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Abstract

Bayesian decisions are observationally identical to decisions with judgment. Decisions

with judgment test whether a judgmental decision is optimal and, in case of rejection,

move to the closest boundary of the confidence interval, for a given confidence level.

The resulting decisions condition on sample realizations, which are used to construct

the confidence interval itself. Bayesian decisions condition on sample realizations

twice, with the tested hypothesis and with the choice of the confidence level. The

second conditioning reveals that Bayesian decision makers have an ex ante confidence

level equal to one, which is equivalent to assuming an uncertainty neutral behavior.

Robust Bayesian decisions are characterized by an ex ante confidence level strictly

lower than one and are therefore uncertainty averse.

Keywords: Statistical Decision Theory; Hypothesis Testing; Confidence Intervals; Ambiguity

Aversion.

JEL Codes: C1; C11; C12; C13.
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Non technical summary

A celebrated property of Bayesian decisions is that they condition on the data. A simple

example reveals how Bayesian decisions can be obtained as a special case of decisions with

judgment, which also condition on the data.

Decisions with judgment start from a judgmental decision and, for a given confidence

level, choose the action associated with the closest boundary of the confidence interval of

the gradient of the loss function. Bayesian statistics applies Bayes formula to combine prior

and likelihood, constructing a posterior distribution which exploits non sample and sample

information. Bayesian decisions are obtained by minimizing the expected loss, using the

posterior distribution to compute the expectation. In the decision space, this is a convex

combination of the judgmental and maximum likelihood decisions, where the judgmental

decision corresponds to the no data decision, that is the decision which minimizes the

expected loss using the prior distribution. There must therefore exist a confidence interval

around the maximum likelihood decision, whose edge coincides with the Bayesian decision.

By making explicit the judgmental decision and the choice of the confidence level in a

classical setting, it is possible to understand the relationship between Bayesian and classical

procedures.

The decision with judgment is at the boundary of the confidence interval. Beyond this

boundary, the probability of committing Type I errors becomes greater than the given

confidence level. The confidence level reflects the attitude of the decision maker towards

statistical uncertainty. Bayesian decision makers are uncertainty neutral, as they reject the

judgmental decision implicit in their priors with probability one. Robust Bayesian decision

makers are uncertainty averse, as they reject the judgmental decision implicit in their set

of priors with probability less than one. In both cases, the Bayesian approach conditions

the choice of the confidence level on the data, as it is modified after the sample realization

is observed. Suitable experiments may shed light on the degree of uncertainty aversion

of decision makers and on how they would revise their confidence levels after the data is

revealed.
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1 Introduction

A celebrated property of Bayesian decisions is that they condition on the data (Berger

(1985)). A simple example reveals how Bayesian decisions can be obtained as a special

case of decisions with judgment, which also condition on the data. The example is kept

deliberately simple, as it is sufficient to deliver the main insight of the paper: the Bayesian

priors and posterior updating procedure represents an indirect way to introduce judgment

in statistical decision making problems.

Decisions with judgment start from a judgmental decision and, for a given confidence

level, test whether it is optimal, conditional on the observed sample realization. The

chosen action is the one associated with the closest boundary of the confidence interval

of the gradient of the loss function. There is a mapping between the Bayesian prior and

posterior on the one hand and the judgmental decision and confidence level on the other

hand, which makes the two decisions identical, for any sample realization. This mapping

reveals that the confidence level of Bayesian decisions is sample dependent, implying that

they condition on the data twice: in the hypothesis to be tested and in the choice of the

confidence level. The double conditioning implicit in the Bayesian approach results in

decision rules which reject the judgmental decision with probability one, but stop at the

boundary of a confidence interval associated with a confidence level less than one.

This introduction first summarizes the decision with judgment of Manganelli (2021),

second explains its link with Bayesian decisions, third illustrates the source of double condi-

tioning in the Bayesian analysis, and fourth highlights the connections with the Knightian

decision theory of Bewley (2011).

The key ingredient of the decision with judgment is a formal definition of judgment.

