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Abstract

Loan guarantees represent a form of government intervention to support bank lending. How-
ever, their use raises concerns as to their effect on bank risk-taking incentives. In a model of
financial fragility that incorporates bank capital and a bank incentive problem, we show that
loan guarantees reduce depositor runs and improve bank underwriting standards, except for the
most poorly capitalized banks. We highlight a novel feedback effect between banks’underwrit-
ing choices and depositors’run decisions, and show that the effect of loan guarantees on banks’
incentives is different from that of other types of guarantees, such as deposit insurance.
Keywords: panic runs, fundamental runs, bank monitoring, charter value
JEL classifications: G21, G28
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Non-technical summary 

       The Covid-19 pandemic erupted in early 2020 as an unexpected and exogenous shock leading to 

a sudden and deep liquidity crisis for non-financial corporations. To minimize disruptions to the real 

economy, major forms of public interventions across countries were implemented. Among those, 

public guarantee schemes (PGSs), which aimed at sustaining bank lending to firms by providing a 

guarantee on bank loans, played a major role.  

Notwithstanding their possible effectiveness as a stimulative tool, the use of loan guarantees raises 

several important questions in terms of their implications for banks' underwriting processes and thus, 

ultimately, for financial stability. The analysis of the incentive effects of loan guarantees and their 

implications for financial fragility is precisely the focus of this paper. 

    We tackle these issues by developing a theoretical framework where both banks' risk choices on the 

asset side and financial fragility are derived endogenously and, thus, a feedback effects between bank 

lending decisions and investors' behavior is present. As is well known, bank choices on the asset side 

also crucially depend on their capital structures. In particular, the degree of bank capitalization as well 

as the possibility for investors to withdraw their funds has been found to affect bank lending decisions 

(see, e.g., the evidence in Iyer and Puri, 2012; Iyer, Puri and Ryan, 2016; Martin, Puri and Ufier, 2018; 

Artavanis, Paravisini, Robles-Garcia, Seru and Tsoutsoura, 2019; or Carletti, De Marco, Ioannidou and 

Sette, 2020). This implies that the quality of a bank's assets, the threat of runs, and its capital structure 

are closely intertwined. 

    Our model of financial fragility is in the spirit of Goldstein and Pauzner (2005), which we enrich in 

two important dimensions. First, we assume that banks maximize profits, and fund themselves with 

equity in addition to demandable deposits. Second, we introduce a risk choice for banks by assuming 

that they can affect the success probability of loans when choosing their underwriting effort. These 

two aspects allow us to analyze the interaction between the asset and liability side of banks' balance 

sheet and to stress the importance of bank capital structure for the overall effects of the guarantees 

in terms of banks' underwriting and financial stability. 

    We first show that banks are subject to runs, whose probability decreases with the level of bank 

capitalization. In addition, banks with high levels of capital are subject to runs only when 

macroeconomic fundamentals are sufficiently poor (fundamental-driven runs), while banks with low 

capital are also prone to panic runs, meaning that their depositors may decide to run for reasons linked 

to strategic complementarity problems that arise when they anticipate other depositors may run. It 

follows that, for any level of capital, banks can only fail in the final period when their underwriting 

effort turns out to be unsuccessful. 

    As with any form of insurance, the introduction of a loan guarantee reduces depositors' run 

probability. The reason is that the guarantee increases the range in which the bank is able to make 

the promised repayment to depositors in the final date and, if the government transfers are 

bankruptcy-protected, it also increases depositors' expected payoffs at the final date. Both effects 

reduce depositors' incentives to withdraw prematurely, thus reducing financial fragility. 

In our framework, contrary to perceived wisdom, introducing loan guarantees improves banks' 

underwriting standards in many instances. This finding arises both from a direct (positive) effect of 

loan guarantees and an indirect effect from the reduction in run probability. The result may differ only 

when the loan guarantee is shielded from bankruptcy costs. In this case, the presence of a loan 

guarantee reduces the sensitivity of the run threshold to changes in the underwriting effort. This last 
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effect is negative as it reduces the benefit for the bank from increasing its effort, and it may dominate 

when banks are insufficiently capitalized. 

    One crucial element of the analysis is whether the guarantee accrues to the bank conditional on its 

ability to control risk. In the model, the guarantee is disbursed whenever the firm is unable to repay 

the bank. However, whether the bank or its creditors benefit from the guarantee when the bank's 

underwriting effort is successful (i.e., when positive project returns are realized) depends on the 

treatment of the guarantee in bankruptcy. In the case of full bankruptcy costs, both the bank and 

depositors only stand to receive anything if there is no run and the bank remains solvent. By contrast, 

in the case of bankruptcy-protected guarantees, depositors also receive some payment in the final 

period when the bank's underwriting effort is unsuccessful and the bank defaults. This reduces the 

sensitivity of depositors' incentives to run to the bank's underwriting standards, thus indirectly 

benefiting the bank and reducing its incentives. Therefore, the treatment of the guarantee in 

bankruptcy becomes de facto equivalent to a conditionality assumption. 

    We also use our framework to study the effect of PGSs on banks’ evergreening incentives (i.e., 

continue projects that would be efficient to liquidate). To do so, we extend the analysis to include 

banks' project continuation decisions by allowing them to liquidate projects at the interim date. In the 

absence of runs, all banks would engage in evergreening  and, in line with the empirical evidence (see 

e.g., Blattner, Farinha and Rebelo, 2021; and Schivardi, Sette and Tabellini, 2021), the more so the 

lower is their level of capitalization. Once runs are taken into account, loans can be liquidated early 

either because of runs or directly by the bank. For banks with low capital, depositors exert a strong 

disciplinary force and projects get liquidated early because of depositor runs. By contrast, when banks 

have high capital, depositors are more passive and early liquidation occurs primarily as a result of 

banks' decisions. In this context, the introduction of loan guarantees leads to more evergreening since 

depositors' incentives to run decrease, while banks' incentives to continue inefficient projects 

increase, in particular for worse-capitalized banks. 

  

ECB Working Paper Series No 2782 / February 2023 3



1 Introduction

Periods of crisis, when economic fundamentals are poor, are catalysts for government intervention.

Often these periods are coupled with credit market freezes, with banks sitting on capital rather than

lending it out, possibly further worsening fundamentals to the extent that viable firms get denied

credit. A case in point is the Covid-19 pandemic, which erupted in early 2020 as an unexpected

shock leading to a sudden and deep liquidity crisis for non-financial corporates and triggering

massive interventions by public authorities (e.g., Eichenbaum, Rebelo, and Trabandt, 2020; Ding,

et al., 2020; Li, Strahan, and Zhang, 2020).

Despite differences across countries, one major form of intervention consisted of public guarantee

schemes (PGSs) on loans aimed at supporting the flow of credit to the economy following the decline

in economic fundamentals. As described in more detail in Section 2 below, one important element

in common in these schemes was their use as stimulative tools through the offer of credit protection

against the default of the borrower. While sharing the objectives of such programs, their widespread

use has also raised important questions among economists concerning their impact on lending

standards and continuation decisions. While PGSs are typically administered by a public authority,

the final lending decisions (i.e., selection and monitoring of the recipient) remain in fact with the

financial intermediary. It follows that, as with any form of insurance, the introduction of PGSs

may generate moral hazard by encouraging riskier lending at the margin through banks’reduced

incentives to select and monitor borrowers properly (e.g., Kelly, Lustig, and Van Nieuwerburgh,

2016; Gropp, Gruendl and Guettler, 2014).1 Similarly, the reliance on public support programs may

induce banks, and in particular those with little capital, to engage in “evergreening,”thus keeping

nonviable firms alive (see, e.g., Acharya et al., 2020a; Acharya et al., 2020b; Laeven, Schepens, and

Schnabel, 2020, Dursun-de Neef and Schandlbauer, 2021).

In this paper, we analyze the effect of loan guarantees on banks’underwriting incentives in a

framework where the asset and liability sides of banks’balance sheets endogenously interact and

jointly determine banks’incentives. Unlike other guarantee schemes, such as deposit insurance, loan

guarantees accrue to banks and help them remain solvent, thus having the potential to directly

influence bank behavior. In addition, they can also benefit depositors when losses would put

the bank at risk of defaulting on its liabilities, and therefore they have implications for depositors’

withdrawal behavior. Evidence supports the incentive view of demandable debt (e.g., Iyer and Puri,

1This is a commonly held view concerning the impact of deposit insurance, for instance, and is often cited as a
rationale for prudential policies (e.g., capital requirements) to control excessive risk-taking.
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2012; Iyer, Puri, and Ryan, 2016; Martin, Puri, and Ufier, 2018; Artavanis et al., 2019; and Carletti

et al., 2020): investors react to signals on banks’fundamentals when deciding whether to withdraw

their funds and, anticipating this, banks take investors’reactions into account when making their

lending decisions. It follows that the impact of loan guarantees for lending is best analyzed in a

framework that incorporates the feedback between bank lending decisions and depositor withdrawal

decisions.

To this end, we present a model of financial fragility in the spirit of Goldstein and Pauzner

(2005), which we enrich along two important dimensions. First, we introduce an endogenous effort

problem so that, through their underwriting decisions, banks can influence the success probability

of the loans they extend. Second, we assume that banks maximize profits and fund themselves with

equity in addition to deposits.2

The model has two periods. In the first period, banks with some equity capital raise additional

funds in the form of (demandable) debt and grant long-term loans to finance firms’projects. These

projects yield a return in the final period that depends on both bank effort and economic funda-

mentals. Depositors may leave their funds in the bank until projects mature or they may withdraw

in the first period, thus precipitating a run. As is common in global-game models of bank runs,

depositors base their withdrawal decisions on a signal they receive in an intermediate period, which

provides them with information on the fundamentals and which allows them to draw inferences

on other depositors’behavior. If the bank is unable to meet its obligations at the final date, the

bank’s default leads to costly bankruptcy.

We first show that banks are subject to runs with a probability that decreases with the amount

of capital they have. Highly capitalized banks are subject to runs only when macroeconomic fun-

damentals are suffi ciently poor, while banks with less capital are also prone to panic runs, meaning

that their depositors may run because of coordination failures among them. This role for bank

capital in determining banks’exposure to depositor panics is reminiscent of Diamond and Rajan

(2000), who argue that capital reduces the cost of excessive runs. Anticipating depositors’with-

drawal decisions, banks set the long term payoffon the deposit contract as well as their underwriting

standards.

We then analyze the introduction of loan guarantees. We focus on a scheme in which the

government is in a first-loss position so that, whenever a borrower fails to repay the promised

2Thus, our framework features both an endogenous run probability and an endogenous bank effort choice, extending
the analysis in Calomiris and Kahn (1991) and Diamond and Rajan (2000 and 2001), where the threat of a run plays
a disciplinary role for bank incentives together with own capital.
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amount, the government makes a transfer to the bank to cover the loss, up to some limit. Key for

the analysis is the treatment of such transfer in case of bank default. We consider two cases: either

the transfer is subject to the same bankruptcy costs as any other bank asset or it is protected from

such costs and is not subject to dissipation. The two cases reflect different views on the nature of

bankruptcy costs. The former case, which we refer to as “full bankruptcy costs," reflects a situation

where bankruptcy losses originate primarily from ineffi ciencies in bankruptcy procedures due to

hold-up problems among creditors or ineffi cient judicial systems. The latter, which we denote as

"bankruptcy-protected," captures instead a setting where bankruptcy losses stem primarily from

the illiquidity of bank assets, such as loans, and hence do not apply to more liquid assets such as

government transfers.

Loan guarantees allow banks to obtain higher profits when they are solvent and also to repay

deposits when losses get suffi ciently large. As a result, the presence of a loan guarantee always

leads to a reduction in depositors’incentives to run. Combined with banks’increased profits, these

two effects together contribute to increasing banks’charter values, thus increasing their incentives

to avoid default. This leads to improved underwriting standards when the guarantees are subject

to dissipation in the event of bankruptcy. The mechanism is reminiscent of that in Cordella,

Dell’Ariccia, and Marquez (2018), where greater deposit guarantees may sometimes lead to better

monitoring, and distinct from papers such as Marcus (1984) or Keeley (1990), where changes in

charter value are driven by the degree of banking competition.

By contrast, when guarantees are bankruptcy-protected, the introduction of loan guarantees

may worsen bank monitoring incentives. Since depositors obtain the guaranteed transfers also

when the bank’s monitoring effort is unsuccessful, the presence of loan guarantees makes depositors’

withdrawal incentives less sensitive to changes in bank underwriting standards. This effect reduces

the benefit for banks to exert effort and is dominant for the most poorly capitalized banks.

The impact of loan guarantees on bank underwriting incentives and run probabilities remain

qualitatively the same when we consider another guarantee type denoted as a "loss sharing" scheme,

in which there is sharing of losses between the government and the bank.3 However, the two

schemes differ in terms of costs and effectiveness for bank incentives. In particular, for a given run

probability, the first-loss guarantee provides greater incentives to the bank but at a higher cost.

In a further step, we analyze another form of bank risk-taking in the form of evergreening

3The two schemes we consider mirror the structures of the guarantees used in practice in addressing the need for
sustaining lending in the aftermath of the Covid-19 pandemic (see, for example, European Commission, 2020).
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incentives (i.e., incentives to continue projects that ought to be liquidated), which has also been

at the center of the policy discussion. We show that the introduction of loan guarantees leads to

more evergreening due to depositors’reduced incentives to run, in particular for worse-capitalized

banks. However, the improved underwriting resulting from the loan guarantee partly attenuates

this negative effect and on net leads to an increase in total output.

We extend the analysis in two directions. First, we endogenize the deposit rate in the presence

of loan guarantees and show that all results remain unaltered. This situation reflects the presence

of long standing guarantees such as those used in the US to sustain small businesses. Second, we

contrast the results from loan guarantees to those that obtain from deposit insurance. We show that

introducing loan guarantees in a context where deposits are insured does not affect the qualitative

results concerning bank underwriting standards, although deposit insurance by itself always leads

to less bank effort.

2 Public guarantee schemes (PGSs)

Guarantees are relatively common in practice both in private and public forms. For example,

Beyhaghi (2021) shows that over one-third of corporate loans issued by US banks are guaranteed

by separate legal entities, mostly in the form of personal or corporate guarantors. Similarly, Ahnert

and Kuncl (2021) report that 62% of outstanding residential mortgages were insured by the US

government through the Government Sponsored Enterprises in 2018.

The goal of PGSs is to improve access to credit for firms, thus also supporting employment.

From a policy perspective, loan guarantees can be used as stimulative tools in normal times for

businesses that may have diffi culty in accessing credit, or they can be a response to sudden shocks

weakening economic fundamentals. An example of the former can be found in Small Business

Administration (SBA) loans, which provide partial guarantees to private lenders, extending loans

to younger firms and supporting employment and credit supply to these firms (e.g., Brown and

Earle, 2017; and Bachas, Kim and Yannelis, 2020). An example of the latter can be seen in

the response to the outbreak of the Covid-19 pandemic in many economies. To give an order of

magnitude, in Europe more than 320 billion euros of new loans were provided under these crises

response schemes in just four countries —France, Germany, Italy and Spain —as of September 2020

(ECB, 2020; Falagiarda et al., 2020). Similarly, in the US 5.16 million borrowers had access to

guaranteed loans through the $669 billion Paycheck Protection Program (PPP) as of November
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2020 (Balyuk, Prabhala, and Puri, 2020; Baudino, 2020; Chodorov-Reich et al., 2021).4

Public guarantees are paid when the borrower defaults, thus protecting the lender from credit

losses, and can be provided for loans intermediated by different types of lenders. For example, in

the US the PPP program was applicable to loans provided by both banks and non-banks such as

FinTech lenders, with the two types of lenders extending around 80% and 20%, respectively, of the

total guaranteed loans under the program (Howell et al., 2020; Erel and Liebersohn, 2022), in line

with the fast-growing importance of FinTech in extending credit to US small businesses (Gopal

and Schnabl, 2022). By contrast, in Europe, given the greater reliance on bank lending (e.g., ECB,

2022), the set of lenders eligible for PGSs extended during the pandemic was limited to banks and

regulated financial intermediaries (Core and De Marco, 2022).

A growing literature analyzes the role of banks and other lenders as conduits of public liquidity

through government guaranteed loans to SMEs in Covid times, both in Europe (e.g., Core and De

Marco, 2020; Gonzalez-Uribe and Wang, 2020; Jimenez et al., 2022) and the US (e.g., Balyuk et

al., 2020; Bartik et al., 2020; Cole, 2020; Duchin, Martin, and Michaely, 2020; Hubbard and Strain,

2020). The focus in these studies ranges from highlighting the importance of supply heterogeneity

in the allocation of guaranteed loans to their implications for firm employment.

While PGSs appear to have been generally successful at maintaining a stable flow of credit,

their use as a response to the pandemic has also been viewed as being rather expensive in some

circumstances, or of having entailed some fraud or undesired consequences. For example, focusing

on the role of banks in the PPP program, Granja et al. (2022) find evidence that the program

had little effect on employment in the months following its initial rollout, while Griffi n, Kruger,

and Mahajan (2022) find that, in the same context, both misreporting and suspicious lending by

FinTech companies has increased due to the lack of robust verification requirements. In a similar

vein, Altavilla et al. (2022) show that in Europe, despite being extended to small but creditworthy

firms in sectors severely affected by the pandemic, guaranteed loans partially substituted for pre-

existing debt, especially for riskier firms, thus shifting part of the existing credit risk from banks

to governments.

4Similarly, the European Commission adopted a new crisis framework in March 2022 to support the economy in
the context of Russia’s invasion of Ukraine, whereby Member States can provide guarantees to ensure banks keep
providing loans to companies affected by the current crisis (European Commission, 2022).
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3 Relation to the literature

Our paper makes a number of contributions. First, our framework incorporates a bank’s effort

choice on the asset side in a model of financial fragility, where the probability of runs is endogenously

determined. The paper therefore extends standard models of financial fragility (e.g., Goldstein and

Pauzner, 2005, and Allen et al., 2018) to analyze the importance of the run threat for a bank’s

asset choice. This focus is in line with empirical evidence finding that banks are traditionally

highly leveraged institutions, with debt being kept predominantly in the form of (both insured and

uninsured) demandable (or short term) debt (e.g., Egan, Hortacsu and Matvos, 2017).

Another strand of literature has instead analyzed credit risk in the form of bank monitoring effort

and the role of bank capital, but without including considerations of financial fragility. For example,

Holmstrom and Tirole (1997) study the incentive problem for a bank to monitor a borrower and

show how this incentive depends on the amount of capital the bank has. Hellmann, Murdock, and

Stiglitz (2000), Repullo (2004), Morrison andWhite (2005), Dell’Ariccia and Marquez (2006), Allen,

Carletti, and Marquez (2011), Mehran and Thakor (2011), and Dell’Ariccia, Laeven, and Marquez

(2014) study settings where banks are subject to moral hazard in their monitoring decisions, and

where equity capital helps improve bank incentives (see also Thakor, 2014, for a survey). It follows

that banks may have incentives to raise capital even in the absence of capital requirements. None

of these papers, however, studies how bank monitoring is affected by, and in turn affects, financial

fragility in the form of bank runs. An exception is Kashyap, Tsomocos, and Vardoulakis (2019),

who focus on the effect of capital and liquidity for credit and run risk. Instead, we are interested

in the effects of loan guarantees for bank monitoring choice and the likelihood of runs.

Second, we contribute to the literature on the role of public loan guarantees by building a

framework where guarantees introduced in response to crises impact the feedback between the asset

and liability side of banks’balance sheets. As remarked above, guarantees on lending contracts

are common in practice. Focusing on third-party loan guarantees for residential mortgages, Ahnert

and Kuncl (2021) present a model where this type of guarantee decreases lending standards but

improves market liquidity. In their model, lenders can pass default risk to an outside guarantor

upon origination, thus avoiding costly screening. We also analyze loan guarantees upon origination,

but in a context where these are not an alternative to bank screening.

Third, our paper is related to the literature studying alternative ways to transfer credit risk

onto third parties after loan origination. For example, Parlour and Winton (2013) study the effects

of credit default swaps (CDSs) on banks’monitoring incentives as an alternative to loan sales in
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secondary markets. They show that CDSs tend to dominate loan sales only for riskier credits,

while their effects on bank monitoring depend on credit quality. In contrast, we focus on loan

guarantees where banks retain both cash flow and control rights, and show that in the presence of

these guarantees bank incentives depend on the level of capital, the size of the guarantee, and the

nature of bankruptcy costs.

Fourth, a large strand of literature has focused on the role of government guarantees such as

deposit insurance or other forms of implicit guarantees on banks’ liabilities. On the one hand,

these guarantees are thought to have a positive role in preventing panics among investors and help

stabilize the financial system (e.g., Diamond and Dybvig, 1983). On the other hand, they may

distort banks’incentives, leading to an increase in financial fragility (see, e.g., Calomiris, 1990, and

Acharya and Mora, 2015). Reconciling the two views, more recent studies show that government

guarantees can improve welfare because they induce banks to improve liquidity provision (Keister,

2016), although they may also increase the likelihood of runs (Allen et al., 2018). The idea that a

government guarantee on deposits can actually be good for incentives has been studied in Cordella,

Dell’Ariccia, and Marquez (2018), who show that, by reducing a bank’s cost of funding, a deposit

guarantee increases the return to the bank and creates greater incentives to monitor. In this paper,

we focus on PGSs for loans rather than deposits and study how they affect bank behavior and

financial stability through their interaction on the asset side of the balance sheet.

Finally, our analysis of the effect of loan guarantees on banks’incentives to engage in evergreen-

ing connects to a recent literature on zombie lending, i.e., the provision of credit to firms already

in distress.5 In Hu and Varas (2021), evergreening emerges from the existence of dynamic lending

relationships and the advantages that a relationship bank can obtain from helping its borrowers to

have a strong reputation. Bruche and Llobet (2014) show that zombie lending arises from limited

liability. Relative to these papers, we focus on the effect that the introduction of a loan guarantee

has on bank incentives to continue providing credit to firms in distress and highlight the role of

bank capital. Related to this last point, Blattner et al. (2021) show empirically that, following

the introduction of more stringent capital requirements in Portugal, weak banks started to provide

credit to distressed firms for which the bank had been underreporting loan loss provisions prior

the regulatory change. A similar result is also found in Schivardi, Sette, and Tabellini (2021), who

show that during the 2008 financial crisis undercapitalized banks were more likely to provide credit

to zombie firms than better capitalized ones. In line with this, in our framework poorly capitalized

5A number of earlier contributions focused on the Japanese experience; see, e.g., Peek and Rosengren (2005); and
Caballero, Hoshi and Kashyap (2008).

