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Abstract

In a pathbreaking paper Keyfitz (1971) calculated the demographic momentum, i .e. the 
amount of further population growth if an immediate reduction of fertility to bare replace-
ment would occur. While he assumes a stable initial population, our research aims to 
extend it to so-called pseudostable populations where fertility declines at a constant 
rate while mortality remains fixed. We were able to analytically obtain interesting 
insights into the momentum of growth of such populations. Comparing theoretical results 
in a pseudostable setting with the projections according to the component method showed 
a fit that was un-expectedly remarkably good.

A peculiar effect of pseudostability is the monotonous decline of the momentum over 
time. Starting from a certain fixed level in the remote p ast, the momentum converges to 
zero for an infinite time horizon. Interestingly enough, there is a time where there is neither 
a positive nor a negative momentum. To put it numerically, a remarkable asymmetry in 
the momentum is revealed. While an immediate fertility change may lead to a maximal 
increase of the population by a factor between 2 and 3, the maximal decrease runs up to 
100%.
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1 Introduction

The momentum of population growth is a classic example of an apparently counterintu-

itive effect and was introduced by Nathan Keyfitz about half a century ago (1971). Re-

visiting a discussion among French demographers from around the mid twentieth century 

(Bourgeois-Pichat, 1968; Vincent, 1945), Keyfitz’ contribution opened up a new avenue 

of population research. The answer to a simple question — what would happen to the size 

of a population if fertility dropped instantaneously to the replacement level? — baffled 

many and some even refused to believe that Brazil’s population would still grow by 

about two thirds in this scenario as the first author of the present paper vividly recalls 

from the 1974 World Population Conference in Bucharest. This amount of continued 

population growth after an instantaneous decline in the fertility rate to the replacement 

level is called popula-tion momentum. The scenario of an instantaneous surge in fertility to 

the replacement level would lead, analogously, to a population that continues to decline 

for several decades.

Such a sudden drop/surge in fertility is not possible in reality. Nevertheless, the result-

ing growth or decline can be considered as a conservative estimate: Previously growing 

populations will still grow by at least the amount specified by the momentum. Likewise, 

previously declining populations will shrink at least by the specified amount.

Whereas Keyfitz’ analytic expression for estimating population momentum refers to sta-

ble populations, the concept of demographic momentum can be applied to arbitrary 

popu-lations. The present paper studies the momentum of growth for a special family of 

popula-tions, namely for pseudostable ones.

Stable populations are characterized by time-invariant age-specific fertility and mortal-

ity rates. Although such assumptions never prevail in reality over a longer period, the 

analytical tractability is a great advantage. There have been several attempts to relax these 

restrictive assumptions without giving up the whole flair of an analytic treatment. One 

early example of studying the effect of time-changing vitality rates to the growth and struc-

ture of populations was Coale’s idea to include uniformly shrinking fertility rates (Coale
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and Zelnik, 1963; see also Chapt. 4 in Coale, 1972), later called pseudostable populations 

by Feichtinger and Vogelsang (1978). For a brief introduction into the field n eeded i n our 

analysis of the pseudostable momentum see Section 3 below.

This paper studies the behavior of the time path of the momentum M(t), which is 

defined as the ratio of the ultimate population size divided by its initial size. In particular, 

we de-rived a comprehensive, qualitative characterization of the momentum of population 

growth under pseudostable conditions. Our results show that M(t) is a monotonously 

decreasing S-shaped function converging to zero for increasing reference times, but 

remarkably to a finite value given by the ratio e0/µ in the remote past. This fact guarantees 

the existence of a time t̂ with neither a positive nor a negative momentum, i.e. M(t̂) = 1. 

Moreover, we present a dynamic sensitivity analysis with respect to the key parameter of 

pseudostability, namely the rate k of fertility decline.

Since the analytic approach to pseudostable populations relies on the simplification of a 

fixed unique birth age, it is important to compare the theoretical results with those obtained 

by the standard population projection method. Generally speaking, the fit of the analytical 

pseudostable approximations to the numerical projection turned out to be reasonably good.

As the formal treatment of pseudostable populations provides new insights our analysis 

extends existing knowledge in several ways, including:

A) It allows an analytical approach to populations late in the first demographic transition,

when mortality declines have stalled but fertility continues to fall.

B) It can be instructive for historical demographers. As Coale (1972) already pointed

out, the demographic situation in the United States during the first decades of the

twentieth century resembles the pseudostable case.

3



1985 1995 2005 2015

0.
8

1.
0

1.
2

1.
4

1.
6

Calendar Time

N
R

R

Brazil (−1.84% p.a.)

1985 1995 2005 2015

0.
8

1.
0

1.
2

1.
4

1.
6

Calendar Time

N
R

R

Colombia (−1.91% p.a.)

1985 1995 2005 2015

0.
8

1.
0

1.
2

1.
4

1.
6

Calendar Time

N
R

R

Costa Rica (−2.26% p.a.)

1985 1995 2005 2015

0.
8

1.
0

1.
2

1.
4

1.
6

Calendar Time

N
R

R

Mexico (−1.85% p.a.)

Figure 1: Net reproduction rate (“NRR”), exponential fit (red) and estimated annual changes
(black) in percent in four selected Latin American countries between 1985 and 2020. Data
source: Own illustration based on data from the United Nations (2022).

