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Abstract

We investigate the optimal regulation of energy production reflecting the long-term goals of the Paris
Climate Agreement. We analyze the optimal regulatory incentives to foster the development of non-emissive
electricity generation when the demand for power is served either by a monopoly or by two competing
agents. The regulator wishes to encourage green investments to limit carbon emissions, while simultaneously
reducing intermittency of the total energy production. We find that the regulation of a competitive market
is more efficient than the one of the monopoly as measured with the certainty equivalent of the Principal’s
value function. This higher efficiency is achieved thanks to a higher degree of freedom of the incentive
mechanisms which involves cross-subsidies between firms. A numerical study quantifies the impact of the
designed second-best contract in both market structures compared to the business-as-usual scenario.

In addition, we expand the monopolistic and competitive setup to a more general class of tractable
Principal-Multi-Agent incentives problems when both the drift and the volatility of a multi-dimensional
diffusion process can be controlled by the Agents. We follow the resolution methodology of Cvitanić et
al. (2018) in an extended linear quadratic setting with exponential utilities and a multi-dimensional state
process of Ornstein-Uhlenbeck type. We provide closed-form expression of the second-best contracts. In
particular, we show that they are in rebate form involving time-dependent prices of each state-variable.
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1 Introduction

This paper investigates Principal-Multi-Agent incentive problems inspired by the inescapable need for a
suitable ‘green’ regulation reflecting long-term goals of the Paris Climate Agreement (see European Com-
mission (2016)). Investments in renewable energies such as wind and solar energy play an important role
in the current climate debate. Due to their high fluctuations, however, conventional energy is still an
attractive alternative for power producers even causing high carbon emissions. Regulation of the market
in line with the green deal is necessary such that renewable energy generation is enforced to limit global warming.

However, an important feature of electricity generated by renewable energy, like solar and wind energy,
is its intermittency. Their production depends on the realization of solar radiation and wind. Hence, the
development of renewable energy increases the volatility of electricity production. Counter measures have to
be taken into account to maintain the reliability of the power system. Thus, renewable energy provides both
a positive externality thanks to the carbon emission they allow to avoid and a negative externality because of
the indirect cost induced by their intermittency (see for an introduction to that economic literature Joskow
(2011), Borenstein (2012), Hirth (2013) and Gowrisankaran (2016)). In this context, it makes perfect sense for
the regulator to provide incentives to invest in renewables and also in counter measures to reduce the volatility
they induce in the system (like storage or demand response enrollment programs).

Besides, the climate change and energy transition context, the present energy crisis that has taken over
Europe in 2022 has triggered a series of public actions which trends toward an increase of the control of
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energy markets by the States. Indeed, the crisis raised voices on the necessity of a new market regulation
(see European Commission (2022)) while in France, the main electricity utility holding more than 75% of
production capacity (in 2020) is becoming a fully national company.

This motivates our Principal-Agents approach to assess the optimal incentives mechanism to achieve an
appropriate level of investment in non-emissive electricity production technology while maintaining smoothness
of the energy production. Our approach builds on Cvitanić et al. (2018) which itself is based on the work
by Sannikov (2008). In this work, Cvitanić et al. (2018) provides a general solution for the design in
continuous-time of an optimal contract with moral hazard when one is concerned with both drift and volatility
control of the state variable. This result is of particular interest in a context where reducing the volatility of
the intermittent renewable energy production is of the utmost importance. Their result was extended by Élie
and Possamaï (2019) to the case of Principal-Multi-Agent models but restricted to drift control only. This
extension allows to deal with different market structures, like one regulated monopoly serving all the market
or a competitive market served by several energy producers.

In this paper, we design an optimal contract, offered by the regulator (the Principal) encouraging energy
producers (the Agents) to invest in renewable energy production capacity while stabilizing the energy produc-
tion. In our model, agents can invest in two types of technology: intermittent renewable energy production
capacity like wind farms and solar panels or conventional production technologies which are not intermittent
but emissive like gas or coal fired plants. Agents receive a fixed proportional price for their production while
facing linear quadratic investment costs with congestion term (product of both investment rates) captured
by a single parameter ε. Further, they face a nonlinear volatility reduction cost function. Besides, installed
capacities are prone to depreciation. The energy producers are incentivized to manage their production
capacity level while controlling the energy production volatility. The regulator pays the producers for the
energy they produce and bears three externalities. First, the conventional technology emits carbon emissions
with constant unit value (k1 in e/MWh), second, the renewable technology provides a positive social value
of avoided emissions with a constant unit value (k2 in e/MWh), and third, the renewable energy induces
costly quadratic variation (h in e/MWh2). However, if the regulator can observe the installed capacity of each
technology, she cannot observe the related efforts, measured not only on the investment cost of the technology
but also on all the obstacles the Agent has to overcome to get this precise level of production capacity. Neither
she can observe the efforts undertook by the Agents regarding the intermittency reduction of their production.
These features lead to an incentive problem of moral hazard type. In particular, we consider two types of
market structure. First, the electricity production is served by a single regulated monopoly firm which can
invest in both technologies (monopolistic case). Second, the electricity is served by two firms in competition.
Each firm can invest in only one technology: conventional technology for the first one and the renewable
technology for the second one. This restriction on the space of potential technology, in which firms invest,
reflects the existence of renewable only electricity production firms, like NextEra1. This setting allows to drive
conclusion on the effect of competition on the incentive mechanism required to achieve the appropriate level of
renewable energy investments.

The recent literature already considers optimal installation of renewable power plants (see, e.g. Koch and
Vargiolu (2021), Awerkin and Vargiolu (2021)) as a stochastic control problem of a price-maker company.
Besides, Kharroubi et al. (2019) focus on the regulation of renewable resource exploitation assuming a
geometric state under drift control only. However, as pointed out by Flora and Tankov (2022) under the
current policy scenario, the trend evolution of green house gas emissions develops insufficiently. In order to

1As of September 19th, 2022 NextEra wind and solar energy producer capitalisation is USD 168 billions while Exxon oil company
is USD 388 billions.
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reach the net zero 2050 goal, further regulatory action seems unavoidable. Further works already consider
governmental incentives for green bonds investment (see Baldacci and Possamaï (2022)) or for lower and more
stable energy consumption (see Aïd et al. (2022) and Élie et al. (2020)). However, it seems also natural to
directly encourage energy producers in investing into a more ‘green’ energy production capacity by regulatory
action within a Principal-(Multi-)Agent framework. To tackle this problem, we introduce a general extended
linear quadratic Principal-Multi-Agent problem over a finite time-horizon under drift and volatility control, so
that the monopolistic and competitive renewable regulation problems are examples of applications. The work
by Cvitanić et al. (2018), based on the paper by Sannikov (2008), paved the way for Principal-Agent problems
with drift and volatility control by finding a sub-class of contracts leading without loss of generality to the
optimal contract while reducing the stochastic differential game to a stochastic control problem. The main
reference for a Principal-N -Agents setting is to our knowledge Élie et al. (2019). In this paper, the authors
provide a characterization of the solution in the mean-field case as well as the N -Agents situation with drift
control only. They also provide solvable examples beyond the linear quadratic cases. Application of optimal
contract theory with N -Agents limited to drift control are common (see for instance Élie and Possamaï (2019)
where the authors develop and solve a Principal-N -Agents optimal contract problem of project management).
Applications with volatility are more difficult to find. We cite for instance Aïd et al. (2022) for a single
agent case and Élie et al. (2020) in the mean-field case. In our paper, we develop a general linear quadratic
setting of N -Agents hired by the same Principal to perform both drift and volatility control of a d-dimensional
state process perturbed by a K-dimensional Brownian motion. The drift of the state process is an affine
function of the state and of the controls of the Agents. Besides, each agent can act on each component of the
K-dimensional Brownian motion. Moreover, the desire to obtain as explicit closed-form expression as possible
limits the objective functions of both the Principal and the Agents to be linear in the state whereas quadratic
cost of investment efforts and even nonlinear costs in intermittency are still possible in the Agents’ criteria.

As a result, we provide in the general linear quadratic framework with N -Agents the Agents’ best responses
in the business-as-usual case and under a second-best optimal contract. We give explicit solutions for the
optimal actions resulting in deterministic functions of time. In particular, the optimal second-best controls
depend on drift and volatility payments which turn out to be deterministic themselves. We find that the
second-best optimal contract is linear in the state variable, which is standard in the Principal-Agent literature
with moral hazard. But, more precisely, we show that the optimal contract appears in rebate form. The
Principal pays the Agents in the end for what they did during the whole contracting period in comparison
to the initial state serving as a baseline. In particular, the second-best optimal contract splits into a fixed
and a variable payment driven by explicit second-best optimal prices for each deviation from the baseline.
The simplicity of this results owes a lot the linearity with respect to the state variables of the criteria of all
the players (Principal and Agents). It means that the marginal values of each state variable are constant but
may differ from the Agents and the Principal. Optimal incentives consist in sending prices that reflect the
Principal’s valuation of the state variables to the Agents. We provide explicit results even if the volatility cost
function stays nearly unrestricted.

We use the former results in our renewable energy investment incentives problem. One of our concerns is
related to the effect of the market structure on the provision of incentives. We consider two potential electricity
market organizations, namely a monopolist investing in both technologies or two competing firms investing
each in a different technology. As a surprise, in terms of efficiency measured by the certainty equivalent of the
Principal in both situation at initial time, we find that the regulation of a competitive market is more efficient
than the one of a monopoly as measured by the certainty equivalent of the Principal’s value function. The two
market structures offer the same level of efficiency only when firms are risk-neutral and there is no congestion
cost. In the other cases, the difference is in favor of the competitive market structure. This purely economic
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advantage of the competitive market over the regulated monopoly is due to a higher flexibility of the incentives
and the possibility of designing cross-subsidies between firms. Hence, this gain also comes at the cost of a
higher complexity of the incentives mechanisms.

Indeed, we say that the optimal incentives are coupled when the optimal incentive provision for one technol-
ogy does depend on the investment cost parameters of the other technology and/or the risk-aversion parameter
of the other firm in the case of competition.

In the case of a regulated monopoly, if the Agent is risk-neutral or if there is no congestion cost (i.e. ε = 0),
the incentive provisions per technology are decoupled. In each case, the prices per technology basically boil
down to the externality values they represent for the regulator. But, apart from these two extreme cases, the
optimal incentives for the installed capacity and for the energy production volatility reduction are fully coupled.
It means that the price to be paid to the regulated monopoly for each new installed renewable energy generation
depends on the volatility cost and the cost of reducing volatility of renewable energy technology but it depends
also on the conventional technology cost structure.

In the case of a competitive market, unless both firms are risk-neutral and there is no congestion cost (i.e.
ε = 0), the optimal incentives per firm are fully coupled. For instance, the volatility reduction cost function
of the conventional energy has an effect on the payment rate of renewable energy installed capacities. This
coupling burdens the work of the regulator in designing and implementing an acceptable regulation policy to
the market participants, by making the incentive mechanism of each technology interdependent.

The paper is organized as follows: in Section 2, we focus on the development of renewable energy production
capacity in two specific market structures, a monopolistic and competitive setting, as examples of applications.
Numerical results illustrate the impact of renewable regulation in Section 3 and give an intuition how to
design the optimal contract. Section 4 introduces the general extended linear quadratic Principal-Multi-Agent
problem, in which the economic problem considered before perfectly fits, and provides the results for the optimal
behavior of the Agents with and without contract as well as the general form of the optimal contract offered by
the Principal. Finally, Section 5 presents our conclusions.

2 Optimal Incentives for Renewable Energy Investments

In this section, we tackle the incentives for development of renewable energy first in a monopolistic setting in
Section 2.1 and then in a competitive setting in Section 2.2. In Section 2.3, we compare our findings. Both
settings are applications of the generalized linear quadratic model presented in Section 4. For the proofs in this
section, we refer to Section 4 and the appendix.

In each setting, the state equation represents the cumulative investment into conventional and renewable
energy production capacity managed either by a monopolist (the Agent) or by two competitive firms (the
Agents). The regulator (the Principal) gives incentives for higher investments in renewable energy and for
avoiding carbon emissions while simultaneously ensuring a stable energy production.