ECB Working Paper Series No 2782 / February 2023 10



banks have the greatest incentive to engage in evergreening.

4 The model

Consider a three date economy (t = 0, 1, 2) with banks and a large number of both firms and

(atomistic) risk-neutral investors, with unitary endowment at date 0. On the asset side, each firm

has a unit demand for a bank loan to finance a long term risky project6, which, if held to maturity,

yields a return P̃ , with

P̃ =

{
Rθ w.p. q
0 w.p. 1− q .

The date 2 project return depends on the fundamentals of the economy θ and on the bank’s effort

choice q ∈ [0, 1]. The former captures the level of macroeconomic risk, while the latter represents

the (endogenous) effort undertaken by a bank, which we will refer as either “underwriting” or

“monitoring”throughout. We assume that the fundamentals of the economy θ are drawn from a

uniform distribution in the range [0, 1] with probability α; with complementary probability 1− α,

θ is instead drawn from a uniform distribution in the range [1, 2]. In this respect, we interpret

changes in α as shocks to the economy’s fundamentals. The assumption θ ∈ [0, 2] guarantees that

intermediation is feasible for any level of capital k. Furthermore, it captures the realistic case where

the borrower defaults only in some states (i.e., when θ < 1) and, in turn, as we show below, the

loan guarantee is only paid when such default occurs.

Exerting greater underwriting effort q is costly and we assume that the bank bears a private

cost of c q
2

2 . For simplicity, we normalize the interest rate a bank receives on its loan to R, so that

the bank’s payoff is that of a standard debt contract. As shown in Figure 1, the bank receives

full repayment for θ ≥ 1, while there is partial default for θ < 1, with the bank receiving Rθ and

suffering losses R (1− θ).

Insert Figure 1

The loan can be liquidated early at t = 1, in which case it yields an amount whose value depends

on the fundamental θ. Specifically, the liquidation value is equal to L < 1 for θ ∈ [0, θ̂) and to 1

for θ ∈ [θ̂, 2]. The idea is that the firm’s project can only be liquidated at a cost when its returns

are insuffi cient to fully repay the bank, while the asset’s value upon liquidation is not impaired

6This specification implies that investors inelastically supply funds to the bank, and firms have an inelastic demand
for loans, so that we can abstract from quantity effects on either the loan or the deposit market. On the liability
side, investors need only have their reservation utility satisfied to be willing to deposit, consistent with the idea of a
monopolistic deposit market. As specified below, the loan market is more stylized and the loan rate is set exogenously.

ECB Working Paper Series No 2782 / February 2023 11



when its returns are high enough to fully repay the bank’s loan.7 The cutoff value θ̂ is assumed to

be close to but strictly below 1. To this end, we set θ̂ ≤ 1 − 2ε and, in most of the analysis, ε is

taken to be arbitrarily close to 0. Finally, we assume that α
∫ 1

0 qRθdθ + (1− α)
∫ 2

1 qRdθ − c
q2

2 > 1

for some q, so that granting loans to finance firms’projects dominates storing as long as the bank

exerts a suffi ciently high monitoring effort.

Each bank has (internal) capital of k and, at date 0, raises the remainder 1− k from investors

in the form of demandable debt. The mass 1 − k of investors at each bank holds a standard

demandable deposit contract giving them the possibility to withdraw early or wait until the final

date. At date 1, a depositor, whose outside option is normalized to 1, can redeem his deposit from

the bank at par, i.e., for the same amount that was originally deposited, while he receives r2 > 1

at date 2 if he waits until then.8

The promised repayments {1, r2} are paid as long as the bank has enough resources. If depos-

itors choose to withdraw at date 1, the bank liquidates as much of its assets as needed to satisfy

withdrawals and carries any remaining amount to date 2. If the bank has insuffi cient resources to

meet depositors’demands at date 1, all its assets are liquidated and the 1 − k depositors receive

a pro-rata share of the liquidation value. By contrast, if the bank fails to repay depositors r2 at

date 2, the bank enters a bankruptcy procedure and depositors experience losses as a result.9 For

simplicity, we assume full bankruptcy costs, so that depositors receive nothing upon insolvency of

the bank at date 2. The bankruptcy costs may originate either from coordination failures among

the bank’s creditors which makes it diffi cult and costly for them to seize the remaining value of the

bank, or from the illiquidity of the bank’s assets, where some value is lost when selling to alternative

users/lenders. The different possible sources of bankruptcy costs will play an important role in the

analysis of the loan guarantee scheme, as we discuss in detail below.10

7The assumption concerning the liquidation value L resembles the technical assumption made in Goldstein and
Pauzner (2005) where there is no cost associated with early liquidation for high enough levels of the fundamental θ.

8While we assume that the bank offers demandable debt, Carletti, Leonello, and Marquez (2022) show, in a similar
framework, that profit-maximing banks find it optimal to offer demandable deposit contracts without penalties for
early withdrawals even at the risk of triggering a bank run. Hence, assuming r1 = 1 is just a normalization in
our context. Alternative justifications for the optimality of demandable debt relate to the presence of asymmetric
information problems in credit markets (see, e.g., Flannery, 1986; and Diamond, 1991), conflicts between bank
managers and debtholders (see e.g., Calomiris and Kahn, 1991; Diamond and Rajan, 2000, 2001; and Eisenbach,
2017), and idiosyncratic liquidity shocks to banks’depositors (e.g., Diamond and Dybvig, 1983).

9Considerable empirical evidence shows that bank bankruptcy costs are substantial. For example, James (1991)
finds that when banks are liquidated, bankruptcy costs are 30 cents on the dollar.
10The asymmetric treatment of bankruptcy costs at date 1 and 2 is consistent with the idea that at least part

of the cost associated with bankruptcy may stem from uncertainty related to the asset return. Importantly, this
assumption does not qualitatively affect our results, as we show in Appendix B, where we replicate the analysis with
a symmetric treatment of bankruptcy costs. Specifically, we consider the presence of bankruptcy costs at both date
1 and 2 as well as their absence at either date.
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The state of the economy θ is realized at the beginning of date 1, but is publicly revealed only

at date 2. After θ is realized at date 1, each depositor receives a private signal si of the form

si = θ + εi, (1)

where εi are small error terms that are independently and uniformly distributed over [−ε,+ε].

After the signal is realized, depositors decide whether to withdraw at date 1 or wait until date 2.

The timing of the model is as follows. At date 0, banks raise deposits with a deposit contract

{1, r2}, and then choose their monitoring effort q. At date 1, after receiving the private signal about

the state of the fundamentals θ, depositors decide whether to withdraw early or wait until date 2.

At date 2, the bank’s portfolio return is realized and depositors that chose to wait are repaid.

5 Economy without guarantees

In this section, we characterize the allocation for the baseline case where there are no guarantees.

We start by analyzing depositors’withdrawal decisions at date 1, taking the deposit contract {1, r2}

and the riskiness of the portfolio q as given. Then, we move on to the choice of the monitoring

effort q and the terms of the deposit contract r2.

5.1 Depositors’withdrawal decision

Depositors base their withdrawal decisions on the signal they receive, as this gives them information

about the economy’s fundamentals θ and allows them to draw inferences on the actions of all other

depositors at the bank. When he receives a high signal, a depositor expects the return of the bank’s

loan portfolio to be high and, at the same time, he expects that other depositors have also received

a high signal. This lowers his incentives to withdraw early (i.e., run). Conversely, when a depositor

receives a low signal, he expects a low return for the bank, and hence less cash available to repay

depositors, and also a large number of depositors to run. As a result, he has a higher incentive

to run. This suggests that depositors withdraw at date 1 when the signal is low enough, and wait

until date 2 when the signal is suffi ciently high.

To show this formally, we first examine two regions of extremely bad and extremely good

fundamentals, where each depositor’s action is based on the realization of the fundamentals θ

irrespective of his beliefs about other depositors’behavior. We start with the lower region.

Lower Dominance Region. The lower dominance region of θ corresponds to the range [0, θ) in

which running is a dominant strategy. Upon receiving a signal that suggests θ is in this region, a

depositor is certain that the date 2 expected repayment is lower than the payment from withdrawing
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at date 1, even if no other depositors were to withdraw. Given the presence of bankruptcy costs, the

depositor knows that at date 2 he will receive either qr2 > 1 if the bank is solvent or 0 otherwise.11

Thus, he has an incentive to run whenever the bank is insolvent, i.e., for θ below the threshold

θ (k), which is the solution to

Rθ = (1− k) r2. (2)

Upper Dominance Region. The upper dominance region of θ corresponds to the range [θ, 2]

in which fundamentals are suffi ciently good that waiting to withdraw at date 2 is a dominant

strategy. The higher liquidation value for θ ≥ θ̂, together with the promised date 1 repayment of 1,

guarantees that the bank liquidates only 1 unit of its investment for each withdrawing depositor,

thus preventing strategic complementarity in depositors’decisions. Given that θ̂ > θ, the bank’s

resources are enough to fully repay depositors’promised repayment at date 2. This implies that,

for any θ ≥ θ̂, a depositor waiting until date 2 expects to receive qr2 > 1. It follows that θ = θ̂,

so that the upper dominance region corresponds to the region where there is no impairment in the

liquidation value of the assets, as described above.12

The Intermediate Region. When the signal indicates that θ is in the intermediate range, [θ, θ),

a depositor’s decision to withdraw early depends on the realization of θ as well as on his beliefs

regarding other depositors’actions. To see how, we first calculate a depositor’s utility differential

between withdrawing at date 2 and at date 1. Using n to represent the fraction of depositors who

choose to withdraw early, this differential is given by

v (θ, n) =


qr2 − 1 if 0 ≤ n ≤ n̂ (θ)
0− 1 if n̂ (θ) ≤ n ≤ n

0− L
(1−k)n if n ≤ n ≤ 1

, (3)

where n̂ (θ) solves

Rθ

(
1− n̂ (1− k)

L

)
− (1− n̂) (1− k) r2 = 0, (4)

while n solves

L = n (1− k) .

11The condition qr2 > 1 is required for investors to deposit and for intermediation to be feasible. If qr2 < 1,
depositors would never find it optimal to wait until date 2 and would strictly prefer to withdraw early, at date 1.
Anticipating this, all depositors would prefer to pursue whatever alternative investment is available to them yielding
1 rather than deposit at the bank. Hence, a minimum requirement for intermediation to be feasible is that the bank
chooses a high enough level of monitoring so that, given the equilibrium r2, qr2 > 1. This can readily be achieved
for c suffi ciently low and/or R suffi ciently high.

12As θ̂ ≤ 1, the discontinuity in the distribution of θ due to the parameter α at θ = 1 is included in the upper
dominance region and thus does not affect the characterization of the panic threshold θ∗ below.
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The threshold n̂ (θ) represents the proportion of depositors running at which a bank is no longer able

to repay r2 to those waiting until date 2, while n captures the number of withdrawing depositors

at which a bank liquidates the entire portfolio at date 1. As illustrated in Figure 2, when 1−k ≤ L

the function v (θ, n) is constant in n and is equal to qr2− 1 > 0 if θ ≥ θ and to −1 if θ < θ. Hence,

in this case v (θ, n) is either positive or negative depending on whether θ is above or below θ. This

implies that a depositor’s incentive to run is independent of what others do or, in other words, that

runs are only triggered by the fear that fundamentals are low.

Insert Figure 2

Figure 3 illustrates the case when 1 − k > L and shows that the function v (θ, n) is constant

and positive for 0 ≤ n ≤ n̂ (θ), while it is always below zero in the range n̂ (θ) ≤ n ≤ n.

Insert Figure 3

Since 1 − k > L and each depositor is promised 1 unit at date 1, the bank has to liquidate more

units of the project than the number of withdrawing depositors, thus being forced to liquidate all

its assets prematurely if many depositors demand their funds at date 1. This introduces strategic

complementarities in depositors’withdrawal decisions, as is typical in models of runs (e.g., Goldstein

and Pauzner, 2005): the expected payoff of depositors waiting until date 2 is decreasing in the

proportion n of depositors withdrawing at date 1, so that their incentive to run increases with n.

Hence, a depositor’s withdrawal decision depends on other depositors’behavior and runs are driven

by fears of large withdrawals in the form of panics.

Throughout, we focus our results on the limiting case where ε → 0, so that the noise in

depositors’information becomes vanishingly small. This implies that all depositors behave alike:

they all either withdraw at date 1, or wait until date 2. The following proposition characterizes

depositors’withdrawal decisions.

Proposition 1 The model has a unique equilibrium for depositors’ withdrawal decisions, where

depositors only withdraw below a certain threshold of fundamentals, as follows:

a) When 1− k ≤ L, only fundamental runs occur for θ below the threshold θ(k), where

θ(k) =
(1− k) r2

R
, (5)

with θ(k) decreasing in k: ∂θ(k)
∂k < 0.
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b) When 1− k > L, panic runs also occur for θ below the threshold θ∗(q, k, L, r2), where

θ∗(q, k, L, r2) = θ
qr2 − π1

qr2 − π1
(1−k)
L

, (6)

and π1 =
∫ n

0 dn+
∫ 1
n

L
(1−k)ndn. The threshold θ

∗ (q, k, L, r2) ∈ (θ (k) , 1) decreases with q, L, and k:
∂θ∗(q,k,L,r2)

∂q < 0, ∂θ
∗(q,k,L,r2)
∂L < 0, and ∂θ∗(q,k,L,r2)

∂k < 0.

The proposition shows the importance of bank capital for run risk. When a bank is well

capitalized (i.e., when 1 − k ≤ L), runs are driven only by poor fundamentals, and the critical

threshold θ is decreasing in the amount of capital k. In contrast, when a bank has little capital

(i.e., when 1 − k > L), it is exposed to runs over a larger range of fundamentals (i.e., for θ < θ∗

with θ∗ > θ) due to the presence of strategic complementarities. The panic threshold θ∗ decreases

with the monitoring effort q, the level of capital k, and the liquidation value L. A higher q increases

depositors’expected payoff from waiting until date 2, while a higher k or a higher L reduces the

bank’s liquidation needs, thus mitigating strategic complementaries. Thus, banks with little capital

face higher run risk, and we assume that at the limit θ∗ → θ as k → 0.13

The role of capital highlighted in Proposition 1 is, to our knowledge, novel, and raises the

question of which type of run may be more relevant in practice. As discussed in the survey by

Goldstein (2012), there is a strong link between crises and fundamentals, with coordination failures

amplifying depositors’response to fundamentals. Our model links this discussion to the level of

bank capital. In normal times, banks tend to be well capitalized on average, and thus we would

expect fundamental crises to be the most relevant cases. By contrast, in a downturn banks tend

to have more stretched levels of capital, and thus crises may also arise due to coordination failures

among depositors. As we show below, however, for the most part this distinction does not matter

much for understanding the effects of a loan guarantee on financial stability.

5.2 Bank’s date 0 decisions

Having characterized depositors’withdrawal decisions, we now solve for banks’underwriting stan-

dards q and the repayment r2. We use θR to denote the relevant run threshold, i.e., θR = θ when

1− k ≤ L and θR = θ∗ when 1− k > L.

Each bank chooses q and r2 anticipating depositors’withdrawal decisions at date 1, thus solving

13Letting k → 0 in the expression for θ∗ in (6), it can be seen that θ∗ approaches its maximum, i.e., θ∗ → θ as L
decreases, as this leads to an increase in the strategic complementarity among depositors’withdrawal decisions.
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the following problem:

max
q,r2

Π = α

∫ θR

0
qmax

{
Rθ

(
1− 1− k

L

)
, 0

}
dθ + α

∫ 1

θR
q [Rθ − (1− k) r2] dθ

+ (1− α)

∫ 2

1
q [R− (1− k) r2] dθ − cq2

2
(7)

subject to

α

∫ θR

0
min

{
L

1− k , 1
}
dθ︸ ︷︷ ︸

utility obtained in a run

+ α

∫ 1

θR
qr2dθ + (1− α)

∫ 2

1
qr2dθ︸ ︷︷ ︸

utility obtained if no runs occur

≥ 1︸︷︷︸
outside option

(8)

and

Π ≥ k. (9)

The first three terms in (7) capture the three instances when the bank accrues positive profits

at date 2, while the last term captures the monitoring cost. When a run occurs, a bank with

1 − k ≤ L does not liquidate its entire portfolio at date 1 and thus obtains the return Rθ on the

1− 1−k
L remaining units of assets at date 2 with probability q. When no run occurs, a bank makes

positive profits at date 2 as given by the project return (Rθ for θ ∈ (θR, 1) and R for θ ∈ [1, 2])

minus the repayment (1− k) r2 to depositors.

The condition in (8) represents depositors’participation constraint and requires that the ex-

pected promised repayment from depositing be no lower than depositors’ outside option. The

expected repayment is given by the minimum between the pro-rata share L
1−k and the promised

repayment 1 if there is a run (i.e., when θ ≤ θR) and qr2 if there is no run (i.e., θ > θR). Finally,

the inequality in (9) is simply a non-negativity constraint on bank expected profits. We have the

following result.

Proposition 2 The equilibrium is as follows:

a) When 1− k ≤ L, each bank chooses q as a solution to

α

∫ θ

0
Rθ

(
1− (1− k)

L

)
dθ + α

∫ 1

θ
[Rθ − (1− k) r2] dθ + (1− α)

∫ 2

1
[R− (1− k) r2] dθ − cq = 0,

(10)

where r2 > 1 solves (8) holding with equality;

b) When 1− k > L, each bank chooses q∗ as a solution to

α

∫ 1

θ∗
[Rθ − (1− k) r2] dθ+(1− α)

∫ 2

1
[R− (1− k) r2] dθ−α∂θ

∗

∂q
q [Rθ∗ − (1− k) r2]−cq = 0, (11)
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where r2 > 1 solves

−α∂θ
∗

∂r2
[Rθ∗ − (1− k) r2]− α

∫ 1

θ∗
(1− k) dθ − (1− α)

∫ 2

1
(1− k) dθ = 0 (12)

when µ = 0, and is the lowest r2 solving (8) holding with equality when µ > 0, where µ is the

Lagrange multiplier on depositors’participation constraint as defined in Appendix A.

In choosing q, a bank trades off the marginal cost cq of an increase in q with its marginal benefit

as captured by the first three terms in either (10) or (11). A higher q increases the expected profit

when there is no run for θ > θR for any k and also the profits when 1− k ≤ L in the event of a run

for θ < θ in (10). In addition, when 1 − k > L, a higher q reduces depositors the probability of a

depositor run as given by ∂θ∗

∂q < 0 in (11).

Proposition 2 shows that the determination of r2 also depends on the level of capital of the

bank. Banks with 1 − k ≤ L choose the lowest possible repayment r2 consistent with depositors

being willing to provide funds to the bank. By contrast, banks with 1− k > L also account for the

potentially beneficial effect that a higher r2 has on the run threshold θ∗ since θ∗ is decreasing in

r2, at least for some values of r2. As a result, a bank may find it optimal to choose a repayment r2

which leaves depositors’participation constraint (8) slack.

6 Public loan guarantee schemes

So far, we have characterized the equilibrium —depositors’withdrawal decisions and bank under-

writing choices — for a given α, under the assumption that the project has a positive NPV and

banks are willing to lend. Now we consider the case of a negative shock through an increase in α,

which we interpret as a “crisis”episode leading to a worsening of the distribution of fundamentals

θ and consequently to a reduction of the return banks obtain. It follows that for a large enough

shock (i.e., a large enough increase in α), banks may no longer find it optimal to grant loans, at

least not without having to raise the interest rate. This calls for support measures such as loan

guarantees that offer credit protection against low realization of the fundamentals, thus effectively

providing banks with a subsidy tied to their lending activities.

In this section, we study how the introduction of loan guarantees affect bank lending through

their effects on bank underwriting standards and investors’behavior. To this end, we consider that

the guarantee is introduced after the shock, as captured by an increase in α, say from α0 to α1,

which occurs unexpectedly after the bank has secured funding, but before the fundamental of the

economy θ is realized. In this respect, we consider a situation such as the Covid pandemic, where
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loan guarantees were extended in the face of an unexpected crisis that is still unfolding. Later,

in Section 8.1, we discuss the case when the introduction of the guarantees may also affect bank

funding costs. Similarly, since borrowers have unit demand for loans, we assume that there is no

pass-through of the guarantees to the loan rate.

We consider a loan guarantee, denoted as a first-loss guarantee, where losses are first attributed

to the government up to a certain limit, and only then to the credit intermediary.14 In other words,

the government guarantees any loss occurring at date 2 up to an amount Rx, with any remaining

losses being borne by the bank. Formally, the government will transfer an amount Rmin {x, 1− θ}

to the bank when the borrower is unable to repay the promised amount R, with

x <
1− k
R

. (13)

This assumption ensures that the government transfer alone is not suffi cient to fully shield depositors

from losses, thus preserving depositors’incentives to run. Thus, as illustrated in Figure 4, the bank

now obtains the full repayment R for θ ∈ [1−x, 1] and a greater payoffR(θ+x) < R for θ ∈ [0, 1−x)

where the losses are greater than the guarantee provided.

