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Universitätsstraße 25
D-33615 Bielefeld · Germany

e-mail: imw@uni-bielefeld.de
uni-bielefeld.de/zwe/imw/research/working-papers
ISSN: 0931-6558

Unless otherwise noted, this work is licensed under a Creative Commons
Attribution 4.0 International (CC BY) license. Further information:

https://creativecommons.org/licenses/by/4.0/deed.en

https://creativecommons.org/licenses/by/4.0/legalcode.en

mailto:imw@uni-bielefeld.de
http://www.uni-bielefeld.de/zwe/imw/research/working-papers
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/legalcode.en


A STATIONARY MEAN-FIELD EQUILIBRIUM MODEL OF IRREVERSIBLE

INVESTMENT IN A TWO-REGIME ECONOMY

RENÉ AÏD, MATTEO BASEI, AND GIORGIO FERRARI

Abstract. We consider a mean-�eld model of �rms competing à la Cournot on a commodity market,
where the commodity price is given in terms of a power inverse demand function of the industry-
aggregate production. Investment is irreversible and production capacity depreciates at a constant
rate. Production is subject to Gaussian productivity shocks, while large non-anticipated macroeco-
nomic events driven by a two-state continuous-time Markov chain can change the volatility of the
shocks, as well as the price function. Firms wish to maximize expected discounted revenues of pro-
duction, net of investment and operational costs. Investment decisions are based on the long-run
stationary price of the commodity. We prove existence, uniqueness and characterization of the sta-
tionary mean-�eld equilibrium of the model. The equilibrium investment strategy is of barrier-type
and it is triggered by a couple of endogenously determined investment thresholds, one per state of
the economy. We provide a quasi-closed form expression of the stationary density of the state and we
show that our model can produce Pareto distribution of �rms' size. This is a feature that is consistent
both with observations at the aggregate level of industries and at the level of a particular industry.
We establish a relation between economic instability and market concentration and we show how
macroeconomic instability can harm �rms' pro�tability more than productivity �uctuations.

Keywords: mean-�eld stationary equilibrium; irreversible investment; regime-switching; market
concentration; value of economic stability.

OR/MS subject classi�cation: Dynamic programming/optimal control: Markov; Games/group
decisions: Stochastic; Inventory/production: Stochastic models.

JEL subject classi�cation: C61, C62, C73, D25, D41, E32, L11, L22.

MSC2020 subject classi�cation: 49N80, 49L20, 91A15, 91A16.

1. Introduction

We investigate the long-run market structure of �rms competing à la Cournot in a context where
they face both idiosyncratic �uctuations and macroeconomic cycles. In particular, we are interested in
the e�ects of macroeconomic instability on the stationary state of the market structure, described by
the density of �rms' size, the market concentration, and the pro�tability of �rms. To this purpose, we
consider a mean-�eld model of �rms competing à la Cournot on a commodity market. Investment is
irreversible and production capacity depreciates at a constant rate. Two types of shocks a�ect �rms'
pro�t and cost. First, production is subject to Gaussian shocks, representing random variations
of productivity. Second, non-anticipated macroeconomic events can drive the whole market into
instability (large �uctuations of productivity) or stability (small �uctuations of productivity). Such
events are driven by a two-state continuous-time Markov chain. When a regime-change occurs,
the values of the average level and elasticity of prices, as well as the volatility of the Gaussian
shocks a�ecting production, can change. Firms wish to maximize expected discounted revenues of
production, net of the investment and operational costs. One key aspect of our irreversible investment
model is the pricing rule used by the representative �rm to assess the appropriate level of investment.
The commodity price is given in terms of a decreasing power function of the industry-aggregate
production. However, we assume that the decision-maker uses the long-term stationary price of the
commodity in order to estimate the pro�tability of her investment. Because there is a one-to-one
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2 AÏD, BASEI, AND FERRARI

correspondence between production capacity in the market and the price, the assumption made by
the decision-maker is equivalent to making an estimation of the appropriate level of capacity that
can be sustained in the market in the long-run. Although such a criterion does not corresponds to
the future realised cash-�ows that the �rm can expect to make, it corresponds to a decision-making
process of most of the �rms involved in commodity markets. As a matter of fact, since making
long-term forecasts of commodity prices is a highly risky exercise, �rms reduce the complexity of the
potential futures by designing long-run scenarios of prices. By considering a stationary mean-�eld
equilibrium, we assume that �rms found it easier to coordinate or to agree on the level of capacity that
can be sustained in the market in the long-run, rather than on the whole path of investment decisions.
The present model clearly takes the counter-step of stochastic dynamic models in high dimension,
aiming at capturing most of the risk factors of an industry, as well as the di�erences in technologies
(see Aïd et al. (2014) and the references therein for an overview of this modeling framework applied
to electricity generation).

Mathematical results. The considered stationary irreversible investment problem is modeled
through a mean-�eld model with nondecreasing singular stochastic controls (see, e.g., Bertola (1998)
or Chapter 11 in Dixit and Pindyck (1994) for early contributions on irreversible investment problems
with singular controls). The monotonicity requirement on the control processes well describes the
irreversibility constraint of the investment policies and also allows to take into account lump-sum
or singularly-continuous actions. The singular control a�ects linearly Markov-modulated geometric
Brownian dynamics providing the evolution of the representative company's production capacity, and
each unit of investment into production gives rise to proportional costs. At equilibrium, the company
maximizes total expected discounted net revenues from production and sells the produced good at a
regime-dependent price which is given in terms of the long-run industry-aggregate production. We
are able to show existence, uniqueness and characterization of the equilibrium. This is achieved via
a constructive three-step approach.

Firstly, for a given and �xed vector-valued parameter representing the regime-dependent long-run
industry-aggregate production, we solve the singular stochastic control problem with regime-switching
faced by the representative company. Solving such a dynamic optimization problem through a guess-
and-verify approach (i.e., considering suitable parametric candidate solutions to the corresponding
dynamic-programming equation and selecting the �optimal� parameters by imposing appropriate reg-
ularity conditions, i.e. the so-called smooth-�t and smooth-pasting conditions) is possible, but chal-
lenging in the present context (among many others, see Sotomayor and Cadenillas (2011), Cadenillas
et al. (2012), Guo et al. (2005) for Markov-modulated control problems addressed via the guess-and-
verify approach). As a matter of fact, the underlying Markov chain makes the dynamic programming
equation result into a system of interconnected constrained ODEs, with the e�ect that it becomes hard
to show existence and uniqueness of the solution to the highly nonlinear (and unhandy) smooth-�t
and smooth-pasting equations. We therefore adopt a di�erent approach, already employed in Ferrari
and Rodosthenous (2020) (and inspired by the early contributions in Karatzas and Shreve (1984) and
Baldursson and Karatzas (1997)): We introduce an optimal stopping problem with regime switching;
via direct probabilistic and analytic methods, we prove existence of thresholds triggering its optimal
stopping rule, as well as regularity of its value function; �nally, we verify that a suitable integral of
the stopping problem's value function identi�es with the value function of the considered singular
stochastic control problem. As a by-product, we also obtain the form of the optimal investment
rule. This prescribes to exert the minimal amount of e�ort needed to prevent that the (optimally
controlled) production capacity falls below an endogenous trigger, depending on the current regime
and, clearly, on the �xed stationary industry-aggregate production.

As a second step, still for a given and �xed vector-valued parameter representing the regime-
dependent long-run industry-aggregate production, we determine the joint stationary distribution of
the optimally controlled production process and of the underlying Markov chain. This is obtained
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by solving the corresponding stationary Fokker-Planck equation which, in the present setting, corre-
sponds to a system of interconnected ODEs subject to suitable boundary conditions (see also D'Auria
and Kella (2012)). It is worth emphasizing here, that we do obtain a semi-explicit formula for such
a stationary distribution, and not only its existence and uniqueness.

Finally, we impose the consistency condition, that is, we impose that the vector-valued parameter
Q �xed in the previous two steps indeed identi�es with the regime-dependent long-run industry-
aggregate production. This naturally leads to a �xed point problem, in that the stationary distribu-
tion, and therefore its average, depend on Q. We address the question of existence of a solution to
the �xed point problem via the Brower's �xed point theorem, while uniqueness follows from a con-
tradiction argument, inspired by Weintraub (2022), which exploits a suitable monotonicity property
of the investment triggers with respect to Q. It is worth noticing that such a monotonicity can be
easily shown via the relation to optimal stopping and it is not implied by the well-known Lasry-Lions
monotonicity condition (see, e.g., p. 169 of volume I in Carmona and Delarue (2018)), as our require-
ments on the instantaneous pro�t and inverse demand functions make the Lasry-Lions condition not
ful�lled in general (see also Remark 1 in Cao et al. (2022)).

Our constructive approach to the existence and uniqueness has the important by-product that it
also yields a complete characterization of the equilibrium itself. In particular, the equilibrium regime-
dependent investment-triggers and prices are completely determined through a system of nonlinear
algebraic equations. Those can be then solved numerically in order to understand the economic
insights of our model.

Economic results. In the course of the construction of the mean-�eld equilibrium, a �rst important
result concerns the semi-explicit determination of the stationary distribution of the �rms' sizes, which
follows a Pareto law, P

(
X∞ ≥ x

)
∼ x−|θ2| for some tail parameter |θ2|(here, and in the following,

with a slight abuse of notation, X∞ is a random variable distributed according to the stationary
distribution of the equilibrium state-process). It is a well-documented stylized fact in Industrial
Economics (see Axtell (2001)) that at the aggregate level (i.e. mixing all types of �rms in the same
sample), the tail parameter is close to one. In that case, the distribution becomes a Zipf's law (see
Gabaix (1999)). According to the model of endogenous �rms' growth based on innovation developed
by Luttmer (2007), a potential explanation for this value is the small imitation cost across sectors
and �rms. In our model, the tail parameter θ2 depends only on the volatilities of the states, the
depreciation rate of the capital, and on the Markov chain's intensities of jumps. When intensities
of switches are small (p1 = p2 ≈ 0), we recover the power law coe�cient as in Luttmer (2007)(see
p. 1125 therein). Besides, we �nd that in sectors where capital slowly erodes, the power law turns
closer to a Zipf's law. However, in contrast, our model can also induce large deviations from one, if,
for instance, the capital erodes quickly (see Section 3.2). As a matter of fact, at the sectoral level, it
is possible to exhibit power law coe�cients larger than one. In Rossi-Hansberg and Wright (2007) it
is showed that �rms' size tail distribution depends on the capital intensity usage, both physical and
human capital. Recent empirical results at di�erent industries level exhibit large negative exponent,
like in Halvarsson (2014)(Figure 1), where a coe�cient around −4 can be found in some industries
(see also Bee et al. (2017)).

Second, we investigate the market concentration in the stationary state. Indeed, in a general
setting of stationary mean-�eld models, Adlakha et al. (2015) �nd that the light-tail feature of the
stationary distribution of players' size is a su�cient condition for the existence of a stationary mean-
�eld equilibrium. In our model, we have seen that equilibrium �rms' size exhibit fat-tails, thus
showing that the su�cient condition of Adlakha et al. (2015) is not necessary. Hence, in order to
measure the extent of market concentration in a setting with an continuum of �rms, we introduce
two indices. The �rst one is a version of the Her�ndahl-Hirschman index (HHI), when the number of
�rms goes to in�nity. The HHI index is used in market concentration analysis by most regulators and
it is de�ned as Hn :=

∑n
i=1 s

2
i , where n is the number of �rms serving the market and si is the market

share of �rm i. Fully fragmented and highly concentrated markets both exhibit an average market
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share going to zero as n goes to in�nity. However, in the �rst case, the variance of market shares is
constantly equal to zero, while the ratio between variance and expectation in the latter case admits
a �nite limit (see Section 3.3). Those remarks suggest using as an index of market concentration
the ratio between the variance of the �rms' size and the square of its expectation at the stationary
equilibrium. The second index we choose is a Gini index, as already suggested in Hopenhayn (1992).
For a given quantile q ∈ (0, 1), de�ne x(q) as the lowest x such that F (x) := P(X∞ ≤ x) = q. Then

we de�ne the Gini curve by Q̄(q) = E[X∞|X∞ ≤ x(q)]/Q
? ∈ (0, 1), where Q

?
is the equilibrium

average production across the regimes. Finally, the Gini index of market concentration is de�ned as

H :=

∫ 1

0

∣∣q − Q̄(q)
∣∣dq.

The H-index measures deviations from the uniform distribution of market shares, as measured by
the capacity held by �rms at each level of quantiles. A fully fragmented market would yield a zero
H-index, whereas a fully concentrated market served by a single monopolistic �rm would induce an
H-index of 1/2. We inquiry the e�ect of economic instability as measured by the increase of p1 on
market concentration. As a matter of fact, 1/p1 is the average time spent by the economy in the
regime with larger volatility of production. We �nd that, both indicators, HHI and Gini H-index,
show consistent results: a longer period of unstable economy tends to increase market concentration.

