the expected returns of the risky

asset and with rft the risk-free rate with rt > rft . In this framework, the effect of the interest rate

change on TPI and portfolio shares occurs through three channels: i) the risk-free rate’s direct

impact on volatility, ii) its direct impact on the excess return (of the risky asset) and iii) its

indirect impact the excess return via volatility. We denote the key relations, with assumptions
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on the signs, as follow
dσ2t

drft
= λt > 0

d(rt − rft )

drft
= ψt.

d(rt − rft )

dσ2t
= µM > 0.

(5)

The first line of equation (5) denotes the relation between the expected conditional variance of

the risky asset and the risk-free rate. In turn. a higher variance augments the excess returns

any risk-averse investor demands from the risky asset (third line). The second line is the more

interesting. Mechanically, a lower risk-free rate augments the excess return of the risky asset

(ψt < 0). However, a lower risk-free rate may also lower the excess return (ψt > 0) through its

dampening effect on volatility, or the quantity of risk, (λt > 0) which in turn lowers the risk

premium (µM > 0). As both alternatives are plausible, we do not make any assumption on

the sign of ψt and test for the relationship in the data. Similarly, the sign of µM is ambiguous.

On the one hand, several studies show a significant positive risk-return relation (e.g. Scruggs

1998; Bali and Peng 2006; Chiang et al. 2015). On the other hand, negative risk-return relation

is found (e.g. Campbell 1987; Brandt and Kang 2004; Ang et al. 2009). Other papers find

contradictory results. For instance, Glosten et al. (1993) finds a positive sign of µM which

becomes negative once the policy rate rate is included in the GARCH equation.

The investor optimal portfolio (2) with only one risky asset reduces to

ω1
t =

(rt − rft )

γσ2t

ω2
t = 1− ω1

t ,

(6)

where ω1
t and ω2

t are the portfolio shares of the risky asset and the risk-free asset, respectively.

The time index t will henceforth be omitted for simplicity of notation. The optimal portfolio

share of the risky asset coincides with the sensitivity of the risky asset’s portfolio weight (ω1)

with respect to the risk-free rate level, our first quantity of interest: a lower (short-term) interest

rate level should increase the attractiveness and hence the portfolio weight of the risky asset.
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dω1

drf
< 0 ⇐⇒ ω1 >

γλ
. (7)

A proof is provided in Appendix B.

A sufficient condition for (7) is λ > 0 and ψ < 0, that is that risky asset volatility declines and

their excess return rises as the risk-free is lowered, thus making the risky asset more attractive

from both a risk and return perspective.

The second quantity we are interested in is the sensitivity of the portfolio instability with

respect to the risk-free rate level. For simplicity we separate the analysis for exogenous changes

in the different parameters of θ =
[
r − rf , σ2, γ

]
.

Proposition 1 The sensitivities of the Total Portfolio Instability measure (4) with respect to

the interest rate for the different types of exogenous shocks are

dTPI[vret,0,0]

drf
= −
√

2
λ|vret|
γ(σ2)2

. (8)

dTPI[0,vvar,0]

drf
=


√

2
dω1

drf
σ2−λ(ω1−µM

γ
)

γ(σ2)2
|vvar|, if ω1 − µM

γ > 0,

√
2
− dω1

drf
σ2−λ(µM

γ
−ω1)

γ(σ2)2
|vvar|, if ω1 − µM

γ < 0,

(9)

dTPI[0,0,vγ ]

drf
=
√

2
dω1

drf

γ
|vγ |. (10)

The proof of the equation can be found in Appendix B. The signs associated to equations (8), (9)

and (10) denotes the type of relation between the Total Portfolio Instability and the interest rate.

If positive, then a low level of interest rate generates ceteris paribus a lower selling or buying

pressure following a shock and the optimal portfolios are more robust. If negative, the optimal

portfolio in a low rate environment is, ceteris paribus, more fragile to exogenous shocks. In the

latter scenario, stability risks may arise as an unexpected event generates bigger re-balancing

pressures and may exacerbate the liquidity and financial conditions.

The sign of equation (8) is negative under the first assumption in (5). The sign of the third

equation strictly depends on the sign of equation (7), i.e. if condition (7) is fulfilled, then the
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sensitivity of the Total Portfolio Instability to the interest rate is negative. The second condition

is less trivial because it is defined by case however, as we show in the following of the paper,

in real-world applications we have ω1 > µM
γ . If condition (7) is fulfilled, then a shock in the

variance creates bigger market movements in the low rate environment. These findings postulate

that when interest rates decline, investors respond by increasing the weight in the risky asset

and decreasing the portfolio weight in the risk-free asset, which in turn raises the Total Portfolio

Instability with respect to exogenous shocks in any of the model parameters. Notably, these

results do not depend on the model used to evaluate the excess returns and volatility but they

are intrinsic in the mean-variance optimization.

