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CONSUMPTION DECISION, PORTFOLIO CHOICE AND HEALTHCARE

IRREVERSIBLE INVESTMENT

GIORGIO FERRARI AND SHIHAO ZHU

Abstract. We propose a tractable dynamic framework for the joint determination of optimal con-
sumption, portfolio choice, and healthcare irreversible investment. Our model is based on a Merton’s
portfolio and consumption problem, where, in addition, the agent can choose the time at which un-
dertaking a costly lump sum health investment decision. Health depreciates with age and directly
affects the agent’s mortality force, so that investment into healthcare reduces the agent’s mortality
risk. The resulting optimization problem is formulated as a stochastic control-stopping problem with
a random time-horizon and state-variables given by the agent’s wealth and health capital. We trans-
form this problem into its dual version, which is now a two-dimensional optimal stopping problem
with interconnected dynamics and finite time-horizon. Regularity of the optimal stopping value func-
tion is derived and the related free boundary surface is proved to be Lipschitz continuous and it is
characterized as the unique solution to a nonlinear integral equation. In the original coordinates,
the agent thus invests into healthcare whenever her wealth exceeds an age- and health-dependent
transformed version of the optimal stopping boundary.

Keywords: Optimal timing of health investment; Optimal consumption; Optimal portfolio choice;
Duality; Optimal stopping; Free boundary; Stochastic control.

MSC Classification: 91B70, 93E20, 60G40.

JEL Classification: G11, E21, I13.

1. Introduction

It has been recognized that expenditures on medical services, annual physical exams, and exercise
can be viewed as investments in health capital and analyzed using the tools of capital theory. This
approach has enabled economists to derive propositions about the pattern of healthcare spending over
an individual’s lifetime and to describe the behavior of health capital over the life cycle. For example,
a demand-for-health model developed by [Grossman, 1972] extended the human capital theory by
explicitly incorporating health and recognizing that there are both consumption and investment
motives for investing in health. The basic features of the model are (1) that health can be viewed
as a durable capital stock that produces an output of healthy time, (2) that individuals inherit an
initial stock of health that depreciates with age, (3) that the stock of health can be increased by
investment, and (4) that the individual demands health (a) for its utility enhancing effects (the
consumption motive), and (b) for its effect on the amount of healthy time (the investments motive).

Based on aforementioned standard model assumptions, various health economists have enhanced
the Grossman’s dynamic health investment model. These enhancements address, for example, the
introduction of uncertainty into the theoretical model (see, e.g., [Cropper, 1977], [Ehrlich, 2000] and
[Bolin and Caputo, 2020]) or the distribution of health within the family (see [Jacobson, 2000] and
[Bolin et al., 2001], among many others).

Empirical evidence suggests that health crucially influences an agent’s financial decisions (see,
e.g., [Rosen and Wu, 2004]; [Smith, 2009]; [Atella et al., 2012]). In particular, literature reveals that
health status is positively correlated with income, consumption asset holdings, and negatively cor-
related with health expenditures. To account for this fact, [Hugonnier et al., 2013] proposed a
dynamic framework for the joint determination of optimal consumption, portfolio holdings, and
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health investment. They solve for the optimal rules in closed form and provide estimates of the
parameters that confirm the relevance of all the main characteristics of the model. More recently,
[Guasoni and Huang, 2019] focuses on a representative household that makes consumption, invest-
ment and healthcare spending decisions in order to maximise welfare under time-separable utilities.
In [Guasoni and Huang, 2019], the Gompertz law of mortality is taken as state variable, in addition
to wealth, and the resulting optimal stochastic control problem is reduced to the study of a nonlin-
ear ordinary differential equation. This is shown to have a unique solution, which has an explicit
expression in the old-age limit. Further, [Aurand and Huang, 2021] studies optimal consumption,
investment, and healthcare spending under Epstein–Zin preferences.

As in [Hugonnier et al., 2013], also in this paper, we combine two well-accepted frameworks from
the Financial and Health Economics literature within a unified setup. However, differently to
[Hugonnier et al., 2013], health-related decisions are approached from a different viewpoint. Specifi-
cally, we start from a [Merton, 1971]’s portfolio and consumption choice problem and append to this
model the determination of the time of health investment (e.g., buying a preventive health insurance).
Meanwhile, the above essential features of [Grossman, 1972]’s canonical model are retained.

In what follows, a distinction is made and maintained between curative and precautionary health
investments. This distinction is an important one since the two types of investment may behave
quite differently over the life cycle. Specifically, curative health investments are defined to have
direct effects on the stock of health or the rate of depreciation of health, or both, and are produced
using medical-care goods and services. As a result, curative health investments are not among an
individual’s choice variables. In contrast, precautionary health investments are defined as those
that are under the control of an agent and indirectly affect the rate of depreciation of a stock of
health by directly affecting the stock of health itself. That is, the current stock of health, which
is directly influenced by precautionary health investments, determines the rate of depreciation of
health. The view that precautionary health investments indirectly affect the rate of depreciation of
health in the aforementioned manner is consistent with ample medical evidence. Therefore, we focus
on precautionary health investments in our model (see (2.4) in Section 2).

The introduction of the option to choose the time for a health precautionary investment raises
several questions. First, if an individual is faced with the choice of when buying preventive health
insurance, how should she optimally behave? In particular, a non-trivial trade-off arises: If the
agent invests into healthcare too early, then she reduces her wealth, thus affecting consumption and
portfolio choice; if she invests in health too late, then this will negatively impact on the utility and
the survival probability. Second, how do optimal consumption and investment strategies react to the
introduction of health factors?

The answers to these questions, which are collected in Section 5, are somewhat intuitively con-
vincing. We show that it is optimal to invest in health when the agent’s wealth first reaches an
endogenously determined boundary surface, which depends on the agent’s age and health status.
Intuitively, if the agent is sufficiently rich (her wealth exceeds the corresponding boundary), then
health investments should be performed immediately; otherwise, it is optimal to wait for an increase
of the wealth.

1.1. Overview of the mathematical analysis. From a mathematical point of view, our model
leads to a random time-horizon, two-dimensional stochastic control problem with discretionary stop-
ping. The time-horizon is given as the minimum between the agent’s random time of death, η, and
the maximal expected biological longevity T < ∞1. We assume that η does not need to depend on
the financial market. In other words, we do not assume that η is a stopping time of the filtration F
generated by the asset prices. The conditional distribution function of η is assumed to depend on
the agent’s health status and by means of health investment the agent slows the rate of mortality,
which in turn changes the distribution of η.

