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Pricing of Electricity Swaps with Geometric Averaging∗

Annika Kemper† Maren Diane Schmeck‡

March 26, 2023

Abstract

In this paper, we provide empirical evidence on the market price of risk for delivery periods (MPDP)
of electricity swap contracts. As introduced by Kemper et al. (2022), the MPDP arises through the use of
geometric averaging while pricing electricity swaps in a geometric framework. In preparation for empirical
investigations, we adjust the work by Kemper et al. (2022) in two directions: First, we examine a Merton type
model taking jumps into account. Second, we transfer the model to the physical measure by implementing
mean-reverting behavior. We compare swap prices resulting from the classical arithmetic (approximated)
average to the geometric weighted average. Under the physical measure, we discover a decomposition of the
swap’s market price of risk into the classical one and the MPDP. In our empirical study, we analyze two
types of models, characterized either by seasonality in the delivery period or by a term-structure effect, and
identify the resulting MPDP in both cases.

JEL classification: G130, Q400.
Keywords: Electricity Swaps, Delivery Period, MPDP for Diffusion and Jump Risk, Mean-Reversion, Jumps,
Samuelson Effect, Seasonality.

1 Introduction

With the turn of the millennium, pricing derivatives on electricity has become important through the
liberalization of the energy markets. Nowadays, new challenges appear due to the transition to a climate
neutral energy system: Electricity generated from renewable energy sources, like wind and solar energy, clearly
depends on the weather conditions of the season. Consequently, a rising share of renewable energy induces
stronger intermittency and seasonality effects influencing especially delivery-dependent pricing effects. In
electricity markets, futures contracts are the most important derivatives. They deliver the underlying over
a period of time since electricity is not storable on a large scale. We therefore call them electricity swaps.
The dependence on the delivery time affects the price dynamics, the pricing measure, and the swap’s market
price of risk for delivery periods (MPDP) introduced by Kemper et al. (2022). One might expect, that the
rising share of electricity strengthen these effects due to the involved delivery period. In this paper, we provide
empirical evidence for the MPDP. To do so, we extend their pricing approach to the physical measure allowing
for mean-reversion and jumps. In addition, under the physical measure, we identify a decomposition of the
market price of risk into the classical one and the MPDP.

The delivery period is a unique feature of electricity markets that differs from other commodities such as
oil, gas, or corn. In fact, it plays a crucial role in the pricing of electricity swaps. Following the market model
∗We would like to thank Viviana Fanelli, Carme Frau, and Christa Cuchiero for their fruitful comments and suggestions.

Financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB 1283/2 2021 – 317210226
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approach, the electricity swap price results from averaging an instantaneous stream of futures with respect
to the delivery time. This goes back to the famous model by Heath et al. (1990). This approach was firstly
connected to energy-related derivatives by Clewlow and Strickland (1999) and to electricity derivatives by
Bjerksund et al. (2010) followed by a row of works (see, e.g., Table 1 for geometric settings, Hinderks et al.
(2020) for a structural model and Cuchiero et al. (2022) for measure-valued processes).

Averaging with respect to the delivery period can be conducted in different ways. We distinguish between
three types of averaging: Arithmetic, approximated, and geometric averaging. Arithmetic averaging is the
classical way to implement the swap’s delivery period and is convenient for arithmetic price dynamics. In
particular, continuous arithmetic averaging is applied by Benth et al. (2007), Benth et al. (2008a), Benth et al.
(2014), Latini et al. (2019), Benth et al. (2019), and Kleisinger-Yu et al. (2020), among others (see also Table 1).
For discrete arithmetic averaging, we refer to Lucia and Schwartz (2002) and Burger et al. (2004). Instead,
arithmetic averaging of geometric price dynamics is poorly suited since the resulting swap price dynamics are
neither geometric nor Markovian. It requires, e.g., an approximation of the swap price volatility introduced
by Bjerksund et al. (2010) whenever we want to consider tractable swap price dynamics (see also Benth et al.
(2008a), Benth and Koekebakker (2008)). We call this procedure approximated averaging. Geometric averaging,
instead, does not require any approximations whenever the price dynamics are of geometric type and lead
to suitable geometric dynamics (see Kemper et al. (2022)). Hence, the geometric average is tailor-made for
relative growth rate models. Nevertheless, the geometric average does not preserve the martingale property.
This issue is tackled by Kemper et al. (2022) using a measure change with their MPDP. Usually, negative prices
are not observable in the data of the futures prices, such that we stick to a geometric setting and compare the
ladder averaging procedures adjusting the MPDP to a Merton type model.

Geometric Price Dynamics

Arithmetic Average Koekebakker and Ollmar (2005)

Benth and Koekebakker (2008)

Approximated Average Bjerksund et al. (2010)

Benth et al. (2008a)

Geometric Average Kemper et al. (2022)

Table 1: Classification of selected electricity swap price models.

Both papers, Kemper et al. (2022) and Bjerksund et al. (2010), investigate the modeling of the delivery
period explicitly through a continuous weighted averaging approach for geometric futures prices. Both
approaches lead to Markovian and geometric swap price dynamics. We discuss similarities and differences
between these approaches and introduce a numéraire caused by the different averaging techniques in Section 2.
In line with the market model approach, we base the averaging procedure on a continuous stream of futures
contracts that is a martingale under the futures risk-neutral measure Q. We consider electricity futures with
instantaneous delivery as artificial contracts and we therefore refer to Q as the artificial measure. The resulting
swap price dynamics based on geometric averaging are not a martingale under Q. We then define the MPDP of
diffusion and jump risk and a new pricing measure Q̃, which can thus be used to price derivatives on the swap.
We may refer to Q̃ as the “correct” or “true” risk-neutral measure since the swap price is a Q̃-martingale without
any approximations. Under the artificial measure, the swap based on the approximated version is directly a
martingale. Therefore, we call Q also the “classical” risk-neutral measure. It is a clear advantage that the
approximated average preserves the martingale property of the swap under the measure Q. A decomposition
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of the market price of risk for electricity swaps arises when turning to the physical measure P. Figure 1 gives
an overview over the connections between the different measures P, Q, and Q̃ and the true market price of risk
ΠPQ, the classical market price of risk ΠPQ̃, and the MPDP denoted by ΠQQ̃.

P

Q̃

Q
ΠPQ

ΠPQ̃ ΠQQ̃

Figure 1: Considered measure changes between the physical measure P, the artificial risk-neutral measure Q,
and the swap’s pricing measure Q̃ as well as their connections with the true market prices of risk ΠPQ, the
classical market price of risk ΠPQ̃, and the MPDP ΠQQ̃.

Indeed, the MPDP is triggered by typical features of the electricity market entering the swap’s volatility.
In particular, delivery-dependent effects like seasonalities and term-structure effects play a crucial role. Fanelli
and Schmeck (2019) empirically identify seasonalities in the swap’s delivery period by considering implied
volatilities of electricity options. Renewable energy, like wind and solar energy, intensify especially the seasonal
effects mentioned before. Hence, the higher the market share of renewables, the more pronounced the MPDP
will be. This applies especially for Germany, having ambitious plans for future investments in renewable energy.
An additional property of electricity and commodity markets is the Samuelson effect (see Samuelson (1965)):
The closer we reach the end of the maturity, the more effect the volatility has. Benth and Paraschiv (2016) and
Jaeck and Lautier (2016) provide empirical evidence for the Samuelson effect in the volatility term-structure of
electricity swaps. It can also be observed in the implied volatilities of electricity options, especially far out and
in the money (see Kiesel et al. (2009)). Kemper et al. (2022) characterize the MPDP for such seasonalities and
term-structure effects within a stochastic volatility model through the variance per unit of expectation of the
delivery-dependent effects. We contribute to the literature by investigating the MPDP empirically, affected by
seasonalities and the Samuelson effect.

Further characteristics of the electricity swap market are mean-reversion and jump behavior. As mentioned
by Latini et al. (2019) and Kleisinger-Yu et al. (2020) among others, mean-reversion is an important property
of the electricity swap prices. Koekebakker and Ollmar (2005) empirically validate that the short-term price
varies around the long-term price, which confirms mean-reverting behavior. As Benth et al. (2019), we face the
problem of changing a mean-reverting process to the risk-neutral measure. We extend their measure change to
the geometric setting. We even provide a proof for stochastic volatility settings in order to address models such
as Kemper et al. (2022) and Schneider and Tavin (2018). Besides mean-reversion, Benth et al. (2019) include
jumps as an outstanding characteristic of electricity prices. In particular, they consider compound Poisson
processes under the physical measure in a mean-reverting, arithmetic setting. While extending the paper by
Kemper et al. (2022) to jumps, we establish the MPDP of jump risk whenever the jump coefficient relies on
delivery-dependent effects.

In our empirical analysis, we investigate twelve swap contracts with monthly delivery from January to
December 2019. Each swap is treated as a separate contract assuming that it is driven by an independent
Brownian motion. To this data, we fit a model indicating seasonality effects in the volatility coefficient. On the
other hand, we estimate the parameters of a Samuelson type model. In order to avoid overfitting, we restrict
ourselves to separate effects and do not consider joint effects. The estimation procedure is split in two steps:
In a first step, we identify jumps for each contract using a thresholding technique. In a second step, we give
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the model’s jump free likelihood to fit the remaining parameters by Maximum-Likelihood-Estimation (MLE).
Note that we do not perform a term-structure fit by estimating all swap prices occurring at a fixed day since
the presence of parallel contracts is limited. The objective of our analysis is not to perform an exhaustive
empirical study of swap price modeling but to provide evidence for the MPDP.

The contribution to the literature is threefold: First, we extend the paper by Kemper et al. (2022) to
the jump case under the artificial risk-neutral measure leading to an extended characterization of the MPDP
regarding diffusion and jump risk. Second, we transfer the model to the physical measure and compare the swap
prices resulting from geometric and approximated averaging as well as their risk-neutral measures revealing
the decomposition of the market price of risk into the classical one and the MPDP. Third, we investigate the
model empirically and provide empirical evidence for the MPDP in the case of two separate delivery-dependent
volatility effects.

The paper is organized as follows: Section 2 presents the geometric averaging approach under the artificial
risk-neutral measure applied to the jump-type futures curve. In addition, it presents the MPDP of diffusion and
jump risk. Section 3 introduces the model under the physical measure and identifies the decomposition of the
market price of risk. The estimation procedure and the empirical findings are presented in Section 4. Finally,
Section 5 concludes our main findings.

2 On the MPDP of Diffusion and Jump Risk

We focus on an electricity swap contract delivering 1 MWh of electricity during the agreed delivery period
(τ1, τ2]. At a trading day t ≤ τ1 before the contract expires, we denote the swap price by F (t, τ1, τ2) settled
such that the contract is entered at no cost. It can be interpreted as an average price of instantaneous delivery.
Motivated by this interpretation, we consider an artificial futures contract with price f(t, τ) that stands for
instantaneous delivery at time τ ∈ (τ1, τ2]. Note that such a contract does not exist on the market but it turns
out to be useful for modeling purposes when considering delivery periods (see, e.g., Benth et al. (2019) and
Kemper et al. (2022)).

Consider a filtered probability space (Ω,F , (Ft)t∈[0,τ ],Q), where the filtration satisfies the usual conditions.
We first model the solution of a futures contract and then derive the corresponding dynamics to avoid lacks of
existence in the presence of jumps (see Papapantoleon (2008)). At time t ≤ τ , let the logarithmic price process
of the futures contract be defined as

ln f(t, τ) = ln f(0, τ) + Y (t, τ) , (2.1)

Y (t, τ) =

∫ t

0

σ(s, τ)dWQ
s +

∫ t

0

η(s, τ)dJ̃Q
s −

∫ t

0

cQ(s, τ)ds , (2.2)

where WQ is a standard Brownian motion under Q independent of the jump process J̃Q. In particular, J̃Q is a
compound compensated jump process defined through the compensated Poisson random measure ÑQ(dt, dz) =

N(dt, dz)− `Q(dz)dt:

J̃Q
t =

∫ t

0

∫
R
zÑQ(ds, dz) , (2.3)

with Lévy measure `Q(dz) = λQG(dz), which is independent of the delivery time, and where λQ > 0 indicates the
jump intensity and G(dz) the jump size distribution. The last term of the logarithmic rate Y in Equation (2.2)
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defines its compensator under the current measure Q:

cQ(t, τ) =
1

2
σ2(t, τ) + ψQ(iη(t, τ)) , (2.4)

with initial non-random conditions f(0, τ) > 0. In addition, ψQ(ir) is the integrand of the Lévy-Khintchine
exponential and the moment generating function is defined by

ψQ(r) :=

∫
R

(erz − 1− rz) `Q(dz) . (2.5)

We assume that the futures price volatility and jump coefficients, σ(t, τ) and η(t, τ), are deterministic and that
the futures price f(t, τ) is Ft-adapted for t ∈ [0, τ ]. We further assume that they satisfy suitable integrability
and measurability conditions (see Assumption 1 in Appendix A for details) to ensure that the process in
Equation (2.1) is a Q-martingale, and that Equation (2.1) gives the unique solution to the process evolving as

df(t, τ)

f(t−, τ)
= σ(t, τ)dWQ

t +

∫
R

(
eη(t,τ)z − 1

)
ÑQ(dt, dz) . (2.6)

As σ(t, τ) depends on both, trading time t and delivery time τ , we allow for volatility structures as the
Samuelson effect or seasonalities in the delivery time, which are addressed in Section 4.2.

Following the Heath-Jarrow-Morton approach to price futures and swaps in electricity markets, the swap
price is usually defined as the arithmetic weighted average of futures prices (see, e.g., Benth et al. (2008a),
Bjerksund et al. (2010), and Benth et al. (2019)):

FA(t, τ1, τ2) :=

∫ τ2

τ1

w(u, τ1, τ2)f(t, u)du , (2.7)

for a general weight function

w(u, τ1, τ2) :=
ŵ(u)∫ τ2

τ1
ŵ(v)dv

, for u ∈ (τ1, τ2] , (2.8)

where ŵ(u) > 0 is the corresponding settlement function. Note that w defines a probability density function
with support on (τ1, τ2] since it is positive and integrates to one, that is

∫ τ2
τ1
w(u, τ1, τ2)du = 1. Hence, we denote

U as a random delivery variable with density w(u, τ1, τ2) (see also Kemper et al. (2022)). The most popular
example is given by a constant settlement type ŵ(u) = 1, such that the density becomes w(u, τ1, τ2) = 1

τ2−τ1 and
U ∼ U((τ1, τ2]) is uniformly distributed over the delivery period. This corresponds to a one-time settlement.
A continuous settlement over the time interval (τ1, τ2] is covered by a continuous discount function ŵ(u) = e−ru,
where r is the constant interest rate (see, e.g., Benth et al. (2008a)).

