
Naguib, Costanza; Gagliardini, Patrick

Working Paper

A semi-nonparametric copula model for earnings mobility

Discussion Papers, No. 23-02

Provided in Cooperation with:
Department of Economics, University of Bern

Suggested Citation: Naguib, Costanza; Gagliardini, Patrick (2023) : A semi-nonparametric copula
model for earnings mobility, Discussion Papers, No. 23-02, University of Bern, Department of
Economics, Bern

This Version is available at:
https://hdl.handle.net/10419/278294

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/278294
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

Faculty of Business, Economics 
and Social Sciences 
 Department of Economics 

A Semi-nonparametric Copula Model  
for Earnings Mobility 

 
 

Costanza Naguib, Patrick Gagliardini 
 
 

23-02 
 
 

January, 2023 

Schanzeneckstrasse 1  
CH-3012 Bern, Switzerland 
http://www.vwi.unibe.ch 

DISCUSSION PAPERS 



A Semi-nonparametric Copula Model for Earnings Mobility

Costanza Naguib,∗ Patrick Gagliardini†

Abstract

In this paper we develop a novel semi-nonparametric panel copula model with external covariates for

the study of wage rank dynamics. We focus on nonlinear dependence between the current and lagged

worker’s ranks in the wage residuals distribution, conditionally on individual characteristics. We

show the asymptotic normality of the Sieve estimator for our preferred mobility measure, which is an

irregular functional of both the finite- and infinite-dimensional parameters, in the double asymptotics

with N,T → ∞. We derive an analytical bias correction for the incidental parameters bias induced

by the individual fixed-effects. We apply our model to US data and we find that relative mobility

at the bottom of the distribution is high for workers with a college degree and some experience.

On the contrary, less-educated individuals are likely to remain stuck at the bottom of the wage rank

distribution year after year.

Keywords: Wage dynamics, rank, functional copula model, nonlinear autoregressive process, Sieve semi-

nonparametric estimation

JEL codes: C14, J31

1 Introduction

1 The aim of this paper is to specify and apply a novel semi-nonparametric model for individual earnings

dynamics. Our specific focus lies in relative mobility (see Shorrocks (1978), Fields and Ok (1999),

Bonhomme and Robin (2009), Cowell and Flachaire (2018)), i.e. the dynamics of the workers’ positions
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within the cross-sectional distribution of the residuals from a wage regression. The worker’s percentile

in this cross-sectional distribution is called wage residual rank. In contrast with the previous literature,

where fully parametric copulas have been used to model the joint distribution of the current and past

individual ranks2, we use a semi-nonparametric specification of the copula, conditionally on external

covariates. This flexible specification accommodates a rich variety of patterns of relative mobility as a

function of the past position of the worker and her individual characteristics. The (nonlinear) dependence

between current and past ranks, conditional on individual characteristics, defines relative mobility. While

our empirical analysis focus on the labor market, the modeling and estimation methodologies in this

paper are of more general interest for studying positional mobility.

The methodological contributions of this paper are manifold. The first one consists in the specification

of a novel copula family, which is parametrized by a function instead of a vector of unknown parameters.

This copula specification is inspired by a nonlinear nonseparable autoregressive model with uniform

invariant distribution. The copula functional parameter is the nonlinear autoregressive function of the past

rank. To introduce external covariates in a parsimonious way, the copula functional parameter depends

on a second argument, that is an index variable corresponding to a linear combination of the individual

regressors. This yields a semi-nonparametric specification for the individual dynamics of the ranks

conditionally on the observed characteristics in a panel framework. Second, based on this specification

we define functional measures of relative mobility, which are the partial derivatives of the conditional

median rank w.r.t. the value of the past rank. The larger the absolute value of such derivatives, the

smaller is the relative earnings mobility conditionally on covariates. The patterns of relative mobility are

controlled by the shape of the functional parameter of the copula. Third, we define simple-to-implement

estimators for the finite-dimensional and functional parameters of our model. In the first step, we obtain

wage residuals from a standard fixed effect panel regression and compute the corresponding empirical

ranks as percentiles of the empirical cross-sectional distribution. Then, in the second step we estimate the

semi-nonparametric copula specification with the method of Sieves, see e.g. Wong and Severini (1991),

Chen and Shen (1998), Ai and Chen (2003), Chen (2007). Because in the second step the likelihood

function involves empirical ranks, our theoretical developments share some similarity with the results

in Chen, Huang and Yi (2021) who apply Sieves estimation on GARCH filtered residuals. 3 Fourth,

we develop a theory of asymptotic normality for some functionals of the finite- and infinite-dimensional

parameters of interest, such as our preferred mobility measure, in a double panel asymptotics with both

the numbers of individuals N and time periods T tending to infinity. As in Chen, Liao and Sun (2014)

2see Joe (1997) and Nelsen (1999) for a background and a review of parametric copula specifications.
3In a similar vein, Chen, Xiao and Wang (2020) estimate a parametric copula specification on filtered residuals of a model

with nonstationary regressors.
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and Chen and Liao (2014), the functionals in our paper are irregular, i.e. their directional derivative

admits a Rietz representer with unbounded norm. Our estimation methodology suffers from an incidental

parameters bias, due to the individual fixed effects in the preliminary panel regression used to obtain the

wage residuals. 4 We characterize this asymptotic bias and we show how to perform an analytical bias

correction. The present paper hence lies at the intersection of the literature on parametric bias correction

in a panel framework and of that on semi-nonparametric Sieve estimation. Evidence from Monte Carlo

simulations, for designs mimicking our empirical analysis with an unbalanced dataset of individuals with

an average permanence in the sample of 15 years, shows that we can effectively correct up to 40-70% of

the bias in the estimated mobility measure depending on the setting.

In an empirical illustration we estimate our semi-nonparametric copula model on an unbalanced panel

dataset of US workers from the PSID in the period from 1968 to 1997. We find a relatively high degree

of positional persistence for workers with a low educational level in the bottom part of the wage residuals

distribution. On the other hand, in the same period there was high positional mobility for those workers

occupying a low position in the wage residual distribution but having a high educational level and several

years of experience. The above-mentioned differences in the mobility patterns for workers with different

characteristics are statistically significant. These results provide evidence for the existence of a wage

trap but only for workers with low educational level and/or scarce experience (proxied by age).

This paper is not the first one to use copulas for studying individual earnings dynamics. We build on the

pioneering work of Bonhomme and Robin (2009) who use a copula model to specify the dynamics of

the ranks of the transitory wage component. The joint distribution of the present and the past transitory

components is modeled by the authors via the one-parameter Plackett copula. The copula parameter

captures individual positional persistence conditionally on covariates, but the dependence between the

current and past ranks is rigidly defined by the chosen parametric copula family. We expand on the work

in Bonhomme and Robin (2009) by adopting a more flexible semi-nonparametric specification for the

copula. Moreover, we allow marginal distributions to depend on individual explanatory variables. In the

empirical application, we contrast the estimates from our model with those obtained with a parametric

copula. We provide empirical evidence to demonstrate that our semi-nonparametric approach improves

the understanding of the relative mobility patterns.

Copulas have been widely used for nonlinear time series modeling. In this context, copulas specify either

serial dependence in a univariate model (see e.g. Chen and Fan (2006 a) and Chen, Wu and Yi (2009) for

efficient semi-parametric estimation, and Beare (2010) for the study of temporal mixing properties, in a

4See e.g. Hahn and Newey (2004), Fernandez-Val and Vella (2011), Hahn and Kuersteiner (2011), Fernandez-Val and Lee

(2013), Fernandez-Val and Weidner (2016) for correcting the incidental parameter bias on a finite-dimensional parameter with

double panel asymptotics.
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copula Markov model), or contemporaneous dependence across innovations in a multivariate model (e.g.,

Chen and Fan (2006 b), Patton (2006), Härdle, Okhrin and Wang (2015), Chen, Huang and Yi (2021)),

or both cross-sectional and serial dependence (e.g. Rémillard, Papageorgiou and Soustra (2012)). Pat-

ton (2012) provides a review on copula models for economic time series. The setting of this paper is

similar to the first case focusing on temporal dependence, albeit in a panel framework with independent

individuals. The above references, as well as the vast majority of the literature, focus on parametric spec-

ifications for the copula, with nonparametric modeling of marginals. In this paper instead we consider

a copula involving a functional parameter in order to capture flexible patterns of dependence between

current and lagged endogenous variables. Chen, Koenker and Xiao (2009) examine the asymptotic prop-

erties of estimators for a copula-based quantile autoregressive model. The copula family is parametric,

with parameter dependent on the quantile level. In the conclusions the authors mention semi-parametric

modelling of the copula itself via the method of Sieves as a feasible strategy to expand the menu of the

currently available copula models. Such semi-parametric estimation is performed in the present work. In

fact, econometric analysis of copula densities with a functional parameter has received relatively scarce

attention in the literature. Gagliardini and Gourieroux (2007) discusses efficient non parametric estima-

tion in a framework without covariates, while Gagliardini and Gourieroux (2008) introduces a copula

time series model for duration variables based on a proportional hazard specification.

The remaining of the paper is structured as follows. Section 2 introduces the model for the joint dynamics

of the ranks and external covariates, and defines functional measures of relative mobility. Section 3 is

devoted to the estimators and their asymptotic properties. Section 4 reports the results of the Monte

Carlo simulations. Section 5 presents the dataset and the discussion of the estimation results on our

sample of US workers. Section 6 concludes. Appendices A and B provide the regularity conditions and

the proofs of the theoretical results, respectively. Appendix C concerns numerical implementation. In

the Supplementary Materials to the paper we present additional theoretical as well as empirical results.

2 A semi-nonparametric model for ranks dynamics

In the wake of the previous literature on individual earnings dynamics, we consider a two-step modeling

framework. We start from the following specification for the log wage:

yit = α′Xit + ηi + λt + εit (2.1)

for i = 1, ..., N and t = 1, ..., T , where yit is log annual wage of individual i in year t, Xit is a vector

of observable individual characteristics (including the constant), ηi is the individual effect, λt is the time

effect and εit is the residual. This model resembles the classical income decomposition proposed by
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Lillard and Willis (1978) in their seminal paper on earnings mobility and later adopted by Geweke and

Keane (2000). In equation (2.1), log earnings are expressed as the sum of different components. The

first one, i.e. α′Xit, in our empirical analysis is simply a polynomial of individual age, and hence can

be regarded as deterministic (i.e. it follows a pre-determined trend). Then, the individual fixed effect

ηi stands for worker-specific, time-invariant unobservable characteristics, and the time effect λt captures

year-specific aggregate shifts in the level of log wages due to business-cycle dynamics. Finally, the

residual εit represents the yearly fluctuations of log wage around the individual life-cycle and the macro

trends. 5 In the second step we focus on modeling the dynamics of the residual component εi,t. For this

purpose, we consider its rank, which is defined as

Ui,t = Fε,t(εi,t), (2.2)

where Fε,t(·) is the cross-sectional cumulative distribution function (cdf) of the residual component in

year t, which we assume to be continuous. By construction, the rank is uniformly distributed on [0, 1]

cross-sectionally at any date, and is interpretable as the individual percentile in the cross-sectional dis-

tribution of residuals. In the remainder of this section we specify a semi-nonparametric model for the

dynamics of the joint process (Uit, Xit) of ranks and individual observed characteristics. The fundamen-

tal difference between our approach and the vast majority of the existing literature on individual earnings

dynamics is that we model the dynamics of the ranks of the residuals instead of modelling the dynamics

of the residuals directly (which would correspond to the study of absolute mobility instead).

2.1 The general framework

We start by introducing the assumptions which define a general framework for the joint dynamics of

(Uit, Xit). We assume independence and identical distribution (iid) across individuals6.

Assumption 1. The processes {(Uit, Xit), t ∈ N}, for i = 1, ..., N , are i.i.d. across individuals.

Let us define Ut = (U1,t, ..., UN,t) and Xt = (X1,t, ..., XN,t). The sample density is:

l(UT , XT ) =

N∏
i=1

l(Ui,T , Xi,T ) =

N∏
i=1

T∏
t=1

l(Ui,t, Xi,t|Ui,t−1, Xi,t−1)

where l stands for the (conditional) density of a random vector, Ui,t−1 = (Ui,t−1, Ui,t−2, Ui,t−3, ...) and

UT = (UT , UT−1, UT−2, ...).

5We could adopt more sophisticated specifications for the wage decomposition in equation (2.1), e.g. introducing interactive

fixed effects and heteroskedasticity in the error terms.
6The independence across individual ranks implied by Assumption 1 might seem counterintuitive. We stress that this

assumption concerns the theoretical ranks in (2.2), i.e. ranks computed with respect to an infinite population. Therefore,

mechanical effects from ranks in finite populations are absent here.
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We focus on modelling the conditional density l(Ui,t, Xi,t|Ui,t−1, Xi,t−1) for a generic individual i. Let

us consider the following decomposition:

l(Uit, Xit|Ui,t−1, Xi,t−1) = l(Xit|Ui,t−1, Xi,t−1) · l(Uit|Ui,t−1, Xit). (2.3)

The distribution of the process (Uit, Xit) is thus characterized by two conditional densities, which are the

transition density of the rank given the regressors history, namely l(Uit|Xit, Ui,t−1), and the transition

density of the regressors given the past ranks, i.e.

l(Xit|Xi,t−1, Ui,t−1). (2.4)

We use the following Assumptions 2-5 on these conditional densities.

Assumption 2. Process (Uit) does not Granger cause process (Xit), for any individual i.

Granger non-causality is equivalent to Sims non-causality (see e.g. Gourieroux and Monfort (1995)

Property 1.2). Assumption 2 implies that the conditional density in (2.4) is such that:

l(Xit|Xi,t−1, Ui,t−1) = l(Xit|Xi,t−1). (2.5)

Hence, under Assumption 2, the past ranks do not affect the regressor dynamics, i.e. the individual

explanatory variables are exogenous.

Assumption 3. Process (Xit) is Markovian of first-order with transition density l(Xit|Xi,t−1) and

strictly stationary.

The first-order Markov property implies that Equation (2.5) can be further rewritten as:

l(Xit|Xi,t−1, Ui,t−1) = l(Xit|Xi,t−1). (2.6)

Assumption 4. The rank dynamics is such that: l(Uit|Xit, Ui,t−1) = l(Uit|Xit, Xi,t−1, Ui,t−1).

Assumption 4 implies that information about ranks and explanatory variables occurring before time t−1

is not relevant in determining the present rank Uit.

From Equations (2.3), (2.6) and Assumption 4 we get:

l(Uit, Xit|Ui,t−1, Xi,t−1) = l(Xit|Xi,t−1) · l(Uit|Ui,t−1, Xit, Xi,t−1). (2.7)

As a consequence, the joint process (Uit, Xit) is first-order Markov. Equation (2.7) yields functional

restrictions on the specification of the transition density of such joint process in our model. The two

transition densities of interest are

l(Uit|Ui,t−1, Xit, Xi,t−1) (2.8)
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and l(Xit|Xi,t−1). The latter is exogenously given, hence we will exclusively focus on the former one.

In order for the model to be consistent with the interpretation of Uit as a uniform rank, we need to ensure

that the unconditional density of Uit is uniform on [0, 1]:

Uit ∼ U(0, 1). (2.9)

In the next subsection we prove that, under Assumptions 1-4 and additional constraints on transition

density (2.8), the distributional property in (2.9) holds.

Finally, we need to impose an orthogonality condition between error terms and regressors to identify the

parameter vector α in equation (2.1).

Assumption 5. The joint distribution of covariates vector Xit and error term εit is such that

E[(Xit − X̄i·)(εit − ε̄i·)] = 0, t = 1, ..., T, ∀T, (2.10)

where X̄i· = 1
T

∑T
t=1Xit and similarly for ε̄i·.

Assumption 5 involves regressors and errors in difference from their time means because of the individual

effects in equation (2.1).

2.2 A specification based on copulas

In this subsection we introduce a nonparametric specification for transition density (2.8) based on a

copula model. We take advantage of copulas to match the distributional restriction in (2.9). Given

Assumption 1, for explanatory purpose we omit the subscript i in the following. Let c(·, ·; ρ) be a copula

probability density function (pdf) that is indexed by the functional parameter ρ = ρ(·), which possibly

depends on observable regressors. Let g(·|X) be a pdf of a random variable on the interval [0, 1], for any

value of X , and let G(·|X) be the corresponding cdf. We assume that g is such that:∫
g(U |X)l(X)dX = 1, ∀ U ∈ (0, 1), (2.11)

where l(·) denotes the stationary pdf of Xt. Further, let us define:

l(Ut|Ut−1, Xt, Xt−1) = g(Ut|Xt)c[G(Ut|Xt), G(Ut−1|Xt−1); ρ(·, Xt)], (2.12)

where ρ(·, Xt) is the functional copula parameter for given Xt. By a change of variable argument and

the copula property
∫ 1
0 c(u, v)du = 1, ∀v ∈ [0, 1], equation (2.12) defines a valid conditional density

function. Note that equation (2.12) is an hypothesis of the model, as it is not directly derived from

Assumptions 1-5 only. We come to the main result of this subsection.
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Proposition 1. Assume that the conditional distribution of ranks at date t = 0 is such that:

U0|X0 ∼ g(·|X0), (2.13)

and X0 is drawn from the stationary distribution of the regressors vector. Then, under Assumptions 1-5:

Ut ∼ U(0, 1) (2.14)

for all t ≥ 1.