Insert Figure 4

Within this scheme, we consider two cases concerning the treatment of the loan guarantee in

case the bank is insolvent at date 2. In the first case, denoted as “full bankruptcy costs,” the

amount provided by the government is dissipated in bankruptcy in the same way as the return

of any other asset. In the second case, denoted as “bankruptcy protected,” the transfer Rx from

the government to a bank is instead protected from bankruptcy costs and can thus be used to

repay investors. The first case captures the idea that the bankruptcy costs primarily originate

from ineffi ciencies in bankruptcy procedures due to hold-up problems among creditors or ineffi cient

judicial systems and, as a result, resources are lost if the bank defaults at date 2. The second case

would be consistent with a setting where bankruptcy costs primarily stem from illiquidity associated

with selling assets. The guarantee paid by the government would likely be in cash or other such

liquid assets and less subject to dissipation. Importantly, assumption (13) implies that the bank

can only profit from the guarantee at date 2 in states of the world when its monitoring decisions

have paid off (i.e., with probability q). For both of these cases, we assume that the interest rate on

14While the specific terms may differ across countries, PGSs take essentially one of two forms: first-loss or loss-
sharing (see, for example, European Commission, 2020, for the two schemes used in Europe during the pandemic).
In the latter, losses are sustained proportionally by the credit institutions and the state in some pre-determined
proportions. We show in Section 6.3 that the main insights of the analysis carry over to the loss-sharing scheme.
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the loan, R, remains unchanged, implying that there is no pass through of the guarantee Rx onto

loan rates. This is consistent with the assumption of unit demand for loans by borrowers.

6.1 First-loss guarantee scheme with full bankruptcy costs

As in the baseline case, we start by characterizing depositors’withdrawal decisions and then move

on to the choice of q by banks. We use the subscript x to indicate the case of the first-loss guarantee

of size x with full bankruptcy costs.

Proposition 3 With a first-loss guarantee x and full bankruptcy costs, runs occur for θ < θRx < θR

as given by

θRx = θR − x, (14)

where θRx = θx and θ
R = θ for 1− k ≤ L, while θRx = θ∗x and θ

R = θ∗ for 1− k > L. The threshold

θRx decreases with x:
∂θRx
∂x = −1 < 0.

The introduction of loan guarantees reduces the run thresholds for any given level of bank

capital. A higher x increases the range in which the bank is able to make the promised repayment

to depositors at date 2, thus reducing their incentives to withdraw prematurely. The threshold θRx

depends linearly on the amount x because this accrues to depositors only if the bank’s monitoring

is successful and the bank is solvent.

Anticipating depositors’withdrawal behavior, each bank solves the following optimization prob-

lem:

max
q
α

∫ θRx

0
qmax

{
R (θ + x)

(
1− (1− k)

L

)
, 0

}
dθ + α

∫ 1−x

θRx

q [R (θ + x)− (1− k) r2] dθ (15)

+ α

∫ 1

1−x
q [R− (1− k) r2] dθ + (1− α)

∫ 2

1
q [R− (1− k) r2] dθ − cq2

2
,

where r2 is characterized in Proposition 2 since the guarantee scheme is assumed to be unantici-

pated, and θRx denotes the relevant run threshold, i.e., θ
R
x = θx when 1− k ≤ L and θRx = θ∗x when

1−k > L. The terms in (15) are similar to those in (7) in the baseline model, with two main differ-

ences. First, as indicated in the first two terms, the bank now obtains a per-unit return R (θ + x)

at date 2 instead of Rθ whenever the loan is not fully repaid. Second, as shown in the third term,

the bank is able to obtain the full repayment R in the larger range of values of θ ∈ [1− x, 2] rather

than for θ ∈ [1, 2]. Note that in (15), for ease of notation, we continue to express bank profits as

a function of a generic α, but recognizing that we have in mind a case where a negative shock has

occurred so that this weight has increased.
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Each bank chooses the underwriting effort q
x
as a solution to

α

∫ θx

0
R (θ + x)

(
1− (1− k)

L

)
dθ + α

∫ 1−x

θx

[R (θ + x)− (1− k) r2] dθ (16)

+ α

∫ 1

1−x
[R− (1− k) r2] dθ + (1− α)

∫ 2

1
[R− (1− k) r2] dθ − cq = 0

when 1− k ≤ L, and q∗x when 1− k > L as a solution to

α

∫ 1−x

θ∗x

[R (θ + x)− (1− k) r2] dθ + α

∫ 1

1−x
[R− (1− k) r2] dθ (17)

+ (1− α)

∫ 2

1
[R− (1− k) r2] dθ − α∂θ

∗
x

∂q
q [R (θ∗x + x)− (1− k) r2]− cq = 0.

The interpretation of the various terms in (16) and (17) is the same as for the terms in (10) and

(11).

In the following proposition, we characterize the effect that the guarantees have on banks’

underwriting effort decisions. We use qRx to denote either qx or q
∗
x, depending on the level of bank

capital.

Proposition 4 For any given level of k, the introduction of a first-loss loan guarantee x with full

bankruptcy costs increases bank underwriting effort: dqRx
dx > 0.

This proposition highlights that the introduction of the loan guarantee induces banks to reduce

the riskiness of their portfolios through improved underwriting incentives for all banks, irrespective

of how much capital they have. The mechanism resembles a "charter value" (e.g., Keeley, 1990)

in that the bank has more to lose when it fails. In fact, the loan guarantee increases the bank’s

expected profits both through an increase in the probability of survival until date 2 (i.e., a reduction

of the threshold θRx ) and an increased per-unit return in case of survival. Given this, the bank has

stronger incentives to remain active until the final date, which can be achieved through a higher

underwriting effort.

It is worthwhile noting that the unambiguously positive effect of the loan guarantee on bank

underwriting effort obtains for x < 1−k
R . With full bankruptcy costs, this condition, which ensures

that the guarantee is insuffi cient to fully cover the promised repayment to depositors, implies that

the bank benefits from the guarantee only when its project succeeds. If the guarantee was such

that x ≥ 1−k
R , depositors would no longer impose any discipline on the bank through the threat of

a run and the bank would receive a portion of the loan guarantee even when its project fails, with

probability 1− q. At the margin, this payment to the bank would reduce its monitoring incentives.
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The results in this section help provide guidance on policy initiatives supporting access to

credit through loan guarantees, as discussed in Section 2. To the extent that many of these policy

interventions entail partial guarantees, Propositions 3 and 4 suggest that the concerns regarding

possible moral hazard may be overstated, and provide a channel for financial stability to actually

improve as a result. Our results also highlight the importance of the design of any such policy

initiatives, which should ensure that any benefit a lender receives directly from the guarantee be

primarily obtained when it is suffi ciently diligent in monitoring its lending activities and properly

underwriting loans, as is the case studied here for suffi ciently small guarantees.

6.2 Bankruptcy-protected first-loss guarantee scheme

In this section, we consider the possibility that the government’s transfer x is sheltered from other

frictions which lead to losses that result from bankruptcy. Specifically, we assume that, in case

of default by the bank, depositors receive these amounts even if any revenues stemming from the

bank’s loans are lost in bankruptcy. This would be consistent with a setting where bankruptcy

costs primarily stem from illiquidity associated with selling assets, be they loans or otherwise. The

guarantee paid by the government would likely be in cash or other such liquid assets and less

subject to dissipation. As before we consider the case where x < 1−k
R . The following proposition

characterizes depositors’withdrawal decisions.

Proposition 5 With a bankruptcy-protected guarantee x, the run risk is as follows:

a) When 1− k ≤ L, runs occur for θ < θPx = θx < θ as given by (14);

b) When 1− k > L, runs occur for θ < θ∗Px , with θ
∗P
x < θ∗x < θ∗ as given by the solution to

π1 =

∫ n̂x(θ)

0
qr2dn+

∫ n

n̂x(θ)
q
Rx
(

1− n (1−k)
L

)
(1− n) (1− k)

dn+

∫ n

0
(1− q)

Rx
(

1− n (1−k)
L

)
(1− n) (1− k)

dn, (18)

where π1 is as in Proposition 1. The run threshold θ∗Px decreases with q, k, and x:
∂θ∗Px
∂q < 0,

∂θ∗Px
∂k < 0, and ∂θ∗Px

∂x < −1.

As for the case with full bankruptcy costs, the introduction of the guarantee induces a reduction

of the run probability. When 1 − k ≤ L, the run threshold is the same as for the case of full

bankruptcy costs because what depositors obtain when the bank is insolvent, Rx
1 k , is always lower

than what they obtain when withdrawing. By contrast, when 1− k > L, the loan guarantee is now

more effective in reducing depositors’incentives to run relative to the case of full bankruptcy costs,

so that θ∗Px < θ∗x. In the presence of strategic complementarities, depositors compare the expected
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payoff at date 1 with that from waiting until date 2. Both payoffs depend on other depositors’

actions. Thus, depositors take into account the possibility that, depending on the size of n, they

may obtain a pro-rata share both at date 1 or date 2, and that the guarantee x increases the payoff

they obtain at date 2, as evident in the last two terms on the RHS in (18). This reinforces their

incentives to wait until date 2.

As in the baseline case, the run threshold θ∗Px is decreasing in both q and k, as well as in x.

Given that the transfer is not lost in bankruptcy, when the bank is insolvent depositors expect

to receive a pro-rata share of the bank’s available resources
Rx
(

1−n (1−k)
L

)
(1−n)(1−k) , which is a function of

the fraction n of withdrawing depositors. Importantly, the sensitivity of the run threshold θ∗Px to

the transfer x is now higher relative to the case with full bankruptcy costs and it depends on q,

i.e., ∂θ
∗P
x
∂x < ∂θ∗x

∂x = −1. The intuition behind the greater sensitivity lies in the extra effect of the

guarantee in terms of higher payoffs at date 2 whenever the bank is unable to repay the promised

amount.

The bank’s maximization problem for the choice of q is similar to the one characterized in (15),

with the only difference being that the relevant run threshold is either θPx or θ
∗P
x instead of θRx .

Each bank chooses underwriting effort qP
x

= q
x
as the solution to (16) when 1− k ≤ L, and q∗Px as

a solution to

α
∫ 1−x
θ∗Px

[R (θ + x)− (1− k) r2] dθ + α
∫ 1

1−x [R− (1− k) r2] dθ + (1− α)
∫ 2

1 [R− (1− k) r2] dθ

−α∂θ
∗P
x
∂q q

[
R
(
θ∗Px + x

)
− (1− k) r2

]
− cq = 0

(19)

when 1− k > L.

Proposition 6 The impact of a bankruptcy-remote first-loss guarantee x on bank monitoring effort

is as follows:

a) When 1− k ≤ L, the introduction of the loan guarantee leads to the same positive impact on

qP
x
as in Proposition 4, i.e.,

dqP
x

dx > 0;

b) When 1− k > L, there exists a value of k denoted as k̂Px < 1− L such that introducing the

loan guarantee reduces bank effort for k < k̂Px , but increases effort as k → 1 − L: dq∗Px
dx < 0 for

k < k̂Px and
dq∗Px
dx > 0 for k → 1− L.

The proposition shows that the introduction of the loan guarantee increases bank monitoring

effort for banks with a suffi ciently high level of capital, while it decreases it for banks with very

little capital when they are subject to significant run risk. As in the case with full bankruptcy
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costs, the bank obtains nothing when its monitoring is unsuccessful (i.e., with probability 1 − q)

since x is assumed to be relatively small, as defined in (13). However, differently from before, the

transfer x accrues to depositors whenever the bank is insolvent. When 1−k ≤ L, the more favorable

treatment of the guarantee under bankruptcy does not affect depositors’incentives so that, in turn,

bank monitoring responds in the same way as before. By contrast, when 1 − k > L, the fact that

depositors receive Rx with probability 1− q introduces a disincentive to monitor as a result of two

effects: first, Rx reduces the sensitivity of the run threshold θ∗Px to changes in q and, second, by

reducing θ∗Px , it reduces the losses associated with an increase in the probability of a run due to low

monitoring effort by the bank. These two effects combined lead highly levered banks (i.e., those

with k < k̂Px < 1 − L) to exert less effort q. In other words, the potential negative impact of the

loan guarantee on bank monitoring derives purely from its effect on depositor behavior and run

risk, and in particular from the reduced sensitivity of the run threshold θ∗Px to the bank’s choice of

q. For suffi ciently poorly capitalized banks (i.e., k < k̂Px ), these negative effects dominate.

6.3 Guarantee scheme with loss-sharing

In this section we analyze a second type of guarantee, which has also been used during the Covid

pandemic and which we denote as "loss-sharing." We first show that the results obtained in Section

6 in the case of first-loss loan guarantees are qualitatively the same. We then compare the two

schemes in terms of their effectiveness.

Suppose that the government commits to cover a fraction y ∈ (0, 1) of bank losses R(1− θ), so

that the bank’s per unit loan return is equal to max {R,Rθ +R (1− θ) y}. We have the following

result, which encompasses both the case of full bankruptcy costs and the one where transfers are

bankruptcy-protected.

Proposition 7 The introduction of a loss-sharing guarantee y leads to the following:

a) In the case of full bankruptcy costs:

1. Runs occur for θ < θRy ≡
{
θy, θ

∗
y

}
, where

θRy =
θR − y
1− y (20)

and θR = θ when 1− k ≤ L and θR = θ∗ when 1− k > L as characterized in Proposition 1.

2. For any level of k, the bank’s underwriting effort qRy increases in the guaranteed amount:
dqRy
dy > 0.
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b) In the case where the government’s transfers are protected from bankruptcy:

1. Runs occur for θ < θPy = θy when 1−k ≤ L and for θ < θ∗Py when 1−k > L, where θ∗Py > θPy

solves

π1 =

∫ n̂y(θ)

0
qr2dn+

∫ n

n̂y(θ)
q
R (1− θ) y

(
1− n (1−k)

L

)
(1− n) (1− k)

dn+

∫ n

0
(1− q)

Ry
(

1− n (1−k)
L

)
(1− n) (1− k)

dn,

2. Bank effort q
y
increases with the introduction of the guarantees when 1 − k ≤ L:

dq
y

dy > 0.

Moreover, there exists a value k̂Py ∈ (0, 1− L) such that q∗y decreases with the introduction of

guarantees for any k < k̂Py :
dq∗y
dy < 0 for k < k̂Py .

The scheme where the guarantee requires banks to share any losses on a proportional basis

delivers the same qualitative results in terms of financial fragility and bank underwriting effort as

the first-loss scheme: for any level of bank capital, the guarantee reduces the run threshold relative

to the case with no guarantees. Also, as before, the effect of the loan guarantee on bank monitoring

incentives depends on the treatment of the guarantee in bankruptcy and the level of capital, in that

bank monitoring increases except for very poorly capitalized banks (i.e., with k < k̂Py ) if they are

exposed to significant run risk when the guarantee is protected from bankruptcy.

While the two guarantee schemes - first-loss or loss-sharing - deliver qualitatively similar results,

a natural question that arises is whether one of them may be more effective or cost-effi cient. To

see this, we compare the two schemes (GS) under the maintained assumption that the guaranteed

amount is lost in bankruptcy and, for tractability, we restrict attention to well-capitalized banks

with 1− k ≤ L. We maintain the subscript x when referring to the first-loss guarantee (GSx) and

the subscript y to denote the loss-sharing scheme (GSy).

To compare the two schemes, we consider the case where the sizes x and y of the guarantees are

set, all things equal, to lead to the same run threshold: θx = θy. Equating these two, we specify

y as the level of y for which the two guarantee schemes implement the same probability of a run.

Hence, y solves
θ − y
1− y = θ − x,

and is equal to

y =
x

1−max {θ − x, 0} ≥ x,

since θ − x ≡ θx < 1.
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For a given size of the transfer x, the guarantee scheme GSx entails a disbursement for the

government equal to

GDx = α

∫ θ−x

0
Rx

(
1− 1− k

L

)
dθ + α

∫ 1−x

θ−x
Rxdθ + α

∫ 1

1−x
R (1− θ) dθ (21)

= α

[
Rx− Rx2

2
−Rx (θ − x)

1− k
L

]
,

while GSy entails a disbursement equal to

GDy = α

∫ θ−x

0
R (1− θ) y

(
1− 1− k

L

)
dθ + α

∫ 1

θ−x
R (1− θ) y (22)

= α

[
Ry

2
−Ry (θ − x)

1− k
L

+
Ry

2

1− k
L

(θ − x)2

]
Comparing GDx and GDy when y = y, we have the following result.

Proposition 8 For any x > 0, when both schemes are designed to achieve the same run threshold,

the first-loss guarantee scheme entails a larger disbursement for the government than the loss-

sharing scheme, but it induces the bank to choose a higher q.

The proposition shows that, while the first-loss guarantee scheme provides greater incentives to

the bank through improved bank underwriting standards, it achieves this at a higher cost. Hence,

neither type of scheme unambiguously dominates the other, suggesting that fine tuning the design

of the guarantee scheme may not be as important as just getting one in place in the event of a

crisis.

7 Ineffi cient liquidation and zombie lending

So far, we have characterized the effect of loan guarantees on bank risk-taking in terms of monitoring

effort. In this section, we analyze another form of risk-taking. Specifically, we focus on banks’

incentives to engage in “evergreening,” or in other words ineffi cient loan continuation, and how

these are affected by loan guarantees. To do so, we modify the model slightly and assume that at

date 1 a bank can choose whether to liquidate its loan portfolio or continue until the final date.

Such choice is made after depositors’withdrawal decisions and thus does not interfere with how

depositors evaluate their private signals.

To isolate banks’evergreening incentives, we start by analyzing a bank’s liquidation decision at

date 1 in a setting where runs at t = 1 are not possible and there are no loan guarantees. In this

case, each bank compares the expected return of the loan at date 2 with its liquidation value at
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date 1, net of depositors’repayments, and it chooses to liquidate if θ falls below the threshold θBL

as given by the solution to

L− (1− k)r2 = q (Rθ − (1− k)r2) ,

which is equivalent to

θBL =
L− (1− q)(1− k)r2

qR
. (23)

A bank’s liquidation decision may not be socially optimal. To see why, we compare it with that

of a social planner who finds it optimal to liquidate the portfolio when θ falls below the threshold

θSPL as given by the solution to

L = qθR,

and is thus equal to

θSPL =
L

qR
. (24)

We have the following result.

Lemma 1 In an economy without runs, banks liquidate too little relative to what is socially optimal:

θBL < θSPL . The difference θSPL − θBL measures the extent of evergreening and is decreasing in k:
∂(θSPL −θBL )

∂k < 0.

We now go back to the case where depositors can withdraw at t = 1. This implies that loans

can be liquidated at date 1 for two reasons: either because a run occurs, or because a bank prefers

to liquidate its portfolio prematurely even if no run occurs. To see when either case is relevant, we

compare banks’liquidation threshold θBL with the run threshold θR = {θ, θ∗} as characterized in

Section 5.

Lemma 2 The comparison between θBL and θR depends on the level of bank capital k. Let kL =

1− L
r2
> 1− L. Then, θBL ≤ θR for k ≤ kL and θBL > θR otherwise.

When a bank has little capital and is exposed to panic runs, it never finds it optimal to liquidate

its portfolio at date 1 when a run does not occur. In other words, given θ∗ > θBL , banks’liquidation

decisions are not relevant for suffi ciently poorly capitalized banks as the fragility stemming from

depositors’run decisions leads to more liquidation than what a bank would prefer.

The case for better capitalized banks, which are only exposed to fundamental runs, is different.

As shown in Section 5, fundamental runs induce the bank to partially liquidate its investment to

meet depositors’withdrawals. Lemma 2 shows that banks with k > kL, and thus θBL > θ, liquidate
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their portfolios for θ ∈
[
θ, θBL

]
, even if no run has occurred. By contrast, those with k < kL

experience a run for any θ < θ, with θBL < θ. It follows that the entire investment is liquidated for

θ ∈ [0, θBL ], while only partial liquidation takes place as a consequence of a run for θ ∈ [θBL , θ].

We can now analyze the extent to which evergreening occurs when runs are also possible. To this

end, we compare the thresholds θBL and θ
R = {θ, θ∗} of banks’liquidation decisions and depositors’

run behavior, respectively, with the liquidation threshold of the planner as given by θSPL in (24).

We have the following result.

Lemma 3 In an economy with runs, θSPL ≥ max
{
θBL , θ

}
for 1 − k ≤ L and θ∗ > θSPL > θBL for

1− k > L.

The lemma shows that the early liquidation of the bank’s project in the baseline economy is

always ineffi cient. Highly capitalized banks with 1−k < L don’t liquidate enough, thus carrying over

until the final date projects that would be optimal to terminate at t = 1. The extent to which they

engage in evergreening is captured by the difference θSPL −max
{
θBL , θ

}
. When θ > θBL , fundamental

runs force the liquidation of banks’projects when θ < θ, while in the range (θ, θSPL ) banks choose

not to liquidate ineffi cient projects and evergreening occurs. When θ < θBL , evergreening occurs,

instead, in the range [θBL , θ
SP
L ). By contrast, for low capital banks with 1− k > L, there is always

excessive liquidation resulting from panic runs, i.e., θ∗ > θSPL . Only when 1 − k = L is a bank’s

liquidation decision effi cient. The result is illustrated in Figure 5.

Insert Figure 5

We can now analyze the effect of the introduction of a first-loss guarantee x with full bankruptcy

costs on the incidence of evergreening. We first characterize the bank liquidation threshold θBLx as

given by the solution to

L− (1− k)r2 = q (R(θ + x)− (1− k)r2) ,

and thus

θBLx =
L− (1− q)(1− k)r2

qR
− x = θBL − x.

Comparing θBLx with the run thresholds θ
R
x = {θx, θ∗x} in the presence of guarantees, as given in

(14), it is easy to see that the same result as in Lemma 2 applies, i.e., θRx > θBLx for banks with

k < kL.

We now compare early liquidation as described by max
{
θBLx, θ

R
x

}
to the planner’s threshold

θSPL . In doing this, for the moment, we take bank underwriting effort q as fixed and not affected

by the guarantee x.
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Proposition 9 The introduction of a first-loss loan guarantee with full bankruptcy costs has the

following effect on evergreening incentives:

a) When 1 − k ≤ L, the difference θSPL − max
{
θBLx, θx

}
is larger than in the case without

guarantees;

b) When 1− k > L, there exists a level of capital k̃L ∈ [0, 1−L) such that θ∗x ≥ θSPL for k ≤ k̃L
and θ∗x < θSPL for k > k̃L.

The proposition, which is illustrated in Figure 5, shows that, holding q fixed, the presence of the

loan guarantee worsens the evergreening problem for any level of bank capital. For highly capitalized

banks, for which 1 − k ≤ L, the guarantee increases the range of values of the fundamentals θ

for which there is ineffi cient loan continuation. Banks exposed to panic runs, those with capital

k̃L < k < 1− L, will now also evergreen loans as the guarantee reduces the panic run threshold to

a value below the threshold for liquidation by the social planner, i.e., θSPL − θ∗x > 0 when k̃L < k.