3.1 Market dynamic for mean-variance investors

In this section, we derive the dynamic of a market with an infinite number of mean-variance

investors. In the previous section, we focus on the portfolio of a single agent but the purpose

of this paper is to capture the dynamic of the system and the possible instabilities caused by a

change in the market conditions.

Consider an infinite number of agents i with wealth Wi, risk-aversion γi and a market with

K assets. In addition denote the total wealth as W =
∑∞

i=1Wi. For any investor the portfolio

allocation is given by equation (6) as

ω(i) =
1

γi
Σ−1µ. (11)

The K×K covariance matrix Σ and the K vector of expected returns µ are equal across investors.

Assuming a market clearing procedure, the aggregate demand of all the investors must be equal

to the market portfolio multiplied by the total wealth, then

Wω̄mrk =

∞∑
i=1

Wi
1

γi
Σ−1µ (12)

We use the notation ω̄mrk to distinguish the vector of the market portfolio allocation to the scalar

ωmrk which, in the other sections of the paper, represents the proportion of wealth allocated in

the market portfolio. By definition, the weight of the market portfolio on asset i is given by the

ECB Working Paper Series No 2803 / March 2023 10



capitalization of asset i divided by the total market capitalization ω̄mrk. Let µ̂M be the wealth

weighted risk-aversion parameter and solve equation (12) for the excess expected returns, we get

µ = µ̂MΣω̄mrk. (13)

By definition, the market excess return is µmrk = ω̄mrkµ and the market variance by σ2mrk =

ω̄mrk′Σω̄mrk, then

µmrk = µ̂M ω̄
mrk′Σω̄mrk = µ̂Mσ

2
mrk (14)

which is the CAPM formula.

Next, we test for the assumptions in (5) by means of a GARCH-M model, assuming different

CAPM dynamics of the market portfolio.

3.2 Econometric model

In this section we test the excess return dynamic (14) using GARCH-M models with exogenous

factors. We deploy the econometric model introduced in Glosten et al. (1993) and Scruggs (1998)

to test the hypotheses put forth in the previous section. In particular, we explore different model

specifications in which we estimate the parameters from equations (7), (8), (9) and (10).

The tests are conducted on weekly European market data spanning from January 1999 to

October 2020. For the risk-free asset, we use the 1 week EONIA rate and the market portfolio

is proxied by the broad EuroStoxx 600. The in-sample period spans from January 1999 to

December 2019. The Covid-19 crisis period serves as the out-of-sample period. In Appendix C

we present a similar study for the US and a longer time span (January 1952 to December 2019),

showing that our main findings are robust across time and regions.

We start from the static CAPM model (henceforth model 1.A). This model perfectly fits in

the mean-variance optimization framework as reported in Section 3.1 and we use the empirical

specifications following Glosten et al. (1993), using a GARCH-M model. Recently, Kim and

Kim (2016) and Campbell et al. (2018) used local volatility or stochastic volatility processes to
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estimate similar models. The expected excess return is given by

rt − rft = µ0 + µMσ
2
t + εt,

σ2t = V art−1(εt)

σ2t = ω + αε2t−1 + βσ2t−1.

(15)

Model in equation (15) is the baseline model where the risk-free rate does neither affect the

market excess return nor the conditional variance. Several studies found a positive and significant

relationship between the conditional variance and the excess return (µM > 0). However, Glosten

et al. (1993) found that µM becomes insignificant and sometimes negative if the risk-free rate is

present in the conditional variance equation. We follow Glosten et al. (1993) in testing for this

relationship with a GARCH-M model (henceforth model 1.B).

rt − rft = µ0 + µMσ
2
t + εt,

σ2t = V art−1(εt)

σ2t = ω + αε2t−1 + βσ2t−1 + λ̃rft .

(16)

In (16) the risk-free rate indirectly affects excess return via its effect on the conditional variance

(µM λ̃). Empirically, we find a positive relationship between the risk-free rate and the conditional

variance (λ̃ > 0) 2. According to the static CAPM model, there exists a positive relationship

between the conditional variance and the excess return reflecting investors’ risk aversion (µM >

0). These two findings imply that model 1.B exhibits a positive relationship between the risk-free

rate and the excess return3.

Finally, we are aiming for more clarity about the role of the risk-free rate by allowing it to

2Glosten et al. (1993) finds an intuitive explanation behind this relationship: “The use of nominal interest
rates in conditional variance models has some intuitive appeal. It has been established by Fischer et al. (1981)
that the variance of inflation increases with its level. To the extent that short-term nominal interest rates embody
expectations about inflation, they could be a good predictor for future volatility in excess returns.”