The proof of this proposition is provided in Appendix B. Proposition 1 shows that, if the uniform rank

process is initialized with a conditional distribution g(·|X0) satisfying property (2.11), and the transition

density is as in (2.12), then the condition of standard uniform marginal distribution for the rank process

is met. In fact, the proof of Proposition 1 shows that g(Ut|Xt) is the conditional pdf of Ut given Xt at

any date t, and c(·, ·; ρ(·, Xt)) is the conditional copula pdf of (Ut, Ut−1) given Xt, Xt−1. Proposition 1

allows us to introduce a model which is compatible with the condition of uniform distribution for the rank

Ut, required for model coherency, in a very general framework. It applies to any copula family, possibly

with a functional parameter. This functional parameter, in turn, is allowed to depend on regressor Xt.

Note that we do not specify the distribution of Xt, since we aim at deriving a result that holds for any

process (Xt). The only requirement that we impose here is that exogenous process (Xt) is Markov and

stationary.

2.3 The nonparametric family of autoregressive copulas

In the previous section we have shown how to specify a joint dynamics for rank Ut and observable

regressor Xt, by means of a generic copula function that can be indexed by a functional parameter. In

this section we introduce a flexible nonparametric family of copula functions to be used in this setting.

These copula functions are inspired by nonlinear first-order autoregressive processes. We first specify

the model for the rank Ut without the exogenous regressor Xt and then show in a second step that the

regressor can be easily included as an argument of the copula functional parameter. Let us consider the

nonlinear autoregressive dynamics: 7

Ut = Λ[ρ(Ut−1) + ωt], (2.15)

7Introducing further lags of the ranks in the model would allow to have a better fit. However, with the increase in the

number of lags, the problem of increasing dimensionality would arise. Moreover, it would not be straightforward to continue

ensuring that the marginal distribution of the ranks is uniform on [0, 1] - a condition which is needed for model coherence - in

the presence of more than one lagged value of the ranks as arguments of the autoregressive function.
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where ωt ∼ IIN(0, 1), function Λ is strictly monotonic increasing, and ρ is a function that expresses

the dependence between the past and the present individual ranks. The variance of ωt is normalized

to 1. A non unit variance can be absorbed into functions ρ and Λ. The larger is the partial derivative

of the function ρ(·) with respect to the past rank, the higher the degree of positional persistence. Model

(2.15) defines a member of the Generalized Accelerated Failure Time (GAFT) class considered in Ridder

(1990) but in a dynamic framework. Also, function Λ−1 plays the role of the transformation function

in a transformation model (see e.g. Horowitz (1996)). Our focus here lies in the study of the copula

associated to this dynamic specification8. Equation (2.15) defines a time-homogeneous Markov process.

Let us now derive the conditions on functions ρ and Λ, such that (Ut) is a strictly stationary process with

unique invariant distribution, that is uniform on the interval [0, 1]. The conditional cdf is:

P [Ut ≤ u|Ut−1 = v] = P [ωt ≤ Λ−1(u)− ρ(v)] = Φ[Λ−1(u)− ρ(v)], (2.16)

where Φ denotes the cdf of standard Gaussian distribution. If we impose the property of uniform marginal

distribution by integrating out Ut−1, we get:

u = P [Ut ≤ u] = E[P (Ut ≤ u|Ut−1)] =

∫ 1

0
Φ[Λ−1(u)− ρ(v)]dv, (2.17)

for any u ∈ (0, 1). This yields:

Λ(y) =

∫ 1

0
Φ[y − ρ(v)]dv, (2.18)

for y ∈ R, i.e. function Λ(·) is univoquely determined by function ρ(·) under the condition of uniform

margins for the Markov process (Ut). We summarize the result in the next Proposition.

Proposition 2. For the Markov process defined by equation (2.15), the invariant distribution of Ut is

uniform on [0, 1] if, and only if, the function Λ(·) is given by the following expression:

Λ(y) =

∫ 1

0
Φ[y − ρ(v)]dv, (2.19)

for all y ∈ R.

Thus, the copula of (Ut, Ut−1) is completely characterized by function ρ. The copula is invariant to

shifts of the functional parameter ρ(·) → ρ(·) + c, for any constant c. We can normalize the parameter

by imposing the restriction ρ(u∗) = 0 for a given u∗ ∈ (0, 1).

8We could extend the specification to have a generic distribution for the error process ωt. This would lead to a copula family

characterized by two functional parameters.
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Let us now derive the copula pdf associated with the nonlinear autoregressive model (2.15). The nonlin-

ear autoregressive copula is the joint distribution of Ut and Ut−1. The copula pdf is given by:

c(u, v; ρ(·)) = ∂

∂u
P [Ut ≤ u|Ut−1 = v] =

φ[Λ−1(u)− ρ(v)]

λ[Λ−1(u)]
, (2.20)

for the arguments u, v ∈ [0, 1], where λ(y) =
∫ 1
0 φ[y − ρ(v)]dv is the derivative of function Λ and

φ = Φ′. This copula pdf is parameterized by function ρ(·). This copula family contains the Gaussian

copula with correlation parameter r/
√
1 + r2, for r ≥ 0, when ρ(v) = rΦ−1(v). 9 Hence, we get a non-

parametric copula family that extends the parametric Gaussian copula model providing more flexibility.

However, the copula family specified in equation (2.20) does not include any other commonly used

parametric copula families besides the Gaussian copula.

We combine the results from Subsections 2.2 and 2.3 to obtain our model. Specifically, first we rein-

troduce the individual index i. Second, we introduce the regressor vector Xi,t in the copula functional

parameter. This is possible since essentially any function ρ(·) is admissible as a parameter of the au-

toregressive copula. To cope with the curse of dimensionality in nonparametric estimation, we assume

an index model specification for the effect of the observable characteristics. Hence, from (2.12) the

conditional density of Uit given Ui,t−1, Xit, Xi,t−1 is:

l(Ui,t|Ui,t−1, Xi,t, Xi,t−1) = g(Ui,t|X ′
i,tβ1) · c[G(Ui,t|X ′

i,tβ1), G(Ui,t−1|X ′
i,t−1β1), ρ(·, X ′

i,tβ2)]

(2.21)

where g(·|X ′
i,tβ1) is the pdf of the distribution of the rank, conditional on the individual variables,

G(·|X ′
i,tβ1) is the corresponding cdf, c[·, ·, ρ(·, X ′

itβ2)] is the copula density in (2.20) with functional

parameter ρ(·, X ′
i,tβ2), and function Λ(·) replaced by

Λ(y;X ′
itβ2) =

∫ 1

0
Φ[y − ρ(v,X ′

itβ2)]dv. (2.22)

The model features two indexes, namely W1,it = X
′
itβ1 for the marginal univariate distribution, and

W2,it = X ′
itβ2 for the copula functional parameter, where β1, β2 ∈ R

p. The first index, which we

call marginal distribution score accounts for the role of the individual characteristics in determining the

worker’s position in the cross-sectional distribution at a generic date. On the other hand, the second

index, called mobility score, accounts for the role of the same variables in determining the degree of

mobility of the residual wage component.

To implement the constraints on the conditional density g to be positive and integrate to 1 across u, we

write the joint pdf of variables Ui,t andW1,it as h(u,w)2, for a square integrable function h of arguments

9Indeed, in this case we have Λ(y) = Φ

(
y√
1+r2

)
and equation (2.15) becomes Φ−1(Ut) =

1√
1+r2

(
rΦ−1(Ut−1) + ωt

)
.

10



u ∈ [0, 1] and w ∈ R. Then, we have g(u|w) = h(u,w)2
/ ∫ 1

0 h(u,w)
2du. We impose the condition

in (2.11), namely that the marginal distribution of Ui,t is uniform on interval [0, 1], by the moment

restrictions
∫ 1
0

∫∞
−∞ ulh(u,w)2dudw = 1

l+1 for all l = 0, 1, .... Thus, the parametrized log conditional

density becomes:

log l(Ui,t|Ui,t−1, Xi,t, Xi,t−1; θ) = log

(
h(Ui,t, X

′
i,tβ1)

2∫ 1
0 h(u,X

′
i,tβ1)

2du

)

+ log c

(∫ Ui,t

0 h(u,X ′
i,tβ1)

2du∫ 1
0 h(u,X

′
i,tβ1)

2du
,

∫ Ui,t−1

0 h(u,X ′
i,t−1β1)

2du∫ 1
0 h(u,X

′
i,t−1β1)

2du
, ρ(·, X ′

i,tβ2)

)
,

(2.23)

where parameter θ = (β1, β2, h, ρ) contains both the finite-dimensional vectors β1, β2 ⊂ R
p and the

infinite-dimensional parameters h ∈ Hh and ρ ∈ Hρ that live in the following functions spaces:

Hh =

{
h ∈ L2([0, 1]× R, 1) :

∫ 1

0

∫ ∞

−∞
ulh(u,w)2dudw =

1

l + 1
, l = 0, 1, ...

}
, (2.24)

and

Hρ =
{
ρ ∈ L2([0, 1]× R, q) : ρ ∈ Hs([0, 1]× R), ρ(u∗, w) = 0, ∀w ∈ R

}
, (2.25)

where L2([0, 1]×R, q) is the space of square integrable functions on [0, 1]×R w.r.t. weight q, Hs is the

Holder space of degree s ≥ 2 (see Chen (2007)), and u∗ ∈ (0, 1) is given. The true parameter values are

denoted as θ0 = (β01 , β
0
2 , h

0, ρ0) ∈ Θ, where the parameter set is Θ = B1 ×B2 ×Hh ×Hρ, and B1 and

B2 are compact subsets of Rp. For identification purpose, the coefficients in the indexes corresponding

to the constants are set to 1.

The model defined by (2.21) admits a stochastic nonlinear autoregressive representation. Indeed, let us

define the process:

Zit = G(Uit|X ′
itβ

0
1) (2.26)

The variables Zi,t, Zi,t−1 have the same copula as variables Ui,t, Ui,t−1, conditional onXi,t, Xi,t−1, with

uniform marginal distributions on [0, 1]. Thus, the stochastic representation of our model is as follows:

Zit = Λ[ρ(Zi,t−1, X
′
itβ

0
2) + ωit;X

′
itβ

0
2 ] (2.27)

where ωit ∼ IIN(0, 1) is independent of Xi,t, and function Λ(·;X ′
itβ

0
2) is given in (2.22). This corre-

sponds to a nonlinear autoreressive dynamics for Zit driven by the exogenous process Xit. Then, from

(2.26) the uniform ranks are Uit = G−1(Zit|X ′
itβ

0
1), where inversion is w.r.t. the first argument.

Our semi-nonparametric approach has practical advantages compared to fully nonparametric estimation

of the copula (Fermanian and Scaillet (2003)). In fact, in our model the copula is parametrized by a

11



bivariate unknown function ρ related to the serial persistency of ranks. The fully nonparametric ap-

proach involves instead a trivariate conditional copula function that may be hard to interpret and estimate

accurately.

Let us now establish explicitly the constraints imposed on the model parameter θ by the orthogonality

condition in Assumption 5.

Proposition 3. In the framework of model (2.23), Assumption 5 can be written as:∫ 1

0

∫ ∞

−∞
ψt(u,w)h(u,w)

2dudw = 0, ∀t = 1, ..., T, (2.28)

where ψt(u,w) = F−1
ε,t (u)E(Xi,t − X̄i·|W1,i,t = w)− 1

T

∑T
s=1 F

−1
ε,s (u)E(Xi,t − X̄i·|W1,i,s = w).

The condition (2.28) involves the parameter vector β1 (via variable W1it), function h, and the quantile

F−1
ε,t (·) of the cross-sectional error distribution, but not the copula vector and functional parameters β2

and ρ. Because distribution Fε,t(·) is unknown and has to be estimated, imposing restriction (2.28) on

the Sieve space complicates substantially the derivation of the asymptotic properties of the estimator.

For this reason we opt for an unconstrained estimator in Section 3.1 and test the empirical validity of

restriction (2.28) in Section 5.

2.4 A functional relative mobility measure

We now want to derive an adequate measure of positional mobility in our model. Let us write our

dynamics as a function of ranks Ui,t, Ui,t−1. From equations (2.26) and (2.27) we have:

Uit = G−1[Λ[ρ(G(Ui,t−1|X ′
i,t−1β1);X

′
itβ2) + ωit;X

′
itβ2] |X ′

itβ1] ≡ a(ωi,t, Ui,t−1, Xi,t, Xi,t). (2.29)

Function a is monotone increasing w.r.t. its first argument, that has a standard normal distribution. Thus,

the conditional median of Ui,t given Ui,t−1, Xit, Xi,t−1 is obtained as:

med(Uit|Ui,t−1;Xit, Xi,t−1) = a(0, Ui,t−1, Xi,t, Xi,t)

= G−1[Λ[ρ(G(Ui,t−1|X ′
i,t−1β1);X

′
itβ2);X

′
itβ2] |X ′

itβ1].

We define mobility as the partial derivative of the conditional median rank with respect to the past rank:

m(Ui,t−1;Xi,t, Xi,t−1) =
∂med(Uit|Ui,t−1, Xit, Xi,t−1)

∂Ui,t−1
. (2.30)

Hence, the mobility measure takes the following explicit form:

m(Ui,t−1;Xi,t, Xi,t−1) =
λ[ρ(G(Ui,t−1|X ′

i,t−1β1), X
′
itβ2);X

′
itβ2]

g{G−1[Λ[ρ[G(Ui,t−1|X ′
i,t−1β1);X

′
itβ2];X

′
itβ2] |X ′

itβ1] |X ′
i,tβ1}

×∇1ρ[G(Ui,t−1|X ′
i,t−1β1);X

′
itβ2]g(Ui,t−1|β′1Xi,t−1),

12



where ∇1ρ denotes the partial derivative of function ρ w.r.t. its first argument.

Definition 1. Let ū ∈ (0, 1) and x̄ ∈ R
p be given reference values for the percentile and the regressors.

The functional γ(θ) is defined as the mobility measure evaluated for Ui,t−1 = ū and Xi,t = Xi,t−1 = x̄,

i.e:

γ(θ) =
λ[ρ(G(ū|x̄′β1), x̄′β2); x̄′β2]∇1ρ[G(ū|x̄′β1); x̄′β2]g(ū|β′1x̄)

g{G−1[Λ[ρ[G(ū|x̄′β1); x̄′β2]; x̄′β2] |x̄′β1]|x̄′β1}
, (2.31)

where g(u|x̄′β1) = h(u, x̄′β1)2
/ ∫ 1

0 h(u, x̄
′β1)2du andG(u|x̄′β1) =

∫ u
0 h(y, x̄

′β1)2dy
/ ∫ 1

0 h(y, x̄
′β1)2dy.

This functional measure accounts for mobility in the different parts of the distribution of past ranks via

argument ū and for the effects of covariates. It depends on both functions h, ρ and vectors β1, β2. In fact,

it involves the gradient ∇1ρ(·, x̄′β2) of the autoregressive function, and accounts also for the transforma-

tion function Λ(·, x̄′β2) in the rank dynamics and its derivative λ(·, x̄′β2), as well as the rank conditional

distribution g(·|x̄′β1). Note that the expression in (2.31) provides rather an immobility measure, since

the larger its (absolute) value is, the stronger the association between the past and the present ranks is.

In addition to the conditional median rank and its partial derivative in (2.30), from the stochastic rep-

resentation of the model we can also easily derive the other conditional quantiles. They are interesting

quantities, since they provide us with further information on the conditional distribution of the present

rank. Moreover, their partial derivatives with respect to the past rank yield additional measures of rank

(im-)mobility. The conditional quantile QU,t(τ |Ui,t−1, Xit, Xi,t−1) of Uit for percentile τ ∈ (0, 1) is

given by

QU,t(τ |Ui,t−1, Xit, Xi,t−1) = a(Φ−1(τ), Ui,t−1, Xit, Xi,t−1)

= G−1[Λ[ρ(G(Ui,t−1|X ′
i,t−1β1);X

′
itβ2) + Φ−1(τ);X ′

itβ2] |X ′
itβ1].