C) It can be employed for the analysis of contemporary populations. While fertility is

declining in many parts of the world, Latin America is particularly interesting for two

reasons:

1) Many of these countries fit the pseudostable scenario of proportional reductions

in fertility extremely well, combined with relatively little variation in the age at

childbearing.
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2) The net reproduction rate has crossed the replacement level (NRR=1) in recent

years, which is the time for which we identified the most interesting dynamics in

a pseudostable setting. Figure 1 shows the development of the net reproduction

rate in four selected Latin American countries for the years 1985–2020. The black

lines denote the observed fertility. The red lines show the fit of the fertility decline

assuming a constant decline. The titles in each of the four panels do not only name

the countries but also report the estimated declines in the net reproduction rate

per year. We selected Colombia from these four countries to illustrate our results.

Our analytical treatment can then be used as a guide for interpretating

empirically observed results (as suggested by Lotka, 1938). Likewise they can

be used to forecast the age structure, the population size, the birth trajectory as

well as the population momentum.

The paper is organized as follows. The following two sections sketch the population 

momentum in Section 2 as well as the pseudostable framework in Section 3. After bringing 

together both issues, Section 4 presents the main results on the pseudostable 

momentum. Section 5 contains conclusions and ideas for possible extensions.

Appendix A summarizes some important facts about the pseudostable populations. 

Proofs of propositions are given in appendix B, and additional material is in appendix C.

2 On the Momentum of Population Growth

Following the seminal paper by Keyfitz (1971; see also Keyfitz, 1977), we start with a stable 

age structure with growth rate r and birth rate b; for a more detailed explanation, we 

refer to Appendix A. Denoting life expectancy at birth by e0, the mean age of childbearing 

in the stationary population by µ, and the net reproduction rate (NRR) of the 

initial population by R0, reveals an immediate drop in fertility to replacement level, 

i.e. to an NRR of 1 the following expression for the momentum:
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M =

(
e0

µ

)(
b
r

)
R0 − 1

R0
(1)

The momentum expresses the ratio of the resulting ultimate total stationary population 

divided by the size of the initial population before the intended change in fertility. Note that 

(1) also remains valid for negative population growth. Hence, the initial stable growth

rate r is below zero corresponding to NRR= exp(rT) < 1, where T denotes the mean 

length of a generation. A decreasing population continues to shrink for a while until the 

stationary level will be reached.

The proof of Eq. (1) uses Fisher’s (1930) “reproductive value”, measuring the average 

number of future children a woman of a certain age will have during her remaining 

reproductive pe-riod. According to standard, we consider a one-sex model that restricts 

us to the female component of the population.

As mentioned, the concept of the population momentum remains valid for any popu-

lation, not only for those whose age distribution is stable as in Keyfitz’ (1971) analytic for-

mula. Preston and Guillot (1997) introduced an equation expressing population momentum 

for any age structure (see also Preston et al., 2001, p.162):

M(t) =
∫ ω

0

c(a, t)
cs(a)

w(a)da, (2)

where c(a, t) is the proportionate age distribution of the population at time t when

replacement-level fertility is imposed. The age distribution in the denominator of Eq. (2)

is the stationary one that will eventually emerge after replacement-level fertility has been in

place for many years. The third quantity in Eq. (2), w(a) is given as

w(a) =
l(a)v(a)

µ
(3)

where

v(a) =
1

l(a)

∫ ω

a
l(x)m∗(x)dx (4)
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denotes the reproductive value of an a year old woman, as explained above with the 

replacement fertility rates m∗(x).

A characteristic feature of Coale’s approach is to assume that all births occur at a unique 

age, namely µ. Starting with the time when replacement-level fertility is imposed, each 

female expects exactly one birth at age µ, none below and none above.

Thus, we have

v(a) =


1 for a ≤ µ

0 for a > µ

(5)

Now from Eq. 2, we obtain

M(t) =
e0

µ

∫ µ

0

c(a, t)
l(a)

da. (6)

For an overview of the demographic momentum, we refer to Preston et al. (2001, 

chap. 7.7) and Schoen (2007, chap. 4). While Keyfitz (1971) assumes an immediate 

change of fertility rates to replacement level, Li and Tuljapurkar (1999; 2000) and 

Goldstein (2002) deal with gradual changes of vitality rates to a stationary situation.

3 Fundamentals of pseudostable populations

The assumptions that underly the stable population model allow for a mathematical 

treatment of the transient and long-term dynamics of such a population. Relaxing those 

assumptions is a step towards a more realistic perspective. In Chapter 4 of his 

groundbreaking book, Coale (1972) considered the case of fertility declining at a constant 

rate. This added flexibil-ity allows us to investigate the demographic consequences of the 

fertility decline observed in many countries during the demographic transition in a 

succinct, analytical way. More specifically, the pseudostable approach answers the 

question of how a long-term fertility decline at a fixed annual rate influences the age 

distribution as well as related demographic indices.
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Coale (1972, Chapter 4) studied a particular instance of changing fertility schedules: As-

suming constant mortality and fertility subject to a constant annual change with a fixed 

age pattern, he was able to derive analytic expressions for the underlying population de-

cline in this scenario of a fertility decline (see also Coale and Zelnik (1963); Feichtinger 

and Vogelsang (1978); Kim and Schoen (1996); Schoen (2007); for earlier and related work). 