Judgment is defined as a pair formed by a judgmental decision and a confidence level

associated with it. It is used to set up the hypothesis to test whether the judgmental

decision is optimal. The test for optimality checks whether the population and sample

gradients of the loss function evaluated at the judgmental decision have opposite signs,
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thereby conditioning on the data. Rejection of the null hypothesis implies that marginal

moves away from the judgmental decision in the direction indicated by the sample gradient

do not increase the loss function in population with probability lower than the confidence

level. The resulting decision with judgment is either the judgmental decision itself or is at

the boundary of the confidence interval of the sample gradient of the loss function. The

confidence level determines the probability of committing Type I errors.

The decision with judgment is admissible, a result that already hints at a deeper re-

lationship with Bayesian decisions, since by the complete class theorem all admissible de-

cisions are generalized Bayes rules. To understand the link, consider that the judgmental

decision coincides with the Bayesian decision implied by the prior distribution. Since the

confidence level determines the width of the confidence interval and the decision with judg-

ment moves from the judgmental decision to the closest boundary of the confidence interval,

the confidence level determines the deviation from the judgmental decision, resulting in a

convex combination between the judgmental and the maximum likelihood decisions. Simi-

larly, the Bayesian posterior updating shrinks from the prior decision to the decision implied

by the likelihood of the data.

By exploiting this relationship, it is possible to obtain a mapping between the sample

realization (p-value) and the confidence level which makes the Bayesian and the decision

with judgment observationally identical. It is this mapping which reveals the source of

double conditioning in the Bayesian analysis. The Bayesian decision conditions on the data

not only in the choice of the hypothesis to be tested, but also in the choice of the confidence

level. It is shown that Bayesian decisions always reject the null hypothesis of optimality

with probability one, implying an ex ante confidence level equal to one. Conditional on the

data, the ex post confidence level is revised to be strictly less than one and the resulting

decision can be interpreted as that associated with the corresponding confidence interval.

Robust Bayesian decision are characterised by ex ante confidence level strictly less than

one, so that they do not always reject the null hypothesis that the judgmental decision

is optimal. These results are reminiscent of the insights of Bewley (2011), who develops
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a theory of decisions with an inertia assumption. His intuition is that there is a status

quo decision, which is abandoned only if there is another decision strictly preferred to it.

That is similar to the idea of starting with a judgmental decision and abandoning it only if

there is sufficient statistical evidence against it. As shown in the last section of this paper,

classical confidence intervals can be interpreted as a set of posterior means corresponding to

a set of prior distributions, which are used to construct the robust Bayesian decision. The

ex ante confidence level defines the degree of uncertainty aversion in the sense of Bewley

(2011). When the ex ante confidence level is equal to one, the judgmental (or status

quo) decision is always rejected and corresponds to an uncertainty neutral (or Bayesian)

preference ordering. Ex ante confidence levels strictly less than one define an uncertainty

averse decision maker, with lower values implying higher degrees of aversion.

The paper is structured as follows. Section 2 defines the Bayesian decision and the

decision with judgment. Section 3 establishes the link between the two decisions, highlights

the source of double conditioning and illustrates its implications. Section 4 extends the

analysis to the case of robust Bayesian decisions. Section 5 concludes.

2 Statistical Decision Rules

This section derives the Bayesian decision and the decision with judgment, under the

following simplified setting.

Definition 2.1 (Decision Environment). The decision environment is characterized by:

1. X ∼ N(θ, 1), for an unknown θ ∈ R.

2. The sample realization x ∈ R is observed.

3. a ∈ R denotes the action of the decision maker.

4. The decision maker minimizes the loss function L(θ, a) = −aθ + 0.5a2.
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2.1 The Bayesian Decision

The Bayesian approach assumes that the decision maker uses subjective information in the

form of a prior distribution over the unknown parameter θ.

Proposition 2.1 (Bayesian decision). Consider the decision environment of Definition

2.1. Bayesian decision makers with prior distribution N(0, 1) over θ choose the action:

δπ∗(x) = x/2 (1)

Proof — See Appendix.

2.2 The Decision with Judgment

The decision rule incorporating judgment of Manganelli (2021) assumes that the decision

maker starts from a judgmental decision ã and uses the empirical gradient of the loss

function to test whether such decision is optimal, for a given confidence level α.

Judgment, which is formed by the pair A = {ã, α}, is a primitive to the decision

problem, like the Bayesian priors. ã is the decision that would be taken without statistical

analysis. It is analogous to the status quo decision in the theory of Bewley (2011). The

confidence level α determines the amount of statistical evidence needed to abandon ã.