1This can be also thought of as the maximal age at which insurance companies enable to enter a preventive health-
care program.
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The two coordinates of the state process are the wealth process X and the health capital process
H. The agent chooses the consumption rate c and the portfolio π, as well as the time τ at which
undertaking a lump sum investment into health. At time τ the dynamics of H and X change, since
the health capital is increased through the investment (so that the mortality rate is decreased), while
the agent’s wealth reduces. The aim is then to maximize the intertemporal utility from consumption
and health status, up to the random time η ∧ T .

Problems with a similar structure arise, for instance, in retirement time choice models, where
the agent has to consume and invest in risky assets, and to decide when to retire (see, e.g.,
[Jin Choi and Shim, 2006], [Yang and Koo, 2018]). Combined stochastic control/optimal stopping
problems also arise in Mathematical Finance, namely, in the context of pricing American contingent
claims under constraints and utility maximization problem with discretionary stopping; see, e.g.,
[Karatzas and Kou, 1998] and [Karatzas and Wang, 2000]. In order to tame the intricate mathemat-
ical structure of our problem, where the consumption and portfolio choice nontrivially interact with
the investment decision, we combine a duality and a free-boundary approach, and proceed in our
analysis as it follows.

Step 1. First, we conduct successive transformations (see Section 3) and formulate the orig-
inal stochastic control-stopping problem (with value function V ) in terms of its dual problem by
martingale and duality methods (similar to [Karatzas and Wang, 2000] or [Yang and Koo, 2018]).

Step 2. We study the dual problem (with value function J), which is a finite time-horizon, two-
dimensional optimal stopping problem with interconnected dynamics. The dual variable Z (Lagrange
multiplier) evolves as a geometric Brownian motion, whose drift depends on the health capital process
H. Moreover, H affects the mortality rate and thus the exponential discount factor appearing in the
stopping functional. The coupling between the two components of the state process makes the study
of the optimal stopping problem quite intricate.

It is also worth pointing out that the health capital process H does not possess any diffusive term,
which leads to a novel analysis of the regularity of J . As a matter of fact, the process (Z,H) is
a degenerate diffusion process (in the sense that the differential operator of (Z,H) is a degenerate
parabolic operator) so that the study of the regularity of J in the interior of its continuation region
cannot hinge on classical analytic existence results for parabolic PDEs (notice that the differential
operator in our case does not even satisfy the Hörmander condition required in [Peskir, 2022]).

Additional technical difficulties arise when trying to infer properties of the optimal stopping bound-
ary b. In fact, due to the generic time and health dependence of the mortality force, we were unable
to establish any monotonicity for the mapping (t, h) 7→ b(t, h). It is well known in optimal stopping
and free-boundary theory that monotonicity of b is the key to a rigorous study of the regularity of the
boundary (e.g. continuity) and of the value function (e.g. continuous differentiability). The interested
reader may consult the introduction in [De Angelis and Stabile, 2019a] for a deeper discussion.

We overcome these major technical hurdles by proving that the optimal boundary is in fact a locally
Lipschitz-continuous function of time t and health capital h, without employing neither monotonicity
of the boundary nor classical results on interior regularity for parabolic PDEs. In order to achieve this
goal, we rely only upon probabilistic methods which are specifically designed to tackle our problem.

As a matter of fact, we first prove that Ĵ (given by the difference of J and the smooth payoff of
immediate stopping; see (4.1)) is locally Lipschitz continuous and obtain probabilistic representations
of its weak-derivatives (cf. [De Angelis and Stabile, 2019a]). Then, through a suitable application
of the method developed in [De Angelis and Stabile, 2019b], by means of a version of the implicit
function theorem for Lipschitz mappings (cf. [Papi, 2005]), we can show that the free boundary surface
(t, h) → b(t, h) is locally-Lipschitz continuous. This enables us to prove that the optimal stopping

time (t, z, h) 7→ τ∗(t, z, h) is continuous, which in turn gives that Ĵ is a continuously differentiable
functions of its three variables. Being that the dual process Z is the only diffusive one, the C1-

property of Ĵ implies that Ĵzz admits a continuous extension to the closure of the continuation
region. Notice that it is in fact this regularity that could had not been derived from standard results
on PDEs nor from [Peskir, 2022], and it is in fact this regularity that allows (via an application of
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a weak version of Dynkin’s formula) to derive an integral equation which is uniquely solved by the
free boundary.

Step 3. After proving the strict convexity of J through techniques that employ stability results
for viscosity solutions (cf. Proposition 5.1), we can come back to the original coordinates’ system
and via the duality relations obtain the optimal consumption and portfolio policies, as well as the
optimal investment time, in terms of the optimal stopping boundary and value function (cf. Section
5).

In summary, our contribution is at least twofold. On the one hand, we contribute to the liter-
ature concerning health investment problems in the consumption-portfolio framework. To the best
of our knowledge, our paper is the first that integrates timing decisions for irreversible investment
into health within the portfolio-consumption literature. From a mathematical point of view, even
though the literature on stochastic control with discretionary stopping problems is extensive (in
different contexts), our study on a finite time-horizon two-dimensional optimal stopping problem
with interconnected dynamics and non monotone boundary constitutes a novelty. Very recently,
[Cai et al., 2022] study the pricing of American put options in the Black-Scholes market with a sto-
chastic interest rate and finite-time maturity, which results into a finite time-horizon two-dimensional
optimal stopping problem. However, in [Cai et al., 2022] monotonicity of the free boundary can be
obtained due to the problem’s mathematical structure.

1.2. Plan of the paper. The rest of the paper is organized as follows. In Section 2, we introduce the
model. We transform the original stochastic control-stopping problem into a pure stopping problem
in Section 3, while in Section 4 we study the dual optimal stopping problem. In Section 5, we provide
the optimal health investment boundary, optimal consumption plan and optimal portfolio in primal
variables, and in Section 6 we conclude. Appendix A contains technical estimates, Appendix B
collects the proofs of some results of Section 4, whereas Appendix C provides some auxiliary results
needed in the paper.

2. Setting and problem formulation

2.1. Setting. Let T < ∞ be a fixed time-horizon, representing either the maximal biological longevity
from the initial time t ∈ [0, T ] or the maximal age at which a preventive health-care insurance pro-
gram can be stipulated. Also, let (Ω,F ,P) be a complete probability space, endowed with a filtration
F := {Fs, t ≤ s ≤ T} satisfying the usual conditions. We assume that there exists a random variable
Θ, constructed on (Ω,F), independent of FT and such that

P[Θ > v] = e−v, v ≥ 0.