2.1 Monopolistic Energy Production

In the monopolistic setting, we have one agent, the monopolist, managing the investments in two representative
energy production capacities. The cumulative investment in conventional energy is denoted by (X1

t )t∈[0,T ]. The
cumulative investment in renewable energy is denoted by (X2

t )t∈[0,T ]. The control processes are a pair (a, b) =: ν

of F−adapted processes. a ∈ A ⊂ R2 refers to the monopolist’s action controlling the mean-reversion level of
both states and b ∈ B ⊂ R2 is the action adjusting the states variability.
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2.1.1 The Model

For a given initial state condition (X1
0 , X

2
0 ) ∈ R2, representing the investments until the beginning of the contract

execution, and for some control processes, a and b, the controlled state equations for cumulative investments in
conventional emissive (j = 1) and renewable (j = 2) energy production capacities managed by the monopolist
are given by

dXj
t =

(
ajt − δjX

j
t

)
dt+ bjtdW

j
t , j = 1, 2 , (2.1)

where W 1 and W 2 are two independent Brownian motions. This independence assumption seems reasonable
since we consider on the one hand renewables as wind or solar energy highly affected by current weather
conditions and on the other hand conventional energies as coal untouched from arising storms or heat-waves.
Moreover, we assume that both energy sources might have different depreciation rates δ1, δ2 ∈ R+. Indeed,
coal-fired power plants have on average a higher lifespan than solar panels or wind turbines such that δ1 ≤ δ2

seems reasonable. The state variables X1
t and X2

t represent the cumulative conventional and renewable energy
production capacity in MW at time t. The monopolist’s actions, a and b, involve separable costs

C(a, b) =

2∑
j=1

gj(a) +

2∑
j=1

ϕj (bj) , (2.2)

where the stabilization cost function is given by

ϕj(bj) =
(
b−2
j − σ−2

j

)
Φj , (2.3)

for j = 1, 2, where Φj , σj > 0. The cost for volatility control might arise from investments in storage technologies,
such that the stabilization cost function can be seen as innovation costs. Moreover, the investment cost function
is of linear quadratic form given by

gj(a) = ljaj +
1

2
ε(a1 + a2)aj +

1

2
l̄ja

2
j

= ljaj +
1

2
qja

2
j +

1

2
εa1a2 ,

(2.4)

with qj := l̄j +ε, l1, l2, q1, q2 > 0. In contrast to Aïd et al. (2022) and Élie et al. (2020), we here allow for linear
costs. Hence, whenever the drift action becomes negative the monopolist makes gains by selling the machinery.

The execution of the contract starts at t = 0. The monopolist receives the value ξ from the regulator at the
end of the contracting period T , which is either a payment (ξ > 0) or a charge (ξ < 0). Moreover, the Agent
gets the price p ∈ R for his total energy production minus his costs corresponding to his actions. The objective
function of the monopolist is then defined by

JA(ξ,Pν) := EPν

[
UA

(
ξ +

∫ T

0

p(X1
t +X2

t )− C(at, bt)dt

)]
, where UA(x) = −e−ηAx , (2.5)

for some constant risk aversion parameter ηA > 0. In particular, we handle the investments in energy sources
as perfect substitute goods since X1 and X2 have the same purpose for the monopolist. Hence, the problem of
the monopolist is

VA(ξ) = sup
Pν∈P

JA(ξ,Pν) . (2.6)

A control Pν⋆,M ∈ P, where ν⋆,M := (a⋆,M , b⋆,M ) with a⋆,M = (a⋆,M1 , a⋆,M2 )⊤ and b⋆,M = (b⋆,M1 , b⋆,M2 )⊤ will
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be called optimal if VA(ξ) = JA(ξ,Pν⋆,M

). We denote the collection of all such optimal responses by P⋆(ξ).
Whenever we consider second-best (SB) or business-as-usual (BU) optimal controls, we refer to SB or BU
instead of indicating a star (⋆). Moreover, we assume that the monopolist has a reservation utility RM

0 ∈ R−.
The regulator’s objective function is:

JP (ξ,Pν) = EPν

[
UP

(
−ξ −

∫ T

0

p(X1
t +X2

t )dt+

∫ T

0

k1X
1
t + k2X

2
t dt−

1

2

∫ T

0

h d⟨X1
· +X2

· ⟩t

)]
, (2.7)

where UP (x) = −e−ηP x for some constant risk aversion parameter ηP > 0. In particular, the regulator pays
the price for the total energy production. She benefits from investments in renewables (k2 > 0) and is harmed
by carbon emissions resulting from conventional energy (k1 < 0). Note, that for our purposes, k1 will be
negative and is the representative cost for carbon emissions paid by the regulator, which may also include an
extra charge for the regulatory attitude against conventional energy. Moreover, k2 is the subsidy paid by the
regulator for renewable energy investments given the regulatory value for achieving the long-term goals of the
Paris Climate Agreement. Note that some regulators do pay subsidies for renewable energy, e.g. Germany since
July 2022.2 Moreover, the regulator profits from stable energy production (h > 0), where −h can be seen
as the direct marginal cost induced by the quadratic variation of the total energy production. In particular,
the last integral gives incentives for stabilizing the production, e.g. by encouraging innovations in storaging
electricity, by investing in electricity sources with regional-specific low volatility, or by investing in a balanced
(non-)renewable energy-mix resulting in low volatility. The resulting second-best problem is

V SB
P = sup

ξ∈Ξ
sup

Pν∈P⋆(ξ)

JP (ξ,Pν) , (2.8)

where Ξ = {ξ ∈ C : VA(ξ) ≥ RM
0 } and C is the set of all FT−measurable random variables, satisfying the

integrability condition

sup
Pν∈P

EPν [
emηP ξ

]
+ sup

Pν∈P
EPν [

e−mηAξ
]
< +∞ , for some m > 1 . (2.9)

Notation. We define the following variables:

QM := q1q2 − ε2 ̸= 0 , (2.10)

ζM1 (b1) := b21(ηP + ηA) +
q2
QM

, (2.11)

ζM2 (b2) := b22(ηP + ηA) +
q1
QM

. (2.12)

2.1.2 The Results

We first focus on the monopolist’s optimal actions with and without contract. In particular, we consider the
actions incentivized by the second-best contract. Then, we consider the business-as-usual behavior without the
presence of any contract. Moreover, we provide a characterization for the optimal second-best contract, the
first-best optimum and investigations of these results. We follow the general approach in Section 4 and refer to
the generalized model for the proofs in this section. The following proposition provides the optimal actions.

Proposition 2.1 (Monopolist’s best response). The best response of the monopolist to instantaneous payments
2For further information, we refer to www.bundesregierung.de/breg-en/search/renewable-energy-sources-act-levy-

abolished-2011854.
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z = (z1, z2)
⊤ ∈ R2 and γ =

(
γ1 γ3

γ3 γ2

)
∈ S2 is determined through

aSB,M
j (z) =

qi
QM

(zj − lj)−
ε

QM
(zi − li) , (2.13)

for i, j = 1, 2 and j ̸= i. The optimal volatility control for energy source j = 1, 2 is determined by

bSB,M
j (γj)

2 = 2(ϕ′
j)

−1(γj) =

√
−2Φj

γj
. (2.14)

Moreover, the instantaneous volatility payment induces no cross-payments, that is γ3 = 0.

Hence, note that the Hamiltonian is given by

HA(x, z, γ) =

2∑
j=1

{
(p− δjzj)xj + zja

SB,M
j (z) +

1

2
bSB,M
j (γj)

2γj − gj(a
SB,M (z))− ϕj(b

SB,M
j (γj))

}
. (2.15)

Proposition 2.2 (Monopolist’s behavior without contract “business-as-usual”). The monopolist’s optimal equi-
librium drift control for technology j = 1, 2, where j ̸= i, without contract is given by

aBU,M
j (t) =

qi
QM

(wA
j (t)− lj)−

ε

QM
(wA

i (t)− li) , (2.16)

where the monopolist’s marginal revenue function corresponding to energy source j is given by

wA
j (t) =

p

δj

(
1− e−δj(T−t)

)
−→
δj→0

p(T − t) . (2.17)

The optimal volatility control for technology j = 1, 2 is determined by

bBU,M
j (t)2 = 2(ϕ′

j)
−1(−ηAw

A
j (t)

2) =

√
− 2Φj

−ηAwA
j (t)

2
. (2.18)

Note, that within the setting of Proposition 2.2, we determine the monopolist’s value function attained by
VA(0) = UA

(
wA

1 (0)X
1
0 + wA

2 (0)X
2
0 +

∫ T

0
wBU,M

0 (t)dt
)
, where

wBU,M
0 (t) =

2∑
j=1

{
wA

j (t)a
BU,M
j (t)− 1

2
ηAb

BU,M
j (t)2wA

j (t)
2 − gj(a

BU,M
j (t))− ϕj(b

BU,M
j (t))

}
. (2.19)

Lemma 2.1 (No congestion cost). Let us assume that ε = 0, then

aSB,M
j (zj) =

1

qj
(zj − lj) , and aBU,M

j (t) =
1

qj
(wA

j (t)− lj) , for j = 1, 2 , (2.20)

characterize the surplus either driven by an instantaneous drift payment zj induced by the contract or by the
marginal revenue wA

j scaled by the costs for drift control. In particular, wA
j is the net marginal price for

electricity over time to maturity as the price is reduced by the depreciation of capital over time.

If ε ̸= 0, then the optimal drift control is affected by the marginal profit regarding the other energy source
scaled by interaction costs.

Remark 2.1. The optimal behavior of the monopolist in Equation (2.16) is driven by the marginal revenue wA

only. Thus, to lower the conventional investment behavior, the regulator has to penalize him with a payment
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rate z1 < wA
1 (t), and to push renewables subsidize she has to set a payment z2 > wA

2 (t) over the whole time
horizon t ∈ [0, T ].

We now give insights into the design of the regulatory contract offered to the monopolist.

Proposition 2.3 (Second-best contract). (i) The optimal payments for the drift and volatility controls are
deterministic functions, z(t) and γ(t), given as solutions to a system of nonlinear equations:

zj(t) = wP
j (t)

bSB,M
j (γj(t))

2ηP + qi
QM

− ε2

Q2
MζM

i (bSB,M
i (γi(t)))

ζMj (bSB,M
j (γj(t)))− ε2

Q2
MζM

i (bSB,M
i (γi(t)))

− wP
i (t)

ε

QM

bSB,M
i (γi(t))

2ηA

ζMi (bSB,M
i (γi(t)))

, (2.21)

γj(t) = m̂j(zj(t), t) , (2.22)

for j = 1, 2 with j ̸= i, where m̂j(zj , t) := −h−ηAz
2
j −ηP

(
wP

j (t)− zj
)2

< 0 and the Principal’s marginal
revenue wP

j (t) =
kj

δj

(
1− e−δj(T−t)

)
−→
δj→0

kj(T − t).

(ii) The second-best optimal contract offered to the monopolist is attained by a decomposition of the contract
ξ = ξF +

∑2
j=1 ξ

V
j into a fixed and a variable part

ξF = U−1
A (RM

0 )−
∫ T

0

HA(X0, z(t), γ(t))dt , (2.23)

ξVj =

∫ T

0

(Xj
t −Xj

0)π
D
j (t)dt+

1

2

∫ T

0

πV
j (t)d⟨Xj

· ⟩t , (2.24)

characterized by the second-best optimal prices

πD
j (t) = −żj(t)− p+ δjzj(t) , πV

j (t) = −h− ηP
(
wP

j (t)− zj(t)
)2

< 0 . (2.25)

The second-best contract admits a form of a rebate contract: the monopolist is paid at the end of the
contracting period for what he did before in comparison to the initial state serving as a baseline. In particular,
the monopolist gets a fixed payment ξF consisting of his certainty equivalent reservation utility minus the
benefit he would earn if no effort is made. Beyond, the monopolist is paid a variable charge ξV covered by a
part proportional to the difference of the state to the initial state and a payment for the volatility variation. In
particular, πD and πV are the second-best prices for the state and the responsiveness, respectively.

Remark 2.2. (i) Note, that at terminal time, the payments are z1(T ) = z2(T ) = 0 and γ1(T ) = γ2(T ) = −h.

(ii) If h is set to zero, this does not induce γ is zero. In particular, for j = 1, 2, we have γj(t) = −ηAzj(t)
2 −

ηP
(
wP

j (t)− zj(t)
)2 and πV

j (t) = −ηP
(
wP

j (t)− zj(t)
)2. Hence, we can conclude bSB,M

j (γj) ̸= bBU,M
j (t).

(iii) Note, that if h increases, then γj decreases (|γj | increases) for j = 1, 2 and so bSB,M
j (γj)

2 decreases.

(iv) Note that ∂m̂j(zj ,t)
∂zj

= −2zj(ηA + ηP ) + 2ηPw
P
j (t). Moreover, zj(t) = ηP

ηA+ηP
wP

j (t) maximizes m̂j(zj , t)

since ∂2m̂j(zj ,t)
(∂zj)2

< 0.