The equilibrium effect of the loan guarantee on banks’ evergreening incentives is, however,

more complicated and may introduce a trade-off for the planner. This is due to the fact that q

also changes with the introduction of the guarantee, thus affecting the occurrence of evergreening.

Since we are interested in how loan guarantees affect the bank’s overall incentives, to study this we

consider the case where the decision to roll over a loan at date 1 is under the control of the bank

rather than being determined by depositors’incentives to withdraw early. In other words, we focus

on the region where θBLx ≥ θx. In this case, the measure of evergreening is given by θSPL − θBLx and

is equal to

θSPL − θBLx =
1− q
q

(1− k)r2

R
+ x > 0.

While this difference is increasing in x, it is also decreasing in q. Thus, the negative effect asso-

ciated with evergreening is at least partly offset by the positive underwriting incentive effect of

the guarantee. These considerations raise the issue of how the two countervailing forces should be

traded off by a social planner. To address this, we consider below how the introduction of a loan

guarantee affects total output, which is defined as follows:

TOx = α

∫ θBLx

0
Ldθ + α

∫ 1−x

θBLx

qRθdθ + α

∫ 1

1−x
qRθdθ + (1− α)

∫ 2

1
qRθdθ − cq2

2
− 1. (25)

We have the following result.

Proposition 10 For small c, the introduction of a loan guarantee x increases total output: dTOx
dx >

0.
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The proposition establishes that, as long as the bank’s cost associated with its underwriting

effort is not too large, total output increases with a loan guarantee, even though the bank makes

more ineffi cient continuation decisions at date 1. The reason is that the positive underwriting in-

centive dominates the negative evergreening effect. From the perspective of the recent policy debate

surrounding lenders’evergreening incentives, our results here suggest that even if at the margin the

introduction of a loan guarantee may increase the extent of evergreening, overall economic output

has the potential to increase as a result of the guarantee schemes put in place.

8 Extensions

In this section we extend the model in two directions. First, we extend the analysis to allow the

date 2 interest rate on deposits, r2, to change when a loan guarantee is put in place. Second, we

study deposit insurance and compare it with the effects of loan guarantees. In what follows, for

brevity we focus on the case of a first-loss loan guarantee when the transfer x is lost in bankruptcy,

as in Section 6.1.

8.1 Deposit interest rates and loan guarantees

Throughout our analysis, we have assumed that the loan guarantee is introduced as a policy to

stimulate lending in response to an unanticipated negative shock which makes lending riskier and

less attractive for banks. As such, we have assumed that it is put in place after the bank has

obtained funding. While we believe this represents the effect of policy responses to crisis episodes

reasonably well, it is also likely true that downturns of longer duration, or loan guarantee programs

that are longer-lived, may engender changes to deposit rates as banks and depositors recognize

the presence of the guarantees when raising deposits. This case may be reflective of guarantee

programs such as those used in mortgage markets, where government guarantees have long existed

and are a normal part of the tools on which investors rely. Another case in point are loans provided

to small businesses through the Small Business Administration (SBA) program, which guarantees

loans under certain conditions for qualified lenders, and has as objective to stimulate lending.15 It

is useful, therefore, to discuss how allowing the deposit interest rate to adjust in the advent of the

introduction of a loan guarantee may affect our results.

To study this issue, we modify the model slightly to allow the bank to change the date 2 deposit

interest rate, r2, after the loan guarantee is introduced. Specifically, we assume that when deposits

15See www.sba.gov/funding-programs/loans for details on the SBA program, and Brown and Earle (2017) as well
as Bachas, Kim and Yannelis (2020) for studies on the stimulative effects of the SBA program.
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are raised at date 0, the existence of any guarantee is common knowledge. The model is otherwise

unchanged. We can now state the following result.

Proposition 11 For all levels of bank capital k, the introduction of a first-loss loan guarantee x

leads to a decrease in the date 2 deposit rate: ∂r2
∂x < 0.

The proposition shows that banks respond to the introduction of the loan guarantee x by

reducing the deposit interest rate r2. Since this reduction in r2 increases the profit accrued by

the bank when its monitoring effort is successful, this translates into a higher effort q. In other

words, given the complementarity in terms of the effects on bank incentives of the introduction of

a loan guarantee and the pricing of deposit contracts, allowing the long term deposit rate to reflect

the introduction of a loan guarantee further reinforces the improvement in underwriting incentives

established in Section 6.1.

8.2 Deposit insurance

Our analysis has considered so far only guarantees that insure bank loans against default risk

by borrowers. However, bank deposits are typically protected by other guarantees (i.e., deposit

insurance). Such guarantees also contain a stimulative component since, in addition to reducing

the required interest rate that must be paid to depositors (Cordella et al., 2018), they also directly

increase stability by reducing depositors’run risk (see, e.g., Allen et al., 2018). In this section, we

first show that deposit insurance differs substantially from loan guarantees in terms of the impact

on bank monitoring incentives. Second, we confirm that the effect of loan guarantees remains

unchanged in the presence of deposit insurance.

Following Allen et al. (2018), we consider a deposit guarantee scheme that ensures depositors

always to receive a minimum repayment δ > 0. To keep things simple, we assume 0 < δ < L
1−k so

that the deposit insurance is paid only to remaining depositors at date 2 whenever the bank does

not have enough resources to pay them at least δ, thus making it comparable to the analysis with

loan guarantees.16

8.2.1 An economy with only deposit insurance

As in the baseline model, we start by solving depositors’withdrawal decisions.

16The assumption that the guarantee is only paid at date 2 when depositors do not run is without loss of generality.
As shown in Allen et al. (2018), the run threshold decreases in the guaranteed amount δ even when this is paid in
the event of a run.
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Proposition 12 The run risk in the presence of deposit insurance depends on the level of bank

capital, as follows:

a) When 1− k ≤ L, fundamental runs occur for θ < θδ(k) = θ(k), as given in (5).

b) When 1− k > L, panic runs also occur for θ < θ∗δ (q, k, δ) < θ∗(q, k) as given by

θ∗δ (q, k, δ) =
(1− k) r2

R

(qr2 − π1) + δ (1− q)(
qr2 − π1

1−k
L

)
+ δ

(
1−k
L − q

) , (26)

where π1 =
∫ n

0 dn+
∫ 1
n

L
(1−k)ndn. The threshold θ

∗
δ ∈ (θ, 1) decreases with q and δ: ∂θ∗δ (q,k)

∂q < 0 and
∂θ∗δ (q,k)
∂δ < 0.

The run threshold is as in the baseline framework for banks with 1− k ≤ L, but is smaller for

those with 1− k > L. The reason is that the transfer δ increases what depositors expect to receive

at date 2 only for the latter case, thus reducing their incentives to withdraw prematurely in the

presence of panic runs. This contrasts with the result obtained in the presence of loan guarantees,

where the run threshold is reduced also for well capitalized banks.

Given depositors’ withdrawal decisions, we now analyze how deposit insurance affects bank

underwriting standards. Similarly to above, denoting as θRδ ≡ {θδ, θ∗δ} the relevant run threshold,

each bank chooses q to maximize

αq

∫ θRδ

0
max

{
0, Rθ

(
1− 1− k

L

)}
dθ+αq

∫ 1

θRδ

[Rθ − (1− k) r2] dθ+(1− α) q

∫ 2

1
[R− (1− k) r2] dθ−cq

2

2
.

(27)

The interpretation of the terms in the expression for bank profits is as in the baseline framework.

Importantly, and differently from the case of loan guarantees, the presence of deposit insurance does

not directly increase the payoff that the bank obtains at date 2. However, banks benefit indirectly

since it reduces their exposure to runs. We have the following result.

Proposition 13 The introduction of a deposit guarantee scheme has no impact on bank monitoring

effort when 1 − k ≤ L, while it reduces it when 1 − k > L:
dq
δ

dδ = 0 when 1 − k ≤ L and dq∗δ
dδ < 0

when 1− k > L.

As the proposition shows, highly capitalized banks with 1 − k ≤ L are not affected by the

introduction of the deposit insurance since the run threshold θδ does not depend on δ. By contrast,

poorly capitalized banks with 1 − k > L reduce their monitoring effort. For these banks, the

introduction of deposit insurance reduces both depositors’incentives to run and the sensitivity of

the run threshold to changes in the monitoring effort, with the latter effect dominating and leading

to a reduced monitoring effort.
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Overall, the result in Proposition 13 highlights the difference between deposit insurance and loan

guarantees. In line with the idea that insurance mechanisms induce moral hazard considerations,

the former never improves bank underwriting incentives. By contrast, the latter improve bank

monitoring incentives, except for the most poorly capitalized banks when the transfer is protected

from bankruptcy.

8.2.2 An economy with deposit insurance and loan guarantee

We now analyze the introduction of loan guarantees when bank deposits are insured. As before,

we consider that depositors always obtain at least δ when the bank is unable to make the promised

repayment.

We have the following result concerning depositors’withdrawal decisions.

Proposition 14 The run risk in the presence of deposit insurance and first-loss loan guarantee

depends on the level of bank capital as follows:

a) When 1 − k ≤ L, fundamental-driven runs occur for θ < θδx(k) = θx, as characterized in

Section 6.1.

b) When 1− k > L, panic runs also occur for θ < θ∗δx(q, δ) < θ∗x, with

θ∗δx(q, δ) = θ∗δ − x, (28)

where θ∗δ is as in Proposition 12. The threshold θ
∗
δx ∈ (θδx, 1− x) decreases with q, x, and δ:

∂θ∗δ (q,δ)
∂q < 0, ∂θ

∗
δ (q,δ)
∂x < 0 and ∂θ∗δ (q,δ)

∂δ < 0.

We can now study the impact of the loan guarantees on bank monitoring effort q.

Proposition 15 In the presence of deposit insurance, the introduction of a first-loss loan guarantee

with full bankruptcy costs always leads to an increase in bank monitoring effort:
dq
δx
dx > 0 and

dq∗δx
dx > 0.

As shown in the proposition, the presence of deposit insurance does not alter the effect that

the loan guarantees has on bank underwriting incentives, which remains beneficial for all banks

irrespective of their level of capital.

9 Conclusions

In this paper, we present a model in which banks raise demandable deposits and grant long-term

loans. A bank’s expected return depends on the economy’s fundamentals as well as on the bank’s
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underwriting efforts. Our focus is on analyzing how the introduction of loan guarantees affects

bank incentives and financial fragility. We show that, contrary to common wisdom, loan guaran-

tees improve bank monitoring incentives except for the most poorly capitalized banks when the

guaranteed amounts accrue to depositors even in the case when the bank’s monitoring is unsuc-

cessful. We also show, however, that the introduction of loan guarantees worsen banks’incentives

to continue ineffi cient projects.

The issues studied here are germane to the policy debate concerning the use of public guarantee

schemes to support bank lending during a crisis, or to enhance access to credit to particular sectors

of the economy. Our results suggest that the perceived wisdom surrounding guarantee programs,

such as those designed to protect retail depositors, may not translate to other types of guarantee

schemes and, in particular, to loan guarantees. We therefore provide a novel lens through which

loan guarantee schemes may be viewed, and policy initiatives evaluated.

We focus the analysis on the impact of loan guarantees when lenders’liability structures make

them susceptible to runs, as is the case for banks. As discussed in Section 2, however, in some

jurisdictions, such as the US, loan guarantees are also provided to non-bank lenders. We believe

that our results concerning the effect of loan guarantees on a lender’s effort should still be valid

in this context as long as underwriting/monitoring is an important part of what these lenders do.

Additionally, to the extent that nonbank institutions may be susceptible to some degree of rollover

risk, the feedback effect between the lender’s liabilities and their underwriting decisions should

continue to hold as well.

In our setting, banks maximize their expected profits to remunerate their inside capital. This

allows us to study the role of capital for banks, and how that impacts both banks’effort decisions

and depositors’run choices, an issue that for the most part has been absent in the financial fragility

literature (e.g., Diamond and Dybvig, 1983, and subsequent literature). In doing so, however, we

take banks’ capital structures as given. An interesting avenue for future research would be to

endogenize bank capital structure and analyze how this interacts with bank lending standards and

the threat of runs, as well as with loan guarantees. Carletti at al. (2022) move in this direction and

study the feedback effects between banks’capital structure decisions and their choices concerning

lending standards in a framework where depositors’withdrawal decisions are also endogenous.
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11 Appendix A

Proof of Proposition 1: The proof makes use of the technical approach developed in Goldstein

and Pauzner (2005) since, like theirs, our model also exhibits the property of one-sided strategic

complementarity, i.e., a depositor ’s incentive to run does not monotonically increases with the

proportion of depositors running.

We proceed in steps. First, we pin down the threshold θ (k), which corresponds to the upper

bound of the lower dominance region, as characterized in the main text. Second, we characterize

the threshold θ∗ (q, k, L, r2), which summarizes depositors’withdrawal decision in the intermediate

range of fundamentals, i.e., when θ ∈ [θ (k) , θ). Third, we show that for any 1−k ≤ L, the relevant

run threshold is θ (k), while it is θ∗ (q, k, L, r2) > θ (k) for any 1 − k > L. We conclude the proof

with the comparative statics for the two run thresholds with respect to q, L, and k.
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Solving (2) with respect to θ, we obtain the threshold θ(k) as given in (5) in the proposition.

Given the definition of the lower dominance region, when θ < θ(k), depositors always find it

optimal to withdraw irrespective of what others do. Symmetrically, given the definition of the

upper dominance region, depositors find it optimal to wait until date 2 when θ > θ. Given that

θ̂ ≤ 1− 2ε and θ = θ̂, as shown in the characterization of the upper dominance region, the relevant

range of θ from the perspective of depositors choosing whether to withdraw is [0, 1− 2ε). It follows

that the discontinuity in the distribution of θ does not play a role for depositors’decisions.

For θ ∈ [θ(k), θ), a depositor’s withdrawal decision depends on what other depositors do when

1 − k > L. The arguments in the proof of Theorem 1 in Goldstein and Pauzner (2005) establish

that there is a unique equilibrium in which depositors run if and only if the signal they receive is

below a common signal s∗. A depositor who receives the signal s∗ is exactly indifferent between

withdrawing at dates 1 and 2.

To characterize the threshold signal s∗, we start by assuming that all depositors behave accord-

ing to the threshold strategy s′. Then, the fraction of depositors withdrawing at date 1, n (θ, s′), is

equal to the probability of receiving a signal below s′ and can be specified as follows:

n
(
θ, s′

)
=


1 if θ ≤ s′ − ε

s′−θ+ε
2ε if s′ − ε < θ ≤ s′ + ε
0 if θ > s′ + ε

.

Depositors’withdrawal decisions are characterized by the pair {s∗, θ∗}, which corresponds to the

solution to the following system of equations:

Rθ∗
(

1− n (θ∗, s∗) (1− k)

L

)
− (1− n (θ∗, s∗)) (1− k) r2 = 0, (29)

and

∆ (s∗, n (θ, s∗)) = qr2 Pr (θ > θ∗| s∗)− 1 Pr (θ > θn| s∗)−
L

(1− k)n (θ, s∗)
Pr (θ < θn| s∗) = 0, (30)

where θn = s∗+ε−2ε L
1−k represents the level of θ for which the bank liquidates the entire portfolio

at date 1 and, thus, is equal to the solution to

n (θn, s
∗) (1− k) = L.

Condition (29) identifies the level of fundamental, θ∗, at which the bank is at the brink of

insolvency at date 2 when n (θ∗, s∗) > 0 depositors run, for given s∗. Condition (30) is an indiffer-

ence condition for a depositor that receives a signal exactly equal to the threshold signal s∗: the

first term represents his expected utility from withdrawing at date 2, while the second and third
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terms represent the expected utility from withdrawing at date 1. This condition pins down s∗

given θ∗ (s∗) from (29), so that together the two equations characterize the equilibrium withdrawal

decisions {s∗, θ∗}. In other words, the equilibrium threshold signal s∗ corresponds to the signal at

which the expression (30) is equal to zero, i.e., ∆ (s∗, n (θ, s∗)) = 0.

The function ∆ (si, n (θ, s′)) representing a depositor’utility differential for any signal si when

all other depositors behave accordingly to the threshold strategy s′ exhibits the same properties

as the corresponding function in Goldstein and Pauzner (2005); thus, the arguments in their proof

can be applied to show that our model has a unique threshold equilibrium. First, ∆ (si, n (.)) is

continuous in si, negative when s′ < θ(k)− ε and positive when s′ > θ+ ε because of the definition

of the lower and upper dominance regions. To see this, we can rearrange the LHS in (29) as follows:

Rθ − (1− k) r2 − n (θ, s∗)

(
Rθ

(1− k)

L
− (1− k) r2

)
,

so that it is easy to see that the expression in (29) is always negative when θ falls in the lower

dominance region and positive when it is in the upper dominance region. Since Pr (θ > θ∗| s′)

is then 0 and 1 in these two extreme regions of fundamental, this also implies that a depositor’s

expected utility differential between withdrawing at dates 2 and 1 is also negative when s′ < θ (k)−ε

and positive when s′ ≥ θ + ε.

Second, ∆ (si, n (.)) is non-decreasing when both the individual signal si and the threshold

strategy s′ shift upward. Formally, take h > 0, ∆ (si + h, n (θ + h, s′)) is non-decreasing in h and

strictly increasing when there is a positive probability that n < n in the range [s′ − ε, s′ + ε] and

s′ < θ + ε. This is because an increase in h leads to a shift of equal magnitude in s′ and si, which

leaves n (.) unaffected, while it is associated with a better θ. To see this, differentiating (29) with

respect to θ keeping n constant, we obtain

R

(
1− n (θ, s∗) (1− k)

L

)
> 0.

Hence, it follows that, in the presence of an equal positive shift in the individual signal and threshold

signal, Pr (θ > θ∗| s′) strictly increases and so does the expected utility differential.

All these properties imply that there is a unique s∗ satisfying ∆ (s∗, n (θ, s∗)) = 0 and also

that ∆ (si, n (θ, s∗)) < 0 if si < s∗ and ∆ (si, n (θ, s∗)) > 0 if si > s∗. To obtain the expression

for θ∗ (q, k, L, r2) as in the proposition, we perform a change of variable by defining θ∗ (n) =

s∗ + ε (1− 2n). At the limit when ε → 0, θ∗ (n) → s∗ and we denote the run threshold as

θ∗ (q, k, L, r2) , which corresponds to the solution to∫ n̂(θ)

0
qr2dn−

∫ n

0
dn−

∫ 1

n

L

(1− k)n
dn = 0, (31)
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where n̂ (θ∗) solves (4) and n solves

(1− k)n = L.

The expression in (6) is obtained by rearranging the terms, using θ = (1−k)r2
R , and denoting

π1 =

∫ n

0
dn+

∫ 1

n

L

(1− k)n
dn. (32)

Now, we move on to show that the relevant run threshold is θ (k) when 1 − k ≤ L and

θ∗ (q, k, L, r2) when 1 − k > L. Consider first the case in which 1 − k ≤ L. When 1 − k = L,

π1 = 1 and (29) simplifies to

(1− n (θ∗, s∗)) [Rθ − (1− k) r2] ,

which is positive for θ > θ (k) and negative for θ < θ (k) for any n (θ∗, s∗) < 1. Then, from (30),

it follows that running is optimal when θ < θ (k), irrespective of n (.). Hence, the relevant run

threshold is θ (k) when 1 − k = L. Since θ (k) is decreasing in 1 − k, condition (29) becomes less

binding for any n when 1−k falls below L. This implies that θ (k) is still the relevant run threshold

when 1− k < L.

Consider now the case where 1− k > L. Differentiating (29) with respect to θ, we obtain

R

(
1− n (θ, s∗) (1− k)

L

)
− ∂n (θ, s∗)

∂θ

[
Rθ

(1− k)

L
− (1− k) r2

]
> 0,

for any θ > θ (k) when 1 − k > L and ∂n(θ,s∗)
∂θ < 0. It follows that θ∗ (q, k, L, r2) > θ (k) when

1− k > L.

To complete the proof, we compute ∂θ(k)
∂k , as well as

∂θ∗(q,k,L,r2)
∂q , ∂θ

∗(q,k,L,r2)
∂L , and ∂θ∗(q,k,L,r2)

∂k .

Differentiating (5) with respect to k, we obtain ∂θ(k)
∂k = − r2

R < 0. Using (6), we compute the effect

of q, L, and k on θ∗ (q, k, L, r2) as follows:

∂θ∗ (q, k, L, r2)

∂q
=

θ(
qr2 − π1

(1−k)
L

)2

{
r2

(
qr2 − π1

(1− k)

L

)
− r2 (qr2 − π1)

}

= − θr2π1(
qr2 − π1

(1−k)
L

)2

[
(1− k)

L
− 1

]
< 0,

∂θ∗ (q, k, L, r2)

∂L
=

θ(
qr2 − π1

(1−k)
L

)2

{
−∂π1

∂L

(
qr2 − π1

(1− k)

L

)
+ (qr2 − π1)

(1− k)

L

[
∂π1

∂L
− π1

L

]}
< 0,

and

∂θ∗ (q, k, L, r2)

∂k
=

1(
qr2 − π1

(1−k)
L

) {∂θ
∂k

(qr2 − π1)− θ∂π1

∂k
+
θ∗

L

[
∂π1

∂k
(1− k)− π1

]}
< 0,
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with ∂π1
∂L =

∫ 1
n

1
(1−k)ndn > 0, ∂π1

∂k =
∫ 1
n

L
(1−k)2n

dn > 0, and ∂π1
∂L −

π1
L = − 1

L

∫ n
0 dn. Hence, the

proposition follows. �

Proof of Proposition 2: Using backward induction, we first compute the optimal q and then

solve for r2. Concerning the choice of q, (10) and (11) are obtained by differentiating (7) with

respect to q, setting θR = θ when 1− k ≤ L and θR = θ∗ when 1− k > L, respectively.

We now move to the choice of r2. Consider first the case when 1 − k ≤ L when the relevant

run threshold is θ. Since ∂θ
∂r2

> 0 and a higher r2 reduces bank’s profits when no runs occur, it

is optimal for the bank to choose the lowest possible r2, which corresponds to the solution of (8)

holding with equality.