Consider an agent whose lifespan is determined through health capital. In the spirit of
[Hugonnier et al., 2013], we model the mortality rate process MH := {MH

s , t ≤ s ≤ T} as

MH
s = m0 +m1H−κ

s ,(2.1)

for some non-negative constants m0,m1, and κ > 0. Here, H := {Hs, t ≤ s ≤ T} is the F-
adapted health capital process. Notice that in (2.1) the endogenous part of the mortality process is
a function of the agent’s current health status rather than of her current health investment (see, e.g.,
[Guasoni and Huang, 2019]). This assumption excludes the possibility of freely altering the mortality
rate by health investment.

We define the random death time of the agent η as2

η := inf

{
s ≥ t :

∫ s

t
MH

u du ≥ Θ

}
,

which is such that {η ≥ s} =
{ ∫ s

t MH
u du ≤ Θ

}
, where we have assumed that

∫ T
0 MH

u du < ∞ a.s.

2Notice that η is not an F-stopping time. It is instead a G-stopping time, where Gs := Fs ∨ σ(1{η≤u}; t ≤ u ≤ s),
for s ≥ 0. This is the enlarged filtration generated by the underlying filtration F and the process {1{η≤u}, t ≤ u ≤ s}.
The filtration G is the smallest one which contains F and such that η is a G-stopping time (see, e.g., Chapter 7 in
[Jeanblanc et al., 2009]).
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The conditional distribution function of η is such that (see, e.g., Lemma 7.3.2.1 in
[Jeanblanc et al., 2009]),

P[η > s|Fs′ ] = exp

{
−
∫ s

t
MH

u du

}
, s′ ≥ s ≥ t.(2.2)

In particular, P[η > s|Fs] = exp (−
∫ s
t MH

u du).
Let τ be an F-stopping time representing the time at which the agent invests in health. Before

investing in health, the agent’s health status H1 := {H1
s , t ≤ s ≤ τ} evolves as

dH1
s = −δH1

sds, for all s ∈ (t, τ ], H1
t = h > 0,(2.3)

where δ > 0 represents the decay rate of the health. After investing in healthcare a positive amount
I, the agent’s health status H2 := {H2

s , s ≥ τ} increases by the deterministic positive amount f(I),
so that

dH2
s = (−δH2

s + f(I))ds, for all s > τ, H2
τ = he−δ(τ−t).(2.4)

From (2.3) and (2.4) one then has that the overall health capital H evolves as

dHs = (−δHs + f(I)1{s>τ})ds, for all s ∈ (t, T ], Ht = h > 0.

Remark 2.1. (1) The fact that health investment is positive is a standard requirement in Health
Economics. Health investment is irreversible in the sense that the agent cannot reduce her health
through negative expenditure. Irreversibility of investment is a key economic feature that makes
health fundamentally different from financial assets or housing (see, e.g., [Yogo, 2016]).

(2) The state equation (2.4) is similar to [Bolin and Caputo, 2020]. In (2.4), f(·) is a health
production function, mapping precautionary health investment into the gross rate of change of the
health stock. In [Bolin and Caputo, 2020] it is assumed that f(·) ∈ C2 and f ′(I) > 0; that is, the
marginal product of health investment is positive. The health production function therefore captures
the direct influence of precautionary health investment on the health stock, a defining feature of such
investment as it is discussed in the Introduction.

(3) A classical model for force of mortality is the so-called Gompertz-Makeham law (see for instance
[Makeham, 1860]), which corresponds to

Ms = AeB(s−t) + C, s ≥ t, Mt = C.

Here, A is known as the baseline mortality, the term B can be thought of as the ‘actuarial aging
rate’, in that its magnitude determines how fast the rate of dying will increase with the addition of
extra years, while C is a constant representing age-independent mortality. As a matter of fact, before
health investment, our choice of the mortality rate reads as MH

s = m0+m1h−κeδκ(s−t) (cf. (2.1) and
(2.3)), which has a structure compatible to the Gompertz-Makeham law.

We assume that the agent also invests in a financial market with two assets. One of them is a
risk-free bond, whose price S0 := {S0

s , t ≤ s ≤ T} evolves as

dS0
s = rS0

sds, S0
t = s0 > 0,

where r > 0 is a constant risk-free rate. The second one is a stock, whose price is denoted by
S := {Ss, t ≤ s ≤ T} and it satisfies the stochastic differential equation

dSs = µSsdt+ σSsdBs, St = s > 0,

where µ ∈ R and σ > 0 are given constants. Here, B := {Bs, t ≤ s ≤ T} is an F-adapted standard
Brownian motion under P.

The agent also consumes from her wealth, while investing in the financial market. Denoting by πs
the amount of wealth invested in the stock at time s, the agent then chooses πs as well as the rate of
spending in consumption cs at time s. Therefore, the agent’s wealth X := {Xc,π,τ

s , s ∈ [t, T ]} evolves
as

dXc,π,τ
s = [πs(µ− r) + rXc,π,τ

s − cs − I1{s≥τ}]ds+ πsσdBs, Xc,π,τ
t = x > 0.(2.5)
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In the following, we shall simply write X to denote Xc,π,τ , where needed.

2.2. The optimization problem. Here and in the sequel, we set O := [0, T ] × R2
+ with R+ :=

(0,∞), we denote by St,s the class of F-stopping times τ : Ω → [t, s] for t ≤ s ≤ T , and let S := St,T .
Then we introduce the class of admissible strategies as it follows.

Definition 2.1. Let (t, x, h) ∈ O be given and fixed. The triplet of choices (c, π, τ) is called an
admissible strategy for (t, x, h), and we write (c, π, τ) ∈ A(t, x, h), if it satisfies the following
conditions:

(i) c and π are progressively measurable with respect to F, τ ∈ S;
(ii) cs ≥ 0 for all s ∈ [t, T ] and

∫ T
t (cs + |πs|2)ds < ∞ P-a.s.;

(iii) Xc,π,τ
s > g(s)1{s≥τ} for all s ∈ [t, T ], where g(s) = I

r (1− e−r(T−s)).

The function g in Condition (iii) is the present value of the future health payment of the agent.
Due to (iii) above the agent is able to consume and invest as long as her wealth level is above g(s) at
time s ≥ τ . Before health investment, she should keep her wealth positive for further consumption
or financial investment.