(2.32)

In particular, for τ = 0.5 we get the conditional median. The relative mobility measure based on

quantiles is given by the partial derivative w.r.t. the past rank:

mQ(Ui,t−1, τ ;Xi,t, Xi,t−1) =
∂QU,t(τ |Ui,t−1, Xit, Xi,t−1)

∂Ui,t−1

=
λ[ρ(G(Ui,t−1|X ′

i,t−1β1) + Φ−1(τ), X ′
itβ2);X

′
itβ2]

g{G−1[Λ[ρ[G(Ui,t−1|X ′
i,t−1β1);X

′
itβ2] + Φ−1(τ);X ′

itβ2] |X ′
itβ1] |X ′

i,tβ1}
×∇1ρ[G(Ui,t−1|X ′

i,t−1β1);X
′
itβ2]g(Ui,t−1|β′1Xi,t−1).

In Section 5, we estimate such immobility measures on a dataset of US workers. 10

10We could also consider relative mobility measures based on the partial derivatives of the conditional expected ranks.
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2.5 Link with the literature on individual earnings dynamics

In this section we relate our model to the literature on individual earnings dynamics. A vast part of

this literature builds on the decomposition of the log wage yi,t = Pi,t + Ti,t as the sum of a permanent

and a transitory components, Pi,t and Ti,t, respectively. The transitory component is typically modelled

as either a white noise, or a moving average process. In early contributions, the permanent component

is modeled as a fixed effect, i.e. Pi,t = Pi (Lillard and Willis (1978), MaCurdy (1982), Abowd and

Card (1989)). In Blundell, Pistaferri and Preston (2008), Hryshko (2012), Jensen and Shore (2015),

Hu, Moffitt, and Sasaki (2019), among others, the permanent component follows a random walk, i.e.

Pi,t = Pi,t−1 + Ii,t, where Ii,t is the innovation of the random walk. Further, Meghir and Pistaferri

(2004) and Botosaru and Sasaki (2018) introduce conditional heteroschedasticity in the innovation of the

random walk driving the permament component. If we neglect for a moment the observed characteristics

Xi,t and the time effect λt, we can interpret the empirical specification in equation (2.1) as a reduced form

model, in which ηi = Pi,0 is the initial value of the permanent component, and εi,t =
∑t

s=1 Ii,s + Ti,t is

a superposition of the transitory component and the cumulated innovations of the permanent component.

We depart from this literature in that, instead of modeling the dynamics of εi,t through the structural com-

ponents Pi,t and Ti,t, we specify a semi-nonparametric model for the uniform ranks Ui,t. This modeling

choice is motivated by our focus on relative mobility as opposed to absolute mobility. Arellano, Blun-

dell, and Bonhomme (2017) consider a non-separable nonlinear dynamics for the permanent component.

They define a measure of nonlinear persistence as the derivative of the conditional quantile function of

the permanent component Pi,t w.r.t. the lagged value Pi,t−1. Our measure of relative mobility defined

as the partial derivative of the conditional quantile of the rank is a counterpart of their measure in our

framework.

As already remarked in the Introduction, our empirical focus on relative wage mobility modeled via a

copula makes our paper closer in spirit to Bonhomme and Robin (2009). The major difference between

that paper and ours is that Bonhomme and Robin (2009) consider a parametric copula family, namely

the Plackett copula (Plackett 1965), while our copula specification is semi-nonparametric. This choice is

dictated by our interest in discovering nonparametrically the patterns of dependence between the current

and past wage ranks. Relative mobility has been studied e.g. by Shorrocks (1978) and Cowell and

Flachaire (2018), with a theoretical focus on the properties of the rank ordering, as well as Formby et

al. (2004) and Van Kerm (2004). Other empirical work on relative mobility used transition matrices

However, they involve numerical integration and their analysis is more complex. Moreover, while the analysis in this section

focuses on the mobility of the residual component εit, in the Supplementary Materials we complete our study of functional

relative mobility measures by analyzing overall wage mobility.
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between deciles of the cross-sectional wage distribution, see e.g. Shorrocks (1978) 11.

Studies on individual labor earnings dynamics often distinguish between models with heterogeneous in-

come profiles (HIPs) vs. restricted income profiles (RIPs). The first class of models allows for substantial

unobserved heterogeneity in individual earnings dynamics, see e.g. Browning et al. (2010), Guvenen

(2009). Browning et al. (2010) find that allowance for latent heterogeneity is empirically relevant and

makes substantial difference to inferences of interest. On the other hand, for RIP specifications the co-

efficients of the dynamic models representing income dynamics are constant across individuals (for this

reason, this type of model is also called "homogeneous income profiles"). In our specification, labor in-

come profiles are homogeneous after controlling for observable characteristics, except for the individual

fixed effect included in equation (2.1). Hence, our model falls substantially within the RIP approach,

sharing this feature with the models in e.g. Bonhomme and Robin (2009), Hryshko (2012), Arellano,

Blundell and Bonhomme (2017) and several other contributions in the literature reviewed above. Includ-

ing unobserved heterogeneity in our semi-nonparametric copula specification is a challenging avenue for

future research.

3 Sieve semi-nonparametric estimation of the mobility model

In this section we estimate the semi-nonparametric copula model of Section 2. The estimation procedure

is defined in two steps. In a first step we estimate the unobservable values of the ranks Ui,t by means of

the empirical ranks. More specifically, the estimated ranks are:

Ûi,t =
1

N − 1

∑
j �=i

I(ε̂j,t ≤ ε̂i,t), (3.1)

where ε̂i,t = yi,t − α̂′Xi,t − η̂i − λ̂t is the residual in the wage equation (2.1) obtained from the fixed-

effects least squares estimator. In (3.1) we use a leave-one-out procedure for technical reasons. The

fixed effects estimator α̂ is consistent under Assumption 5 (see Lemma 1 a)). Then, in a second step,

we estimate the parameters of the marginal distribution of the ranks and those of the copula function

using the estimated ranks. The alternative procedure consisting in estimating jointly the wage equation

with individual fixed effects and the nonlinear rank dynamics is computationally challenging and is not

11Individual rank mobility differs from earnings volatility, i.e. the variance or standard deviation of earnings, or the expec-

tation of squared individual earnings changes, which has been studied, for example, by Gottschalk (1982, 1997), Meghir and

Pistaferri (2004) and Jensen and Shore (2015). It also differs from aggregate or "macro" mobility, i.e. the average degree of

wage mobility in a certain economy (Fields and Ok (1999)). This latter concept has been studied by e.g. Burkhauser and

Poupore (1997), Maasoumi and Trede (2001), Moffitt and Gottschalk (2002), Baker and Solon (2003), Auten et al. (2013), and

Kopczuk et al. (2010). Arellano, Blundell and Bonhomme (2017) propose relevant advances in the modellization of aggre-

gate mobility, by studying nonlinear persistence of the earnings process. The focus of the authors lies in macro-persistence of

income, i.e. evaluated at different (aggregate) percentiles.
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considered further in this paper. We estimate the rank distribution g(·|X ′
i,tβ1) =

h(·,X′
i,tβ1)2∫ 1

0 h(u,X′
i,tβ1)2du

and the

copula pdf c(·, ·, ρ(·, X ′
i,tβ2)) conditional on regressors via a simultaneous M-estimation of the parameter

vectors β1, β2 and the functions h(·, ·) and ρ(·, ·) using the method of Sieves, in the spirit of e.g. Wong

and Severini (1991) and Chen and Shen (1998) (see also Chen (2007) for a survey). The main idea of

this method, which has been first developed by Grenander (1981) and Geman and Hwang (1982), is to

estimate the unknown functions in the infinite-dimensional component of the parameter set by means of

approximating spaces generated by a set of basis functions, whose dimensions grow with sample size.

In our case, the estimation is performed via the following Sieve Maximum Likelihood procedure applied

on the empirical ranks. The estimator of θ is:

θ̂ = argmax
θ∈ΘN,T

1

NT

N∑
i=1

T∑
t=1

log l(Ûi,t|Ûi,t−1, Xi,t, Xi,t−1; θ), (3.2)

where the log conditional density log l is defined in (2.23), the set ΘN,T = B1 × B2 × Hh
N,T × Hρ

N,T

is the Cartesian product of the compact sets B1 and B2 for the Euclidean parameter vectors and Sieve

spaces Hh
N,T and Hρ

N,T for approximating functions in Hh and Hρ. We use here tensor products of

orthogonal series:

Hh
N,T =

⎧⎨
⎩h(·, ·) : h(u,w) =

mh∑
j,k=0

λj,kϕj(u)ψk(w),
mh∑

j,k,r=0

λj,kλr,kκ
(l)
j,r =

1

l + 1
, l = 0, 1, ...,mh

⎫⎬
⎭ ,

for κ
(l)
j,r =

∫ 1
0 u

lϕj(u)ϕr(u)du, and

Hρ
N,T =

⎧⎨
⎩ρ(·, ·) : ρ(u,w) =

mρ∑
j,k=0

μj,kϕj(u)ψ̃k(w),

mρ∑
j=0

μj,kϕj(u
∗) = 0, k = 0, 1, ...,mρ

⎫⎬
⎭ ,

where {ϕj}, {ψk}, {ψ̃k} are complete orthonormal bases of L2[0, 1], L2(R) and L2(R, q), respectively,

λj,k and μj,k are real coefficients, and integersmh = mh
N,T ,mρ = mρ

N,T grow withN,T (Chen (2007)).

The linear and quadratic constraints on coefficients μj,k and λj,k implement the restrictions on functions

ρ and h in (2.24) and (2.25). In the Monte Carlo study and the empirical application, we use ϕj(u) =

1√
2jj!

Hj [
Φ−1(u)√

2
] and ψj(w) = 1√

2jj!
√
π
e−w2/2Hj(w) and ψ̃j(w) = 1√

2jj!
√
π
Hj(w), where the Hj(·)

are the Hermite polynomials, and q(w) = e−w2
(see Appendix C for details on implementation of the

Sieve estimator). The estimator in (3.2) optimizes the log-likelihood function jointly with respect to the

parameters in the copula specification and the rank marginal distribution (conditional on the regressors).

An alternative approach not explored in this paper consists in considering a two-step Sieve estimator for

(β1, h) and (β2, ρ), see e.g. Hahn, Liao and Ridder (2018).
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Once the Sieve estimator θ̂ for the parameter of the rank dynamics is obtained from (3.2), we estimate the

functional mobility measures of Section 2.4 by plug-in. The estimated functional based on the derivative

of the median conditional rank (2.31) is given by:

γ̂ = γ(θ̂) =
λ̂[ρ̂(Ĝ(ū|x̄′β̂1), x̄′β̂2); x̄′β̂2]∇1ρ̂[Ĝ(ū|x̄′β̂1); x̄′β̂2]ĝ(ū|β̂′1x̄)

ĝ{Ĝ−1[Λ̂[ρ̂[Ĝ(ū; x̄′β̂1); x̄′β̂2]; x̄′β̂2] |x̄′β̂1] |x̄′β̂1}
, (3.3)

where ĝ(u|x̄′β̂1) = ĥ(u, x̄′β̂1)2
/∫ 1

0 ĥ(u, x̄
′β̂1)2du and λ̂(y; x̄′β̂2) =

∫ 1
0 φ[y − ρ̂(v; x̄′β̂2)]dv.

Note that the constraints implied by Proposition 3 are not imposed on estimator θ̂. Indeed, this would

yield a Sieve space depending on estimated (unknown) quantities, namely F̂ε,t and conditional expec-

tations, making the derivations of the asymptotic distribution considerably more involved. Instead, the

constraint (2.28) is empirically tested afterwards. The results of such test are reported at the end of

Section 5 on the empirical results.

3.1 Asymptotic distribution

We establish the asymptotic normality of estimator γ̂ in the panel asymptotics with N,T going to in-

finity jointly. This double asymptotics is standard in the literature on bias correction for the incidental

parameter problem (e.g. Hahn and Newey (2004), Fernandez-Val and Vella (2011), Hahn and Kuer-

steiner (2011), Fernandez-Val and Lee (2013), Fernandez-Val and Weidner (2016)). In our case T → ∞
together with N → ∞ implies a vanishing effect from estimating the true rank Ui,t with the empirical

rank Ûi,t. However, the estimation error induced by the individual effects when computing the residuals

ε̂i,t yields a bias term in the asymptotic distribution of estimator γ̂. We derive an explicit expression for

this bias in Theorem 1 below.

In order to state our result, we introduce the following objects. The “tangent" space V is the linear space

V = R
p×R

p×V
h×V

ρ, where Vh =
{
h ∈ L2([0, 1]× R) :

∫ 1
0

∫∞
−∞ ulh(u,w)h0(u,w)dudw = 0, l = 0, 1, ...

}
and V

ρ = Hρ. It corresponds to the linear space of infinitesimal deviations from θ0 belonging to Θ. This

linear space is equipped with the scalar product

〈v, v∗〉 = v′β1
v∗β1

+ v′β2
v∗β2

+

∫ 1

0

∫ ∞

−∞
vh(u,w)v

∗
h(u,w)dudw +

∫ 1

0

∫ ∞

−∞
vρ(u,w)v

∗
ρ(u,w)q(w)dudw

for v = (vβ1 , vβ2 , vh, vρ) ∈ V and v∗ = (v∗β1
, v∗β2

, v∗h, v
∗
ρ) ∈ V, which combines the Euclidean scalar

product for the finite-dimensional part with the (weighted)L2 scalar products for the infinite-dimensional

components. The associated norm is ‖v‖ =
√〈v, v〉. For a real smooth functional f(θ), the directional

derivative of f at θ = θ0 is defined by
∂f(θ0)
∂θ [v] = lim

τ→0

f(θ0+τv)−f(θ0)
τ for v ∈ V (if the limit exists). The
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information operator I0 : V → V is the self-adjoint operator defined by

〈v, I0w〉 = E

[
∂ log l(Ui,t|Ui,t−1, Xi,t, Xi,t−1; θ0)

∂θ
[v]
∂ log l(Ui,t|Ui,t−1, Xi,t, Xi,t−1; θ0)

∂θ
[w]

]
, (3.4)

for v, w ∈ V. Operator I0 plays the role of the information matrix in our functional framework. It

is assumed bounded, invertible with bounded inverse (see Assumption A.5 in Appendix A), which

implies local identification of parameter θ0 and the well-posedness of the estimation problem. The

best approximation of θ0 using the Sieve ΘN,T is θ0,NT = argmin
θ∈ΘN,T

‖θ − θ0‖. Let VN,T = R
p ×

R
p × V

h
N,T × V

ρ
N,T , where the tangent spaces for the Sieves are the finite-dimensional linear spaces

V
h
N,T =

{
h(·, ·) : h(u,w) =

∑mh

j,k=0 λj,kϕj(u)ψk(w),
∑mh

j,k=0 λj,kb
(l)
j,k = 0, l = 0, 1, ...,mh

}
, where

b
(l)
j,k =

∫ 1
0

∫∞
−∞ ulϕj(u)ψk(w)h0,NT (u,w)dudw, and V

ρ
N,T = Hρ

N,T . Finally, let vN,T ∈ VN,T be the

Rietz representer of the directional derivative of functional γ(·) on the finite-dimensional linear space

VN,T , i.e.
∂γ(θ0)

∂θ
[v] = 〈vN,T , v〉, ∀v ∈ VN,T . (3.5)

Vector vN,T is the counterpart of the gradient of the object of interest w.r.t. the parameter in the likelihood

function. For a regular, resp. irregular, functional we have ‖vNT ‖ = O(1), resp. ‖vNT ‖ → ∞, as

N,T → ∞ (Chen, Liao and Sun (2014), Chen and Liao (2014)).