The arithmetic average of the futures price as in Equation (2.7) leads to tractable dynamics for the swap
as long as one assumes an arithmetic structure of the futures prices as well. This is based on the fact that
arithmetic averaging is tailor-made for absolute growth rate models. Nevertheless, if one defines the futures
price as a geometric process as in Equation (2.6), one can show that the dynamics of the swap price FA defined
through Equation (2.7) are given by

dFA(t, τ1, τ2)

FA(t−, τ1, τ2)
=
[
σ(t, τ2)−

∫ τ2

τ1

∂σ

∂u
(t, u)

w(τ, τ1, τ2)

w(τ, τ1, u)

FA(t, τ1, u)

FA(t, τ1, τ2)
du
]
dWQ

t

+

∫
R

(
eη(t,τ2)z − 1−

∫ τ2

τ1

∂eη(s,u)z

∂u

w(τ, τ1, τ2)

w(τ, τ1, u)

FA(t, τ1, u)

FA(t, τ1, τ2)
du
)
ÑQ(dz, dt) ,

(2.9)

for any τ ∈ (τ1, τ2] (see Benth et al. (2008a), cf. Chapter 6.3.1). Thus, the dynamics of the swap price is
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neither a geometric process nor Markovian, which makes it unhandy for further analysis. To overcome this
issue, Bjerksund et al. (2010) suggest an approximation in the continuous setting, which we call approximated
averaging since it is the arithmetic average of approximated logarithmic returns. Approximated averaging
maintains the martingale property meaning that the swap is a martingale whenever f is a martingale. If we
transfer the approximated averaging procedure to our jump setting, we can define the swap price process based
on approximated averaging by

dF a(t, τ1, τ2)

F a(t−, τ1, τ2)
:=

∫ τ2

τ1

w(u, τ1, τ2)
df(t, u)

f(t−, u)
du . (2.10)

In contrast, geometric averaging originates from the arithmetic average of logarithmic returns without any
need for approximations. Hence, in line with Kemper et al. (2022), we define the swap price originating from
geometric averaging by

F (t, τ1, τ2) := e
∫ τ2
τ1

w(u,τ1,τ2) ln f(t,u)du
, (2.11)

(see also Kemna and Vorst (1990)). Assume that the volatility and jump coefficients satisfy further integrability
conditions (see Assumption 2 in Appendix A). It turns out, that the resulting swap price dynamics is a geometric
process with a non-zero drift term:

Lemma 2.1. Let Assumption 2 in Appendix A be satisfied. Under the artificial pricing measure Q, the dynamics
of the swap price, defined in Equation (2.11), are given by

dF (t, τ1, τ2)

F (t−, τ1, τ2)
= E[σ(t, U)] dWQ

t +

∫
R

(
eE[η(t,U)]z − 1

)
ÑQ(dt, dz)

−
(

1

2
V [σ(t, U)] + E[ψQ(η(t, U))]− ψQ(E[η(t, U)])

)
dt ,

(2.12)

where U denotes the random delivery variable with density w(u, τ1, τ2).

Proof. Plugging Equation (2.1) into Equation (2.11) gives us

F (t, τ1, τ2) = F (0, τ1, τ2)eX̄(t,τ1,τ2) ,

where X̄(t, τ1, τ2) :=
∫ τ2
τ1
w(u, τ1, τ2) ln f(t, u)du is the swap price rate. Using the integral representation of

the futures rate process from Equation (2.1) and applying stochastic Fubini Theorem (see Protter (2005), cf.
Theorem 65, Chapter IV.6) leads to

X̄(t, τ1, τ2) =

∫ t

0

E
[
σ(s, U)

]
dWQ

s +

∫ t

0

E[η(s, U)]dJ̃Q
s −

1

2

∫ t

0

E
[
σ2(s, U)

]
ds−

∫ t

0

E[ψQ(η(s, U))]ds .

Then, Equation (2.12) follows using Itô’s formula (see, e.g., Øksendal and Sulem (2007)).

Having presented the three procedures of continuous time averaging that are used to derive the swap
from an underlying artificial futures curve, we would like to compare them. Arithmetic averaging, defined by
Equation (2.7), is tractable for arithmetic futures curves, whereas approximated averaging, defined by Equa-
tion (2.10), and geometric averaging, defined by Equation (2.11), are well suited for geometric futures curves. In
line with a series of literature (see Table 1), we follow the geometric approach. Our goal throughout this paper
is to investigate the pricing spread between geometric and approximated averaging theoretically and empirically.

Although the futures price f and the approximated F a are martingales under the pricing measure Q, the
swap price F is not a Q-martingale: Indeed, the swap price process under Q has a negative drift term consisting
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of two parts given by the swap’s variance and the difference between the averaged Lévy-Khintchine integrand
and the Lévy-Khintchine integrand of the averaged jump coefficient. Hence, using geometric averaging leads to
a new interpretation of risk related to the delivery period as we will analyze in the following.

Analogous to Kemper et al. (2022), we derive the corresponding risk-neutral measure Q̃ under which the
electricity swap price F is a martingale. For deriving the swap’s risk-neutral measure, we thus define the MPDP
extended to jumps in the following.

Definition 2.1. At time t ∈ [0, τ1], the market price of jump and diffusion risk for delivery periods associated
to the delivery period (τ1, τ2] is defined by ΠQQ̃ := (ΠQQ̃

1 ,ΠQQ̃
2 ), where

ΠQQ̃
1 (t, τ1, τ2) := −1

2

V [σ(t, U)]

E [σ(t, U)]
, (2.13)

ΠQQ̃
2 (t, τ1, τ2) := −E[ψQ(η(t, U))]− ψQ(E[η(t, U)])∫

R
(
eE[η(t,U)]z − 1

)
`Q(dz)

= −
∫
R E[eη(t,U)z]− eE[η(t,U)]z`Q(dz)∫

R
(
eE[η(t,U)]z − 1

)
`Q(dz)

. (2.14)

In particular, Π1 refers to the additional diffusion risk, which is measurable and Ft-adapted as σ(t, u) is. It
can be interpreted as the trade-off between the weighted average variance of a stream of futures, on the one
hand, and the variance of the swap, on the other hand (see also Kemper et al. (2022) for an elaboration of the
MPDP ΠQQ̃

1 and a detailed interpretation). ΠQQ̃
2 is the additional jump risk, which is the difference between

the Lévy-Khintchine integrands standardized by the swap’s jump coefficient.

Remark 2.1. (i) Note that ΠQQ̃ would be zero, whenever the volatility and jump coefficients are independent
of delivery time. For this reason, we call ΠQQ̃ the market price of risk for delivery periods (MPDP).

(ii) The MPDP of diffusion and jump risk is strengthened by delivery-dependent effects within the volatility and
jump coefficients. For example, pronounced term-structure effects or seasonalities in the delivery period
within these coefficients capture a distinct dependence on the delivery period and, consequently, lead to a
high MPDP.

(iii) ΠQQ̃
1 is in line with the MPDP for diffusion risk found in Kemper et al. (2022), where a stochastic volatility

scenario is considered.

We define a new pricing measure Q̃, such that the swap price process F (·, τ1, τ2) is a martingale. Following
Øksendal and Sulem (2007), define the Radon-Nikodym density through

ZQQ̃(t, τ1, τ2) =

2∏
j=1

ZQQ̃
j (t, τ1, τ2) , (2.15)

where

ZQQ̃
1 (t, τ1, τ2) := e−

∫ t
0

ΠQQ̃
1 (s,τ1,τ2)dW̃Q(s)− 1

2

∫ t
0

ΠQQ̃
1 (s,τ1,τ2)2ds , (2.16)

ZQQ̃
2 (t, τ1, τ2) := e

∫ t
0

∫
R ln(1−ΠQQ̃

2 (s,τ1,τ2))ÑQ(ds,dz)+
∫ t
0

∫
R

(
ln(1−ΠQQ̃

2 (s,τ1,τ2))+ΠQQ̃
2 (s,τ1,τ2)

)
`Q(dz)ds

. (2.17)

Assume that

EQ[ZQQ̃(τ1, τ1, τ2)] = 1 , (2.18)

which means that ZQQ̃(·, τ1, τ2) is indeed a martingale for the entire trading time. We will show later that the
martingale property is satisfied for suitable models such that Equation (2.18) holds true. We then define the
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new measure Q̃ through the Radon-Nikodym density

dQ̃
dQ

= ZQQ̃(τ1, τ1, τ2) , (2.19)

which clearly depends on the delivery period (τ1, τ2]. Girsanov’s theorem states that if we define the process
W Q̃ and the random measure Ñ Q̃(dt, dz) by

dW Q̃
t = dWQ

t + ΠQQ̃
1 (t, τ1, τ2)dt , (2.20)

Ñ Q̃(dt, dz) = ÑQ(dt, dz) + ΠQQ̃
2 (t, τ1, τ2)`Q(dz)dt , (2.21)

then W Q̃ is a Brownian motion under Q̃ and Ñ Q̃(·, ·) is the Q̃-compensated Poisson random measure of N(·, ·)
with compensator

(
1−ΠQQ̃

2 (s, τ1, τ2)
)
`Q(dz). Under some further assumptions, ensuring that ZQQ̃

2 stays posi-

tive and that ZQQ̃ is a true martingale (see Assumption 3 in Appendix A), a straightforward valuation leads to
the following result:

Proposition 2.1. Let Assumption 3 in Appendix A be satisfied. The swap price process F (·, τ1, τ2), defined
in (2.11), is a martingale under Q̃. The swap price dynamics are given by

dF (t, τ1, τ2)

F (t−, τ1, τ2)
= E[σ(t, U)]dW Q̃

t +

∫
R

(
eE[η(t,U)]z − 1

)
Ñ Q̃(dt, dz) , (2.22)

where W Q̃ is a Brownian motion under Q̃ and Ñ Q̃(·, ·) is the compound compensated Poisson random measure
under Q̃ with Lévy measure

(
1−ΠQQ̃

2 (t, τ1, τ2)
)
`Q(dz) for t ∈ [0, τ1].

Proof. We know by definition that ΠQQ̃
1 is a continuous adapted process that is square-integrable and ΠQQ̃

2 is
deterministic and càdlàg in time. Hence, all processes are predictable. Following Øksendal and Sulem (2007) (cf.
Theorem 1.35), we need to show that Equation (2.18) is satisfied, so that ZQQ̃ is a true martingale. Considering
the dynamics of ZQQ̃ using Itô’s formula, we have

dZQQ̃(t, τ1, τ2) = ZQQ̃(t−, τ1, τ2)

[
−ΠQQ̃

1 (t, τ1, τ2)dWQ
t −

∫
R

ΠQQ̃
2 (t, τ1, τ2)zÑQ(dt, dz)

]
,

so that ZQQ̃ is a local Q-martingale, where WQ and ÑQ(·, ·) are independent of each other. Hence, it is enough
to show, that ZQQ̃

1 and ZQQ̃
2 are true martingales. We can prove Novikov’s condition regarding the continuous

part (see, e.g., Protter (2005), cf. Theorem 41, Chapter III.8) as ΠQQ̃
1 :

EQ

[
e

1
2

∫ τ1
0 ΠQQ̃

1 (s,τ1,τ2)dWQ
s

]
= e

1
2

∫ τ1
0 ΠQQ̃

1 (s,τ1,τ2)2ds <∞ .

Hence, ZQQ̃
1 is a true martingale. Moreover, ZQQ̃

2 is a true martingale under Q since

EQ[ZQQ̃
2 (τ1, τ1, τ2)] = EQ

[
eλ

Q ∫ τ1
0 ln(1−ΠQQ̃

2 (s,τ1,τ2))ÑQ(ds,dz)
]
e
∫ τ1
0

∫
R

(
ln(1−ΠQQ̃

2 (s,τ1,τ2))+ΠQQ̃
2 (s,τ1,τ2)

)
ds

= 1 ,

where the last equality follows from the Lévy-Khintchine representation and Assumption 3 in Appendix A.
Hence, we can apply Girsanov’s Theorem (see, e.g., Øksendal and Sulem (2007), cf. Theorem 1.35) and the
assertion follows.

Note that the MPDP of diffusion and jump risk, ΠQQ̃
1 and ΠQQ̃

2 , are negative following from Jensen’s in-
equality. Hence, the geometric averaging technique induces less risk than the application of the approximated
arithmetic average for which we need to pay a cost of approximation risk.
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We would like to compare the approximated swap price F a under Q with the swap price F under Q̃. The
continuous parts of the swap price dynamics coincide since we consider a deterministic volatility structure. The
only differences are located in the compensator of the compound compensated Poisson process and the jump
coefficient. If the jump coefficient is independent of delivery time, the distribution of F a under Q and the
distribution of F under Q̃ are the same. For differences in a stochastic volatility setting, we refer to Kemper et
al. (2022). For the swap prices F and F a, both under the artificial measure Q, we have the following result:

Corollary 2.1. (i) The swap price F is always smaller or equal than FA.

(ii) The swap price F is smaller or equal than F a. The pricing spread is attained by

F a(t, τ1, τ2)− F (t, τ1, τ2) = F a(t, τ1, τ2)
[
1−D(t, τ1, τ2)

]
, (2.23)

D(t, τ1, τ2) = e−
1
2

∫ t
0
V[σ(s,U)]ds−

∫ t
0

∫
R(lnE[eη(s,U)z ]−E[η(s,U)]z)N(ds,dz) . (2.24)

Proof.

(i) The continuous arithmetic weighted average is greater than the geometric one, which directly follows from
Jensen’s inequality.

(ii) Using Equation (2.10), we find that F a(t, τ1, τ2) = eX̄
a(t,τ1,τ2), where X̄a(t, τ1, τ2) is the solution of the

following arithmetic Brownian motion:

dX̄a(t, τ1, τ2) = E[σ(t, U)]dWQ
t +

∫
R

lnE[eη(t,U)z]ÑQ(dt, dz)

−
(

1

2
E[σ(t, U)]2 +

∫
R
E[eη(t,U)z]− 1− lnE[eη(t,U)z]

)
dt .