Third, we analyze the value of stability (see Section 3.4). This point relates to the result of Lucas
(1977) on the irrelevance of social hedging against the cost of volatility growth. Using a simple
model of intertemporal maximization of utility of a risk-averse representative agent, Lucas �nds that
excessively high risk-aversion would be necessary to justify the economic interest to hedge society
against macroeconomic �uctuations. This result was reassessed in the macroeconomic literature, in
particular in Epaulard and Pommeret (2003), where the authors reach the same conclusion using more
recent growth data and an endogenous growth model. Our model is only a partial equilibrium model.
Nevertheless, it allows to investigate at a sectoral level the relative e�ects of Gaussian �uctuations
of productivity compared to global macroeconomic shocks. To do so, using our quasi-analytical
solution of the stationary state density, we compute the value V ? of the �rms' expected pro�t at the
stationary equilibrium. Consider the vector νi := (σi, pi, φi) of the volatility of production shocks σi,
the intensity of switch pi, and the level of price φi. We evaluate the elasticities of V ? w.r.t. the State
1 volatility σ1, intensity of switch p1, and the average level of price φ1 at a point where ν1 = ν2.
That is, we assess the percentage e�ect of a slight increase in quality of State 1, compared to State 2
on the pro�tability of the representative �rm. Using standard value parameters for depreciation and
discount rate, we �nd that increasing the volatility σ1 by 1% decreases the stationary value of the �rm
by 0.08%, but reducing the price level φ1 by 1% cuts the value V ? by nearly the same amount. This
result provides a quanti�cation of the intuition that a small reduction on the average selling price is
a larger disaster at sectoral level than a small increase of productivity shocks volatility. Besides, we
observe a quasi-constant and close to 1 elasticity of V ? w.r.t. the level of price, as well as a lower
but sharply increasing elasticity w.r.t. the volatility. It means that the marginal cost of volatility is
increasing while the marginal gain from stability is decreasing.

Related literature. Our paper belongs to the literature on the dynamics of investment of �rms,
in particular when investment is irreversible and represented as a singular control process. This
vast literature includes the early Baldursson and Karatzas (1997) and Bertola (1998), and the more
recent Aïd et al. (2015), De Angelis et al. (2017), Ferrari (2015), and Riedel and Su (2011), and the
references therein. A close related paper is Grenadier (2002), where a singular control equilibrium
problem with homogeneous �rms competing à la Cournot similar to ours can be found. In his setting,
Grenadier provides the N -�rm equilibrium and gives explicit solution for the investment threshold
for di�erent classical dynamics of the demand shocks. In Back and Paulsen (2009) and Steg (2012),
N -player capital accumulation games with open loop strategies are considered in general Markovian
and non-Markovian settings, respectively. On the other hand, Kwon (2022) proposes a two-player
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singular stochastic control game to model a public good irreversible contribution game and analyze
the gradualism arising from the free rider e�ect (see also Ferrari et al. (2017)).

With reference to the literature on mean-�eld games and competitive market equilibria with a con-
tinuum of agents, our paper is placed amongst those works that study mean-�eld equilibria for games
with singular controls. Amongst those, Miao (2008) presents an analytically tractable competitive
equilibrium model and study the e�ect of frictions, such as irreversibility and �xed costs, on the long-
run equilibrium; Bertola and Caballero (1994) propose and solve a model of sequential irreversible
investment and study theoretically and empirically the aggregate implications of microeconomic irre-
versibility and idiosyncratic uncertainty; Cao and Guo (2022) solve a stationary discounted mean-�eld
game with two-sided singular controls, and analyze its relation to the associated N -player game; Cao
et al. (2022) address a general class of stationary one-dimensional mean-�eld games with discounted
and ergodic criteria and study the relation between the resulting equilibria; in Campi et al. (2022)
and Guo and Xu (2019) mean-�eld and N -player stochastic games for �nite-fuel follower problems
are studied, and the structure of equilibria is obtained. Finally, Horst and Fu (2017) provide a careful
technical analysis of the question of existence for general mean �eld games involving singular controls.

Our model focuses on the determination and characterization of a stationary equilibrium. In this
regard, our work relates more generally to those treating stationary mean-�eld games and stationary
oblivious equilibria for in�nite models (cf. Adlakha et al. (2015); Bardi (2016); Hopenhayn (1992);
Weintraub et al. (2008, 2011), among others), where it is assumed that the representative player
makes actions only on the basis of her own state and the long-run average state of the mass. This
formalizes the following idea: In a symmetric game with a large number of players, whose state and
performance criterion only depend on the distribution of opponents' state (i.e. an anonymous game,
cf. Jovanovic and Rosenthal (1988)), �uctuations of players' states are expected to average out, the
behavior of the other agents is �lost in the crowd�, and the population's state remains roughly constant
over time.

Structure of the paper. The paper is organized as follows. Section 2 provides a detailed description
of the model, its assumptions and gives the main result of existence and uniqueness of the equilibrium
together with the closed-form expression of the equilibrium stationary distribution of the state-process.
Section 3 builds on the former section to provide �rst illustrations of the solution (Section 3.1), and
then results on the density of �rms (Section 3.2), on the market concentration (section 3.3) and on the
pro�tability of �rms (section 3.4). Section 4 provides the proof of the main result. Finally, Appendix
A collects some technical proofs.

2. The Model and the Main Result

There is a continuum of �rms of unitary mass indexed by their production capacity. Firms behave
competitively, taking prices of output and input as given. Firms are ex ante identical in that their
technology or productivity shocks are drawn from the same distribution. They di�er ex post in the
realization of idiosyncratic shocks. This is modeled as a one-dimensional Brownian motion B =
(Bt)t≥0 on a given complete probability space (Ω,F ,P). We denote by E the expectation under P.
On the same probability space, it is also de�ned a two-state irreducible continuous-time Markov chain
ε = (εt)t≥0, with irreducible generator P = (Pij)i,j=1,2 and stationary distribution π:

(2.1) P :=

[
−p1 p1

p2 −p2

]
, π = (π1, π2) :=

( p2

p1 + p2
,

p1

p1 + p2

)
,

with p1, p2 ∈ (0, 1). In particular, the time spent in state i before switching to state j 6= i is an
exponential random variable with parameter pi.

We assume that B and ε are independent and we denote by F := (Ft)t≥0 the �ltration generated
by (Bt, εt)t≥0, as usual augmented by the P-null sets of F0. While the Brownian motion B drives the
stochastic component of the production and is responsible, e.g., of productivity shocks, the two-state
Markov chain ε models the regime of the economy.
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A representative company's production capacity evolves as

(2.2) dXI
t = −δXI

t dt+ σεtX
I
t dBt +XI

t ◦ dIt, t ≥ 0, X0− = x > 0,

where δ, σ1, σ2 > 0 are given positive constants and I = (It)t≥0 ∈M, where

M := {I : Ω× [0,∞)→ [0,∞), F-adapted, with t 7→ It non-decreasing, càdlàg and I0− = 0 a.s.}.

The �rst term on the right-hand side of (2.2) corresponds to depreciation, due to the ageing of the
means of production; the second term models production uncertainty, with the amplitude of the
Brownian shocks depending on the current regime of the economy; the third term is due to the
company's irreversible investment into production. As a matter of fact, It represents the cumulative
investment (per unit of production) performed over the time period [0, t], so that dIt represents,
informally, the amount of investment, per unit of production capacity, made in the in�nitesimal
amount of time dt.

More precisely, given that any I ∈M can be decomposed as It = Ict+I
j
t , where I

j
t :=

∑
s≤t,∆Is 6=0 ∆Is,

with ∆Is := Is− Is−, is the discontinuous part of I and Ict := It− Ijt is its continuous part, we follow
Zhu (1992), Al Motairi and Zervos (2017) and Guo and Zervos (2015), among others, and de�ne

(2.3)

∫
[0,·]

XI
t ◦ dIt :=

∫ ·
0
XI
t dI

c
t +

∑
t≤·

XI
t−

∫ ∆It

0
eudu =

∫ ·
0
XI
t dI

c
t +

∑
t≤·

XI
t−
(
e∆It − 1

)
.

In order to justify (2.3), assume that a small intervention h implies a proportional jump, i.e. Xt =
(1 + h)Xt− ∼ ehXt−. Thinking of any intervention ∆It as the combination of N small interventions
of size h = ∆It/N , this in turn leads to Xt = (eh)NXt− = e∆ItXt−, hence ∆Xt = (e∆It − 1)Xt−.
Thanks to (2.3), an application of Itô's formula implies that (2.2) admits the following solution:

(2.4) XI
t = x exp

(
−
(
δt+

1

2

∫ t

0
σ2
εsds

)
+

∫ t

0
σεsdBs + It

)
.

Let ηi be the unitary market price of the company's production (goods, commodities, ...) when
the economy is in regime i ∈ {1, 2}, so that, assuming that production happens at full capacity and
that demand and o�er are in equilibrium, the company's revenue from the sale of its production at
time t is then ηεtX

I
t . Furthermore, we assume that production gives rise to running costs that are

quadratic in the production capacity, while investment cost is proportional to the invested amount,
with marginal cost κ > 0.

Hence, given (x, i) ∈ R+ × {1, 2} be a given initial state, for �xed Q ∈ R2
+ and I ∈ A, with

(2.5)

A :=
{
I ∈M : lim

T↑∞
E(x,i)

[
e−ρT |XI

T |2
]

= 0 and E(x,i)

[ ∫ ∞
0

e−ρt
(

(XI
t )2dt+XI

t ◦ dIt
)]

<∞
}
,

the company faces the following net pro�t functional:

(2.6) J(x,i)(I,Q) := E(x,i)

[ ∫ ∞
0

e−ρt
(
ηεtX

I
t dt− c(XI

t )2dt− κXI
t ◦ dIt

)]
.

Above and in the sequel, ρ, c > 0 are given constants and E(x,i) denotes the expectation conditioned

on (XI
0−, ε0−) = (x, i).

The next technical condition requires that the representative agent is su�ciently impatient, and it
will be relevant when proving the admissibility of a candidate equilibrium irreversible investment.

Assumption 2.1.

ρ > 2 max{σ2
1, σ

2
2}.

Notice that, under Assumption 2.1, one has ρ+2δ > max{σ2
1, σ

2
2}, which su�ces in order to ensure

that the control I ≡ 0 belongs to A, and therefore A 6= ∅.
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The interaction of the representative company with the industry comes through the price at which
the produced good is sold. In particular, we assume that, for any regime i ∈ {1, 2}, prices are given
through the inverse-demand relation

ηi = ϕi + ζiQ
−α
i ,(2.7)

where ϕ1, ϕ2, ζ1, ζ2 > 0 and 0 < α < 1 are given constants such that min{ϕ1, ϕ2} > ρ + δ 1 and
Qi gives the stationary aggregate production of the industry in regime i ∈ {1, 2}. This is clari�ed
through the following De�nition of equilibrium.

De�nition 2.2. The pair (I?, Q?) ∈ A × R2
+ is a stationary mean-�eld equilibrium (MFE) for

the model with data (x, i) ∈ R+ × {1, 2} if:
(i) I? maximizes J(x,i)( · , Q?); that is,

J(x,i)(I
?, Q?) ≥ J(x,i)(I,Q

?), I ∈ A;

(ii) the pair (XI?
t , εt)t≥0, formed by the optimally controlled production capacity and the Markov

chain, admits a stationary distribution (p∞(dx, i))i=1,2 and, letting (XI?
∞ , ε∞) ∼ p∞, we have

Q?i =
1

πi

∫ ∞
0

x p∞(dx, i), i = 1, 2.

Remark 2.3. Recalling that the mass of the continuum of companies has been normalized to one,
1
πi
p∞(dx, i) in De�nition 2.2 represents the equilibrium number (i.e. the equilibrium percentage) of

companies that in the long-run have production capacity between x and x + dx, when the regime of
the economy is i ∈ {1, 2}. In particular, this allows to equivalently write

(2.8) Q?i = E
[
XI?

∞
∣∣ε∞ = i

]
, i ∈ {1, 2},

where the random variable (XI?
∞ , ε∞) ∼ p∞ and ε∞ ∼ π (cf. (2.1)).

Under technical integrability requirements, we can prove that a unique mean-�eld equilibrium
indeed exists. The following statement is presented in an informal way and it is just meant to provide
the necessary information on the equilibrium structure needed for the numerical analysis developed
in the next Section 3. The constructive proof of the existence and uniqueness claim will be then
distilled in Section 4.