Given the judgment, the statistician can formally test whether the gradient evaluated

at the judgmental decision is equal to zero, a necessary and sufficient condition for opti-

mality in the decision environment of Definition 2.1. If the null hypothesis is not rejected,

the decision maker chooses the judgmental decision ã. If the null hypothesis is rejected,

the decision maker selects the action that sets the empirical gradient equal to the closest

boundary of the confidence interval. The rationale is that actions closer to ã would be

rejected, while actions further away would be wrongly rejected, for the given confidence

level α.

Proposition 2.2 (Decision with judgment). Consider the decision environment of Def-
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inition 2.1. Decision makers with judgment A = {0, α} choose the action:

δA(x) = λ̂x (2)

where λ̂ = max{0, λ∗} with λ∗ = 1 + cα/2/|x| if x ̸= 0, and λ̂ ∈ [0, 1] otherwise.

Proof — See Appendix.

3 Connection Between Bayesian and Classical Deci-

sions

The link between Bayesian decisions and decisions with judgment is given by the link

between priors, posteriors and judgment A ≡ {ã, α}. To establish the formal connection,

it is necessary to have a more general definition of confidence level.

Definition 3.1 (Confidence level). The confidence level is defined by the pair {ᾱ, α(x)}.

The ex ante confidence level ᾱ is a probability over the unit interval [0, 1]. The ex post

confidence level α(x) is a mapping from α̃(x) to the unit interval:

α(x) : α̃(x) → [0, 1]

where α̃(x) denotes the p-value associated with the sample realization x, under the null

hypothesis that the judgmental decision ã is optimal.

Decision makers enter the decision problem with an ex ante confidence level ᾱ. Upon

observing the sample realization x (and therefore the p-value), the confidence level is revised

according to the mapping α(x). Note that also this mapping may be decided ex ante, but

its value is determined only ex post, after the realization x is observed. The choice of the

confidence level is entirely subjective and may be elicited through suitable experiments.

It will be clear in the next section that an ex ante confidence level ᾱ = 1 corresponds to
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an uncertainty neutral and ᾱ < 1 to an uncertainty averse decision maker, in the sense of

Bewley (2011).

The following proposition shows that for the Bayesian decision associated with a normal

prior there is a corresponding choice of ã and {ᾱ, α(x)} which produces an observationally

equivalent decision with judgment.

Proposition 3.1 (Relationship between Bayesian Decisions and Decisions with

Judgment). Consider the decision environment of Definition 2.1. The Bayesian decision

with prior distribution N(0, 1) over θ is equal to the decision with judgment when the

judgmental decision is ã = 0, the ex ante confidence level is ᾱ = 1 and the ex post

confidence level is:

α(x) = 2Φ[Φ−1(α̃(x)/2)/2] (3)

where Φ(·) denotes the cdf of the standard normal distribution.

Proof — See Appendix.

Bayesian decisions with a standard normal prior are characterized by an ex ante confi-

dence level ᾱ = 1 and an ex post confidence level α(x) < 1 given in expression (3). This

implies that the probability that Bayesian decision rules perform worse than ã = 0, when

it is optimal, cannot be bounded away from 1, or in other words Bayesian decisions have

no control on Type I errors.

Decisions with judgment, which include Bayesian decisions as a special case, are admis-

sible.

Proposition 3.2 (Admissibility of Decisions with Judgment). Consider the judg-

ment A ≡ {0, {ᾱ, α(x)}}. The decision rule with judgment δA(X) in (2) is admissible.

Proof — See Appendix.

3.1 Implications of Bayesian Decisions

Bayesian decisions condition on the sample realization x twice: first in the hypothesis

testing procedure and second in the choice of the confidence level. This is the major insight
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from the previous analysis, that provides the connection between Bayesian and classical

statistics.

Let us start from the hypothesis testing procedure. Interpreting the Bayesian decision

as a decision with judgment, the Bayesian decision first tests whether the judgmental

decision implicit in the prior, ã = 0, is optimal given the ex ante confidence level ᾱ. Upon

rejection, which happens with probability one since ᾱ = 1, it selects the action which sets

the gradient of the loss function equal to the closest boundary of the (1 − α(x)) ex post

confidence interval. As explained in Manganelli (2021) and highlighted in the proof of

Proposition 2.2, this procedure conditions on the sample realization.