Hence, the difference between the approximated and exact solution is given by

F a(t, τ1, τ2)− F (t, τ1, τ2) = F a(t, τ1, τ2) (1−D(t, τ1, τ2)) ,

such that F (t, τ1, τ2) = F a(t, τ1, τ2)D(t, τ1, τ2), where

D(t, τ1, τ2) = eX̄(t,τ1,τ2)−X̄a(t,τ1,τ2) = e−
1
2

∫ t
0
V[σ(s,U)]ds−

∫ t
0

∫
R lnE[eη(s,U)z ]−E[η(s,U)]zN(ds,dz) .

Since V[σ(·, U)] ≥ 0 and lnE[eη(·,U)z] ≥ E[η(·, U)]z by Jensen, it follows that D(t, τ1, τ2) ∈ (0, 1] and thus
F ≤ F a.

We conclude that arithmetic and approximated averaging lead to higher swap prices than the geometric
average. We would like to stress that D in Equation (2.24) is not affected by measure changes since it is
characterized by a drift component and a pure jump component exclusively (see also Equation (2.26)). Moreover,
note that D can be seen as stochastic discount factor, which can be used to derive the swap price F given F a.
Vice versa, consider

F a(t, τ1, τ2) = F (t, τ1, τ2)D−1(t, τ1, τ2) . (2.25)

The exponential part of D−1 can be interpreted as a price (premium) per share, which we pay for an imprecise
averaged swap. Moreover, we can see D as the price process of a non-dividend paying asset evolving as

dD(t, τ1, τ2)

D(t−, τ1, τ2)
= −1

2
V[σ(t, U)]dt+

∫
R

(
eE[η(t,U)]z

E[eη(t,U)z]
− 1

)
N(dt, dz) , (2.26)
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such that we can interpret D as a numéraire. If F a is a martingale, then F
D is also a martingale. If F is a

martingale, then F aD is a martingale (see, e.g., Shreve (2004), cf. Theorem 9.2.2). We can thus use it to price
options and other derivatives on the swap. In order to investigate the model empirically, we introduce the model
under its physical measure P in the subsequent section.

3 The Real-World Model

A typical feature of electricity prices beyond seasonalities and the Samuelson effect is the mean-reverting be-
havior (see, e.g., Benth et al. (2008a) and Benth et al. (2019)). In order to implement the drift feature and to
investigate the model empirically, we derive the futures under the physical measure P. Note that we will include
mean-reversion at the futures and thus the swap’s rate level. We then consider the resulting market prices of
risk transferring to the artificial and the swap’s risk-neutral measure.

3.1 The Swap Price under the Physical Measure

We now derive the price of a swap contract that delivers one unit of electricity during the fixed delivery period
(τ1, τ2], similar to Section 2 but now under the physical measure P. Hence, starting from the physical measure P,
the logarithmic futures price process from Equation (2.1), given by

ln f(t, τ) = ln f(0, τ) + Y (t, τ) , (3.1)

is now characterized by the futures logarithmic rate component Y under the physical measure given by

dY (t, τ) = (µ(t, τ)− κ(t)Y (t, τ)) dt+ σ(t, τ)dW P
t + η(t, τ)dJ̃P

t , (3.2)

for Y (0, τ) = 0, where W P is a Brownian motion under the physical measure P independent of the compound
compensated jump process J̃P. In particular, J̃P is defined through the P-compensated Poisson random measure
ÑP(dt, dz) = N(dt, dz) − `P(dz)dt with Lévy measure `P(dz) = λPG(dz) that is independent of delivery time.
Note that λP > 0 indicates the jump intensity under the physical measure andG(dz) is the jump size distribution.

In order to characterize the futures logarithmic rate in more detail, we introduce the following lemma.

Lemma 3.1. We assume that the coefficients satisfy suitable integrability and measurability conditions (see
Assumption 4 in Appendix A) such that the dynamics of the futures logarithmic rate are given by

d ln f(t, τ) = dY (t, τ) . (3.3)

The unique strong solution is given by

Y (t, τ) =

∫ t

0

e−
∫ t
v
κ(q)dqµ(v, τ)dv +

∫ t

0

e−
∫ t
v
κ(q)dqσ(v, τ)dW P

v +

∫ t

0

e−
∫ t
v
κ(q)dqη(v, τ)dJ̃P

v . (3.4)

Proof. The unique strong solution follows from Benth et al. (2008a) (cf. Proposition 3.1).

Hence, the futures logarithmic return is again an Ornstein-Uhlenbeck process.

Lemma 3.2. Under the Assumptions 4 and 5 in Appendix A, Equation (3.1) is the unique strong solution to
the dynamics

df(t, τ)

f(t−, τ)
= σ(t, τ)dW P

t +

∫
R

(
eη(t,τ)z − 1

)
ÑP(dt, dz) + cP(t, τ, Y (t, τ))dt , (3.5)
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where the drift-term is characterized by

cP(t, τ, Y ) = µ(t, τ)− κ(t)Y +
1

2
s2(t, τ)σ2(t, τ) + ψP(η(t, τ)) . (3.6)

Proof. Applying Ito’s formula to eY (t,τ) leads to the desired dynamics (see Øksendal and Sulem (2007), cf.
Theorem 1.16).

Note that the assumptions behind the model induce a finite second moment as well as a finite moment
generating function of the jump size distribution. We will consider later some suitable distributions for these
jump sizes.

As in the previous section, we now derive the swap prices resulting from geometric and approximated
averaging.

Lemma 3.3. Let Assumptions 4 to 6 in Appendix A be satisfied. Then, the swap price resulting from geometric
averaging is defined by

F (t, τ1, τ2) := F (0, τ1, τ2)eȲ (t,τ1,τ2) , (3.7)

where the swap’s logarithmic rate Ȳ (t, τ1, τ2) :=
∫ τ2
τ1
w(u, τ1, τ2)Y (t, u)du evolves as

dȲ (t, τ1, τ2) =
(
E[µ(t, U)]− κ(t)Ȳ (t, τ1, τ2)

)
dt+ E[σ(t, U)]dW P

t + E[η(t, U)]dJ̃P
t . (3.8)

Moreover, the swap price based on geometric averaging evolves as

dF (t, τ1, τ2)

F (t−, τ1, τ2)
= E[σ(t, U)]dW P

t +

∫
R

(
eE[η(t,U)]z − 1

)
ÑP(dt, dz) + c̃P(t, τ1, τ2, Ȳ (t, τ1, τ2))dt , (3.9)

where the drift term is given by

c̃P(t, τ1, τ2, Ȳ ) = E[µ(t, U)]− κ(t)Ȳ +
1

2
E[σ(t, U)]2 + ψP(E[η(t, U)]) . (3.10)

Proof. Following the considerations in the previous section, the swap price is defined by the geomet-
ric average in Equation (2.11). Using the notation from Lemma 2.1, Equation (3.7) follows. Using the
stochastic Fubini theorem (see Protter (2005), cf. Theorem 65), we can introduce the dynamics of Ȳ . An appli-
cation of Ito’s formula (see Øksendal and Sulem (2007), cf. Theorem 1.16) yields the desired swap dynamics.

Lemma 3.4. Let Assumptions 4 to 6 in Appendix A be satisfied. Then, the swap price dynamics based on
approximated averaging evolve as

dF a(t, τ1, τ2)

F a(t−, τ1, τ2)
= E[σ(t, U)]dW P

t +

∫
R

(
E[eη(t,U)z]− 1

)
ÑP(dt, dz) + EU [cP(t, U, Y (t, U))]dt , (3.11)

where EU [cP(t, U, Y )] = E[µ(t, U)]−κ(t)EU [Y ]+ 1
2E[σ2(t, U)]+E[ψP(η(t, U))], with EU denoting the expectation

with respect to the random delivery variable U having density w(u, τ1, τ2). The dynamics are solved by

F a(t, τ1, τ2) = F a(0, τ1, τ2)eȲ (t,τ1,τ2)+ 1
2

∫ t
0
V[σ(t,U)]dv+

∫ t
0

∫
R(lnE[eη(v,U)z ]−E[η(v,U)]z)N(dv,dz) , (3.12)

where Ȳ (t, τ1, τ2) is defined in the previous lemma.

Proof. We use the approximated averaging methodology (see Equation (2.10)) in order to derive the
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swap price evolution and apply the stochastic Fubini theorem (see Protter (2005), cf. Theorem 65) leading
to Equation (3.11). By Ito’s formula (see Øksendal and Sulem (2007), cf. Theorem 1.16), we find that
Equation (3.12) solves the dynamics.

Note that the speed of mean-reversion κ(t) has to be independent of the delivery time. This assumption
ensures that Ȳ , in Equation (3.8), is again an Ornstein-Uhlenbeck process and that the swaps’ logarithmic
rates in Equations (3.7) and (3.12) stay tractable. This is also in line with the findings in Benth et al. (2019)
(cf. Proposition 2.2) and Latini et al. (2019).

Similar to Corollary 2.1, we now evaluate the error between the exact geometric averaged swap and the
approximated version under the physical measure in the next corollary.

Corollary 3.1. The spread between the swap prices F and F a under P resulting from Lemma 3.3 and Lemma 3.4
coincides with the pricing spread from Corollary 2.1.

As the numéraire in Equation (2.26) is not affected by a change of measure, the error between the exact and
approximated swap price stays the same independent of the measure.

3.2 The Swap Price F under its Risk-Neutral Measure Q̃

In order to derive the swap’s martingale measure Q̃, we introduce the true market price of risk for the swap
price resulting from geometric averaging in the next definition:

Definition 3.1. We define the true market price of risk for the swap by ΠPQ̃ := (ΠPQ̃
1 ,ΠPQ̃

2 ), where

ΠPQ̃
1 (t, τ1, τ2) :=

E[µ(t, U)]− κ(t)Ȳ (t, τ1, τ2) + 1
2E[σ(t, U)]2

E[σ(t, U)]
, (3.13)

ΠPQ̃
2 (t, τ1, τ2) := 1−

∫
R
z`P(dz)

E[η(t, U)]∫
R
(
eE[η(t,U)]z − 1

)
`P(dz)

. (3.14)

Note that the market price of risk does not enter the jump size distribution since we restrict ΠPQ̃
2 to depend

on trading time and delivery period. Hence, the market price of jump risk affects the jump intensity only.

We follow the methodology of Benth et al. (2019) to change the measure from the physical measure P to the
swap’s risk-neutral measure Q̃. Therefore, let π = (π1, π2) be a predictable process satisfying

E
[∫ τ1

0

‖π(s, τ1, τ2)‖2 ds
]
<∞ . (3.15)

We define a new process ZPQ̃ being the unique strong solution of

dZPQ̃(t, τ1, τ2) = ZPQ̃(t−, τ1, τ2)dH(t, τ1, τ2) , (3.16)

such that ZPQ̃(0, τ1, τ2) = 1, where

dH(t, τ1, τ2) = π1(t, τ1, τ2)dW P
t + π2(t, τ1, τ2)dJ̃P

t . (3.17)

If πj satisfies Equation (3.15), then H is a well-defined square integrable martingale. Note that the process ZPQ̃

is known as the Doléans-Dade exponential of H that is explicitly given by

ZPQ̃(t, τ1, τ2) = eH(t,τ1,τ2)− 1
2

∫ t
0
π1(s,τ1,τ2)2ds

∏
0<s≤t

(1 + ∆H(s, τ1, τ2)) e−∆H(s,τ1,τ2) . (3.18)
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If ZPQ̃ is a strictly positive martingale, then we can define the equivalent probability measure Q̃ by

dQ̃
dP

= ZPQ̃(τ1, τ1, τ2) , (3.19)

where ZPQ̃ functions as the Radon-Nikodym derivative. If we further assume that EP[ZPQ̃(τ1, τ1, τ2)] = 1, then
Girsanov’s theorem (see Øksendal and Sulem (2007), cf. Theorem 1.35) states for π := −ΠPQ̃ that

W Q̃
t = W P

t +

∫ t

0

ΠPQ̃
1 (s, τ1, τ2)ds , (3.20)

is a Brownian motion with respect to Q̃ and

Ñ Q̃(dt, dz) = ÑP(dt, dz) + ΠPQ̃
2 (t, τ1, τ2)`P(dz)dt , (3.21)

is a Q̃-compensated Poisson random measure of N(·, ·).

Under the above assumptions specified later a straightforward valuation leads to the following result:

Proposition 3.1. The swap price process F defined in Equation (2.11) is a martingale under Q̃ given by

dF (t, τ1, τ2)

F (t−, τ1, τ2)
= E[σ(t, U)]dW Q̃

t +

∫
R

(
eE[η(t,U)]z − 1

)
Ñ Q̃(dt, dz) . (3.22)

We would like to investigate the consequences of our previous assumptions.

Remark 3.1. (i) The Doléans-Dade exponential in Equation (3.18) is positive if π2(s−)∆J > −1, i.e., if
ΠPQ̃

2 ∆J < 1. Hence, similar to Benth et al. (2019), we need to assume that the market price of jump risk
is bounded and deterministic over the entire time period such that ΠPQ̃

2 (t, τ1, τ2)z < 1 for `P-a.e. z ∈ R
and for each t ∈ [0, τ1].

(ii) If Y is driven by a compensated Poisson process only, then the swap’s market price of risk is attained by
ΠPQ̃ := (0,ΠPQ̃

2 ), where

ΠPQ̃
2 (t, τ1, τ2) := 1−

E[η(t, U)]
∫
R z`

P(dz)∫
R
(
eE[η(t,U)]z − 1

)
`P(dz)

+
E[µ(t, U)]− κ(t)Ȳ (t, τ1, τ2)∫

R
(
eE[η(t,U)]z − 1

)
`P(dz)

. (3.23)

In this setting, we need to require that κ(t) ≡ 0.

Note that a positive local martingale is a supermartingale. Hence, in order to prove that the Radon-Nikodym
density ZPQ̃ is a true martingale, it is sufficient to verify that EP[ZPQ̃(τ1, τ1, τ2)] = 1 is satisfied, which is proven
in the next proposition.