Theorem 2.4. [Equilibrium existence, uniqueness and structure] Let Assumption 2.1 hold and, for

i ∈ {1, 2}, de�ne φi(θ) := 1
2σ

2
i θ

2 +
(
δ + 1

2σ
2
i

)
θ − pi and denote by θ2 the largest negative root of

the equation φ1(θ)φ2(θ) − p1p2 = 0. If θ2 < −1, then there exists a unique stationary mean-�eld
equilibrium in the sense of De�nition 2.2. In particular:

(i) The equilibrium investment strategy I? is given by

I?t = 0 ∨ sup
0≤s≤t

(
ln(aεs/x) +

∫ s

0
(δ +

1

2
σ2
εu)du−

∫ s

0
σεudBu

)
, t ≥ 0, I?0− = 0.

It prescribes to keep the equilibrium production capacity above a regime-dependent barrier at
all the times via an upwards re�ection: XI?

t ≥ a?εt . In particular, the investment should be the
minimal one that prevents the production leaves the region {(x, i) ∈ R+×{1, 2} : x ≥ a?i }. The
barriers a?i , i ∈ {1, 2}, are endogenously determined and uniquely solve a system of nonlinear
algebraic equations (cf. (4.23) below).

(ii) The stationary distribution of (XI?
t , εt)t≥0 admits a density with respect to the Lebesgue mea-

sure, it is explicitly computable (see Corollary 4.7 below) and P(XI?
∞ ≥ x) ∼ xθ2 .

1This means that the price of the good is strictly larger than the price arising in a perfectly competitive market, i.e.
ρ + δ. In particular, such a condition on the exogenous parameters is su�cient to ensure a trade-o� between costs of
production and investment and revenues.
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The optimal investment policy is characterized by small-scale actions and large-scale actions. The
former are employed as soon as, in absence of a regime switch, the production capacity XI?

t attempts
to fall below the boundary a?εt . The purpose of these continuous actions is to make sure, with a

minimal e�ort, that XI?
t is kept inside the interval [a?εt ,∞). On the other hand, large-scale actions

are lump-sum investments whose purpose is to bring XI?
t back to level a?εt through a jump. Note that,

those lumpy interventions are only needed at times of jumps of the macroeconomic regime switching
process ε, and possibly at initial time. Both small-scale and large-scale actions can be observed in
Figure 1, introduced and described in the next section.

Remark 2.5. It is worth noticing the existence and uniqueness result could actually be derived in a
more general setting. For example, the instantaneous pro�t function of the representative company
could have been taken to be a general concave function of the production capacity (not necessarily
quadratic), increasing in the price variable and satisfying suitable growth conditions, and the inverse
demand function to be a positive, nonincreasing function of the aggregate production (not necessarily
of power type). However, since the resulting equations would become more complex and, on the other
hand, no additional insights would be added, we stick on the linear-quadratic framework presented in
this section.

3. Numerical Analysis and Economic Implications

3.1. Investment dynamics. We illustrate the behaviour of the investment dynamics induced by
our model2. Figure 1 (a) shows a single trajectory of the process X. As expected, the capacity is
maintained over the threshold a?1 (blue) until the state of the economy switches to State 2. At that
point, the decision-maker stops compensating the depreciation of the assets and let it falls until it
reaches the lower level of investment threshold a?2 (red). We observe in Figure 1 (b) that the long-run
averages of the process X re�ected on the boundaries a?i tends to the stationary production capacities
level Q?i . Figure 2 (a) presents the investment thresholds a?i as a function of the volatility σ1 of State
1. We observe that as long as σ1 is smaller than σ2, a

?
1 is larger than a?2. This means that the higher

the volatility, the longer the decision-maker waits to invest, which is consistent with the standard
real option theory results on the value to wait (see McDonald and Siegel (1986)). Figure 2 (b) gives
the (stationary) probability for a �rm to be stuck between the two investment thresholds a?1 and a?2,
as well as the percentage of capacity χ∞ that at equilibrium is stuck between those two thresholds.
As expected, the probability is decreasing for σ1 lower than σ2 and increasing afterwards because the
interval (a?1, a

?
2) is �rst reducing and then expanding. We observe that although the probability is

increasing for σ1 > σ2, the share of capacity stuck in the corridor (a?1, a
?
2) reaches a maximum and

then decreases. It means that there is an increasing proportion of �rms in that interval with always
smaller sizes. This observation is linked to our subsequent analysis of the distribution of the �rms'
size and of the percentage of capacity in the tail of the distribution.

3.2. Distribution of �rms' size. As the equilibrium dynamics of the representative �rm are of
re�ected geometric Brownian motion type, it is not surprising to observe power laws for their sta-
tionary distribution. This observation can be found in the survey of Gabaix (1999) on Pareto's law
in Economics with application in spatial economy of cities and in de Wit (2005)'s paper providing an
overview of possible probability distributions of �rms' size. In our model, because of a two-regime
common macroeconomic shock a�ecting all �rms, the induced stationary densities p∞(·, i) shown
in Figure 3 (a) exhibit a bimodal shape. The lower 1/p1, the lower the time that is spent by the
system in the unstable State 1 and thus, the more pronounced is the bimodal shape of the station-
ary density. However, the coe�cient of the tail distribution is fully given by the parameter |θ2| in
(4.29) (see Figure 3 (b)). Since this is a solution to the polynomial φ̄(x) := φ1(x)φ2(x) − p1p2 with
φi(x) = 1

2σix
2 +

(
δ + 1

2σ
2
i

)
x− pi, the parameter θ2 only depends on the volatilities of the states, the

depreciation rate of the capital and on the Markov chain intensities of jumps. Convergent empirical

2Throughout Section 3 we denote, with a slight abuse of notation, X∞ := XI?

∞ .
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(a) (b)

Figure 1. (a) A trajectory of the state process X; (b) E[X∞|ε∞ = 1] and E[X∞|ε∞ = 2].

Parameters: δ = 0.1, ρ = 0.08, κ = 10, c = 0.1, φ1 = 10, φ2 = 5, ζ1 = ζ2 = 1, σ1 = 0.2,

σ2 = 0.15, α = 0.5, p1 = 1/10, p2 = 1/5.
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Figure 2. As a function of the volatility σ1 in State 1: (a) Investment thresholds a?1, a
?
2 and

long-run equilibrium capacities Q?
1, Q

?
2; (b) Ratio χ∞ and P

(
X∞ ∈ (a?, a?)

)
, where

a? := min{a?1, a?2} and a? := max{a?1, a?2}. Parameters: δ = 0.1, ρ = 0.08, κ = 10,

c = 0.1, φ1 = 10, φ2 = 10, ζ1 = ζ2 = 1, σ2 = 0.15, α = 0.5, p1 = 1/10, p2 = 1/5.

studies attest the presence of a power law in the distribution of the size of �rms. At the aggregate
level, Axtell (2001), using a large sample of �rms' size, �nds a coe�cient close to one. The value
of this coe�cient can be explained by small imitation cost across sectors and �rms, according to the
model of endogenous growth �rm based on innovation developed by Luttmer (2007). At the sectoral
level it is possible to exhibit di�erences in power law coe�cients. Rossi-Hansberg and Wright (2007)
show that �rms' size's tail distribution depends on the capital intensity usage, both physical and
human capital.

In our model, when intensities of switches are small (p1 = p2 ≈ 0), we recover the power law
coe�cient as in Luttmer (2007) (see p. 1125 therein), since then θ2 ≈ −1 − 2δ/min{σ1;σ2}. And
thus, we �nd that in sectors where capital slowly erodes (i.e. δ is small enough), the power law
turns closer to a Zipf's law. Nevertheless, even in a capital intensive industrial sector like electricity
generation, we have roughly δ = 1/40 per year and a volatility of production of σ1,2 ≈ 0.15 per year
(unplanned outage rate per year), which leads to |θ2| ≈ 1.3. It is already a signi�cant deviation from
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Figure 3. (a) Marginal stationary density p∞(x); (b) Tail density. Parameters: δ = 0.1,

ρ = 0.08, κ = 10, c = 0.1, φ1 = 10, φ2 = 5, ζ1 = ζ2 = 1, σ1 = 0.2, σ2 = 0.15, α = 0.5,

p2 = 1/5. The value p1 = 1/20 leads to θ2 = −7.51 and the value p1 = 1/4 leads to

θ2 = −7.16.

one. In contrast, our model can induce large deviation from θ2 = −1. Assume the same average price
in both the regimes of the economy ζ1 = ζ2 and large potential di�erences in volatilities: σ1 = 0.1
while σ2 = 0.3. State 1 appears as a stable state whereas State 2 is more unstable. In that case, the
increasing persistence of State 1 by making p1 smaller leads to large power law coe�cients |θ2|, close
to 7 (see Figure 3 (b)). Empirical results at the industry level show possible large negative exponent,
like in Halvarsson (2014)(Figure 1) where a coe�cient around −4 can be found in some industries
(see also Bee et al. (2017)).

3.3. Market concentration and fragmentation. The analysis of market concentration using
mean-�eld stationary models has been initiated by Adlakha et al. (2015). In their general setting,
the authors �nd as a su�cient condition for the existence of a stationary mean-�eld equilibrium the
light-tail of the stationary distribution of players' size. In our model, we have seen that �rms' size
exhibit fat-tails, showing that the su�cient condition of Adlakha et al. (2015) is not necessary. Be-
sides, we introduce two indices to assess the e�ect of stability on market concentration in the presence
of a continuum of �rms. The �rst one is a limit version of the Her�ndahl-Hirschman index (HHI).
The second one is a Gini index. The HHI index, used in market concentration analysis by most
regulators, is de�ned as Hn :=

∑n
i=1 s

2
i , where n is the number of �rms serving the market and si

is the market share of �rm i. Highly fragmented market is obtained when each �rm has the same
market share and highly concentrated market is obtained with one �rm holding all the market. In
the �rst case, one has Hn = 1/n while in the second case, Hn = 1. Note that in the n �rm case, a
fully fragmented market corresponds to an average market share of 1/n and a zero variance in market
share between �rms, while a highly concentrated market corresponds also to an average market share
of 1/n, but with a variance Vn := 1/n − 1/n2. Thus, when the market is highly concentrated we
note that Vn/E[si] = 1− 1/n admits a �nite limit when n gets large. Those remarks suggest to use
as an index of market concentration the ratio between the variance of the �rms' size and the square
of its expectation at the stationary equilibrium. Another way to measure market concentration, al-
ready suggested in Hopenhayn (1992), is to consider a Gini index. For a given quantile q ∈ (0, 1),
de�ne x(q) the lowest x such that F (x) = P(X∞ ≤ x) = q. Then we de�ne the Gini curve by

Q̄(q) = E[X∞|X∞ ≤ x(q)]/Q
? ∈ (0, 1), where we recall that Q

?
is the equilibrium average production
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Figure 4. (a) V[X∞] as a function of 1/p1; (b) V[X∞]/E[X∞] as a function of 1/p1; (c)

Q̄(q) for 1/p1 = 20 (blue curve), H is the area of pink surface; (d) H as a function of

1/p1. Parameters: δ = 0.1, ρ = 0.08, κ = 10, c = 0.1, φ1 = 10, φ2 = 5, ζ1 = ζ2 = 1,

σ2 = 0.2, α = 0.5, p2 = 1/5.

across the regimes. Finally, the Gini index of market concentration is de�ned as

H :=

∫ 1

0

∣∣q − Q̄(q)
∣∣dq.(3.1)

The H-index measure deviation from uniform distribution of market shares as measured by the ca-
pacity held by �rms at each level of quantiles. A fully fragmented market would yield a zero H-index,
whereas a fully concentrated market served by a single monopolistic �rm would induce an H-index of
1/2.

Figure 4 provides both the variance of the stationary processX (see (a)) and the ratio of its variance
with its expectation (see (b)) as a function of both the volatility σ1 of State 1 and its persistence 1/p1.
We observe that both are non-monotonic function of 1/p1. But when 1/p1 becomes large, both market
concentration and variance decrease, meaning that market concentration reduces with more stable
State 1. Figure 4 (c) and (d) provide the evaluation of the market concentration based on the Gini
index. If a Gini index of 0.19 is not a clear indication of market concentration, Figure 4 (a) indicates
that in that situation, less than 1 �rm over a thousand holds 30% of the total capacity. Besides,
we observe that both indicators, HHI and Gini, present consistent results. The Gini index reaches a
peak close to 1/p2 and then decreases. Short periods of high prices compared to low prices tend to
increase market concentration, while when high price periods become longer, market concentration



12 AÏD, BASEI, AND FERRARI

decreases. Thus, longer period of stable economy tends to lower market concentration or, if we state
this result in terms of instability, instability increases market concentration.