Remarkably, the approach pioneered by Coale and Zelnik (1963) provides a bouquet of 

analytic results that are different but comparable to those in a stable framework. This fact 

motivated Feichtinger and Vogelsang (1978) to denominate the Coale-Zelnik populations as 

pseudostable. Next, we summarize some of our findings that are crucial for understanding 

the growth and the structure of pseudostable populations.

Consider a one-sex population dynamic model in continuous time with age specific fer-

tility rates in period

m(a, t) = m(a, 0) exp(kt) for α ≤ a ≤ β (7)

in period t at age a, where k < 0 measures the annual rate of fertility decline. Note that 

fertility has a fixed age structure, but with changing level at a constant rate. Then for the

time-dependent net reproduction rate, R(t) =
∫ β

α l(a)m(a, t)da holds:

R(t) = R(0) exp(kt), d log R(t)/dt = k. (8)

To simplify the analysis we choose the time t = 0 such that there prevails exact replace-

ment (R(0) = 1). Figure 2 illustrates the time path of an exponentially shrinking net repro-

duction rate with k = −2%, i.e., about the pace observed in the four Latin American coun-

tries shown in Fig. 1. While the next sections show asymptotic behavior, we can already see 

that a pseudostable population describes a transient phase: With an empirically observed 

pace of fertility decline of about two percent annually, it would only take about one hun-

dred years from the current highest observed net reproduction rate (2.937 in Niger) to the
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Figure 2: Net reproduction rate R(t), assuming a constant rate of fertility decline of two per-
cent. Time axis t = 0 is fixed when R(t) = 1.

lowest (0.358 in Hongkong, see United Nations (2022) for both NRR estimates).1

Our first goal is to find out the birth trajectory. Inserting assumption 7 in the renewal

equation for births B(t), we get

B(t) =
∫ β

α
B(t− a)l(a)m(a, t)da = R(0) exp(kt)

∫ β

α
B(t− a)l(a)m(a, 0)da. (9)

Assuming a unique age at which females give birth, denoted as µ(t), and applying the

mean value theorem of integral calculus, yields

1log(0.358/2.937)/(−0.02) = 105.2305
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B(t) = B(t− µ(t))R(t). (10)

To solve (10), Coale (1972, p.119) assumed that µ(t) is a fixed number,

µ =

∫ β
α al(a)m(a)da∫ β
α l(a)m(a)da

i.e., the mean age of childbearing in the stationary population.

Then, (10) delivers a linear difference equation for log B(t).2 Solving it by a quadratic 

approach leads to the following birth sequence

B(t) = B(0) exp
[

kt
2
+

kt2

2µ

]
. (11)

Note that:

• With known k, t, and µ, B(0) uniquely determines the birth trajectory.

• Note also the extension from geometric growth for stable populations to a quadratic

exponential function in the pseudostable case.

• B(t) is a symmetric bell-shaped curve reaching its maximum at t = −µ/2. This might

seem counterintuitive for two reasons: 1) We observe an increase in births despite a

continuously declining level of fertility (until t = −µ/2). 2) The number of births

declines despite NRR > 1 for −µ/2 < t < 0. This can be understood by seeing the

number of births as the scalar product of the (vector of) age-specific fertility rates and

the (vector of) corresponding number of women at fertile ages where the former is

continually falling but the latter is still increasing.

Figure 3 illustrates the dependence of birth trajectories on k, i.e. the rate of fertility de-

cline, and the mean age at childbearing µ. The upper panel confirms — most visibly for the 

relatively fast annual fertility decline of 5% (k = −0.05) in bright blue — that we have a bell

2See Appendix A for details.
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shaped curve. The larger the absolute value |k| is, the steeper the B(t); small |k| lead to ‘flat’ 

trajectories being less concentrated around −µ/2; the peak in births is reached exactly at 

t = −µ/2. Due to the quadratic shape the same number of births are observed at t = −µ 

as in t = 0. The lower panel shows how the timing of the peak in births depends on µ for a 

given pace of fertility decline (1% annually), but not the level or shape. Thus, k determines 

the shape and scale of the birth trajectory, whereas µ is the location parameter.

It is astounding that the strong assumptions of a constant value of µ and a single age 

at birth generated a birth stream that was very close to the birth stream in the full 

renewal equation. While still assuming a constant age at childbearing, the simulation 

depicted by the red line in Figure 4 takes the reproductive interval between 12 and 55 into 

account.

We assessed the accuracy of the approximation in Eq. (11) by simulation: We used the 

fertility and mortality age structure of women in Colombia from 1985 onward. The time 

axis was centered when NRR = 1. Thus, the year 2008 corresponds to t=0. The simulation 

started with a hypothetical NRR of 8 and a constant annual rate of decline (k) of 1.91%, 

while keeping the fertility age structure constant. The initial population age-structure 

was the stable-equivalent of the 1985 female Colombian population. The mean age at 

childbearing was 27 years. This is close to the average from our observation 

window of interest (1985-2008) of 26.9 years. Although we only fixed the level of the 

number of births to coincide with the actually observed number of female births in the 

year 2008 (t=0), the general shapes, levels, and modal ages in both curves match 

remarkably well. These findings also mirror Coale’s (1972, p.121–122) earlier 

results. The deviations at the beginning can be attributed to the age structure: While 

the analytical trajectory assumes a pseudostable age structure, we used the stable 

equivalent age structure of the underlying fertility and mortality schedule, i.e., the right 

eigenvector to the dominant eigenvalue of the projection matrix.