Proposition 3.2. Under Assumption 7 in Appendix A, the process ZPQ̃ defined by Equation (3.16) is a strictly
positive true martingale.

Proof. In Appendix B, we prove this proposition even in a stochastic volatility framework.
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3.3 The Approximated Swap Price F a under the Artificial Risk-Neutral Measure

We introduce the classical market price of risk for the approximated swap price in the next definition.

Definition 3.2. We define the classical market price of risk for the approximated swap by ΠPQ := (ΠPQ
1 ,ΠPQ

2 ),
where

ΠPQ
1 (t, τ1, τ2) :=

E[µ(t, U)]− κ(t)Ȳ (t, τ1, τ2) + 1
2E[σ2(t, U)]

E[σ(t, U)]
, (3.24)

ΠPQ
2 (t, τ1, τ2) := 1−

∫
R
z`P(dz)

E[η(t, U)]∫
R
(
E[eη(t,U)z]− 1

)
`P(dz)

. (3.25)

Note that we assume that the market price of jump risk affects the jump intensity only. The market price of
risk does not enter the jump size distribution since we restrict ΠPQ

2 to depend on trading and delivery period.

Similar to the last subsection, we can define the equivalent (artificial) probability measure Q by

dQ
dP

= ZPQ(τ1, τ1, τ2) , (3.26)

where ZPQ functions as the Radon-Nikodym derivative characterized by πj := −ΠPQ
j . If we further assume that

EP[ZPQ(τ1, τ1, τ2)] = 1, then Girsanov’s theorem (see Øksendal and Sulem (2007), cf. Theorem 1.35) states that

WQ
t = W P

t +

∫ t

0

ΠPQ
1 (s, τ1, τ2)ds , (3.27)

is a Brownian motion with respect to Q and

ÑQ(dt, dz) = ÑP(dt, dz) + ΠPQ
2 (t, τ1, τ2)`P(dz)dt , (3.28)

is a Q-compensated Poisson random measure of N(·, ·).

Under the above assumptions a straightforward valuation leads to the following result:

Proposition 3.3. The approximated swap price process F a defined in Equation (2.10) is a martingale under
Q given by

dF a(t, τ1, τ2)

F a(t−, τ1, τ2)
= E[σ(t, U)]dWQ

t +

∫
R

(
E[eη(t,U)z]− 1

)
ÑQ(dt, dz) . (3.29)

We refer to Section 3.2 for the consequences of the assumptions made above.

3.4 The Decomposition of the Market Price of Risk

We now introduce the decomposition of the true market price of risk, from Definition 3.1, which finally connects
the classical market price of risk, specified in Definition 3.2, and the MPDP, defined in Definition 2.1. The
decomposition result is stated in the next proposition.

Proposition 3.4. The swap’s true market price of risk, ΠPQ̃, resulting from geometric averaging (see Defini-
tion 3.1), decomposes into

ΠPQ̃
j (t, τ1, τ2) = ΠPQ

j (t, τ1, τ2) + Π̄QQ̃
j (t, τ1, τ2) , for j = 1, 2 , (3.30)
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where ΠPQ
j is specified in Definition 3.2 and Π̄QQ̃

j defines the spread of diffusion and jump risk. More precisely,

Π̄QQ̃
1 = −1

2

V[σ(t, U)]

E[σ(t, U)]
, (3.31)

Π̄QQ̃
2 = −E[η(t, U)]

∫
R
zG(dz)

∫
R E[eη(t,U)z]− eE[η(t,U)]zG(dz)∫

R
(
E[eη(t,U)z]− 1

)
G(dz)

∫
R
(
eE[η(t,U)]z − 1

)
G(dz)

, (3.32)

where Π̄QQ̃
2 is independent of the jump intensity.

Proof. The result is attained by subtracting the true market price of risk defined in Definition 3.1 from the
classical market price of risk defined in Definition 3.2.

Hence, we found a representation of the true market price of risk of the swap price F , characterized by the
classical market price of risk of the approximated swap F a and the spread Π̄QQ̃

j . We further investigate the
spread in the next lemma.

Lemma 3.5. (i) The spread of diffusion risk, Π̄QQ̃
1 (t, τ1, τ2), is negative for all trading times t ∈ [0, τ1].

(ii) If the average jump size is positive, i.e., if E[Z] > 0, then the spread of jump risk, Π̄QQ̃
2 , is always negative.

(iii) If the volatility is independent of the delivery, i.e., if σ(t, u) ⊥⊥ u, then the spread of diffusion risk is zero,
i.e., Π̄QQ̃

1 (t, τ1, τ2) ≡ 0.

(iv) If the jump coefficient is independent of the delivery, i.e., if η(t, u) ⊥⊥ u, then the spread of jump risk is
zero, i.e., Π̄QQ̃

2 (t, τ1, τ2) ≡ 0.

Proof. The results in (i) and (ii) follow directly from Jensen’s inequality. The results in (iii) and (iv) follow
from the fact that the numerator becomes zero whenever the delivery period disappears.

As a result, whenever the spread Π̄QQ̃
j is negative for j = 1, 2, then the approximated swap induces more risk

than the swap price based on geometric averaging. In particular, the considered spread has the same properties
as the MPDP (see Kemper et al. (2022)). Indeed, a comparison with our previous considerations in Section 2
gives the following insights:

Remark 3.2. (i) The spread of diffusion risk, Π̄QQ̃
1 , coincides with the MPDP of diffusion risk, ΠQQ̃

1 , in
Equation (2.13) from Section 2.

(ii) The spread of jump risk, Π̄QQ̃
2 , does not coincide with the MPDP of jump risk, ΠQQ̃

2 , from Equation (2.14)
but with ΠQQ̃

2 (1−ΠPQ
2 ). This connection occurs naturally by the change of measure.

In a next step, we would like to characterize the MPDP of diffusion risk ΠQQ̃
1 , and thus the spread, more

explicitly. The MPDP of diffusion risk arises through delivery-dependent volatility effects such as seasonality
in delivery periods and the Samuelson effect (see Kemper et al. (2022)). We state the corresponding MPDP in
the following two examples while assuming a one-time settlement such that w(t, τ1, τ2) = 1

τ2−τ1 .

Example 3.1. Inspired by Fanelli and Schmeck (2019), we capture seasonality in the delivery period by the
following trigonometric function

S1(u) := a+ b cos(2π(u+ c)) , (3.33)

for a > b > 0 and c ∈ [0, 1). Setting σ(t, u) = S1(u) in Equation (2.13) leads to the following MPDP of diffusion
risk

ΠQQ̃
1 (t, τ1, τ2) = −1

2

V[S1(U)]

E[S1(U)]
, (3.34)
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where

E[S1(U)] = a+
b

2π(τ2 − τ1)

[
sin(2π(u+ c))

]u=τ2

u=τ1
, (3.35)

E[S1(U)2] = a2 +
b2

2
+

ab

π(τ2 − τ1)

[
sin(2π(u+ c))

]u=τ2

u=τ1
+

b2

8π(τ2 − τ1)

[
sin(4π(u+ c))

]u=τ2

u=τ1
. (3.36)

Example 3.2. We implement the Samuelson effect as in Schneider and Tavin (2018) through an exponential
function with exponential damping factor Λ > 0. We choose a constant volatility λ̄ > 0 such that the delivery-
dependent function is attained by

S2(u− t) := λ̄e−Λ(u−t) . (3.37)

Setting σ(t, u) = S2(u− t) in Equation (2.13) yields the following MPDP of diffusion risk

ΠQQ̃
1 (t, τ1, τ2) = −1

2

¯̄Λ− Λ̄2

Λ̄
e−Λ(τ1−t) , (3.38)

for constant parameters Λ̄ := λ̄(1−e−Λ(τ2−τ1))
Λ(τ2−τ1) and ¯̄Λ := λ̄2(1−e−2Λ(τ2−τ1))

2Λ(τ2−τ1) .

Hence, the MPDP of diffusion risk is constant for a fixed contract in Example 3.1, whereas the Samuelson
effect remains still visible in Example 3.2.

The MPDP of jump risk and the spread of jump risk are triggered by delivery-dependent jump effects. For
notational convenience, we choose η(t, u) independent of trading time and again assume a one-time settlement.
In the following examples, we characterize the MPDP of jump risk and the spread based on two suitable jump
size distributions: Normal and exponential. We also state corresponding moments of the distributions following
Gray and Pitts (2012) (cf. Chapter 2).

Example 3.3. If the jump sizes are normally distributed with Z ∼ N (µJ , σ
2
J), then the moment generating

function is given by

MZ(η) = eµJη+ 1
2σ

2
Jη

2

, (3.39)

such that the MPDP and the spread in Equations (2.14) and (3.32) are given by

ΠQQ̃
2 (τ1, τ2) = −E[e

1
2η

2(U)σ2
J+η(U)µJ ]− e 1

2E[η(U)]2σ2
J+E[η(U)]µJ

e
1
2E[η(U)]2σ2

J+E[η(U)]µJ − 1
, (3.40)

Π̄QQ̃
2 (τ1, τ2) = −µJE[η(U)]

E[e
1
2η

2(U)σ2
J+η(U)µJ ]− e 1

2E[η(U)]2σ2
J+E[η(U)]µJ(

E[e
1
2η

2(U)σ2
J+η(U)µJ ]− 1

)(
e

1
2E[η(U)]2σ2

J+E[η(U)]µJ − 1
) . (3.41)

The fourth moment is attained by
∫
R z

4G(dz) = µ4
J + 6µ2

Jσ
2
J + 3σ4

J .

Example 3.4. If the jump sizes are exponentially distributed with Z ∼ Exp(λJ), for λJ > 0, then the moment
generating function is given by

MZ(η) =

(
1− η

λJ

)−1

, (3.42)
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for η < λJ , such that the MPDP and the spread in Equations (2.14) and (3.32) are given by

ΠQQ̃
2 (τ1, τ2) = − λJ

E[η(U)]

(
1− E

[
λJ − E[η(U)]

λJ − η(U)

])
, (3.43)

Π̄QQ̃
2 (τ1, τ2) =

E[η(U)]E[ 1
λJ−η(U) ]

E[ η(U)
λJ−η(U) ]

− 1 , (3.44)

defined for η(U) < λJ and E[η(U)] < λJ . The n-th moment is attained by
∫
R z

nG(dz) = n!
λnJ

for n ∈ N. Note
that the parameter in matlab is indicated by the mean µJ = λ−1

J .

Remark 3.3. In the literature, we sometimes find the application of lognormal distributed jump sizes (see,
e.g., Borovkova and Permana (2006) and Borovkova and Schmeck (2017)). This distribution, however, is not
suitable for our setting since its moment generating function E[eηZ ] is not finite at any positive value η (see,
e.g., Gray and Pitts (2012), cf. Chapter 2.2.6). Hence, the lognormal distribution contradicts the integrability
assumption 4 (i) under the physical measure in Appendix A.

4 Empirical Analysis

In this section, we aim to provide empirical evidence for the MPDP of monthly electricity swap contracts.
We therefore extend our model to a multi-dimensional framework and discretize the model under the physical
measure. In particular, we consider two types of delivery-dependent functions covering seasonality and the
term-structure effects. We then proceed estimating the model’s parameter values. In a first step, jumps are
filtered by a thresholding method. In a second step, we fit the remaining parameters by Maximum-Likelihood-
Estimation (MLE).

4.1 The Multidimensional Model

In the previous sections, we considered a single tradable swap contract delivering electricity over the interval
(τ1, τ2]. Typically, however, we observe more than one traded delivery period. We therefore extend our model
under the physical measure P from Section 3 to a multi-dimensional setting covering subsequent monthly
delivery periods. More precisely, we would like to handle M swaps simultaneously in this section comprising
delivery periods (τm, τm+1] for m = 1, . . . ,M . For notational convenience, we always refer to all swap contracts
m = 1, . . . ,M , when using the index m. We follow the methodology presented by Kemper et al. (2022) who
suggest a single artificial futures price (similar to Equation (3.1)) expanded by several factors in the logarithmic
return component Y :

dY (t, τ) = (µ(t, τ)− κ(t)Y (t, τ)) dt+

M∑
j=1

1j∈T σ(t, τ)dW P,j
t +

M∑
j=1

1j∈T η(t, τ)dJ̃P,j
t , (4.1)

where W P,1, . . . ,W P,M are independent Brownian motions under the physical measure P and J̃P,1, . . . , J̃P,M are
independent compound compensated jump processes defined through JP,j

t =
∫
R zÑ

P
j (dt, dz) and the compen-

sated Poisson random measures ÑP
j (dt, dz) = Nj(dt, dz)−`Pj (dz)dt with the same compensator `Pj (dz) = λPG(dz)

for j = 1, . . . ,M . In addition, we restrict the j-th component to a set T that might influence certain contracts
exclusively.

As in Section 2, the swap price with delivery period (τm, τm+1] results from geometric averaging of Equa-
tion (4.1) with respect to the delivery time. Hence, similar to our previous considerations in Lemma 3.3, we
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state the dynamics of the logarithmic return of a swap contract with delivery time (τm, τm+1] by

dȲ (t, τm, τm+1) =
(
E[µ(t, Um)]− κ(t)Ȳ (t, τm, τm+1)

)
dt

+

M∑
j=1

1j∈T E[σ(t, Um)]dW P,j
t +

M∑
j=1

1j∈T E[η(t, Um)]dJ̃P,j
t ,

(4.2)

where Um ∼ U((τm, τm+1]) is a random variable with density w(·, τm, τm+1). To keep the model simple, we
choose T := {m}, η ≡ 1, and κ independent of time such that

dȲ (t, τm, τm+1) =
(
E[µ(t, Um)]− κȲ (t, τm, τm+1)

)
dt+ E[σ(t, Um)]dW P,m

t + dJ̃P,m
t . (4.3)

Hence, we assign separate dynamics for each monthly swap contract.

Remark 4.1. Note that we set η ≡ 1 in Equation (4.3), thus, excluding any delivery dependence in the jump
component. Consequently, the MPDP of jump risk becomes zero by construction to turn the focus on the first
dimension of the MPDP.