Consider now the case when 1− k > L. In this case, the above argument does not apply since

∂θ∗

∂r2
< 0 may hold. The derivative ∂θ∗

∂r2
is obtaining differentiating (6) with respect to r2 and it is

given by
∂θ∗

∂r2
=

1

R

qr2 − π1

qr2 − π1
(1−k)
L

− r2

R

qπ1

[
1−k
L − 1

](
qr2 − π1

(1−k)
L

)2 ,

whose sign is potentially ambiguous. It is easy to see from (7) that Π is strictly decreasing in r2

when ∂θ∗

∂r2
> 0. Hence, assuming it is consistent with (8) to hold, banks will always be better off

choosing r2 in the range where ∂θ∗

∂r2
< 0 that is, in other words, ∂θ

∗

∂r2
< 0 in equilibrium.

We write the Lagrangian for the bank’s problem as

L = Π|q=q∗ − µ
{

1− α
∫ θ∗

0

L

1− kdθ − α
∫ 1

θ∗
qr2dθ − (1− α)

∫ 2

1
qr2dθ

}
,

where Π is given in (7). The Kuhn-Tucker conditions are

− α∂θ
∗

∂r2
[Rθ∗ − (1− k) r2]− α

∫ 1

θ∗
q∗ (1− k) dθ − (1− α)

∫ 2

1
q∗ (1− k) dθ +

∂Π

∂q

dq∗

dr2
+ αµ

∫ 1

θ∗
q∗dθ

(33)

+ (1− α)µ

∫ 2

1
q∗dθ − αµ

[
∂θ∗

∂r2
+
∂θ∗

∂q

dq∗

dr2

] [
q∗r2 −

L

1− k

]
= 0,

µ

{
1− α

∫ θ∗

0

L

1− kdθ − α
∫ 1

θ∗
qr2dθ − (1− α)

∫ 2

1
qr2dθ

}
= 0,

µ ≥ 0.

The derivative dq∗

dr2
is obtained using the implicit function theorem.

When µ = 0, 1 − α
∫ θ∗

0
L

1−kdθ − α
∫ 1
θ∗ qr2dθ − (1− α)

∫ 2
1 qr2dθ > 0, i.e., (8) is not binding and

r2 solves (12) in the proposition. Since 1 − k > L and q∗ ≤ 1, r2 must be greater than 1 for (8)
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to be satisfied. When µ > 0, bank profit decreases with r2 and therefore the bank will choose the

lowest level of r2 that solves

1− α
∫ θ∗

0

L

1− kdθ − α
∫ 1

θ∗
qr2dθ − (1− α)

∫ 2

1
qr2dθ = 0.

The solution is again greater than 1 in order for (8) to hold. The Lagrange multiplier µ is then

pinned down by (33) and is equal to

µ =
α∂θ

∗

∂r2
[Rθ∗ − (1− k) r2] + α

∫ 1
θ∗ (1− k) dθ + (1− α)

∫ 2
1 (1− k) dθ

α
∫ 1
θ∗ qdθ + (1− α)

∫ 2
1 qdθ − α

[
∂θ∗
∂r2

+ ∂θ∗
∂q

dq
dr2

] [
qr2 − L

1−k

] .

Hence, the proposition follows. �

Proof of Proposition 3: To characterize the run thresholds θx and θ
∗
x, we follow the same steps as

in the proof of Proposition 1. We start characterizing the range of fundamentals in which running

is a dominant strategy. The threshold θx is the solution to

R (θ + x)− (1− k) r2 = 0,

and is equal to

θx =
(1− k) r2

R
− x = θ − x.

For any θ < θx, a depositor expects to receive 0 at date 2 and 1 at date 1 even if no depositors

run, thus, it is always optimal to run in this range. The characterization of the upper dominance

region is as in Section 4: Depositors finds it optimal to wait until date 2 when θ > θ, with θ → 1.

The key difference relative to the proof of Proposition 1 is that now for θ ∈ [1−x, θ), the return

accrued to the bank at date 2 is R rather than Rθ, which matters for the properties of the expected

utility differential in the characterization of the run threshold θ∗x in the case 1− k > L.

Depositors’withdrawal decisions are fully characterized by the pair {s∗x, θ∗x} as given by the

solution to the following system of equations.

Rθ∗x

(
1− n (θ∗x, s

∗
x) (1− k)

L

)
− (1− n (θ∗x, s

∗
x)) (1− k) r2 = 0, (34)

and

∆x (s∗x, n (.)) = qr2 Pr (θ > θ∗x| s∗x)− 1 Pr (θ > θn| s∗x)− L

(1− k)n (θ, s∗x)
Pr (θ < θn| s∗x) = 0, (35)

The meaning of the two equations is the same as in the proof of Proposition 1, with (34) pinning

down the bank failure threshold θ∗x and (35) identifying the threshold signal s
∗
x at which a depositor’s

ECB Working Paper Series No 2782 / February 2023 43



expected utility differential between withdrawing at date 2 and date 1, ∆x (si, n (.)), is exactly zero.

The function ∆x (si, n (.)) satisfies the same properties as the corresponding function in the proof

of Proposition 1. The only difference is that when a depositor receives a signal such that he expects

θ to be in the range [1−x, θ), his expected utility differential is non-decreasing rather than strictly

increasing in the signal si for any n. This results from the fact that in that range, due to the

guarantee, the bank accrues R from the loan. Yet, considering a generic threshold signal s′, the

function is negative when s′ < θ (k) − ε, positive when s′ ≥ θ + ε and strictly increasing in the

threshold signal s′ when there is a positive probability that n < n and s′ < 1 − x − ε. Since

∆x (si, n (.)) is constant in s′ when 1 − x − ε ≤ s′ < θ + ε, strictly positive when s′ ≥ θ + ε and

continuous, it follows that it crosses zero for s′ < 1−x− ε, i.e., s∗x < 1−x− ε so that s∗x is unique.

Following the same steps as in the proof of Proposition 1, considering the limit case ε→ 0, we

can specify depositor’s indifference condition as∫ n̂x(θ)

0
qr2dθ = π1, (36)

where π1 is given in (32) and n̂x (θ) > n̂ (θ) corresponds to the solution to

R (θ + x)

(
1− n̂x (θ)

(1− k)

L

)
− (1− n̂x (θ)) (1− k) r2 = 0.

After a few manipulations, we obtain θ∗x = θ∗ − x. It follows immediately that θ∗x < θ∗ for any

x > 0, and ∂θ∗

∂x = −1 < 0. Condition (14) in the proposition is thus obtained simply combining

together the case when 1− k ≤ L and when 1− k > L.

Using the same argument as in the proof of Proposition 1, we have that θ∗x > θx and θx is the

run threshold when 1 − k ≤ L. It is easy to see that ∂θx
∂x = −1 < 0 and ∂θx

∂k = − r2
R < 0. This

completes the proof. �

Proof of Proposition 4: To compute the effect of x on qRx ≡
{
q
x
, q∗x

}
, we consider separately

the case when 1− k ≤ L and when 1− k > L. We start from the former. Differentiating (16) with

respect to x we obtain

− α∂θx
∂x

[
R (θx + x)− (1− k) r2 −R (θx + x)

(
1− (1− k)

L

)]
(37)

+ α

∫ θx

0
R

(
1− (1− k)

L

)
dθ + α

∫ 1−x

θx

Rdθ

= α

[
R (θx + x)

(1− k)

L
− (1− k) r2

]
+ α

∫ θx

0
R

(
1− (1− k)

L

)
dθ + α

∫ 1−x

θx

Rdθ,
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since ∂θx
∂x = −1. For banks with k such that 1−k = L,

dq
x

dx > 0 since the expression above simplifies

to α
∫ 1−x
θx

Rdθ > 0. The same applies to banks with k = 1 since (37) simplifies to

+α

∫ θx|k=1

0
Rdθ + α

∫ 1−x

θx|k=1
Rdθ > 0.

For values of k ∈ (1− L, 1), the expression in (37) can be rearranged as

+α

{
R

[
x

(1− k)

L
+ 1− x

]
− (1− k) r2

}
. (38)

The expression above is linear in k. Hence, since (37) is linear, positive at k = 1 and k = 1− L, it

follows that it must also be positive for any k ∈ (1− L, 1).

Consider now the case in which 1− k > L. Differentiating (17) with respect to x, we obtain

− α∂θ
∗
x

∂x
q [R (θ∗x + x)− (1− k) r2] + α

∫ 1−x

θ∗x

Rdθ − α ∂
2θ∗x

∂q∂x
q [R (θ∗x + x)− (1− k) r2]

− α∂θ
∗
x

∂q
q
∂θ∗x
∂x

R− α∂θ
∗
x

∂q
qR.

Since ∂θ∗x
∂x = −1 and ∂2θ∗x

∂q∂x = ∂2θ∗x
∂x∂q = 0, the expression above simplifies to

αq [R (θ∗x + x)− (1− k) r2] + α

∫ 1−x

θ∗x

Rdθ > 0,

and the proposition follows. �

Proof of Proposition 5: When 1 − k ≤ L, the relevant run threshold is θPx , which corresponds

to the solution to

R (θ + x)− (1− k) r2 = 0,

since when θ falls below θPx depositors expect to receive

q
Rx

1− k + (1− q) Rx

1− k < 1,

and so prefer to run. Hence, θPx = θx holds.

When 1− k > L, the relevant run threshold is θ∗Px . Following the same steps as in in the proof

of Proposition 3, the threshold θ∗Px is pinned down by a depositor’s indifference condition, which

corresponds to expression (18) in the proposition.

To complete the proof, we need to compute the effect of q, k and x on θ∗Px . We do this by using

the implicit function theorem. Denote as f (x, q, k, θ) = 0 the indifference condition in (18). Thus,

dθ∗Px
dq

= −
∂f(.)
∂q

∂f(.)
∂θ

,
dθ∗Px
dk

= −
∂f(.)
∂k
∂f(.)
∂θ

,
dθ∗Px
dx

= −
∂f(.)
∂x
∂f(.)
∂θ
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The denominator

∂f (.)

∂θ
=
∂n̂x

(
θ∗Px
)

∂θ
q

r2 −
Rx
(

1− n̂x
(
θ∗Px
) (1−k)

L

)
(1− n̂x (θ∗Px )) (1− k)

 > 0,

since n̂x
(
θ∗Px
)

=
R(θ∗Px +x)−(1−k)r2

R(θ∗Px +x)
(1−k)
L
−(1−k)r2

and so
∂n̂x(θ∗Px )

∂θ =
R−Rn̂x(θ∗Px ) (1−k)L

R(θ∗Px +x)
(1−k)
L
−(1−k)r2

=
R
(

1−n̂x(θ∗Px ) (1−k)L

)
R(θ∗Px +x)

(1−k)
L
−(1−k)r2

>

0. Hence, the signs of the effect of q, k and x on θ∗Px are given by the opposite sign of the respective

numerators. We have the following:

∂f (.)

∂q
=

∫ n̂x(θ∗Px )

0
r2dn−

∫ n

0

Rx
(

1− n (1−k)
L

)
(1− n) (1− k)

dn+

∫ n

n̂x(θ∗Px )

Rx
(

1− n (1−k)
L

)
(1− n) (1− k)

dn > 0,

∂f (.)

∂k
=
∂n̂x

(
θ∗Px
)

∂k
q

r2 −
Rx
(

1− n̂x (θ∗) (1−k)
L

)
(1− n̂x (θ∗)) (1− k)

+

∫ n

n̂x(θ∗Px )
q

Rx

(1− n) (1− k)2dn+

∫ n

0
(1− q) Rx

(1− n) (1− k)2dn−
∫ 1

n

L

(1− k)2 n
dn.

The expression for ∂f(.)
∂k can be rearranged as

∂f (.)

∂k
=
∂n̂x

(
θ∗Px
)

∂k
qr2 −

∫ 1

n

L

(1− k)2 n
dn−

∂n̂x
(
θ∗Px
)

∂k
q
Rx
(

1− n̂x
(
θ∗Px
) (1−k)

L

)
(1− n̂x (θ∗Px )) (1− k)

(39)

+

∫ n

n̂x(θ∗Px )
q

Rx

(1− n) (1− k)2dn+

∫ n

0
(1− q) Rx

(1− n) (1− k)2dn,

where
∂n̂x(θ∗Px )

∂k =
R(θ∗P+x) (1−k)L

−(1−k)r2

R
(

1−n̂x(θ∗Px )
(1−k)
L

) > 0.

To establish the sign of (39), first notice that the first two terms sum up to a positive. This

follows directly from the proof of Proposition 3, where we have shown that θ∗x is decreasing in k.

The derivative ∂θ∗x
∂k can be computed using the implicit function theorem from (36) as follows:

∂θ∗x
∂k

= −
∂n̂x(θ∗)
∂k qr2 −

∫ 1
n

L
(1−k)2n

dn

∂n̂x(θ∗)
∂θ qr2

< 0.

Given that ∂n̂x(θ∗)
∂θ > 0, ∂θ

∗
x

∂k implies that
∂n̂x(θ∗)
∂k qr2−

∫ 1
n

L
(1−k)2n

dn > 0. Since θ∗x > θ∗Px and ∂n̂x(θ∗)
∂k is

increasing in θ∗x, it follows that when
∂n̂x(θ∗)
∂k qr2−

∫ 1
n

L
(1−k)2n

dn > 0, also
∂n̂x(θ∗Px )

∂k qr2−
∫ 1
n

L
(1−k)2n

dn >

0 holds. Hence, the sum of the first two terms in (39) is positive. A suffi cient condition for ∂f(.)
∂k > 0

and so for ∂θ∗P

∂k < 0 is that

∂n̂x
(
θ∗Px
)

∂k
q
Rx
(

1− n̂x
(
θ∗Px
) (1−k)

L

)
(1− n̂x (θ∗Px )) (1− k)

<

∫ n

n̂x(θ∗Px )
q

Rx

(1− n) (1− k)2dn,
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that is

qRx

L (1− k)

∂n̂x (θ∗Px )
∂k

(
1− n̂x

(
θ∗Px
) (1−k)

L

)
(1− n̂x (θ∗Px )) (1− k)

− 1

1− k

∫ n

n̂x(θ∗Px )

1

(1− n)
dn

 < 0.

Substituting the expression for ∂n̂x(θ∗)
∂k , we can express the suffi cient condition simply as:

1

1− k

[
R
(
θ∗Px + x

) (1−k)
L − (1− k) r2

R (1− n̂x (θ∗Px ))
−
∫ n

n̂x(θ∗Px )

1

(1− n)
dn

]
< 0.

The inequality above holds because the integral
∫ n
n̂x(θ∗Px )

1
(1−n)dn is increasing in n and is greater

than 1
1−n̂x(θ∗Px )

and
R(θ∗P+x) (1−k)L

−(1−k)r2
R < 1.

Consider now the effect of x on θ∗Px . We have the following:

∂f(.)
∂x =

∂n̂x(θ∗Px )
∂x q

[
r2 −

Rx
(

1−n (1−k)
L

)
(1−n)(1−k)

]
+
∫ n
n̂x(θ∗Px ) q

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn

+
∫ n

0 (1− q)
R
(

1−n (1−k)
L

)
(1−n)(1−k) dn > 0,

and so the proposition follows. �

Proof of Proposition 6: As usual, we consider separately the case when 1−k ≤ L and 1−k > L.

We start from the former. When 1− k ≤ L, the first order condition with respect to q is given by

(57), which implies that the sign of
dq∗P

dx is equal to the sign of the expression in (37). As shown in

the proof of Proposition 4, this is always positive.

Consider now the case when 1− k > L. The first order condition with respect to q is given in

(19). As q∗P is an interior solution, using the implicit function theorem, the sign of dq
∗P

dx is equal

to the sign of the derivative of (19) with respect to x. Differentiating (19) with respect to x, we

obtain

− α∂θ
∗P
x

∂x

[
R
(
θ∗Px + x

)
− (1− k) r2

]
− α∂θ

∗P
x

∂q

∂θ∗Px
∂x

qR (40)

+ α

∫ 1−x

θ∗Px

Rdθ − α∂
2θ∗Px
∂q∂x

q
[
R
(
θ∗Px + x

)
− (1− k) r2

]
− α∂θ

∗P
x

∂q
qR,

which can be further rearranged as follows:

−α
[
∂θ∗Px
∂x

+
∂2θ∗Px
∂q∂x

q

] [
R
(
θ∗Px + x

)
− (1− k) r2

]
−α∂θ

∗P
x

∂q

∂θ∗Px
∂x

qR+α

∫ 1−x

θ∗Px

Rdθ−α∂θ
∗P
x

∂q
qR. (41)

To establish the sign of the expression above, we need to compute ∂2θ∗Px
∂q∂x . Recall that

∂θ∗Px
∂x

= −1−
q
∫ n
n̂x(θ∗Px )

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn

q ∂n̂x(θ∗Px )
∂θ

[
r2 −

Rx
(

1−n̂x(θ∗Px )
(1−k)
L

)
(1−n̂x(θ∗Px ))(1−k)

]− ∫ n
0 (1− q)

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn

q ∂n̂x(θ∗Px )
∂θ

[
r2 −

Rx
(

1−n̂x(θ∗Px )
(1−k)
L

)
(1−n̂x(θ∗Px ))(1−k)

] < 0, (42)
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and

∂θ∗P

∂q
= −1

q

∫ n̂x(θ∗Px )
0 r2dn+

∫ n
n̂x(θ∗Px )

Rx
(

1−n (1−k)
L

)
(1−n)(1−k) dn−

∫ n
0

Rx
(

1−n (1−k)
L

)
(1−n)(1−k) dn

∂n̂x(θ∗Px )
∂θ

[
r2 −

Rx
(

1−n̂x(θ∗Px )
(1−k)
L

)
(1−n̂x(θ∗Px ))(1−k)

] < 0. (43)

Since ∂2θ∗Px
∂x∂q = ∂2θ∗Px

∂q∂x , we can differentiate (43) with respect to x. Before doing this, in order to keep

the notation compact, denote as Φ the denominator
∂n̂x(θ∗Px )

∂θ

[
r2 −

Rx
(

1−n̂x(θ∗Px ) (1−k)L

)
(1−n̂x(θ∗Px ))(1−k)

]
.

∂2θ∗Px
∂x∂q

= −1

q

1

Φ

∫ n

n̂x(θ∗Px )

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn+
∂n̂x

(
θ∗Px
)

∂θ

∂θ∗Px
∂x

+
∂n̂x

(
θ∗Px
)

∂x

)
Φ

∂n̂x(θ∗Px )
∂θ


+

1

q

1

Φ

∫ n

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

q

1

Φ

∂θ∗Px
∂q

∂Φ

∂θ

∂θ∗Px
∂x
− 1

q

1

Φ

∂θ∗Px
∂q

[
∂Φ

∂θ

∂θ∗Px
∂x

+
∂Φ

∂x

]

=
1

q

1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

q

∂θ∗Px
∂x
− 1

q
− 1

q

1

Φ

∂θ∗Px
∂q

[
∂Φ

∂θ

∂θ∗Px
∂x

+
∂Φ

∂x

]

with
∂n̂x(θ∗Px )

∂θ =
∂n̂x(θ∗Px )

∂x , ∂Φ
∂θ =

∂n̂2x(θ∗Px )
∂θ2

[
r2 −

Rx
(

1−n̂x(θ∗Px ) (1−k)L

)
(1−n̂x(θ∗Px ))(1−k)

]
+

(
∂n̂x(θ∗Px )

∂θ

)2
Rx( 1−kL −1)(2−n̂x)

(1−n̂x)2(1−k)
,∂Φ
∂x =

∂Φ
∂θ −

∂n̂x(θ∗Px )
∂θ

R
(

1−n̂x(θ∗Px ) (1−k)L

)
(1−n̂x(θ∗Px ))(1−k)

and
∂2n̂x(θ∗Px )

∂θ2
=

∂2n̂x(θ∗Px )
∂θ∂x = − 2

∂n̂x(θ∗Px )
∂θ

R
(1−k)
L

R(θ∗Px +x)
(1−k)
L
−(1−k)r2

< 0.

Rearranging ∂θ∗Px
∂x = −1 + 1

Φ

∫ n̂x(θ∗Px )
0

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn−

1
q

1
Φ

∫ n
0

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn, we can rewrite the

expression for ∂2θ∗Px
∂x∂q as follows:

∂2θ∗Px
∂x∂q

= +
1

q

1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

q

1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn+
1

q2

1

Φ

∫ n

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn

− 1

q

1

Φ

∂θ∗Px
∂q

(
∂Φ

∂θ

∂θ∗Px
∂x

+
∂Φ

∂x

)

=
1

q

1

q

1

Φ

∫ n

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

Φ

∂θ∗Px
∂q

(
∂Φ

∂θ

∂θ∗Px
∂x

+
∂Φ

∂x

) .
Hence, the expression in (41) can be written as

− α

−1 +
1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

Φ

∂θ∗Px
∂q

(
∂Φ

∂θ

∂θ∗Px
∂x

+
∂Φ

∂x

) [R (θ∗Px + x
)
− (1− k) r2

]
(44)

+ α

∫ 1−x

θ∗Px

Rdθ − α∂θ
∗P
x

∂q
qR

 1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

q

1

Φ

∫ n

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn

 .
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First, given that n > n̂x
(
θ∗Px
)
and q < 1, one can see that

1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

q

1

Φ

∫ n

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn < 0,

which implies that the last term in (44) is negative since ∂θ∗Px
∂q < 0.

Consider now the terms in the first bracket and denote it as Λ. We want to show that Λ > 0

that is

Λ = −1 +
1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

Φ

∂θ∗Px
∂q

(
∂Φ

∂θ

∂θ∗Px
∂x

+
∂Φ

∂x

)
> 0

Using ∂Φ
∂x = ∂Φ

∂θ −
∂n̂x(θ∗Px )

∂θ

R
(

1−n̂x(θ∗Px ) (1−k)L

)
(1−n̂x(θ∗Px ))(1−k)

, we can rewrite

∂Φ

∂θ

∂θ∗Px
∂x

+
∂Φ

∂x
=
∂Φ

∂θ

∂θ∗Px
∂x

+ 1−
∂n̂x

(
θ∗Px
)

∂θ

R
(

1− n̂x
(
θ∗Px
) (1−k)

L

)
(1− n̂x (θ∗Px )) (1− k)

 ,

so that

Λ = −1+
1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

Φ

∂θ∗Px
∂q

∂Φ

∂θ

∂θ∗Px
∂x

+ 1−
∂n̂x

(
θ∗Px
)

∂θ

R
(

1− n̂x
(
θ∗Px
) (1−k)

L

)
(1− n̂x (θ∗Px )) (1− k)

 .