12



Year t

B
(t

)

−100 −80 −60 −40 −20 0 20 40 60 80 100

Theoretical Birth Trajectories in a Pseudostable Setting

0

50000

100000

150000

200000

250000

300000

350000

400000
Analytical Birth Trajectory
Empirical Simulation

Figure 4: Births B(t) : A comparison of the analytical approximation (red) with an empirical
simulation (blue).

In the remainder of this short introduction to pseudostable populations, we derive its

time-dependent age structure c(a, t) that results from the quadratic exponential birth se-

quence (11).

c(a, t) =
N(a, t)
N(t)

=
B(t− a)l(a)∫ ω

0 B(t− x)l(x)dx
=

g(a, t)l(a)∫ ω
0 g(x, t)l(x)dx

, (12)

where N(a, t) is the number of a years old females at time t, and

g(a, t) = exp
[
− ak

2
+

a2k
2µ
− kta

µ

]
. (13)
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When fertility declines, there is a transitory period of low dependency. This occurs when 

the largest cohorts born during the transition are of prime working ages and there are few 

children and simultaneously few elderly. Fent et al. (2022) provide a formal framework for 

understanding the timing, duration, and magnitude of the support ratio that accompanies 

the decline in fertility. Since the classical stable population theory is not capable of carrying 

out such an analysis, the authors resorted to the pseudostable approach, which showed 

how the survival schedule, the pace of fertility decline and the generation length 

determine the timing, duration, and magnitude of the demographic support ratio. Note 

that this delivers a valuable contribution to the lasting discussion around the demographic 

dividend.

4 The Pseudostable Momentum

Inserting the pseudostable age structure (12) for the proportionate age distribution c(a, t), 

we obtain from (6)

M(t) =
e0

µ

∫ µ
0 g(a, t)da∫ ω

0 g(a, t)l(a)da
(14)

This section looks at the behavior of the momentum over the entire time interval from 

minus infinity to plus infinity. We start with an intuitive approach that delivers qualitative 

insights before proceeding in a stepwise manner to obtain quantitative results.

In the remote past, the high NRR led to a very young age distribution. Since there were 

scacely any older people living at that time, the ratio of integrals in (14) went to 1 for t versus 

minus infinity. O n t he o ther h a nd, t he a ge c omposition w as i ncreasingly c oncentrated to 

higher ages for very large periods t. Thus, the proportion of the pseudostable population in 

the age group from 0 to µ converged to zero.

This asymptotic behavior suggests a monotonous decrease of the momentum from e0/µ to 

0. In the following, we assume that e0/µ > 1 as life expectancy at birth is usually larger

14



than the mean age at childbearing. Nevertheless, some exceptions have been observed 

pre-viously, for instance due to high infant mortality.3

Thus, interestingly enough, there should be a time t̂ such that M(t̂) = 1. Intuitively, this 

is a remarkable feature of pseudostable populations. Initially, i.e. in the remote past, there is 

a huge positive momentum. For replacement conditions imposed in the remote past, the 

pseudostable population may increase substantially (not to infinity as one could presume at 

the first glance, but) to a level of 2–3 times the initial population. In the next step, the 

positive momentum gradually declines until it reaches a time, denoted above as t̂, where 

there is neither a positive nor a negative further growth of the population. Since 

NRR(t) > 1 for t < 0, the momentum at time 0 is still positive, i.e., M(0) > 1 (note that 

NRR(0) = 1).

From t̂ onwards, the momentum is negative, which means that an already shrinking 

pop-ulation continues to shrink for a while until stationarity on a level smaller than 1 is 

even-tually reached. Note the asymmetry in the behavior of M(t) for very large positive t as 

opposed to very large negative times. While in the first case the (negative) impact of de-

clining fertility is restricted to 100%, the maximal (positive) momentum amounts to 200% 

to 300% in the latter.

Clearly, such considerations of plausibility do not replace a mathematical proof. From 

(14), we get

M(t) =
e0

µ

N (t)
D(t) . (15)

where the numerator N (t) and the denominator D(t) of (15) are given by

N (t) =
∫ µ

0
g(a, t)da, D(t) =

∫ ω

0
g(a, t)l(a)da (16)

3We checked the 2019 Revision of the World Population Prospects of the United Nations. Those were the ex-
ceptions across all countries of the world during the years 1950 through 2020 (in alphabetical order): Afghanistan
1950-55; Cambodia 1975-80; Mali 1950-55, 1955-60; Rwanda 1990-95; Yemen 1950-55, 1955-60.
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with

g(a, t) = exp
[

k
(
−τa +

a2

2µ

)]
(17)

and τ = 1
2 +

t
µ .
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Figure 5: Time paths of the population momentum M(t) in pseudostable populations with
varying levels of fertility decline k.

With the timescale anchored (t = 0) when NRR = 1, Figure 5 illustrates the time path
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of the population momentum in pseudostable populations for four different values of the 

rate of fertility decline k. They range from an expedited reduction in fertility (-5% p.a.) to 

an extremely slow pace (-0.1% p.a.): For instance, it would only take 7.9 years to observe a 

decline in the NRR from 3 to 2 in the fast scenario, but more than 400 in the slow scenario. 