Within the framework of Proposition 2.3, we can also determine the regulator’s second-best value function.
It is particularly attained through V SB,M

P = UP

(
−EM

0 + vSB,M (0, X1
0 , X

2
0 )
)

where EM
0 = U−1

A (RM
0 ) and

vSB,M (t, x1, x2) =

∫ T

t

wP
0 (s)ds+ wP

1 (t)x1 + wP
2 (t)x2 , (2.26)
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characterized through

wP
0 (t) = − inf

z∈R2

2∑
j=1

{
− wP

j (t)a
SB,M
j (z(t)) + gj(a

SB,M
j (z(t)))− ϕ⋆

j (m̂j(zj(t), t))

}
, (2.27)

ϕ⋆
j (M) = sup

Bj≥0

{
BjM − inf

bj : Bj=
1
2 b

2
j

ϕj(bj)

}
. (2.28)

Moreover, we know that the first-best social optimum is reached whenever the Agent is risk-neutral. Thus,
we state:

Proposition 2.4 (First-best optimum). If the monopolist is risk-neutral (i.e. ηA = 0), then the optimal pay-
ments for drift and volatility control become zj(t) = wP

j (t) and γj(t) = −h for j = 1, 2. The optimal prices for
the contract’s variable part to the risk-neutral monopolist simplify to

πD
j (t) = kj − p , πV

j (t) = −h , j = 1, 2 . (2.29)

Moreover,

(i) if k1 = k2 = p, then the optimal drift control with and without contract coincide.

(ii) if k1 > p > k2, then the optimal drift control for investments in conventional energy under the second-best
contract is higher than in the business-as-usual case.

(iii) if k2 > p > k1, then the optimal drift control for renewable investments under the second-best contract is
higher than in the business-as-usual case.

This result is in line with Section 4.5. Note, that the first-best optimal prices, πD
j and πV

j , are the regulator’s
marginal values of energy investments and of intermittency for each energy source. Thus, assume there is no
depreciation and the monopoly is risk-neutral, then we can rewrite the contract as

ξ = U−1
A (RM

0 ) +

2∑
j=1

∫ T

0

kj(X
j
t −Xj

0)dt−
∫ T

0

p(X1
t +X2

t )dt+

∫ T

0

C(aSB,M (z(t)), bSB,M (γ(t)))dt

−
2∑

j=1

∫ T

0

zj(t)a
SB,M
j (z(t)) +

1

2
bSB,M
j (γj(t))γj(t)dt−

1

2

∫ T

0

hd⟨X1
· +X2

· ⟩t .

(2.30)

In other words, the regulated monopoly receives only the externality values of the technologies (k1 and k2)
and does no longer benefit from the market price p. Moreover, the monopolist is not influenced by occuring costs
C(a, b), since they are covered by the contract. In this spirit, the monopolist does not profit twice from related
payments. More precisely, these payments (resp. charges) are done only for the capacities that are above (resp.
below) the initial installed capacities X2

0 (resp. X1
0 ). Regarding the volatility, the situation is even simpler: the

regulated monopoly is taxed at a level price h, inducing him to reduce the variability of the production until
the marginal abatement cost equals the volatility cost h. Note that the result above applies even if there is
some congestion cost between the two technologies. Hence, in the first-best optimum, the payment rates of the
two technologies are fully decoupled: they depend only on their externality values.

The numerical investigations in Section 3 show that bSB,M behaves nearly independent of time in some
cases. Therefore, we would like to make the following remark.

Remark 2.3. If we treat γ, and so bSB,M , independent of time, then the second-best price πD of the drift
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incentive in e/MWh is characterized approximately by

żj(t) ≈ −kje
−δj(T−t)

bSB,M
j (γj)

2ηP + qi
QM

− ε2

QMζM
i (bSB,M

i (γi))

ζMj (bSB,M
j (γj))− ε2

Q2
MζM

i (bSB,M
i (γi))

− kie
−δi(T−t) ε

QM

bSB,M
i (γi)

2ηA

ζMi (bSB,M
i (γi))

, (2.31)

for j = 1, 2, where j ̸= i, so that πD
j (t) in Equation (2.25) can be stated explicitly.

2.2 Competitive Interacting Energy Production

In the competitive setting, we have two Agents controlling one energy source each. In particular, the first
energy producer (Agent 1) produces conventional energy only. The second energy producer (Agent 2) produces
renewable energy only. We denote the cumulative investment of Agent 1 in conventional energy production
capacity by (X1

t )t∈[0,T ] and the cumulative investment of Agent 2 in renewable energy production capacity by
(X2

t )t∈[0,T ]. The control processes of Agent n is a pair (an, bn) =: νn of F−adapted processes. an ∈ A ⊂ R
refers to the Agent’s action controlling the mean-reversion level of the n−th state and bn ∈ B ⊂ R is the action
adjusting the variability of state n. The set of control processes for all agents is denoted by U .

2.2.1 The Model

For a given initial state condition Xn
0 ∈ R, for n = 1, 2, the state equation for conventional energy investments

affected by Agent 1 is given by

dX1
t =

(
a1t − δ1X

1
t

)
dt+ b1tdW

1
t . (2.32)

The state equation for renewable energy investments affected by Agent 2 is given by

dX2
t =

(
a2t − δ2X

2
t

)
dt+ b2tdW

2
t , (2.33)

where W 1 and W 2 are two independent Brownian motions. We again assume that both energy sources have
different depreciation rates δ1, δ2 ∈ R+. The objective function of Agent n = 1, 2 is:

Jn(ξn,Pν) = EPν

[
Un

(
ξn +

∫ T

0

pXn
t − Cn(at, bt)dt

)]
, where Un(x) = −e−ηnx , (2.34)

for some constant risk aversion parameter ηn > 0 and for a cost function for Agent n = 1, 2 given by

Cn(a, bn) = gn(a) + ϕn (bn) , (2.35)

where investment and stabilization costs are given by

gn(a) = lnan +
1

2
qna

2
n +

1

2
εa1a2 , (2.36)

ϕn(bn) =
(
b−2
n − σ−2

n

)
Φn , (2.37)

where Φn, σn, ε, ln, qn > 0, for n = 1, 2. Note, that we stay in a comparative framework such that
∑2

n=1 gn(a)

and
∑2

n=1 ϕn

(
1
2b

2
n

)
coincides with the investment and stabilization costs of the monopolist in the previous

section. The problem of Agent n is

Vn(ξn, ν
−n) = sup

νn,
s.t. Pν∈P

Jn(ξn,Pν) , for n = 1, 2 . (2.38)
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A control Pν⋆

, for ν⋆ := (ν⋆,1, ν⋆,2) and ν⋆,n := (a⋆,n, b⋆,n) for Agents n = 1, 2, will be called optimal if
Vn(ξn, ν

⋆,−n) = Jn(ξn,Pν⋆

), ∀n = 1, 2. We denote the collection of all such optimal responses by P⋆(ξ).
Whenever we consider second-best (SB) or business-as-usual (BU) optimal controls, we again refer to SB or BU
instead of indicating a star (⋆). Moreover, we assume that both agents have reservation utilities RC,1

0 , RC,2
0 ∈ R−.

The regulator’s objective function for ξ = (ξ1, ξ2)
⊤ is:

JP (ξ,Pν) = EPν

[
UP

(
−ξ1 − ξ2 +

∫ T

0

X1
t (k1 − p) +X2

t (k2 − p)dt− 1

2

∫ T

0

h d⟨X1
· +X2

· ⟩t

)]
, (2.39)

where k2, h > 0, k1 < 0, and UP (x) = −e−ηP x for some constant risk aversion parameter ηP > 0. The resulting
second-best problem is

V SB
P = sup

ξ∈Ξ
sup

Pν∈P⋆(ξ)

JP (ξ,Pν) , (2.40)

where Ξ =
{
ξ ∈ C : Vn(ξn, ν

−n) ≥ RC,n
0 ,∀n = 1, 2

}
and C is the set of all FT−measurable random variables,

satisfying the integrability condition

sup
Pν∈P

EPν
[
eηP |ξ|m

]
+

2∑
n=1

sup
νn,

s.t. Pν∈P

EPν [
e−mηnξn

]
< +∞ , for some m > 1 . (2.41)

Notation. Similar to the monopolistic setup, we define for j = 1, 2 and i ̸= j

QC := q1q2 −
ε2

4
̸= 0 , (2.42)

ζCj (bj) := b2j

(
ηj +

ηP ηi
ηP + ηi

)
+

qi
QC

(
1− ε2

2QC

)
. (2.43)

Moreover, let us define for the j−th competitor

Fj1(bj , bi) := b2j
ηP ηi

ηP + ηi
+

qi
QC

+
ε

2QC

E
ζCi (bi)

, (2.44)

Fj2(bi) :=
ε

2QC
+

E
ζCi (bi)

(
b2i

ηP ηj
ηP + ηj

+
qj
QC

)
, (2.45)

Fj0(bi) := Kj −Ki
E

ζCi (bi)
, (2.46)

where E := ε3

4Q2
C

and Kj := −ljqi
ε2

2Q2
C
+ li

(
ε

2QC
+ E

)
. For the first-best optimum, Equations (2.43)–(2.46)

become constant such that we define

ζCj :=
qi
QC

(
1− ε2

2QC

)
, Fjj :=

qi
QC

+
E
ζCi

ε

2QC
, Fji :=

ε

2QC
+

E
ζCi

qj
QC

, Fj0 := Kj −Ki
E
ζCi

,

for j = 1, 2 and j ̸= i, independent of b.

Remark 2.4. (i) Note, that this setting is not completely identical with the classical duopoly framework.
Both agents produce the total amount of energy for a fixed price p per MWh. Hence, we do not implement
the normal market demand curve. Independent of the demand and capacity, the price stays the same and
is not affected.

(ii) Note, that if we would assume both agents can act on both dimensions of the state, then we could only
implement that both agents get a price for the total amount of the state (see also Equation (4.3)). Agent n
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gets the price or cost c0n for the state even if other agents are also acting on the same dimension of the
state. If we would know the Agent’s share on the state then the drift control might be not hidden anymore.

2.2.2 The Results

We first focus on the Agents’ optimal actions with and without contract. In particular, we consider the actions
incentivized by the second-best contract. Then, we consider the business-as-usual behavior, i.e. the action
without the presence of any contract. Moreover, we provide a characterization for the optimal second-best
contract, the first-best optimum and investigations of these results. We follow the general approach in Section 4
and refer to the generalized model for the proofs in this section.

The next proposition provides the optimal actions.

Proposition 2.5 (Competitor’s best response). The best individual response of competitor n = 1, 2 to instan-

taneous payments zn = (zn1 , z
n
2 ) ∈ R2 and γn =

(
γn
1 γn

3

γn
3 γn

2

)
∈ S2 is determined through ân(ai, z), for n ̸= i,

which can be rewritten in equilibrium by aSB,n(z):

ân(ai, z) =
1

qn

(
znn − ln − 1

2
εai
)

, aSB,n(z) =
qi
QC

(znn − ln)−
ε

2QC
(zii − li) . (2.47)

The optimal volatility control can be determined by

bSB,n(γn
n)

2 = 2(ϕ′
n)

−1(γn
n) =

√
−2Φn

γn
n

. (2.48)

Moreover, γn
3 = γn

i = 0 for all n ̸= i.

Hence, note that the Hamiltonian of Agent n is given by

Hn(x, z, γ) = pxn − Cn(a
SB(z), bSB,n(γn

n)) +
1

2
bSB,n(γn

n)γ
n
n +

2∑
j=1

(
aSB,j(z)− δjxj

)
znj . (2.49)

Proposition 2.6 (Competitor’s behavior without contract “business-as-usual”). The optimal drift control of
the j−th competitor, where j ̸= i, without contract is given by

aBU,j(t) =
qi
QC

(wA
j (t)− lj)−

ε

2QC
(wA

i (t)− li) , (2.50)

where the marginal revenue function of the j−th competitor is given by

wA
j (t) =

p

δj

(
1− e−δj(T−t)

)
δj→0−→ p(T − t) . (2.51)

The optimal volatility control the j−th competitor can be determined by

bBU,j(t)2 = 2(ϕ′
j)

−1(−ηjw
A
j (t)

2) =

√
− 2Φj

−ηjwA
j (t)

2
. (2.52)

Within the framework of Proposition 2.6, we determine the value function of the j−th competitor attained
by Vj(0) = Uj

(
wA

j (0)X
j
0 +

∫ T

0
wBU,j

0 (s)ds
)
, where

wBU,j
0 (t) = wA

j (t)a
BU,j(t)− 1

2
ηjb

BU,j(t)2wA
j (t)

2 − Cj(a
BU (t), bBU (t)) . (2.53)
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Remark 2.5. Note, that the certainty equivalent part, which is proportional to the state the competitor is acting
on, coincides with the one from the monopolistic setting since wA

j (·) is the same in both market structures for
j = 1, 2.

Lemma 2.2 (No congestion cost). Let us assume that ε = 0, then

aSB,j(zjj ) =
1

qj
(zjj − lj) , and aBU,j(t) =

1

qj
(wA

j (t)− lj) , for j = 1, 2 , (2.54)

similar to Lemma 2.1.

Remark 2.6. Similar to Remark 2.1 in the monopolistic setting, pushing the Paris climate targets goes along
with penalizing conventionals through z11 < wA

1 (t) and subsidizing renewables with z22 > wA
2 (t) over the whole

time horizon t ∈ [0, T ].