From the perspective of time t, the agent’s aim is then to maximize the expected utility

E
[ ∫ η∧T

t
e−ρ(s−t)u(cs, Hs)ds

∣∣∣∣Ft

]
(2.6)

over all (c, π, τ) ∈ A(t, x, h). In (2.6), ρ is a positive discount rate and u(c, h) = cαh1−α, where
0 < α < 1. Thanks to Fubini’s Theorem and the tower property, we can disentangle the market risk
and the mortality risk and write

E
[ ∫ η∧T

t
e−ρ(s−t)u(cs, Hs)ds

∣∣∣∣Ft

]
= E

[ ∫ T

t
e−ρ(s−t)u(cs, Hs)1{s<η}ds

∣∣∣∣Ft

]
=

∫ T

t
E
[
e−ρ(s−t)u(cs, Hs)1{s<η}

∣∣∣∣Ft

]
ds

=

∫ T

t
E
[
E
[
e−ρ(s−t)u(cs, Hs)1{s<η}

∣∣∣Fs

]∣∣∣∣Ft

]
ds

=

∫ T

t
E
[
e−ρ(s−t)u(cs, Hs)E

[
1{s<η}

∣∣∣Fs

]∣∣∣∣Ft

]
ds

= E
[ ∫ T

t
e−

∫ s
t (ρ+MH

u )duu(cs, Hs)ds

∣∣∣∣Ft

]
,

where (2.2) has been also employed. Hence, given the Markovian setting, the agent aims at deter-
mining

V (t, x, h) := sup
(c,π,τ)∈A(t,x,h)

Et,x,h

[ ∫ T

t
e−

∫ s
t (ρ+MH

u )duu(cs, Hs)ds

]
,(2.7)

where Et,x,h denote the expectation under Pt,x,h(·) := P(·|Xt = x,Ht = h). In the rest of the paper,
we shall focus on (2.7).

3. From control-stopping to pure stopping

3.1. The static budget constraint. We define the market price of risk θ := µ−r
σ . For τ ∈ S, an

application of Itô’s formula to the process {e−ru−θBu− 1
2
θ2u(Xu − g(u)1{u≥τ}), u ∈ [t, s]}, leads on

6



{s ≥ τ} ∩ {τ = t} to

e−rs−θBs− 1
2
θ2s(Xs − g(s)) +

∫ s

t
e−ru−θBu− 1

2
θ2ucudu

= e−rt−θBt− 1
2
θ2t(x− g(t)) +

∫ s

t
e−ru−θBu− 1

2
θ2u

(
πuσ − θ(Xu − g(u))

)
dBu,(3.1)

and on {s < τ} to

e−rs−θBs− 1
2
θ2sXs +

∫ s

t
e−ru−θBu− 1

2
θ2ucudu

= e−rt−θBt− 1
2
θ2tx+

∫ s

t
e−ru−θBu− 1

2
θ2u(πuσ − θXu)dBu.(3.2)

Since Xs− g(s)1{s≥τ} > 0 for any s ∈ [t, T ], we can deduce that Xτ > g(τ) ≥ 0. For an admissible
plan (c, π, τ) ∈ A(t, x, h), the left-hand side of (3.2) is nonnegative for s ≤ τ , and so the Itô’s integral
on the right-hand side is not only a continuous P-local martingale, but also a supermartingale by

Fatou’s Lemma. Thus, letting γs,t := e−r(s−t)−θ(Bs−Bt)− 1
2
θ2(s−t), the optional sampling theorem

implies the so-called budget constraint:

Et,x,h

[
γs,tXs

]
+ Et,x,h

[ ∫ s

t
γu,tcudu

]
≤ x, if 0 ≤ t ≤ s ≤ τ.(3.3)

By similar arguments on (3.1) we also have

Et,x,h

[
γs,t(Xs − g(s))

]
+ Et,x,h

[ ∫ s

t
γu,tcudu

]
≤ x− g(t), if 0 ≤ t = τ ≤ s ≤ T.(3.4)

3.2. The agent’s optimization problem after health investment. In this subsection we will
consider the agent’s optimization problem after health investment, and over this time period only
consumption and portfolio choice have to be determined. Formally, the model in the previous section
accommodates to this case if we let τ = t, where t is the fixed starting time, and the mortality rate is

set to be MH2

u , u ≥ t. Then, letting At(t, x, h) := {(c, π) : (c, π, t) ∈ A(t, x, h)}, where the subscript t
indicates that the investment time into health τ is equal to t, the agent’s value function after health
investment is

V̂ (t, x, h) := sup
(c,π)∈At(t,x,h)

Et,x,h

[ ∫ T

t
e−

∫ s
t (ρ+MH2

u )duu(cs, H
2
s )ds

]
,(3.5)

with H2 as defined in (2.4).

From the budget constraint (3.4), recalling that γs,t = e−r(s−t)−θ(Bs−Bt)− 1
2
θ2(s−t) and for any pair

(c, π) ∈ At(t, x, h) with a Lagrange multiplier z > 0, we have

Et,x,h

[ ∫ T

t
e−

∫ s
t (ρ+MH2

u )duu(cs, H
2
s )ds

]
≤ Et,x,h

[ ∫ T

t
e−

∫ s
t (ρ+MH2

u )duu(cs, H
2
s )ds

]
− zEt,x,h

[ ∫ T

t
γs,tcsds

]
+ z(x− g(t))

= Et,x,h

[ ∫ T

t
e−

∫ s
t (ρ+MH2

u )duu(cs, H
2
s )ds

]
− Et,x,h

[ ∫ T

t
e−

∫ s
t (ρ+MH2

u )duzP 2
s (h)csds

]
+ z(x− g(t))

= Et,x,h

[ ∫ T

t
e−

∫ s
t (ρ+MH2

u )du

(
u(cs, H

2
s )− zP 2

s (h)cs

)
ds

]
+ z(x− g(t))

≤ Et,x,h

[ ∫ T

t
e−

∫ s
t (ρ+MH2

u )duû(zP 2
s (h), H

2
s )ds

]
+ z(x− g(t)),

(3.6)
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where

P 2
s (h) := γs,te

∫ s
t (ρ+MH2

u )du and û(z, h) := sup
c≥0

[u(c, h)− cz].(3.7)

Let then Z2
s := zP 2

s (h). By Itô’s formula, we obtain that the dual variable Z2 satisfies

dZ2
s = (ρ− r +MH2

s )Z2
sds− θZ2

sdBs, Z2
t = z,

and we set

W (t, z, h) := Et,z,h

[ ∫ T

t
e−

∫ s
t (ρ+MH2

u )duû(Z2
s , H

2
s )ds

]
,

with Et,z,h being the expectation under P conditioned on Z2
t = z and H2

t = h. Hence,

Et,x,h

[ ∫ T

t
e−

∫ s
t (ρ+MH2

u )duu(cs, H
2
s )ds

]
≤ W (t, z, h) + z(x− g(t)),

for z > 0 and (t, x, h) ∈ O.