3.4. Cost of crisis and bene�t of sustainable growth. Consider the value V ? de�ned as

V ? :=
2∑
i=1

∫ +∞

0
V (x, i)p∞(dx, i).

The value V ? measure the �rms expected pro�t at the stationary equilibrium. We want to analyze
the e�ect of volatilities σi and intensities of crisis pi on V

?. Indeed, this point relates to the remark
formulated by Lucas (1977) (pp. 25-31) on the cost of volatility growth. Using a simple model of
intertemporal maximization of utility of a risk-averse representative agent, Lucas �nds that exces-
sively high risk-aversion would be necessary to justify the economic interest to hedge society against
macroeconomic �uctuations. This result was exempli�ed using US post-world war II GDP. It was later
reassessed in the macroeconomic literature, in particular in Epaulard and Pommeret (2003), where
the authors use more recent growth data and an endogenous growth model. Nevertheless, they still
reach the conclusion of a small macroeconomic cost of growth rate �uctuations. Our model allows
to investigate at a sectoral level the relative e�ects of Gaussian �uctuations compared to regime-
switching from good state to bad state. Thus, we can measure how the existence of a persistent state
of the economy with low selling prices a�ects the value of �rms. We reduce the number of parameters
characterizing a state to a vector νi := (σi, pi, φi) so that ζ1 = ζ2 = 1. To make things comparable,
we consider V ?(ν1, ν2) as a function of the two-state parameters νi = (σi, pi, φi). Then, we evaluate
the elasticities of the stationary value V ? w.r.t. the State 1 volatility σ1, intensity of switch p1 and
the average level of price φ1 at the point (ν2, ν2). Having quasi-closed form expression of V ?, we can
compute the elasticities

χσ1(ν2) :=− σ2

V ?(ν2, ν2)

∂V ?

∂σ1
(ν2, ν2), χp1(ν2) := − p2

V ?(ν2, ν2)

∂V ?

∂p1
(ν2, ν2),(3.2)

χφ1(ν2) :=
φ2

V ?(ν2)

∂V ?

∂φ1
(ν2, ν2),

upon assuming that State 1 is slightly better than the State 2 (that is, φ1 slightly larger than φ2,
σ1 slightly lower than σ2, and p1 slightly lower than p2). For instance, taking δ = 1/10, ρ = 0.08,
α = 1/2, c = 0.1, κ = 10 and ν2 = (0.2, 1/10, 15), we �nd

χσ1(ν2) = 0.08, χp1(ν2) = 0, χφ1(ν2) = 1.06.(3.3)

σ2 φ2 χσ1(ν2) χφ1(ν2)

0.1 10 0.004 1.1
0.1 15 0.004 1.07
0.2 10 0.08 1.09
0.2 15 0.08 1.06
0.3 10 0.55 1.08
0.3 15 0.55 1.05

Table 1. Elasticities of V ? at ν2 = (σ2, p2, φ2) w.r.t σ1 and φ1. Other parameters
value: δ = 1/10, ρ = 0.08, κ = 10, c = 0.1, ζ1 = ζ2 = 1, p2 = 1/10.

Note that ∂p1V
?(ν2, ν2) = 0, because when taking the partial derivative w.r.t. p1, and calculating it

at (ν2, ν2), the parameters (σi, φi), i = 1, 2, are the same across the regimes. Increasing the volatility
of State 1 by 1% decreases the stationary value of the �rm by 0.08%, but reducing the price by 1%
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cuts the value V ? by nearly the same amount. Table 1 provides a few other values of elasticities
when σ2 and φ2 vary. We observe a quasi-constant elasticity of V ? w.r.t. φ1 close to one and a lower
elasticity w.r.t. the volatility σ2, but sharply increasing. It means that the marginal cost of volatility
is increasing while the marginal gain from stability is decreasing.

4. Equilibrium Construction and Proof of Theorem 2.4

In this section, we provide a constructive proof of Theorem 2.4 according to the following three-step
recipe (which will require the statement and proof of auxiliary intermediate results):

(1) First step (Section 4.1): Given Q = (Q1, Q2) ∈ R2
+, we determine I?(Q) such that

(4.1) J(x,i)(I
?(Q), Q) = sup

I∈A
J(x,i)(I,Q) =: V Q(x, i).

(2) Second step (Section 4.2): Given Q = (Q1, Q2) ∈ R2
+ and (I?t (Q))t≥0 from the �rst step, we

determine the stationary distribution for (X
I?(Q)
t , εt)t≥0, denoted by

(4.2)
(
pQ∞(dx, i)

)
i=1,2

.

(3) Third step (Section 4.3): we look for Q? = (Q?1, Q
?
2) ∈ R2

+ solving the �xed-point problem

(4.3) Q?i =
1

πi

∫ ∞
0

x pQ
?

∞ (dx, i), i = 1, 2,

with (pQ∞(dx, i))i=1,2 from the second step. By construction, the pair (I?(Q?), Q?) is a MFE.

4.1. First step: Solving the singular control problem. Throughout this section, we let

Q = (Q1, Q2) ∈ R2
+

be given and �xed and solve the singular stochastic control problem (4.1). To simplify notation, we
will omit the dependence on Q and write, for example, V (x, i) instead of V Q(x, i), J(x,i)(I) instead
of J(x,i)(I,Q), and I? instead of I?(Q).

First, in Section 4.1.1 we prove a preliminary veri�cation theorem for the singular control problem.
This is then exploited in Section 4.1.2, where we characterize V in terms of the value function v of
a suitable optimal stopping problem with regime switching. Finally, in Section 4.1.3, we determine
(semi-)closed expression for v (hence, for V ) and a system of nonlinear algebraic equations solved by
the endogenous thresholds triggering the optimal stopping rule and the optimal investment strategy.

4.1.1. A preliminary veri�cation theorem. Recall that we are dealing with the singular stochastic
control problem with regime-switching (cf. (4.1))

(4.4) V (x, i) = sup
I∈A

J(x,i)(I), (x, i) ∈ R+ × {1, 2},

with J(x,i)(I) = J(x,i)(I,Q) as in (2.6). We start by deducing the dynamic programming equation

that we expect to be associated to problem (4.4). In the sequel, we denote by 0̄ the control which
is identically zero. Heuristically, the dynamic programming principle suggests that, for a small time
step ∆t,

V (x, i) ≥ E(x,i)

[
e−ρ∆tV

(
X 0̄

∆t, ε∆t

)
+

∫ ∆t

0
e−ρt

(
X 0̄
t ηεt − c

(
X 0̄
t

)2)
dt

]
,

from which, applying Dynkin's formula to E(x,i)[e
−ρ∆tV (X 0̄

∆t, ε∆t)], dividing by ∆t, letting ∆t → 0,
and assuming that the mean-value and dominated convergence theorems hold, we �nd

(4.5) (L − ρ)V (x, i) + xηi − cx2 ≤ 0, (x, i) ∈ R+ × {1, 2}.
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Here, the in�nitesimal generator L is de�ned as

(4.6) Lw(x, i) :=
1

2
σ2
i x

2w′′(x, i)− δxw′(x, i) +
2∑
j=1

Pijw(x, j), w(·, i) ∈ C2(R+), i ∈ {1, 2}.

In (4.6), P denotes the generator matrix of the Markov chain ε, see (2.1), and di�erentiation is always
meant with respect to x. On the other hand, investing h > 0 at time t = 0 and then following an
optimal control rule (if one does exists) gives

V (x, i) ≥ V
(
x+ x(eh − 1), i

)
− κx(eh − 1) ∼ V (x+ hx, i)− κhx,

and hence
V (x+ hx, i)− V (x, i)

hx
≤ κ,

which, letting h→ 0, suggests that

(4.7) V ′(x, i) ≤ κ, (x, i) ∈ R+ × {1, 2}.

Since one of the two possibilities (intervening or not intervening) is optimal, one of the two inequalities
(4.5) and (4.7) is indeed an equality. Overall, we get the following candidate equation for V :

(4.8) max
{

(L − ρ)w(x, i) + xηi − cx2, w′(x, i)− κ
}

= 0, (x, i) ∈ R+ × {1, 2}.

This is a system of ordinary di�erential equations (ODEs), due to the transition amongst the regimes,
with gradient constraints.

Because of the structure of the problem, we expect that the representative company does not
intervene until its production falls below a certain critical level, depending on the state of the economy.
In other words, we expect the company's no-action region to be in the form

(4.9) NA :=
{

(x, i) ∈ R2
+ × {1, 2} : w′(x, i) < κ

}
=
{

(x, i) ∈ R+ × {1, 2} : x > ai
}
,

for some constants ai, i ∈ {1, 2} to be determined. Notice that, under the additional assumption
(4.9), equation (4.8) is in fact equivalent to the free-boundary problem

(4.10)


(L − ρ)w(x, i) + ηix− cx2 ≤ 0, x < ai,

(L − ρ)w(x, i) + ηix− cx2 = 0, x ≥ ai,
w′(x, i)− κ = 0, x ≤ ai,
w′(x, i)− κ < 0, x > ai.

Based on (4.10), the following veri�cation theorem for problem (4.4) holds.

Proposition 4.1. Let w : R+ × {1, 2} → R such that:

(i) for i ∈ {1, 2}, w(·, i) ∈ C2(R+) and there exists K > 0 such that |w(x, i)| ≤ K(1 + |x|2) for
any x ∈ R+;

(ii) there exists (a1, a2) ∈ R2
+ such that (4.9) holds;

(iii) w is a solution to the free-boundary problem (4.10).

Then, the value function V of the singular control problem (4.4) identi�es with w, V ≡ w, and the
optimal control is given by

(4.11) I?t = 0 ∨ sup
0≤s≤t

(
ln(aεs/x) +

∫ s

0
(δ +

1

2
σ2
εu)du−

∫ s

0
σεudBu

)
, t ≥ 0, I?0− = 0.

Proof. Postponed to Appendix A. �
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Notice that the optimal control I? in (4.11) is such that (XI? , I?, ε) solves a Skorokhod re�ection
problem at the regime-dependent boundary aε (cf. Budhiraja and Liu (2012)). In particular, P-a.s.
for all t ≥ 0:

(4.12) XI?

t ≥ aεt , I?t =

∫
[0,t]

1{XI?
s−≤aεs}

dI?s ,

∫ ∆I?t

0
1(XI?

t−+z,εt)∈NA}dz = 0.

That is, I? keeps (XI? , ε) for all times in the closure of the no-action region {(x, i) ∈ R+ × {1, 2} :
V ′(x, i) < κ}, and it acts only as much as it is necessary to prevent that the state-process leaves such
a portion of the state-space.

Solving problem (4.10) by a guess-and-verify approach (i.e., considering suitable parametric can-
didate solutions to (4.8) and selecting the �optimal� parameters by imposing appropriate regularity
conditions, the so-called smooth-�t and smooth-pasting conditions) is possible but challenging in the
present context. As a matter of fact, the underlying Markov chain makes the system of constrained
ODEs in (4.8) interconnected, with the result that it becomes very di�cult to show existence and
uniqueness of the solution to the highly nonlinear (and unhandy) smooth-�t and smooth-pasting equa-
tions. We therefore adopt a di�erent approach here, already employed in Ferrari and Rodosthenous
(2020): We introduce an optimal stopping problem with regime switching; We prove existence of
thresholds triggering its optimal stopping rule and regularity of its value function; �nally, by means
of Proposition 4.1, we verify that a suitable integral of the stopping problem's value function identi�es
with the value function of the singular control problem (4.4).

4.1.2. A related optimal stopping problem and its relation to the singular control problem. Let us start
by de�ning

(4.13) v(x, i) := inf
τ≥0

Ē(x,i)

[ ∫ τ

0
e−(ρ+δ)t(ηεt − 2cX̄t)dt+ κe−(ρ+δ)τ

]
, (x, i) ∈ R+ × {1, 2},

where τ has to be chosen in the class of F-stopping times and X̄ satis�es

(4.14) dX̄t = −(δ − σ2
εt)X̄tdt+ σεtX̄tdBt, X̄0 = x > 0.

In (4.13) above, Ē(x,i) denotes the expectation under P̄(x,i)[ · ] := P[· | X̄0 = x, ε0 = i]. Furthermore, for
future frequent use, we note that the following second-order di�erential operator is the in�nitesimal
generator associated to (X̄, ε):

(4.15) L̄w(x, i) =
1

2
σ2
i x

2w′′(x, i)−(δ−σ2
i )xw

′(x, i)+

2∑
j=1

Pijw(x, j), w(·, i) ∈ C2(R+), i ∈ {1, 2},

with P as in (2.1).
As it is customary in optimal stopping theory (see Peskir and Shiryaev (2006)), we introduce the

continuation and stopping regions of Problem (4.13)

(4.16) C := {(x, i) ∈ R+ × {1, 2} : v(x, i) < κ}, S := {(x, i) ∈ R+ × {1, 2} : v(x, i) ≥ κ},

as well as their i-sections:

Ci := {x ∈ R+ : (x, i) ∈ C}, Si := {x ∈ R+ : (x, i) ∈ S}.