Let us apply his reasoning to the example of this paper. Under the conditions of

Proposition 3.1, the Bayesian decision is λ∗x, where λ∗ is given by Proposition 2.2 and

α(x) is given by Proposition 3.1. This is the closest decision to the judgmental decision

ã = 0 which is not rejected at the confidence level α(x). The null hypothesis being tested

is:

H0 : ∇λL(θ, λ∗x) = 0 ⇒ θ = λ∗x

Notice that the hypothesis conditions on x, which is observed at the time of the decision.

The test statistic is obtained by substituting θ with its maximum likelihood estimator,

which in the current example is Y , a random variable with the same distribution as X.

The frequentist interpretation of hypothesis testing for Bayesian decision rules can be

understood by performing the following thought experiment. To any sample realization

x corresponds a confidence level α(x) which maps the Bayesian decision into the decision

rule λ∗x and is used to test the null hypothesis H0 : θ = λ∗x. Conditional on the observed

realization x, one can imagine of drawing a sample {yj}J
j=1 from Y ∼ N(λ∗x, 1). The

decision λ∗x has the property that, as J → ∞, it is wrongly rejected α(x) of the times
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when it is optimal:

α(x) = 2Pλ∗x(∇λL(Y, λ∗x) < ∇λL(x, λ∗x))

= 2Pλ∗x(−x(Y − λ∗x) < −x2 + λ∗x2)

= 2Pλ∗x(−x(Y − λ∗x) < cα(x)/2|x|)

= Pλ∗x(−sgn(x)(Y − λ∗x) < cα(x))

= lim
J→∞

J−1
J∑

j=1
I(−sgn(x)(yj − λ∗x) < cα(x))

where I(·) is the indicator function.

The second conditioning of the Bayesian decision is in the choice of α(x). As shown

in Proposition 3.1, the null hypothesis that ã = 0 is optimal is rejected with probability

1, implying an ex ante confidence level ᾱ = 1. After seeing the data, however, Bayesian

decision makers revise their confidence level to α(x) < 1 and the Bayesian decision is

determined by the boundary of the (1 − α(x)) confidence interval.

Figure 1 gives a graphical representation in the space (α(x), α̃(x)) of the ex post confi-

dence levels associated with Bayesian decisions and with decisions with constant confidence

level. The mapping for the Bayesian decisions is given by equation (3).

All statistical decision rules have a confidence level mapping which falls between the

two extreme decision behaviors: the minmax decision (which corresponds to the decision

with α(x) = 0, where no data is taken into consideration) and the maximum likelihood

decision (which corresponds to the decision with α(x) = 1, where no judgment is taken

into consideration).

The shaded area represents the combination of points for which the p-value α̃(x) asso-

ciated with the judgmental decision ã is greater than the chosen confidence level α(x). For

all these points the decision taken is the judgmental decision itself, because in this case the

null hypothesis that ã is optimal is not rejected.

When the ex post confidence level associated with the decision with judgment is not

sample dependent (in the example of Figure 1 reported as the flat line with α(x) = 0.05),
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Figure 1: Ex post confidence levels for Bayesian decisions

Note: The horizontal axis reports the p-value α̃(x) of the gradient evaluated at the observed realization x
and at the judgmental decision ã = 0. The vertical axis is the chosen confidence level α(x). The shaded
area represents the points where the null hypothesis H0 : θ = ã is not rejected, as in this area the p-value is
greater than α(x). The figure plots the mapping corresponding to four alternative decision rules: Maximum
likelihood (obtained by setting α(x) = 1), the minmax (obtained by setting α(x) = 0), the decision with
judgment with constant α(x) = 0.05, and the Gaussian Bayesian decisions are based on priors with zero
mean and unit variance (obtained by setting α(x) as given by equation (3)).
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by the probability integral transform theorem, the ex ante probability of observing p-values

smaller than the confidence level under the null hypothesis H0 : θ = ã is equal to the ex

post confidence level:

ᾱ = Pã(α̃(X) < ᾱ) = 0.05

The line associated with the Bayesian decision with a normal prior, instead, is always

higher than the p-value, implying that the null hypothesis H0 : θ = ã is always rejected, as

shown in Proposition 3.1:

ᾱ = Pã(α̃(X) < α(X)) = 1

The Bayesian approach reveals the possibility for decision makers to revise their confi-

dence level after seeing the data. Such possibility could be tested by suitable experiments,

with questions aimed at eliciting ex ante and ex post confidence levels. Two implications

of the normal Bayesian priors seem dubious from a real world decision making perspec-

tive. First, they impose a confidence level equal to one on the initial judgmental decision

associated with the prior. Decision makers have often strong views about the actions to

be taken and substantial empirical evidence is required before abandoning those views.