Theorem 1. Let the bias function BT (v) be defined by:

BT (v) =
1

T

∑
t

E

[
∂2 log li,t(θ0)

∂θ∂u
[v]Ht(εi,t) +

∂2 log li,t(θ0)

∂θ∂v
[v]Ht−1(εi,t−1)

]

− 1

T

∑
t,s

E

[(
∂2 log li,t(θ0)

∂θ∂u
[v]ft(εi,t) +

∂2 log li,t(θ0)

∂θ∂v
[v]ft−1(εi,t−1)

)
εi,s

]

+
ω2

2T

∑
t

E [Ψ(εi,t, εi,t−1; θ0)[v]] , (3.6)

for v ∈ V, with Ht(ε) =
∑T

s=1E(εi,s|εi,t = ε)ft(ε) +
ω2

2 f
′
t(ε), ω

2 =
∑∞

j=−∞ Ē[εi,tεi,t−j ], where

Ē(Zt) = lim
T→∞

1
T

∑T
t=1E(Zt) denotes the long-run expectation, ft = F ′

t is the pdf of the error term

and σ2t = E(ε2i,t) its variance, and

Ψ(εi,t, εi,t−1; θ0)[v] =
∂2 log li,t(θ0)

∂θ∂u
[v]f ′t(εi,t) +

∂2 log li,t(θ0)

∂θ∂v
[v]f ′t−1(εi,t−1)

+
∂3 log li,t(θ0)

∂θ∂u2
[v][ft(εi,t)]

2 +
∂3 log li,t(θ0)

∂θ∂v2
[v][ft−1(εi,t−1)]

2

+2
∂3 log li,t(θ0)

∂θ∂u∂v
[v]ft(εi,t)ft−1(εi,t−1),
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where li,t(θ) = l(Ui,t|Ui,t−1, Xi,t, Xi,t−1; θ). Further, let the long-run covariance operator Ω0 : V → V

be defined by

〈v,Ω0w〉 =
∞∑

j=−∞
E [ζi,t[v]ζi,t−j [w]] , v, w ∈ V, (3.7)

where:

ζi,t[v] =
∂ log l(Ui,t|Ui,t−1, Xit, Xi,t−1; θ0)

∂θ
[v]

+E

[
∂2 log lj,t(θ0)

∂θ∂u
[v]{I(Ui,t ≤ Uj,t)− Uj,t}|Ui,t

]

+E

[
∂2 log lj,t(θ0)

∂θ∂v
[v]{I(Ui,t−1 ≤ Uj,t−1)− Uj,t−1}|Ui,t−1

]

−2εi,tĒ

[
∂2 log li,t(θ0)

∂θ∂u
[v]ft(εi,t) +

∂2 log li,t(θ0)

∂θ∂v
[v]ft−1(εi,t−1)

]
,

where (Uj,t, Uj,t−1, Xj,t, Xj,t−1) is an independent copy of (Ui,t, Ui,t−1, Xi,t, Xi,t−1). Then, as

N,T → ∞, such that T = o(N), N = o(T 3), (3.8)

and under Assumptions A.1-A.10 in Appendix A, we have:

σ−1
N,T

√
NT

(
γ(θ̂)− γ(θ0)− ∂γ(θ0)

∂θ
[θ0,NT − θ0]− 1

T
BT (I

−1
0 vN,T )

)
⇒ N (0, 1) ,

where σ2N,T = 〈vN,T , I
−1
0 Ω0I

−1
0 vN,T 〉.

Under the condition:

σ−1
N,T

√
NT

∂γ(θ0)

∂θ
[θ0,NT − θ0] = o(1), (3.9)

the bias from the Sieve approximation is asymptotically negligible, and we get:

σ−1
N,T

√
NT

(
γ(θ̂)− γ(θ0)− 1

T
BT (I

−1
0 vN,T )

)
⇒ N (0, 1) .

The estimator γ(θ̂) needs a recentering by means of term
1

T
BT (I

−1
0 vN,T ) at order O(

‖vN,T ‖
T

) to cor-

rect for the asymptotic bias induced by the individual fixed effects. Moreover, the convergence rate√
NT/σ2N,T is slower than the standard panel rate

√
NT when σN,T → ∞ for an irregular functional.

Under the double asymptotics in (3.8) withN growing faster than T but less fast than T 3, some additional

bias terms are asymptotically negligible.

The asymptotic variance and bias terms σ2NT = 〈ṽNT ,Ω0ṽNT 〉 and BT (ṽNT ) both involve the function

ṽNT = I−1
0 vNT . In order to characterize explicitly these terms, it is useful to introduce matrix represen-

tations for linear operators. Being the linear spaces Vh
NT and V

ρ
NT finite-dimensional, by incorporating
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the linear constraints on the coefficients λ and μ we can write those spaces as the linear span of orthonor-

mal basis functions Ψh
l , l = 1, ...,Mh and Ψρ

l , l = 1, ...,Mρ, respectively, for Mh = (mh + 1)mh

and Mρ = (mρ + 1)mρ (see Appendix C for details). By combining these basis functions together with

the standard Euclidean unit vectors in R
p, we get a basis el, l = 1, ...,M , of linear space VN,T , with

M = 2p +Mh +Mρ, that is orthonormal w.r.t. the scalar product 〈·, ·〉. Thus, the Rietz representer of

vNT ∈ VNT can be written as vNT = e′νNT where the elements of vector νNT ∈ R
M are:

νNT,l =
∂γ(θ0)

∂θ
[el], l = 1, ...,M. (3.10)

Moreover, we can approximate function ṽNT by its projection on VNT , i.e. e′ν̃NT , where vector ν̃NT is

given by ν̃NT = I−1
0,NT νNT and theM×M matrix I0,NT has elements 〈el, I0ek〉. Under the assumptions

in Appendix A, this approximation has no effect on the asymptotic distribution. Moreover, let Ω0,NT be

the M ×M matrix with elements 〈ek,Ω0el〉, and let bNT be the M × 1 vector with elements BT (el).

Then, the variance and bias terms

σ2NT = ν ′NT I
−1
0,NTΩ0,NT I

−1
0,NT νNT , B(ṽNT ) = b′NT I

−1
0,NT νnT , (3.11)

are written in terms of the vectors νNT , bNT , and the matrices I0,NT and Ω0,NT representing the infor-

mation and long run variance operators.

3.2 Results for the nonlinear autoregressive copula and mobility measure

Let us now specialize the results in Theorem 1 for the semi-nonparametric nonlinear autoregressive

copula family considered in Section 2.3 and the relative mobility measure introduced in Definition 1.

The directional derivatives of the log-likelihood function and the mobility measure are provided in the

next theorem.

Theorem 2. a) Let u, u−1 ∈ [0, 1] be generic values of variables Ui,t, Ui,t−1, and let x, x−1 ∈ R
p be
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generic values of Xi,t, Xi,t−1. The directional derivative of the log conditional density w.r.t. θ is:

∂ log l(u|u−1, x, x−1; θ0)

∂θ
[v]

=
1

λ0[Λ
−1
0 (z;w2);w2]

(ρ0(z−1;w2)− E[ρ0(Zi,t−1;w2)|Zi,t = z,Xi,t = x,Xi,t−1 = x−1])

×2Cov

(
1(Ui,t ≤ u),

vh(Ui,t, w1) +∇2h
0(Ui,t, w1)x

′vβ1

h0(Ui,t, w1)
|Xi,t = x

)
+

[
Λ−1
0 (z;w2)− ρ0(z−1;w2)

]∇1ρ0(z−1;w2)

×2Cov

(
1(Ui,t−1 ≤ u−1),

vh(Ui,t−1, w−1) +∇2h
0(Ui,t−1, w−1)x

′−1vβ1

h0(Ui,t−1, w−1)
|Xi,t−1 = x−1

)
+

[
Λ−1
0 (z;w2)− ρ0(z−1;w2)

] (
vρ(z−1, w2) +∇2ρ0(z−1, w2)x

′vβ2

−E[vρ(Zi,t−1, w2) +∇2ρ0(Zi,t−1, w2)x
′vβ2 |Zi,t = z,Xi,t = x,Xi,t−1 = x−1]

)
+Cov

(
ρ0(Zi,t−1;w2), vρ(Zi,t−1, w2) +∇2ρ0(Zi,t−1, w2)x

′vβ2 |Zi,t = z,Xi,t = x,Xi,t−1 = x−1

)
+2

(
vh(u,w1) +∇2h

0(u,w1)x
′vβ1

h0(u,w1)
− E

[
vh(Ui,t, w1) +∇2h

0(Ui,t, w1)x
′vβ1

h0(Ui,t, w1)
|Xi,t = x

])
,

for v = (vβ1 , vβ2 , vh, vρ) ∈ V, where z = G0(u;w1), z−1 = G0(u−1;w−1), and w1 = x′β01 , w2 =

x′β02 , w−1 = x′−1β
0
1 .

b) The directional derivative of the mobility functional is:

∂γ(θ0)

∂θ
[v] = γ(θ0)

{
2

(
vh(ū, w̄1) +∇2h

0(ū, w̄1)x̄
′vβ1

h0(ū, w̄1)
− vh(ζ1, w̄1) +∇2h

0(ζ1, w̄1)x̄
′vβ1

h0(ζ1, w̄1)

)

+4
∇1h

0(ζ1, w̄1)

h0(ζ1, w̄1)

1

g0(ζ1; w̄1)
Cov

(
1(Ui,t ≤ ζ1),

vh(Ui,t, w̄1) +∇2h
0(Ui,t, w̄1)x̄

′vβ1

h0(Ui,t, w̄1)
|Xi,t = x̄

)

+2

[
E [ρ0(Zi,t−1, w̄2)− ρ0(ζ4, w̄2)|Zi,t = ζ2, Xi,t = x̄, Xi,t−1 = x̄]− 2

∇1h
0(ζ1, w̄1)

h0(ζ1, w̄1)

λ0(ζ3; w̄2)

g0(ζ1; w̄1)

+
∇2

1ρ0(ζ4, w̄2)

[∇1ρ0(ζ4, w̄2)]2

]
∇1ρ0(ζ4, w̄2)Cov

(
1(Ui,t ≤ ū),

vh(Ui,t, w̄1) +∇2h
0(Ui,t, w̄1)x̄

′vβ1

h0(Ui,t, w̄1)
|Xi,t = x̄

)

+

(
E [ρ0(Zi,t−1; w̄2)− ρ0(ζ4, w̄2)|Zi,t = ζ2, Xi,t = x̄, Xi,t−1 = x̄]− 2

∇1h
0(ζ1, w̄1)

h0(ζ1, w̄1)

λ0(ζ3; w̄2)

g0(ζ1; w̄1)

)
× (

vρ(ζ4, w̄2) +∇2ρ0(ζ4, w̄2)x̄
′vβ2 − E

[
vρ(Zi,t−1, w̄2) +∇2ρ0(Zi,t−1, w̄2)x̄

′vβ2 |Zi,t = ζ2, Xi,t = x̄, Xi,t−1 = x̄
])

−Cov (ρ0(Zi,t−1, w̄2)− ρ0(ζ4, w̄2), vρ(Zi,t−1; w̄2) +∇2ρ0(Zi,t−1, w̄2)x̄
′vβ2 |Zi,t = ζ2, Xi,t = x̄, Xi,t−1 = x̄

)
+
∇1vρ(ζ4, w̄2) +∇2

1,2ρ0(ζ4, w̄2)x̄
′vβ2

∇1ρ0(ζ4, w̄2)

}
,

for v = (vβ1 , vβ2 , vh, vρ) ∈ V, where ζ4 = G0(ū; w̄1), ζ3 = ρ0(ζ4; w̄2), ζ2 = Λ0(ζ3; w̄2) and ζ1 =

G−1
0 (ζ2; w̄1) = med(Ui,t|Ui,t−1 = ū, Xi,t = x̄, Xi,t−1 = x̄) is the conditional median rank, and

w̄1 = x̄′β01 , w̄2 = x̄′β02 .
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In Theorem 2 the directional derivatives depend linearly on the “infinitesimal change" vectors vβ1 , vβ2 ∈
R
p for the Euclidean parameters as well as on the “infinitesimal change" functions vh ∈ V

h and vρ ∈ V
ρ

for the functional parameters. The latter dependence is via evaluation, differentiation and integration (i.e.

conditional expectations and covariance) operators. By applying formulas (3.4), (3.6), (3.7) and (3.10)

on the basis functions of V, we get vectors νNT , bNT and matrices I0,NT , Ω0,NT . Then, by the equations

in (3.11) we get the variance and bias terms.

3.3 Analytical correction for the fixed-effects bias

We use Theorems 1 and 2 to obtain an analytical bias correction for the bias induced by the individual

fixed effects. The bias corrected estimator of the relative mobility measure is:

γ̂B = γ̂ − 1

T
b̂′NT Î

−1
NT ν̂NT . (3.12)

The estimators ÎNT , b̂NT , ν̂NT of matrix I0,NT and vectors bNT , νNT are obtained from formulas (3.4),

(3.6) and (3.10) and the directional derivatives in Theorem 2 by replacing (i) errors εi,t and ranks Ui,t

with their empirical analogues ε̂i,t and Ûi,t, (ii) the true parameter θ0 = (β01 , β
0
2 , h

0, ρ0) with the Sieve

estimate θ̂ (including the conditional density ofZi,t−1 givenZi,t,Xi,t,Xi,t−1, and the conditional density

of Ui,t given Xi,t), and (iii) population expectations with sample averages. The bias adjustment involves

numerical integration to evaluate e.g. the estimates of functions Λ, λ, and the conditional expectations

of functions of Zi,t−1 given Zi,t, Xi,t, Xi,t−1. This is performed by either quadrature or Monte Carlo

simulation. We get closed-form expressions when the Sieve estimate of function ρ used to compute

the bias adjustment is restricted to correspond to a Gaussian copula. This Gaussian reference model

to approximate the bias adjustment is akin to the one used to obtain the celebrated Silverman rule for

the optimal bandwidth in kernel smoothing. Moreover, in order to avoid the cumbersome formulas of

the higher-order derivatives of the log density w.r.t. copula arguments involved in function BT [v] (see

Theorem 1), we use Legendre polynomials approximations of the first-order derivatives and compute

high-order derivatives from those approximations. We provide details on the numerical implementation

of the bias adjustment in Appendix C.

With unbalanced panels and data missing-at-random, the bias adjustment in equation (3.12) becomes

1

T̄
b̂′NT Î

−1
NT ν̂NT where

1

T̄
=

1

N

N∑
i=1

1

Ti
, i.e. T̄ is the harmonic average of the individual time-series

lengths Ti, and estimators b̂NT , ÎNT , ν̂NT are obtained by taking averages over the available sample.
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4 Monte Carlo simulations

In order to assess the finite sample properties and the numerical feasibility of our estimator, we perform a

Monte Carlo analysis to compare the estimated mobility measures (both with and without the correction

for the fixed-effect bias) with the true ones. The data generating process and the sample sizes used for

the simulations have been calibrated on the data which are used for the empirical analysis in the next

section. For each individual i, we randomly draw her/his history of the covariates Xi,t from the PSID

dataset described in Section 5.1. This yields an unbalanced panel with n = 8429 individuals with an

average permanence in the sample of about 15 periods (years). Then, we randomly draw Ui,0, i.e. the

initial rank, from the uniform distribution. By applying the semi-nonparametric model based on the

nonlinear autoregressive copula from equations (2.20) and (2.21) with the estimated parameters obtained

in the next section, starting from Ui,0 we simulate a trajectory of individual ranks Uit. Then, using the

cdf Fε corresponding to the estimate in the empirical analysis, we transform the simulated ranks Uit into

simulated error terms εit. We simulate the individual effects ηi by randomly drawing from a discrete

distribution corresponding to the values of the ηi which are estimated in the empirical part. Similarly, for

each year the time fixed effects λt are taken from the estimation of the linear two-way fixed effect model

which is performed in Section 5. In this way from the linear panel model (2.1) we are able to construct an

unbalanced simulated panel of yi,t and Xi,t, whose cross-sectional and time-series dimensions, as well

as the unbalanced panel properties, are similar to the ones of the sample used in our empirical analysis.

This allows us to evaluate the size of the fixed-effects bias in the framework of our empirical model, and

the performance of the bias adjusted estimator. On this simulated sample we run the whole estimation

procedure presented in Section 3 for both the functional and the finite-dimensional parameters, and obtain

then the estimates for the mobility measure both with and without the adjustment to correct for the fixed-

effects bias. For the latter, we use the analytical bias correction based on a Gaussian approximation for

feasibility reasons. We repeat this procedure in 100 Monte Carlo replications.

In the following presentation of the Monte Carlo results, we focus on the bias of the relative mobility

measure γ = m(ū; x̄, x̄), that is the primary object of interest in our empirical analysis. Simulation

results for the copula functional parameter and the marginal rank distribution are available upon requests.

In Figure 1 we plot the estimated mobility measure γ as a function of the past rank ū, for four choices of

the individual characteristics vector x̄ (which correspond to the 25%, 50%, 75% and 95% percentiles of

the mobility score and of the marginal distribution score). We find that the bias of estimator γ̂ is positive

and moderate, but not negligible, in all the four cases considered. Our bias-adjusted estimator γ̂B is able

to correct on average for around 38% of the bias in the first case, and for about 67% of the bias in the
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last three cases. We also find that the true value of the mobility measure lies within the 95% point-wise

confidence intervals that we constructed around the bias-adjusted estimate on the basis of the 100 Monte

Carlo simulations.