Then, the next result holds true.

Proposition 4.2. The value function v of the optimal stopping problem (4.13) satis�es the following
properties:

(i) there exists (a1, a2) ∈ R2
+ such that

Ci = {x ∈ R+ : x < ai}, Si = {x ∈ R+ : x ≥ ai}.
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(ii) v(·, i) ∈ C1(R+), v(·, i) ∈ C2(Ci), and v′′(·, i) ∈ L∞loc(R+), for i ∈ {1, 2}, and satis�es

(4.17)


(L̄ − (ρ+ δ))v(x, i) + ηi − 2cx ≥ 0, x < ai,

(L̄ − (ρ+ δ))v(x, i) + ηi − 2cx = 0, x > ai,

κ− v(x, i) ≥ 0, x < ai,

κ− v(x, i) = 0, x ≥ ai.

(iii) τ?(x, i) := inf{t ≥ 0 : X̄t ≤ aεt}, P̄(x,i)-a.s., is optimal for (4.13).

Proof. Postponed to Appendix A. �

The next proposition �nally links the optimal stopping problem (4.13) to the singular control
problem (4.4).

Proposition 4.3. Let v(x, i) and ai be as in Proposition 4.2, and k1 and k2 be the unique solutions
to the linear system

(4.18)


−(ρ+ p1)k1 + p1k2 +

(
η1 − δa1κ

)
a1 − ca2

1 − p1

∫ a2

a1

v(y, 2)dy = 0,

p2k1 − (ρ+ p2)k2 +
(
η2 − δa2κ

)
a2 − ca2

2 + p2

∫ a2

a1

v(y, 1)dy = 0.

Then, the value function V of the singular control problem (4.4) satis�es

(4.19) V (x, i) = ki +

∫ x

ai

v(y, i)dy, (x, i) ∈ R+ × {1, 2}.

Furthermore, the optimal control I? is given by (4.11).

Proof. Postponed to Appendix A. �

4.1.3. Semi-closed expressions for v and equations for the free boundaries. Due to Proposition 4.3,
v and ai, i = 1, 2, solve Problem (4.17). We then here focus on solving (4.17) and, without loss of
generality, we assume

(4.20) a1 ≤ a2.

The other case can be treated via completely analogous arguments and it is therefore omitted in the
interest of brevity. We stress once more that solving (4.17) and imposing the regularity prescribed
in Proposition 4.2-(ii) we do obtain the value function of the optimal stopping problem (and not
candidate values), as well as equations that are necessarily satis�ed by the free boundaries a1 and a2.

We solve Problem (4.17) by considering separately the three intervals (0, a1), (a1, a2), (a2,∞). The
case x ∈ (0, a1) is trivial: By (4.17) we have

v(x, 1) = κ = v(x, 2).

When x ∈ (a1, a2), functions v(x, 1) and v(x, 2) satisfy{
(L̄ − (ρ+ δ))v(x, 1) + η1 − 2cx = 0,

v(x, 2) = κ,

that is, by the de�nition of L in (4.6),{
1
2σ

2
1x

2v′′(x, 1)− (δ − σ2
1)xv′(x, 1)− (ρ+ δ + p1)v(x, 1) = −η1 + 2cx− p1κ,

v(x, 2) = κ.

The general solution to the �rst equation is

v(x, 1) = A
( x
a1

)γ+1
+B

( x
a1

)γ−1
+ v̂(x, 1),
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where A,B ∈ R are free parameters (to be speci�ed later) and where γ+
1 , γ

−
1 are the solutions to

1

2
σ2

1γ(γ − 1)− (δ − σ2
1)γ − (ρ+ δ + p1) = 0;

that is,

γ±1 =
(δ − σ2

1
2 )±

√
(δ − σ2

1
2 )2 + 2σ2

1(ρ+ δ + p1)

σ2
1

(γ−1 < 0 < γ+
1 ).

As for v̂(x, 1), by looking for an a�ne particular solution, we �nd

v̂(x, 1) = C1x+D1,

where C1, D1 are given by (where Assumption 2.1 guarantees that C1 is �nite)

C1 = − 2c

ρ+ 2δ + p1 − σ2
1

, D1 =
η1 + p1κ

ρ+ δ + p1
.

Hence, in (a1, a2) we have{
v(x, 1) = A

(
x
a1

)γ+1 +B
(
x
a1

)γ−1 + C1x+D1,

v(x, 2) = κ.

Finally, in x ∈ (a2,∞) functions v(x, 1) and v(x, 2) satisfy{
(L̄ − (ρ+ δ))v(x, 1) + η1 − 2cx = 0,

(L̄ − (ρ+ δ))v(x, 2) + η2 − 2cx = 0,

that is, by the de�nition of L̄ in (4.15),{
1
2σ

2
1x

2v′′(x, 1)− (δ − σ2
1)xv′(x, 1)− (ρ+ δ + p1)v(x, 1) + p1v(x, 2) = −η1 + 2cx,

1
2σ

2
2x

2v′′(x, 2)− (δ − σ2
2)xv′(x, 2)− (ρ+ δ + p2)v(x, 2) + p2v(x, 1) = −η2 + 2cx.

The general solution is given by{
v(x, 1) =

∑4
i=1Mi

(
x
a2

)λi + ṽ(x, 1),

v(x, 2) =
∑4

i=1 M̄i

(
x
a2

)λi + ṽ(x, 2),

where Mi ∈ R are free parameters,

M̄i = −G1(λi)

p1
Mi =: −G1iMi, i ∈ {1, 2, 3, 4},

with λi being the unique real roots to the equation

(4.21) Ḡ(λ) := G1(λ)G2(λ)− p1p2 = 0,

where

Gi(λ) =
1

2
σ2
i λ(λ− 1)− (δ − σ2

i )λ− (ρ+ δ + pi), i ∈ {1, 2}.

To see that (4.21) admits four distinct real roots λ1 < λ2 < 0 < λ3 < λ4, it su�ces to notice that:
(i) Ḡ(γ±1 ) = −p1p2 < 0, with γ−1 < 0 < γ+

1 ; (ii) Ḡ(0) > 0; (iii) Ḡ(+∞) = Ḡ(−∞) = +∞.
As for ṽ(x, i), by looking again for a�ne solutions, one gets

ṽ(x, i) = Lix+Ri, i ∈ {1, 2},

where Li, Ri are solutions to the linear systems[
ρ+ 2δ + p1 − σ2

1 −p1

−p2 ρ+ 2δ + p2 − σ2
2

] [
L1

L2

]
=

[
−2c
−2c

]
,

[
ρ+ δ + p1 −p1

−p2 ρ+ δ + p2

] [
R1

R2

]
=

[
η1

η2

]
.
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Furthermore, to guarantee a linear growth for v(x, i), we take M3 = M4 = 0. Hence, in (a2,∞) we
have  v(x, 1) = M1

(
x
a2

)λ1 +M2

(
x
a2

)λ2 + L1x+R1,

v(x, 2) = −M1G11

(
x
a2

)λ1 −M2G12

(
x
a2

)λ2 + L2x+R2.

To determine the value of the parameters A,B,M1,M2, a1, a2, we impose that v(·, i) ∈ C1(R+) for
i ∈ {1, 2} (cf. Proposition 4.2-(ii)): 

v(a1−, 1) = v(a1+, 1),

v′(a1−, 1) = v′(a1+, 1),

v(a2−, 2) = v(a2+, 2),

v′(a2−, 2) = v′(a2+, 2),

v(a2−, 1) = v(a2+, 1),

v′(a2−, 1) = v′(a2+, 1),

where, as usual, for a function f : R× {1, 2} → R, f(xo±, i) represents the right/left limit at a given
point xo. The latter system of conditions leads to

(4.22)



κ = A+B + C1a1 +D1,

0 = Aγ+
1 +Bγ−1 + Ca1,

κ = −M1G11 −M2G12 + L2a2 +R2, j = 1, 2

0 = −M1λ1G11 −M2λ2G12 + L2a2,

A
(
a2
a1

)γ+1 +B
(
a2
a1

)γ−1 + C1a2 +D1 = M1 +M2 + L1a2 +R1,

Aγ+
1

(
a2
a1

)γ+1 +Bγ−1
(
a2
a1

)γ−1 + C1a2 = M1λ1 +M2λ2 + L1a2.

By considering the pairs (4.22)(i-ii) and (4.22)(iii-iv), one can express A,B andM1,M2 as functions
of the unknown a1, a2:

A =

(
(κ−D1)γ−1
γ−1 − γ

+
1

)
+

(
C1(1− γ−1 )

γ−1 − γ
+
1

)
a1 =: c11 + c12a1,

B =

(
− (κ−D1)γ+

1

γ−1 − γ
+
1

)
+

(
− C1(1− γ+

1 )

γ−1 − γ
+
1

)
a1 =: c21 + c22a1,

M1 =

(
− (κ−R2)λ2

G11(λ2 − λ1)

)
+

(
− L2(1− λ2)

G11(λ2 − λ1)

)
a2 =: d11 + d12a2,

M2 =

(
(κ−R2)λ1

G12(λ2 − λ1)

)
+

(
L2(1− λ1)

G12(λ2 − λ1)

)
a2 =: d21 + d22a2,

Plugging into (4.22)(v-vi), we get a two-equation system in the unknown a1, a2:
(a2/a1)γ

+
1 (c11 + c12a1) + (a2/a1)γ

−
1 (c21 + c22a1)

= (d11 + d21 +R1 −D) + (d12 + d22 + L1 − C)a2 =: e11 + e12a2,

(a2/a1)γ
+
1 (c11 + c12a1)γ+

1 + (a2/a1)γ
−
1 (c21 + c22a1)γ−1

= (d11λ1 + d21λ2) + (d12λ1 + d22λ2 + L1 − C)a2 =: e21 + e22a2.
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Solving with respect to (a2/a1)γ
+
1 (c11 + c12a1) and (a2/a1)γ

−
1 (c21 + c22a1), we get


(a2/a1)γ

+
1 (c11 + c12a1) =

e21−γ−1 e11
γ+1 −γ

−
1

+
e22−γ−1 e12
γ+1 −γ

−
1

a2 =: f11 + f12a2,

(a2/a1)γ
−
1 (c21 + c22a1) =

e11γ
+
1 −e21

γ+1 −γ
−
1

+
e12γ

+
1 −e22

γ+1 −γ
−
1

a2 =: f21 + f22a2,

and �nally

(4.23)

 a
−γ+1
1 (c11 + c12a1) = a

−γ+1
2 (f11 + f12a2),

a
−γ−1
1 (c21 + c22a1) = a

−γ−1
2 (f21 + f22a2).

We resume the results in the following proposition.

Proposition 4.4. The following results hold.

(i) The optimal threshold a = (a1, a2) ∈ R2
+ of the optimal stopping problem (4.13) is the unique

non-negative solution to system (4.23);
(ii) The value function v of the optimal stopping problem (4.13) is given by

(4.24)

v(x, 1) =


κ, x ≤ a1,

A
(
x
a1

)γ+1 +B
(
x
a1

)γ−1 + C1x+D1, x ∈ (a1, a2),

M1

(
x
a2

)λ1 +M2

(
x
a2

)λ2 + L1x+R1, x ≥ a2,

v(x, 2) =

{
κ, x ≤ a2,

−M1G11

(
x
a2

)λ1 −M2G12

(
x
a2

)λ2 + L2x+R2, x > a2,

with ai as in (i) and with γi, λi, A,B,C,D,Mi, Li, Ri, G1i de�ned above.