Second, Figure 1 reveals that the lower the p-value the lower the confidence level: Bayesian

decision makers endowed with a normal prior increase their confidence in the judgmental

decision (by choosing a smaller confidence level) when confronted with sample realizations

which are widely inconsistent with it.

4 Connection Between Robust Bayesian and Classical

Decisions

The previous discussion has highlighted an important feature of Bayesian decisions, namely

that they reject the judgmental decision implicit in the prior with probability one. This

issue has been addressed by the literature on ambiguity aversion, by considering classes

of priors, instead of a single prior (see Gilboa and Marinacci (2013) for a review). Gilboa
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and Schmeidler (1989) have shown that an ambiguity averse decision maker characterized

by a set of priors Γ minimizes the expected loss using the worst possible prior from the

set Γ. Epstein and Schneider (2003) have axiomatized the decision in an intertemporal

context, leading to a prior-by-prior Bayesian updating as the updating rule for such sets of

priors. An application with an analogous updating mechanism is provided by Giacomini

and Kitagawa (2021) in the context of set-identified vector autoregressive models. Bewley

(2011) and his Knightian decision theory with a status quo assumption is the contribution

which is closest to the theory of decision with judgment. He argues that classical confidence

regions can be interpreted as the set of posterior means corresponding to a set of priors

that define the ambiguity aversion of decision makers. This paper shows that decisions

with judgment can be interpreted as Bayesian decisions when the ex ante confidence level

is equal to one and as robust Bayesian decisions when the ex ante confidence level is strictly

less than one.

In the simple example discussed in this paper, the ambiguity averse framework can be

characterized as follows.

Proposition 4.1 (Ambiguity Averse Decisions). Consider the decision environment

of Definition 2.1. An ambiguity averse decision maker with the set of priors Γ = {µ :

µ is N(π, c−1), π, c ∈ R, c > 0, −1 ≤ π ≤ 1} over θ chooses the action:

δΓ(x) =



(1 + c)−1(x + c) if x < −c

0 if − c ≤ x ≤ c

(1 + c)−1(x − c) if x > c

(4)

This action is equal to a decision with judgment when the judgmental decision is ã = 0, the

ex ante confidence level is ᾱ = 2ϕ(−c) and the ex post confidence level is:

α(x) = 2ϕ
(
−c(1 + c)−1(1 − ϕ−1(α̃(x)/2))

)
(5)
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Figure 2: Ex post confidence levels for robust Bayesian decisions

Note: The horizontal axis reports the p-value α̃(x) of the gradient evaluated at the observed realization x
and at the judgmental decision ã = 0. The vertical axis is the ex post confidence level α(x). The shaded
area represents the points where the null hypothesis H0 : θ = ã is not rejected, as in this area the p-value
is greater than α(x). The figure plots the confidence level mappings corresponding to an ambiguity averse
decision maker, who chooses from the set of priors Γ = {µ : µ is N(π, c−1), −1 ≤ π ≤ 1}, for different levels
of precision c. For comparison, the figure also report the three decisions with constant α from Figure 1.

where Φ(·) denotes the cdf of the standard normal distribution.

Proof — See Appendix.

The ex post confidence level associated with decision (4) is reported in Figure 2 for

c = {0.5, 1, 2}. If the sample realization falls within the interval (−c, c), ambiguity averse

decision makers retain their judgmental decision ã = 0. This is like the situation when, in

the decision with judgment, the test fails to reject the null hypothesis, that is, when the

test statistic −x + ã falls within the frequentist confidence interval. In such a case, the

decision with judgment coincides with the judgmental decision ã. This is consistent with

the result of Bewley (2011) that classical confidence regions correspond the set of prior

means of an uncertainty averse decision maker.