We now give insights into the second-best optimal contract in the competitive setting.

Proposition 2.7 (Second-best contract). (i) The optimal payments are deterministic functions, z(t) and
γ(t), given as solutions to the system of nonlinear equations:

zjj (t) =
ζCi (bSB,i(γi

i))

ζCj (bSB,j(γj
j ))ζ

C
i (bSB,i(γi

i))− E2

[
wP

j (t)Fjj(γ
j
j , γ

i
i)− wP

i (t)Fji(γ
i
i) + Fj0(γ

i
i)
]
, (2.55)

zij(t) =
ηP

ηP + ηi

(
wP

j (t)− zjj (t)
)

, (2.56)

γj
j (t) = m̂j(z(t), t) , (2.57)

for j = 1, 2 and i ̸= j, where m̂j(z, t) := −h −
∑2

n=1 ηn(z
n
j )

2 − ηP

(
wP

j (t)−
∑2

n=1 z
n
j

)2
< 0 and the

Principal’s marginal revenue wP
j (t) =

kj

δj

(
1− e−δj(T−t)

) δj→0−→ kj(T − t).

(ii) The second-best optimal contract for competitor n = 1, 2 is attained by a decomposition of the contract
ξn = ξFn +

∑2
j=1 ξ

V
nj into a fixed and a variable part

ξFn = U−1
n (RC,n

0 )−
∫ T

0

Hn(X0, z(t), γ(t))dt , (2.58)

ξVnj =
1

2

∫ T

0

πV
nj(t)d⟨Xj⟩t +

∫ T

0

(Xj
t −Xj

0)π
D
nj(t)dt+ (Xj

T −Xj
0)z

n
j (T ) , (2.59)

with second-best optimal price regarding drift incentives

πD
nn(t) = −żnn(t)− p+ δnz

n
n(t) , πD

nj(t) = −żnj (t) + δjz
n
j (t) , for n = 1, 2 , j ̸= n , (2.60)

and second-best optimal prices regarding volatility incentives

πV
nn(t) = −h− ηjz

j
n(t)

2 − ηP

(
wP

n (t)−
2∑

l=1

zln(t)

)2

, πV
nj(t) = ηnz

n
j (t)

2 , (2.61)

for n = 1, 2 , j ̸= n.

The second-best contract admits a form of a rebate contract: each competitor gets a fixed payment, ξF1 or ξF2
respectively, consisting of his certainty equivalent reservation utility minus the benefit he would earn if no effort is
made. Beyond, competitor n is paid a variable payment ξVn covered by a second-best optimal price proportional
to the difference of the state to the initial state and a payment for the volatility variation plus a payment for
the difference of the terminal cumulative investment amount to the initial one. In particular, πD

nj and πV
nj are
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the second-best prices for competitor n for energy source j regarding its investment level and responsiveness,
respectively. The contract has rebate form, in which X1

0 and X2
0 serve as a baseline. Note, that the drift

payments at terminal time, z(T ), are not zero in this setting since z11(T ) =
ζC
2 (bSB,2(γ2

2(T )))F10(γ
2
2(T ))

ζC
1 (bSB,1(γ1

1(T )))ζC
2 (bSB,2(γ2

2(T )))−E2 ̸= 0,

z12(T ) = − ηP

ηP+η1
z22(T ) ̸= 0, analogous for z22(T ) and z21(T ), and γj

j (T ) < −h for j = 1, 2.
Within the setting of Proposition 2.7, we determine the Principal’s second-best value function. In particular,

it is attained through V SB,C
P = UP

(
−
∑2

n=1 E
C,n
0 + vSB,C(0, X1

0 , X
2
0 )
)
, where EC,n

0 = U−1
n (RC,n

0 ) and

vSB,C(t, x1, x2) =

∫ T

t

wP
0 (s)ds+ wP

1 (t)x1 + wP
2 (t)x2 , (2.62)

characterized through

wP
0 (t) = − inf

z∈R4

2∑
j=1

{
− wP

j (t)a
SB,j(z(t)) + gj(a

SB,j(z(t)))− ϕ⋆
j (m̂j(z(t), t))

}
, (2.63)

ϕ⋆
j (M) = sup

Bj≥0

{
BjM − inf

bj : Bj=
1
2 b

2
j

ϕj(bj)

}
. (2.64)

Moreover, the first-best optimum is given in the next proposition.

Proposition 2.8 (First-best optimum). If both competitors are risk-neutral (i.e. η1 = η2 = 0), then the drift
payments reduce to znn(t) = wP

n (t)− zjn(t) for n = 1, 2 and j ̸= n with

zjn(t) = wP
n (t)

(
1−

ζCj Fnn

ζC1 ζC2 − E2

)
+
(
wP

j (t)Fnj − Fn0

) ζCj
ζC1 ζC2 − E2

. (2.65)

The volatility payments are constantly given by γj
j = −h (as in the monopolistic setting). Furthermore, the

optimal prices for the variable part of the contract to the risk-neutral monopolist simplify to

πD
nn = −żnn(t) + δnz

n
n(t)− p , πD

nj = −żnj (t) + δjz
n
j (t) , πV

jj = −h , πV
12 = πV

21 = 0 , (2.66)

for j ̸= n, where

żnn(t) = −kne
−δn(T−t) − żjn(t) , (2.67)

żjn(t) = −e−δn(T−t)kn

(
1−

ζCj Fnn

ζC1 ζC2 − E2

)
− e−δj(T−t)kj

ζCj Fnj

ζC1 ζC2 − E2
. (2.68)

Remark 2.7. Here, in the regulation of a competitive market, we note that even if both firms are risk-neutral,
their drift payment rates are coupled. This is in contrast with the case of the regulation of the monopoly (see
Proposition 2.4).

In this first-best setting, wP
1 (t) and wP

2 (t) are the only time-dependent parts of the drift payments. For
competitor j, πV

jj is the marginal costs of volatility and πD
jj is associated to the value of energy investments

adjusted by the price for energy production plus the depreciation of the regulators payments (δzjj ). Moreover,
πD
nj , for n ̸= j, coincides with the payment πD

jj except from not paying competitor n anything for the energy
source he is not in charge. In addition, the competitor is charged for his own variability but with a common
cost of variability h. Note, that the first-best optimal prices, πD and πV , correspond to the regulator’s marginal
values of energy investments and of intermittency for each energy source. Thus, assume that there is no
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depreciation and both competitors are risk-neutral, then we can rewrite the contract for competitor n as

ξn = U−1
n (RC,n

0 )−
∫ T

0

Hm
n (z(t)) +Hv

n(γ(t))dt−
∫ T

0

pXn
t dt−

1

2

∫ T

0

hd⟨Xn⟩t +
∫ T

0

kn(X
n
t −Xn

0 )dt

+

∫ T

0

żjn(t)(X
n
t −Xn

0 )dt−
∫ T

0

żnj (t)(X
j
t −Xj

0)dt+ (Xj
T −Xj

0)z
n
j (T )− (Xn

T −Xn
0 )z

j
n(T ) ,

(2.69)

where the second line of the equation occurs by interaction only. Note, that the energy producers do no longer
benefit from the market price p as in the monopoly case.

2.3 Comparison of Market Structures

First of all, we compare the controls and the value functions in the monopolistic and competitive settings of
Sections 2.1 and 2.2:

Lemma 2.3 (Comparison of controls and value functions). Let us assume that η1 = η2 = ηA not necessarily
zero and ε = 0. Moreover, assume that the cross payments for investment incentives are zero in the competitive
setting, i.e. znj = 0 for n ̸= j, and that the remaining payments coincide among the market structures, i.e.
zj = zjj for j = 1, 2. Then,

aSB,M
j (zj) = aSB,j(zjj ) , γj = γj

j , bSB,M
j (γj) = bSB,j(γj

j ) . (2.70)

Hence, vSB,M (0, X1
0 , X

2
0 ) = vSB,C(0, X1

0 , X
2
0 ).

Moreover, we would like to compare the drift payment rates assuming that there are no congestion costs,
i.e. ε = 0. In the monopolistic case (see Section 2.1), we identify for energy source j = 1, 2:

zj(t) = wP
j (t)

bSB,M
j (γj)

2ηP + 1
qj

bSB,M
j (γj)2(ηP + ηA) +

1
qj

. (2.71)

In the competitive case (see Section 2.2), we identify for the j−th competitor with i ̸= j that

zjj (t) = wP
j (t)

bSB,j(γj
j )

2 ηP ηi

ηP+ηi
+ 1

qj

bSB,j(γj
j )

2(ηj +
ηP ηi

ηP+ηi
) + 1

qj

, zji (t) = wP
i (t)

ηP ηi
ηP + ηj

bSB,i(γi
i)

2

bSB,i(γi
i)

2(ηi +
ηP ηj

ηP+ηj
) + 1

qi

. (2.72)

We observe that even if there is no direct interaction, the drift payments do not coincide and lead to indirect
interaction at contract level. Hence, the problem does not completely separate and decouple.

If we assume further that the Agents are risk-neutral, then zj(t) = zjj (t) = wP
j (t) and znj (t) = 0. Hence, the

results of Lemma 2.3 hold true, especially that vSB,M (0, X1
0 , X

2
0 ) = vSB,C(0, X1

0 , X
2
0 ).

In addition, under the absence of risk-aversion and without congestion, the contract of the monopolist differs
from the total amount of all competitive contracts in the certainty equivalent of the Agent(s) only. If we assume
that U−1

A (RM
0 ) =

∑2
n=1 U

−1
n (RC,n

0 ), then ξM =
∑2

n=1 ξn.

3 Numerical Findings

In this section, we analyze our theoretical findings in the monopolistic and competitive setting with and without
volatility control numerically. In particular, we consider a reference case for which all modeling parameters can
be found in Tables 1 and 2.

Note that the parameters p, l, k are in e/MWh and h, q, ε,Φ in e/MWh2 so that we need to multiply in the
numerics with 24 hours and 7 days in a week as dt identifies weekly steps.
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X0 dt δ σ p l q Φ ε η1 = η2 = ηA

[4000, 1000] 1
52 [0, 0] [300, 750] 100 [100, 200] [1, 2] [20004, 50004] 0.25 0.001

Table 1: Parameter values of the energy producer(s).

T ηP k h

10 0.001 [−1, 800] 504

Table 2: Parameter values of the regulator.

3.1 The Effect of Drift Control
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(b) State process
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Figure 1: A comparison of business-as-usual (BU) and second-best (SB) implications for the monopolistic setting
without volatility control, in which the constant volatilities, σ1 and σ2, are taken from Table 1. Subfigure (a):
Investment efforts a⋆,M in energy production capacity of the monopolist. Subfigure (b): Energy production
capacity in the monopolistic setting.

Figure 1 (a) illustrates the optimal investments in energy production capacity for the monopolist over time.
In green, we see the optimal drift control for renewables a⋆,M2 and for conventional energy a⋆,M1 in black. The
dotted lines represent the behaviors under business-as-usual (BU), while the solid lines refer to the second-
best (SB) responses. We observe that the dotted lines are closer together and that in the business-as-usual case
the conventional investments are always higher than the renewable ones. The business-as-usual investments
decrease linearly over time but with different slopes. This phenomenon arrives since

ȧBU,M
j = −p(qi − ε)

QM
< 0 , for j = 1, 2, j ̸= i . (3.1)

Since ε < q1 < q2, the slope for conventional energy is more steep. In contrast, the second-best response for
conventional energy is negative over the whole time horizon as k1 < 0 and linearly increasing since

ȧSB,M
1 =

q2
QM

ż1 −
ε

QM
ż2 < 0 . (3.2)

In contrast, renewable energy investments drastically increase due to k2 > 0 and ȧSB,M
2 > 0. Note, that since

δ1 = δ2 = 0, the marginal optimal drift payments ż1 and ż2 become constant (see Remark 2.3). Moreover, we
observe that the terminal controls, aSB,M

j (T ) = aBU,M
j (T ), coincide at terminal time since zj(T ) = wA

j (T ) = 0

for j = 1, 2.
Figure 1 (b) illustrates the cumulative energy investments of the monopolist for renewable and conventional

energy over time with drift control only. The effect of volatility control will be discussed in Section 3.2. The
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green and black trajectories depict renewable and conventional energy production capacity, respectively. The
dotted lines again characterize the evolution in the business-as-usual setting and the solid lines specify the
evolution under the second-best contract. We observe higher fluctuations for renewable investments than for
conventional ones in both situations (business-as-usual and second-best) since σ2 > σ1. In particular, the
renewables’ volatility is more than twice as high as for conventional energy production. Regarding the progress
over time, we observe a significant effect of the optimal drift response by the monopolist. Under business-
as-usual, renewable investments initially sightly increase in the first years, stagnate and return to the initial
production level in the end of the time horizon. Whereas the conventional energy production frequently increases
over the whole time horizon. Under the second-best contract, we observe the contrary: Conventional energy
production capacity decreases significantly during the contracting period. On the other hand, renewable energy
becomes famous and significantly increases to the nine-fold of the initial investment level. However, energy
production does not seem very stable in this situation, which motivates the introduction of volatility control
investigated in the next section.