Proof. The structure of v provided in (ii), as well as the fact that the free boundaries solve system
(4.23) (cf. claim (i) of the proposition), follow by construction. Therefore, we just discuss the unique-
ness claim. If there would be two distinct solutions to (4.23), then one could construct two distinct
candidate value functions that, via veri�cation, would identify to two distinct value functions of the
optimal stopping problem. However, the value function is unique by de�nition. �

By Proposition 4.3 (see in particular (4.19)), the expression of the value V of the singular control
problem is then easily found by suitably integrating the value v of the optimal stopping problem.
Thus, by (4.19) and recalling k1 and k2 as in Proposition 4.3, one immediately obtains the following
result.
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Corollary 4.5. Suppose that 1 + γ−1 6= 0 and 1 + λi 6= 0, for i = 1, 2. Then

V (x, 1) =



k1 + κ(x− a1), x ≤ a1,

k1 + Aa1
1+γ+1

[ (
x
a1

)1+γ+1 − 1
]

+ Ba1
1+γ−1

[(
x
a1

)1+γ−1 − 1
]

+ 1
2C1(x2 − a2

1) +D1(x− a1), x ∈ (a1, a2),

k1 + Aa1
1+γ+1

[ (
a2
a1

)1+γ+1 − 1
]

+ Ba1
1+γ−1

[(
a2
a1

)1+γ−1 − 1
]

+ 1
2C1(a2

2 − a2
1) +D1(a2 − a1)

+M1a2
1+λ1

[(
x
a2

)1+λ1 − 1
]

+ M2a2
1+λ2

[ (
x
a2

)1+λ2 − 1
]

+1
2L1(x2 − a2

2) +R1(x− a2), x ≥ a2,

V (x, 2) =



k2 + κ(x− a2), x ≤ a2,

k2 − M1G11a2
1+λ1

[ (
x
a2

)1+λ1 − 1
]
− M2G12a2

1+λ2

[ (
x
a2

)1+λ2 − 1
]

+1
2L2(x2 − a2

2) +R2(x− a2), x > a2,

On the other hand, if 1 + ζ = 0 for ζ ∈ {γ−1 , λ1, λ2}, then the terms of the form 1
1+ζ [(·)1+ζ − 1] in

the formulas above should be replaced by ln(·).

4.2. Second step: Determining the stationary distribution. In Section 4.1 we computed, for
Q = (Q1, Q2) ∈ R2

+ given and �xed, the optimal control I?(Q). We now determine the stationary

distribution (pQ∞(dx, i))i=1,2 of the joint process (X
I?(Q)
t , εt)t≥0. Once again, we �x Q = (Q1, Q2) ∈

R2
+ and omit the dependence on Q to ease the notation burden.

To simplify the computations, instead of working with XI? , we will work with its natural logarithm

Zt := ln(XI?

t ).

Notice that by (2.4), for x > 0, we have

dZt = −
(
δ +

1

2
σ2
εt

)
dt+ σεtdBt + dI?t , t ≥ 0, Z0− = ln(x),

where I? is such that Zt ≥ bεt and that I?t =
∫ t

0 1{Zs≤bεs}dI
?
t , with

(4.25) bi := ln(ai), i ∈ {1, 2}.

Notice that, under Assumption (4.20), we have b1 < b2. By (Budhiraja and Liu, 2012, Theorem 2),
the pair (Zt, εt)t≥0 is a positively recurrent process and thus admits a unique stationary distribution
Π. By a slight abuse of notation we write

Π(z, i) = P(Z∞ ≤ z, ε∞ = i), i ∈ {1, 2}.

Furthermore, by adapting (D'Auria and Kella, 2012, Theorem 1) to our setting with only one regime-
dependent re�ecting boundary, and recalling Pij and πi as in (2.1), we have the following characteri-
zation: For i ∈ {1, 2}, Π is the unique solution with non-decreasing components to

(4.26)


Π(z, i) = 0, z < bi,
1
2σ

2
i Π
′′(z, i) +

(
δ + 1

2σ
2
i

)
Π′(z, i) +

∑2
j=1 PijΠ(z, j) = 0, z ≥ bi,

Π(z, i) = πi, z → +∞,
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such that Π(·, 1) ∈ C0(R) ∩ C1(R \ {b1}) ∩ C2(R \ {b1, b2}) and Π(·, 2) ∈ C0(R) ∩ C1(R \ {b2}) ∩
C2(R \ {b2}).

In order to determine an explicit expression for Π, we will �rst build a parametric class of solutions
to (4.26), then set the free parameters by imposing the regularity and asymptotic conditions, and
�nally check that the candidate function is indeed non-decreasing.

We solve (4.26) by considering separately the three intervals (−∞, b1), (b1, b2), (b2,+∞). The case
z ∈ (−∞, b1) is immediate:

Π(z, 1) = 0 = Π(z, 2).

When z ∈ (b1, b2), (4.26) implies that{
1
2σ

2
1Π′′(z, 1) +

(
δ + 1

2σ
2
1

)
Π′(z, 1)− p1Π(z, 1) = 0,

Π(z, 2) = 0.

The �rst equation is an homogeneous second-order linear ODE, whose solution is

Π(z, 1) = A1e
α+
1 (z−b1) +A2e

α−1 (z−b1),

where A1, A2 ∈ R are free parameters and where α−1 , α
+
1 are the two solution to φ1(α) = 0, with

(4.27) φi(α) =
1

2
σ2
i α

2 +
(
δ +

1

2
σ2
i

)
α− pi, i ∈ {1, 2};

that is,

(4.28) α±1 =
−(δ + 1

2σ
2
1)±

√
(δ + 1

2σ
2
1)2 + 2σ2

1p1

σ2
1

, with α−1 < 0 < α+
1 .

Finally, for z ∈ (b2,+∞), (4.26) implies that
1
2σ

2
1Π′′(z, 1) +

(
δ + 1

2σ
2
1

)
Π′(z, 1)− p1Π(z, 1) + p1Π(z, 2) = 0, limz↑∞Π(z, 1) = π1,

1
2σ

2
2Π′′(z, 2) +

(
δ + 1

2σ
2
2

)
Π′(z, 2)− p2Π(z, 2) + p2Π(z, 1) = 0, limz↑∞Π(z, 2) = π2,

whose general solution is given by{
Π(z, 1) =

∑4
i=1Bie

θi(z−b2) + Πpart(z, 1),

Π(z, 2) =
∑4

i=1 B̄ie
θi(z−b2) + Πpart(z, 2),

where Bi ∈ R are free parameters, Πpart are particular solutions to the system of ODEs, θ1 < θ2 <
θ3 = 0 < θ4 are the four roots of

φ̄(θ) := φ1(θ)φ2(θ)− p1p2 = 0,(4.29)

and (cf. (4.27))

(4.30) B̄i = −φ1(θi)

p2
Bi =: −φ1iBi, i ∈ {1, 2, 3, 4}.

Notice that the existence of the θis above is guaranteed by the following properties: (i) φ̄(αi) =
−p1p2 < 0, with α2 < 0 < α1; (ii) ϕ̄(0) = 0 and φ̄′(0) < 0; (iii) φ̄(+∞) = φ̄(−∞) = +∞.

As for Πpart, by looking for constant solutions, we notice that

Πpart(z, i) = πi, (z, i) ∈ R× {1, 2}
satis�es both the equation and the limit condition. Furthermore, in order to ensure that limz↑∞Π(z, i) =
πi is satis�ed, we set B3 = B4 = 0, so that we are left with{

Π(z, 1) = B1e
θ1(z−b2) +B2e

θ2(z−b2) + π1,

Π(z, 2) = −B1φ11e
θ1(z−b2) −B2φ12e

θ2(z−b2) + π2.
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To determine A1, A2, B1, B2, we �nally impose that Π(·, 1) ∈ C0(R)∩C1(R \ {b1})∩C2(R \ {b1, b2})
and Π(·, 2) ∈ C0(R) ∩ C1(R \ {b2}) ∩ C2(R \ {b2}); that is,

Π(b1−, 1) = Π(b1+, 1),

Π(b2−, 1) = Π(b2+, 1),

Π′(b2−, 1) = Π′(b2+, 1),

Π(b2−, 2) = Π(b2+, 2),

which is, in turn, equivalent to the linear system

(4.31)


1 1 0 0

eα
+
1 (b2−b1) eα

−
1 (b2−b1) −1 −1

α+
1 e

α+
1 (b2−b1) α−1 e

α−1 (b2−b1) −θ1 −θ2

0 0 φ11 φ12



A1

A2

B1

B2

 =


0
π1

0
π2

 .
It is easy to check that System (4.31) admits a unique solution.

The next proposition shows that Π constructed above does indeed identify with the stationary
distribution of the process (XI?

t , εt)t≥0.

Proposition 4.6. Recall pi, πi as in (2.1), bi as in (4.25), α±1 as in (4.28), θi as the solutions to
(4.29), Ai, Bi uniquely solving (4.31), and φ1i as in (4.30) (cf. also (4.27)).

The stationary cumulative distribution function of (Zt, εt)t≥0, is given by

(4.32)

Π(z, 1) =


0, z ≤ b1,
A1e

α+
1 (z−b1) +A2e

α−1 (z−b1), z ∈ (b1, b2),

B1e
θ1(z−b2) +B2e

θ2(z−b2) + π1, z ≥ b2,

Π(z, 2) =

{
0, z ≤ b2,
−B1φ11e

θ1(z−b2) −B2φ12e
θ2(z−b2) + π2, z > b2.

Consequently, the stationary distribution of the joint process (XI?
t , εt)t≥0 is given by

(4.33) Π̂(x, i) := Π(ln(x), i) =

∫ x

−∞

Π′(ln(y), i)

y
dy =:

∫ x

0
p∞(dy, i), (x, i) ∈ R+ × {1, 2}.

Proof. Postponed to Appendix A. �

Explicit calculations on (4.32) and (4.33) yield the following.

Corollary 4.7. Recall (4.32) and (4.33). One has:

(4.34)

Π̂(x, 1) =


0, x ≤ a1,

A1

(
x
a1

)α+
1

+A2

(
x
a1

)α−1
, x ∈ (a1, a2),

B1

(
x
a2

)θ1
+B2

(
x
a2

)θ2
+ π1, x ≥ a2,

Π̂(x, 2) =

 0, x ≤ a2,

−B1φ11

(
x
a2

)θ1
−B2φ12

(
x
a2

)θ2
+ π2, x > a2,

Furthermore, if 1 + θ2 < 0,∫ ∞
0

xp∞(dx, 1) =
A1α

+
1 a1

1 + α+
1

[(a2

a1

)1+α+
1 − 1

]
+
A2α

−
1 a1

1 + α−1

[(a2

a1

)1+α−1 − 1
]
− B1θ1a2

1 + θ1
− B2θ2a2

1 + θ2
(4.35)
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and ∫ ∞
0

xp∞(dx, 2) =
[B1θ1φ11

1 + θ1
+
B2θ2φ12

1 + θ2

]
a2,(4.36)

4.3. Third step: Solution to the �xed-point problem. In Section 4.2 we computed, for given

Q = (Q1, Q2) ∈ R2
+, the stationary distribution (pQ∞(dx, i))i=1,2 of the joint process (X

I?(Q)
t , εt)t≥0.

We now look for solutions Q? = (Q?1, Q
?
2) ∈ R2

+ to the �xed-point problem

(4.37)


Q?1 =

1

π1

∫ ∞
0

x pQ
?

∞ (dx, 1),

Q?2 =
1

π2

∫ ∞
0

x pQ
?

∞ (dx, 2).

Theorem 4.1. Let Assumption 2.1 hold and assume 1 + θ2 < 0. There exists a unique solution
Q? = (Q?1, Q

?
2) ∈ R2

+ to system (4.37). As a result, (I?(Q?), Q?) is the unique stationary mean-�eld
equilibrium in the sense of De�nition 2.2.

Proof. We �rst prove existence and then uniqueness.

1. Existence. De�ne the map R : R2
+ → R2

+ as

RQ = ((RQ)1, (RQ)2) :=

(
1

π1

∫ ∞
0

x pQ∞(dx, 1),
1

π2

∫ ∞
0

x pQ∞(dx, 2)

)
,

for each Q = (Q1, Q2) ∈ R2
+. Then, we are looking for a �xed point Q? for R; that is, Q? such that

RQ? = Q?, i.e.,

{
Q?1 = (RQ?)1,

Q?2 = (RQ?)2.

We will prove the existence of such a Q? by means of the Brower's �xed point theorem and the
rest of this proof is organized in several steps. In the following, we will fully specify the dependence
on Q = (Q1, Q2) of the involved quantities, whenever necessary.

Step 1: Monotonicity and continuity of the free boundaries w.r.t. Q. Recalling (4.17), it
is easy to see that, for any i = 1, 2, Q1 7→ vQ(x, i) and Q2 7→ vQ(x, i) are decreasing. Since

ai(Q) = inf
{
x > 0 : vQ(x, i) < κ

}
,

we then have that Q1 7→ ai(Q) and Q2 7→ ai(Q) are decreasing as well for any i = 1, 2.
Furthermore, recalling that the boundaries ai(Q) uniquely solve System (4.23) � which involves

continuously di�erentiable functions � the implicit function theorem yields continuity of the functions
Q 7→ ai(Q), i ∈ {1, 2}; that is, if Qn → Q, then a1(Qn)→ a1(Q) and a2(Qn)→ a2(Q).