3In turn,Laine (2020) finds an opposite sign for Europe during the Covid-19 crisis
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directly affect excess returns in model 1.C.

rt − rft = µ0 + µMσ
2
t + µfr

f
t + εt,

σ2t = V art−1(εt)

σ2t = ω + αε2t−1 + βσ2t−1 + λ̃rft .

(17)

To summarise, models 1.A, B and C make the following assumptions on the effects of the risk-

free rate on conditional variance and on the excess return. It relates with equation (5) as the

following:

model 1.A
dσ2t

drft
= λ = 0

d(r − rft )

drft
= ψ = 0

d(rt − rft )

dσ2t
= µM .

model 1.B
dσ2t

drft
= λ = λ̃

d(r − rft )

drft
= ψ = µM λ̃

d(rt − rft )

dσ2t
= µM .

model 1.C
dσ2t

drft
= λ = λ̃

d(r − rft )

drft
= ψ = µM λ̃+ µf

d(rt − rft )

dσ2t
= µM

.

(18)

where λ̃ is estimated in model 1.A, B and C, µM is estimated in model 1.B and C and µf

is estimated in model 1.C. Table 1 reports the corresponding econometric estimates of the

parameters of models 1.A, 1.B and 1.C. In model 1.A the relationship between the conditional

variance and the excess return is positive and slightly significant (µM = 2.319, t-stat = 1.690).

In model 1.B, the risk-free rate is found to have a positive and slightly significant impact on

the conditional variance (λ̃ = 0.034, t-stat 1.638) as the impact of the conditional variance on
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the excess return decreases (µM = 1.970, t-stat = 1.398). As we explained, this behaviour

may be due to the indirect impact of the interest rate in the excess return and it was previously

observed in Glosten et al. (1993) and Scruggs (1998). In model 1.C where we separately consider

the impact of the risk-free rate in the conditional variance and the expected return, λ̃ remains

positive and marginally significant. The direct impact of the risk-free rate on the excess return

is negative but not significant (µf = −3.739 and t-stat −1.497) but the relationship between the

conditional variance and the risk-free rate becomes highly significant (µM = 3.023 and t-stat

1.914).

Considering the lower part of the table, model 1.B and 1.C are in line with our assumptions

on the negative sign of the quantities (7), (8), (9) and (10). In model 1.C, the sufficient condition

for a negative relationship between the risk-free rate on the risky asset portfolio weight (ψ < 0

) is satisfied since ψ is negative and λ̃ is positive. Model 1.B has a positive ψ and the sufficient

condition is not satisfied. Yet, when evaluating (7), (8), (9) and (10) at each point in time, it is

found that total portfolio instability tends to rise with declining levels in the risk-free rate.

In the last row of the table we show the AIC (Aikake Information Criterion). Model 1.A is

the worst to capture the dynamic of the data, model 1.B ranks second while model 1.C is the

best performing.

The difference in terms of fit from model 1.B and model 1.C is very small. If we consider the

AIC, model 1.C is preferred over model 1.B, however the Likelihood Ratio Test does not reject

the null of model 1.B with a p-value of 0.06. For this reason, the results of both models 1.B and

model 1.C are examined. We evaluate the Total Portfolio Instability of investor (1) over the

horizon January 1999-December 2019. We assume an investor with a risk aversion parameter

of γ = 15, and set the exogenous shocks to vret = −5% (i.e. a decrease in the excess return

by 5 percentage points per annum), vvar = 30% (i.e. an increase in the annualised volatility by

30 percentage points) and vγ = 0.2% (i.e. an increment in the risk aversion parameter by 0.2

percentage points which, in our case, means that the investors become more risk-averse) . Figure

2 shows the evolution of the Total Portfolio Instability with respect to the two models. The

results are filtered with a year rolling window average. Using both models, we record a steady

increase in portfolio instability in recent years. At the face of the results of the previous section,
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Parameters model 1.A model 1.B model 1.C

µ0 0.001 0.001 0.002
(1.213) (1.560) (1.882)

µM 2.319 1.970 3.023
(1.690) (1.398) (1.914)

µf −3.739
(−1.497)

ω × 105 2.724 1.816 1.917
(2.632) (1.950) (2.019)

α 0.193 0.182 0.183
(2.809) (2.874) (3.041)

β 0.780 0.773 0.768
(14.703) (13.439) (14.421)

λ̃ 0.034 0.036
(1.638) (1.728)