4.2 The Discretized Model

In order to discretize the model of Section 3 under the physical measure P, we follow the Euler-type discretization
procedure with step size ∆t = 1

252 . Furthermore, we implement the discretization of jumps as in Johannes and
Polson (2010) (cf. Chapter 5.1.3). The discretized logarithmic returns of the swap from Equation (4.3) are
denoted by yt ∈ RM , with yt,m := Ȳ (t, τm, τm+1), and are given by

yt+∆t = φ̄ · yt + µ̄t∆t+ σ̄t
√

∆tεt+∆t + ZJt+∆t , (4.4)

for t = 1, . . . , Tm, where we denote Tm as the length of the time series with delivery during (τm, τm+1]. Moreover,
ε ∼ N (0,1) is a standard normal distributed random variable, where 0 is an M -dimensional vector of zeros and
1 is theM×M -dimensional identity matrix. Further, Z is a random variable with distribution G characterizing
the jump sizes. Moreover, J is an independent M -dimensional Bernoulli distributed random variable with
parameter λP∆t1 ∈ RM determining a jump, where 1 is an M -dimensional vector of ones. Moreover, the
coefficients to be estimated are µ̄t ∈ RM , where µ̄t,m = E[µ(t, Um)]− E[η(t, Um)]λPE[Z], φ̄ = 1 − κ ∈ RM , and
σ̄t ∈ SM , which is a diagonal volatility matrix with diagonal entries σ̄t,m = E[σ(t, Um)].

Remark 4.2. By stationarity of the underlying Poisson process, the probability of the absence of a jump during
a time step ∆t is given by e−λ

P∆t. Merton (1976) reformulates this in terms of short time asymptotic behavior
using 1− λP∆t+O(∆t). Therefore, Johannes and Polson (2010) assume the jumps to be Bernoulli distributed
in the discretized setting, that is

P[Jmt+∆t = 1] = λP∆t and P[Jmt+∆t = 0] = 1− λP∆t , (4.5)

where at most one jump can occur during a time interval ∆t. We follow their approach assuming Jmt+∆t ∼
Ber(λP∆t) for m = 1, . . . ,M .

Remark 4.3. By construction, the contracts are independent of each other. We justify this assumption since
the drivers of forthcoming contracts do not influence dynamics of the other contracts that deliver electricity
further ahead due to their non-storability.

We refer to Kemper et al. (2022) (cf. Section 4) for further insights on multiple and overlapping swap
contracts. We make the following assumption in order to reduce the number of parameters and thus to avoid
overfitting.
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Assumption 4.1. We assume that µ(t, u) = µσ(t, u) for t ∈ [0, τm] and u ∈ (τm, τm+1] and all m = 1, . . . ,M .

Due to the low interest rate level, we make further assumptions on the settlement type.

Assumption 4.2. We assume that Um ∼ U((τm, τm+1]), which induces a one-time settlement for all contracts
m = 1, . . . ,M .

Based on these assumptions, we consider two types of delivery-dependent functions, which will be investigated
empirically. We consider the seasonality type from Example 3.1, which induces the seasonality function S1(u)

that is independent of trading time and we refer to it as Type 1. Moreover, we investigate the Samuelson type
model from Example 3.2 depending on time to maturity and refer to it as Type 2.

Type 1. The model of “seasonality type” is based on Example 3.1. Under Assumptions 4.1 and 4.2, the
coefficients of Equation (4.4) become

φ̄ = 1 − κ∆t ,

µ̄ = µ (E[S1(U1)], . . . ,E[S1(UM )])
> − λPE[Z]1 ,

σ̄ = diag (E[S1(U1)], . . . ,E[S1(UM )])
>
.

Type 2. The model of “Samuelson type” follows Example 3.2. Under Assumptions 4.1 and 4.2, the coefficients
of Equation (4.4) become

φ̄ = 1 − (κ− Λ)∆t ,

µ̄t = µΛ̄
(
e−Λ(T1−t)∆t, . . . , e−Λ(TM−t)∆t

)>
− λPE[Z]1 ,

σ̄t = Λ̄ diag
(
e−Λ(T1−t)∆t, . . . , e−Λ(TM−t)∆t

)>
.

We fit both types to the data presented in Section 4.4 using the method described in the following section.

4.3 The Method

We use the dataset described later in Section 4.4 to estimate our discretized model of Types 1 and 2 within a
two-step procedure.

In a first step, we filter jumps by the thresholding procedure as presented in Borovkova and Schmeck (2017).
They define certain upper and lower boundaries in which all logarithmic returns are assumed to be normally
distributed. If such a boundary is passed, the corresponding logarithmic return is identified as a jump. We
use a time window of two weeks (10 data points) and a threshold 1.96 associated with 95% of standard-normal
distribution. The annualized jump intensity is typically derived as the total number of identified jumps appearing
in each contract divided by the annualized number of observations (see also Benth et al. (2012)). We define
the annualized jump intensity λP as the mean intensity over all contracts so that the intensity is independent
of the delivery time.

We fit the identified jump sizes of all twelve contracts jointly and assume that they follow the same jump
size distribution G. Indeed, the number of identified positive and negative jumps per contract might be too
small for separate estimations. In particular, we consider two different types of jump size distributions: Normal
and exponential distribution. The normal distribution is embraces real-valued variables, whereas exponential
distribution covers positive variables only. Consequently, we split the jump part into two independent jump
components for the ladder distribution to take negative jumps into account as well. In particular,

ZJt+∆t = Z+J+
t+∆t − Z

−J−t+∆t , (4.6)
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where Z+, Z− > 0 are the absolute values of positive and negative jump sizes and J+
t+∆t, J

−
t+∆t are

M -dimensional Bernoulli distributed random variables with positive parameters λP+∆t1 and λP−∆t1,
respectively, which are derived analogously as explained before. In addition, we determine the joint jump
compensator and the moment generating function as an intensity weighted sum λPE[Z] = λP+E[Z+]−λP−E[Z−]

and λPE[eZ ] = λP+E[eZ
+

] − λP−E[eZ
−

], whenever we split into positive and negative jumps. We employ the
first window of the thresholding procedure as a training period, which should be excluded from the data used
to estimate the parameters in the second step. Otherwise, the thresholding procedure might not exclude all
jumps, especially within the first half of the considered training period.

In a second step, we fit the jump free logarithmic returns ȳt+∆t := yt+∆t−ZJt+∆t using the MLE technique
to obtain the remaining parameter estimates. In particular, the likelihood is expressed in terms of the conditional
probability density function

L(ȳm; Θm) =

Tm∏
j=1

pΘm(ȳj,m|{ȳ1,m, . . . , ȳj−1,m}) , (4.7)

where Θ is the set of parameters, and pΘm(ȳj,m|{ȳ1,m, . . . , ȳj−1,m}) determines the conditional probability
density function for contract m at data point j. For each type, we characterize the density more precisely.

Type 1. The jump free model of seasonality type is characterized by ȳj,m|{ȳ1,m, . . . , ȳj−1,m} ∼ N (µ̄m∆t +

φ̄mȳj−1,m, σ̄
2
m∆t) having a conditional probability density function given by

pΘm(ȳj,m|{ȳ1,m, . . . , ȳj−1,m}) = (2πσ̄2
m∆t)−

1
2 exp

{
− 1

2σ̄2
m∆t

(
ȳj,m − µ̄m∆t− φ̄mȳj−1,m

)2}
,

where the set of parameters is defined by Θm := {µ̄m, φ̄m, σ̄2
m} subject to φ̄m < 1, σ̄2

m > 0, and µ̄m ∈ R. We
recalibrate the parameters to characterize κ, µ, and σ̄ accordingly.

Type 2. The jump free model of Samuelson type induces ȳj,m|{ȳ1,m, . . . , ȳj−1,m} ∼ N (µ̄j,m∆t +

φ̄mȳj−1,m, σ̄
2
j,m∆t) such that the conditional probability density function is given by

pΘm(ȳj,m|{ȳ1,m, . . . , ȳj−1,m}, λPE[Z]) = (2πσ̄2
j,m∆t)−

1
2 exp

{
− 1

2σ̄2
j,m∆t

(
ȳj,m − µ̄j,m∆t− φ̄mȳj−1,m

)2}
,

where the set of parameter values Θm := {µm, φ̄m, Λ̄2
m,Λm} is subject to φ̄m < 1, Λ̄2

m,Λm > 0, and µm ∈ R.
Note that µ̄ depends on λPE[Z], as defined in Type 2, which we already know from the first step and is
therefore used as an input. We recalibrate the parameters to characterize κ, µ,Λ, and λ̄ accordingly.

The optimization procedure is implemented in Matlab using the simulannealbnd function based on simu-
lated annealing (see Goffe et al. (1994), also used by Schneider and Tavin (2018)).

4.4 Description of the Dataset

We consider twelve electricity swap contracts with monthly delivery periods in 2019 traded at EEX. In
particular, we work with time series of the Phelix Base Monthly Energy Futures1 from May 2nd, 2018 to
November 29th, 2019, spanning on average about 150 data points before the contract expires. We use weekday
prices to exclude weekend effects.

1Note that the name Futures refers in our context to swap contracts.
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We provide an overview over the general characteristics of each electricity swap contract in Table 2,
including the start and maturity of the available time series, the range of available trading time, the amount
of assessable data points, minimum, maximum, average prices, and the average standard deviation. For some
contracts, we have data covering a longer trading horizon, especially October. On the contrary, for some
contracts, we have a very short trading horizon available, like November and December. The average prices are
highest in the first quarter of the year. The standard deviations computed over all monthly contracts range
from 2.863 to 6.396, appearing highest for winter and summer months like January, February, and June.

Figure 2 depicts the time series of prices and logarithmic returns for each swap contract with respect to
time to maturity. Note that the histograms and the logarithmic returns for each contract can be found in
Appendix C. The plotted prices sometimes display a constant behavior at the beginning of the trading time.
This might indicate an illiquid market. In Figure 2 (c), we clearly observe jump behavior not only close to
delivery but over the whole trading horizon. For this reason, we formally test the swap’s logarithmic returns on
normality using Matlab’s Lilliefors test lillietest. The test returns a decision for the null hypothesis that the
data comes from a normal distribution. We summarize our test results in Table 3, where 0 indicates a failure to
reject the null hypothesis of normal distributed logarithmic returns at significance level 0.05. It turns out that
except from March, April, June, and December, all swap contracts reject the normal hypothesis. The histogram
and the logarithmic returns for each contract in Appendix C give an intuition on the normal distribution
fit. In addition, we tested the mean-reverting behavior using the Augmented Dickey-Fuller test adftest

for autocorrelation, where 1 indicates mean-reverting effects whenever the p-value is below the significance
level 0.05. Indeed, all swap contracts reject the null hypothesis so that mean-reverting behavior is clearly present.

Next, we move on to the results of the two-step estimation procedure. Given the parameter estimates, we
will be able to calculate the MPDP.
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Figure 2: Time series for prices and logarithmic returns of all monthly electricity swap contracts maturing in
2019 plotted with respect to time to maturity.
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Contracts Starting Date Maturity Data Points Minimum Maximum Average Price Standard Deviation
January 02-05-2018 31-12-2018 174 44.89 68.89 56.75 6.396
February 31-05-2018 31-01-2019 176 48.19 67.25 58.43 5.210
March 02-07-2018 28-02-2019 174 37.95 58.10 49.86 4.205
April 31-07-2018 29-03-2019 174 35.67 54.05 46.80 4.758
May 31-08-2018 12-04-2019 161 35.66 50.60 44.58 3.240
June 30-11-2018 31-05-2019 131 35.38 55.40 44.93 5.148
July 02-01-2019 28-06-2019 128 35.56 52.63 43.59 4.462
August 07-01-2019 31-07-2019 148 36.85 47.03 41.43 2.863
September 07-01-2019 30-08-2019 170 37.95 50.21 43.32 3.150
October 07-01-2019 30-09-2019 191 39.65 54.24 45.21 3.430
November 22-07-2019 31-10-2019 74 42.06 56.01 48.37 3.379
December 22-07-2019 29-11-2019 95 37.24 52.37 44.65 3.817
Average – – 149.67 38.92 55.57 47.33 4.171

Table 2: General characteristics of the Phelix Base Monthly Energy Futures dataset.

Contracts Normality Test Mean-Reversion Test
Decision lillietest p-value Decision adftest p-value

January 1 0.011 1 0.001
February 1 0.046 1 0.001
March 0 0.152 1 0.001
April 0 0.387 1 0.001
May 1 0.001 1 0.001
June 0 0.188 1 0.001
July 1 0.001 1 0.001
August 1 0.001 1 0.001
September 1 0.001 1 0.001
October 1 0.001 1 0.001
November 1 0.018 1 0.001
December 0 0.055 1 0.001

Table 3: Test results for normality and mean-reversion at significance level 0.05. (lillietest h=1 indicates
rejection of normal distribution. adftest h=1 indicates an AR(1) model with drift coefficient.) Note that the
adftest returns minimum (0.001) or maximum (0.999) p-values if the test statistics are outside the tabulated
critical values.

4.5 Results

In this section, we present the results of the empirical analysis of the swap price data presented in Section 4.4
based on the two-step procedure outlined in Section 4.3.

Step I. We identify the jumps as described in Section 4.3. The procedure is visualized in Figure 3, exemplified
for January and July. The dotted lines indicate the 95% band of normal distribution based on the moving mean
depicted in dashed. Whenever the swap’s logarithmic return, in solid line, exceeds the threshold, a jump is
identified and highlighted with a red star. The total number of jumps is higher in January than in July. This
does not only result from the longer trading time since the annualized jump intensity in January is also higher
(see Figure 4 (a) and Table 4).

On average, we can identify 14 jumps per contract. This leads to an annualized average intensity λP of
almost 25 jumps per year (see Table 4 and Figure 4 (a)). Note the seasonal pattern in the monthly jump
intensities: From January, June, July, November, and December the annualized intensity is higher than the
average intensity. Hence, we observe a higher intensity during winter and summer months. For the scope of
this paper, however, we will assume a constant jump intensity λP = 24.811, which is the mean of all annualized
jump intensities (indicated in red in Figure 4 (a)).
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We identify all jumps regarding time to maturity in Figure 4 (b). We observe many small jumps and 5–8
large jumps in each direction, so that jump size distributions with high tails might be useful. In Figure 4 (c),
we plot the accumulated jump numbers with respect to time to maturity until 74 days before the contracts
expire, i.e., when all contracts are available. Note that the linear behavior indicates a constant intensity so
especially no term-structure effects. In blue, we observe the accumulated number of all jumps, in red of all
positive jumps, and in yellow of all negative jumps. We observe in total 169 jumps from which 85 are positive
and 84 are negative. There seems to be no indication for a Samuelson effect within the jump intensity since
there is no higher amount of jumps the closer we reach the end of the maturity. In fact, the accumulated jump
number seems rather linear. Further plots on the jump identification can be found in Appendix D.