Step 2: Continuity of Q 7→ RQ. Given that pQ∞ is absolutely continuous with respect to the

Lebesgue measure, with density sQ∞(x, i) := 1
x(ΠQ)′(ln(x), i) (cf. (4.33) and (4.32)), continuity of

ai 7→ sQ∞(x, i) can be shown by direct check for any (x, i) ∈ R+ × {1, 2}. Thanks to Step 1, this in

turn yields the continuity of Q 7→ sQ∞(x, i) for any (x, i) ∈ R+ × {1, 2}. By dominated convergence
theorem, this then ensures that Q 7→ RQ is therefore continuous.

Step 3: Uniform bounds for RQ. If a �xed point exists, then this should necessarily live in
the image of Q 7→ RQ. Here we determine uniform bounds for RQ.

From the optimal stopping problem (4.13), an integration by parts gives

vQ(x, i) = κ+ inf
τ≥0

Ē(x,i)

[ ∫ τ

0
e−(ρ+δ)s

(
ηQεs − 2cX̄s − (ρ+ δ)

)
ds

]
,
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with X̄ as in (4.14). Since ζi, Qi ≥ 0, we have that ηQi = ϕi+ζiQ
−α
i ≥ ϕi. Also, recall that ϕi > (ρ+δ)

by assumption, for i ∈ {1, 2}, so that

vQ(x, i) ≥ κ+ inf
τ≥0

Ē(x,i)

[ ∫ τ

0
e−(ρ+δ)s

(
ϕi − (ρ+ δ)− 2cX̄s

)
ds

]
=: v(x, i).

In particular, this implies that, for each Q ∈ R2
+,

ai(Q) = inf
{
x > 0 : v(x, i) < κ

}
≥ inf

{
x > 0 : v(x, i) < κ

}
=: ai ∈

(
0,

1

2c

(
ϕi − (ρ+ δ)

))
.

The inclusion on the very right-hand side of the equation above follows from the fact that, for problem
v, it is never optimal to stop on the region {(x, i) ∈ R+ × {1, 2} : 2cx > ϕi − (ρ + δ)}. Note that
a = (a1, a2) does not depend on Q, as in fact v does not depend on Q.

With an abuse of notation, we now highlight the dependence of re�ected processes with respect
to the re�ection barriers. In particular, we denote by Xa(Q) the process XI?(Q) (which is re�ected
upwards at the barrier aε(Q)), and by Xa the process that is re�ected upwards at the barrier aε; that
is, (Xa, ε) satis�es (4.12) with aε(Q) replaced by aε, and, in particular, Xa is given through (4.11)
with aε(Q) replaced by aε. By comparison (through a penalization argument) for re�ected SDEs, one
has

X
a(Q)
t ≥ Xa

t , P− a.s. ∀t ≥ 0,

which yields, for i ∈ {1, 2},
E
[
Xa(Q)
∞

∣∣ε∞ = i
]
≥ E

[
Xa
∞
∣∣ε∞ = i

]
;

that is,
1

πi

∫ ∞
0

x pQ∞(dx, i) ≥ 1

πi

∫ ∞
0

x p∞(dx, i) =: Q
i
,

where p∞ is the stationary distribution of (X
a
t , εt)t≥0 (which can be explicitly constructed as in

Section 4.2). Notice that Q = (Q
1
, Q

2
) does not depend on Q, as a does not either. Hence, without

loss of generality, we can restrict to those Q = (Q1, Q2) such that Qi ≥ Qi for i ∈ {1, 2}.
On the other hand, by Step 1 we have that Q1 7→ ai(Q) and Q2 7→ ai(Q) are decreasing, for

i ∈ {1, 2}. Hence,
ai(Q) ≤ ai(Q) =: ai,

for each Q ∈ R+
2 . Notice that, again, ai does not depend on Q. Therefore, denoting by by Xa the

process that is re�ected upwards at the barrier aε, arguing as before,

E
[
Xa(Q)
∞

∣∣ε∞ = i
]
≤ E

[
Xa
∞
∣∣ε∞ = i

]
;

that is,
1

πi

∫ ∞
0

x pQ∞(dx, i) ≤ 1

πi

∫ ∞
0

x p∞(dx, i) =: Qi,

where p∞ is the stationary distribution of (Xa
t , εt)t≥0 (which, again, can be constructed as in Section

4.2). It thus follows that, without loss of generality, we can restrict to those Q = (Q1, Q2) such that
Qi ≤ Qi for i ∈ {1, 2}.

Overall, if an equilibrium exists, then this should necessarily live within the interval [Q
1
, Q2] ×

[Q
1
, Q2]. Without loss of generality we can thus restrict our attention only to those Q = (Q1, Q2)

such that
(Q1, Q2) ∈ [Q

1
, Q2]× [Q

1
, Q2].

Step 4: Applying Brower's �xed point theorem. Finally, combining Step 2 and Step 3,
Brower's �xed point theorem guarantees that there exists a �xed point Q? = (Q?1, Q

?
2) for map R.

2. Uniqueness. Suppose that there exist Q? = (Q?1, Q
?
2) and Q̃ = (Q̃1, Q̃2) solving �xed point

problem (4.37) and such that, for example, Q̃1 > Q?1, while Q̃2 = Q?2. Then, by Step 1 in the proof
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of the existence claim, ai(Q̃) < ai(Q
?), for i ∈ {1, 2}, which gives (arguing as in Step 3 of the proof

of the existence claim)

E
[
Xa(Q̃)
∞

∣∣ε∞ = 1
]
≤ E

[
Xa(Q?)
∞

∣∣ε∞ = 1
]
.

Hence, Q̃1 ≤ Q?1, thus a contradiction. �
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Appendix A. Some proofs

Proof of Proposition 4.1. The proof is organized in two steps. We �rst show that I? is admissible and
then we prove the optimality of the candidate solution w and I?.

Admissibility of I?. Clearly, I? as in (4.11) is F-adapted, it has right-continuous and nondecreasing
paths, and it is such that I?0− = 0. It thus remains to show that it satis�es the limit and the

integrability conditions in (2.5). In the sequel, let X? := XI? .
We start by proving that limT↑∞ E(x,i)

[
e−ρT |X?

T |2
]

= 0. Let σ := max{σ1, σ2}. By using (2.4), it
is easy to see that

(A.1) E(x,i)

[
|X?

T |2
]
≤ x2e−2δT+σ2T Ê(x,i)

[
e2I?T

]
,

where Ê(x,i) denotes the expectation, conditional on (X?
0−, ε0−) = (x, i) ∈ R+ × {1, 2}, with respect

to the probability measure P̂, de�ned on (Ω,FT ) and such that

dP̂
dP

= e−2
∫ T
0 σ2

εudu+2
∫ T
0 σεudBu .

Also, let B̂t := Bt −
∫ t

0 σεudBu, which, by Girsanov theorem, is an F-Brownian motion under P̂.
Then, by employing (4.11) and letting a := max{a1, a2}, we �nd that, under P̂(x,i),

(A.2) IT ≤ ln(
a

x
) ∨ 0 + δT + sup

0≤s≤T

(
− 1

2

∫ s

0
σ2
εudu−

∫ s

0
σεudB̂u

)
.

By plugging (A.2) into (A.1), we obtain

(A.3) E(x,i)

[
|X?

T |2
]
≤ C(x)eσ

2T Ê(x,i)

[
sup

0≤s≤T

(
e−

1
2

∫ s
0 σ

2
εu
du−

∫ s
0 σεudB̂u

)2]
,

with C(x) := x2e2 ln( a
x

)∨0. Then, Burkholder-Davis-Gundy's inequality applied to the martingale

(e−
1
2

∫ s
0 σ

2
εu
du−

∫ s
0 σεudB̂u)s≥0 yields, after simple estimates,

(A.4) E(x,i)

[
|X?

T |2
]
≤ Ĉ(x)σ2Te2σ2T ,

with Ĉ(x) := CoC(x), for some Co > 0. It thus follows that limT↑∞ E(x,i)

[
e−ρT |X?

T |2
]

= 0 if ρ > 2σ2,
as required in Assumption 2.1.

We now show that E(x,i)

[ ∫∞
0 e−ρt

((
X?
t )2dt + X?

t ◦ dI?t
)]
< ∞. This is accomplished by adapting

arguments from Shreve et al. (1984) (see also Lemma 5.2 in Ferrari and Rodosthenous (2020)).
Let g : R× {1, 2} → R be the solution to(

L − ρ
)
g(x, i) + x2 = 0,
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such that, for any (x, i) ∈ R× {1, 2}, |g(x, i)| ≤ C(1 + |x|2) for some C > 0, and gx(a?i , i) = −x, for
any x ≤ a?i , i ∈ {1, 2}.

Then, taking a �xed T > 0, by the regularity of g we can apply Itô-Meyer's formula for semimartin-
gales to the Markov-modulated process (e−ρtg(X?

t , εt))t≥0 on the time interval [0, T ] (see Eisenberg
and Kruehner (2022)) and obtain

E(x,i)

[
e−ρT g(X?

T , εT )
]
− g(x, i) = E(x,i)

[
−
∫ T

0
e−ρt

(
X?
t

)2
dt+

∫ T

0
e−ρtX?

t gx(X?
t , εt)dI

?,c
t

]
+ E(x,i)

[ ∑
0≤t≤T

e−ρt
(
g(X?

t , εt)− g(X?
t−, εt)

) ]
.(A.5)

Here, and in the following, I?,c denotes the continuous part of I?. Observe that, the latter expectation
in (A.5) can be written as

E(x,i)

[ ∑
0≤t≤T

e−ρt
(
g(X?

t , εt)− g(X?
t−, εt)

)]
= E(x,i)

[ ∑
0≤t≤T

e−ρt1{∆I?t >0}
(
g(e∆I?t X?

t−, εt)− g(X?
t−, εt)

)]

= E(x,i)

[ ∑
0≤t≤T

e−ρtX?
t−

∫ ∆I?t

0
eugx(euX?

t−, εt)du

]
.

(A.6)

Impose now that gx(a?i , i) = −1, and extend the function g on (−∞, a?i ) so that gx(x, i) = −1
for any x < a?i (for example, set g(x, i) := a?i − x + g(a?i , i) for x < a(i)). Then, since I?· is �at o�
{t ≥ 0 : X?

t− ≤ a?εt}, we get

X?
t−

∫ ∆I?t

0
eugx(euX?

t−, εt)du = −X?
t−

∫ ∆I?t

0
eudu.(A.7)

Therefore, by substituting (A.7) in (A.6) and then in (A.5), we get that (cf. (2.3))

(A.8) g(x, i) = E(x,i)

[
e−ρT g(X?

T , εT )
]

+ E(x,i)

[ ∫ T

0
e−ρt

((
X?
t )2dt+X?

t ◦ dI?t
)]
.

Finally, given that |g(X?
T , εT )| ≤ C(1 + |X?

T |2), P(x,i)-a.s., we can let T ↑ ∞ on the right-hand side
of (A.8), apply the result of Step 1 on the �st expectation, the monotone convergence theorem on
the second expectation, and obtain

g(x, i) = E(x,i)

[ ∫ ∞
0

e−ρt
((
X?
t )2dt+X?

t ◦ dI?t
)]
.

The �niteness of the function g constructed above, yields the claim.

The veri�cation theorem. The proof of the veri�cation theorem is nowadays standard: See, e.g.,
Sotomayor and Cadenillas (2011), Ferrari and Rodosthenous (2020) and Ferrari et al. (2022) for
problems of singular stochastic control with regime switching, as well as Guo and Zervos (2015) for
a problem with geometric state-dynamics similar to ours, but without regime-switching. We provide
it below for the sake of completeness.

Let I ∈ A and w : R × {1, 2} → R be as in the statement of the theorem. Given the regularity
of w and the fact that it solves (4.10), we can apply Itô-Meyer's formula for semimartingales to the
Markov-modulated process (e−ρtw(X?

t , εt))t≥0 on the time interval [0, T ] (see Eisenberg and Kruehner
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(2022)) and obtain

E(x,i)

[
e−ρTw(XI

T , εT )
]
− w(x, i) ≤ E(x,i)

[
−
∫ T

0
e−ρt

(
ηεtX

I
t − c

(
XI
t

)2)
dt+ κ

∫ T

0
e−ρtXI

t dI
c
t

]

+ E(x,i)

[ ∑
0≤t≤T

e−ρt
(
w(XI

t , εt)− w(XI
t−, εt)

) ]
,

(A.9)

where Ic denotes the continuous part of I. Then, by using that

E(x,i)

[ ∑
0≤t≤T

e−ρt
(
w(XI

t , εt)− w(XI
t−, εt)

)]
= E(x,i)

[ ∑
0≤t≤T

e−ρt1{∆It>0}
(
w(e∆ItXI

t−, εt)− w(XI
t−, εt)

)]

= E(x,i)

[ ∑
0≤t≤T

e−ρtXI
t−

∫ ∆It

0
euwx(euXI

t−, εt)du

]
≤ κE(x,i)

[ ∑
0≤t≤T

e−ρtXI
t−

∫ ∆It

0
eudu

](A.10)

and recalling (2.3), we obtain from (A.9), (A.10) and the growth condition of w that

w(x, i) ≥ E(x,i)

[
e−ρTw(XI

T , εT )
]

+ E(x,i)

[ ∫ T

0
e−ρt

(
ηεtX

I
t − c

(
XI
t

)2)
dt− κ

∫ T

0
e−ρtXI

t ◦ dIt
]

≥ −E(x,i)

[
e−ρTK(1 + |XI

T |2)
]

+ E(x,i)

[ ∫ T

0
e−ρt

(
ηεtX

I
t − c

(
XI
t

)2)
dt− κ

∫ T

0
e−ρtXI

t ◦ dIt
](A.11)

Finally, by taking limits as T ↑ ∞, and using that I ∈ A, it yields

w(x, i) ≥ E(x,i)

[ ∫ ∞
0

e−ρt
(
ηεtX

I
t − c

(
XI
t

)2)
dt− κ

∫ ∞
0

e−ρtXI
t ◦ dIt

]
.(A.12)

Since the latter inequality holds for any I ∈ A and any (x, i) ∈ R+ × {1, 2}, we �nd w ≥ V on
R+ × {1, 2}.