0.067 −3.629
(1.018) (−1.465)

dω1

drf
< 0 < 0

dTPI[vret,0,0]
drf

< 0 < 0

dTPI[0,vvar,0]
drf

< 0 < 0

dTPI[0,0,vγ ]
drf

< 0 < 0

AIC −5154.7 −5160.9 −5162.3

Table 1: Estimation of models 1.A, 1.B and 1.C in equations (16) and (17) and model implied
sensitivities to the interest rate. In the first section we report the estimates and the Robust t
ratios in parenthesis. The estimates ψ is evaluated according to (5) and the Robust t-statistic
is evaluated with the delta method. In the second section we report the different quantities in
equations (7), (8), (9) and (10). When the sign is < 0 the partial derivative is negative in the
whole sample, when the sign is > 0 the partial derivative is positive and when the sign is ± the
partial derivative can be both positive and negative. In the last row we show the AIC and the
best performing model according to this measure is bolded.
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Figure 2: Total Portfolio Instability evaluated from model 1.B (16) and model 1.C (17). The
measures are filtered using a 1-year moving window and assuming an impact of 30% in the
variance and −5% in the expected excess return.

the secular decline in both the risk-free rates and in market volatility have set the conditions

for total portfolio instability to rise to the highest level ever recorded.

3.3 Non linear behaviour of the Total Portfolio Instability

In the previous two sections, we showed theoretically and empirically that portfolio shifts in

reactions to shocks are more pronounced in the presence of low (vs. high) rates. Indeed, owing to

the non-linear properties of the TPI function, this relationship is convex with disproportionately

high levels of portfolio instability for rates around or even below zero. Figure 3 depicts this non-

linearity for the estimated parameters in table 1 for models 1.B and 1.C.

3.4 Covid-19 crisis and the Markowitz investor. A counterfactual analysis

In this section, we deploy the estimated parameters from Section 3.2 to characterise the role of

the low rates in the recent Covid-19 crisis. Our findings suggest that the pre-Covid, low interest

rate level have likely amplified the market turmoil in March 2020. We quantify by how much

fewer portfolio weights would have moved in models in the presence of higher interest rates in the

framework presented by model 1.B (16) and model 1.C (17). We assume an investor solving the

Markowitz problem in (6) as news about the risk-adjusted return of risky assets arrive (εt/
√
σ2t ).
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Figure 3: Total Portfolio Instability sensitivity evaluated from model 1.B (16) and model 1.C
(17) for different values of the risk-free rate. For the calculations, we use the unconditional levels
of σ2 and r − rf given by models (16) and (17) for different levels of rf .

We do not consider the risk-free rate as a source of the shock but rather as a model parameter

affecting the portfolio choices in real-time. As a first step, we use the observed EONIA rate to

model a baseline scenario in which investors optimise their portfolios in response to changes in

the expected return and variance profile of the various asset classes induced by the Covid-19

pandemic.

Using model (16) and (17), we forecast the expected excess return and variance and, as a

residual we get the out of sample residuals εOOS
t . In a second step, we create a counterfactual,

augmented EONIA path. We denote with rf,CF
t as the counterfactual risk-free rate and calculate

the corresponding expected excess return and variance as

Et−1

[
(rt − rft )CF

]
= µ0 + µMσ

2,CF
t + µfr

f,CF
t

σ2,CF
t = ω + α

(
εOOS
t−1

)2
+ βσ2t−1 + λ̃rf,CF

t ,

(19)

with portfolio weights ωCF and using the explicit portfolio solution (6). Note that we set µf = 0

for model 1.B. As a counterfactual, we use a risk-free rate that is one percentage point higher

than the observed EONIA rate. In our comparative analysis, we scale the portfolio weights to 0

at the beginning of January 2020 so that we can trace the relative portfolio shifts in the course

of 2020.
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Figure 4: Change in the portfolio share since January 2020 given actual risk-free rates (in blue)
and counterfactual risk-free rates (orange: EONIA + 0.5%, yellow: EONIA + 1%) in model 1.B
(16). The measures are filtered using a 1-month moving window.

Figure 4 shows the evolution of weights under model 1.B, while figure 5 shows the evolution

under model 1.C. Their dynamics are very similar. The reduction in the equity share during

March was at the order of −15% of the portfolio size prevailing in January 2020. The sale of

equity would have been less pronounced if the initial risk-free rate had been higher (50 basis

points: −12.5%, 100 basis points: −10%).

4 The Risk Parity investor

The Markowitz portfolio, inspected in the previous section, has two important short-comings

which make them little representative of investors active in financial markets. First, optimal

Markowitz multi-asset portfolios typically allocate most of the wealth to only a few assets.