To summarize, the main message from our Monte Carlo experiments is that the fixed-effects bias in the

estimated mobility due to the small time series dimension of our panel is moderate, but not negligible, and

the analytical bias-adjustment eliminates between 40% and 70% of this bias depending on the regressors’

value.

Figure 1: Monte Carlo simulations - mobility measure

In each panel of this Figure, the thin line represents the true measure of mobility m(ū; x̄, x̄) vs the past

rank Ui,t−1 = ū, for given values of Xi,t = Xi,t−1 = x̄. The bold and dashed lines stand for the average

estimated measure of mobility with, respectively without, bias adjustment. The shaded areas are the

95% pointwise confidence intervals, representing the variability of the Monte Carlo simulations. The

four panels correspond to different values of the mobility score W2,it and of the marginal distribution

score W1,it, that are the 25%, 50%, 75% and 95% percentiles of their respective empirical distributions.
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5 Empirical analysis

5.1 The data

We apply the methods developed in Sections 2 and 3 to the Panel Study of Income Dynamics (PSID).

The PSID is one of the few panel surveys in the world which does not rotate its sample, meaning that

individuals can virtually continue to get surveyed for time spans as long as 50 years or more. We con-

sider for the analysis survey years from 1968 to 199712. Our dataset contains 126’432 individual-year

observations. They correspond to 8429 individuals, with an average permanence in the dataset of about

15 years. We correct the finite sample bias due to the estimated fixed effects in the preliminary wage

regression. The Monte Carlo simulations presented in Section 4, which have been calibrated to mimic

our dataset, confirm that the bias, once the correction is applied, is small13. We drop observations for

students, retirees and self-employed workers and we only include observations relative to full-time em-

ployees (i.e. working more than 1200 hours a year) aged between 15 and 64, in order to limit the role

of variations in the intensive margin of labor supply on wage dynamics (Bonhomme and Robin (2009),

Hu, Moffitt and Sasaki (2019)). Moreover, we exclude observations with wage equal to zero. Similarly

to Bonhomme and Robin (2009), we use as explanatory variables age, age squared, and a qualitative

variable representing the highest education level achieved by the individual. The education dummies

are constructed on the basis of the variable "years spent in education". According to the US education

system, the first dummy corresponds to 0-11 grades, the second dummy stands for high school or 12

grades and some nonacademic training, the third one represents college dropout, whereas the fourth one

stands for college degree or advanced/professional degree. We argue that these dummy variables are

exogenous, i.e. that they are not influenced by the individual position in the wage distribution. Indeed,

we only consider education that takes place before labor market entry. We do not include among the

explanatory variables any form of on-the-job training, due to its potential endogeneity. This implies that,

in our sample, education is time-invariant.

12The choice of the time span analyzed here is due to the features of the PSID data. Indeed, the structure of the survey

changed in 1997, becoming bi-annual instead of annual.
13An alternative that we do not explore in the present paper consists into performing a bias correction via jackknife, by

estimating our model on the full sample and then on one half of the same sample and combining the estimates, in the spirit of

Dhaene and Jochmans (2015).

25



Table 1: Descriptive statistics, PSID data, 1968-1997

Variable Mean Std. Dev. Min. Max.
Age 37.4830 11.2561 17 65

Elementary and middle school 0.2663 0.4420 0 1

High school 0.3565 0.4790 0 1

Some college 0.1989 0.3992 0 1

College degree or higher education 0.1783 0.3828 0 1

Log wage 9.2780 1.8641 5.0106 12.8992

This table reports some descriptive statistics for age, education and (log)wage, for our pooled data for the

period 1968-1997. Log wage stands for the natural logarithm of annual wage (expressed in US dollars).

Table 1 above reports the descriptive statistics for our main variables of interests, i.e. wage, age and

education dummies. As in Section 2, we use a linear panel regression to separate the deterministic wage

component from the fluctuations around its trend. The model in equation (2.1) reads:

Wagei,t = α0 + α1Ageit + α2Age
2
it + ηi + λt + εi,t (5.1)

where Wagei,t stands for log earnings, ηi represents the individual fixed effect, λt the time fixed ef-

fect, and εi,t the residual wage component. The estimation is performed via the panel data fixed-effect

technique, to take into account the potential presence of unobserved heterogeneity across workers14. We

include in the model a time fixed-effect in order to take into account all the macroeconomic shocks on

wages, among them the impact of inflation on wages. As usual in the literature, we find that log wage is

concave in individual age. From the estimation of the linear panel model (5.1) we get estimated residuals

ε̂it, i.e. the estimated residual wage component, which we use to build the empirical ranks as in equation

(3.1). Then, we use the empirical ranks Ûit for the estimation of the semi-nonparametric dynamic copula

specification defined in Section 2. We use the same regressors as above in the marginal rank distribution

and the copula pdf (but rely on age at the begininng of the sample to avoid trending variables in the

marginal distributions). Survey data like the PSID are often contaminated with errors (Bound, Brown,

and Mathiowetz (2001)). In the absence of additional information, it is not possible to disentangle the

residual terms from classical measurement error. Thus, an interpretation of our estimated distribution of

the residuals is that it represents a mixture of transitory shocks and measurement errors.

14An alternative would consist in applying a heterogeneous income profile (HIP) model, i.e. to allow wage to grow differently

with age across individuals. A test of the HIP models vs the restricted income profile (RIP) ones, i.e. models in which wage

increases with age uniformly across all individuals, as in equation (5.1), lies beyond the scope of the present paper. For a review

and an empirical test of HIP models, we refer to Guvenen (2009). Also we could include interaction effects between age and

education level.

26



In our empirical application, we do not account for the possible endogeneity of the unemployment pat-

terns. We deal with missing observations in our unbalanced panel by making the missing-at-random

assumption. The estimation method could be extended to include a parametric specification for unem-

ployment dynamics as in Bonhomme and Robin (2009). However, this parametric specification does not

pair well with our semi-nonparametric approach and additionally it would require a single-step estima-

tion approach, that is considerably more computationally demanding than the two-step procedure that we

display in Section 5.215. Moreover, Bonhomme and Robin (2009) analyzed the case of France, “where

unemployment rates are chronically above or around 10%” in the sample they study (1990-2000), and

hence ignoring transitions into and out of unemployment could cause a relevant selection bias (Bon-

homme and Robin (2009), p.68). On the contrary, we use PSID data for estimation and, in the period

considered (1968-1997), the unemployment rate for males in the US was on average below 7%; hence,

we are confident that the selection bias due to unemployment is moderate and that the missing-at-random

assumption is not unrealistic for our data. For these reasons, we abstain from an in-depth analysis of the

possible endogeneity of unemployment patterns in this paper.

5.2 Estimation results

We apply the estimation procedure to the sample of US data described in Section 5.1. Details of the

numerical implementation of the estimators, as well as detailed estimation results for the univariate

distribution of the ranks conditional on covariates, and for the joint copula distribution of the ranks, are

reported in the Supplementary Material, Appendix F. In Figure 2 we display the empirical counterpart

of the mobility measure presented in Proposition 3. More precisely, we represent the estimate of γ(θ) =

m(ū, x̄, x̄) as a function of u, keeping x fixed. In each of the panels of Figure 2, indeed, x is fixed and

corresponds to a specific combination of explanatory variables (age and education), as explained in the

caption.

In Figure 2, the y-axis records the value of our mobility measure. The higher this quantity is, the stronger

is the association between the present and the past rank and hence the lower the degree of positional

mobility is. This is the reason why the y-axis is labelled as "immobility". In Figure 2, in the upper left

panel, we consider the case of a worker with low values of both the mobility and marginal distribution

scores (i.e. a 35-year old individual with elementary or middle school), in the upper right panel we have a

case in which both scores take an intermediate value (i.e. a 25-year-old worker who completed college),

15Such a joint model of earnings, employment, job changes, wage rates and work hours has been recently proposed by Altonji

et al. (2013). The authors estimate their full model via indirect inference. However, it is not straightforward to adapt the fully

parametric joint model proposed by Altonji et al. (2013) to our semi-nonparametric framework. Further, the indirect inference

method applied by the authors is already rather computationally intensive, since it is simulation-based. For these reasons, the

extension of our model to take into account unemployment dynamics lies beyond the scope of the present paper.
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and in the bottom panel we have the case of an individual with relatively high scores (45-year-old worker

with college degree).

In Figure 2 we find that individuals with low values of the scores (35-year-old worker with elementary

or middle school) exhibit lower mobility than their colleagues with higher scores (e.g. 45 or 64-year-old

worker with college degree), in particular at the bottom of the rank distribution, i.e. they are subject

to the low-pay trap. On the other hand, the degree of rank mobility at the top of the rank distribution

is higher for less-educated individuals than for their higher-educated colleagues. This suggests that the

former ones have a higher risk of falling downwards in the rank distribution, even if their current position

is high. In the case of intermediate values of the scores (i.e. the upper right panel of Figure 2), we find

that rank persistence is rather high (i.e. between 0.8 and 1) across the whole distribution of the past rank,

and the degree of persistence recorded by those workers at the bottom part of the rank distribution is

clearly higher than that of individuals with higher values of the scores.

In the case of a worker with high or very high values of the scores (i.e. a 45 or a 64-year-old worker

with college degree), mobility is highest at the bottom end of the distribution and small elsewhere.

The association between the present and the past rank at the bottom of the rank distribution is around

0.6-0.7 for this type of worker. This means that, if individuals characterized by high values of the

scores are in a low position of the wage distribution, then they are likely to improve their position in the

following period. These differences in the mobility patterns for individuals with different characteristics

are statistically significant. The 95% pointwise confidence intervals for different individuals (computed

by nonparametric bootstrap16) only rarely overlap17.

16Bootstrap methods have been found to be valid in the context of Sieve estimation (see Cheng and Huang (2010)).
17A more formal test should be based on the difference between the estimates.
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Figure 2: Mobility patterns for different age and education levels

We display the immobility measure as a function of the past rank for three combinations of age and education levels.

The immobility measure is computed according to (3.3) using estimates from the semi-nonparametric copula model

(dashed line). The bias-adjusted estimate is obtained with the analytical bias correction (short-dashed line). The

chosen sets of individual characteristics correspond to different values of the marginal distribution and mobility

scores, which areW1,it = −1.95 andW2,it = −1.75 in the upper left panel,W1,it = −0.68 andW2,it = −0.23 in

the upper right panel, W1,it = 0.92 and W2,it = 1.14 in the bottom left panel and W1,it = 2.03 and W2,it = 2.22
in the bottom right panel. Both index values have been standardized. The solid line in each panel represents the

mobility function estimated using a Plackett copula model for the ranks dynamics. The shaded areas correspond

to the 95% pointwise confidence intervals and have been obtained by nonparametric bootstrap, with number of

replications B = 500.

Our result that relative mobility is increasing in education is somehow consistent with the estimation

results obtained by Bonhomme and Robin (2009). However, we find that this is only true at the bottom

of the past rank distribution. In Figure 2 we superimpose our mobility results to those obtained by

estimating a fully parametric Plackett copula model on our data, in the spirit of Bonhomme and Robin

(2009). The Plackett copula cdf is C(u, v; τ) = 1
2τ (1 + τ(u + v) − √

a(u, v)), where a(u, v) =

[1 + τ(u + v)]2 − 4uvτ(τ + 1) and τ ≥ 0. As in their paper, the parameter of the Plackett copula

τ = exp(X ′
i,tβ2) is function of the individual characteristics. The marginal distribution of the rank

is modeled as in our semi-nonparametric specification for comparison purpose. Our mobility measure
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computed with this parametric copula model is (see the Supplementary material):

m(ū; x̄, x̄) =
τ̄

2 + τ̄

g(ū|x̄′β1)
g{G−1[1+τ̄G(ū|x̄′β1)

2+τ̄ |x̄′β1]}
, (5.2)

with τ̄ = exp(x̄′β2). By contrasting the estimated mobility patterns obtained with the parametric, re-

spectively with our semi-nonparametric model, we deduce that, by adopting a fully parametric copula

model, the pattern of rank mobility is a priori determined by the copula family. On the contrary, adopting

a more flexible specification as in our case, it is possible to obtain different mobility patterns, according

to the different individual characteristics. The Plackett copula is not able to capture well the mobility pat-

terns emerging from the panels of Figure 2, neither as a function of the past rank (the estimated mobility

curves appear very flat), nor as a function of the individual characteristics. In fact, from equation (5.2)

we see that, up to the effect of the marginal rank distribution (that in our estimate appears rather close to

uniform, so that the second ratio in the RHS of (5.2) is close to 1) the mobility measure is independent of

the past rank ū, and increasing in the mobility score, which explains the patterns in Figure 2. The Plack-

ett copula function does not change its functional shape depending on its parameter, and this explains

the large differences between the fully parametric model and our semi-nonparametric specification in

describing mobility patterns, as it is apparent in Figure 2.

Finally, note that, without applying the bias correction, in all the four cases (i.e. low score, middle score,

high and very high score), we would overestimate the degree of association between the present and

the past rank, i.e. we would sistematically underestimate wage mobility. Indeed, from the four panels

of Figure 2, we notice that the bias-corrected (im-)mobility measure always lies below the uncorrected

one. Note that the bias correction reported in the four panels of Figure 2 has been obtained by adopting a

Gaussian approximation. However, the resulting estimated bias is rather close to the one that we obtain by

adopting the full analytical bias correction. Indeed, the difference in the two estimated biases amounts,

on average, to between 1% and 2% of our estimated mobility measure, in the four cases presented in

Figure 2.

To conclude our empirical analysis, we present the results of testing the restriction (2.28) in Proposition

3. The test statistic is:

ξ̂t =

∫ 1
0

∫∞
−∞ ψ̂t(u,w)ĥ(u,w)

2dudw

σ̂t
(5.3)

computed for each component of the vector of explanatory variables in the preliminary regression (i.e.

age and age squared), standardized by the estimated standard deviation, σ̂t, obtained from 500 boot-

strap replications18. The conditional expectations in ψ̂(u,w) = F̂−1
ε,t (u)Ê(Xit − X̄i·|W1,i,t = w) −

18Asymptotic normality of test statistics could be established by using arguments as in Theorem 1.
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1
T

∑T
s=1 F̂

−1
ε,s (u)Ê(Xi,t − X̄i·|W1,i,s = w) have been approximated via Sieve estimation with three

polynomial terms, while F̂−1
ε,t (u) is the empirical quantile of residuals. Since the bias at order 1

T proves

to be moderate in our results (see e.g. Figure 2), we neglect bias correction for the test. We compute the

p-values of the statistics using the asymptotic standard Gaussian distribution. From Figure 3, we deduce

that the p-values are large at each sample date. The test cannot reject the null of the validity of constraints

(2.28) corresponding to Assumption 5 at usual significance levels. Hence, even if we do not theoretically

impose Assumption 5 in our estimation strategy, we can show empirically that it is not violated. As a ro-

bustness check, in Appendix F in the Supplementary Material we show the same quantities, but obtained,

respectively, with a two-term and with a four-term Sieve polynomial. The findings do not change, in the

sense that we still never reject the null hypothesis.

Figure 3: P-values for the test statistics obtained with Sieve estimation with three terms

We display the p-values for the test statistic in (5.3) for each year in our sample, for the two covariates that are

included in the preliminary regression (2.1): age and age squared.

6 Concluding remarks

In this paper we estimate a flexible model for the wage rank dynamics. We develop a new family of

semi-nonparametric copulas which are well-suited to describe the dynamics of earning ranks conditional

on regressors. This novel semi-nonparametric copula model allows for greater flexibility than a fully

parametric one, and in particular allows to investigate relative mobility as a function of past wage rank

and individual characteristics. We propose consistent estimators for both the marginal rank distribution,

and the functional parameter which characterizes the copula distribution of present and past ranks, con-

ditional on covariates. We show the asymptotic normality of our Sieve estimator for the rank mobility

functional when N and T grow to infinity, with an adjustment for the incidental parameter bias induced
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by the individual fixed effects in the wage equation. We provide Monte Carlo evidence that the analytical

bias adjustment works well in our setting.

From the empirical application we get evidence that, in the US labor market, there is a rather high

degree of mobility at the bottom of the distribution for workers with a high educational level and some

experience. On the contrary, we find that workers who are either at the beginning of their career or

who have a low educational level are subject to the risk of being stuck in the so called low-wage trap.

Our semi-nonparametric model can be easily used to simulate wage trajectories. By simulating wage

trajectories we would be able to compute the present values of individual earnings in the medium and in

the long term, and to compute from these values the evolution of some summary inequality indices over

time. This constitutes scope for future research.