When x→ 0, ∂Φ
∂θ =

∂n̂2x(θ∗Px )
∂θ2

r2 < 0 and ∂θ∗Px
∂q

∂Φ
∂θ

∂θ∗Px
∂x + 1− ∂n̂x(θ∗Px )

∂θ

R
(

1−n̂x(θ∗Px ) (1−k)L

)
(1−n̂x(θ∗Px ))(1−k)

)
< 0 since

∂θ∗Px
∂x < −1.

Furthermore, the first two terms in Λ simplify to

−1 +
1

Φ

∫ n̂x(θ)

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn =

∫ n̂x(θ)
0

Rθ∗Px

(
1−n (1−k)

L

)
(1−n)(1−k) dn

Rθ∗Px

(
1−n̂x(θ)

(1−k)
L

)
(1−n̂x(θ))(1−k)

[
Rθ∗Px

(1−k)
L − (1− k) r2

]
r2

− 1 > 0,

since
∫ n̂x(θ)
0

Rθ∗Px
(
1−n (1−k)

L

)
(1−n)(1−k) dn

Rθ∗Px
(
1−n̂x(θ)

(1−k)
L

)
(1−n̂x(θ))(1−k)

> 1 and
Rθ∗Px

(1−k)
L

r2
− (1− k) = (1−k)

L

[
Rθ∗Px
r2
− L

]
> 1 given that 1−k >

L and Rθ∗Px > (1− k) r2. It follows that Λ > 0 and overall that the first and last terms in (44) are

negative, while the second one is positive.

When x→ 0, θ∗Px → θ∗. Given that θ∗ → θ, which is arbitrarily close to 1, as k → 0, it follows

that the expression in (44) becomes negative as k → 0 since θ∗Px → 1. By continuity, it continues

to be negative also for k small but strictly larger than 0. Similarly, given that when 1− k = L the

entire expression is positive. It follows that in the range k ∈ (0, 1− L), there exists a cutoff k̂Px ,

such that dq∗P

dx < 0 for k < k̂Px and
dq∗P

dx > 0 for k > k̂Px . Hence, the proposition follows. �
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Proof of Proposition 7: The proof proceeds in steps: First, we characterize depositors’with-

drawal behavior. Then, we solve for the optimal q and characterize the effect of the introduction

of the guarantees on the bank’s monitoring choice. In doing so, we distinguish between the case in

which the guaranteed amount is lost in bankruptcy and when it is protected from bankruptcy. We

start with the former.

The characterization of depositors’withdrawal decision follows the same steps as in the proof

of Propositions 3 and 5. Running is a dominant strategy when θ < θy, which corresponds to the

solution to

R [θ + (1− θ) y]− (1− k) r2 = 0,

which gives

θy =
θ − y
1− y ,

with θ = (1−k)r2
R corresponding to the run threshold when there are no guarantees, as given in (5).

When 1− k > L, banks are exposed to panic runs. Following the same steps as in the previous

sections, the condition pinning down θ∗y is∫ n̂y(θ)

0
qr2dn = π1,

where π1 is given in (32) and n̂y (θ) solves

R [θ + (1− θ) y]

(
1− n (1− k)

L

)
− (1− n) (1− k) r2 = 0.

n̂y (θ) = L
r2 −Rθ − kr2 −Ry +Ryθ

(k − 1) (Rθ − Lr2 +Ry −Ryθ) .

After a few manipulations, we obtain the expression in the proposition,

θ∗y =
θ∗ − y
1− y ,

where θ∗ corresponds to the run threshold when there are no guarantees, as given in (6). As shown

in the proof of Proposition 1, θy and θ
∗
y are the relevant run thresholds for banks with high capital

(i.e., 1− k ≤ L) and low capital (1− k > L), respectively.

We now move on to the choice of q. When 1− k ≤ L, the bank solves the following problem:

max
q
αq

∫ θy

0
R [θ + (1− θ) y]

(
1− (1− k)

L

)
dθ + αq

∫ 1

θy

[R [θ + (1− θ) y]− (1− k) r2] dθ

+ (1− α) q

∫ 2

1
[R− (1− k) r2] dθ − cq2

2
,
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while when 1− k > L, the objective function is

max
q
αq

∫ 1

θ∗y

[R [θ + (1− θ) y]− (1− k) r2] dθ + (1− α) q

∫ 2

1
[R− (1− k) r2] dθ − cq2

2
.

The first order condition for q is

α

∫ θy

0
R [θ + (1− θ) y]

(
1− (1− k)

L

)
dθ + α

∫ 1

θy

[R [θ + (1− θ) y]− (1− k) r2] dθ

+ (1− α)

∫ 2

1
[R− (1− k) r2] dθ − cq = 0,

when 1− k ≤ L, since ∂θy
∂q = 0 and

α

∫ 1

θ∗y

[R [θ + (1− θ) y]− (1− k) r2] dθ − α
∂θ∗y
∂q

q
[
R
[
θ∗y +

(
1− θ∗y

)
y
]
− (1− k) r2

]
+ (1− α)

∫ 2

1
[R− (1− k) r2] dθ − cq = 0, (45)

when 1− k > L, with
∂θ∗y
∂q = 1

1−y
∂θ∗

∂q < 0.

To compute the effect of y on the optimal q, we use the implicit function theorem. Thus, the

sign of dqydy is equal to the sign of
∂FOCq
∂y . When 1− k ≤ L, ∂FOCq∂y is equal to:

α

∫ θy

0
R (1− θ)

(
1− (1− k)

L

)
dθ + α

∫ 1

θy

R (1− θ) dθ + α
∂θy
∂y

R
[
θy +

(
1− θy

)
y
](

1− (1− k)

L

)
.

The first two terms are positive, while the last one is negative since
∂θy
∂y = −1−θy

1−y . When 1−k = L,
∂FOCq
∂y simplifies to α

∫ 1
θy
R (1− θ) dθ > 0. As k → 1, then θy → 0 for any y > θ, and so

∂θy
∂y = 0,

while for y < θy and y → 0, the term θy +
(
1− θy

)
y → 0. It follows that ∂FOCq

∂y > 0 for all

k ∈ (1− L, 1), so that
dq
y

dy > 0 holds.

Consider now the case when 1− k > L: ∂FOCq
∂y is given by

α

∫ 1

θ∗y

R (1− θ) dθ − α
∂θ∗y
∂y

[
R
[
θ∗y +

(
1− θ∗y

)
y
]
− (1− k) r2

]
− α

∂θ∗y
∂q

q
∂θ∗y
∂y

R (1− y)

− α
∂θ∗y
∂q

qR
(
1− θ∗y

)
− α

∂2θ∗y
∂q∂y

q
[
R
[
θ∗y +

(
1− θ∗y

)
y
]
− (1− k) r2

]
,

where
∂2θ∗y
∂q∂y =

∂2θ∗y
∂y∂q = 1

1−y
∂θ∗y
∂q < 0. All terms in the expression above are positive except

−
∂θ∗y
∂q

q
∂θ∗y
∂y

R (1− y) < 0.

Recall that
∂θ∗y
∂y = −1−θ∗y

1−y < 0. Then, we can write

−
∂θ∗y
∂q

q
∂θ∗y
∂y

R (1− y)−
∂θ∗y
∂q

qR
(
1− θ∗y

)
= −

∂θ∗y
∂q

qR
[
−
(
1− θ∗y

)
+
(
1− θ∗y

)]
= 0,
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and it follows that
dq∗y
dy > 0 when 1− k > L.

We now move on to the case when the guarantee amount is protected from bankruptcy. The

threshold for fundamental runs is still given by θy as specified above. The threshold for panic runs

θ∗Py , instead, now solves:∫ n̂y(θ)

0
qr2dn+

∫ n

n̂y(θ)
q
R (1− θ) y

(
1− n (1−k)

L

)
(1− n) (1− k)

dn+

∫ n

0
(1− q)

Ry
(

1− n (1−k)
L

)
(1− n) (1− k)

dn = π1, (46)

where π1 and n̂y (θ) are as above and n is still equal to L
1−k .

As we perform our analysis for the case in which y → 0, the expression in (46) is increasing in

θ and decreasing in n, so the usual derivations to characterize the panic run threshold θ∗Py apply.

Using the implicit function theorem, we can compute

∂θ∗Py
∂q

= −
∫ n̂y(θ)

0 r2dn+
∫ n
n̂y(θ)

R(1−θ)y
(

1−n (1−k)
L

)
(1−n)(1−k) dn−

∫ n
0

Ry
(

1−n (1−k)
L

)
(1−n)(1−k) dn

∂n̂y(θ)
∂θ q

[
r2 −

R(1−θ)y
(

1−n̂y(θ)
(1−k)
L

)
(1−n̂y(θ))(1−k)

]
− q

∫ n
n̂y(θ)

Ry
(

1−n (1−k)
L

)
(1−n)(1−k) dn

< 0,

and

∂θ∗Py
∂y

=

−∂n̂y(θ)
∂y

[
qr2 − q

R(1−θ)y
(

1−n̂y (1−k)L

)
(1−n̂y)(1−k)

]
− q

∫ n
n̂y(θ)

R(1−θ)
(

1−n (1−k)
L

)
(1−n)(1−k) dn− (1− q)

∫ n
0

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn

∂n̂y(θ)
∂θ q

[
r2 −

R(1−θ)y
(

1−n̂y(θ)
(1−k)
L

)
(1−n̂y(θ))(1−k)

]
− q

∫ n
n̂y(θ)

Ry
(

1−n (1−k)
L

)
(1−n)(1−k) dn

< 0.

Starting from
∂θ∗Py
∂y , we can compute

∂2θ∗Py
∂q∂y =

∂2θ∗Py
∂y∂q as follows:

∂2θ∗Py
∂q∂y

= −

∂n̂y(θ)
∂y

[
r2 −

R(1−θ)y
(

1−n̂y(θ)
(1−k)
L

)
(1−n̂y(θ))(1−k)

]
+
∫ n
n̂y(θ)

R(1−θ)
(

1−n (1−k)
L

)
(1−n)(1−k) dn−

∫ n
0

Ry
(

1−n (1−k)
L

)
(1−n)(1−k) dn

∂n̂y(θ)
∂θ q

[
r2 −

R(1−θ)y
(

1−n̂y(θ)
(1−k)
L

)
(1−n̂y(θ))(1−k)

]
− q

∫ n
n̂y(θ)

Ry
(

1−n (1−k)
L

)
(1−n)(1−k) dn

−
∂θ∗Py
∂y

∂n̂y(θ)
∂θ

[
r2 −

R(1−θ)y
(

1−n̂y(θ)
(1−k)
L

)
(1−n̂y(θ))(1−k)

]
−
∫ n
n̂y(θ)

Ry
(

1−n (1−k)
L

)
(1−n)(1−k) dn

∂n̂y(θ)
∂θ q

[
r2 −

R(1−θ)y
(

1−n̂y(θ)
(1−k)
L

)
(1−n̂y(θ))(1−k)

]
− q

∫ n
n̂y(θ)

Ry
(

1−n (1−k)
L

)
(1−n)(1−k) dn

> 0.

When y = 0, the expression above simplifies to

∂2θ∗Py
∂q∂y

= − 1
∂n̂y(θ)
∂θ qr2

∂n̂y (θ)

∂y
r2 +

∫ n

n̂y(θ)

R (1− θ)
(

1− n (1−k)
L

)
(1− n) (1− k)

dn


−
∂θ∗Py
∂y

1

q
,
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from which we can see that
∂2θ∗Py
∂q∂y >

∂θ∗Py
∂y when y = 0.

The FOCq is still given by (45), so that the expression for
∂FOCq
∂y when y = 0 is given by

α

∫ 1

θ∗Py

R (1− θ) dθ − α
∂θ∗Py
∂y

[
Rθ∗Py − (1− k) r2

]
− α

∂θ∗Py
∂q

q
∂θ∗Py
∂y

R− α
∂2θ∗Py
∂q∂y

q
[
Rθ∗Py − (1− k) r2

]
− α

∂θ∗Py
∂q

qR
(
1− θ∗Py

)
.

Again, all terms are positive except −α∂θ
∗P
y

∂q q
∂θ∗Py
∂y R < 0. When 1−k = L, we know that ∂FOCq∂y > 0

and so
dq∗Py
dy > 0. Recall that θ∗ → θ, which is arbitrarily close to 1, as k → 0. Hence, we can

extend the argument to the case when y = 0, so that θ∗Py → θ∗ and conclude that when k → 0,

θ∗Py → θ∗ → θ, which is arbitrarily close to 1. Making use of this assumption, the expression for
∂FOCq
∂y evaluated at y = 0 simplifies to

−α
∂θ∗Py
∂y

[R− (1− k) r2]− α
∂2θ∗Py
∂q∂y

q [R− (1− k) r2]− α
∂θ∗Py
∂q

q
∂θ∗Py
∂y

R.

Since
∂2θ∗Py
∂q∂y >

∂θ∗Py
∂y when y = 0, the expression above is negative, which implies that

dq∗Py
dy < 0.

Using the same argument as in the proof of Proposition 6, we can establish that there exists a cutoff

k̂Py ∈ (0, 1− L) such that
dq∗Py
dy < 0 for k < k̂Py and

dq∗Py
dy > 0 for k > k̂Py , so that the proposition

follows. �

Proof of Proposition 8: Given the expressions for GDx and GDy in (21) and (22) and evaluating

(22) at y = y = x
1−max(θ−x,0) , the expression that determines which guarantee scheme is more costly

is

Rx− Rx2

2
−Rx (θ − x)

1− k
L
≷ Rx

2 (1−max (θ − x, 0))
− Rx

(1−max (θ − x, 0))
(θ − x)

1− k
L

+
Rx

2 (1−max (θ − x, 0))

1− k
L

(θ − x)2 ,

which can be simplified as

Rx

2

[
(2− x)− 1

(1−max (θ − x, 0))
− (θ − x)

1− k
L

(
2− 2− (θ − x)

(1−max (θ − x, 0))

)]
≷ 0. (47)

When (47) equals zero, the two guarantee schemes are equally costly. Note that this is the case for

x = 0 and x = 1. When x = 1, max (θ − x, 0) = 0 and θx = θ−x = 0, so that the expression above

simplifies to R
2 [1− 1] = 0.
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We need now to check whether GDx ≷ GDy for any x ∈ (0, 1). Differentiate (47) with respect

to x:

R

2L (xθ − 1)2

(
L− x2θ3 + 2x3θ2 + 2xθ2 − 3x2θ − 2Lx+ 2Lx2θ2 − 2Lx3θ2 (48)

+kx2θ3 − 2kx3θ2 − 4Lxθ + 4Lx2θ − 2kxθ2 + 3kx2θ
)
.

Evaluating (48) at x = 0 gives L
L = 1 > 0, so that, while the difference in the two loan guarantee

schemes is zero at x = 0, it becomes positive as soon as x becomes positive.

We now show that the difference in (47) is concave everywhere, which implies that GDx > GDy

for any x ∈ (0, 1). Start by differentiating (48) with respect to x again to obtain

2

L (xθ − 1)3 (L− (1− k))
(
1 + θ + 3x2θ2 − x3θ3 − 3xθ

)
+ (1− k) . (49)

Since (xθ − 1)3 < 0, to show that GDx −GDy is concave for any x ∈ (0, 1), we need to show that

the expression in parentheses is positive.

For x = 0, the expression is clearly positive, meaning that the difference GDx−GDy is concave

around x = 0. A suffi cient condition for the expression to be positive for any x ∈ (0, 1) is

1 + θ + 3x2θ2 − x3θ3 − 3xθ > 0.

This is equivalent to showing that

1 + θ

xθ
> −

(
3xθ − x2θ2 − 3

)
. (50)

Rewrite the LHS in (50) as 1
xθ + 1

x . From this, we can see that for any x, the value of the LHS is

minimal at θ = 1, and equal to 2
x .

Consider now the RHS in (50). Differentiating it with respect to θ gives:

2x2θ − 3x

This derivative is positive if 2x2θ − 3x > 0 ⇔ 2xθ > 3 ⇔ xθ > 3
2 , which can never happen since

both x and θ are less than 1. Hence, the RHS must be strictly decreasing in θ, and is maximized

at θ = 0. For θ = 0, the RHS equals 3. The same thing is true for x: the RHS is decreasing in x,

so the maximum value the RHS can take is 3, which occurs for either x = 0 or θ = 0.

Now consider the LHS. The lowest value it can take, as a function of x, is 2
x . For this expression

to become smaller than 3, i.e., the largest the RHS can be, we need x > 2
3 . Note now that x can
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only be greater than 2
3 if θ is also greater than

2
3 . Since the RHS is decreasing in x and θ, the most

the RHS can be if 2
3 ≤ x ≤ θ is(

2

3

)2(2

3

)2

− 3

(
2

3

)(
2

3

)
+ 3 = 1.8642

which is less than the LHS.

Fix now x = 1. The lowest value that the LHS can take when x = 1 is 2. This is bigger than the

value that the RHS takes when x = 2
3 . Thus, since both the LHS and the RHS are monotonically

decreasing in x, it follows that the LHS is greater than the RHS for any x > 0. This implies, in

turn, that the difference GDx − GDy is concave for any x ∈ (0, 1) and so it is always positive as

stated in the proposition.

To complete the proof we need to determine the effect of the two guarantees schemes on q. To

do so, we compare FOCq under GSx and GSy. The former is equal to

α

∫ θx

0
R (θ + x)

(
1− (1− k)

L

)
dθ + α

∫ 1−x

θx

[R (θ + x)− (1− k) r2] dθ

+ α

∫ 1

1−x
[R− (1− k) r2] dθ + (1− α)

∫ 2

1
[R− (1− k) r2] dθ − cq = 0, (51)

while the latter is equal to

α

∫ θy

0
R (θ + y − θy)

(
1− (1− k)

L

)
dθ + α

∫ 1

θy

[R (θ + y − θy)− (1− k) r2] dθ

+ (1− α)

∫ 2

1
[R− (1− k) r2] dθ − cq = 0, (52)

since under GSy the bank accrues a (per unit return) on the non-liquidated units equal to Rθ +

R (1− θ) y = R (θ + y − θy) and
∂θy
∂q =

∂θx
∂q = 0.

We now compare (51) and (52) evaluated at y = y so that θy = θx. Given that qx and qy are

interior solutions, for qx > qy, it must be that

α

∫ θx

0
R (θ + x)

(
1− (1− k)

L

)
dθ + α

∫ 1−x

θx

[R (θ + x)− (1− k) r2] dθ + α

∫ 1

1−x
[R− (1− k) r2] dθ

−α
∫ θy

0
R (θ + y − θy)

(
1− (1− k)

L

)
dθ − α

∫ 1

θy

[R (θ + y − θy)− (1− k) r2] dθ

∣∣∣∣∣
y=y

> 0.

After a few manipulations, we can rearrange the expression on the LHS of the inequality above as
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follows:

α

∫ θx

0
R

(
x− x

1 + x− θ + θ
x

1 + x− θ

)(
1− (1− k)

L

)
dθ + α

∫ 1−x

θx

R

(
x− x

1 + x− θ + θ
x

1 + x− θ

)
dθ

+ α

∫ 1

1−x
R

(
1− x

1 + x− θ

)
(1− θ) dθ

= α

∫ θx

0

Rx2

1 + x− θ

(
1− (1− k)

L

)
dθ + α

∫ 1−x

θx

Rx2

1 + x− θdθ + α

∫ 1

1−x

R

1 + x− θ (1− θ) (1− θ) dθ > 0.

Hence, since FOCqx > FOCqy , it follows that qx > qy, as desired. �

Proof of Lemma 1: Substituting the expressions for θBL and θ
SP
L from (23) and (24), respectively,

it is easy to see that for any 0 ≤ k < 1 and 0 < q < 1, θBL < θSPL holds as

L− (1− q)(1− k)r2

qR
<

L

qR
.

The rest of the Lemma follows since θBL increases with k, while θ
SP
L does not depend on k. �

Proof of Lemma 2: Comparing θLB with θ, we have that

θBL < θ ⇐⇒ r2(1− k) > L.

Given that the LHS in the inequality above is decreasing in k and θBL < θ when k = 1 − L and

θBL > θ when k = 1, there exists a cutoff value kL ∈ (1 − L, 1) solving θBL = θ. Hence, the lemma

follows. �

Proof of Proposition 9: When 1 − k ≤ L, the bank is exposed to fundamental runs only.

The introduction of the loan guarantee reduces θx and θ
B
Lx, while it does not affect the planner’s

threshold θSPL . Hence, θSPL −max
{
θBLx, θx

}
strictly decreases with x.

When 1− k > L, the bank is exposed to panic runs and the run threshold θ∗x strictly decreases

with x and k. Since θx < θ and they are both decreasing in k, θSPL = θx when k = kSPLx ≡

1− L
qr2
− x

r2
< 1− L. Hence, since θ∗x > θx, there exists a cutoff value 0 < k̃L < kSPLx < 1− L such

that θSPL ≤ θ∗x when k ≤ k̃L and θSPL > θ∗x when k > k̃L. The cutoff k̃L solves θSPL = θ∗x and the

proposition follows. �

Proof of Lemma 3: Denote as kSPL the cutoff value of capital for which θ = θSPL . This is equal to

kSPL = 1− L

qr2
≥ 1− L,

for any qr2 ≥ 1. Given that ∂θ
∂k < 0, while ∂θSPL

∂k = 0, it follows that θ > θSPL for k < kSPL and

θ ≤ θSPL for k ≥ kSPL . From Proposition 2, we know that qr2 = 1 when 1− k ≤ L. Hence, it follows
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that kSPL = 1 − L and, in turn, θ ≤ θSPL when k ≤ 1 − L, while θ∗ > θ > θSPL when k > 1 − L.