3.2 The Effect of Volatility Control

(a) Optimal volatility response under BU
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(b) Optimal volatility response under SB
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Figure 2: The monopolistic setting with volatility control. Subfigure (a): Monopolist’s optimal volatility control
bBU,M in the business-as-usual case. Subfigure (b): Monopolist’s optimal volatility control bSB,M under the
second-best contract.

Figure 2 illustrates the monopolist’s volatility control in the business-as-usual case and under the second-
best contract over the whole time horizon. The solid green lines refer to the controlled volatility of renewables.
The solid black lines refer to the controlled volatility of conventional energy production capacity. We observe
that all volatilities are on average lower than their upper boundaries. In both subfigures, the renewables come
along with a higher volatility than the conventional energy, since Φ2 > Φ1. However, we can identify two main
differences: In Figure 2 (a), the volatilities for both energy sources are higher than under a second-best contract.
In fact, they increase convexly until they are truncated by their upper boundaries σ1 and σ2 during the last two
years when no efforts are made since the efforts become too costly. In contrast, Figure 2 (b) shows lower and
thus untruncated volatilities. The second-best volatility for renewables results in the end approximately at the
level of the business-as-usual volatility for conventional sources at initial time. Moreover, we observe a concave
behavior for renewables’ volatility whereas the variability of conventional sources remain rather constant. This
phenomenon arises as γ1 stays nearly constant around −h and γ2 increases from −1.9532e+ 09 to −h.

The effect of volatility control on the drift control through the drift payment z remains very small. In
fact, Figure 3 (a) shows that the investment efforts under a second-best contract with and without volatility
control are indistinguishable. Numerically, we observe that the effect under volatility control becomes more
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(a) Investment effort
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(b) State process

0 1 2 3 4 5 6 7 8 9 10

Time in Years

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

S
ta

te

Conventional (DC)

Renewables (DC)

Conventional (DVC)

Renewables (DVC)

Figure 3: The monopolistic setting under the second-best contract with volatility control (DVC) and without
volatility control (DC, i.e. constant uncontrolled volatilities σ1 and σ2 given by Table 1). Subfigure (a): Monop-
olist’s optimal investments aSB,M in energy production capacity. Subfigure (b): Energy production capacity in
the monopolistic setting.

pronounced since aSB,M,DV C
1 ≤ aSB,M,DC

1 ≤ aSB,M,DC
2 ≤ aSB,M,DV C

2 . However the maximal difference between
the renewables is 0.3864 MW and between the conventional energy 0.7640 MW.

Figure 3 (b) clearly manifests the exclusive effect of volatility control. The solid lines display the state
over time resulting from a second-best contract with volatility control whereas the dotted lines refer to the
state resulting from a second-best contract without volatility control. We observe that the states are extremely
smoothed by volatility incentives, due to the extremely lowered volatility (from σ1 and σ2 to Figure 2 (b)).
Moreover, for both energy sources, we initially observe that volatility incentives lead on average to a smaller
state. In the second half of the contracting period, we observe the contrary: The state is higher under volatility
control than without volatility control.

3.3 The Effect of Competition

Figures 4 and 5 illustrate the optimal investments and the resulting state process without volatility control in
the business-as-usual case (Figure 4) and under the second-best contract (Figure 5), respectively. As before,
green lines refer to renewable energy and black lines are assigned to conventional energy. The dotted lines
indicate a monopolistic market structure whereas the solid line indicates the competitive setting.

In Figure 4 (a), we observe different investment efforts in the absence of a contract even if the cost function
of the competitors sum up to the cost function of the monopolist (especially the congestion costs ε coincide).
At the beginning of the contracting period, both market structures show positive investment efforts in both
energy sources whereas we observe the contrary at the end of the time horizon. Nevertheless, the effect of the
ladder time period does not translate into the state process (see Figure 4 (b)). The state is always greater or
equal under a competitive market structure than under a monopolistic setting.

In the second-best case, the situation drastically changes. In contrast to the business-as-usual case, we now
observe less pronounced investment efforts under competition (see Figure 5 (a)). In particular, we observe that
aSB,M
1 ≤ aSB,1 ≤ aSB,2 ≤ aSB,M

2 . This phenomenon arises through coupling at the level of the regulator’s drift
payments, z12 and z21, under competition. The first competitor profits and the second competitor is harmed
by the payments from the regulator.

In Figure 5 (b), the effect of drift control translates into the state process such that the state under com-
petition is less pronounced than under a monopolistic market structure. In particular, under competition, the
terminal renewable production lies around 6,000 MW (whereas 9,000 MW is reached under a monopoly). The
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(a) Investment effort under BU
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(b) State process under BU
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Figure 4: A comparison of the market structures, monopolistic (M) and competitive (C), in the business-as-usual
case without volatility control. Subfigure (a): Investment efforts aBU,· for each market structure. Subfigure (b):
Energy production capacity for each market structure.

(a) Investment effort under SB
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(b) State process under SB
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Figure 5: A comparison of the market structures, monopolistic (M) and competitive (C), under a second-
best contract without volatility control. Subfigure (a): Investment efforts aSB,· for each market structure.
Subfigure (b): Energy production capacity for each market structure.

conventional energy production capacity only bisects to 2,000 MW under competition instead of falling below
200 MW in a monopolistic setting. Under competition, we thus observe less extreme trajectories and effects.

Both market structures indicate a higher volatility for renewable energy sources than for conventional ones.
A joint effect of competition with volatility control will be investigated in the next section.

3.4 The Joint Effect of Competition and Volatility Control

In Figure 6, we consider the same setting as in Figure 2 in dotted lines and supplement the competitive setting
in solid lines. In the absence of a contract, the optimal volatility responses coincide (see Figure 6 (a)), since
bBU,M
j = bBU,j for j = 1, 2. However, under a second-best contract, the volatility efforts differ between the

market structures (see Figure 6 (b)) as the volatility payments γj ̸= γj
j for j = 1, 2 do. For both energy sources,

we find that bSB,M
j ≤ bSB,j since γj ≤ γj

j for j = 1, 2 for nearly the whole time horizon. For the last month
only, this behavior changes to γj

j < γj reaching γj
j (T ) < γj(T ) = −h at terminal time for j = 1, 2.

From Figure 3, we already now that the effect of volatility efforts on the optimal investment level is very
small. Hence, we refer to Figure 4 (a) and Figure 5 (a) for a comparison of optimal investments between the
market structures in the case with and without a second-best contract, respectively.
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(a) Optimal volatility response under BU
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(b) Optimal volatility response under SB
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Figure 6: A comparison of volatility controls for both market structures, monopolistic (M) and competitive (C).
Subfigure (a): Optimal volatility in the business-as-usual case. Subfigure (b): Optimal volatility under the
second-best contract.

(a) State process under BU
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(b) State process under SB
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Figure 7: A comparison of the energy production capacity with volatility control for both market structures,
monopolistic (M) and competitive (C). Subfigure (a): Energy production capacity in the business-as-usual case.
Subfigure (b): Energy production capacity under the second-best contract.

In Figure 7, we illustrate the development of energy production capacity with joint effects under business-
as-usual and the second-best contract, respectively. Even in the absence of a contract (see Figure 7 (a)), the
states under volatility control are slightly smoother than without volatility control (see Figure 4 (b)) due to the
fact that the competitors are slightly encouraged to stabilize the production also in the absence of a contract.

In Figure 7 (b), the joint effect manifests more explicitly. We observe that the trajectories from Figure 5 (b)
become a smoothed version (as in Figure 3 (b) for the monopolistic case). In fact, the dotted lines of Figure 7 (b)
coincide with the solid lines from Figure 3 (b). We observe, as in Section 3.3, that competition leads to less
pronounced capacity development. Moreover, as in Section 3.2, the ability of controlling the state’s variability
leads to higher production capacity on the long-term than under drift control only.

3.5 A Comparison of the Overall Production Capacity

Figure 8 summarizes the development of the total energy production capacity and the share of renewables’
capacity for all scenarios resulting from different market structures (M and C), from business-as-usual and
second-best contracts (BU and SB), and the absence and presence of volatility control (DC and DVC). In
Figure 8 (a), all scenarios are endowed with a total initial production capacity of 5,000 MW and rise over
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the time horizon of ten years. On the long term, the monopolistic market structure regulated by the second-
best contract outperforms all other scenarios with nearly 11,000 MW under drift and volatility control and
approximately 10,000 MW under drift control only. The competitive setting with drift control only leads under
the second-best contract to the lowest capacity with around 8,000 MW at the end of the contracting period.
Competition under a second-best scenario with drift and volatility control is even in line with all business-as-
usual scenarios on the long-term, however, with a drastic difference: the share of renewable energy production
capacity in this regulated competitive setting is around 75% (in contrast to its business-as-usual scenario with
approximately 17% share of renewables; see Figure 8 (b)). In a monopolistic market structure, the share is even
higher at around 95% at the end of the contracting period (in contrast to its business-as-usual scenario with
14% share of renewables). Hence, this second-best contract is able to realize for example Germany’s 2030 target
to triple renewables build-out by 2030. Without regulatory action the share of renewable production capacity
remains below 20% on the long-term independent of the scenario.

(a) Total production capacity
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(b) Share of renewables’ production capacity
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Figure 8: Development of energy production capacity resulting from both market structures (M and C) with and
without volatility control (DVC and DC) in the absence and presence of the second-best contract (BU and SB).
Subfigure (a): Total energy production capacity. Subfigure (b): Share of renewables’ production capacity.

3.6 A Comparison of the Second-best Contracts

In Table 3, we observe the following ranking of contracts: ξDC
M > ξDC

C,1 + ξDC
C,2 > ξDV C

M > ξDV C
C,1 + ξDV C

C,2 . Hence,
we find that the regulator pays more, whenever the volatility cannot be controlled since there are missing tax
earnings in the uncontrolled settings. The scenario, in which the volatility can be controlled, is less expensive
since the regulator taxes the variability of the production capacity.

Moreover, the sum of both competitive contracts is less expensive than the monopolist’s contract. This effect
appears on the one hand through existing cross payments or charges, z12 and z21, respectively. On the other
hand, interaction between the competitors diminishes the peculiarity of investment effects for which regulatory
subsidies are paid or charges are taken, respectively. Hence, the monopolistic setting with more pronounced
investment efforts are more costly for the regulator.

ξDC
M ξDV C

M ξDC
C,1 + ξDC

C,2 ξDV C
C,1 + ξDV C

C,2

4.24e+14 1.02e+14 3.77e+14 9.87e+13

Table 3: Total contract value paid by the regulator in the monopolistic (M) and competitive (C) setting under
drift control only (DC) and with volatility control (DVC).
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4 General Extended Linear-Quadratic Principal-Multi-Agent Model

In this section, we introduce the generalized incentive problem that N competitive Agents and the Principal face.
Each agent optimizes his own expected utility of the contract, offered by the Principal, and the corresponding
payoff by choosing optimal actions. The Principal maximizes her own expected utility of the final payoff
consisting of the contracts paid to the Agents and the Principal’s benefit attained under optimal response of
the Agents.

4.1 The Model

The Agents’ controlled state process is denoted by X = (Xt)t∈[0,T ] and is the canonical process of the
space Ω of d−dimensional continuous trajectories w : [0, T ] → Rd, i.e. Xt(ω) = ω(t) for all (t, ω) ∈ [0, T ] × Ω.
F = {Ft, t ∈ [0, T ]} denotes the corresponding filtration. The control processes of Agent n = 1, . . . , N are a pair
(αn, βn) =: νn of F−adapted processes. The drift control αn ∈ A ⊂ Rd refers to the Agent’s actions controlling
the state’s mean-reversion level and βn ∈ B ⊂ Rd×K for d ≤ K is the action adjusting the state’s variability.
The set of control processes is denoted by U .

The State Process. For a given initial state condition X0 ∈ Rd, the state equation affected by N Agents is
given as a mean-reverting Ornstein-Uhlenbeck process

dXt =

(
A0Xt +

N∑
n=1

Anα
n
t

)
dt+ β̄tdWt , β̄t :=

N∑
n=1

βn
t , t ∈ [0, T ] , (4.1)

driven by a K−dimensional Brownian motion W , where A0, . . . , An ∈ Rd×d. We denote by Pν := P(α,β) the
distribution of the state process X corresponding to the control processes ν := (α, β) ∈ U . Let us denote
the collection of all such measures Pν by P. We assume that K ≥ d, so that the control variables stay
unobservable for the Principal. Indeed, consider for instance d = 1, the Principal observes the quadratic
variation of d⟨X⟩t = β̄tβ̄

⊤
t dt but she cannot recover the level of efforts β̄t ∈ R1×K unless K = 1. The same

remark generalizes when d > 1.