Proposition 3.1. One has W ∈ C1,2,1(O). Moreover, W satisfies

−L̂W = û, on [0, T )× R2
+, and W (T, z, h) = 0,(3.8)

where

L̂W := Wt +
1

2
θ2z2Wzz + (ρ− r +m0 +m1h−κ)zWz + (−δh+ f(I))Wh − (ρ+m0 +m1h−κ)W.

(3.9)

Proof. First, we compute the convex dual of u(c, h) = cαh1−α in (3.7); that is,

û(z, h) = (1− α)(
z

α
)

α
α−1h.(3.10)

From (2.4) and the boundary condition H2
τ = H2

t = h (recall that τ = t this subsection), we have

H2
s = he−δ(s−t) +

f(I)

δ
(1− e−δ(s−t)), ∀s ≥ t.(3.11)

Therefore, by (3.10) and (3.11) we rewrite W (t, z, h) as follows

W (t, z, h) = Et,z,h

[ ∫ T

t
e−

∫ s
t (ρ+MH2

u )duû(Z2
s , H

2
s )ds

]
= Et,z,h

[ ∫ T

t
e−

∫ s
t (ρ+MH2

u )du(1− α)α
α

1−α (Z2
s )

α
α−1H2

sds

]
= (1− α)α

α
1−α z

α
α−1

∫ T

t
e−

∫ s
t (ρ+MH2

u )duE[(P 2
s (h))

α
α−1 ]

(
he−δ(s−t) +

f(I)

δ
(1− e−δ(s−t))

)
ds

= (1− α)α
α

1−α z
α

α−1

∫ T

t
e

∫ s
t (ρ+MH2

u )du

α−1 e
∫ s
t

(
α(−r− 1

2 θ2)

α−1
+ 1

2
θ2α2

(α−1)2

)
du
(
he−δ(s−t) +

f(I)

δ
(1− e−δ(s−t))

)
ds,

(3.12)

where we have used the definition of P 2
s (h) as in (3.7) and the fact that

E[(P 2
s (h))

α
α−1 ] = E[(γs,te

∫ s
t (ρ+MH2

u )du)
α

α−1 ] = e
α

α−1

∫ s
t (ρ+MH2

u )duE[γ
α

α−1

s,t ]

= e
α

α−1

∫ s
t (ρ+MH2

u )duE[(e−r(s−t)−θ(Bs−Bt)− 1
2
θ2(s−t))

α
α−1 ]

= e
∫ s
t

(
α

α−1
(ρ+MH2

u −r− 1
2
θ2)+ 1

2
θ2α2

(α−1)2

)
du
.

Thus, it is easy to see that W ∈ C1,2,1(O). Hence, it satisfies (3.8) by the well-known Feynman-Kac
formula (see, e.g., Chapter 4 in [Karatzas and Shreve, 1998a]). □

It is possible to relate V̂ to W through the following duality relation.
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Theorem 3.1. The following dual relations hold:

V̂ (t, x, h) = inf
z>0

[W (t, z, h) + z(x− g(t))], W (t, z, h) = sup
x>g(t)

[V̂ (t, x, h)− z(x− g(t))].

Proof. Since (c, π) ∈ At(t, x, h) is arbitrary, taking the supremum over (c, π) ∈ At(t, x, h) on the
left-hand side of (3.6) and recalling (3.5), we get, for any z > 0,

V̂ (t, x, h) ≤ Et,z,h

[ ∫ T

t
e−

∫ s
t (ρ+MH2

u )duû(Z2
s , H

2
s )ds

]
+ z(x− g(t)),(3.13)

and thus

W (t, z, h) ≥ sup
x>g(t)

[V̂ (t, x, h)− z(x− g(t))].

Further, from (3.13) we have

V̂ (t, x, h) ≤ inf
z>0

[W (t, z, h) + z(x− g(t))].

For the reverse inequalities, observe that the equality in (3.6) holds if and only if

cs = Iu(Z2
s , H

2
s ),(3.14)

and

Et,x,h

[ ∫ T

t
γs,tcsds

]
= x− g(t),(3.15)

where we denote by Iu the inverse of the marginal utility function uc(·, h).
Then, assuming (3.15) (we will prove its validity later), we define

X (t, z, h) := Et,z,h

[ ∫ T

t
γs,tIu(Z2

s , H
2
s )ds

]
, Y(t, x, h) := Et,x,h

[ ∫ T

t
e−

∫ s
t (ρ+MH2

u )duu(cs, H
2
s )ds

]
,

and notice that (3.6), (3.14) and (3.15) yield

Y(t, g(t) + X (t, z, h), h) = W (t, z, h) + z(g(t) + X (t, z, h)− g(t))

= W (t, z, h) + zX (t, z, h) ≤ V̂ (t, x, h),

where the last inequality is due to Y(t, g(t) + X (t, z, h), h) ≤ V̂ (t, x, h). The last display inequality
thus provides

W (t, z, h) ≤ sup
x>g(t)

[V̂ (t, x, h)− z(x− g(t))] and V̂ (t, x, h) ≥ inf
z>0

[W (t, z, h) + z(x− g(t))].

It thus remains only to show that equality (3.15) indeed holds. As a matter of fact, Lemma C.1
guarantees the existence of a candidate optimal portfolio process π∗ such that (c∗, π∗) ∈ At(t, x, h)
and (3.15) holds, where c∗s = Iu(Z2

s , H
2
s ) is candidate optimal consumption process. By Theorem

3.6.3 in [Karatzas and Shreve, 1998b] or Lemma 6.2 in [Karatzas and Wang, 2000], one can then

show that (c∗, π∗) is optimal for the optimization problem V̂ .
□

3.3. The dual optimal stopping problem. From the agent’s problem in (2.7), by the dynamic
programming principle we can deduce that for any (t, x, h) ∈ O,

V (t, x, h) = sup
(c,π,τ)∈A(t,x,h)

Et,x,h

[ ∫ τ

t
e−

∫ s
t (ρ+MH1

u )duu(cs, H
1
s )ds+ e−

∫ τ
t (ρ+MH1

u )duV̂ (τ,Xτ , H
1
τ )

]
.