Appendix A: Assumptions

In this Appendix we list the regularity conditions used to establish the large sample properties of our

estimators. We start with introducing the necessary notation. Let us define the pseudo-norm ‖·‖∗ by ‖θ−
θ0‖2∗ = E

[
(
∂ log li,t(θ0)

∂θ [θ − θ0])
2
]
= 〈θ−θ0, I0(θ−θ0)〉. The Kullback-Leibler discrepancyK(θ0, θ) =

E[log li,t(θ0)−log li,t(θ)], where li,t(θ) := l(Ui,t|Ui,t−1, Xi,t, Xi,t−1; θ), is minimized for θ = θ0. Let us

define θ̃N,T (·) = argmax
θ∈ΘN,T

1
T

∑
tE[log l̂i,t(θ)] andKNT (θ̃N,T , θ) :=

1
T

∑
tE[log l̂i,t(θ̃N,T )−log l̂i,t(θ)],

where l̂i,t(θ) := l(Ûi,t|Ûi,t−1, Xi,t, Xi,t−1; θ), and similarly θ̄N,T = argmax
θ∈ΘN,T

1
T

∑T
t=1E[log l̃i,t(θ)],

where l̃i,t(θ) = l(Ũi,t|Ũi,t−1, Xi,t, Xi,t−1; θ), for Ũi,t := Ui,t +
1
THt(εi,t) − ft(εi,t)ε̄i +

1
2f

′
t(εi,t)ε̄

2
i

and Hε,t(ε) =
∑T

s=1E[εi,s|εi,t = ε]fε,t(ε) +
ω2

2 f
′
ε,t(ε). Functions θ̃N,T and θ̄N,T correspond to the

counterparts of true parameter function θ0 computed with the estimated ranks Ûi,t, and with their large-

N limits Ũi,t, respectively. Finally, let μN,T (g(z)) =
1

NT

∑N
i=1

∑T
t=1(g(zi,t)−E[g(zi,t)]) for a function

g(·).

Assumption A.1. Process (Ui,t, Xi,t), for t varying, is geometrically β-mixing, for any i.

Assumption A.2. We have c1‖θ − θ0‖2∗ ≤ K(θ0, θ) ≤ c2‖θ − θ0‖2∗, for any θ ∈ Θ and some constants

c2 ≥ c1 > 0.

Assumption A.3. The Sieve space ΘN,T is such that: (i) ‖θ0−πN,T θ0‖∗ = o((NT )−1/4) with πN,T θ0 ∈
ΘN,T , and (ii) the bracketing metric entropy of set FN,T = {log l(·|·,·,·;θ)

l(·|·,·,·;θ0) : θ ∈ ΘN,T } is H(ε,FN,T ) ≤
AkN,T log(kN,T /ε), where A is a constant and (iii) the number of parameters kN,T = mρ

N,T (m
ρ
N,T +

1) +mh
N,T (m

h
N,T + 1) + 2p indexing the set ΘN,T is such that kN,T log(NT ) = o(

√
NT ).
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Assumption A.4. (i) We have

sup
θ∈ΘN,T :‖θ−θ0‖∗≤ε

V [li,t(θ0)− li,t(θ)] ≤ A1ε
2,

for a constant A1 > 0. (iv) We have for s ∈ (0, 2):

sup
θ∈ΘN,T :‖θ−θ0‖∗≤ε

|li,t(θ0)− li,t(θ)| ≤ εsWN,T,i,t,

where supN,T≥1E[W γ
N,T,i,t] ≤ A3, for γ > 2.

Assumption A.5. The information operator I0 : V → V is bounded, invertible, with bounded inverse.

Assumption A.6. We have γ(θ) = γ(θ0) +
∂γ(θ0)
∂θ [θ − θ0] + O

(‖θ − θ0‖2∗
)
, for any θ in a small

neighborhood of θ0 such that ‖θ − θ0‖∗ = O(δNT ), where δN,T = (NT )−1/4.

Assumption A.7. Let r̂i,t[θ − θ̃N,T ] = log l̂i,t(θ) − log l̂i,t(θ̃N,T ) − ∂ log l̂i,t(θ̃N,T )
∂θ [θ − θ̃N,T ] be the

remainder term in the Taylor expansion of log l̂i,t(θ) around θ̃N,T . Then we have:

(i) sup
θ∈ΘN,T :‖θ−θ̃N,T ‖∗≤δN,T

μN,T

(
r̂i,t[θ − θ̃N,T ]− r̂i,t[πN,T θ

∗(θ, εN,T )− θ̃N,T ]
)
= Op(ε

2
N,T ),

(ii) sup
θ∈ΘN,T :‖θ−θ̃N,T ‖∗≤δN,T

[
KN,T (θ̃N,T , θ)− 1

2
‖θ − θ̃N,T ‖2N,T

]
= O(ε2N,T ),

(iii) sup
θ∈ΘN,T :‖θ−θ̃N,T ‖∗≤δN,T

‖θ∗(θ, εN,T )− πN,T θ
∗(θ, εN,T )‖∗ = O(δ−1

N,T ε
2
N,T ),

(iv) sup
θ∈ΘN,T :‖θ−θ̃N,T ‖∗≤δN,T

μN,T

(
∂ log l̂i,t(θ̃N,T )

∂θ
[θ∗(θ, εN,T )− πN,T θ

∗(θ, εN,T )]

)
= Op(ε

2
N,T ),

where ‖θ − θ̃N,T ‖2N,T := 〈θ − θ̃N,T , ĨN,T (θ − θ̃N,T )〉 and ĨN,T is a bounded and self-adjoint operator,

invertible with bounded inverse, for any N,T large enough, θ∗(θ, εN,T ) = θ + εN,T Ĩ
−1
N,Tu

∗, with u∗ =

±vN,T and εN,T = o((NT )−1/2).

Assumption A.8. For a β̄ > 2 we have: E
[∣∣∣∂1+αu+αv log li,t(θ0)

∂θ∂uαu∂vαv [ṽN,T ]
∣∣∣β̄] = O(1), for αu, αv = 0, 1, 2,

where ṽN,T = Ĩ−1
N,T vN,T .

Assumption A.9. The distribution Ft(·) is continuous and: (i) the density ft(·) = F ′
t(·) is differentiable,

with bounded derivative, (ii) the errors εi,t = F−1
t (Ui,t) are such that E(εi,t) = 0, E[|εi,t|2β̄ ] ≤ C, for

a constant C.
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Assumption A.10. The zero-mean variables ζ̃i,t := ξ̃i,t[ṽN,T ] + ν̃i,t[ṽN,T ]Δi,t+ η̃i,t[ṽN,T ]Δi,t−1 satisfy

a CLT, i.e.

σ̃−1
N,T

1√
NT

∑
i

∑
t

ζ̃i,t ⇒ N(0, 1)

asN,T → ∞ with σ̃2N,T = V [ 1√
NT

∑
i

∑
t ζ̃i,t], where ξ̃i,t[ṽN,T ] :=

∂ log l(Ũi,t|Ũi,t−1,Xi,t,Xi,t−1;θ̄N,T )
∂θ [ṽN,T ],

ν̃i,t[ṽN,T ] :=
∂2 log l(Ũi,t|Ũi,t−1,Xi,t,Xi,t−1;θ̄N,T )

∂θ∂u [ṽN,T ] and η̃i,t[ṽN,T ] :=
∂2 log l(Ũi,t|Ũi,t−1,Xi,t,Xi,t−1;θ̄N,T )

∂θ∂v [ṽN,T ],

and Δi,t :=
1

N−1

∑
j �=i (I(Uj,t ≤ Ui,t)− Ui,t)−

(
1

N−1

∑
j �=i εj,t

)
ft(εi,t).

Appendix B: Proofs of Propositions and Theorems

B.1 Proof of Proposition 1

The proof consists in two steps. In Step 1, we show the following implication. For any t ≥ 1, if:

l(Ut−1|Xt−1) = g(Ut−1|Xt−1) (b.1)

then:

l(Ut|Xt) = g(Ut|Xt), (b.2)

where g(U |X) is a conditional pdf such that (2.11) holds. To show this, suppose that equation (b.1)

holds. Then we have:

l(Ut|Xt) =

∫ ∫
l(Ut|Ut−1, Xt−1, Xt)l(Ut−1, Xt−1|Xt)dUt−1dXt−1

=

∫ ∫
l(Ut|Ut−1, Xt−1, Xt)l(Ut−1|Xt−1, Xt)l(Xt−1|Xt)dUt−1dXt−1.

Moreover, we have:

l(Ut−1|Xt−1, Xt) =
l(Ut−1, Xt−1, Xt)

l(Xt−1, Xt)
=
l(Xt|Ut−1, Xt−1)l(Ut−1, Xt−1)

l(Xt|Xt−1)l(Xt−1)
=
l(Ut−1, Xt−1)

l(Xt−1)
= l(Ut−1|Xt−1),

where the third equality is an implication of the absence of Granger causality in Assumption 2. Then:

l(Ut|Xt) =

∫ ∫
l(Ut|Zt−1, Xt−1, Xt)l(Ut−1|Xt−1)l(Xt−1|Xt)dUt−1dXt−1.

Now, by replacing the definition of the conditional density in (2.12), and using (b.1), we get:

l(Ut|Xt) =

∫ ∫
g(Ut|Xt)c[G(Ut|Xt), G(Ut−1|Xt−1); ρ(·, Xt)]

·g(Ut−1|Xt−1)l(Xt−1|Xt)dUt−1dXt−1.

(b.3)
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Hence, after a change of variable from Ut−1 to v = G(Ut−1|Xt−1), and using
∫
c(u, v)dv = 1, ∀u, we

obtain:

l(Ut|Xt) =

∫ ∫
g(Ut|Xt)c[G(Ut|Xt), v; ρ(·, Xt)]l(Xt−1|Xt)dvdXt−1

=

∫
g(Ut|Xt)l(Xt−1|Xt)dXt−1 = g(Ut|Xt),

which yields (b.2).

In Step 2 of the proof, we use the initial condition in (2.13) and use repeatedly the implication derived

in Step 1, to get l(Ut|Xt) = g(Ut|Xt), at any t ≥ 1. Then, by integrating out the explanatory variables

vector Xt and using the property in (2.11) we get:

l(Ut) =

∫
l(Ut|Xt)l(Xt)dXt =

∫
g(Ut|Xt)l(Xt)dXt = 1,

which yields (2.14).

B.2 Proof of Proposition 2

From equation (2.17) it follows that equation (2.18) is both sufficient and necessary for the uniform

distribution U(0, 1) to be an invariant distribution for process (Ut).

B.3 Proof of Proposition 3

The condition in Assumption 5 is:

E[εi,t(Xi,t − X̄i,·)] =
1

T

T∑
s=1

E[εi,s(Xi,t − X̄i,·)], (b.4)

for all t = 1, ..., T . With εi,s = F−1
ε,s (Ui,s) and Xi = (Xi,1, ..., Xi,T )

′, we can rewrite the expectation on

the RHS as:

E[εi,s(Xi,t − X̄i,·)] =

∫ ∫
F−1
ε,s (ui,s)(Xi,t − X̄i,·)l(ui,s|Xi)l(Xi)dui,sdXi

=

∫ ∫
F−1
ε,s (ui,s)(Xi,t − X̄i,·)g(ui,s|Xi,s)l(Xi)dui,sdXi

=

∫ ∫
F−1
ε,s (ui,s)E(Xi,t − X̄i,·|Xi,s)g(ui,s|Xi,s)l(Xi,s)dui,sdXi,s,

where we use Assumption 2 and the specification (2.23) in the second equality. Now we use that

g(ui,s|Xi,s) = g(ui,s|W1,i,s) by the index model, where W1,i,s = β′1Xi,s, which implies that∫
E(Xi,t−X̄i,·|Xi,s)g(ui,s|Xi,s)l(Xi,s)dXi,s =

∫
E(Xi,t−X̄i,·|W1,i,s)g(ui,s|W1,i,s)l(W1,i,s)dW1,i,s
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using the law of the iterated expectation. We get:

E[εi,s(Xi,t − X̄i,·)] =

∫ ∫
F−1
ε,s (ui,s)E(Xi,t − X̄i,·|W1,i,s)g(ui,s,W1,i,s)dui,sdW1,i,s

=

∫ ∫
F−1
ε,s (u)E(Xi,t − X̄i,·|W1,i,s = w)g(u,w)dudw.

By a similar argument:

E[εi,t(Xi,t − X̄i,·)] =
∫ ∫

F−1
ε,t (u)E(Xi,t − X̄i,·|W1,i,t = w)g(u,w)dudw.

With the definitionψt(u,w) = F−1
ε,t (u)E(Xi,t−X̄i,·|W1,i,t = w)− 1

T

∑T
s=1 F

−1
ε,s (u)E(Xi,t−X̄i,·|W1,i,s =

w), condition (b.4) becomes
∫ ∫

ψt(u,w)g(u,w)dudw = 0, for all t. Using g(u,w) = h(u,w)2 the

conclusion follows.

B.4 Consistency rate of the Sieve ML estimator θ̂

As a preliminary result in view of proving the asymptotic normality of estimator γ̂, we first establish the

convergence rates of estimator α̂ in Euclidean norm, and of estimator θ̂ in norm ‖ · ‖∗. The convergence

rate ‖θ̃ − θ0‖∗ = op((NT )
−1/4) for the unfeasible Sieve estimator defined by

θ̃ = argmax
θ∈ΘN,T

1
NT

∑N
i=1

∑T
t=1 log l(Ui,t|Ui,t−1, Xi,t, Xi,t−1; θ) based on the true ranks follows from The-

orem 1 in Chen and Shen (1998) and Assumptions A.1-A.4. To cope with the estimation error induced

by replacing Ui,t with the empirical ranks Ûi,t, we follow a similar approach as in the proof of Theorem

3.1 in Ai and Chen (2003).

Lemma 1. Under Assumptions 1-5 and A.1-A.4 we have: a) |α̂ − α0| = Op((NT )
−1/2) and b) ‖θ̂ −

θ0‖∗ = op((NT )
−1/4).

B.5 Proof of Theorem 1

From Lemma 1 b) we have ‖θ̂− θ0‖∗ ≤ δN,T w.p.a. 1, with δN,T = (NT )−1/4. Thus, from Assumption

A.6, for the plug-in estimator γ̂ = γ(θ̂) of parameter γ0 = γ(θ0) we have the second-order Taylor

expansion:

γ(θ̂) = γ(θ0) +
∂γ(θ0)

∂θ
[θ̂ − θ0] +Op(‖θ̂ − θ0‖2∗). (b.5)

Let us first isolate the bias term that arises from the Sieve approximation. On the finite-dimensional

linear space VNT , the Rietz representer vNT ∈ VNT w.r.t. 〈·, ·〉 is such that

∂γ(θ0)

∂θ
[v] = 〈vNT , v〉, ∀v ∈ VNT .
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Thus, the second-order expansion (b.5) yields:

γ(θ̂) = γ(θ0) +
∂γ(θ0)

∂θ
[θ̂ − θ0,NT ] +

∂γ(θ0)

∂θ
[θ0,NT − θ0] +Op(‖θ̂ − θ0‖2∗)

= γ(θ0) + 〈vNT , θ̂ − θ0,NT 〉+ ∂γ(θ0)

∂θ
[θ0,NT − θ0] +Op(‖θ̂ − θ0‖2∗),

where θ0,NT = argmin
θ∈ΘN,T

‖θ−θ0‖. Now, we have 〈vNT , θ̂−θ0,NT 〉 = 〈vNT , θ̂−θ0〉 because 〈vNT , θ0,NT−
θ0〉 = 0 for any vNT ∈ VN,T . Hence we have

√
NT

(
γ(θ̂)− γ(θ0)− ∂γ(θ0)

∂θ
[θ0,NT − θ0]

)
=

√
NT 〈vNT , θ̂ − θ0〉+Op(

√
NT‖θ̂ − θ0‖2∗).

By Lemma 1 b), the second-order term on the RHS is op(1), and we get:

√
NT

(
γ(θ̂)− γ(θ0)− ∂γ(θ0)

∂θ
[θ0,NT − θ0]

)
=

√
NT 〈vNT , θ̂ − θ0〉+ op(1). (b.6)

Let us now single-out the bias contribution from the estimation of the ranks. In Lemma 2 we derive an

asymptotic expansion for the rank estimator Ûi,t and plug it into the expectationE[log l(Ûi,t|Ûi,t−1, Xi,t, Xi,t−1; θ)]

to get an asymptotic expansion for θ̃N,T − θ0 in Lemma 3.

Lemma 2. We have the asymptotic expansion of the rank estimate as N,T → ∞ :

Ûi,t = Ui,t +Δi,t +
1

T
Ht(εi,t)− ft(εi,t)ε̄i +

1

2
f ′t(εi,t)ε̄

2
i +

1

2N
σ2t f

′
t(εi,t) +

1

2
f ′t(εi,t)ε̄

2
·t, (b.7)

up to negligible terms.