We would like to point out two interesting characteristics: 1) Despite this large variation 

in the pace of fertility decline, the ”tipping point” for M(t) is independent of k: They all 

converge at the same time-point. 2) In contrast to the canonical stable model, a NRR = 1 

is not equivalent to M = 1 in the pseudostable case. Expressed differently: There is a time 

interval from t = 0 to t̃ where the observed NRR would induce a population decline in 

the stable model whereas it would trigger further population increase in the pseudostable 

model.

Figure 6 shows the long-run perspective of the population momentum. We simulated 

this long-term trajectory with the age-specific s urvival o f C olombian w omen i n 1 985 and 

their fertility age structure. The mean age at childbearing that year was 27.79 years, while 

life expectancy at birth was 71.12 years. As one probably expects, the momentum M(t) 

tends to zero with ever-declining fertility. To our initial surprise, however, momentum in 

the remote past does not increase infinitely w ith c ontinously h igher f ertility. Instead, it 

bends over to an asymptotic limit of e0/µ (see also Proposition 1). With a mean age at 

childbearing of 27.79 years and life expectancy at birth of 71.12, the theoretical upper value 

of M(t → −∞) = e0/µ = 71.12/27.79 = 2.56. Our empirical estimate (with k = −0.5%) led to 

a M(t → −∞) = 2.55.

Next, we are interested in how the pseudostable momentum depends on time t. By 

differ-entiating equation (15) with respect to t and applying the quotient rule, we obtain

M′(t) = M(t)
(
N ′(t)
N (t)

− D
′(t)
D(t)

)
(18)

Direct calculations lead to
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Figure 6: Population momentum M(t) — long term perspective.

N ′(t) =
∫ µ

0
g(a, t)

(
−ka

µ

)
da = − k

µ

∫ µ

0
ag(a, t)da (19)

and

D′(t) =
∫ ω

0
g(a, t)

(
−ka

µ

)
l(a)da = − k

µ

∫ ω

0
ag(a, t)l(a)da (20)
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Therefore (18) can be rewritten as

M′(t) =
(

k
µ

)
M(t)

(∫ ω
0 ag(a, t)l(a)da∫ ω
0 g(a, t)l(a)da

−
∫ µ

0 ag(a, t)da∫ µ
0 g(a, t)da

)
=

(
k
µ

)
M(t)

(
A(t)− A0

µ(t)
)

,

(21)

with

A(t) =

∫ ω
0 ag(a, t)l(a)da∫ ω
0 g(a, t)l(a)da

and A0
µ(t) =

∫ µ
0 ag(a, t)da∫ µ
0 g(a, t)da

(22)

where A(t) is the mean age of the total pseudostable population under a general survival

function and A0
µ(t) denotes the mean age of those females below age µ under a rectangular

survival function.

We conjecture that A(t) > A0
µ(t) and together with k < 0, we conclude that M′(t) < 0.

This is also supported by numerical simulations.

The following proposition collects the structural properties of the momentum for pseu-

dostable populations. It constitutes the main results of the paper.

Proposition 1: The pseudostable momentum M(t) develops as follows:

(a) limt→−∞ M(t) = e0/µ,

(b) limt→+∞ M(t) = 0,

(c) dM(t)/dt < 0;

(d) there exists a unique time t̂ such that M(t̂) = 1;

(e) there is a unique point of inflection t̃ characterized by M′′(t̃) = 0.4

Following equation (6) and by taking
∫ ω

0 c(t, a)da = 1 into consideration, rectangular

mortality, and µ < ω = e0 we conclude that M(t) < e0/µ. An intuitive explanation of the 

asymptotic result (a) from Proposition 1 by using the renewal theorem is the following5: 

One new born girl B = 1 leads to a birth rate 1/µ. Thus, the ultimate population equals 

Be0/µ = e0/µ.

4The uniqueness is only supported by numerical simulations.
5We are grateful to Joshua R. Goldstein, UC Berkeley, for suggesting this interpretation.
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Figure 7 shows the pseudo-stable population momentum M(t) in Panel A) and its first 

and second derivatives in panels B) and C), respectively. Plots are based on analytic ex-

pressions. The following assumptions were made: Mean age at childbearing in a stationary 

population µ = 30; proportional fertility reduction per unit of time k = −0.025; Gompertz-

mortality with parameters α = 10−5 , and β = 0.11, resulting in life expectancy at birth 

e0=79.33.
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Figure 7: Momentum and its derivatives depending on time.

Remark: For a rectangular survival function l(a), i.e.

l(a) =


1 if a < ω

0 if ω ≤ a
(23)

the mean age of the total pseudostable population reduces to

A0(t) =

∫ ω
0 ag(a, t)da∫ ω
0 g(a, t)da

(24)

20



Clearly, it holds that A0(t) > A0
µ(t),which proves point (c) of proposition 1 for 

rectangu-lar survival functions. 6

Next, we will sketch the significance of the results from proposition 1. Point (a) describes 

the remarkable fact, that the asymptotic behavior of the pseudostable momentum M(t) in 

the remote past does not depend on the shrinking rate k of reproduction. Moreover, the limit 

is given by the quotient of the upper age limit ω and the mean age of birth µ. According to

(c) and (b) M(t) decreases montonously before converging finally to zero.