The null hypothesis H0 : θ = ã in the case of the ambiguity averse decision rule of
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Figure 2 is rejected with ex ante probability less than one:

ᾱ = Pã(α̃(X) < α(X)) < 1

The exact probability depends on the coefficient c, as shown in Proposition 4.1. It can be

read on the horizontal axis of Figure 2, at the point where the confidence level mappings

cross the diagonal of the unit square.

Since α(x) < ᾱ for α̃(x) < ᾱ, the judgmental decision ã is wrongly rejected when

correct with probability ᾱ, but in case of rejection the ambiguity averse decision stops

at the boundary of the (1 − α(x)) confidence interval. Notice, however, that also in this

case the ex post confidence level α(x) used to construct the decision is sample dependent

and eventually decreasing with lower p-values, so it shares one of the dubious implications

discussed in the context of the normal Bayesian decision.

5 Conclusion

Bayesian statistics applies Bayes formula to combine prior and likelihood, constructing a

posterior distribution which exploits non sample and sample information. Bayesian de-

cisions are obtained by minimizing the expected loss, using the posterior distribution to

compute the expectation. In the decision space, this is a convex combination of the judg-

mental and maximum likelihood decisions, where the judgmental decision corresponds to

the no data decision, that is the decision which minimizes the expected loss using the

prior distribution. There must therefore exist a confidence interval around the maximum

likelihood decision, whose edge coincides with the Bayesian decision. By making explicit

the judgmental decision and the choice of the confidence level in a classical setting, it is

possible to understand the relationship between Bayesian and classical procedures.

The decision with judgment is at the boundary of the confidence interval. Beyond this

boundary, the probability of committing Type I errors becomes greater than the given

confidence level. The confidence level reflects the attitude of the decision maker towards
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statistical uncertainty. Bayesian decision makers are uncertainty neutral, as they reject the

judgmental decision implicit in their priors with probability one. Robust Bayesian decision

makers are uncertainty averse, as they reject the judgmental decision implicit in their set

of priors with probability less than one. In both cases, the Bayesian approach conditions

the choice of the confidence level on the data, as it is modified after the sample realization

is observed. Suitable experiments may shed light on the degree of uncertainty aversion

of decision makers and on how they would revise their confidence levels after the data is

revealed.

Appendix — Proofs
Proof of Proposition 2.1 (Bayesian Decision) — Bayesian decision makers minimize

the expected loss function, using the posterior distribution of θ to compute the expectation.

The decision solves the minimization problem:

min
a

Eπ∗ [L(θ, a)] = −aEπ∗(θ) + 0.5a2

= −ax/2 + 0.5a2

where π∗ denotes the posterior distribution of θ after observing x, which has mean x/2.

Solving for the first order conditions, gives the result. □

Proof of Proposition 2.2 (Decision with judgment) — Let a(λ; x) ≡ λx, for λ ∈ [0, 1],

the action that shrinks from the judgmental decision ã = 0 towards the maximum likelihood

decision x.

If x = 0, the judgmental decision coincides with the maximum likelihood estimate, and

the optimal action is δA(x) = 0, which trivially holds for any λ. If x ̸= 0, the gradient of
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the loss function with respect to λ is:

Z(θ, λ; x) ≡ ∇λL(θ, a(λ; x))

= −xθ + λx2

The maximum likelihood estimator of the gradient is:

Z(θ̂(Y ), λ; x) = Z(Y, λ; x)

= −xY + λx2

where Y has the same distribution as X.

Notice that since Z(x, λ; x) < 0 for λ < 1, the hypothesis to be tested is:

H0 : Z(θ, λ; x) ≥ 0 vs H1 : Z(θ, λ; x) < 0

Since the null hypothesis is rejected if and only if H0 : θ = λx is rejected, the test

statistic under the null hypothesis satisfies the following property:

Pλx(Z(Y, λ; x) < Z(x, λ; x)|Z(Y, λ; x) < 0) =

= 2Pλx(−x(Y − λx) < −x(x − λx))

= 2P0(−xX < −x(x − λx))

= I(x > 0)2P0(X > |x|(1 − λ)) + I(x < 0)2P0(X < −|x|(1 − λ))

= I(x ̸= 0)2P0(X < −|x|(1 − λ))

where X ∼ N(0, 1).