(3.16)

In the sequel, whenever necessary, we write Xx to show the dependency on the initial datum
(similarly, H1,h denotes the process H1 with initial state h). Now, for any (t, x, h) ∈ O and Lagrange
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multiplier z > 0, from the budget constraint (3.3) and (3.16), letting P 1
s (h) := γs,te

∫ s
t (ρ+MH1,h

u )du and

MH1,h

s = m0 +m1(H1,h
s )−κ with H1

s as in (2.3), we have

Et,x,h

[ ∫ T

t
e−

∫ s
t (ρ+MH

u )duu(cs, Hs)ds

]
≤ sup

(c,π,τ)∈A(t,x,h)
Et,x,h

[ ∫ τ

t
e−

∫ s
t (ρ+MH1

u )duu(cs, H
1
s )ds+ e−

∫ τ
t (ρ+MH1

u )duV̂ (τ,Xτ , H
1
τ )

]
− zEt,x,h

[
γτ,tXτ +

∫ τ

t
γs,tcsds

]
+ zx

= sup
(c,π,τ)∈A(t,x,h)

Et,x,h

[ ∫ τ

t
e−

∫ s
t (ρ+MH1

u )du

(
u(cs, H

1
s )− zP 1

s (h)cs

)
ds

+ e−
∫ τ
t (ρ+MH1

u )duV̂ (τ,Xτ , H
1
τ )− e−

∫ τ
t (ρ+MH1

u )duzP 1
τ (h)Xτ

]
+ zx

= sup
(c,π,τ)∈A(t,x,h)

Et,x,h

[ ∫ τ

t
e−

∫ s
t (ρ+MH1

u )du

(
u(cs, H

1
s )− zP 1

s (h)cs

)
ds

+ e−
∫ τ
t (ρ+MH1

u )du

(
V̂ (τ,Xτ , H

1
τ )− zP 1

τ (h)Xτ + zP 1
τ (h)g(τ)− zP 1

τ (h)g(τ)

)]
+ zx

≤ sup
τ∈S

Et,z,h

[ ∫ τ

t
e−

∫ s
t (ρ+MH1

u )duû(Z1
s , H

1
s )ds+ e−

∫ τ
t (ρ+MH1

u )du

(
W (τ, Z1

τ , H
1
τ )− Z1

τ g(τ)

)]
+ zx,

(3.17)

where we recall that û(z, h) = supc≥0[u(c, h)− cz], and we have defined Z1
s := zP 1

s (h) such that

dZ1
s = (ρ− r +MH1

s )Z1
sds− θZ1

sdBs, s ∈ (t, τ ], Z1
t = z > 0.(3.18)

With a slight abuse in the notation, and when no confusion arise, we also write Et,z,h to indicate the
expectation under Pt,z,h(·) := P(·|Z1

t = z,H1
t = h). Hence, defining the value function J(t, z, h) as

J(t, z, h) := sup
τ∈S

Et,z,h

[ ∫ τ

t
e−

∫ s
t (ρ+MH1

u )duû(Z1
s , H

1
s )ds+ e−

∫ τ
t (ρ+MH1

u )du
(
W (τ, Z1

τ , H
1
τ )− Z1

τ g(τ)
)]

,

(3.19)

we have a finite-horizon, two-dimensional optimal stopping problem, with interconnected dynamics
(Z1, H1) as in (3.18) and (2.3).

In the following sections, we perform a detailed probabilistic study of (3.19). Before doing that,
we have the following theorem that establishes a dual relation between the original problem (2.7)
and the optimal stopping problem (3.19).

Theorem 3.2. The following duality relations hold:

V (t, x, h) = inf
z>0

[J(t, z, h) + zx], J(t, z, h) = sup
x>0

[V (t, x, h)− zx].

Proof. Since (c, π, τ) ∈ A(t, x, h) is arbitrary, taking the supremum over (c, π, τ) ∈ A(t, x, h) on the
left-hand side of (3.17), we get, for any z > 0, x > 0,

V (t, x, h) ≤ J(t, z, h) + zx,

so that V (t, x, h) ≤ infz>0[J(t, z, h) + zx] and J(t, z, h) ≥ supx>0[V (t, x, h)− zx].
For the inverse inequality, observe that equality holds in (3.17) if and only if

cs = Iu(Z1
s , H

1
s ), W (t, z, h) = sup

x>g(t)
[V̂ (t, x, h)− z(x− g(t))],
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and

Et,x,h

[
γτ,tXτ +

∫ τ

t
γs,tcsds

]
= x,(3.20)

where we recall that Iu denotes the inverse of the marginal utility function uc(·, h). From Lemma
C.2, we know that there exists a portfolio process π∗ such that (3.20) holds. From Theorem 3.1, we

also know that W (t, z, h) = supx>g(t)[V̂ (t, x, h)− z(x− g(t))].
Next we define

X̄ (t, z, h) := Et,z,h

[ ∫ T

t
γs,tIu(Z1

s , H
1
s )ds

]
, Z̄(x) := Et,x,h[γτ,tXτ ],

and

Ȳ(t, x, h) := Et,x,h

[ ∫ τ

t
e−

∫ s
t (ρ+MH1

u )duu(cs, H
1
s )ds+ e−

∫ τ
t (ρ+MH1

u )duV̂ (τ,Xτ , H
1
τ )

]
.

Then by (3.17) and (3.20) we have

Ȳ(t, X̄ (t, z, h) + Z̄(x), h) = J(t, z, h) + z(X̄ (t, z, h) + Z̄(x)) ≤ V (t, x, h),

where the last inequality is due to Ȳ(t, X̄ (t, z, h) + Z̄(x), h) ≤ V (t, x, h). This in turn gives

V (t, x, h) ≥ inf
z>0

[J(t, z, h) + zx],

which completes the proof. □

4. Study of the dual optimal stopping problem

4.1. Preliminary properties of the value function. To study the optimal stopping problem
(3.19), we find it convenient to introduce the function

Ĵ(t, z, h) := J(t, z, h)− Ŵ (t, z, h)(4.1)

with

Ŵ (t, z, h) := W (t, z, h)− zg(t).(4.2)

Applying Itô’s formula to {e−
∫ s
t (ρ+MH1

u )du[W (s, Z1
s , H

1
s )−Z1

s g(s)], s ∈ [t, τ ]}, and taking conditional
expectations we have

Et,z,h

[
e−

∫ τ
t (ρ+MH1

s )ds
(
W (τ, Z1

τ , H
1
τ )− Z1

τ g(τ)
)]

= W (t, z, h)− zg(t)+

Et,z,h

[ ∫ τ

t
e−

∫ s
t (ρ+MH1

u )duL
(
W (s, Z1

s , H
1
s )− Z1

s g(s)
)
ds

]
,

where, for any F ∈ C1,2,1(O), the second order differential operator L is such that

LF := Ft +
1

2
θ2z2Fzz + (ρ− r +m0 +m1h−κ)zFz − δhFh − (ρ+m0 +m1h−κ)F.(4.3)