While the momentum could initially be presumed as infinitely large in the very remote

past, this is not true. In our model, however, the momentum decreases gradually from its 

maximal value e0/µ to zero. Point (d) says that there is a time t̂ in between, where there no 

momentum exists. For t < t̂ , there is a ‘positive’ momentum (or, more formally: the 

momentum exceeds one), whereas the momentum is ‘negative’ for t > t̂ i.e., the population 

continues to shrink for a while if the net reproduction rate immediately increases to 

replacement level. Since the net reproduction rate NRR(0) equals 1 and was higher in the 

past, there are enough potential mothers to imply a positive momentum for t = 0, i. e, 

M(0) > 1.

For the proof of proposition 1, we complete the expression in the exponential function (13) 

of the exponent in g(a, t) to a square by adding (µ/2)τ2. To establish the first two points

(a) and (b), the rule of de L’Hôspital is applied. The proof of (c) uses the generalized mean

value theorem of differential calculus. For details also of the additional points raised in 

the proposition see Appendix B. Together with the asymptotic behavior, this establishes 

the existence of at least one point of inflection. To ascertain it, we set M′′(t) = 0.

Next, we vary the core parameter of the pseudostable model, the rate of fertility decline

k. The results are summarized in the following

Proposition 2: Consider the momentum not only as time function but also depending on the

rate k of declining fertility, i.e., M(t; k).

For decreasing absolute values of the parameter k, the momentum M(t; k) becomes flatter, while
6For an analytical proof of Proposition 1 in case of rectangular survival functions, see Appendix B.
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larger declining rates lead to a steeper momentum.

In the limit one obtains a horizontal straight line and a step function, respectively. 

For k → −∞, it holds that

M(t; k) =


e0/µ for t < µ/2

0 for t > µ/2
(25)

while for k → 0, we have

M(t; k) = 1 for all t. (26)

The neutral time t̂ is a function of k, i.e., t̂(k), which increases with k, i.e., dt̂(k)/dt > 0 (note 

that k < 0). Moreover,

lim
k→0

t̂(k) = +∞, lim
k→−∞

t̂(k) = µ/2. (27)

The proof is sketched in Appendix B.

Figure 8 depicts the momentum M(t) for extremely high values of fertility decline k. The 

points of intersection with M(t) = 1 lead to the neutral times t̂(k). This figure also illustrates 

how the momentum gets steeper for k → −∞ and that t̂(k) → µ/2. From simulations, we 

derive that the same asymptotic behavior is true for the point of inflection t̃  = t̃(k)

Table 1 shows estimated values for the point of inflection t̃ as well as t̂, i.e., the time point

when momentum M(t) = 1, for selected levels of fertility reduction k. The results are based

on the assumption of a mean age at childbearing µ = 30 in stationary populations and

mortality following a Gompertz distribution with parameters α = 0.00001 and β = 0.11

resulting in life expectancy at birth e0 = 79.3 years. Age 109 was used as the upper age-

limit ω. This is the age at which there is at most one in a million survivors with the given

parameters of the Gompertz distribution. Note that for k very near to zero (larger than

−0.0020) the dependence both of t̂ and t̃ on k is not monotonous, which seems to be due to
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numerical artefacts.
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Figure 8: The momentum of an extremely high decline of fertility (i.e., extremely low values 
of k)

The time from t = 0 to t̂ is interesting for several reasons. First, for 0 < t ≤ t̂, fertility is 

below the replacement level. Nevertheless we observe positive momentum — that is 

counterintuitive to the standard case of population momentum. Second, M(t̂) = 1 implies 

that the population size observed at t̂ is equivalent to the population size obtained with an
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Table 1: Neutral times t̂ and time points of inflection t̃ of the momentum depending on the 
fertility decline, as measured by parameter k.

k t̂ t̃
-0.0001 18.060 22.076
-0.0002 20.400 21.804
-0.0005 21.790 22.018
-0.0010 22.240 22.439
-0.0020 22.440 22.889
-0.0050 22.480 22.503
-0.0100 22.360 22.378
-0.0200 22.070 22.044
-0.0500 21.230 21.252
-0.1000 20.150 20.158
-0.2000 18.850 18.872

Note the surprisingly small differences between the neutral time t̂ and the inflection time t̃.

immediate switch to replacement level fertility at t̂. Third, the age structure of the pseudo-

stable population is not equivalent to the stationary age structure, as shown in Figure 9.

The stationary age structure features more children and more people at higher ages 

whereas the pseudo-stable population contains more persons at working ages. Expressed 

differently: All standard dependency ratios (young, old, total) are more favorable in the 

pseudo-stable population at t̂ than in the stationary case.

5 Conclusions

Although stable populations are at the core of formal demography, they do not — to the 

best of our knowledge — occur in reality, where age-specific vitality rates change over 

time. Coale (1972) extended the stable framework by assuming uniformly declining 

fertility rates with-out giving up the flair of analytic t ractability. In the current paper, we 

studied one special aspect of this type of populations, later denoted as pseudostable ones 

(see also Feichtinger and Vogelsang, 1978), namely their demographic momentum.

We derived a qualitative characterization of the time path of the momentum M(t) of
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population growth and decline under pseudostable conditions. It turned out that M(t) is

a monotonously decreasing S−shaped function that converges to zero for increasing times,

but remarkably to a finite value given by the ratio e0/µ in the remote past. This guarantees
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the existence of a time t̂ with a neutral momentum, i.e. M(t̂) = 1. To prove this interesting 

behavior of the pseudostable momentum, we not only had to assume a fixed unique birth 

age, but also a rectangular mortality schedule.