Second, Markowitz weights are very sensitive to estimation errors whereas small changes in

the expected returns and variance estimation lead to very different optimal allocations (see

Best and Grauer (1991) and Chopra and Ziemba (1993)). To counter these drawbacks, a new

class of portfolio optimisation is considered, that relies solely on the relative risk profile of the

various asset classes. Cesarone et al. (2020) shows that portfolios built using risk diversification

strategies are the most robust to noise. In particular, they find that Risk Parity Portfolios,
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Figure 5: Observed sell-off (in blue) and counterfactual sell-off (in orange with 0.5% and yellow
with 1%) evaluated with model 1.C (17). The measures are filtered using a one month moving
window.

introduced by Maillard et al. (2010), are more stable with respect to estimation errors. Before

the Covid-19 crisis, an estimated USD 300 billion was invested in funds following risk-parity

strategies. The mere size of this market segment may render the portfolio flows induced by

external shocks macro-critical. Portfolio shifts may thus be able to amplify the initial shock,

e.g. by putting further downward pressure on the prices of riskier assets and/or raising market

volatility. In this section, we use the Risk Parity portfolio to robustify the results presented in

previous sections.

The Risk Parity Portfolio (RP) aims to spread the risk among all assets equally and each

asset contributes to the total portfolio volatility, denoted as σ(ωt), equally. More precisely,

the volatility contribution of asset i should be equal to the volatility contribution of asset j,

ωit
∂σ(ωt)

∂ωit
= ωjt

∂σ(ωt)

∂ωjt
for any asset i and j and any time t. That is,

ωit
∂σ(ωt)

∂ωit
= ωit

(Σtωt)i
σ(ωt)

. (20)

At time t − 1, the RP investor with a variance-covariance matrix expectation Σ̂t, re-balances
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his/her portfolio weights ωt solving the optimization problem:

ωt = arg min
ω

K∑
i=i

[
σ(ω)

K
− ωi (Σtω)i

σ(ω)

]2
(21)

The portfolio obtained minimizing (21) is not well identified; indeed it has infinite solutions.

As per the Markowitz portfolio (1) we can identify the optimal portfolio imposing that 1ω = 1.

However, we impose the volatility targeting constraint σ(ω) = ω∗. A key advantage of the

volatility targeting constraint is that we can explore another dimension of the investor behaviour,

where he/she increases leverage during low volatility periods and decreases the leverage during

high volatility periods. The final optimization problem then becomes

ωt = arg min
ω

K∑
i=i

[
σ(ω)

K
− ωi

(Σtω)i
σ(ω)

]2
subject to σ(ω) = σ∗

(22)

There is no closed-form solution for the risk parity portfolio. Hence, there is a priori no

mathematical relationship between the behaviour of the portfolio weights and the risk-free inter-

est rate. In the following empirical exercise, we estimate the portfolio weights and the Portfolio

Instability by means of numerical optimization and derivation.

4.1 Econometric model and Portfolio Instability

We consider a risk-parity investor with a target of 8% annual volatility and a universe of 3

risky assets, namely the equity (EUROSTOXX 600), the long-term government bond (Markit

iBoxx Sovereigns Eurozone Index) and the Corporate bond (Bloomberg Barclays Euro Aggregate

Corporate Total Return Index).

Portfolio weights in a risk parity portfolio are set such that the every asset class in the

portfolio contributes the same share to the overall portfolio volatility. Hence, the optimal weights

depend on the level of the target volatility. We assume that the risk-parity investor allocates

50% of her risk in the equity and the 50% in the fixed income. Of the latter, 25% is allocated

in the government bonds and corporate bonds, respectively. The investor forecasts the future
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covariance matrix using a Dynamic Conditional Correlation model (Engle, 2002)

ri,t − rft = µi + εi,t

εi,t = σi,tzt, E[zt] = 0, E[z2t ] = 1

σ2i,t = ωi + αiε
2
i,t−1 + βiσ

2
i,t−1

Vt = DtRtDt

Rt = ∆−1t Qt∆
−1
t

Qt = Q̄(1− αDCC − βDCC) + αDCC(εtε
′
t) + βDCCQt−1.

(23)

where Q̄ is the unconditional mean of the pseudo-correlation matrix Q, Dt is the diagnoal matrix

of conditional volatilities, and ∆t = diag(Qt) is the matrix with only the diagonal elements of

the pseudo-correlation matrix. From now on we refer to model (23) as Model 2.A.

In the spirit of Section 3.2, we allow the risk-free rate to affect the volatility dynamics. For

this reason, we propose an alternative model

ri,t − rft = µi + εi,t

εi,t = σi,tzt, E[zt] = 0, E[z2t ] = 1

σ2i,t = ωi + αiε
2
i,t−1 + βiσ

2
i,t−1 + λir

f
t

Vt = DtRtDt

Rt = ∆−1t Qt∆
−1
t

Qt = Q̄(1− αDCC − βDCC) + αDCC(εtε
′
t) + βDCCQt−1,

(24)

where λi captures the dependency between the risk-free rate and the volatility level. We denote

this model as Model 2.B.