Having identified all jumps, we are interested in finding the best jump size distribution. Borovkova and
Permana (2006) find that the exponential distribution gives a good fit for jump sizes of electricity spot prices.
Borovkova and Schmeck (2017) identify a lognormal or exponential distribution for negative jumps and an
exponential distribution for positive jumps in their electricity spot price dataset, whereas Hinderks et al. (2020)
suggest a gamma distribution. Normally distributed jumps are rarely considered in electricity markets due to
their flat tails but used in stock markets (see, e.g., Merton (1976)) and in the setting of commodity markets
(see, e.g., Crosby and Frau (2022)). For the sake of comparison, we consider two distributions: Normal and
exponential. Note that we fit the jump sizes jointly for all contracts since for some contracts the number of
identified jumps is too little. For example, the November contract has three positive jumps.

In Figure 5, we consider all identified jumps jointly for all contracts and estimate parameters for normal jump
sizes. Both, histogram and QQ-plot, confirm that the normal distribution underestimates the fat-tail risk (both,
positive and negative). This is also reflected in the p-value as the parameter of the mean is not significantly
below 0.05. In Figure 6, we consider positive and negative jumps separately for exponentially distributed jump
sizes. From the QQ-plot, we observe again outliers on the tails but not as extreme as in the normal distribution.
We find that the exponential distribution fits well according to the p-values, which are significantly below 0.05.
A gamma distribution would require two parameters to describe the data. We also checked the gamma fit
empirically and received similar results. Since the exponential distribution can explain the jump size sufficiently
well with one parameter, we base our analysis on the exponential distribution in Step II.

In Table 5, we summarize the estimated jump intensities and the average of each distribution. The annualized
average intensity of all jumps is 25 consisting of a jump frequency around 11.991 for positive and around 12.820
for negative jumps. Hence, the intensity for positive jumps is sightly lower than for negative jumps. The
average jump sizes range from 0.0005 to 0.0212. Moreover, we observe that negative jump sizes are smaller on
average than the positive jumps. As outlined before, the exponential distribution fits better than the normal
distribution. Thus, we set the jump compensator used in Step II, to be λPE[Z] = −0.0086 for all contracts.
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Figure 3: Identified jumps by thresholding using a time window of 10 days (exemplified for January and July).
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(a) Annualized Jump Intensity λP
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Figure 4: Subfigure (a): Annualized jump intensity per electricity swap contract. Subfigure (b): Identified
jumps of all contracts with respect to time to maturity. Subfigure (c): Accumulated number of positive and
negative jumps of all contracts with respect to time to maturity.
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(b) QQ-Plot for Normal Fit
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Figure 5: Histogram and QQ-Plot of all identified jumps for all contracts fitted with a normal distribution.
(p-value of µJ : 0.8965 and p-value of σJ : 8.4341e-66.)

(a) QQ-Plot for Exponential Fit of Positive Jumps
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(b) QQ-Plot for Exponential Fit of Negative Jumps
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Figure 6: QQ-Plots of positive and negative jumps over all contracts. (Positive jumps – p-value of µJ : 3.11536e-
18. Negative jumps – p-value of µJ : 4.91286e-18.)
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Contracts # Jumps λP # Positive Jumps λP+ # Negative Jumps λP−

January 23 33.310 15 21.724 8 11.586
February 16 22.909 10 14.318 6 8.591
March 14 20.276 6 8.690 8 11.586
April 16 23.172 6 8.690 10 14.483
May 10 15.652 5 7.826 5 7.826
June 17 32.702 8 15.389 9 17.313
July 13 25.594 7 13.781 6 11.812
August 11 18.730 6 10.216 5 8.514
September 11 16.306 8 11.859 3 4.447
October 15 19.791 6 7.916 9 11.874
November 11 37.459 3 10.216 8 27.243
December 12 31.832 5 13.263 7 18.568
Average 14.083 24.811 7.083 11.991 7 12.820

Table 4: Identified total, positive, and negative number of jumps in the logarithmic returns of each contract
and its annualized jump intensities λP, λP+, and λP−.

Intensity Normal E[Z] Exponential E[Z]

Positive λP+ = 11.991 – 0.0212
Negative λP− = 12.820 – 0.0205
Total λP = 24.811 0.0005 –

Table 5: Estimated components of the jump compensator: Intensity and mean of jump sizes.

Step II. For each contract, we fit the jump free logarithmic returns by maximizing the likelihood in Equa-
tion (4.7). For both types of models (Type 1 and Type 2), the parameter estimates can be found in Table 6. The
seasonality function E[S1(U)] resulting from Equation (3.35) is characterized by the parameter values in Table 7
and depicted in Figure 7 (a). The Samuelson function E[S2(U − t)] resulting from Λ̄e−Λ(τ1−t) (see Example 3.2)
is visualized in Figure 7 (b) for each contract. In particular, we fit the resulting σ̄ to the seasonality curve (see
Table 7).

In Table 6, we observe that the speed of mean-reversion κ is very high for both models so that the half life
lies within one day. The level on mean-reversion µ is often around zero and in November and December negative
for both models: It is the smallest in December in both cases. One possible explanation for this observation
might be the uncertainty regarding the availability of electricity especially for heating intense seasons. The
volatility σ̄ ranges from 0.2303 in September to 0.2726 in February.

Remark 4.4. In Figure 7 (a), we observe rather flat seasonal behavior. The seasonality might be covered by
the identified jumps, which are already excluded from the data in this step.

For the Samuelson type model, we observe that the average volatility λ̄ is higher than the one of seasonality
type σ̄. This can be explained by the Samuelson effect, which dampens the volatility such that it has to
be higher. Note that λ̄ is smallest in June and highest in October connected with a relatively low or very
high Samuelson parameter, respectively. Indeed, we observe the highest Samuelson parameter Λ in October in
connection with the highest volatility. This combination leads to a very pronounced Samuelson effect visualized
in Figure 7 (b), highlighted with a bold yellow. The closer we reach the end of the maturity, the more effect
the volatility has. The contrary happens for the smallest Samuelson parameter in April for which the volatility
appears to be a straight line in bold purple. The average Samuelson effect is highlighted by the blue dotted line
starting 150 days before maturity at 0.2055 and reaching 0.3187 at the end of the maturity.
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Contracts Type 1 Type 2
κ µ σ̄ κ µ Λ λ̄

January 244.92 1.7405 0.2623 248.59 2.8216 1.3157 0.4145
February 232.61 -0.1563 0.2726 233.05 2.8325 1.0185 0.3877
March 227.92 -0.5633 0.2626 234.79 -0.3857 0.1527 0.2776
April 230.46 0.6467 0.2715 231.61 -1.0383 0.0000 0.2705
May 218.10 0.7244 0.2645 219.04 -0.0517 0.0784 0.2703
June 216.75 -2.5650 0.2570 215.60 -2.4209 0.0639 0.2619
July 232.81 -2.4204 0.2690 223.40 -5.1624 1.5731 0.4073
August 222.69 -0.9235 0.2566 234.41 0.0055 0.0874 0.2648
September 245.81 -1.4060 0.2303 246.20 -0.8744 0.6958 0.2920
October 238.24 -0.3833 0.2380 242.77 0.0130 2.3314 0.5387
November 235.73 -4.6677 0.2380 221.90 -2.0064 0.4599 0.2624
December 277.94 -5.8982 0.2397 261.33 -5.8582 1.1832 0.3084
Average 235.33 -1.3227 0.2552 234.39 -1.0104 0.7467 0.3297

Table 6: Parameter estimates for seasonality type (Type 1) and Samuelson type (Type 2).

Type 1
a b c

0.2550 0.0170 0.7017

Table 7: Parameters for seasonality function from Equation (3.35) with RMSE of 0.0097 for all contracts.

(a) Seasonality Type Function
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Figure 7: Volatility function for both types of models. Subfigure (a): Model of seasonality type (Type 1).
Subfigure (b): Model of Samuelson type (Type 2).
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LLH AIC BIC

Type 1 389.14 -772.29 -763.50
Type 2 392.34 -776.68 -764.96

Table 8: Relative Goodness of Fit – Loglikelihood
(LLH), Akaike Information Criterion (AIC), and
Baysian Information Criterion (BIC) for seasonal-
ity type (Type 1) and Samuelson type (Type 2).

Deviance LRT p-value of LRT

Type 1 6.392 0 0.094
Type 2 0 0 1

Table 9: Absolute Goodness of Fit – Deviance
and Likelihood-Ratio-Test (LRT) and the p-value
of the LRT for seasonality function (Type 1) and
Samuelson effect (Type 2).

Model Ranking. In order to compare both models according to their relative and absolute goodness of fit,
we rely on a procedure applied, e.g., by Zucchini et al. (2021) and Schneider and Tavin (2018).

For the relative goodness of fit, we consider the models’ logarithmic likelihoods (LLH), their Akaike Infor-
mation Criterion (AIC) and the Bayesian Information Criterion (BIC) described in Table 8. As we aim to
maximize the likelihood, the higher the LLH, the better. Moreover, the best model ideally induces the smallest
AIC and BIC. Hence, the Samuelson model fits better in all criteria.

For the absolute goodness of fit, we consider the deviance and the Likelihood-Ratio-Test (LRT). The deviance
is zero for the model with the highest likelihood. The closer the deviance for the remaining models, the better
the models are. As Type 2 is the better model, its deviance is zero. However, it is hard to verify whether 6.3917
is close or far away from zero. As it is known that the deviance follows a X 2 distribution with three parameters
in the seasonality type model, we apply the LRT. The LRT returns the rejection decision and p-value for the
hypothesis test conducted at significance level 0.05. If the p-value is below this threshold, this indicates a strong
evidence suggesting that the model with the higher likelihood fits the data better than the model restricted to
three parameters only. Since the LRT does not reject the hypothesis, we can conclude that both models fit
the data equally well. The simulations in Appendix E confirm that even the model with the lower likelihood
fits the data comparably well. However, we observe for some contracts that fat tails are underestimated (see
also Figure 6). We also observe that the lognormal distribution would fit the data well. However, we refer to
Remark 3.3 that the distribution is not suitable for the model.

On the MPDP. We calculate the MPDP derived in Equation (2.13) from the estimated parameter values in
Tables 6 and 7. The explicit characterizations can be found in Examples 3.1 and 3.2. In Figure 8, we depict
the MPDP for both types. We observe a constant negative MPDP in the model of Type 1 for each contract, in
Figure 8 (a). The MPDP varies in a seasonal fashion having its minimal extreme values in winter and summer
– in particular in January, July, and December. In the April and October contracts, the MPDP is close to zero.
Nevertheless, the average MPDP is rather small around -6.3891e-06 in dashed. In fact, the MPDP of diffusion
risk is high, whenever the variance of the seasonality function S1 is high and, thus, whenever the changes in S1

are the largest (see also Remark 2.1 (ii) and Kemper et al. (2022)). We expect a growing MPDP with a rising
share of renewable energy since they strongly depend on the weather conditions of the season. Hence, they
induce a more pronounced seasonality with respect to the delivery time. The seasonal behavior of the MPDP
under Type 1 of delivery-dependent function has been observed firstly by Kemper et al. (2022) numerically
using a = [1.2; 2], b = [0.2; 1], and c = 0. We here provide the empirical evidence for the shape of MPDP, which
is less pronounced and shifted horizontally since we estimate a = 0.2550 and c = 0.7017. Figure 8 (b) depicts
the MPDP of Type 2 for each contract over time to maturity. The MPDP is negative and decreases further the
closer we reach the expiration date. Especially for July and October, the MPDP is highest in absolute values.
For the sake of comparison, we include a barplot of the terminal MPDP under Type 2 in Figure 8 (c). According
to Figure 8 (c), a delivery dependence in terms of the Samuelson effect is especially visible in January, July,
and October. At terminal time, the average MPDP is found at -1.2643e-04 in dashed.
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(b) Samuelson (Type 2)
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(c) Terminal Samuelson (Type 2)
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Figure 8: MPDP of diffusion risk Π1 for all contracts. Subfigure (a): MPDP in the model of seasonality type
(Type 1). Subfigure (b): MPDP in the model of Samuelson type (Type 2). Subfigure (c): Terminal MPDP in
the model of Type 2.

5 Conclusion

In this paper, we provide empirical evidence as well as analytical characteristics of the MPDP for electricity
swaps embedded in a Merton type model.

We adjust the Heston type setting of Kemper et al. (2022) to a jump framework of Merton type leading to
the MPDP for diffusion and jump risk. We thus identify the MPDP for the jump component, which turns out
to be negative as it is the case for the diffusion component. In addition, we transfer the model to the physical
measure under which we allow for mean-reversion, seasonalities, and term-structure effects. A comparison of
the risk-neutral measures of the swap resulting from geometric and approximated averaging, Q and Q̃, offers
the decomposition of the “true” market price of risk comprising the “classical” market price of risk and the
MPDP for jump and diffusion risk. We may refer Q̃ to the “correct” or “true” risk-neutral measure since the
swap price is a Q̃-martingale without any approximations. In contrast, the “classical” or artificial risk-neutral
measure, Q, results from an approximation of the swap price leading in general not to the “true” pricing measure.
Consequently, any pricing methodology based on approximated averaging can easily be turned to the “correct”
risk-neutral measure by an application of our MPDP.

We compare swap prices resulting from geometric averaging with swaps based on approximated averaging
in line with with Kemper et al. (2022) and Bjerksund et al. (2010). We find that different averaging techniques
lead to a pricing spread that stays untouched by measure changes. In particular, the swap price based on
geometric averaging turns out to be smaller than the one resulting from approximated averaging. The spread
itself can be characterized by a change of measure based on the MPDP as introduced by Kemper et al. (2022).
As the MPDP leads to the true pricing measure, Q̃, the spread remediates the approximated swap price and
adjusts it downwards to the correct price of the swap contract.