Moreover, we provided a dynamic sensitivity analysis with respect to the rate k of fer-

tility decline. For decreasing absolute values of the parameter k, the momentum becomes 

flatter, while larger declining rates lead to a steeper momentum. In the limit, this 

results in a horizontal straight line and a step function jumping from e0/µ to zero for t = 

µ/2, respectively.

Reflecting the history of the natality and the mortality of a  population, its age compo-

sition can be seen as its memory. The reason for the demographic momentum is an inertia 

of age structures containing a relatively large number of potential parents due to past high 

fertility. Although a miraculous, immediate reduction of fertility to replacement level is 

un-realistic, a gradual decline of fertility in fast growing populations seems inevitable. 

Since any delay in fertility decline to a stationary level leads to an increase of the 

momentum, it makes sense to think about the timing and the quantum of the reduction 

in reproduc-tion. More specifically, there is an intertemporal trade-off between costly 

family planning measures and the size of the demographic momentum at the end of the 

planning period. In Feichtinger and Wrzaczek (2022) a distributed parameter control 

framework is used to study this problem. An appropriate extension of Pontrayagin’s 

maximum principle allows for deriving interesting insights into the qualitative structure of 

the optimal path of fertility control and the resulting salvage momentum. In particular, this 

approach can be applied in a symmetric way to determine efficient pro-natalistic measures 

for shrinking populations, a situation that is currently prevailing in several developed 

countries.
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Appendix A: Addendum to Pseudostable Populations

This Appendix section provides details on pseudostable populations. For more detailed

informations on these interesting populations see Coale (1972, chap. 4) and Feichtinger and

Vogelsang (1978).

We start with the derivation of the potentially surprising fact of a ‘birth mountain’ re-

sulting from a permanent decline of fertility at a constant rate k.

Let us start with equation (10). For a constant µ(t) = µ it may be written as

B(t) = R(0) exp(kt)B(t− µ). (28)

Setting Y(t) = log B(t) and reiterating the assumption R(0) = 1, equation (28) may be

written as

Y(t)−Y(t− µ) = kt. (29)

As mentioned in Section 3, this is a linear difference equation that may be solved by

assuming Y(t) = b1t + b2t2. Substituting this quadratic polynomial in (29) and solving for

the coefficients b1 and b2, yields b1 = k/2, b2 = k/(2µ) and hence the birth path with the

quadratic exponential previously described in (11).

Next, the mean age of the total population N(t) is given by

A(t) =
∫ ω

0
ac(a, t)da. (30)

Combined with (12) and (13), this results in a permanent increase in the mean age 

of pseudostable populations, since it holds that

dA(t)
dt

= − kσ2

µ
, (31)
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is greater than zero, where

σ2(t) =
∫ ω

0
(a− A(t))2c(a, t)da (32)

is the variance of the age structure. Note that (31) results from the linear approximation 

of the exponential function (13) (see Feichtinger and Vogelsang (1978, p.39)) for the 

stable pendant. (compare also Keyfitz, 1977, p.88–89).

Note that the following limits are given by

lim
t→+∞

A(t) = ω, lim
t→−∞

A(t) = 0.

An efficient tool created by Coale (1972) to analyze populations with a constantly chang-

ing net reproduction rate (i.e. pseudostable populations) is to compare them at an arbitrary 

time t with the stable population resulting from the fertility schedule prevailing in t. The 

growth rate of the stable equivalent is given as a unique real solution to the characteristic 

equation, ∫ ω

0
exp(−rs(t))l(a)m(a, t)da = 1,

namely

rs(t) =
log R(t)

µ
=

kt
µ

. (33)

Appendix B: Proofs

Under the restriction of a rectangular survival function l(a) (see eq. (23)), we provide a 

formal proof.

Proof of Proposition 1:

By completing the expression in the exp-function (13) to a square the pseudostable mo-

mentum given in (14) is proportional to
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∫ µ
0 g(a, t)da∫ ω
0 g(a, t)da

=
exp(kµτ2/2)

∫ µ
0 exp

[
k
(
−τa + a2

2µ

)]
da

exp(kµτ2/2)
∫ ω

0 exp
[
k
(
−τa + a2

2µ

)]
da

=

∫ µ
0 exp

[
k(a−µτ)2

2µ

]
da∫ ω

0 exp
[

k(a−µτ)2

2µ

]
da

(34)

Using this in (15) yields a quotient of two well-known integrals of the form
∫

exp(−z2)dz.

As ∫
exp

[
k(a− µτ)2

2µ

]
da =

∫
exp

−(√−k
2µ

(a− µτ)

)2da (35)

we therefore transform a to z by

z =

√(
−k
2µ

)
(a− τµ) (36)

and obtain a simpler integrand, but more complicated integration limits. This transforma-

tion also leads to

da = dz
√

2µ

−k
(37)

Thus the integral in (1) is equivalent to

∫
exp

−(√−k
2µ

(a− µτ)

)2da =

√
2µ

−k

∫
exp

[
−z2]dz (38)

The integration limits have to be changed in the following way:

a = 0⇒ z = −τ

√
−kµ

2
, a = µ⇒ z = (1− τ)

√
−kµ

2
, a = ω ⇒ z =

(
ω

µ
− τ

)√
−kµ

2
(39) 

Therefore, we next use the momentum M(t) transformed as indicated, ignoring the factor 

ω/µ, and denote it as

J(x; u, v) =

∫ x+u
x exp[−z2]dz∫ x+v
x exp[−z2]dz

, 0 < u < v. (40)
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with

x = −τ

√
−kµ

2
, u =

√
−kµ

2
, v =

ω

µ

√
−kµ

2
(41)

Now, we aim to show that
∂J(x; u, v)

∂x
> 0. (42)

Note that the sign of the derivative in (42) is opposite to that in point (c) of Proposition 1.