The Agents’ Problems. The objective function of Agent n = 1, . . . , N is given by

Jn(ξn,Pν) = EPν

[
Un

(
ξn −

∫ T

0

Cn(αt, βt, Xt)dt

)]
, where Un(x) = −e−ηnx , (4.2)

for some constant risk aversion parameter ηn > 0 and for a cost function given by

Cn(a, b, x) = c0n · x+ cmn (a) + cvn(b) , (4.3)

where c0n ∈ Rd, cvn : BN → R+ is decreasing, convex for each component, cvn(0) = +∞, cvn(σ) = 0, and where

cmn (a) = Ln · a+
1

2
Tr
[
aa⊤Qn

]
, (4.4)

with Ln
j ∈ Rd, (Qn

ji) ∈ Sd+ and Q := (Qn
jn)nj invertible. The cost cvn of volatility action β prevents the Agent

from eliminating the volatility since the cost would explode, and is equal to zero if the Agent makes no effort.
For technical reasons, we need to consider bounded efforts and define the set of admissible controls as

A :=
{
(αn, βn) bounded for n = 1, . . . , N | ββ⊤ invertible with bounded inverse

}
, (4.5)
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where the variances’s upper boundary σσ⊤ refers to the case when no effort is made. The problem of Agent
n = 1, . . . , N is attained through

Vn(ξn, ν
−n) = sup

νn

s.t. Pν∈P

Jn(ξn,Pν) . (4.6)

In particular, we want to find the Nash Equilibrium ν⋆ by proceeding the following steps:

(I) Individual optimization for all n = 1, . . . , N such that ν̂n(ν−n) is the optimal response of Agent n.

(II) Nash Equilibrium for all n = 1, . . . , N such that ν̂n((ν⋆)−n) = (ν⋆)n is the optimal response of Agent n.

A control Pν⋆ ∈ P will be called optimal if Vn(ξn, (ν
⋆)−n) = Jn(ξn,Pν⋆

), ∀n = 1, . . . , N . We denote the
collection of all such optimal responses by P⋆(ξ). Whenever we consider second-best (SB) or business-as-
usual (BU) optimal controls, we refer to SB or BU instead of indicating a star (⋆). Moreover, we assume that
the Agent n = 1, . . . , N has a reservation utility Rn

0 ∈ R− and we denote by En
0 := − 1

ηn
ln(−Rn

0 ), the certainty
equivalent of the reservation utility of Agent n.

The Principal’s Problem. The Principal’s objective function given N individual contracts, denoted by
ξ = (ξ1, . . . , ξN )

⊤, is given by

JP (ξ,Pν) = EPν

[
UP

(
−

N∑
n=1

ξn +

∫ T

0

λ ·Xtdt+
1

2

∫ T

0

Tr [g d⟨X⟩t] + Λ ·XT

)]
, (4.7)

where UP (x) = −e−ηP x for some constant risk aversion parameter ηP > 0 and for λ,Λ ∈ Rd, and g ∈ Rd×d.
The resulting second-best problem is

V SB
P = sup

ξ∈Ξ
sup

Pν∈P⋆(ξ)

JP (ξ,Pν) , (4.8)

with the convention that sup ∅ = −∞, so that we restrict the contracts that can be offered by the Principal to
those ξ ∈ C such that P⋆(ξ) ̸= ∅, where Ξ = {ξ ∈ C : Vn(ξn, ν

−n) ≥ Rn
0 ,∀ n = 1, . . . , N} and C is the set of all

FT−measurable random variables satisfying the integrability condition

sup
Pν∈P

EPν
[
emηP |ξ|

]
+

N∑
n=1

sup
νn

s.t. Pν∈P

EPν [
e−mηnξn

]
< +∞ , for some m > 1 , (4.9)

such that the objectives of Principal and Agents are well-defined. We follow the standard convention in the
Principal–Agent literature in the case of multiple optimal responses in P⋆(ξ), that the Agents implement the
optimal response that is the best for the Principal.

Remark 4.1. Note, that the Principal’s second-best problem in Equation (4.8) can be rewritten as

sup
ξ∈C

JP (ξ,Pν) s.t. (i) Vn(ξn, ν
−n) ≥ Rn

0 , ∀n = 1, . . . , N , (4.10)

(ii) Pν ∈ P⋆(ξ) , (4.11)

where (i) is known as the participation constraint and (ii) is the incentive constraint. In particular, (ii) induces
that the Agent desires to choose the optimal action when facing the incentive scheme which translates into
Equation (4.6).
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4.2 The Contract

Following Cvitanić et al. (2018), the contract, the Principal offers to Agent n, can be reduced to the class of
stochastic differential equation of the form

ξn = Y n,Z,Γ
T = Y n

0 +

∫ T

0

Zn
t · dXt +

1

2

∫ T

0

Tr
[
(Γn

t + ηnZ
n
t (Z

n
t )

⊤)d⟨X·⟩t
]
−
∫ T

0

Hn(Xt, Zt,Γt)dt , (4.12)

extended to the Multi-Agent setting. Economically speaking, Z and Γ are the Principal’s payment rates cor-
responding to the variation of the state X and its quadratic variation ⟨X⟩, which can be either payments
(Z,Γ > 0) or charges (Z,Γ < 0). In particular, Zn ∈ Rd and Γn ∈ Sd are the values Agent n receives or
pays. Moreover, the Principal pays a risk-compensation (ηnZn(Zn)⊤) to Agent n since the Agent might suffer
from managing the risky state X. Beyond these payments or charges, the contract for Agent n, denoted by ξn,
induces a reduction by the Hamiltonian, i.e. by the Agent’s benefit of the contract over the contracting period.
In particular, the Hamiltonian of Agent n is defined by

Hn(x, z
n, γn) := H0

n(x, z
n) +Hm

n (zn) +Hv
n(γ

n) , (4.13)

for x ∈ Rd, for zn ∈ Rd, and for γn ∈ Sd, where H0
n, Hm

n , and Hv
n are the components of the Hamiltonian of

Agent n corresponding to the instantaneous state, mean-reversion level, and volatility, respectively:

H0
n(x, z

n) = −c0n · x+ (A0x) · zn , (4.14)

Hm
n (zn) = sup

αn
−cmn (α) +

 N∑
j=1

Ajα
j

 · zn , (4.15)

Hv
n(γ

n) = sup
βn

−cvn(β) +
1

2
Tr
[
(β̄β̄⊤)γn

]
. (4.16)

Lemma 4.1. The value of Agent n under the contract ξn is given by Vn(ξn, ν
−n) = Rn

0 , which is attained when
the Hamiltonian from Equation (4.13) is optimized.

Proof. See Appendix A.1.

In particular, the Hamiltonian Hn describes the benefit, Agent n earns resulting from the contract given the
instantaneous payments (z, γ) and the instantaneous state x. The variables zn and γn represent the payments
for Agent n = 1, . . . , N for an adjusted behavior in drift and volatility, respectively. Given the instantaneous
payments, each agent maximizes the instantaneous rate of benefit given by the Hamiltonian to deduce the
optimal action on the mean-reversion level and on the volatility.

Assumption 4.1. The volatility cost function cvn : B
N → R+ for n = 1, . . . , N satisfies the following conditions:

(i) The minimizer of the optimization problem c̄vn(β
−n, b) := infβn : 1

2 β̄β̄
⊤=b c

v
n(β) exists,

(ii) c̄vn is differentiable with invertible gradient such that (∇bc̄
v
n)

−1
: BN−1 × Sd → Rd×d exists, and

(iii) there exists a unique (up to a sign) solution β⋆,n = β̂n(β⋆,−n) to the system β̄β̄⊤ = 2 (∇bc̄
v
n)

−1
(β⋆,−n, γn).

Example 4.1 (Monopolistic Setup). Let us consider the monopolistic setting from Section 2.1 with N = 1 and

d = 2, where the volatility control βM =

(
βM
1 0

0 βM
2

)
= β̄ admits a cost function cv1(β) =

∑2
j=1 ϕj(β

M
j ), for

ϕj(β
M
j ) = ((βM

j )−2 − σ−2
j )Φj as in Equation (2.3). We assume that βM

j is bounded by [ϵj , σj ] for ϵj > 0 small
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and j = 1, 2. Hence, we can define for b̃ :=

(
b̃1 0

0 b̃2

)
:

c̄v1(b̃) := inf
βM : 1

2 β̄β̄
⊤=b̃

2∑
j=1

ϕj(β
M
j ) =

2∑
j=1

ϕ̃j

(
b̃j

)
, (4.17)

for ϕ̃j

(
b̃j

)
=
(

1
2 b̃

−1
j − σ−2

j

)
Φj, for which the minimizer exists attained by b̃j = 1

2σ
2
j . Moreover, c̄vn(b̃) is

differentiable since ϕ′
j(b̃j) = − 1

2 b̃
−2
j Φj. For g < 0,

(
ϕ′
j

)−1
(g) =

√
Φj

−2g . Hence, there exists a unique solution to

the system β̄β̄⊤ = 2 (∇bc̄
v
n)

−1
(γ1) attained by βM

j (γ1)2 = 2
√

Φj

−2γ1 =
√

2Φj

−γ1 for j = 1, 2. Note that this implies

γ1 = ∇b

2∑
j=1

ϕ̃j(b̃j) =

(
ϕ̃′
1(b̃1) 0

0 ϕ̃′
2(b̃2)

)
. (4.18)

Example 4.2 (Competitive Setup). Let us consider the competitive setting with N = 2 and d = 2 from

Section 2.2, where the volatility control β̄ =

(
β1 0

0 β2

)
admits a cost function cvj (β) = ϕj(β

j), for ϕj(β
j) =

((βj)−2−σ−2
j )Φj as in Equation (2.37). We assume that βj is bounded by [ϵj , σj ] for ϵj > 0 small and j = 1, 2.

Hence, we can define for b̃ as in Example 4.1 and receive

c̄vj (b̃) := inf
βj : 1

2 β̄β̄
⊤=b̃

ϕj(β
j) = ϕ̃j(b̃j) , (4.19)

such that we end up with the findings from Example 4.1. Note that this implies that

γ1 = ∇bϕ̃1(b̃1) =

(
ϕ̃′
1(b̃1) 0

0 0

)
, and γ2 = ∇bϕ̃2(b̃2) =

(
0 0

0 ϕ̃′
2(b̃2)

)
. (4.20)

4.3 The Agents’ Optimal Actions

We now focus on the Agents’ optimal actions. First, we consider the actions incentivized by the second-best
contract. Then, we consider the business-as-usual behavior, i.e. the action without the presence of any contract.
Afterwards, we compare the optimal actions resulting from both settings.

The following proposition provides the optimal actions of the Agents.

Proposition 4.1 (Agents’ best response). Let Assumption 4.1 be satisfied. Then, the best individual response
of Agent n = 1, . . . , N to an instantaneous payment zn = (zn1 , . . . , z

n
d )

⊤ ∈ Rd and γn ∈ Sd is determined through

α̂n(α−n, zn) = (Qn
nn)

−1

Anz
n − Ln

n −
N∑

j=1,j ̸=n

Qn
jnα

j

 ∈ Rd , (4.21)

which induce the unique equilibrium

αSB(z) = Q−1 (AZ-L)⊤ ∈ RdN , i.e. αSB,n(z) =

N∑
l=1

(Q−1)nl(Alz
l − Ll

l) , (4.22)

where Q := (Qn
jn)1≤n,j≤N and AZ-L := (A1z

1 − L1
1, . . . , ANzN − LN

N ) and (Q−1)nl is the n−th block-column
(of dimension d) and the l−th block-row (of dimension d) of the inverse of Q. The optimal volatility control
βSB(γ) can be determined by

β̄SB(β̄SB)⊤ = 2(∇bc̄
v
n)

−1(βSB,−n, γn) , (4.23)
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for which there exists a unique solution by Assumption 4.1.

Proof. See Appendix A.2.

The drift payment z induces an effort of the Agent to adjust the mean-reversion level of the state. The
volatility payment γ induces an effort to adjust the state’s volatility. Next, we focus on the Agents’ actions
without contract. The results are collected in the next proposition.

Proposition 4.2 (Agents’ behavior without contract). Let Assumption 4.1 be satisfied. The optimal drift
action of Agent n = 1, . . . , N without contract is given by

αBU,n(α−n, t) = (Qn
nn)

−1

Anw
A
n (t)− Ln

n −
N∑

j=1,j ̸=n

Qn
jnα

j

 , (4.24)

where the marginal revenue function of Agent n, wA
n (t), is determined as the solution to

ẇA
n (t) = c0n −A0 · wA

n (t) , (4.25)

subject to wA(T ) = 0. Equation (4.24) can be rewritten in equilibrium as

αBU (t) = Q−1
(
AwA(t)−L

)⊤
, i.e. αBU,n(t) =

N∑
l=1

(Q−1)nl(Alw
A
l (t)− Ll

l) , (4.26)

where Q :=
(
Qn

jn

)
n,j

and AwA(t)− L := (A1w
A
1 (t)− L1

1, . . . , ANwA
N (t)− LN

N ). The optimal volatility control
βBU,n(t) is given as a solution to the system

β̄β̄⊤ = 2(∇bc̄
v
n)

−1(β−n,−ηnw
A
n (t)w

A
n (t)

⊤) , (4.27)

for which there exists a unique solution by Assumption 4.1.