We finally investigate the model under the physical measure as well as the resulting MPDP empirically.
To this end, we consider two types of models characterized, on the one hand, by seasonality in the delivery
time (see Fanelli and Schmeck (2019)) and, on the other hand, by the Samuelson effect (see Samuelson (1965)).
We adapt them to a jump setting, and provide the corresponding discretized swap price models. We fit the
discretized models using a two-step estimation procedure. In the first step, we identify jumps and fit their jump
size to suitable distributions. We find that the exponential distribution fits the detected jump sizes best. In a
second step, we fit the jump free dataset to both types of models. From model selection techniques, we observe
that the model of Samuelson type lead to a higher likelihood, while inducing a lower AIC and BIC than the
model of Type 1. The absolute goodness of fit, however, confirms that seasonalities in the delivery period can
explain the model comparably well. Moreover, we provide empirical evidence for the MPDP of diffusion risk
for both types of models. Seasonal delivery dependence causes a MPDP that is constant over trading time and
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seasonal in delivery time. In contrast, term-structure dependence induces a decreasing behavior of the MPDP
over trading time. Hence, the closer we reach the expiration date, the more pronounced the MPDP, and the
larger the pricing spread. Consequently, the MPDP reduces risk caused by approximated averaging especially
when the end of the maturity approaches.

In our empirical analysis, the MPDP of jump risk is zero by construction. Moreover, we have assumed the
annualized jump intensity to be the same for all swap contracts. Nevertheless, we observe a rather seasonal
jump intensity (see Figure 4). It would be very interesting to investigate this phenomenon theoretically and
empirically more precisely. This, however, is a question for future research.

To conclude, we expand the MPDP to the jump setting and provide empirical evidence for the MPDP
influenced by typical characteristics of the electricity market. We even expect a growing MPDP caused by
a rising market share of renewable energy: Varying weather conditions over the seasons of a year will cause
stronger seasonal behavior when the share of renewables is growing. Consequently, this increases the importance
of the MPDP of diffusion risk, which has to be taken into account to ensure an accurate pricing procedure.
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Appendix

A Technical Requirements

Assumption 1. For the model (2.1), we make the following assumptions to apply Itô’s formula (see Øksendal
and Sulem (2007), cf. Theorem 1.16):

(i) For A := {(t, τ) ∈ [0, τ2]2 : t ≤ τ} the functions σ : A → R+ and η : A → R are adapted such that the
integrals exist, meaning that Q[

∫ t
0
σ2(s, τ) +

∫
R |(e

η(s,τ)z − 1)|`Q(dz)ds <∞] = 1 for all 0 ≤ t ≤ τ .

In order to ensure existence and uniqueness of solutions to Equation (2.6) (see Øksendal and Sulem (2007), cf.
Theorem 1.19), we further assume:

(ii) (At most linear growth) There exists a constant C1 <∞ such that

|σ(t, τ)x|2 +

∫
R
|(eη(t,τ)z − 1)x|2`Q(dz) ≤ C1(1 + |x|2) , ∀x ∈ R . (A.1)

(iii) (Lipschitz continuity) There exists a constant C2 <∞ such that

|σ(t, τ)x− σ(t, τ)y|2 +

∫
R
|(eη(t,τ)z − 1)x− (eη(t,τ)z − 1)y|2`Q(dz) ≤ C2(|x− y|2) , ∀x, y ∈ R . (A.2)

Hence, by Øksendal and Sulem (2007) (cf. Theorem 1.19), it follows that EQ[|f(t, τ)|2] < ∞ for all t ∈ [0, τ ].
By the Itô-Lévy Isometry (see Øksendal and Sulem (2007), cf. Theorem 1.17) part (iii) implies that

EQ[f2(t, τ)] = EQ

[∫ t

0

σ2(v, τ)f2(v, τ) + f2(v, τ)

∫
R

(eη(v,τ)z − 1)2`Q(dz)dv

]
<∞ , (A.3)

so that the square-integrability conditions are satisfied implying that f is a true martingale under Q.

Assumption 2. For the geometric weightening approach in Equation (2.11), we need to apply the stochastic
Fubini Theorem (see Protter (2005), cf. Theorem 65, Chapter IV. 6). Therefore, we assume that

(i) σ(·, τ) and η(·, τ) are P ×B((τ1, τ2]) measurable, where P is the predictable σ-algebra making all adapted,
càglàd processes measurable,

(ii) EQ

[∫ τ1
0

∫ τ2
τ1
σ2(t, u)w(u, τ1, τ2)du dt

]
<∞,

(iii) EQ

[∫ τ1
0

∫ τ2
τ1
η(t, u)w(u, τ1, τ2)du dt

]
<∞,

(iv) EQ

[∫ τ1
0

∫
R
∫ τ2
τ1

(eη(t,u)z − 1)2w(u, τ1, τ2)du `Q(dz)dt
]
<∞,

such that the integrals still exist and linear growth and Lipschitz continuity are satisfied (see Assumption 1).

Assumption 3. To apply Girsanov’s Theorem (see Øksendal and Sulem (2007), cf. Theorem 1.35), we assume
that ΠQQ̃

1 and ΠQQ̃
2 are predictable, satisfying

(i) EQ[
∫ τ1

0
ΠQQ̃

1 (s, τ1, τ2)2ds] <∞, such that ZQQ̃
1 is a true martingale, and

(ii) ΠQQ̃
2 (t, τ1, τ2)z ≤ 1 for all t ∈ [0, τ1] and EQ[

∫ τ1
0

ln(1 − ΠQQ̃
2 (s, τ1, τ2)) + ΠQQ̃

2 (s, τ1, τ2)ds] < ∞, such that

ZQQ̃
2 is a true martingale.
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Assumption 4. For the model in Equation (3.1), we make the following assumptions to apply Itô’s formula
(see Øksendal and Sulem (2007), cf. Theorem 1.16):

(i) The functions µ : A → R, κ : [0, τ1]→ R+, σ : A → R+, and η : A → R are adapted such that the integrals
exist, meaning that for all 0 ≤ t ≤ τ , we have P[

∫ t
0
µ2(v, τ) + κ2(v) + σ2(v, τ) + η2(v, τ)

∫
R z

2`P(dz)dv <

∞] = 1.

In order to ensure existence and uniqueness of solutions to Equation (3.3) (see Øksendal and Sulem (2007),
Theorem 1.19), we further assume:

(ii) (At most linear growth) There exists a constant C1 <∞ such that ∀x ∈ R:

|µ(t, τ)|2 + |κ(t)x|2 + |σ(t, τ)|2 + |η(t, τ)|2
∫
R
|z|2`P(dz) ≤ C1(1 + |x|2) . (A.4)

(iii) (Lipschitz continuity) There exists a constant C2 <∞ such that

κ2(t)|x− y|2+ ≤ C2(|x− y|2) , ∀x, y ∈ R . (A.5)

Assumption 5. For the model in Equation (3.1), we make the following assumptions to apply Itô’s formula
(see Øksendal and Sulem (2007), cf. Theorem 1.16):

(i) P[
∫ t

0

∫
R e

η(v,τ)z`P(dz)dv <∞] = 1 holds for all 0 ≤ t ≤ τ .

In order to ensure existence and uniqueness of solutions to Equation (3.3) (see Øksendal and Sulem (2007),
Theorem 1.19), we further assume that

(ii)
∫
R e

η(t,τ)z`P(dz) exists and is bounded for all (t, τ) ∈ A, such that the linear growth condition and Lipschitz
continuity are satisfied.

Assumption 6. For the geometric weightening approach in Equation (2.11) applied in Section 3, we apply the
stochastic Fubini Theorem (see Protter (2005), cf. Theorem 65, Chapter IV. 6). Therefore, we assume that

(i) κ, µ, σ, η are P × B((τ1, τ2]) measurable, where P is the predictable σ-algebra making all adapted, càglàd
processes measurable,

(ii) EP

[∫ τ1
0

∫ τ2
τ1
µ(t, u)w(u, τ1, τ2)du dt

]
<∞,

(iii) EP

[∫ τ1
0

∫ τ2
τ1
σ2(t, u)w(u, τ1, τ2)du dt

]
<∞,

(iv) EP

[∫ τ1
0

∫
R
∫ τ2
τ1

(eη(t,u)z − 1)2w(u, τ1, τ2)du `P(dz)dt
]
<∞,

(v) EP

[∫ τ1
0

∫ τ2
τ1
η(t, u)w(u, τ1, τ2)du dt

]
<∞.

Assumption 7. To prove that ZPQ̃ is a true martingale, we assume that κ, µ, σ, η are deterministic and that

(i) ΠPQ̃
2 (t, τ1, τ2)z < 1 for `P-a.e. z ∈ R and each t ∈ [0, τ1],

(ii) `P has fourth moment, that is
∫
R z

4`P(dz) <∞,

(iii)
∫ τ1

0

∫ τ2
τ1
w(u, τ1, τ2)µ2(t, u)du dt <∞,

(iv)
∫ τ1

0

∫ τ2
τ1
w(u, τ1, τ2)η2(t, u)du dt <∞,

(v)
∫ τ1

0

∫ τ2
τ1
w(u, τ1, τ2)σ4(t, u)du dt <∞,

(vi)
∫ τ1

0
κ2(t)dt <∞.
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B Proof of Proposition 3.2

Inspired by Benth et al. (2019), we prove that EP[ZPQ̃(τ1, τ1, τ2)] = 1 and expand their Theorem 3.5 to a
geometric setting with stochastic volatility in order to address settings as in Kemper et al. (2022). For the
scope of the proof, we consider the swap price F in Equation (3.7) characterized by stochastic volatility of the
form

σ(t, τ)
√
ν(t) , (B.1)

where σ(t, τ) is deterministic and ν is the stochastic volatility that is modeled as a Cox-Ingersoll-Ross process
evolving as

dν(t) = κν (θν − ν(t)) dt+ σν
√
ν(t)dBP

t , (B.2)

for ν(0) = ν0 > 0, where BP and J̃P are independent of each other and BP and W P are correlated. In
particular, we assume a correlation structure d〈W P, BP〉t = ρdt where ρ ∈ (−1, 1) such that we can rewrite
BP = ρW P +

√
1− ρ2B̄P for B̄P ⊥⊥ W P. Moreover, we assume that κν , θν , σν > 0 satisfy the extended Feller

condition, i.e., σ2
ν < κνθν , to ensure that EP[ν−2(t)] is bounded on the entire trading time t ∈ [0, τ1] (see

Dereich et al. (2012), cf. Chapter 3). Note, that the extended Feller implies the classical Feller condition (see
Karatzas and Shreve (1991), cf. Chapter 5) ensuring that the volatility stays positive.

We proceed in the following steps:

1. Derivation of a new risk-neutral measure Q̃n through a stopping time τ̂n.

2. Proof that EQ̃[ZPQ̃(τ1, τ1, τ2)] is lower boundend, i.e.,

EQ̃

[
ZPQ̃(τ1, τ1, τ2)

]
≥ 1− 1

n
EQ̃n

[
sup
s
Ỹ (s, τ1, τ2)

]
− 1

n
EQ̃n

[
sup
s
ν−1(s)

]
− 1

n
EQ̃n

[
sup
s
ν(s)

]
.

3. Proof that there exist upper boundaries for EQ̃n [sups Ỹ (s, τ1, τ2)], EQ̃n [sups ν
−1(s)], and EQ̃n [sups ν(s)],

that are independent of n.

1. Derivation of Q̃n. Similar to Benth et al. (2019), we set g(z) := (1 + z) log(1 + z) − z and define the
predictable compensator of 1

2 〈H
c, Hc〉+

∑
t≤· g(∆H(t)) by

C(t, τ1, τ2) :=
1

2

∫ t

0

πPQ̃
1 (s, τ1, τ2)2 + πPQ̃

ν (s, τ1, τ2)2ds+

∫ t

0

∫
R
g(πPQ̃

2 (s, τ1, τ2)z)`P(dz)ds ,

where H from Equation (3.17) now embraces stochastic volatility such that

H(t, τ1, τ2) :=

∫ t

0

πPQ̃
1 (s, τ1, τ2)dW P

s +

∫ t

0

∫
R
πPQ̃

2 (s, τ1, τ2)zÑP(ds, dz) +

∫ t

0

πPQ̃
ν (s, τ1, τ2)dB̄P

s .

Note that this stochastic volatility setting covers a three-dimensional market price of risk π := (π1, π2, πν) for
all independent random parts W P, J̃P, B̄P. As we are in an incomplete setting, we choose the market price of
volatility risk, πν , such that the market price of risk admits the same structure as in the Heston model, i.e.,
ρπPQ̃

1 +
√

1− ρ2πPQ̃
ν = δν

σν

√
ν(t) (see Heston (1993)). Now let us define a sequence of stopping times

τ̂n := inf
{
t ∈ [0, τ1] : |Ỹ (t, τ1, τ2)| ≥ n, or |ν−1(t)| ≥ n, or |ν(t)| ≥ n

}
, (B.3)
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and observe that for every n ∈ N, the stopped process C(t ∧ τ̂n, τ1, τ2) is bounded. Hence, by Lépingle and
Mémin (1978) (cf. Theorem III.1), we know that ZPQ̃(t ∧ τ̂n, τ1, τ2) is a uniformly integrable martingale such
that we can define the probability measure Q̃n by

dQ̃n

dP
:= ZPQ̃(τ1 ∧ τ̂n, τ1, τ2) . (B.4)

2. Proof of lower boundary of EP[ZPQ̃(τ1)]. First, ZPQ̃ is a positive local martingale by the assumption
that πPQ̃

2 (t, τ1, τ2) ≥ −1 for all t ∈ [0, τ1]. Hence, it is a supermartingale, so that we know the upper boundary
for τ1 ≥ 0:

EP[ZPQ̃(τ1, τ1, τ2)] ≤ EP[ZPQ̃(0, τ1, τ2)] = 1 .