On the other hand, picking I = I? ∈ A, all the inequalities above become equalities (notice that
I?· is �at o� {t ≥ 0 : X?

t− ≤ a?εt} and X
?
t ≥ aεt for all t ≥ 0 a.s.) and we thus obtain

w(x, i) = E(x,i)

[ ∫ T

0
e−ρt

(
ηεtX

?
t − c

(
X?
t

)2)
dt− κ

∫ T

0
e−ρtX?

t ◦ dI?t
]
≤ V (x, i), (x, i) ∈ R+ × {1, 2}.

(A.13)

Hence, w = V on R+ × {1, 2} and I? as in (4.11) is optimal. �

Proof of Proposition 4.2. We just provide details about the proof of the �rst and the third statements.
The proof of (ii) can be indeed obtained by easily adapting Proposition 4.1 and Theorem 4.3 in Ferrari
and Rodosthenous (2020) to the present setting, upon employing (i). In particular, the free-boundary
problem (4.17) then follows by standard arguments based on strong Markov property.

As for (i), it is enough to observe that, for any i ∈ {1, 2}, x 7→ v(x, i) is nonincreasing and that
{(x, i) ∈ R+ × {1, 2} : ηi − 2cx− (ρ+ δ) < 0} ⊂ C, since an integration by parts on (4.13) yields

vQ(x, i) = κ+ inf
τ≥0

Ē(x,i)

[ ∫ τ

0
e−(ρ+δ)s

(
ηQεs − 2cX̄s − (ρ+ δ)

)
ds

]
,

with X̄ as in (4.14).
Given the continuity of v(·, i) obtained in (ii), optimality of τ? claimed in (iii) then follows by

standard results in optimal stopping theory (see, e.g., Peskir and Shiryaev (2006)). �
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Proof of Proposition 4.3. Set

(A.14) w(x, i) := ki +

∫ x

ai

v(y, i)dy, (x, i) ∈ R+ × {1, 2},

and notice that k1 and k2 are well de�ned, since the determinant of system (4.18) is ρ2+ρ(p1+p2) > 0.
Recalling that (v(·, i))i=1,2 is a solution to (4.17), we want to prove that (w(·, i))i=1,2 is a solution to
(4.10). Then, employing Proposition 4.1 we conclude that w = V on R+ × {1, 2}.

Due to (A.14) and Proposition 4.2-(ii), for any i = 1, 2, w(·, i) ∈ C2(R+) and it is such that
there exists K > 0 such that |w(x, i)| ≤ K(1 + |x|2), for all x ∈ R+. By (4.17) we clearly have
w′(x, i) = v(x, i) ≤ κ for each x ∈ R+ and, in particular, w′(x, i) = κ for x ≤ ai. Also, notice that
for x > ai we have

(A.15) (L − ρ)w(x, i) =
1

2
σ2
i x

2v′(x, i)− δxv(x, i)− ρki

+

2∑
j=1

Pijkj +

2∑
j=1

Pij

∫ x

aj

v(y, j)dy − ρ
∫ x

ai

v(y, i)dy.

Now, from (4.17) it follows that, for each y > ai,

(A.16) − ρv(y, i) = −1

2
σ2
i y

2v′′(y, i) + (δ − σ2
i )yv

′(y, i) + δv(y, i)−
2∑
j=1

Pijv(y, j)− ηi + 2cy.

By an integration by parts of (A.16) over the interval (ai, x), we get (recall that v′(ai, i) = 0, since v′

is continuous and v′(ai−, i) = 0, and that v(ai, i) = κ)
(A.17)

− ρ
∫ x

ai

v(y, i)dy = −1

2
σ2
i x

2v′(x, i) + δ(xv(x, i)− aiκ)−
2∑
j=1

Pij

∫ x

ai

v(y, j)dy− ηi(x− ai) + c(x2 − a2
i ).

Plugging equation (A.17) into equation (A.15), we have

(L − ρ)w(x, i) = −δaiκ− ρki +

2∑
j=1

Pijkj −
2∑
j=1

Pij

∫ aj

ai

v(y, j)dy − ηi(x− ai) + c(x2 − a2
i ).

By the de�nition of ki in (4.18), this is equivalent to

(L − ρ)w(x, i) = −ηix+ cx2.

On the other hand, the same argument applies if x < ai, now leading to the inequality:

(L − ρ)w(x, i) ≤ −ηix+ cx2.

Hence, we proved that w satis�es (4.10). By Proposition 4.1, whose assumptions are now clearly
veri�ed, and I? as in (4.11), we conclude that V = w on R+ × {1, 2}. �

Proof of Proposition 4.6. With regards to the construction of Π performed in Section 4.2, it remains
only to show that Π(·, i), i ∈ {1, 2}, as in (4.32) is in fact nondecreasing.

Let us �rst recall from Section 4.2 that

(A.18) θ1 < θ2 < α2 < 0 < α1.

Furthermore, recall that function φ1 from Section 4.2 is given by

φ1(α) =
1

2
σ2

1α
2 +

(
δ +

1

2
σ2

1

)
α− p1.

In particular, notice that

(A.19) φ1(θ1) > 0, φ1(θ2) < 0,



MEAN-FIELD EQUILIBRIUM WITH IRREVERSIBLE INVESTMENT AND REGIME SWITCHING 29

which follows by (A.18) and the fact that φ1 is convex, negative in (α2, α1) and positive elsewhere.
Finally, the solution to system (4.31) is given by

A1 =
p2Â1

(p1 + p2)D
, A2 = −A1, B1 =

p2B̂1

(p1 + p2)D
, B2 =

p2B̂2

(p1 + p2)D
,

where the numerators are given by (we have used the explicit expressions of π1 and π2)

Â1 := e(α1+α2)b1
[
(θ1 − θ2)p1 − θ2φ1(θ1) + θ1φ1(θ2)

]
,

B̂1 := eα1b2+α2b1
[
(α1 − θ2)p1 + α1φ1(θ2)

]
− eα1b1+α2b2

[
(α2 − θ2)p1 + α2φ1(θ2)

]
,

B̂2 := −eα1b2+α2b1
[
(α1 − θ1)p1 + α1φ1(θ1)

]
+ eα1b1+α2b2

[
(α2 − θ1)p1 + α2φ1(θ1)

]
,

and the common denominator by

D := eα1b2+α2b1
[
θ1φ1(θ2)− θ2φ1(θ1) + α1(φ1(θ1)− φ1(θ2))

]
+ eα1b1+α2b2

[
θ2φ1(θ1)− θ1φ1(θ2) + α2(−φ1(θ1) + φ1(θ2))

]
.

By the de�nition of Π in (4.31), to prove that its components are non-decreasing it su�ces to check
Π(·, 1) in (b1, b2), Π(·, 1) in (b2,∞) and Π(·, 2) in (b2,∞). Let us �rst consider Π(·, 1) in (b1, b2). By
(4.31)(i) and (4.32), in (b1, b2) we have

Π′(z, 1) = α1A1e
α1(z−b1) + α2A2e

α2(z−b1) = A1

(
α1e

α1(z−b1) − α2e
α2(z−b1)

)
,

so that Π′(z, 1) ≥ 0 if and only if A1 > 0 (recall that α2 < 0 < α1). As for the denominator of A1,
one can rewrite

D = eα1b2+α2b2
(
θ1φ1(θ2)− θ2φ1(θ1)

)(
e−α2(b2−b1) − e−α1(b2−b1)

)
+
(
φ1(θ1)− φ1(θ2)

)(
α1e

α1b2+α2b1 − α2e
α1b1+α2b2)

)
> 0,

where the positivity follows by (A.18) and (A.19). As for the numerator of A1, by the formulas for
πi in (2.1), we have

Â1 > 0⇐⇒ f(θ1) < 0, with f(θ) := θ2φ1(θ)− θφ1(θ2) + p1(θ2 − θ),
which is veri�ed: Indeed, we have f(θ2) = 0, f(−∞) = −∞, f ′(θ2) > 0, f ′′ < 0 in (−∞, 0), from
which f ≤ 0 in (−∞, θ2) 3 θ1.

Let us now consider Π(·, 1) in (b2,∞). By plugging (4.31)(i) into (4.31)(iii), we get

θ1B1 + θ2B2 = A1(α1e
α1(b2−b1) − α2e

α2(b2−b1)) > 0,

where the positivity of the right-hand side follows from (A.18). In particular, in (b2,∞) we have

Π′(z, 1) = θ1B1e
θ1(z−b2) + θ2B2e

θ2(z−b2) > θ2B2

(
eθ2(z−b2) − eθ1(z−b2)

)
,

so that Π′(z, 1) ≥ 0 if and only if B2 < 0. We have already proved that the denominator D is positive,

so it remains to prove that B̂2 < 0. This condition is indeed veri�ed, since B̂2 can be rewritten as

B̂2 = p1e
α1b1+α2b1

[
(α2 − θ1)eα2(b2−b1) − (α1 − θ1)eα1(b2−b1)

]
+ φ1(θ1)

[
α2e

α1b1+α2b2 − α1e
α2b1+α2b1

]
and both the terms on the right-hand side are negative: the second one by (A.18), the �rst one since

(α2 − θ1)eα2(b2−b1) − (α1 − θ1)eα1(b2−b1) < (α1 − θ1)
(
eα2(b2−b1) − eα1(b2−b1)

)
< 0.

Let us �nally consider Π(·, 2) in (b2,∞). We have

Π′(z, 2) = −θ1B1
φ1(θ1)

p2
eθ1(z−b2) − θ2B2

φ1(θ2)

p2
eθ2(z−b2).
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so that Π′(z, 2) ≥ 0 if and only if

B1 ≥ −
(
B2
φ1(θ2)

φ1(θ1)

θ2

θ1

)
e(θ2−θ1)(z−b2).

Since the parenthesis in the right-hand side is positive and since z − b2 > 0, it su�ces to prove

B1 ≥ −B2
φ1(θ2)

φ1(θ1)

θ2

θ1
,

which is equivalent to

e(α1−α2)(b2−b1)F (α1) ≤ F (α2),

where we have set

F (α) := α
[
φ1(θ1)φ1(θ2)(θ1 − θ2) + p1

(
θ1φ1(θ1)− θ2φ1(θ2)

)]
+ p1θ1θ2(φ1(θ2)− θ2φ1(θ1)).

Notice now that it su�ces to prove that F ′(α) < 0 for each α ∈ R. Indeed, if that is the case, it
follows that F (α1) ≤ F (α2) and that F (α1) ≤ F (0) < 0, so that

e(α1−α2)(b2−b1)F (α1) ≤ F (α1) ≤ F (α2).

Let us then verify that F is decreasing, which is equivalent to

(A.20) θ1φ1(θ1)
(
φ1(θ2) + p1

)
< θ2φ1(θ2)

(
φ1(θ1) + p1

)
.

However, (A.20) is always veri�ed. Indeed, if φ1(θ2) + p1 > 0, then (A.20) is trivially true. On the
other hand, if φ1(θ2) + p1 < 0, then (A.20) is equivalent to

φ1(θ1)

φ1(θ2)
>
θ1

θ2

φ1(θ1) + p1

φ1(θ2) + p1
.

Considering the right-hand side, the �rst factor is greater than 1, while the second factor is negative.
Hence,

θ1

θ2

φ1(θ1) + p1

φ1(θ2) + p1
<
φ1(θ1) + p1

φ1(θ2) + p1
<
φ1(θ1)

φ1(θ2)
,

where the last inequality immediately follows from (A.19). �
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