Proof. See Appendix A.3.

Within the framework of Proposition 4.2, we determine the value function of Agent n = 1, . . . , N attained
by Vn(0) = Un

(∫ T

t
wBU,n

0 (s)ds+ wA
n (t) · x

)
, where

wBU,n
0 (t) = wA

n (t) ·Anα
BU,n(t)− 1

2
ηnTr

[
(wA

n (t)w
A
n (t)

⊤)β̄BU (t)β̄BU (t)⊤
]
− cmn (α

BU (t))− cvn(β
BU (t)) . (4.28)

The optimal actions of the Agents in Equations (4.22) and (4.26) differ in the type of drift payment only.
In the business-as-usual case, the Agents receive wA, instead of the payment z, attained as the solution of a
system of first order ODEs in Equation (4.25).

Remark 4.2. Comparing the optimal drift behaviors of Agent n in Equations (4.22) and (4.26) corresponding
to the cases with and without contract, we observe that they differ in z and wA only. Hence, if at time t ∈ [0, T ]

zn < wA
n (t) for all n = 1, . . . , N , then αBU (t) > αSB(t).

4.4 The Second-best Contracts

The full characterization of the optimal second-best contract is provided in the next proposition, for which we
first introduce new notation and make the following assumptions:

Assumption 4.2. The volatility cost function cvn : B
N → R+ for n = 1, . . . , N satisfies the following conditions:
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(i) The minimizer of the optimization problem f̄n(β
⋆,−n, b) := infγ : 1

2 β̄
⋆(β̄⋆)⊤=b

∑N
n=1 c

v
n(β

⋆(γ)) exists,

(ii) f̄n is differentiable with invertible gradient such that
(
∇bf̄n

)−1
: BN−1 × Rd×d → Sd exists, and

(iii) there exists a unique (up to a sign) solution β⋆,n = β̂n(β⋆,−n) to the system β̄β̄⊤ = 2
(
∇bf̄n

)−1
(β⋆,−n,M).

Notation. We define the following variables:

ζn(γ) := (ηn + ηP )β̄
SB(γ)β̄SB(γ)⊤ +A⊤

n

N∑
i,j,l=1

(Q−1)⊤jnQ
l
ji(Q−1)inAn , (4.29)

Zw
n (γ) := ηP β̄

SB(γ)β̄SB(γ)⊤ +

N∑
j=1

(
Aj(Q−1)jnAn

)⊤
, (4.30)

Zz
h,n(γ) := ηP β̄

SB(γ)β̄SB(γ)⊤ +A⊤
n

N∑
i,j,l=1

(Q−1)⊤jnQ
l
ji(Q−1)ihAh , for h ̸= n , (4.31)

Zc
n := A⊤

n

N∑
i,j,k,l=1

(Q−1)⊤jn
(
Lk
j −Qk

ji(Q−1)ilL
l
l

)
, (4.32)

M̂(z, t) := g −
N∑

n=1

ηnz
n(zn)⊤ − ηP

(
wP (t)−

N∑
n=1

zn

)(
wP (t)−

N∑
n=1

zn

)⊤

, (4.33)

where wP (t) is a solution to the system of ODEs ẇP (t) = −
(
λ−

∑N
n=1 c

0
n

)
−wP (t) ·A0, subject to wP (T ) = Λ.

Proposition 4.3 (Second-best contract). Let Assumptions 4.1 and 4.2 be satisfied.

(i) The optimal payment for the drift and volatility controls, z(t) and γ(t), are deterministic functions given
as solutions to the system of nonlinear equations:

z(t) = (Zz)−1
(
Zw(γ)wP (t)−Zc

)
∈ RdN , (4.34)

(∇bc̄
v
n)

−1 (
β⋆,−n(γ), γn

)
=
(
∇bf̄n

)−1
(
β⋆,−n(γ),M̂(z, t)

)
, ∀n = 1, . . . , N , (4.35)

where Zw(γ)wP (t)−Zc :=
(
Zw

1 (γ)wP (t)−Zc
1 , . . . ,Zw

N (γ)wP (t)−Zc
N

)⊤ and Zz
n,n(γ) = ζn(γ), Zz :=

(Zz
jn)1≤n,j≤N . Moreover, the Principal’s marginal revenue function, wP (t), is a solution to the following

system of ODEs ẇP (t) = −
(
λ−

∑N
n=1 c

0
n

)
− wP (t) ·A0, subject to wP (T ) = Λ.

(ii) The second-best optimal contract is given by ξn = ξFn + ξVn , where

ξFn = U−1
n (Rn

0 )−
∫ T

0

H0
n(X0, z(t)) +Hm

n (z(t)) +Hv
n(γ(t))dt , (4.36)

ξVn =

∫ T

0

πD
n (t) · (Xt −X0)dt+

1

2

d∑
i,j=1

∫ T

0

πV
n,ij(t)d⟨Xi

· , X
j
· ⟩t + (XT −X0) · zn(T ) , (4.37)

where for n = 1, . . . , N and i, j = 1, . . . , d the second-best optimal prices are attained by

πD
n (t) = −żn(t) + c0n −A0z

n(t) , πV
n,ij(t) = γn

ij(t) + ηnz
n
j (t)z

n
i (t) . (4.38)

Proof. See Appendix A.4.

The second-best contract admits a form of a rebate contract: Agent n gets a fixed payment ξFn consisting of
his certainty equivalent of the reservation utility minus the benefit he would earn if no effort is made. Beyond,
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Agent n is paid a variable payment ξVn covered by a second-best optimal drift price paid for each deviation from
the initial state value and a second-best optimal volatility price proportional to the states’ covariation plus a
terminal bonus for the final difference to the baseline.

In particular, πD
n and πV

n are the second-best prices for the state and its variability, respectively. This form
is a rebate contract, where X0 serves as a baseline.

Within the setting of Proposition 4.3, we can determine the Principal’s second-best value function in Equa-
tion (4.8). It is attained by V SB

P = UP

(
−
∑N

n=1 E
n
0 + vSB(0, X0)

)
where

vSB(t, x) =

∫ T

t

wP
0 (s)ds+ wP (t) · x , (4.39)

characterized through

wP
0 (t) = − inf

z

{
− wP (t) ·

N∑
n=1

Anα
SB
n (z) +

N∑
n=1

Cn(α
SB(z))− f⋆(M̂(z, t))

}
, (4.40)

f⋆(M) := sup
b≥0

{
Tr [bM ]− f̄n(β

⋆,−n(γ), b)
}

. (4.41)

4.5 Economic Analysis

Note, that if N = 1 or if cvn(β⋆) = cvn(β
⋆,n) for all n = 1, . . . , N , then the optimal volatility payment deduced

from Equation (4.35) reduces to γn(t) = M̂(z, t), ∀n = 1, . . . , N . Hence, M̂ is the volatility payment matrix
excluding all interaction costs the Agent may experience. In the monopolistic case (see Section 2.1) and in the
competitive case without volatility interaction (see Section 2.2) the volatility payments become more explicit.
We refer to Propositions 2.3 and 2.7 for more details.

If we assume, that there is only one agent without volatility control (i.e. β̄ = σ), without costs in the state
(i.e. c0n = (0, . . . , 0⊤), and the state does not induce any mean-reversion (i.e. A0 = (0, . . . , 0)⊤), then we have
the following results for the optimal contract ξ1 = ξF1 + ξV1 offered to the Agent:

ξF1 = U−1
1 (R1

0)−
∫ T

0

Hm
1 (z(t))dt+

1

2

∫ T

0

πV
1 (t)σσ⊤dt , (4.42)

ξV1 =

∫ T

0

πD
1 (t) · (Xt −X0)dt+ (XT −X0) · z1(T ) , (4.43)

where πD
1 (t) = −ż1(t) = λZ , πV

1 (t) = η1z
1(t)z1(t)⊤. Note that under those assumptions H0

1(x, z) = 0 and
that the drift payment to the Agent is given by z1(t) = ZwP (t) ∈ Rd, where

Z =
[
(σσ⊤)(η1 + ηP ) +A⊤

1 (Q
1
11)

−1A1

]−1 (
(σσ⊤)ηP +A⊤

1 (Q
1
11)

−1A1

)
, (4.44)

wP (t) = λ(T − t) + Λ , (4.45)

αSB
1 (z1) = (Q1

11)
−1(A1z

1 − L1
1) , (4.46)

M̂(z1, t) = g − η1z
1(z1)⊤ − ηP

(
wP (t)− z1

) (
wP (t)− z1

)⊤
. (4.47)

Hence, all expressions become more explicit and very similar to the results without responsiveness incentives of
Aïd et al. (2022). The contract still splits into the fixed and variable part, ξF1 and ξV1 . However, Equation (4.43)
contains a terminal bonus since z(T ) ̸= 0. If we set the terminal bonus Λ to zero, the term disappears and the
contract has the same structure as Aïd et al. (2022) (up the multi-dimensional notation).

If the Agent is risk-neutral (but still with unobservable efforts), then we are in the first-best optimum in
which the Principal can achieve the same level of utility as with the first-best contract with observable efforts
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but under a different type of contract. This means that the drift payment is directly z1(t) = wP (t). Moreover,
the optimal second-best prices reduce to πD

1 (t) = λ and πV
1,ij(t) = 0 for i, j = 1, . . . , d.

To ensure readability, our setting excludes any discount factors. As in Cvitanić et al. (2018), an extension
to a discounted setting with the objective of the n−th Agent of the form

Jn(ξn,Pν) = EPν

[
Un

(
re−rT ξn −

∫ T

0

re−rtCn(αt, βt, Xt)dt

)]
, where Un(x) = −e−ηnx , (4.48)

can be achieved by modifying the contract to

ξn = Y n,Z,Γ
T = Y n

0 +

∫ T

0

Zn
t · dXt +

1

2

∫ T

0

Tr
[
(Γn

t + re−rtηnZ
n
t (Z

n
t )

⊤)d⟨X⟩t
]
−
∫ T

0

Hn(Xt, Zt,Γt)− rYtdt .

5 Conclusion

In this paper, we considered general Principal-Multi-Agent incentive problems with hidden drift and volatility
actions and a lump-sum payment at the end of the contracting period. The contribution is twofold: first, we
show how to increase investments in renewable energy while simultaneously ensuring stable energy production
in a monopolistic and in an interacting setting with two agents. Second, we expand both models to a general
interacting setting that still leads to closed-form solutions for the optimal contract being of rebate form. The
numerical study highlights the impact of the contract design on the investments in (non-)renewable energy
production capacity. This will lead to significant benefits for the regulator as well as to great adjustments in
average investment and responsiveness of the power producer.
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A Appendix – Proofs for Section 4

For notational conveniance, we skip the index regarding second-best (SB) and business-as-usual (BU) and
indicate the equilibrium with a star (⋆).

A.1 Agent’s Value of the Contract (Lemma 4.1)

Plugging contract ξn from Equation (4.12) into Vn(ξn, ν
−n) gives us

Vn(Y0, Z,Γ, ν
−n) = −Un(Y

n
0 ) sup

νn ,
s.t. Pν∈P

EPν

[Un (LT )] , (A.1)

where dLt = Zn
t · dXt +

1
2Tr

[
(Γn

t + ηnZ
n
t (Z

n
t )

⊤)d⟨X⟩t
]
−Hn(Xt, Zt,Γt)dt− Cn(αt, βt, Xt)dt with L0 = 0.

Note, that for GT := Un (LT ) = −1 +
∫ T

0
dGt we have

dGt = dUn(Lt) = −ηnUn(Lt)dLt +
1

2
η2nUn(Lt)d⟨L·⟩t . (A.2)

Hence, we can follow

EPν

[Un (LT )]

= EPν

[
−1−

∫ T

0

Un(Lt)ηndLt +
1

2

∫ T

0

Tr
[
η2nUn(Lt)d⟨L·⟩t

]]

= EPν

[
− 1−

∫ T

0

Un(Lt)ηn

(
Zn
t ·

(
A0Xt +

N∑
n=1

Anα
n
t

)
+

1

2
Tr
[
ηnΓ

n
t

(
β̄β̄⊤)]− Cn(αt, βt, Xt)−Hn(Xt, Zt,Γt)

)
dt

]
≤− 1 .