The null hypothesis is rejected if P0(X < −|x|(1 − λ)) < α/2. If for λ = 0 it is not

rejected, the judgmental decision is retained as optimal decision. In case of rejection, the
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optimal decision is the one at the boundary of the confidence level:

P0(X < −|x|(1 − λ∗)) = α/2

resulting in λ∗ = 1 + cα/2/|x|.

In fact, any λ ̸= λ∗ would not be compatible with the given judgement, because the

null would be rejected for λ < λ∗ and would be wrongly rejected for λ > λ∗. □

Proof of Proposition 3.1 (Relationship between Bayesian Decisions and Deci-

sions with Judgment) — The judgmental decision associated with the prior is obtained

by minimizing Eπ[L(θ, a)] with respect to a, where π denotes the standard normal prior

distribution and the superscript that the expectation is taken with respect to this prior:

ã = arg min
a

[−aEπ(θ) + 0.5a2]

Since under the standard normal Eπ(θ) = 0, the action that minimizes the expected loss

is ã = 0.

The two decisions are equal if the null hypothesis that ã is optimal is rejected and

when δπ∗(x) = λ∗x, that is when x/2 = (1 + cα(x)/2/|x|)x. Solving for α(x) gives α(x) =

2Φ(−|x|/2). Since the p-value associated with the judgmental decision ã = 0 is α̃(x) =

2Φ(−|x|), solving for −|x| and substituting in the expression for α(x) gives the result.

Finally, to show that the ex ante confidence level is ᾱ = 1, note that the null hypothesis

that ã is optimal is rejected when the p-value is lower than the chosen confidence level.

Using the previous result:

Pã[α̃(X) < α(X)] = Pã[α̃(X) < 2Φ(Φ−1(α̃(X)/2)/2)]

= Pã[Φ−1(α̃(X)/2) < Φ−1(α̃(X)/2)/2]

= Pã[1 > 1/2]

= 1
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where the inequality changes sign because Φ−1(α̃(X)/2) is negative. □

Proof of Proposition 3.2 (Admissibility of Decisions with Judgment) — To prove

admissibility, one has to recognize that there are two random variables involved in the

statistical decision problem. First, conditional on the sample realization x, there is the

random variable that determines whether the null hypothesis of optimality of a given de-

cision is accepted or rejected. Second, there is the random variable that determines the

sample realization x.

For given x, it is possible to test the following hypotheses for any λ ∈ [0, 1]:

H0 : Z(θ, λ; x) ≥ 0 H1 : Z(θ, λ; x) < 0

where Z(θ, λ; x) ≡ ∇λL(θ, a(λ; x)) = −x(θ − λx). This is equivalent to the following

hypotheses:

if x < 0 H0 : θ ≥ λx H1 : θ < λx

if x > 0 H0 : θ ≤ λx H1 : θ > λx

To construct the test function, substitute θ with the maximum likelihood estimator Y ,

where to avoid confusion between the potential realization of X and the observed one, x,

I have replaced X with the identically distributed random variable Y ∼ N(θ, 1). The test

statistic is:

Z(Y, λ; x) = −x(Y − λx)

= I(x < 0)|x|(Y − λx) − I(x > 0)|x|(Y − λx)

If x = 0, the maximum likelihood estimate coincides with the judgmental decision, which

is therefore not rejected and retained as decision. In the other cases, the decision rule is
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given by the following test function:1

if x < 0 Ψ−(y, λ; x) =



0 if y − λx > cα/2

γ if y − λx = cα/2

1 if y − λx < cα/2

if x > 0 Ψ+(y, λ; x) =



0 if y − λx < −cα/2

γ if y − λx = −cα/2

1 if y − λx > −cα/2

since H0 is rejected if and only if H0 : θ = λx is rejected, which implies Y − λx ∼ N(0, 1).