Table 2 shows the estimated parameters from model (23) and (24). The AIC shows the better

fit given by model 2.B. In addition, the likelihood ratio test rejects the null hypothesis of model

2.A with a p-value of 10−9. The sensitivity of the volatility with respect to the risk-free level is

positive and marginally significant for the equity and the corporate bonds while it is negative

and non-significant for government bonds. Low interest rates tend to mute the volatility in

the two riskiest assets (including equity and corporate bonds) but increase the volatility levels
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Parameters
Model 2.A Model 2.B

Equity Gov. Bond Corp. Bond Equity Gov. Bond Corp. Bond

ω × 105 2.480 0.183 0.024 1.617 0.193 0.017
(2.547) (2.819) (1.755) (1.868) (2.493) (1.357)

α 0.176 0.092 0.091 0.165 0.093 0.082
(3.060) (3.634) (3.700) (3.242) (3.681) (3.345)

β 0.797 0.844 0.897 0.791 0.843 0.895
(18.245) (22.715) (41.963) (17.074) (22.854) (37.262)

λ× 102 3.432 −0.021 0.047
(1.707) (−0.421) (1.980)

αDCC 0.039 0.038
(10.049) (10.003)

βDCC 0.959 0.961
(240.477) (252.157)

AIC −24218.4 −24257.4

Table 2: Estimation of models 2.A and 2.B in equations (23) and (24). Any column represents
a different asset class. In parenthesis we report the t-statistics In the last row we show the AIC
and the best performing model according to this measure is bolded.

of government bonds consistent with the notion of convexity in bond pricing. As in Section

3.3, we evaluate the behaviour of the total portfolio instability with respect to the risk-free

rate. We define a range of possible risk-free rate levels ranging from −0.5% to 4.5%. In the

GARCH-DCC-type model (24) the unconditional expected values are defined as

σ̄2i (r
∗
f ) =

ωi + λir
∗
f

1− αi − βi

V̄ = D̄R̄D̄,

(25)

where D̄ is the diagonal matrix with the σ̄i element on the i-th diagonal.

Using equation (25), we can study the (T)PI of the risk-parity portfolio for varying levels of

the risk-free rate. We study the portfolio shifts induced by an exogenous 20 percentage point

increase in volatility increase in all the asset classes and a parallel increase in all correlation

coefficients by 10 percentage points. Figure 6 reports the results. The behaviour of the Total

Portfolio Instability is qualitatively similar to the Total Portfolio Instability in figure 2. Port-

folio Instability increases dis-proportionately as interest rates decline. Concerning the Portfolio

Instability, the most susceptible asset class are corporate bonds whereas the share of government

bonds is almost indifferent with respect to the interest rate level (as suggested by the estimated

parameter λ in table 2). In addition, we see that the investor is susceptible to higher flight-to-

safety behaviour for low level of the risk-free rate. That results are similar to the Markowitz
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Figure 6: Total portfolio instability of the risk parity portfolio given different levels of the interest
rate. In blue we report the TPI for the volatility shock scenario, in orange we report the TPI
for the correlation shock scenario

case suggests that our findings are robust across different investor optimization strategies.

4.2 Covid-19 crisis and the Risk parity investor. A counterfactual analysis

The counterfactual analysis, equivalent to 3.4, is based on the counterfactual rates rf,countert

of 50 and 100 basis points higher than the one observed in the EONIA rate. Figure 7 shows

the results for a risk-parity investor during the Covid-19 crisis, with a volatility target of 8%

p.a. Qualitatively the result confirm what we observe in figure 4 and 5 for the Markowitz

portfolio, but quantitatively the results differ by some margin. The risk-parity investor with

an 8% volatility target deploys high levels of leverage in a period of low volatility, like the

one before the Covid-19 pandemic. This high level of leverage translates into high portfolio

re-balancing volumes during the crisis. In the baseline scenario, the investor sells almost 200%

of the portfolio value of risky assets, reflecting large previous short-positions in cash (paying the

short-term interest rate). This would decrease to 170% and 150% in the counterfactual scenario

with a higher EONIA rate 4. Given that the risky portfolio is composed of 3 asset classes, we

can assess the selling pressure on every component. Figure 8 shows the sell-off decomposed into

the different components. In all three asset classes, a higher risk-free rate produces a smaller

4For details, see Vassallo et al. (2020)
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Figure 7: Observed sell-off (in blue) and counterfactual sell-off (in orange with 0.5% and yellow
with 1%) evaluated from model 2.B (24). The measures are filtered using a one month moving
window.

sell-off in those asset classes with a negative relation to the risk-free rate and volatility (namely

equity and corporate bonds). By contrast, the government bonds portion of the portfolio proves

to be more robust to differences in the risk-free level, as already suggested by its λ parameter

in table 2.