The supremum is exactly attained for ν being the optimal solution of the Hamiltonian. Hence,

sup
νn ,

s.t. Pν∈P

EPν

[Un (LT )] = Un(Y
n
0 ) , (A.3)

subject to Vn(ξn, ν
−n) ≥ Rn

0 due to the participation constraint. By Karush-Kuhn-Tucker the equality follows.

A.2 Agent’s Best Response (Proposition 4.1)

Taking FOC in the Pre-Hamiltonian regarding the drift control of Agent n and setting to zero gives us

Anz
n = Ln

n +

N∑
j=1

Qn
jnα

j , (A.4)

which equals Equation (4.22) in matrix style. Collecting terms regarding αn gives Equation (4.21).
The Hamiltonian part of instantaneous volatility of Agent n can be rewritten in terms of

Hv
n(γ

n) = sup
b≥0

{
sup

βn : b= 1
2 β̄β̄

⊤

{
1

2
Tr[(β̄β̄⊤)γn]− cvn(β)

}}
= sup

b≥0

{
Tr[bγn]− inf

βn : b= 1
2 β̄β̄

⊤
{cvn(β)}

}
. (A.5)

Rewriting in terms of Karush-Kuhn-Tucker (c̄vn(β−n, b) = infβn : b= 1
2 β̄β̄

⊤ {cvn(β)} = infβn

{
cvn(β) + L(b− 1

2 β̄β̄
⊤)
}
)

and taking FOC gives the Lagrange multiplier L⋆ = 1
β̄

∂
∂βn c

v
n(β). FOC with respect to b and setting to zero

gives us (4.23). Moreover, taking directly FOC to supb≥0 {Tr[bγn]− c̄vn(β
−n, b)} gives γn = ∇bc̄

v
n(β

−n, b) and
thus β̄β̄⊤ = 2(∇bc̄

v
n)

−1(β−n, γn). By Assumption 4.1, there exists a unique solution.
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A.3 Agent’s Behavior without Contract (Proposition 4.2)

Step 1. The value function of Agent n ∈ {1, . . . , N} is Vn(0) = −e−ηnv
n(0,X0). In particular, we have

un(t, x) = −e−ηnv
n(t,x). The corresponding PDE is attained by

−∂tu
n = sup

νn

{
un
x

(
A0x+

N∑
n=1

Anα
n

)
+Tr

[
1

2
un
xxβ̄β̄

⊤
]
+ unηnCn(α, β, x)

}
. (A.6)

Plugging the structure of un inside, we receive the certainty equivalent vn(t, x) as a solution to

−∂tv
n = sup

νn

{
vnx ·

(
A0x+

N∑
n=1

Anα
n

)
+

1

2
Tr
[
(vnxx − ηnv

n
x (v

n
x )

⊤)β̄β̄⊤]− Cn(α, β, x)

}
, (A.7)

subject to vn(T, ·) = 0.

Step 2. The optimal drift action of Agent n ∈ {1, . . . , N} without contract is attained by FOC regarding
Equation (A.7), which gives Anv

n
x = Ln

n +
∑N

j=1 Q
n
jnα

j . Hence, the optimal response of Agent n is given by

α̂n(a−n, vx) = (Qn
nn)

−1

Anv
n
x − Ln

n −
N∑

j=1,j ̸=n

Qn
jnα

j

 , (A.8)

which can be rewritten in equilibrium as

α⋆(z) = Q−1 (Avx −L)
⊤

, (A.9)

where Q :=
(
Qn

jn

)
n,j

and Avx −L := (A1v
1
x − L1

1, . . . , ANvNx − LN
N ).

Similar to Proposition 4.1, we can derive the optimal volatility control from Equation (A.7) by considering
the volatility part only:

sup
βn

{
1

2
Tr
[
(vnxx − ηnv

n
x (v

n
x )

⊤)β̄β̄⊤]− cvn(β)

}
. (A.10)

By Assumption 4.1, there exists a unique solution. Hence, the optimal volatility control is determined through

β̄β̄⊤ = 2(∇bc̄
v
n)

−1(β−n, vnxx − ηnv
n
x (v

n
x )

⊤) . (A.11)

Step 3. The solution of the PDE (A.7) is attained by the following certainty equivalent function

vn(t, x) =

∫ T

t

wBU,n
0 (s)ds+ wA

n (t) · x . (A.12)

By directly plugging the guess (A.12) in the PDE (A.7), we obtain

wBU,n
0 (t)− ẇBU,n(t) · x = wA

n (t) ·

(
A0x+

N∑
n=1

Anα
⋆,n(wA

n (t))

)

− 1

2
Tr
[
ηnw

A
n (t)(w

A
n (t))

⊤β̄⋆(β̄⋆)⊤
]
− Cn(α

⋆, β⋆, x) ,

from which we receive (4.28) and (4.25) when collecting terms regarding x.
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A.4 Second-best Contract (Proposition 4.3)

Step 1. The Principal’s second-best value function is attained by

V P
SB = sup

Z,Γ
EPν⋆ [

e−ηP

∫ T
0

λ·Xt+
1
2Tr[g(β̄

⋆(Γt)β̄
⋆(Γt)

⊤)]dt
(
−e−ηP (Λ·XT−

∑N
n=1 Y n

T )
)]

, (A.13)

which can be interpreted as a continuous discount of the Principal’s utility function of a terminal bonus minus
all contracts he has to pay Λ ·XT −

∑N
n=1 Y

n
T , where

dY n
t =

(
Cn(α

⋆(Zt), β
⋆(Γt), Xt) +

1

2
ηnTr

[
(Zn

t (Z
n
t )

⊤)β̄⋆(Γt)β̄
⋆(Γt)

⊤]) dt+ Zn
t · β̄⋆(Γt)dWt , (A.14)

dXt = (A0Xt +

N∑
n=1

Anα
⋆,n(Zt))dt+ β̄⋆(Γt)dWt , (A.15)

with Y n
0 = U−1

n (Rn
0 ). Equation (A.14) follows directly from Equation (4.12). Rewriting Equation (4.8) using

ξn = Y n
T gives expression (A.13).

Step 2. By standard stochastic control theory, the dynamic version of the value function of the Principal,
denoted by u(t, x, y) = −e−ηP (v(t,x)−

∑N
n=1 yn), is a viscosity solution of the corresponding HJB equation

−∂tu = sup
z,γ

{
ux ·

(
A0 · x+

N∑
n=1

Anα
⋆,n(z)

)
+

1

2
Tr
[
uxxβ̄

⋆(γ)β̄⋆(γ)⊤
]
+

N∑
n=1

uxyn · (β̄⋆(γ)β̄⋆(γ)⊤)zn

+

N∑
n=1

uyn

(
Cn(α

⋆(z), β⋆(γ), x) +
1

2
ηnTr

[
(zn(zn)⊤)β̄(γ)β̄(γ)⊤

] )
+

1

2

N∑
n=1

N∑
m=1

uynym(β̄⋆(γ)⊤zn) · (β̄⋆(γ)⊤zm)− ηPu

(
λ · x+

1

2
Tr
[
gβ̄⋆(γ)β̄⋆(γ)⊤

])}
.

By plugging the structure of u inside, dividing by −ηPu > 0 and collecting terms, we receive

−∂tv =

(
λ+A0vx −

N∑
n=1

c0n

)
· x− inf

z

{
N∑

n=1

(cmn (α
⋆(z))− vx ·Anα

⋆,n(z))− f⋆(M(z, x, vx, vxx))

}
, (A.16)

subject to v(T, x) = Λ · x, where

f⋆(M) := sup
b≥0

{
Tr [bM ]− f̄n(β

⋆,−n(γ), b)
}
= sup

γ

{
−

N∑
n=1

cvn(β
⋆(γ)) +

1

2
Tr
[(
β̄⋆(γ)β̄⋆(γ)⊤

)
M
]}

, (A.17)

and M(z, x, vx, vxx) = (mlj)l,j=1,...,d with

M(z, x, vx, vxx) = vxx + g −
N∑

n=1

ηnz
n(zn)⊤ − ηP

(
vx −

N∑
n=1

zn

)(
vx −

N∑
n=1

zn

)⊤

, (A.18)

mlj(z, x, vx, vxx) := vxl,xj
+ g2lj −

N∑
n=1

ηnz
n
l z

n
j − ηP

(
vxl

vxj
− 2vxj

N∑
n=1

znl +

N∑
n=1

znj

N∑
m=1

zml

)
. (A.19)

Step 3. We guess that the solution for the PDE in Equation (A.16) is attained by

v(t, x) =

∫ T

t

wSB
0 (s)ds+ wP (t) · x , (A.20)
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subject to wP (T ) = Λ. By directly plugging the linear guess (A.20) in the PDE, we obtain

wSB
0 (t)− ẇP (t) · x =

(
λ+A0w

P (t)−
N∑

n=1

c0n

)
· x− inf

z

{
−wP (t) ·

N∑
n=1

Anα
⋆,n(z) +

N∑
n=1

cmn (α
⋆(z))− f⋆(M(z, x, wP (t), 0))

}
.

Collecting terms regarding x gives

wSB
0 (t) = − inf

z

{
−wP (t) ·

N∑
n=1

Anα
⋆,n(z) +

N∑
n=1

cmn (α
⋆(z))− f⋆(M(z, x, wP (t), 0))

}
, (A.21)

and wP (t) is a solution to the following system of ODEs: ẇP (t) = −
(
λ+A0w

P (t)−
∑N

n=1 c
0
n

)
.

Step 4. Considering Equation (A.21) and taking FOC with respect to zn yields

zn(z−n, t) = ζn(γ)
−1

Zw
n (γ)wP (t)−

N∑
h=1,h ̸=n

Zz
h,n(γ)z

h −Zc
n

 , ∀n = 1, . . . , N , (A.22)

which can be rewritten as z(t) = (Zz)−1
(
Zw(γ)wP (t)−Zc

)
∈ RdN , where Zz

n,n(γ) = ζn(γ), and Zz :=

(Zz
jn)1≤n,j≤N , and Zw(γ)wP (t)−Zc :=

(
Zw

1 (γ)wP (t)−Zc
1 , . . . ,Zw

N (γ)wP (t)−Zc
N

)⊤.
The optimal volatility payment follows from Equation (A.17) by FOC with respect to b:

M(z, x, wP (t), 0) = ∇bf̄n(β
⋆,−n, b) ⇔ 2(∇bf̄n)

−1(β⋆,−n,M(z, x, wP (t), 0)) = β̄β̄⊤ . (A.23)

From previous considerations, we know the expression for 1
2 β̄β̄

⊤ (see Equation (4.23)). Hence,

(∇bc̄
v
n)

−1 (
β⋆,−n(γ), γn

)
=
(
∇bf̄n

)−1
(
β⋆,−n(γ),M̂(z, x, wP (t), 0)

)
, ∀n = 1, . . . , N . (A.24)

Step 5. From Equation (4.12) and Step 2, we know

ξn = U−1
n (Rn

0 ) +

∫ T

0

Zn
t · dXt +

1

2

∫ T

0

Tr
[
(Γn

t + ηnZ
n
t (Z

n
t )

⊤)d⟨X⟩t
]
−
∫ T

0

Hn(Xt, Zt,Γt)dt . (A.25)

Applying Itô’s product rule yields

ξn = U−1
n (Rn

0 ) +

∫ T

0

d (Zn
t ·Xt)−

∫ T

0

Xt · dZn
t +

1

2

∫ T

0

Tr
[
(Γn

t + ηnZ
n
t (Z

n
t )

⊤)d⟨X⟩t
]
−
∫ T

0

Hn(Xt, Zt,Γt)dt .

As we know that Zn
t and Γn

t are deterministic functions, we can rewrite dZn
t = żn(t)dt. Moreover, we split the

Hamiltonian in its components and add a zero-component. Hence,

ξn = U−1
n (Rn

0 )−
∫ T

0

Hm
n (z(t)) +Hv

n(γ(t))dt+
1

2

∫ T

0

Tr
[
(γn(t) + ηnz

n(t)(zn(t))⊤)d⟨X⟩t
]

+

∫ T

0

d (zn(t) ·Xt) +

∫ T

0

(X0 −Xt) ·
(
żn(t)− c0n + (A0z

n(t))
)
dt−

∫ T

0

X0 ·
(
żn(t)− c0n + (A0z

n(t))
)
dt .

Using the expression H0
n(X0, z(t)) = X0 ·

(
−c0n + (A0z

n(t))
)

gives ξn = ξFn + ξVn with

ξFn = U−1
n (Rn

0 )−
∫ T

0

H0
n(X0, z(t)) +Hm

n (z(t)) +Hv
n(γ(t))dt ,

ξVn =
1

2

∫ T

0

Tr
[
(γn(t) + ηnz

n(t)(zn(t))⊤)d⟨X⟩t
]
+

∫ T

0

(Xt −X0) ·
(
−żn(t) + c0n −A0z

n(t)
)
dt+ zn(T ) · (XT −X0) .
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