Using the result from Lemma 2 that θBL > θR for k > kL and θBL ≤ θR for k ≤ kL, we obtain the

result in the lemma. �

Proof of Proposition 10: Since we are allowing the bank to choose to liquidate the project early

if it finds it profitable to do so, we must first characterize the optimal degree of underwriting effort.

This is obtained by maximizing bank profits with respect to q, and is given by

max
q
α

∫ θBLx

0
[L− (1− k) r2] dθ + α

∫ 1−x

θBLx

q [R (θ + x)− (1− k)r2)] dθ + α

∫ 1

1−x
q [R− (1− k) r2] dθ

+ (1− α)

∫ 2

1
q [R− (1− k) r2] dθ − cq2

2
,

which implies that qBLx is the solution to

α

∫ 1−x

θBLx

[R (θ + x)− (1− k)r2)] dθ+α

∫ 1

1−x
[R− (1− k) r2] dθ+(1− α)

∫ 2

1
[R− (1− k) r2] dθ = cq.

We can now calculate the change in total output resulting from an increase in x, which is given by

dTOx
dx

= α
∂θBLx
∂x

(
L− qBLxRθBLx

)
− αqBLxR (1− x) + αqBLxR (1− x)

+
dqBLx
dx

α

∫ 1−x

θBLx

Rθdθ + α

∫ 1

1−x
Rθdθ + (1− α)

∫ 2

1
Rθdθ − cqBLx

)
,

which simplifies to

dTOx
dx

= α
∂θBLx
∂x

(
L− qBLxRθBLx

)
+
dqBLx
dx

α

∫ 1−x

θBLx

Rθdθ + α

∫ 1

1−x
Rθdθ + (1− α)

∫ 2

1
Rθdθ − cqBLx

)
.

Recall that ∂θ
B
Lx
∂x = −1 and θBLx =

L−(1−qBLx)(1−k)r2
qBLxR

−x. Then, the expression above can be rearranged

as

dTOx
dx

= −α
(
L− qBLxR

(
L− (1− qBLx)(1− k)r2

qBLxR
− x
))

+
dqBLx
dx

[
α

∫ 1−x

θBLx

Rθdθ + α

∫ 1

1−x
Rθdθ + (1− α)

∫ 2

1
Rθdθ − cqBLx

]

= −α
[
(1− qBLx)(1− k)r2 + qBLxRx

]
+
dqBLx
dx

[
α

∫ 1−x

θBLx

Rθdθ + α

∫ 1

1−x
Rθdθ + (1− α)

∫ 2

1
Rθdθ − cqBLx

]
.

(53)

At k = 1 this is

dTOx
dx

= −αqBLxRx+
dqBLx
dx

[
α

∫ 1−x

θBLx

Rθdθ + α

∫ 1

1−x
Rθdθ + (1− α)

∫ 2

1
Rθdθ − cqBLx

]
,
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which is positive when x→ 0 since dqBLx
dx > 0 from the expression above for qBLx:

dqBLx
dx

= −
−α∂θ

B
Lx
∂x

[
R
(
θBLx + x

)
− (1− k) r2

]
+ α

∫ 1−x
θBLx

Rdθ

−α∂θ
B
Lx
∂q

[
R
(
θBLx + x

)
− (1− k) r2

]
− c

> 0.

Hence, by continuity (53) is also positive for k close to but strictly less than 1.

Consider now the other extreme case when k = kL, which solves 1− k = L
r2
. In this case,

dqBLx
dx

∣∣∣∣
x=0,k=kL

=
α
∫ 1
L
R
Rdθ

c
= α

(R− L)

c
,

and the expression for dTOx
dx becomes

dTOx
dx

= −α
(
(1− qBLx)L+ qBLxRx

)
+
dqBLx
dx

[
α

∫ 1−x

L
R

Rθdθ + α

∫ 1

1−x
Rθdθ + (1− α)

∫ 2

1
Rθdθ − cqBLx

]
.

As x→ 0, this converges to

dTOx
dx

= −α(1− qBLx)L+ α
(R− L)

c
α

∫ 1

L
R

Rθdθ + (1− α)

∫ 2

1
Rθdθ − cqBLx

)
.

Since

qBLx
∣∣
x=0,k=kL

=
α
(
R
2 + L2

2R − L
)

+ (1− α) (R− L)

c
.

we can write

dTOx
dx

= −α

1−
α
(
R
2 + L2

2R − L
)

+ (1− α) (R− L)

c

L

+ α
(R− L)

c
α

∫ 1

L
R

Rθdθ + (1− α)

∫ 2

1
Rθdθ −

(
α

(
R

2
+
L2

2R
− L

)
+ (1− α) (R− L)

))
=

1

2Rc
α
(
−4L2R+ 3LR2 + 3L3α−R3α+R3 − 2L2Rα− 2LRc

)
.

From this, we obtain that for

c <
R3 (1− α) + 3LR2 + 3L3α− 2L2R (2 + α)

2LR
,

we have that dTOx
dx > 0. Hence, by continuity, dTOxdx > 0 for k larger but close to kL.

We now move on to show that dTOx
dx > 0 is also positive in the range k ∈ (kL, 1). Evaluating

(53) at x→ 0 gives

dTOx
dx

= −α(1− qBLx)(1− k)r2 +
dqBLx
dx

[
α

∫ 1

θBLx

Rθdθ + (1− α)

∫ 2

1
Rθdθ − cqBLx

]
.
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As c decreases, qBLx increases and can come arbitrarily close to 1. Suppose c is suffi ciently small

that qBLx = 1− δ, for δ > 0 but small. This makes the first term arbitrarily close to zero, of order

−O (δ):
dTOx
dx

= −O (δ) +
dqBLx
dx

[
α

∫ 1

θBLx

Rθdθ + (1− α)

∫ 2

1
Rθdθ − c (1− δ)

]
.

The term inside the brackets is strictly positive. Therefore, dTOxdx will be positive if dq
B
Lx
dx remains

bounded away from zero for qBLx close to 1 but not strictly equal to 1. Recall thatdq
B
Lx
dx is given by

dqBLx
dx

= −
−α∂θ

B
Lx
∂x

[
R
(
θBLx + x

)
− (1− k) r2

]
+ α

∫ 1−x
θBLx

Rdθ

−α∂θ
B
Lx
∂q

[
R
(
θBLx + x

)
− (1− k) r2

]
− c

> 0.

As x→ 0, this becomes

dqBLx
dx

= −
−α∂θ

B
Lx
∂x

[
RθBLx − (1− k) r2

]
+ α

∫ 1
θBLx

Rdθ

−α∂θ
B
Lx
∂q

[
RθBLx − (1− k) r2

]
− c

> 0,

with ∂θBLx
∂x = −1. Therefore, even for c small, dq

B
Lx
dx remains strictly positive, as long as qBLx < 1

and that the second order condition continues to be satisfied, meaning that the denominator,

−α∂θ
B
Lx
∂q

[
RθBLx − (1− k) r2

]
− c, remains negative.

Hence, for small enough c, dTOxdx > 0 for any k ∈
(
kL, 1

)
. Since we know it is positive for k = 1

and k = kL, this establishes that dTOx
dx > 0 for all k in

[
kL, 1

]
. �

Proof of Proposition 11: When 1− k ≤ L, the deposit rate r2 is pinned down from depositors’

participation constraint, (8), with the small modification to adjust the limits of integration, θR, to

be θR = θ− x. Relative to the case of x = 0, the introduction of a loan guarantee introduces slack

in depositors’participation constraint. Keeping its underwriting effort q constant, the bank can

now reduce r2 and still satisfy depositors’participation constraint. Together with the direct effect

of the guarantee, the reduction in r2 would lead to a further increase in q. But the consequent

anticipated increase in q would again make depositors’participation constraint slack, allowing for

a yet greater reduction in r2, etc. Hence, r2 decreases in equilibrium as a result of the introduction

of the loan guarantee x.

When instead 1 − k > L, r2 is pinned down either again by (8), or by the bank’s first order

condition, where the run threshold is given by θ∗x = θ∗ − x. In the case where 1 − k > L, bank

profits are given by

max
q
α

∫ 1−x

θ∗x

q [R (θ + x)− (1− k) r2] dθ+α

∫ 1

1−x
q [R− (1− k) r2] dθ+(1− α)

∫ 2

1
q [R− (1− k) r2] dθ−cq

2

2
.
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The derivative with respect to r2 is

− α∂θ
∗
x

∂r2
q [R (θ∗x + x)− (1− k) r2]− α

∫ 1−x

θ∗x

q (1− k) dθ − α
∫ 1

1−x
q (1− k) dθ − (1− α)

∫ 2

1
q (1− k) dθ

= −α∂θ
∗
x

∂r2
q [R (θ∗x + x)− (1− k) r2]− α

∫ 1

θ∗x

q (1− k) dθ − (1− α)

∫ 2

1
q (1− k) dθ

Since θ∗x = θ∗ − x, the expression above can be further rearranged as follows:

−α∂θ
∗

∂r2
q [Rθ∗ − (1− k) r2]− α

∫ 1

θ∗−x
q (1− k) dθ − (1− α)

∫ 2

1
q (1− k) dθ

The first term, which is positive, is exactly the same as for the case where x = 0, given by (12),

while the second term, which is negative, is larger because of the larger region of integration. Hence,

the bank should respond to the introduction of the guarantees by reducing r2 and the proposition

follows. �

Proof of Proposition 12: Since δ < 1, the threshold for fundamental runs is the same as in the

case without guarantees. This is due to the fact that when the bank is insolvent depositors receive

δ < 1, but this is not enough to convince them not to run. Hence, for highly capitalized banks,

when 1− k ≤ L, θδ is still given by (5).

Applying the same arguments as in the proof of Proposition 1, for banks with 1 − k > L, the

relevant crisis threshold θ∗δ corresponds to the solution to∫ n̂(θ)

0
qr2dn+

∫ 1

n̂(θ)
qδdn+

∫ 1

0
(1− q) δdn = π1,

or, equivalently,

q

∫ n̂(θ)

0
(r2 − δ) dn+

∫ 1

0
δdn = π1,

where both n̂ (θ) and π1 are the same as in the case without guarantees. Following the same steps

as in the proof of Proposition 1, we obtain the expression (26) in the proposition.

To complete the proof, we need to compute

∂θ∗δ
∂q

=
θ (r2 − δ)[(

qr2 − π1
1−k
L

)
+ δ

(
1−k
L − q

)]2
[

1− (qr2 − π1) + δ (1− q)(
qr2 − π1

1−k
L

)
+ δ

(
1−k
L − q

)] (54)

= − (r2 − δ) θ(
qr2 − π1

1−k
L

)
+ δ

(
1−k
L − q

) (π1 − δ)
(

1− k
L
− 1

)
< 0,

and

∂θ∗δ
∂δ

=
θ(

qr2 − π1
1−k
L

)
+ δ

(
1−k
L − q

) [(1− q)− (qr2 − π1) + δ (1− q)(
qr2 − π1

1−k
L

)
+ δ

(
1−k
L − q

) (1− k
L
− q
)]

(55)

= −
qθ (r2 − π1)

(
1−k
L − 1

)(
qr2 − π1

1−k
L

)
+ δ

(
1−k
L − q

) < 0,
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since π1 > L > δ and 1− k > L and the proposition follows. �

Proof of Proposition 13: The bank’s optimal choice of q solves

α

∫ θδ

0
Rθ

(
1− 1− k

L

)
dθ + α

∫ 1

θδ

[Rθ − (1− k) r2] dθ + (1− α)

∫ 2

1
[R− (1− k) r2] dθ − cq = 0,

when 1− k ≤ L and

α

∫ 1

θ∗δ

[Rθ − (1− k) r2] dθ+(1− α)

∫ 2

1
[R− (1− k) r2] dθ−α∂θ

∗
δ

∂q
q [Rθ∗δ − (1− k) r2]−cq = 0, (56)

when 1 − k > L, which are obtained differentiating (27) with respect to q. When 1 − k ≤ L, the

run threshold θδ is not affected by the deposit insurance δ as shown in the proof of Proposition 12.

Hence, q
δ
is not affected by δ.

Consider now the case where 1 − k > L. In this case, the run threshold is θ∗δ as characterized

in (26). We use the implicit function theorem to compute dq∗δ
dδ . Denote the expression in (56) as

FOCq∗δ = 0. It follows that:

dq∗δ
dδ

= −
∂FOCq∗

δ
∂δ

∂FOCq∗
δ

∂q

.

The denominator
∂FOCq∗

δ
∂q < 0 as q∗δ is an interior solution. Hence, the sign of

dq∗δ
dδ is equal to the

sign of

∂FOCq∗δ
∂δ

= −α∂θ
∗
δ

∂δ
[Rθ∗δ − (1− k) r2]− α ∂

2θ∗δ
∂q∂δ

q [Rθ∗δ − (1− k) r2]− α∂θ
∗
δ

∂q
q
∂θ∗δ
∂δ

R

All terms in the expression for
∂FOCq∗

δ
∂δ are negative except the first one. We show next that the

first term is dominated by the second, so that overall
∂FOCq∗

δ
∂δ < 0. To do so, we need to show that

q
∣∣∣ ∂2θ∗δ∂q∂δ

∣∣∣ > ∣∣∣∂θ∗δ∂δ ∣∣∣. Recall that ∂θ∗δ
∂q is given in (54). Differentiating

∂θ∗δ
∂q with respect to δ, we obtain:

∂2θ∗δ
∂q∂δ

=
∂A

∂δ
θ

[
1− (qr2 − π1) + δ (1− q)(

qr2 − π1
1−k
L

)
+ δ

(
1−k
L − q

)]

−Aθ
[

(1− q)− (qr2 − π1) + δ (1− q)(
qr2 − π1

1−k
L

)
+ δ

(
1−k
L − q

) (1− k
L
− q
)]

,

where A ≡ r2−δ
(qr2−π1 1−kL )+δ( 1−kL −q)

and so

∂A

∂δ
=
−
(
qr2 − π1

1−k
L

)
− δ

(
1−k
L − q

)
− r2

(
1−k
L − q

)
+ δ

(
1−k
L − q

)[(
qr2 − π1

1−k
L

)
+ δ

(
1−k
L − q

)]2 =
−
(
qr2 − π1

1−k
L

)
− r2

(
1−k
L − q

)[(
qr2 − π1

1−k
L

)
+ δ

(
1−k
L − q

)]2 < 0.

Using (55) and (54), the expression above can be rearranged as follows:
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∂2θ∗δ
∂q∂δ

=
∂A

∂δ

∂θ∗δ
∂δ

1

A
−A∂θ

∗
δ

∂δ
> 0,

since ∂θ∗δ
∂δ < 0, ∂A∂δ < 0 and ∂θ∗δ

∂δ < 0. It is easy to see that qA > 1 since π1 > δ. Hence, q ∂
2θ∗δ
∂δ∂q >

∣∣∣∂θ∗δ∂δ ∣∣∣
and so dq∗δ

dδ < 0 as desired. �

Proof of Proposition 14: The proof follows the same steps as the proof of Proposition 12.

Consider first the case when 1 − k ≤ L. Since δ < 1 and Rx
1−k < 1, the threshold θδx under which

withdrawing at date 1 is a dominant strategy is still given by θPx = θ−x, as characterized in Section

6.2.

Consider now the case when 1− k > L. Following the same steps as in the proof of Proposition

12, the threshold θ∗δx corresponds to the solution to∫ n̂x(θ)

0
qr2dn+

∫ 1

n̂(θ)
qδdn+

∫ 1

0
(1− q) δdn = π1.

This is the same as the expression in the proof of Proposition 12, with the only difference that we

have now n̂x (θ) = R(θ+x)−(1−k)r2

R(θ+x)
(1−k)
L
−(1−k)r2

instead of n̂ (θ). Substituting in the expression above n̂x (θ)

and solving with respect to θ, we obtain the expression (28) in the proposition. It is easy to see

that the comparative statics with respect to q and δ is the same as in the proof of Proposition 12.

Furthermore, it is straightforward that ∂θ∗xδ
∂x = −1, which completes the proof. �

Proof of Proposition 15: We consider separately the case when 1− k ≤ L and when 1− k > L.

We start from the former. From Proposition 14, the run threshold when 1− k ≤ L is the same as

in the economy without deposit insurance. Since deposit insurance only affects bank profits via the

run threshold, the FOC for q is the same as (16), thus implying that
dq
δx
dx is the same as the one

characterized in Proposition 6.

Consider now the case when 1−k > L. Again, as the deposit insurance only affects bank profits

via the run threshold, q∗δx is given by the solution to (17), but with θ
∗
xδ instead of θ

∗
x. As in the

proof of Proposition 6, the sign of dq
∗
δx
dx is given by the sign of the derivative of the FOC for q with

respect to x, which is equal to:

−α
[
∂θ∗δx
∂x

+
∂2θ∗δx
∂q∂x

q

]
[R (θ∗δx + x)− (1− k) r2] + α

∫ 1−x

θ∗δx

Rdθ − α∂θ
∗
δx

∂q
qR

[
∂θ∗δx
∂x

+ 1

]
.

From Proposition 14, we know that ∂θ∗δx
∂x = −1, which, in turn, implies that ∂2θ∗δx

∂q∂x =
∂2θ∗δx
∂x∂q = 0.

Then, the expression above simplifies to

−α∂θ
∗
δx

∂x
[R (θ∗δx + x)− (1− k) r2] + α

∫ 1−x

θ∗δx

Rdθ > 0.
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Hence, dq
∗
δx
dx > 0 and the proposition follows. �

12 Appendix B: Alternative bankruptcy cost assumptions

In this section, we modify our assumption concerning the application of bankruptcy costs. Specif-

ically, we consider two polar cases. First, we consider an economy in which full bankruptcy costs

are also present at date 1. Second, we replicate the analysis in the absence of bankruptcy costs,

which implies that depositors receive a pro-rata share of the bank available resources both at date

1 and 2.

12.1 Bankruptcy costs at date 1 and 2

In this section, we are going to introduce bankruptcy costs at date 1 so that, whenever the bank

is not able to repay the promised repayment r1 = 1 to all withdrawing depositors, they get a zero

repayment. This modification alters the expected payoff at date 1, which we denoted as π1 in the

main text as follows:

πB11 =

∫ n= L
(1−k)r1

0
r1dn+

∫ 1

n
0dn =

L

1− k .

We consider separately the case in which the guarantees is lost in the bankruptcy procedure and

that in which it is instead bankruptcy protected. We start from the former.

12.1.1 First-loss guarantee scheme

In this section, we consider the scenario in which the guarantees is lost in the bankruptcy procedure.

The derivations of the run thresholds θx and θ
∗
x are as in the main text, with the only difference

that in the expression for θ∗x, we have π
B1
1 instead of π1. The same applies to the choice of the

underwriting effort, which is still given by q
x
as a solution to

1

2

∫ θx

0
R (θ + x)

(
1− (1− k)

L

)
dθ+

1

2

∫ 1−x

θx

[R (θ + x)− (1− k) r2] dθ+
1

2

∫ 2

1−x
[R− (1− k) r2] dθ−cq = 0

(57)

when 1− k ≤ L and q∗x when 1− k > L as a solution to

1

2

∫ 1−x

θ∗x

[R (θ + x)− (1− k) r2] dθ+
1

2

∫ 2

1−x
[R− (1− k) r2] dθ−1

2

∂θ∗x
∂q

q [R (θ∗x + x)− (1− k) r2]−cq = 0.

(58)

Since θx is not affected by the introduction of bankruptcy costs at date 1, the results concerning

the effect of the introduction of the guarantees on q
x
go through as in the main text whenever

(1− k) r1 ≤ L.
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Consider now the case in which 1−k > L, for which the relevant run threshold θ∗x is now slightly

different from the one in the main text since it includes πB11 instead of π1. Differentiating (58) with

respect to x, we obtain

− 1

2

∂θ∗x
∂x

q [R (θ∗x + x)− (1− k) r2] +
1

2

∫ 1−x

θ∗x

Rdθ − 1

2

∂2θ∗x
∂q∂x

q [R (θ∗x + x)− (1− k) r2]

− 1

2

∂θ∗x
∂q

q
∂θ∗x
∂x

R− 1

2

∂θ∗x
∂q

qR.

Yes, it is easy to see that the change in depositors’expected repayment at date 1 does not affect

the properties of the run threshold θ∗x since
∂θ∗x
∂x = −1 and ∂2θ∗x

∂q∂x = ∂2θ∗x
∂x∂q = 0. Hence, the expression

above simplifies to

+
1

2
q [R (θ∗x + x)− (1− k) r2] +

1

2

∫ 1−x

θ∗x

Rdθ > 0,

which is the same we have in the main text. Hence, the result that ∂q∗x
∂x > 0 holds true also in the

case with bankruptcy costs at date 1.

12.1.2 Bankruptcy-protected guarantee scheme

In this case, we consider the scenario in which the guarantees x is protected from bankruptcy. As

no guarantee is paid at date 1, the introduction of the bankruptcy costs in case the bank is unable

to repay r1 = 1 only alters the expected payoff at date 1 and does not directly interact with the

guarantee. This implies that the run risk in the presence of a first-loss guarantee x whose transfers

are protected in bankruptcy is still given by θPx = θx when 1− k ≤ L, which, in turn, implies that

the result still goes through as in the main text for well-capitalized banks.

Consider now the case when 1− k > L. The run threshold θ∗Px is given by solution to

πB11 =

∫ n̂x(θ)

0
qr2dn+

∫ n

n̂x(θ)
q
Rx
(

1− n (1−k)
L

)
(1− n) (1− k)

dn+

∫ n

0
(1− q)

Rx
(

1− n (1−k)
L

)
(1− n) (1− k)

dn. (59)

It is easy to see that, since the introduction of bankruptcy costs at date 1 only affects depositors’

expected payoff at date , as given by the LHS in the expression above, the properties of the run

threshold are the same as in the main text, i.e., ∂θ
∗P
x
∂x ,

∂θ∗Px
∂q and

∂2θ∗Px
∂x∂q are as in the baseline model.

Using the same arguments as in the previous section, it follows that the results of our baseline

model go through also when introducing bankruptcy costs at date 1.