5 Conclusions

This paper investigates the role of the low interest rates on optimal portfolio allocations following

shocks to asset price returns and risk. We show that a low level of interest rate increases the

exposures to risky assets through the build-up of highly leveraged positions. The risk-taking

behaviour of investors constitutes a risk to financial stability that we measure as Portfolio

Instability : the amount of asset sales/purchases needed to re-optimise the portfolio when shocks

occur. Heightened levels Portfolio Instability can lead to large and sudden portfolio shifts in the

event of exogenous shocks to the portfolio parameters (mean and variance). We demonstrate in

scenario exercises that portfolio re-balancing flows in Markowitz and risk parity portfolios were

significantly larger during the Covid-19 crisis than would have been the case in the presence of

higher interest rates.
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Figure 8: Observed sell-off (in blue) and counterfactual sell-off (in orange with 0.5% and yellow
with 1%) evaluated from model 1.C (17). The measures are filtered using a one month moving
window.
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Appendix

A Example of portfolio instability with two risky assets

The following example provides some economic intuition behind the definition of Portfolio In-

stability introduced in section 2. Consider a market with two risky assets A and B where the

expected annual variance of asset A is 4%, the expected annual variance of asset B is 1% and

the expected correlation between the two asset is 0.2, which leads to an expected co-variance of

0.4%. Let us consider that the initial expectation for the annual returns are 6.5% for asset A

and 4% for asset B. An investor allocates his/her portfolio by solving the Markowitz problem

(1) with γ = 5. The optimal portfolio is composed of shares of 26% in asset A and the 74% in

asset B. After an external shock, the investor revises down the expected returns to 4.5% for

asset A and 3% for asset B. Summing up, the initial value of θ was

θpre-shock =
[
µA, µB, σ

2
A, σ

2
B, σA,B, γ

]
= [6.5%, 4%, 4%, 0.4%, 1%, 5]

and after a shock to expectations amounting to

vshock = [−0.02,−0.01, 0, 0, 0, 0]

the investor finds herself in a new state of the world which is characterised by

θpost-shock = θpre-shock + vshock = [4.5%, 3%, 4%, 0.4%, 1%, 5] .

In the new state of the world θpost-shock, the optimal asset allocation is given by investing the

21% of the portfolio into asset A and the 79% in asset B. That corresponds to a reduction of 5

percentage points in asset A which are being reinvested in asset B. Figure 9 shows the optimal

allocation surface which represents the investment in asset A for different values of expected

returns. The red dot shows the optimal allocation in the θpre-shock environment while the blue

dot shows the new optimal allocation in the state of the world θpost-shock. The blue line which

connects the two dots is the line generated by the directional derivative. The total portfolio
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Figure 9: Directional derivative. In the z-axis we report the weights of the riskier asset A
according to the expected returns of the two assets. The x-axis and y-axis show the expected
returns of asset B and asset A respectively.

instability is the length of the segment between the two dots. The length of the segment depends

on the shape of the optimal allocation surface. In this example, TPIvshock(θpre-shock) = 0.067.

B Proof Propositions 7 and 1

The proof of proposition 7 is trivial. Indeed the value of the total derivative is given by

dω1

drf
=
γψσ2 − λγ(r − rf )

(γσ2)2
(26)

Using equation (6) we get that

dω1

drf
=
γσ2
− λγ

σ2γ
ω1 < 0 ⇐⇒ ω1 >

γλ
(27)

which concludes the proof.

For Proposition 1, using the information set θ =
[
r − rf , σ2, γ

]
for the investor problem (6),

we analytically evaluate the Portfolio Instability measure defined in (3). The Jacobian matrix
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reduces to

Dω(θ) =

 ∂ω1

∂(r−rf )
∂ω1

∂σ2
∂ω1

∂γ

∂ω2

∂(r−rf )
∂ω2

∂σ2
∂ω2

∂γ

 =

 ∂ω1

∂(r−rf )
∂ω1

∂σ2
∂ω1

∂γ

− ∂ω1

∂(r−rf ) −
∂ω1

∂σ2 −∂ω1

∂γ


=

 1
γσ2 ,

µMσ
2−(r−rf )
(γσ2)2

, − (r−rf )
γ2σ2

− 1
γσ2 , −µMσ

2−(r−rf )
(γσ2)2

, (r−rf )
γ2σ2


(28)