Combining (3.19), (4.1) and (4.2), we have

Ĵ(t, z, h) = sup
t≤τ≤T

Et,z,h

[ ∫ τ

t
e−

∫ s
t (ρ+MH1

u )duû(Z1
s , H

1
s )ds

+

∫ τ

t
e−

∫ s
t (ρ+MH1

u )du

(
L(W (s, Z1

s , H
1
s )− Z1

s g(s))

)
ds

]
= sup

t≤τ≤T
Et,z,h

[ ∫ τ

t
e−

∫ s
t (ρ+MH1

u )du

(
Z1
s I − f(I)Wh(s, Z

1
s , H

1
s )

)
ds

]
= sup

t≤τ≤T
Et,z,h

[ ∫ τ

t
zγs,tIds−

∫ τ

t
e−

∫ s
t (ρ+MH1

u )duf(I)Wh(s, Z
1
s , H

1
s )ds

]
,(4.4)
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where we have used the fact that (cf. (3.8))

L(W (s, z, h)− zg(s)) = LW (s, z, h)− L(zg(s))

= L̂W (s, z, h)− f(I)Wh(s, z, h)− L(zg(s))
= −û(z, h)− f(I)Wh(s, z, h) + Iz,

with LF = L̂F − f(I)Wh (cf. (3.9)), for any F ∈ C1,2,1(O).
Notice now that the process (Z1, H1) is time-homogeneous, so that

Law[(u, Z1
u, H

1
u)u≥t|Z1

t = z,H1
t = h] = Law[(t+ s, Z1

s , H
1
s )s≥0|Z1

0 = z,H1
0 = h].

Let Ez,h be the expectation under Pz,h(·) := P(·|Z1
0 = z,H1

0 = h). Hence, from (4.4),

Ĵ(t, z, h) = sup
0≤τ≤T−t

Ez,h

[ ∫ τ

0
e−

∫ s
0 (ρ+MH1

u )du

(
Z1
s I − f(I)Wh(t+ s, Z1

s , H
1
s )

)
ds

]
= sup

0≤τ≤T−t
Ez,h

[ ∫ τ

0
ze−rs−θBs− 1

2
θ2sIds−

∫ τ

0
e−

∫ s
0 (ρ+MH1

u )duf(I)Wh(t+ s, Z1
s , H

1
s )ds

]
,(4.5)

with (cf. also (3.18))

Z1
s = zγs,0e

∫ s
0 (ρ+MH1

u )du and H1
s = he−δs.(4.6)

In the following, when needed, we shall write Z1,z as the solution to (3.18) such that Z1
0 = z > 0.

As a matter of fact, the state process in (4.5) is the time-space Markov process (Ys)s∈[0,T−t] defined

by Y0 = (t, z, h) and Ys := (t+ s, Z1
s , H

1
s ).

As usual in optimal stopping theory, we let

W := {(t, z, h) ∈ O : Ĵ(t, z, h) > 0}, I := {(t, z, h) ∈ O : Ĵ(t, z, h) = 0}(4.7)

be the so-called continuation (waiting) and stopping (investing) regions, respectively. We denote by
∂W the boundary of the set W.

Since, for any stopping time τ , the mapping (z, h) → Ez,h

[ ∫ τ
0 e−

∫ s
0 (ρ+MH1

u )du
(
Z1
s I − f(I)Wh(t +

s, Z1
s , H

1
s )
)
ds
]
is continuous, then Ĵ is lower semicontinuous on O. Hence, W is open, I is closed,

and introducing the stopping time

τ∗(t, z, h) := inf{s ≥ 0 : (t+ s, Z1
s , H

1
s ) ∈ I} ∧ (T − t), Pz,h − a.s.,

with inf ∅ = +∞, one has that τ∗(t, z, h) is optimal for Ĵ(t, z, h) (see, e.g., Corollary I.2.9 in
[Peskir and Shiryaev, 2006]).

Proposition 4.1. The function Ĵ is such that 0 ≤ Ĵ(t, z, h) ≤ Iz
r (1− e−r(T−t)) for all (t, z, h) ∈ O.

Proof. From (4.5) it is clear that Ĵ is nonnegative. Moreover, again from (4.5), and sinceWh(t, z, h) ≥
0 (cf. Lemma A.1), we find that

sup
0≤τ≤T−t

Ez,h

[ ∫ τ

0
ze−rs−θBs− 1

2
θ2sIds−

∫ τ

0
e−

∫ s
0 (ρ+MH1

u )duf(I)Wh(t+ s, Z1
s , H

1
s )ds

]
≤ Ez,h

[ ∫ T−t

0
ze−rs−θBs− 1

2
θ2sIds

]
=

Iz

r
(1− e−r(T−t)),

which implies the claim. □

The next lemma shows that I as in (4.7) is nonempty.

Lemma 4.1. One has I ≠ ∅.
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Proof. Suppose that I = ∅, then for all (t, z, h) ∈ O we have

0 ≤ Ĵ(t, z, h) = E
[ ∫ T−t

0
ze−rs−θBs− 1

2
θ2sIds−

∫ T−t

0
e−

∫ s
0 (ρ+MH1,h

u )duf(I)Wh(t+ s, Z1,z
s , H1,h

s )ds

]
.

However, taking z ↓ 0, the right-hand side above converges to −∞ due to limz→0Wh(t, z, h) = ∞ (as
shown in Lemma A.1), which is a contradiction. □

Since Wh(t, ·, h) is strictly decreasing (cf. (A.1) in Lemma A.1 in the Appendix A), the next

monotonicity of Ĵ follows.

Proposition 4.2. z 7→ Ĵ(t, z, h) is non-decreasing for all (t, h) ∈ [0, T )× R+.

On the other hand, we notice that it is hard to determine whether h → Ĵ(t, z, h) is monotonic or

not, since it is not clear if h → e−
∫ s
0 (ρ+MH1

u )duf(I)Wh(t+ s, Z1
s , H

1
s ) in (4.5) is monotonic. Similarly,

we cannot conclude that t → Ĵ(t, z, h) is monotonic.

The next technical result states properties of Ĵ that will be useful in the study of the regularity
of the boundary ∂W.

Proposition 4.3. The function Ĵ is locally Lipschitz continuous on O and for a.e. (t, z, h) we have
the following probabilistic representation formulas

Ĵh(t, z, h) = −f(I)Ez,h

[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1

u )du
[
Whh(t+ s, Z1

s , H
1
s )e

−δs

+
1

1− α
Wh(t+ s, Z1

s , H
1
s )

m1

δ
h−κ−1(eδκs − 1)

]
ds

]
,(4.8)

Ĵz(t, z, h) = Ez,h

[ ∫ τ∗

0
e−rs−θBs− 1

2
θ2s

(
I − f(I)Whz(t+ s, Z1

s , H
1
s )
)
ds

]
,(4.9)

and

Ĵt(t, z, h) = −f(I)Ez,h

[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1

u )duWht(t+ s, Z1
s , H

1
s )ds

]
,(4.10)

where τ∗ := τ∗(t, z, h) is the optimal stopping time for the problem with initial data (t, z, h).