Next, we consider the lower boundary, following Benth et al. (2019):

EP[ZPQ̃(τ1, τ1, τ2)] ≥ EP[ZPQ̃(τ1, τ1, τ2)1τ̂n>τ1 ] = EP[ZPQ̃(τ1 ∧ τ̂n, τ1, τ2)1τ̂n>τ1 ] = Q̃n[τ̂n > τ1] ,

where the last equality follows from the change of measure defined in Step 1 (see Equation (B.4)). By definition
of the stopping time τ̂n (see Equation (B.3)), we deduce

EP[ZPQ̃(τ1, τ1, τ2)] ≥1− Q̃n[τ̂n ≤ τ1]

≥1−

(
Q̃n
[

sup
s∈[0,τ1]

Ỹ (s, τ1, τ2) ≥ n

]
+ Q̃n

[
sup

s∈[0,τ1]

ν−1(s) ≥ n

]
+ Q̃n

[
sup

s∈[0,τ1]

ν(s) ≥ n

])

≥1− 1

n

(
EQ̃n

[
sup

s∈[0,τ1]

Ỹ (s, τ1, τ2)

]
+ EQ̃n

[
sup

s∈[0,τ1]

ν−1(s)

]
+ EQ̃n

[
sup

s∈[0,τ1]

ν(s)

])
,

where the last inequality follows from Markov’s inequality. If we show that the expectations on the right hand
side have upper boundaries that are independent of n ∈ N, then EP[ZPQ̃(τ1, τ1, τ2)] = 1, which is addressed in
the third step.

3. Proof of upper boundaries. In order to identify upper boundaries under the measure Q̃n defined in
Equation (B.4), we need to derive the dynamics of Ỹ , ν−1, and ν under Q̃n. We apply Girsanov’s theorem (see
Øksendal and Sulem (2007), cf. Theorem 1.35) to Equations (3.8) and (B.2), where

W Q̃n
t = W P

t +

∫ t

0

ΠPQ̃
1 (s, τ1, τ2)1[0,τ̂n](s)ds ,

BQ̃n
t = BP

t +

∫ t

0

δν
σν

√
ν(s)1[0,τ̂n](s)ds ,

are correlated standard Brownian motions under Q̃n and

Ñ Q̃n(dt, dz) = ÑP(dt, dz) + ΠPQ̃
2 (t, τ1, τ2)1[0,τ̂n](t)`

P(dz)dt ,

is the Q̃n-compensated Poisson random measure. Moreover, by Ito’s formula, we find

dν−1(t) = ν−1(t)
(
κν + δν1[0,τ̂n](t)− ν−1(t)(κνθν − σ2

ν)
)
dt− σνν−

3
2 (t)dBQ̃n

t .
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Hence, we can show

EQ̃n

[
sup

s∈[0,τ1]

|ν−1(s)|

]
(?)

≤ 1

ν0
+ EQ̃n

[
sup

s∈[0,τ1]

∫ s

0

ν−1(t)
(
κν + δν1[0,τ̂n](t)− ν−1(t)(κνθν − σ2

ν)
)
dt

]
+ EQ̃n

[
sup

s∈[0,τ1]

∫ s

0

σνν
− 3

2 (t)dBQ̃n
t

]
(??)

≤ 1

ν0
+ (κ+ |δν |)EQ̃n

[∫ τ1

0

ν−1(t)dt

]
+ (κνθν − σ2

ν)EQ̃n

[∫ τ1

0

ν−2(t)dt

]
+ σνn

− 3
2EQ̃n

[
sup

s∈[0,τ1]

∫ s

0

dBQ̃n
t

]
(???)
=

1

ν0
+ (κ+ |δν |)

∫ τ1

0

EQ̃n
[
ν−1(t)

]
dt+ (κνθν − σ2

ν)

∫ τ1

0

EQ̃n
[
ν−2(t)

]
dt .

Inequality (?) follows from the integral representation of ν−1 and the triangle inequality. Inequality (??) results
from the fact, that the extended Feller condition is satisfied (i.e., σ2

ν < κνθν) and that ν−1 ≤ n under Q̃n.
Since both processes ν−1 and ν−2 are positive, the supremum disappears in the first two cases and the upper
boundary is used. Equality (? ? ?) is reached by stochastic Fubini to the first two integrals and the last
term disappears. From Dereich et al. (2012) (cf. Chapter 3), we know that the expectations of the inverse
and the inverse quadratic stochastic volatility, EQ̃n

[
ν−1(t)

]
and EQ̃n

[
ν−2(t)

]
, can be characterized explicitly

and are bounded independently of n, as long as the extended Feller condition σ2
ν < κνθν is satisfied. Hence,

EQ̃n

[
sups∈[0,τ1] |ν−1(s)|

]
≤ c1 ⊥⊥ n.

Moreover, we can show that |ν|2 is uniformly integrable:

EQ̃n

[
sup

s∈[0,τ1]
|ν(s)|2

]
= EQ̃n

[
sup

s∈[0,τ1]

(
ν0 +

∫ s

0

κνθν − (κν + δν1[0,τ̂n](t))ν(t)dt+

∫ s

0

σν
√
ν(t)dBQ̃n(t)

)2
]

(?)

≤ 4

(
v20 + EQ̃n

[
sup

s∈[0,τ1]

(∫ s

0

κνθνdt

)2

+ sup
s∈[0,τ1]

(∫ s

0

(κν + δν1[0,τ̂n](t))ν(t)dt

)2

+ sup
s∈[0,τ1]

(∫ s

0

σν
√
ν(t)dBQ̃n

t

)2
])

(??)

≤ 4

(
v20 + 4EQ̃n

[(∫ τ1

0

κνθνdt

)2
]
+ 4EQ̃n

[(∫ τ1

0

(κν + δν1[0,τ̂n](t))ν(t)dt

)2
]
+ 4EQ̃n

[(∫ τ1

0

σν
√
ν(t)dBQ̃n

t

)2
])

(???)

≤ 4

(
v20 + 4τ1

∫ τ1

0

κ2
νθ

2
νdt+ 4τ1(κν + |δν |)2

∫ τ1

0

EQ̃n

[
sup
s∈[0,t]

ν2(s)

]
dt+ 4σ2

νEQ̃n

[∫ τ1

0

ν(t)dt

]
,

)

where the first equality represents the integral version of ν. Inequality (?) results from the Cauchy-Schwartz in-
equality to the sum and an application of the triangle inequality. We apply Doob’s inequality to all expectations
in Inequality (??). In Inequality (???), we apply the Cauchy-Schwartz inequality to the first and second integral
and apply Ito’s isometry to the last summand. We finish with the stochastic Fubini to the second integral while
making the integrand even bigger. Note that for the last summand, we have EQ̃n

[∫ τ1
0
ν(t)dt

]
≤ c̃ν ⊥⊥ n since we

can find explicit expressions in Cont and Tankov (2004) (cf. Chapter 15). Setting cν := 4v2
0 +16τ2

1κ
2
νθ

2
ν+16σ2

ν c̃ν ,
then, by Gronwall, we receive EQ̃n

[
sups∈[0,τ1] |ν(s)|2

]
≤ cνe16(κν+|δν |)2τ2

1 =: c2 ⊥⊥ n.

Next, we show that |Ỹ |2 is uniformly integrable:

EQ̃n

[
sup

s∈[0,τ1]
|Ỹ (s, τ1, τ2)|2

]

= EQ̃n

[
sup

s∈[0,τ1]

(
Ỹ (0, τ1, τ2) +

∫ s

0

(
1− 1[0,τ̂n](t)

) (
E[µ(t, U)]− κ(t)Ỹ (t, τ1, τ2)

)
dt−

∫ s

0

1

2
E[σ(t, U)]2ν(t)1[0,τ̂n](t)dt

+

∫ s

0

E[σ(t, U)]
√
ν(t)dW Q̃n

t +

∫ s

0

E[η(t, U)]dJ̃ Q̃n
t

−
∫ s

0

E[η(t, U)]

(
1−

E[η(t, U)]
∫
R z`

P(dz)∫
R e

E[η(t,U)]z − 1`P(dz)

)
1[0,τ̂n](t)

∫
R
z`P(dz)dt

)2]
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(?)

≤ 7

(
Ỹ 2(0, τ1, τ2) + EQ̃n

[
sup

s∈[0,τ1]

(∫ s

0

(
1− 1[0,τ̂n](t)

)
E[µ(t, U)]dt

)2
]

+ EQ̃n

[
sup

s∈[0,τ1]

(∫ s

0

1

2
E[σ(t, U)]2ν(t)1[0,τ̂n](t)dt

)2
]
+ EQ̃n

[
sup

s∈[0,τ1]

(∫ s

0

(
1− 1[0,τ̂n](t)

)
κ(t)Ỹ (t, τ1, τ2)dt

)2
]

+ EQ̃n

[
sup

s∈[0,τ1]

(∫ s

0

E[σ(t, U)]
√
ν(t)dW Q̃n

t

)2
]
+ EQ̃n

[
sup

s∈[0,τ1]

(∫ s

0

E[η(t, U)]dJ̃ Q̃n
t

)2
]

+ EQ̃n

[
sup

s∈[0,τ1]

(∫ s

0

E[η(t, U)]

(
1−

E[η(t, U)]
∫
R z`

P(dz)∫
R e

E[η(t,U)]z − 1`P(dz)

)
1[0,τ̂n](t)

∫
R
z`P(dz)dt

)2])
(??)

≤ 7

(
Ỹ 2(0, τ1, τ2) + 4EQ̃n

[(∫ τ1

0

(
1− 1[0,τ̂n](t)

)
E[µ(t, U)]dt

)2
]

+ 4EQ̃n

[(∫ τ1

0

1

2
E[σ(t, U)]2ν(t)1[0,τ̂n](t)dt

)2
]
+ 4EQ̃n

[(∫ τ1

0

(
1− 1[0,τ̂n](t)

)
κ(t)Ỹ (t, τ1, τ2)dt

)2
]

+ 4EQ̃n

[(∫ τ1

0

E[σ(t, U)]
√
ν(t)dW Q̃n

t

)2
]
+ 4EQ̃n

[(∫ τ1

0

E[η(t, U)]dJ̃ Q̃n
t

)2
]

+ 4EQ̃n

[(∫ τ1

0

E[η(t, U)]

(
1−

E[η(t, U)]
∫
R z`

P(dz)∫
R e

E[η(t,U)]z − 1`P(dz)

)
1[0,τ̂n](t)

∫
R
z`P(dz)dt

)2])
(???)

≤ 7

(
Ỹ 2(0, τ1, τ2) + 4τ1

∫ τ1

0

E[µ(t, U)]2dt

+ 4

∫ τ1

0

E[σ(t, U)]4dt EQ̃n

[∫ τ1

0

ν2(t)dt

]
+ 4

∫ τ1

0

κ2(t)dt EQ̃n

[∫ τ1

0

Ỹ 2(t, τ1, τ2)dt

]
+ 4EQ̃n

[(∫ τ1

0

E[σ(t, U)]
√
ν(t)dW Q̃n

t

)2
]
+ 4EQ̃n

[(∫ τ1

0

E[η(t, U)]dJ̃ Q̃n
t

)2
]

+ 4

∫ τ1

0

E[η(t, U)]2dtEQ̃n

[∫ τ1

0

(
1− E[η(t, U)]2

(∫
R z`

P(dz)
)2(∫

R e
E[η(t,U)]z − 1`P(dz)

)2
)(∫

R
z`P(dz)

)2

dt

])

≤ 7

(
Ỹ 2(0, τ1, τ2) + 4τ1

∫ τ1

0

E[µ(t, U)]2dt+ 4c2τ1

∫ τ1

0

E[σ(t, U)]4dt

+ 4

∫ τ1

0

κ2(t)dt EQ̃n

[∫ τ1

0

sup
s∈[0,t]

Ỹ 2(s, τ1, τ2)dt

]
+ 4

√∫ τ1

0

E[σ(t, U)]4dt
√
τ1c2 + 4

∫ τ1

0

E[η(t, U)]2
∫
R
z2`Q̃

n

(dz)dt

+ 4

∫ τ1

0

E[η(t, U)]2dt

∫ τ1

0

((∫
R
z`P(dz)

)2

+ E[η(t, U)]2
(∫

R z`
P(dz)

)4(∫
R e

E[η(t,U)]z − 1`P(dz)
)2
)
dt

)
,

=: cY + 28

∫ τ1

0

κ2(t)dt EQ̃n

[∫ τ1

0

sup
s∈[0,t]

Ỹ 2(s, τ1, τ2)dt

]
.

The first equality represents the integral version of Ỹ . Inequality (?) results from the Cauchy-Schwartz
inequality to the sum and an application of the triangle inequality. We apply Doob’s inequality to all
expectations in Inequality (??). In Inequality (? ? ?), we apply the Cauchy-Schwartz inequality to the first
three integrals. We finish with Itô-Lévy Isometry (see Øksendal and Sulem (2007), cf. Theorem 1.17) to the
last summand and an application of the stochastic Fubini theorem to the fourth summand (including Ỹ ) while
making the integrand even bigger. By the previous considerations, we know that EQ̃n

[∫ τ1
0

E[σ(t, U)]2ν(t)dt
]
≤√∫ τ1

0
E[σ(t, U)]4dtEQ̃n

[√∫ τ1
0
ν2(t)dt

]
≤
√∫ τ1

0
E[σ(t, U)]4dt

√
τ1c2 is bounded independently of n and that∫ τ1

0
E[σ(t, U)]4dt EQ̃n

[∫ τ1
0
ν2(t)dt

]
≤ c2τ1

∫ τ1
0

E[σ(t, U)]4dt is independent of n. By the choice of cY , an

application of Gronwall’s inequality yields EPn
[
sups∈[0,τ1] |Ỹ (s, τ1, τ2)|2

]
≤ cY e

28
∫ τ1
0 κ2(t)dt =: c3 ⊥⊥ n , such

that we have shown, that ZPQ̃ is indeed a true martingale.
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C Further Plots on the Description of the Data in Section 4.4

C.1 Histogram of Logarithmic Returns
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C.2 Logarithmic Returns per Contract
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(h) August

20 40 60 80 100 120 140

Trading Time in Days

-0.05

0

0.05

0.1

0.15

0.2

L
o

g
-R

e
tu

rn
s

Log-Returns
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D Further Plots on Step I in Section 4.5

D.1 Jump Identification Procedure per Contract

(a) January
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(h) August
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(i) September
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(j) October
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(k) November
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D.2 Identified Jumps per Contract
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E Simulation of Logarithmic Returns with Exponential Jump Sizes

E.1 Simulation of Logarithmic Returns per Contract – Type 1
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E.2 Simulation of Logarithmic Returns per Contract – Type 2
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