This is because t (τ) and z are related by (36).

To establish (42), we consider the following function

F(x, y) = − log
[

exp(x2)
∫ x+y

x
exp(−z2)dz

]
, y > 0 (43)

Direct calculation shows the validity of

∂ log J(x; u, v)
∂x

= Fx(x, v)− Fx(x, u). (44)

This follows from

J(x, u, v) =
exp(x2)

∫ x+u
x exp[−z2]dz

exp(x2)
∫ x+v

x exp[−z2]dz
, ⇒ log J(x, u, v) = F(x, u)− F(x, v) (45)

where

Fx(x, y) = −2x +
exp(−x2)− exp(−(x + y)2)∫ x+y

x exp(−z2)dz
(46)

Now we prove two lemmata for the function (43).

Lemma A.1: There exists a δ ∈ (0, y) such that

Fx(x, y) = 2δ. (47)
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Proof:

exp(−(x + y)2)− exp(−x2)∫ x+y
x exp(−z2)dz

=
exp(−(x + y)2)− exp(−x2)∫ x+y

0 exp(−z2)dz−
∫ x

0 exp(−z2)dz
(48)

Defining the function f (x) = exp(−x2) and g(x) =
∫ x

0 exp(−z2)dz then according to

the generalized mean value theorem of calculus7 there exists a δ ∈ (0, y) such that

exp(−(x + y)2)− exp(−x2)∫ x+y
0 exp(−z2)dz−

∫ x
0 exp(−z2)dz

=
−2(x + δ) exp[(−x + δ)2]

exp[−(x + δ)2]
= −2(x + δ) (50)

leading to Fx(x, y) = −2x + 2(x + δ) = 2δ.

Lemma A.2: For 0 < u < v it holds that

Fx(x, u) < Fx(x, v), ∀x ∈ IR (51)

which means that Fx(x, y) is monotonically increasing in y for fixed x.

Proof:

Fxy =
2(x + y) exp[−(x + y)2]∫ x+y

x exp[−z2]dz
−
(
exp[−x2]− exp[−(x + y)2]

)
exp[−(x + y)2](∫ x+y

x exp[−z2]dz
)2 (52)

Simplifying and applying the above result leads to

Fxy =
exp[−(x + y)2]∫ x+y
x exp[−z2]dz

[2(x + y)− (Fx + 2x)] =
2(y− δ) exp[−(x + y)2]∫ x+y

x exp[−z2]dz
> 0 (53)

(51) and (44) deliver the desired result (42). Hence, this establishes the monotonic decrease

of M(t) asserted in (c) of Proposition 1.

To prove the asymptotic behavior declared in points (a) and (b) the rule of de L’Hôspital 
7For sufficiently smooth functions f (x) and g(x), there exists a value x0 ∈ (α, β) such that

f (β)− f (α)
g(β)− g(α)

=
f ′(x0)

g′(x0)
. (49)
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can be applied.

Remark: Remember that two approximations, namely (10) with µ(t) = µ and (23) , led 

us to the nice structural properties of the pseudostable momentum and the related times. 

Numerical simulations are required to establish the validity of the results from Proposition 

1 in a more general setting, i. e., for realistic (non-rectangular) mortality schedules.

To sketch the proof of proposition 2, we rewrite M(t) as

J(p, p(x + c)) =

∫ p(x+a)
px exp(−z2)dz∫ p(x+b)
px exp(−z2)dz

(54)

with p = −k/2µ, and c = a or b with a < b. Note that x = −(µ/2 + t).

Now, let p → ∞. Then, we have to distinguish between the following four cases:

(a) 0 < px < p(x + c)

(b) px < p(x + c) < 0

(c) px < p(x + a) < 0 < p(x + b)

(d) px < 0 < p(x + a) < p(x + b).

The first two cases result in a limes of ‘0/0’ and can be solved by using the rule of de

L’Hôspital appropriately.

The remaining two cases use the well-known fact that

∫ +∞

−∞
exp(−z2)dz =

√
π. (55)

Remarkably, for p → ∞ (18) has a jump for x = −µ, which means that the momentum

M(t) jumps from ω/µ to 0 at the time t = µ/2.
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Appendix C: Additional Material

Differentiating relation (18) with respect to time and taking into consideration the deriva-

tives of the mean ages

A′(t) = − kσ2(t)
µ

, A′µ(t) = −
kσ2

µ(t)
µ

with the pertinent variances yields

M′′(t) =
k
µ

{
M′(t)[A(t)− Aµ(t)]−

k
µ

M(t)[σ2(t)− σ2
µ(t)]

}
(56)

Setting (56) equal to zero, results in the equation

M′(t)
M(t)

=
k
µ

[σ2(t)− σ2
µ(t)]

[A(t)− Aµ(t)]
(57)

to determine the time t̃ where M′′(t̃) = 0, i.e., the point of inflection occurs.
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