Lemma 3. As N,T → ∞ we have:

〈vN,T , θ̃N,T − θ0〉 = 1

T
BT (ṽNT ) +O(1/T 2 + 1/N) + o(1/

√
NT ), (b.8)

where function BT (·) is defined in Theorem 1, and ṽN,T = Ĩ−1
N,T vNT .

The remainder term in (b.8) is o(1/
√
NT ) if N,T → ∞ such that T � N � T 3.

In Lemma 4 we write the scalar product 〈vN,T , θ̂− θ̃N,T 〉 in terms of a sample average of the directional

derivative of the log-likelihood.

Lemma 4. Under Assumption A.7 and regularity conditions:

√
NT 〈vN,T , θ̂ − θ̃N,T 〉 = 1√

NT

∑
i

∑
t

∂ log l(Ûi,t|Ûi,t−1, Xit, Xi,t−1; θ̃N,T )

∂θ
[ṽN,T ] + op(1).
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By equations (b.6) and (b.8), Lemma 4, and condition T � N � T 3, we get the expansion:

√
NT

(
γ(θ̂)− γ(θ0)− ∂γ(θ0)

∂θ
[θ0,NT − θ0]− 1

T
BT (ṽN,T )

)

=
1√
NT

∑
i

∑
t

∂ log l(Ûi,t|Ûi,t−1, Xit, Xi,t−1; θ̃N,T )

∂θ
[ṽN,T ] + op(1). (b.9)

Let us now show that 1√
NT

∑
i

∑
t
∂ log l(Ûi,t|Ûi,t−1,Xit,Xi,t−1;θ̃N,T )

∂θ [ṽN,T ] is asymptotically standard nor-

mal after an appropriate rescaling.

Lemma 5. We have:

1√
NT

∑
i

∑
t

∂ log l(Ûi,t|Ûi,t−1, Xit, Xi,t−1; θ̃N,T )

∂θ
[ṽN,T ]

=
1√
NT

∑
i

∑
t

(
ξ̃i,t[ṽN,T ] + ν̃i,t[ṽN,T ]Δi,t + η̃i,t[ṽN,T ]Δi,t−1

)
+ op(1),

where ξ̃i,t[ṽN,T ] :=
∂ log l(Ũi,t|Ũi,t−1,Xi,t,Xi,t−1;θ̄N,T )

∂θ [ṽN,T ], ν̃i,t[ṽN,T ] :=
∂2 log l(Ũi,t|Ũi,t−1,Xi,t,Xi,t−1;θ̄N,T )

∂θ∂u [ṽN,T ]

and η̃i,t[ṽN,T ] :=
∂2 log l(Ũi,t|Ũi,t−1,Xi,t,Xi,t−1;θ̄N,T )

∂θ∂v [ṽN,T ].

Lemma 6. Under Assumption A.10, we have as N,T → ∞:

σ−1
N,T

1√
NT

∑
i

∑
t

(
ξ̃i,t[ṽN,T ] + ν̃i,t[ṽN,T ]Δi,t + η̃i,t[ṽN,T ]Δi,t−1

)
⇒ N(0, 1),

where the asymptotic variance σ2N,T is as defined in Theorem 1.

By equation (b.9) and Lemmas 5 and 6, the conclusion follows.

B.6 Proof of Theorem 2

a) We first derive the directional derivative of the log transition density. From (2.23) we have:

log l(u|u−1, x, x−1; θ) = log c[

∫ u
0 h(y, x

′β1)2dy∫ 1
0 h(y, x

′β1)2dy
,

∫ u−1

0 h(y, x′−1β1)
2dy∫ 1

0 h(y, x
′−1β1)

2dy
; ρ(·, x′β2)] + log(

h(u, x′β1)2∫ 1
0 h(y, x

′β1)2dy
),

for θ = (β1, β2, h, ρ), where the log density of the nonlinear autoregressive copula is:

log c(zt, zt−1; �(·)) = log φ[Λ−1(zt)− �(zt−1)]− log λ[Λ−1(zt)], (b.10)

38



parameterized by the univariate function �(·), with Λ(y) =
∫ 1
0 Φ(y − �(v))dv and λ(y) =

∫ 1
0 φ(y −

�(v))dv. The directional derivative of the log transition density is

∂ log l(u|u−1, x, x−1; θ0)

∂θ
[v] =

∂ log c(Z(θ0), Z−1(θ0); ρ0(·, x′β02))
∂zt

∂Z(θ0)

∂θ
[v]

+
∂ log c(Z(θ0), Z−1(θ0); ρ0(·, x′β02))

∂zt−1

∂Z−1(θ0)

∂θ
[v]

+
∂ log c(Z(θ0), Z−1(θ0); ρ0(·, x′β02))

∂�
[vρ(·, x′β02) +∇2ρ0(·, x′β02)x′vβ2 ]

+2
vh(u, x

′β01) +∇2h
0(u, x′β01)x′vβ1

h0(u, x′β01)
− 2

∫ 1
0 h

0(y, x′β01)[vh(y, x′β1) +∇2h
0(y, x′β01)x′vβ1 ]dy∫ 1

0 h
0(y, x′β01)2dy

, (b.11)

for v = (vβ1 , vβ2 , vh, vρ) ∈ V, where Z(θ) :=
∫ u
0 h(y, x

′β1)2dy/
∫ 1
0 h(y, x

′β1)2dy and

∂Z(θ0)

∂θ
[v] = 2

∫ 1
0 h

0(y, x′β01)[1(y ≤ u)− Z(θ0)][vh(y, x
′β01) +∇2h

0(y, x′β01)x′vβ1 ]dy∫ 1
0 h

0(y, x′β01)2dy

= 2Cov

(
1(Ui,t ≤ u),

vh(Ui,t, x
′β01) +∇2h

0(Ui,t, x
′β01)x′vβ1

h0(Ui,t, x′β01)
|Xi,t = x

)
, (b.12)

and similarly for Z−1(θ) =
∫ u−1

0 h(y, x′β1)2dy/
∫ 1
0 h(y, x

′β1)2dy and its directional derivative.

Lemma 7. The partial derivatives w.r.t. the copula arguments are:

∂ log c(zt, zt−1; �0)

∂zt
=

1

λ0[Λ
−1
0 (zt)]

(�0(zt−1)− E[�0(Zt−1)|Zt = zt]]), (b.13)

and
∂ log c(zt, zt−1; �0)

∂zt−1
= [Λ−1

0 (zt)− �0(zt−1)]�
′
0(zt−1),

where the conditional expectation in (b.13) is w.r.t. variables (Zt, Zt−1) which are uniformly distributed

on [0, 1] with copula c(·, ·; �0). The directional derivative w.r.t. the functional copula parameter is:

∂ log c(zt, zt−1; �0)

∂�
[v] = [Λ−1

0 (zt)− �0(zt−1)] (v(zt−1)− E[v(Zt−1)|Zt = zt)])

+Cov (�0(Zt−1), v(Zt−1)|Zt = zt) . (b.14)

By using equations (b.11) and (b.12), Lemma 7, the equalities Z(θ0) = G0(u|w1) = z and Z−1(θ0) =

z−1, and the fact that Zi,t, Zi,t−1 have copula c(·, ·; ρ0(·;X ′
i,tβ

0
2)) conditional on Xi,t, Xi,t−1, the con-

clusion follows.

b) To compute the directional derivative of γ(θ), we write γ(θ) = γ1(θ)γ2(θ)γ3(θ) where

γ1(θ) =
g(ū; x̄′β1)

g[G−1[Λ[ρ[G(ū; x̄′β1); x̄′β2]; x̄′β2]; x̄′β1]; x̄′β1]
≡ ψ(ζ1(θ); θ)

2,

γ2(θ) = λ[ρ[G(ū; x̄′β1); x̄′β2]; x̄′β2] ≡ λ(ζ3(θ); x̄
′β2),

γ3(θ) = ∇1ρ[G(ū; x̄
′β1); x̄′β2] ≡ ∇1ρ(ζ4(θ); x̄

′β2),
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with the notation ψ(y; θ) = h(ū;x̄′β1)
h(y;x̄′β1)

, ζ1(θ) = G−1(ζ2(θ); x̄
′β1), ζ2(θ) = Λ(ζ3(θ); x̄

′β2), ζ3(θ) =

ρ(ζ4(θ); x̄
′β2), ζ4(θ) = G(ū; x̄′β1) =

∫ ū
0 h(u,x̄′β1)2du∫ 1
0 h(u,x̄′β1)2du

. By the product rule:

∂γ(θ)

∂θ
[v] = γ(θ)

3∑
i=1

1

γi(θ)

∂γi(θ)

∂θ
[v], (b.15)

where v = (vβ1 , vβ2 , vh, vρ) ∈ V. We compute now separately the three directional derivatives on the

RHS:

∂γ1(θ)

∂θ
[v] = 2ψ(ζ1(θ); θ)

(
∂ψ(y; θ)

∂θ
[v]

∣∣∣∣
y=ζ1(θ)

+∇1ψ(ζ1(θ); θ)
∂ζ1(θ)

∂θ
[v]

)

= 2γ1(θ)

(
vh(ū, x̄

′β1) +∇2h(ū, x̄
′β1)x̄′vβ1

h(ū, x̄′β1)
− vh(ζ1(θ); x̄

′β1) +∇2h(ζ1(θ), x̄
′β1)x̄′vβ1

h(ζ1(θ), x̄′β1)

−∇1h(ζ1(θ); x̄
′β1)

h(ζ1(θ), x̄′β1)
∂ζ1(θ)

∂θ
[v]

)
,

∂γ2(θ)

∂θ
[v] = ∇1λ(ζ3(θ); x̄

′β2)
∂ζ3(θ)

∂θ
[v] +

∂λ(y; x̄′β2)
∂θ

[v]

∣∣∣∣
y=ζ3(θ)

=

∫ 1

0
φ′[ζ3(θ)− ρ(z; x̄′β2)]dz

∂ζ3(θ)

∂θ
[v]

−
∫ 1

0
φ′[ζ3(θ)− ρ(z; x̄′β2)][vρ(z; x̄′β2) +∇2ρ(z; x̄

′β2)x̄′vβ2 ]dz

= γ2(θ)

{
E

[
ρ(Zi,t−1; x̄

′β2)− ρ(ζ4(θ), x̄
′β2)|Zi,t = ζ2(θ), Xi,t = x̄, Xi,t−1 = x̄

] ∂ζ3(θ)
∂θ

[v]

−E [(
ρ(Zi,t−1; x̄

′β2)− ρ(ζ4(θ), x̄
′β2)

) (
vρ(Zi,t−1; x̄

′β2) +∇2ρ(Zi,t−1; x̄
′β2)x̄′vβ2

) |Zi,t = ζ2(θ), Xi,t = x̄, Xi,t−1 = x̄
]}
,

where we use 1
λ(ζ3(θ);x̄′β2)

∫ 1
0 φ[ζ3(θ)−ρ(z; x̄′β2)]ψ(z)dz = E[ψ(Zi,t−1)|Zi,t = ζ2(θ), Xi,t = x̄, Xi,t−1 =

x̄], and:

∂γ3(θ)

∂θ
[v] = ∇2

1ρ(ζ4(θ); x̄
′β2)

∂ζ4(θ)

∂θ
[v] +∇1vρ(ζ4(θ); x̄

′β2) +∇2
1,2ρ(ζ4(θ); x̄

′β2)x̄′vβ2 .
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The directional derivatives of ζ1(θ), ..., ζ4(θ) are:

∂ζ1(θ)

∂θ
[v] =

1

g[G−1(ζ2(θ); x̄′β1); x̄′β1]
∂ζ2(θ)

∂θ
[v] +

∂G−1(z; x̄′β1)
∂θ

[v]

∣∣∣∣
z=ζ2(θ)

=
1

g[ζ1(θ); x̄′β1]

(
∂ζ2(θ)

∂θ
[v]− ∂G(y; x̄′β1)

∂θ
[v]

∣∣∣∣
y=ζ1(θ)

)

=
1

g[ζ1(θ); x̄′β1]

(
∂ζ2(θ)

∂θ
[v]

−2

∫ 1
0 h(u, x̄

′β1)[1(u ≤ ζ1(θ))−G(ζ1(θ); x̄
′β1)][vh(u, x̄′β1) +∇2h(u, x̄

′β1)x̄′vβ1 ]du∫ 1
0 h(u, x̄

′β1)2du

)

=
1

g[ζ1(θ); x̄′β1]

[
∂ζ2(θ)

∂θ
[v]

−2Cov

(
1(Ui,t ≤ ζ1(θ)),

vh(Ui,t, x̄
′β1) +∇2h(Ui,t, x̄

′β1)x̄′vβ1

h(Ui,t, x̄′β1)
|Xi,t = x̄

)]
,

where we use
∂G−1(z;x̄′β1)

∂θ [v] = − 1
g[G−1(z;x̄′β1);x̄′β1]

∂G(y;x̄′β1)
∂θ [v]

∣∣∣
y=G−1(z;x̄′β1)

, and a calculation simi-

lar to (b.12),

∂ζ2(θ)

∂θ
[v] = λ(ζ3(θ); x̄

′β2)
∂ζ3(θ)

∂θ
[v] +

∂Λ(y; x̄′β2)
∂θ

[v]

∣∣∣∣
y=ζ3(θ)

= λ(ζ3(θ); x̄
′β2)

∂ζ3(θ)

∂θ
[v]−

∫ 1

0
φ[ζ3(θ)− ρ(z; x̄′β2)][vρ(z, x̄′β2) +∇2ρ(z, x̄

′β2)x̄′vβ2 ]dz

= λ(ζ3(θ); x̄
′β2)

(
∂ζ3(θ)

∂θ
[v]

−E [
vρ(Zi,t−1; x̄

′β2) +∇2ρ(Zi,t−1; x̄
′β2)x̄′vβ2 |Zi,t = ζ2(θ), Xi,t = x̄, Xi,t−1 = x̄

])
,

∂ζ3(θ)

∂θ
[v] = ∇1ρ(ζ4(θ), x̄

′β2)
∂ζ4(θ)

∂θ
[v] + vρ(ζ4(θ); x̄

′β2) +∇2ρ(ζ4(θ), x̄
′β2)x̄′vβ2 ,

and

∂ζ4(θ)

∂θ
[v] = 2

∫ 1
0 h(u, x̄

′β1)[1(u ≤ ū)−G(ū; x̄′β1)][vh(u, x̄′β1) +∇2h(u, x̄
′β1)x̄′vβ1 ]du∫ 1

0 h(u, x̄
′β1)2du

= 2Cov

(
1(Ui,t ≤ ū),

vh(Ui,t, x̄
′β1) +∇2h(Ui,t, x̄

′β1)x̄′vβ1

h(Ui,t, x̄′β1)
|Xi,t = x̄

)
.
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By combining these results we have:

1

γ1(θ)

∂γ1(θ)

∂θ
[v] = 2

(
vh(ū, x̄

′β1) +∇2h(ū, x̄
′β1)x̄′vβ1

h(ū, x̄′β1)
− vh(ζ1(θ), x̄

′β1) +∇2h(ζ1(θ), x̄
′β1)x̄′vβ1

h(ζ1(θ), x̄′β1)

)

−2
∇1h(ζ1(θ), x̄

′β1)
h(ζ1(θ), x̄′β1)

λ(ζ3(θ); x̄
′β2)

g(ζ1(θ), x̄′β1)
(
vρ(ζ4(θ), x̄

′β2) +∇2ρ(ζ4(θ), x̄
′β2)x̄′vβ2

−E [
vρ(Zi,t−1, x̄

′β2) +∇2ρ(Zi,t−1, x̄
′β2)x̄′vβ2 |Zi,t = ζ2(θ), Xi,t = x̄, Xi,t−1 = x̄

])
+4

∇1h(ζ1(θ), x̄
′β1)

h(ζ1(θ), x̄′β1)
1

g(ζ1(θ), x̄′β1)
Cov

(
1(Ui,t ≤ ζ1(θ)),

vh(Ui,t, x̄
′β1) +∇2h(Ui,t, x̄

′β1)x̄′vβ1

h(Ui,t, x̄′β1)
|Xi,t = x̄

)

−4
∇1h(ζ1(θ), x̄

′β1)
h(ζ1(θ), x̄′β1)

λ(ζ3(θ); x̄
′β2)

g(ζ1(θ), x̄′β1)
∇1ρ(ζ4(θ), x̄

′β2)

×Cov
(
1(Ui,t ≤ ū),

vh(Ui,t, x̄
′β1) +∇2h(Ui,t, x̄

′β1)x̄′vβ1

h(Ui,t, x̄′β1)
|Xi,t = x̄

)
,

1

γ2(θ)

∂γ2(θ)

∂θ
[v] = E

[
ρ(Zi,t−1; x̄

′β2)− ρ(ζ4(θ), x̄
′β2)|Zi,t = ζ2(θ), Xi,t = x̄, Xi,t−1 = x̄

]
× (

vρ(ζ4(θ); x̄
′β2) +∇2ρ(ζ4(θ), x̄

′β2)x̄′vβ2

−E [
vρ(Zi,t−1; x̄

′β2) +∇2ρ(Zi,t−1, x̄
′β2)x̄′vβ2 |Zi,t = ζ2(θ), Xi,t = x̄, Xi,t−1 = x̄

])
−Cov (ρ(Zi,t−1; x̄

′β2)− ρ(ζ4(θ), x̄
′β2), vρ(Zi,t−1; x̄

′β2) +∇2ρ(Zi,t−1; x̄
′β2)x̄′vβ2 |Zi,t = ζ2(θ), Xi,t = x̄, Xi,t−1 = x̄

)
+2E

[
ρ(Zi,t−1; x̄

′β2)− ρ(ζ4(θ), x̄
′β2)|Zi,t = ζ2(θ), Xi,t = x̄, Xi,t−1 = x̄

]∇1ρ(ζ4(θ), x̄
′β2)

×Cov
(
1(Ui,t ≤ ū),

vh(Ui,t, x̄
′β1) +∇2h(Ui,t, x̄

′β1)x̄′vβ1

h(Ui,t, x̄′β1)
|Xi,t = x̄

)
,

and:

1

γ3(θ)

∂γ3(θ)

∂θ
[v] = 2

∇2
1ρ(ζ4(θ); x̄

′β2)
∇1ρ(ζ4(θ); x̄′β2)

Cov

(
1(Ui,t ≤ ū),

vh(Ui,t, x̄
′β1) +∇2h(Ui,t, x̄

′β1)x̄′vβ1

h(Ui,t, x̄′β1)
|Xi,t = x̄

)

+
∇1vρ(ζ4(θ); x̄

′β2) +∇2
1,2ρ(ζ4(θ); x̄

′β2)x̄′vβ2

∇1ρ(ζ4(θ); x̄′β2)
.