Firstly, we consider an exogenous change in the risky asset’s expected excess return. We denote

with vret the size of the exogenous shock, then

PI[vret,0,0] = Dω(θ)


vret

0

0

 =

 vret

γσ2

− vret

γσ2

 (29)

and the TPI can be evaluated as

TPI[vret,0,0] =
√

2
|vret|
γσ2

. (30)

The sensitivity of the TPI to the risk-free rate is given by

dTPI[vret,0,0]

drf
= −
√

2
λ|vret|
γ(σ2)2

. (31)

The second possible shock is a shock to the variance of the risky asset (vvar):

PI[0,vvar,0] = Dω(θ)


0

vvar

0

 =

 µMσ
2−(r−rf )
(γσ2)2

vvar

−µMσ
2−(r−rf )
(γσ2)2

vvar

 =


µM
γ
−ω1

(σ2)
vvar

−
µM
γ
−ω1

(γσ2)
vvar

 (32)

The total portfolio instability is given by TPI[0,vvar,0] =
√

2
|ω1−µM

γ
|

(γσ2)
|vvar| and the sensitivity with
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respect to the risk-free rate

dTPI[0,vvar,0]

drf


√

2
∂ω1

∂rf
σ2−λ(ω1−µM

γ
)

γ(σ2)2
|vvar|, if ω1 − µM

γ > 0,

√
2
− ∂ω

1

∂rf
σ2−λ(µM

γ
−ω1)

γ(σ2)2
|vvar|, if ω1 − µM

γ < 0,

(33)

For the third possible shock in the investor preference, i.e. in the parameter γ, we find

similar results as in the previous scenario

PI[0,0,vγ ] = Dω(θ)


0

0

vγ

 =

− (r−rf )
γ2σ2 v

γ

(r−rf )
γ2σ2 v

γ

 (34)

TPI[0,0,vγ ] =
√

2
ω1

γ
|vγ |. (35)

∂TPI[0,0,vγ ]

∂rf
=
√

2
∂ω1

∂rf

γ
|vγ | < 0 ⇐⇒ ∂ω1

∂rf
< 0. (36)

This concludes the proof.

C Econometric model with US Data

In this appendix we test the theoretical findings in Section 3 using US monthly data from

April 1951 to December 2019. The market proxy is the value-weighted portfolio provided in

the French’s website5 and risk-free rate proxy is the one-month T-bill rate. Table 3 shows the

estimates for the models 1.A (15), 1.B (16) and 1.C (17). The results are consistent with the

findings in table 1 with an higher significance, partly due to the longer time series and partly

due to the lower frequency of the data. The only difference between the US estimates and the

EU estimates is the sign of the parameter ψ for the model 1.B but in both cases, the estimates

are not significant.

Figure 10 shows the same non-linear behaviour observed in figure 3. The results show that

the portfolio instability behaviour is robust across countries.

5Kenneth R. French website.
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Parameters model 1.A model 1.B model 1.C

µ0 0.003 0.007 0.009
(1.037) (1.837) (2.862)

µM 1.931 −0.209 3.497
(1.185) (−0.090) (1.703)

µf −2.666
(−3.420)

ω × 105 10.096 5.414 5.034
(2.271) (1.367) (1.106)

α 0.115 0.115 0.114
(3.730) (3.027) (2.969)

β 0.837 0.795 0.798
(20.167) (11.639) (12.551)

λ̃ 0.029 0.028
(2.272) (2.480)

−0.006 −2.569
(−0.089) (−3.455)

∂ω1

∂rf
< 0 < 0

∂TPI[vret,0,0]
∂rf

< 0 < 0

∂TPI[0,vvar,0]
∂rf

< 0 < 0

∂TPI[0,0,vγ ]
∂rf

< 0 < 0

AIC −2841.5 −2854.1 −2868.2

Table 3: Estimation of models 1.A, 1.B and 1.C in equations (16) and (17) and model implied
sensitivities to the interest rate. In the first section we report the estimates and the Robust t
ratios in parenthesis. The estimates ψ is evaluated according to (5) and the robust t-statistic
is evaluated with the delta method. In the second section we report the different quantities in
equations (7), (8), (9) and (10). When the sign is < 0 the partial derivative is negative in the
whole sample, when the sign is > 0 the partial derivative is positive and when the sign is ± the
partial derivative can be both positive and negative. In the last row we show the AIC and the
best performing model according to this measure is bolded.
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Figure 10: Total Portfolio Instability sensitivity evaluated from model 1.B (16) and model 1.C
(17) for different values of the risk-free rate. For the calculations, we use the unconditional levels
of σ2 and r − rf given by models (16) and (17) for different levels of rf .
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