Adopting the positive linear transformation L∗ = ε−1L for ε > 0, denoting with (λ +

ε) + x the action taken in case of rejection, the risk function of a test Ψ∗ is:

R(θ, Ψ∗; x) =
∫

ε−1 [L(θ, λx)(1 − Ψ∗(y, λ; x)) + L(θ, (λ + ε)x)Ψ∗(y, λ; x)] dF (y)

= ε−1L(θ, λx) +
∫

ε−1 [L(θ, (λ + ε)x) − L(θ, λx)] Ψ∗(y, λ; x)dF (y)

Following the reasoning of Section 8.3 of Berger (1985) and considering only the case

when x < 0 (the other case can be proven in a similar way):

R(θ, Ψ∗; x)−R(θ, Ψ−; x) ∼

∼
∫

Z(θ, λx)[Ψ∗(y, λ; x) − Ψ−(y, λ; x)]dF (y) for sufficiently small ε

= |x|(θ − λx)Eθ[Ψ∗(Y, λ; x) − Ψ−(Y, λ; x)]

Since Ψ− is a uniformly most powerful test, Eθ[Ψ∗(Y, λ; x)−Ψ−(Y, λ; x)] ≤ 0 for θ < λx.

By symmetry, 1−Ψ− is a uniformly most powerful test of size 1−α for testing H0 : θ ≤ λx

versus H1 : θ > λx, and Eθ[(1 − Ψ∗(Y, λ; x)) − (1 − Ψ−(Y, λ; x))] ≤ 0 for θ > λx. This
1Note that the ex ante confidence level ᾱ is used for λ = 0 and the ex post confidence level α(x) for

λ > 0. For simplicity, I use the notation α to denote both cases.
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implies that (θ −λx)Eθ[Ψ∗(Y, λ; x)−Ψ−(Y, λ; x)] ≥ 0 and that R(θ, Ψ∗; x)−R(θ, Ψ; x) ≥ 0

for all θ. The test Ψ− is therefore admissible, for any x and λ.

Suppose now that the decision rule δA(x) is not admissible. Then it exists another

decision rule δ∗(x) such that (again considering only the case x < 0 for notation simplicity):

R(θ, δ∗) − R(θ, δA) =
∫ [

R(θ, Ψ∗; x) − R(θ, Ψ−; x)
]

dF (x)

∼
∫ ∫ [

|x|(θ − λ̂x)[Ψ∗(y, λ̂; x) − Ψ−(y, λ̂; x)]
]

dF (y)dF (x)

=
∫ ∫ [

|x|(θ − λ̂x)[Ψ∗(y, λ̂; x) − Ψ−(y, λ̂; x)]
]

dF (x)dF (y)

=
∫ [

|x̄|(θ − λ̂x̄)[Ψ∗(y, λ̂; x̄) − Ψ−(y, λ̂; x̄)]
]

dF (y)

≤ 0

for some finite x̄ ∈ R, with strict inequality for at least one θ. But this contradicts the

fact that Ψ− is admissible. Note that any alternative decision rule has to select λ̂ to be

consistent with the given judgment. Note also that the dependence of λ̂ and α on x has

been left implicit and does not affect the reasoning. □

Proof of Proposition 4.1 (Ambiguity Averse Decisions) — An ambiguity averse

decision maker chooses the action:

arg min
a

max
µ∈Γ

∫
L(θ, a)dF µ∗(θ|x)

where F µ∗(θ|x) denotes the posterior updating of a given µ distribution in Γ.

For a prior N(π, c−1), the posterior mean of θ is (1+c)−1(x+cπ). Since the loss function

is linear in π:

max
µ∈Γ

∫
(−aθ + 0.5a2)dF µ∗(θ|x) =

= −a[I(a < 0) − I(a > 0) + πI(a = 0)](1 + c)−1c − a(1 + c)−1x + 0.5a2
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Solving for the first order conditions with respect to a:

a = x + c[I(a < 0) − I(a > 0) + πI(a = 0)]
1 + c

The result is obtained by noting that a < 0 if x + c < 0, a > 0 if x − c > 0, and a = 0 if

−c < x < c and −1 ≤ π = −x/c ≤ 1.

The derivation of the judgmental decision ã is similar, but now the prior distribution

has expected value equal to π.

For the derivation of the confidence levels, first notice that the ambiguity averse decision

and the decision with judgment can be rewritten as:

δΓ(x) = I(|x| > c)(x − sgn(x)c)/(1 + c)

δA(x) = I(|x| > −cᾱ/2)(x + sgn(x)cα(x)/2)

The two decisions are equal when c = −cᾱ/2 and (x − sgn(x)c)/(1 + c) = x + sgn(x)cα(x)/2.

Inverting the first condition gives the ex ante confidence level ᾱ. Solving the second con-

dition for α(x) gives the ex post confidence level. □
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