By setting θ = θ0 and using equation (b.15), the conclusion follows.

Appendix C: Numerical implementation

In this Appendix we provide details about the implementation of our Sieve estimator, the characterization

of the bases of the “tangent spaces" Vh
NT , V

ρ
NT , and the analytical bias correction.

C.1 Sieve spaces based on tensor Hermite polynomials

The Hermite polynomials are defined by Hk(x) = (−1)kex
2 dk

dxk e
−x2

, for real argument x and integer

k = 0, 1, .... We use the Hermite polynomials to define functions ϕk(u) = 1√
2kk!

Hk[
Φ−1(u)√

2
], which
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build a complete orthonormal basis of L2[0, 1] w.r.t. scalar product
∫ 1
0 f(u)g(u)du. Moreover, func-

tions ψk(w) =
1√

2kk!
√
π
e−w2/2Hk(w) build a complete orthonormal basis of L2(R) w.r.t. scalar prod-

uct
∫∞
−∞ f(w)g(w)dw, and functions ψ̃k(w) =

1√
2kk!

√
π
Hk(w) build a complete orthonormal basis of

L2(R, q) w.r.t. scalar product
∫∞
−∞ f(w)g(w)q(w)dw, for q(w) = e−w2

.

For the sake of concreteness, we focus on the case with mh = mρ = 2 and u∗ = 0.5, as in our empirical

analysis and Monte Carlo study. Then, we have ϕ0(u) = 1, ϕ1(u) = Φ−1(u), ϕ2(u) =
1√
2
([Φ−1(u)]2−

1); ψ0(w) =
1

π1/4 e
−w2/2, ψ1(w) =

√
2

π1/4we
−w2/2, ψ2(w) =

1√
2π1/4 (2w

2−1)e−w2/2; and ψ̃0(w) =
1

π1/4 ,

ψ̃1(w) =
√
2

π1/4w, ψ̃2(w) = 1√
2π1/4 (2w

2 − 1). We define ϕ(u) = (ϕ0(u), ϕ1(u), ϕ2(u))
′, ψ(w) =

(ψ0(w), ψ1(w), ψ2(w))
′ and ψ̃(w) = (ψ̃0(w), ψ̃1(w), ψ̃2(w))

′. By reworking the constraints on the

coefficients, the Sieve spaces Hh
N,T , Hρ

N,T can be rewritten as follows.

Lemma 8. For mh = mρ = 2 and u∗ = 0.5, the Sieve spaces defined in Section 3 become:

Hh
N,T =

{
h(·, ·) : λ′[ϕ(u)⊗ ψ(w)], λ ∈ R

9, s.t. λ′[κ(l) ⊗ I3]λ =
1

1 + l
, l = 0, 1, 2

}
,

Hρ
N,T =

{
ρ(·, ·) : μ′Aρ′[ϕ(u)⊗ ψ̃(w)], μ ∈ R

6
}
,

where symmetric matrices κ(l) :=
∫ 1
0 u

lϕ(u)ϕ(u)′du for l = 0, 1, 2 are given by:

κ(0) = I3, κ(1) =
1

2

⎛
⎜⎝

1 1√
π

0

1 3
2
√
2π

1

⎞
⎟⎠ , κ(2) =

1

3

⎛
⎜⎜⎝

1 3
2
√
π

√
3

2
√
2π

1 +
√
3

2π
9

4
√
2π

1− 7
4
√
3π

⎞
⎟⎟⎠ , (b.16)

and the 9× 6 matrix Aρ is given by Aρ =

⎛
⎜⎝

1√
3
I3 03×3

03×3 I3√
2√
3
I3 03×3

⎞
⎟⎠.

C.2 Numerical computation of the Sieve estimator θ̂

We compute the estimator θ̂ in (3.2) using the parameterization of the Sieve spaces in Lemma 8. The

log-likelihood function involves numerical integrals to evaluate the function Λ in (2.22) and the marginal

distribution. These numerical integrals are evaluated by simulations. Our choice mh = mρ = 2 for

the polynomial degrees in the Sieve spaces yields a good performance in the Monte Carlo experiments.

We have verified that the estimation results are similar for other choices of mh, mρ near our quadratic

approximation.
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C.3 Orthonormal basis functions for tangent spaces Vh
N,T and V

ρ
N,T

The Sieve Hρ
N,T is a linear space. Thus, the tangent space V

ρ
N,T coincides with the Sieve space Hρ

N,T

itself, and from Lemma 8 it is spanned by the six functions Ψρ
l , l = 1, ..., 6 that are components of

the vector Ψρ(u, v) = Aρ′[ϕ(u) ⊗ ψ̃(w)]. Because Aρ′Aρ = I6 and the orthonormal properties of

functions ϕk and ψ̃k, it follows that functions Ψρ
l , l = 1, ..., 6 are orthonormal w.r.t. scalar product

〈vρ, v∗ρ〉 =
∫ 1
0

∫∞
−∞ vρ(u,w)v

∗
ρ(u,w)q(w)dudw.

The Sieve Hh
N,T is not a linear space due to the constraints on the coefficient vector λ, and the tangent

space V
h
N,T at h0N,T is derived next by linearization.

Lemma 9. The linear space Vh
N,T is spanned by the six functions Ψh

l , l = 1, ..., 6 that are components of

the vector Ψh(u, v) = Ah′[ϕ(u)⊗ψ(w)], where the columns of the 9× 6 matrix Ah are an orthonormal

basis of the orthogonal complement of the range of matrix B = [λ0N,T : (κ(1) ⊗ I3)λ
0
N,T : (κ(2) ⊗

I3)λ
0
N,T ], where λ0N,T ∈ R

9 is the coefficient vector of h0N,T (u,w) = λ0′N,T [ϕ(u)⊗ ψ(w)]. 19

Functions Ψh
l , l = 1, ..., 6 are orthonormal w.r.t. scalar product 〈vh, v∗h〉 =

∫ 1
0

∫∞
−∞ vh(u,w)v

∗
h(u,w)dudw.

C.4 Closed-form analysis and Gaussian reference model for bias adjustment

To apply Theorem 2 for implementing an analytical bias correction as discussed in Section 3.3, we need

certain conditional expectations involving the distribution of Ui,t given Xi,t for h ∈ Hh
N,T (specifically,

for the Sieve estimate of h0). They are provided in the next lemma.

Lemma 10. For h ∈ Hh
N,T with h = λ′[ϕ⊗ ψ], it holds:

G(u,w1) = E[1(Ui,t ≤ u)|Xi,t = x] =
λ′[K(u)⊗ (ψ(w1)ψ(w1)

′)]λ
λ′[I3 ⊗ (ψ(w1)ψ(w1)′)]λ

, (b.17)

E

[
1(Ui,t ≤ u)

∇2h(Ui,t, w1)

h(Ui,t, w1)
|Xi,t = x

]
=

λ′[K(u)⊗ (∇ψ(w1)ψ(w1)
′)]λ

λ′[I3 ⊗ (ψ(w1)ψ(w1)′)]λ
, (b.18)

E

[
1(Ui,t ≤ u)

Ψh(Ui,t, w1)

h(Ui,t, w1)
|Xi,t = x

]
=

Ah′[K(u)⊗ (ψ(w1)ψ(w1)
′)]λ

λ′[I3 ⊗ (ψ(w1)ψ(w1)′)]λ
, (b.19)

where

K(u) :=

∫ u

0
ϕ(y)ϕ(y)′dy = uI3 − φ[Φ−1(u)]

⎛
⎜⎝

0 1 1√
2
Φ−1(u)

Φ−1(u) 1√
2
([Φ−1(u)]2 + 1)

−1
2 [Φ

−1(u)]([Φ−1(u)]2 + 1)

⎞
⎟⎠ .

(b.20)

To obtain simple closed-form expressions for other quantities needed for bias correction, we use the

following approximations.

19For instance, we can take Ah = Ã(Ã′Ã)−1/2, where Ã is the matrix built by the first 6 columns of I9 −B(B′B)−1B.
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C.4.1 Legendre polynomial approximation of higher-order derivatives

The vector bNT has elements BT (el), for l = 1, ...,M . The latter can be estimated as

B̃T (el) =
1

NT

∑
i

∑
t

[
∂2 log li,t(θ0)

∂θ∂u
[el]Ht(εi,t) +

∂2 log li,t(θ0)

∂θ∂v
[el]Ht−1(εi,t−1)

]

− 1

NT

∑
i

∑
t,s

[
∂2 log li,t(θ0)

∂θ∂u
[el]ft(εi,t) +

∂2 log li,t(θ0)

∂θ∂v
[el]ft−1(εi,t−1)

]
εi,s

+
ω2

2NT

∑
i

∑
t

Ψ(εi,t, εi,t−1; θ0)[el].

We can dispense of the cumbursome expressions of the first- and second-order derivatives of
∂2 log l(u|v,Xi,t,Xi,t−1;θ0)

∂θ [el]

w.r.t. the copula arguments u and v by deploying a polynomial approximation. Using the Legendre poly-

nomials Lk(x) = (2kk!)−1 dk

dxk [(x
2 − 1)k] for argument x ∈ [−1, 1] and integer k = 0, 1, ..., we define

the polynomials Pk(u) =
√
2k + 1Lk(2u−1), that are orthonormal functions on [0, 1] w.r.t. the standard

L2 scalar product. We use the series expansion with orthogonal polynomials:

∂ log li,t(θ0)

∂θ
[el] =

L∑
k,�=1

αi,t,k,�Pk(Ui,t)P�(Ui,t−1), (b.21)

for a large integer L, where αi,t,j,k =
∫ 1
0

∫ 1
0

∂ log l(u|u−1,Xi,t,Xi,t−1)
∂θ [el]Pk(u)P�(u−1)dudu−1, (for ex-

pository purpose we omit the dependence of the coefficients α on index l). Then we get:

B̃T (el) =
1

NT

∑
i

∑
t

∑
k,�

αi,t,k,�

[
P ′
k(Ui,t)P�(Ui,t−1)Ht(εi,t) + Pk(Ui,t)P

′
�(Ui,t−1)Ht−1(εi,t−1)

]

− 1

NT

∑
i

∑
t,s

∑
k,�

αi,t,k,�

[
P ′
k(Ui,t)P�(Ui,t−1)ft(εi,t) + Pk(Ui,t)P

′
�(Ui,t−1)ft−1(εi,t−1)

]
εi,s

+
ω2

2NT

∑
i

∑
t

∑
k,�

αi,t,k,�

[
Pk

′′(Ui,t)P�(Ui,t−1)[ft(εi,t)]
2 + Pk(Ui,t)P

′′
� (Ui,t−1)[ft−1(εi,t−1)]

2

+2P
′
k(Ui,t)P

′
�(Ui,t−1)ft(εi,t)ft−1(εi,t−1)

]
. (b.22)

By interchanging summation and integration, the bivariate numerical integrals on the RHS of (b.22) can

be computed once for all i, t, k, � (e.g. by Monte Carlo simulation). A feasible estimator involves using

residuals ε̂i,t and consistent (nonparametric) estimators of ω2, ft, Ht.

C.4.2 Gaussian reference model

For ρ = μ′Aρ′[ϕ(·) ⊗ ψ̃(·)] ∈ Hρ
N,T with μ ∈ R

6 and μ1 = μ2 = μ3 = 0, we have ρ(u,w) =

r(w)Φ−1(u) with r(w) = μ4ψ̃0(w)+μ5ψ̃1(w)+μ6ψ̃2(w) =
1

π1/4 (μ4+
√
2μ5w+ μ6√

2
(2w2−1)). Then
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from (2.22) we have (see the proof of Lemma 11):

Λ(y, w) = Φ

(
y√

1 + r(w)2

)
, (b.23)

From (2.27) we get:

Φ−1(Zi,t) =
r(X ′

i,tβ
0
2)√

1 + r(X ′
i,tβ

0
2)

2
Φ−1(Zi,t−1) +

1√
1 + r(X ′

i,tβ
0
2)

2
ωi,t,

with ωi,t ∼ IIN(0, 1). Thus, Zi,t, Zi,t−1 conditionally on Xi,t, Xi,t−1 have a Gaussian copula with

correlation parameter
r(X′

i,tβ
0
2)√

1+r(X′
i,tβ

0
2)

2
. The Gaussian copula allows to get closed-form expressions for the

conditional expectations in Theorem 2, that are provided in the next lemma.

Lemma 11. For ρ = μ′Aρ′[ϕ(·)⊗ ψ̃(·)] ∈ Hρ
N,T with μ ∈ R

6 and μ1 = μ2 = μ3 = 0, we have:

E[ρ(Zi,t−1;w2)|Ω(z, x, x−1)] =
r(w2)

2√
1 + r(w2)2

Φ−1(z), (b.24)

E[∇2ρ(Zi,t−1;w2)|Ω(z, x, x−1)] =
r(w2)∇r(w2)√

1 + r(w2)2
Φ−1(z), (b.25)

Cov(ρ(Zi,t−1;w2),∇2ρ(Zi,t−1;w2)|Ω(z, x, x−1)] =
r(w2)∇r(w2)

1 + r(w2)2
, (b.26)

E[Ψρ(Zi,t−1;w2)|Ω(z, x, x−1)] = Aρ′[(D(w2)ϕ(z))⊗ ψ̃(w2)], (b.27)

Cov(ρ(Zi,t−1;w2),Ψ
ρ(Zi,t−1;w2)|Ω(z, x, x−1)] = Aρ′[(F (w2)ϕ(z))⊗ ψ̃(w2)], (b.28)

where the conditioning set is Ω(z, x, x−1) := {Zi,t = z,Xi,t = x,Xi,t−1 = x−1}, and D(w) =

diag(1, r(w)√
1+r(w)2

, r(w)2

1+r(w)2
) and F (w) = r(w)

1+r(w)2

⎛
⎜⎝

0 0 0
1 0 0

0
√
2 r(w)√

1+r(w)2
0

⎞
⎟⎠.

Let us finally consider a reference model in which the conditional distribution of Ui,t given Xi,t is

independent of Xi,t and uniform, i.e. G(u,w) = u, and the cross-sectional density ft is Gaussian with

variance σ2t . Then, the errors εi,t themselves have a Gaussian dynamics conditionally on the regressors.

Then, we have
T∑

s=1

E(εi,s|εi,t = ε) �
∑
s

σst
σ2t
ε � ω2

σ2t
ε,

for large T . Then, by using f ′t(ε) = − 1
σ2
t
εft(ε), we get Ht(ε) = 0 asymptotically. Hence, we can omit

the terms in (b.22) involving the Ht.
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