12.2 No bankruptcy costs at either date

In this section, we assume that, contrary to the main text, there are no bankruptcy costs at either

date 1 or at date 2. This implies that depositors receive a pro-rata share of the bank’s available
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resources when the bank is unable to repay the promised payment both at dates 1 and 2. As we

show below, while this modification complicates the analysis substantially, all the main results go

through. In what follows, we proceed in steps. First, we characterize the thresholds when the bank

either experiences a run or goes bankrupt at date 2. Then, we characterize the effect of a loan

guarantee on bank underwriting incentives.

In the absence of bankruptcy costs at date 2, bank profits depend on whether the bank faces

a run (either fundamental or panic driven) or whether it goes bankrupt at date 2. The following

lemma describes the thresholds characterizing these three different cases.

Lemma 4 Denote θBx as the threshold below which the bank is unable to repay the promised date

2 payment to depositors, and θx and θ
∗
x as the run thresholds when 1 − k ≤ L and 1 − k > L,

respectively. Then, we have the following:

1. The solvency threshold θBx solves R (θ + x)− (1− k) r2 = 0 and is equal to

θBx =
(1− k) r2

R
− x. (60)

2. The fundamental run threshold θx solves q
R(θ+x)

1−k = 1 and is given by

θx =
(1− k)

qR
− x. (61)

3. The panic run threshold θ∗x solves∫ n̂x(θ)

0
qr2dn+

∫ n

n̂x(θ)
q
R (θ + x)

(
1− n (1−k)

L

)
(1− n) (1− k)

dn+ (1− q)
∫ n

0

Rx
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− π1 = 0,

(62)

where n̂x (θ∗) and n are defined in the proof and π1 =
∫ n

0 dn+
∫ 1
n

L
(1−k)ndn.

Proof. 4: The proof proceeds in steps.

Step 1: Characterization of the solvency threshold θBx and the fundamental run

threshold θx: The characterization of the solvency threshold θ
B
x is straightforward and follows

directly from the condition R (θ + x)− (1− k) r2 = 0. As in the baseline model, we pin down the

fundamental run threshold as the upper bound of the lower dominance region, i.e., the region where

running is a dominant strategy. Under the assumption that no one else runs, a depositor never

finds it optimal to run when θ > θBx as in this case he expects to receive qr2 ≥ 1. This implies that

running can only be a dominant strategy for lower values of θ, i.e., θ < θx < θBx . When θ < θBx , a

depositor expects to receive the pro-rata share qR(θ+x)
1−k at date 2. Running is then optimal when the
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pro-rata share falls below the date 1 repayment. At the threshold θx, the date 1 and 2 repayments

are identical as given by the condition qR(θ+x)
1−k = 1.

Step 2: Characterization of the panic run threshold θ∗x: We follow the same steps as in

the main text, starting with the characterization of the two conditions pinning down {s∗x, θ∗x}:

R (θ∗x + x)

(
1− n (θ∗x, s

∗
x) (1− k)

L

)
− (1− n (θ∗x, s

∗
x)) (1− k) r2 = 0 (63)

and

qr2 Pr (θ > θ∗x| s∗x) + qRE[θ∗x < θ > θn| s∗x]

(
1−n(θ,s∗x)

(1−k)
L

)
(1−n(θ,s∗x))(1−k)

+ (1− q)
Rx
(

1−n(θ,s∗x)
(1−k)
L

)
(1−n(θ,s∗x))(1−k) Pr (θ < θn| s∗x) = 1 Pr (θ > θn| s∗x) + L

(1−k)n(θ,s∗x) Pr (θ < θn| s∗x) ,

(64)

where θn = s∗x+ε−2ε L
1−k represents the level of θ for which the bank liquidates the entire portfolio

at date 1 and, thus, is equal to the solution to

n (θn, s
∗
x) (1− k) = L.

Condition (63) identifies the level of fundamentals, θ∗x, at which the bank is at the brink of insolvency

at date 2 when n (θ∗x, s
∗
x) > 0 depositors run, for given s∗x. Condition (64) is depositors’indifference

condition: the LHS represents a depositor’s expected utility from withdrawing at date 2, while

the RHS represents the expected utility from withdrawing at date 1. This condition pins down s∗x

given θ∗x (s∗x) from (63), so that together the two equations characterize the equilibrium withdrawal

decisions {s∗x, θ∗x}. To obtain the expression (62) in the proposition, where n̂x (θ∗x) solves (63) and

n solves

(1− k)n = L,

we perform a change of variable by defining θ∗x (n) = s∗x + ε (1− 2n) and then take the limit when

ε→ 0, so that θ∗x (n)→ s∗x.

Having characterized the two run thresholds θx and θ
∗
x, we can follows the same steps as in the

baseline model to establish that the relevant threshold is θx when 1−k ≤ L and θ∗x when 1−k > L.

To this end, we start assuming 1 − k = L. In this case π1 ≡
∫ n

0 dn +
∫ 1
n

L
(1−k)ndn = 1 and (63)

simplifies to

(1− n) [Rθ − (1− k) r2] ,

which is positive for θ > θBx and negative for θ < θBx for any n < 1. It follows that running is

optimal when θ < θx, irrespective of n. This implies that the relevant run threshold is θx when
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1−k = L. Since θx is decreasing in 1−k, condition (63) becomes less binding for any n when 1−k

falls below L. This implies that θx is still the relevant run threshold when 1− k < L.

Consider now the case when 1 − k > L. Since (63) is increasing in θ, it follows that θ∗x > θx

when 1 − k > L. However, as 1 − k → L, we know that qr2 → 1 from depositors’participation

constraint being satisfied with equality. This completes the proof and the lemma follows. �
The lemma shows that, unlike in the baseline model, a depositor’s decision to run is no longer

driven by the bank’s solvency condition when 1 − k ≤ L. This occurs because, when the bank is

unable to repay the promised r2 at date 2, depositors receive a pro-rata share of the bank’s available

resources. This implies that, relative to the baseline model, they have less incentives to run and,

as a result, θx < θBx .

When 1−k > L, depositors find it optimal to run when θ falls below θ∗x. Again, since depositors

receive a pro-rata share if the bank goes bankrupt at date 2, the panic run threshold is now lower

than in the baseline model. It is also potentially lower than the solvency threshold θB. Whether

θBx ≷ θ∗x depends on the level of bank capital. In the limiting case when k → 0 and x→ 0, θ∗x → 1,

while θBx << 1. Hence, θ∗x > θBx in that case. At the other extreme, when 1− k → L, both θ∗x → θx

and θBx → θx since, in this case, qr2 → 1. This means that θ∗x → θBx . For intermediate values of k,

there exist parameters consistent with θ∗x > θBx and with θ
∗
x < θBx . We thus proceed to analyze the

effect of the loan guarantee on bank underwriting standards in either case.

As in the baseline model, the bank chooses q so as to maximize expected profits. When 1−k ≤ L,

the bank sets qx as the solution to

max
q

Π = α

∫ θx

0
qR (θ + x)

(
1− 1− k

L

)
dθ + α

∫ 1−x

θx

q [R (θ + x)− (1− k) r2] dθ

+ α

∫ 1

1−x
q [R− (1− k) r2] dθ + (1− α)

∫ 2

1
q [R− (1− k) r2] dθ − cq2

2
. (65)

When 1− k > L, the bank chooses qx as the solution to

max
q

Π = α

∫ 1−x

max{θBx ,θ∗x}
q [R (θ + x)− (1− k) r2] dθ + α

∫ 1

1−x
q [R− (1− k) r2] dθ

+ (1− α)

∫ 2

1
q [R− (1− k) r2] dθ − cq2

2
(66)

We have the following result.

Proposition 16 The impact of a first-loss guarantee x on bank underwriting effort when there are

no bankruptcy costs is as follows:

a) When 1− k ≤ L, introducing x increases bank underwriting effort, i.e., dqxdx > 0;
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b) When 1 − k > L, the bank fails if θ < max
{
θBx , θ

∗
x

}
. There exists a value of k denoted as

k̂x < 1−L such that introducing x reduces bank effort for k < k̂x, while increasing it as k → 1−L:
dqx
dx < 0 for k < k̂x and

dqx
dx > 0 for k → 1− L.

Proof. 16: We consider separately the three cases, starting from the case when 1 − k ≤ L.

Differentiating (65) with respect to q, we obtain the FOCqx as follows:

α
∫ θx

0 R (θ + x)
(
1− 1−k

L

)
dθ + α

∫ 1−x
θx

[R (θ + x)− (1− k) r2] dθ + α
∫ 1

1−x [R− (1− k) r2] dθ

+ (1− α)
∫ 2

1 [R− (1− k) r2] dθ + α
∂θx
∂q qR (θx + x)

(
1− 1−k

L

)
− cq = 0

,

where ∂θx
∂q = − (1−k)

q2R
. The effect of x on qx can be computed using the implicit function theorem,

i.e., dqxdx = −
∂FOCqx

∂x
∂FOCqx

∂q

. Given that qx is an interior solution and so
∂FOCqx

∂q < 0, the sign of dqxdx is

equal to the sign of ∂FOCqx∂x . This is equal to the following expression:

∂FOCqx
∂x

=α

∫ θx

0
R

(
1− 1− k

L

)
dθ + α

∫ 1−x

θx

[R− (1− k) r2] dθ + α
∂θx
∂x

R (θx + x)

(
1− 1− k

L

)
+ α

∂θx
∂q

qR
∂θx
∂x

(
1− 1− k

L

)
+ α

∂θx
∂q

qR

(
1− 1− k

L

)
= α

∫ θx

0
R

(
1− 1− k

L

)
dθ + α

∫ 1−x

θx

[R− (1− k) r2] dθ − αR (θx + x)

(
1− 1− k

L

)
= α

∫ 1−x

θx

(R− (1− k) r2) dθ − αRx
(

1− 1− k
L

)
.

Using θx = (1−k)
qR − x, the expression above can be further rearranged as follows:

∂FOCqx
∂x

= αR

[
1− x− (1− k)

qR
+ x− x+

(1− k)

L

]
− α (1− k) r2

[
1− x− (1− k)

qR
+ x

]
= αR

[
1− x− (1− k)

qR
+

(1− k)

L

]
− α (1− k) r2

[
1− (1− k)

qR

]
,

where 1 − x − (1−k)
qR + (1−k)

L > 1 − (1−k)
qR > 0 for all x < (1−k)

L . Since we restrict our analysis to

the case where x < 1−k
R , and since 1−k

R < 1−k
L , it follows that ∂FOCqx

∂x > 0 and so dqx
dx > 0 when

1− k ≤ L.

Consider now the case when 1 − k > L. We start by assuming that θ∗x > θBx . In this case, the

FOCq is equal to

α
∫ 1−x
θ∗x

[R (θ + x)− (1− k) r2] dθ + α
∫ 1

1−x [R− (1− k) r2] dθ + (1− α)
∫ 2

1 [R− (1− k) r2] dθ

−α∂θ
∗
x

∂q q [R (θ∗x + x)− (1− k) r2]− cq = 0.
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Then, differentiating the expression above with respect to x, we obtain

−α∂θ
∗
x

∂x
[R (θ∗x + x)− (1− k) r2]+α

∫ 1−x

θ∗x

Rdθ−α∂θ
∗
x

∂q

∂θ∗x
∂x

qR−α∂θ
∗
x

∂q
qR−α ∂

2θ∗x
∂q∂x

q [R (θ∗x + x)− (1− k) r2] ,

which can be further rearranged as

−α
[
∂θ∗x
∂x

+
∂2θ∗x
∂q∂x

q

]
[R (θ∗x + x)− (1− k) r2]− α∂θ

∗
x

∂q

∂θ∗x
∂x

qR+ α

∫ 1−x

θ∗x

Rdθ − α∂θ
∗
x

∂q
qR. (67)

Rearranging the terms, we obtain:

−α
[
∂θ∗x
∂x

+
∂2θ∗x
∂q∂x

q

]
[R (θ∗x + x)− (1− k) r2]− αqR∂θ

∗
x

∂q

(
∂θ∗x
∂x

+ 1

)
+ α

∫ 1−x

θ∗x

Rdθ (68)

As in the case of bankruptcy-protected guarantees, we consider the limiting case when k → 0 and

x→ 0. Given the indifference condition pinning down θ∗x, we compute
∂θ∗x
∂x as follows:

∂θ∗x
∂x = −

∂n̂x(θ∗x)
∂x

q

r2−R(θ∗x+x)
(
1−n̂x(θ∗x) (1−k)L

)
(1−n̂x(θ∗x))(1−k)

+
∫ n
n̂x(θ∗x) q

R

(
1−n (1−k)

L

)
(1−n)(1−k) dn+(1−q)

∫ n
0

R

(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂x(θ∗x)
∂θ

q

r2−R(θ∗x+x)
(
1−n̂x(θ∗x) (1−k)L

)
(1−n̂x(θ∗x))(1−k)

+
∫ n
n̂x(θ∗x) q

R

(
1−n (1−k)

L

)
(1−n)(1−k) dn

−1− 1−q
q

∫ n
0

R

(
1−n (1−k)

L

)
(1−n)(1−k) dn

∫ n
n̂x(θ∗x)

R

(
1−n (1−k)

L

)
(1−n)(1−k) dn

< −1

since r2−
R(θ∗x+x)

(
1−n̂x(θ∗x)

(1−k)
L

)
(1−n̂x(θ∗x))(1−k) = 0 from the definition of n̂x (θ∗x) and ∂n̂x(θ∗x)

∂x ≡ ∂n̂x(θ∗x)
∂θ being equal

to
∂n̂x (θ∗x)

∂x
=

R

R (θ∗x + x) (1−k)
L − (1− k) r2

[
1− n̂x (θ∗x)

(1− k)

L

]
> 0.

Similarly, we can compute

∂θ∗x
∂q

= −
∫ n̂x(θ)

0 r2dn+
∫ n
n̂x(θ)

R(θ+x)
(

1−n (1−k)
L

)
(1−n)(1−k) dn−

∫ n
0

Rx
(

1−n (1−k)
L

)
(1−n)(1−k) dn

∂n̂x(θ∗x)
∂θ q

[
r2 −

R(θ∗x+x)
(

1−n̂x(θ∗x)
(1−k)
L

)
(1−n̂x(θ∗x))(1−k)

]
+
∫ n
n̂x(θ∗x) q

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn

< 0,

which is similar to what is obtained in the baseline model.

Since ∂θ∗x
∂x < −1 and ∂θ∗x

∂q < 0, the second term in (68) is negative. The third term, which is

positive, goes to zero as θ∗x → 1. This only leaves the first term to sign, which requires to compare

the cross partial, ∂
2θ∗x
∂q∂xq to

∂θ∗x
∂x . A suffi cient condition for the negative effect of the introduction of

the guarantees on bank underwriting incentives, in line with the baseline model with the case of
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the bankruptcy-protected guarantee scheme, is that ∂θ
∗
x

∂x + ∂2θ∗x
∂q∂xq > 0. To this end, we compute ∂θ∗x

∂x∂q

as follows:

∂2θ∗x
∂x∂q

= −−q − 1 + q

q2

∫ n
0

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn∫ n

n̂x(θ∗x)

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn

−
(1− q)

∫ n
0

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn

q

[∫ n
n̂x(θ∗x)

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn

]2

∂n̂x (θ∗x)

∂θ

∂θ∗x
∂q

R
(

1− n̂x (θ∗x) (1−k)
L

)
(1− n̂x (θ∗x)) (1− k)

=
1

q2

∫ n
0

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn∫ n

n̂x(θ∗x)

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn

− 1− q
q

∫ n
0

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn[∫ n

n̂x(θ∗x)

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn

]2

∂n̂x (θ∗x)

∂θ

∂θ∗x
∂q

R
(

1− n̂x (θ∗x) (1−k)
L

)
(1− n̂x (θ∗x)) (1− k)

> 0.

Hence, to prove that dq∗x
dx < 0 when k → 0 and x → 0, we only need to establish that

∣∣∣ ∂2θ∗x∂x∂q

∣∣∣ >∣∣∣∂θ∗x∂x ∣∣∣. From the expression for ∂θ∗x
∂x , we can write −

1−q
q

∫ n
0

R

(
1−n (1−k)

L

)
(1−n)(1−k) dn

∫ n
n̂x(θ∗x)

R

(
1−n (1−k)

L

)
(1−n)(1−k) dn

= +1 +
∂θ∗xNB
∂x and

1
q

∫ n
0

R

(
1−n (1−k)

L

)
(1−n)(1−k) dn

∫ n
n̂x(θ∗x)

R

(
1−n (1−k)

L

)
(1−n)(1−k) dn

= − 1
1−q

∂θ∗x
∂x −

1
1−q , which allows us to rewrite the expression above as

∂2θ∗x
∂x∂q

= −1

q

1

1− q
∂θ∗x
∂x
− 1

q (1− q) +
∂n̂x (θ∗x)

∂θ

∂θ∗x
∂q

R
(

1− n̂x (θ∗x) (1−k)
L

)
(1− n̂x (θ∗x)) (1− k)

+
∂θ∗x
∂x

∂n̂x (θ∗x)

∂θ

∂θ∗x
∂q

R
(

1− n̂x (θ∗x) (1−k)
L

)
(1− n̂x (θ∗x)) (1− k)

.

Now, we substitute the expression for ∂2θ∗x
∂x∂q into the

[
∂θ∗x
∂x + ∂2θ∗x

∂q∂xq
]
in (68) and obtain

− q

1− q
∂θ∗x
∂x
− 1

(1− q) + q
∂n̂x (θ∗x)

∂θ

∂θ∗x
∂q

R
(

1− n̂x (θ∗x) (1−k)
L

)
(1− n̂x (θ∗x)) (1− k)

[
1 +

∂θ∗x
∂x

]
.

The first and last terms are positive since ∂θ∗x
∂x < −1. A suffi cient condition for the whole expression

above to be positive is that ∣∣∣∣∂θ∗x∂x
∣∣∣∣ < 1

q
⇐⇒ −∂θ

∗
x

∂x
− 1

q
> 0,

which implies that the first and second term sum up to a positive. Recall that

∂θ∗x
∂x

= −1− 1− q
q

∫ n
0

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn∫ n

n̂x(θ∗x)

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn

.

Hence we need to show that

1 +
1− q
q

∫ n
0

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn∫ n

n̂x(θ∗x)

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn

− 1

q
> 0⇐⇒ 1− q

q

∫ n
0

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn∫ n

n̂x(θ∗x)

R
(

1−n (1−k)
L

)
(1−n)(1−k) dn

>
1− q
q

.
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The inequality above holds true since
∫ n
0

R

(
1−n (1−k)

L

)
(1−n)(1−k) dn

∫ n
n̂x(θ∗x)

R

(
1−n (1−k)

L

)
(1−n)(1−k) dn

> 1. Then, it follows that ∂θ
∗
x

∂x + ∂2θ∗x
∂q∂xq > 0

as desired and the rest of the proof for the case k → 0 and x → 0 follows as in the case with

bankruptcy- protected guarantees.

The final case is when θBx > θ∗x, which, as argued above, can only be true for k >> 0. In this

case, the FOCq is equal to

α

∫ 1−x

θBx

[R (θ + x)− (1− k) r2] dθ+α

∫ 1

1−x
[R− (1− k) r2]+(1− α)

∫ 2

1
[R− (1− k) r2] dθ−cq = 0,

since the derivatives of the extremes of the integrals cancel out based on the definition of θBx . Taking

the derivative with respect to x, we obtain

−α∂θ
B
x

∂x

[
R
(
θBx + x

)
− (1− k) r2

]
dθ + α

∫ 1−x

θBx

Rdθ > 0,

since
[
R
(
θBx + x

)
− (1− k) r2

]
= 0 from the definition of θBx . Hence, x increases underwriting

standards in this case and the proposition follows. �
The results in Proposition 16 shows that the results in the main text are robust to the absence

of bankruptcy costs. Specifically, the results in Proposition 16 mirror the ones in the main text for

the case of bankruptcy-protected guarantees, which state that the introduction of the guarantees

generally leads to an improvement in bank underwriting standards, except for those banks with

a low level of capital for which the probability of a panic run is significant. Furthermore, the

analysis in Proposition 16 also shows that the general beneficial effect of loan guarantees on bank

underwriting incentives continue to hold also when the relevant threshold for the bank is θBx . This

demonstrates overall that assuming full bankruptcy costs at date 2 does not qualitatively affects

the results, while it significantly simplifies the analysis.

12.3 Comparative statics of θ∗ with respect to L as k → 0

As k → 0, the expression for θ∗ in (6) becomes

θ∗ = θ
qr2 − π1

qr2 − π1
1
L

where θ = r2
R and

π1 =

∫ L

0
dn+

∫ 1

L

L

n
dn = L

(
1 +

∫ 1

L

1

n
dn

)
.

Recall that θ∗ is bounded above by 1 since θ∗ < θ < 1. This implies that denominator is bounded

below by 0. Formally, we can then rewrite the expression for θ∗ as follows:
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θ∗ = θ
qr2 − π1

max
{
qr2 − π1

1
L , 0
}

Substituting the expressions for θ and π1 into that for θ∗ gives:

θ∗ =
r2

R

qr2 − L
(

1 +
∫ 1
L

1
ndn

)
max

{
qr2 − L

(
1 +

∫ 1
L

1
ndn

)
1
L , 0
} =

r2

R

qr2 − L
(

1 +
∫ 1
L

1
ndn

)
max

{
qr2 −

(
1 +

∫ 1
L

1
ndn

)
, 0
}

We now take the limit of the above expression as L→ 0, starting with the denominator. As L→ 0,

1 +
∫ 1
L

1
ndn→∞. Hence, the denominator goes to zero as L→ 0.

Consider now the numerator. It is useful to rearrange the second term as

L

(
1 +

∫ 1

L

1

n
dn

)
=

(
1 +

∫ 1
L

1
ndn

)
1
L

.

Using L’Hopital’s rule, the limit is equal to

lim
L→0

(
1 +

∫ 1
L

1
ndn

)
1
L

= lim
L→0

− 1
L

− 1
L2

= lim
L→0

L = 0.

This implies that as L→ 0, the numerator goes to qr2 ≥ 1, while the denominator goes to 0. Since
r2
R is bounded below by

1
R > 0, the entire expression approaches to +∞. Hence, for L small enough

θ∗ = 1.
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