Proof. The proof is given in Appendix B.1. □

We conclude with asymptotic limits of Ĵ .

Proposition 4.4. limz→0 Ĵ(t, z, h) = 0, limz→∞ Ĵ(t, z, h) = ∞ for all (t, h) ∈ [0, T )× R+.

Proof. The proof is given in Appendix B.2. □

4.2. Properties of the free boundary. In this section, we show that the boundary ∂W can be
represented by a function b(t, h). We establish connectedness of the sets W and I with respect to
the z-variable and finally prove (local) Lipshitz-continuity of b with respect to both its variables.

First, we provide the shape of the continuation and stopping regions. Defining Γ(t, h) as

Γ(t, h) := (1− α)α
α

1−α

[ ∫ T−t

0
e

α
1−α

(rs+ 1
2
θ2s)+ θ2α2s

2(α−1)2 e
∫ s
0

(
ρ+MH2,h

u (h)

α−1

)
du×

×
[ m1κ

1− α

(∫ s

0

(
he−δu +

f(I)

δ
(1− e−δu)

)−κ−1
e−δudu

)(
he−δs +

f(I)

δ
(1− e−δs)

)
+ e−δs

]
ds

]
,

(4.11)

for all (t, h) ∈ [0, T ]× R+, the following result holds.
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Lemma 4.2. There exists a free boundary

b : [0, T ]× R+ → [0,∞)

such that

I = {(t, z, h) ∈ O : 0 < z ≤ b(t, h)}.

Moreover, setting g(t, h) := ( I
f(I))

α−1Γ(t, h)1−α, one has b(t, h) ≤ g(t, h) for all (t, h) ∈ [0, T ]× R+,

where Γ(t, h) is defined in (4.11).

Proof. Since z 7→ Ĵ(t, z, h) is nondecreasing by Proposition 4.2, we can define b(t, h) := sup{z > 0 :

Ĵ(t, z, h) ≤ 0} (with the convention sup ∅ = 0), so that I = {(t, z, h) ∈ O : 0 < z ≤ b(t, h)}. Notice
that b > 0 on [0, T )× R+ since I ≠ ∅ by Lemma 4.1.

Next we show b(t, h) ≤ g(t, h). Noticing that, due to (4.5),

R := {(t, z, h) ∈ O : zI − f(I)Wh(t, z, h) > 0} ⊆ W,

we have

RC := {(t, z, h) ∈ O : zI − f(I)Wh(t, z, h) ≤ 0} ⊇ I.(4.12)

Recalling Wh(t, z, h) as in (A.1), and using (4.11), we then write Wh(t, z, h) = z
α

α−1Γ(t, h), so that

zI−f(I)Wh(t, z, h) ≤ 0 ⇔ z
1

α−1 f(I)Γ(t, h) ≥ I for all (t, h) ∈ [0, T ]×R+. But then, since 0 < α < 1,
we have

(t, h, z) ∈ RC ⇐⇒ z ≤
(

I

f(I)Γ(t, h)

)α−1

=

(
I

f(I)

)α−1

Γ(t, h)1−α.

Because I = {(t, z, h) ∈ O : 0 < z ≤ b(t, h)}, by (4.12) we find

b(t, h) ≤ g(t, h) =
( I

f(I)

)α−1
Γ(t, h)1−α.(4.13)

□

The first main result of this paper shows that the optimal boundary is locally Lipschitz-continuous
on [0, T ]×R+. The local Lipschitz-continuity of the boundary has important consequences regarding

the regularity of the value function Ĵ , as we will see in Proposition 4.6 below.

Theorem 4.1. The free boundary b is locally Lipschitz-continuous on [0, T ]× R+.

Proof. The proof is given in Appendix B.3.
□

4.3. Characterization of the free boundary and of the value function. Given that b is locally
Lipschitz, the law of the iterated logarithm allows to prove the following result.

Lemma 4.3. Let (t, z, h) ∈ O and set

τ̂(t, z, h) := inf{s ≥ 0 : Z1,z
s < b(t+ s,H1,h

s )} ∧ (T − t).

Then τ̂(t, z, h) = τ∗(t, z, h) a.s., where τ∗(t, z, h) = inf{s ≥ 0 : Z1,z
s ≤ b(t+ s,H1,h

s )} ∧ (T − t).

Proof. The proof is given in Appendix B.4.
□

The previous lemma in turn yields the following continuity property of τ∗, which will then be
fundamental in the proof of Proposition 4.6 below.

Proposition 4.5. One has that O ∋ (t, z, h) 7→ τ∗(t, z, h) ∈ [0, T − t] is continuous.

Proof. The proof exploits arguments as in the proof of Proposition 5.2 in
[De Angelis and Ekström, 2017]. □
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Proposition 4.6. The value function Ĵ ∈ C1,1,1(O) ∩ C1,2,1(W) and solves the boundary value
problem 

LĴ(t, z, h) = −Iz + f(I)Wh(t, z, h), (t, z, h) ∈ W,

Ĵ(t, z, h) = 0, (t, z, h) ∈ I ∩ {t < T},

Ĵ(T, z, h) = 0, (z, h) ∈ R2
+,

Ĵt(t, z, h) = Ĵz(t, z, h) = Ĵh(t, z, h) = 0 on ∂W ∩ {t < T}.

Moreover, for all ϵ > 0, Ĵzz admits a continuous extension to the closure of W ∩ {t < T − ϵ}.

Proof. First we show that the function Ĵ is continuously differentiable over O. From the rep-

resentations of Ĵh, Ĵt and Ĵz in Proposition 4.3, and the continuity of (t, z, h) 7→ τ∗(t, z, h) (cf.
Proposition 4.5), we conclude that those weak derivatives are in fact continuous and therefore that

Ĵ ∈ C1,1,1(W) ∩ C1,1,1(I̊), where I̊ denotes the interior of I. In particular, Ĵt = Ĵh = Ĵz = 0 on I̊.
It thus remains to analyze the regularity of Ĵ across ∂W.

Fix a point (t0, z0, h0) ∈ ∂W∩{t < T} and take a sequence (tn, zn, hn)n≥1 ⊆ W with (tn, zn, hn) →
(t0, z0, h0) as n → ∞. Continuity of (t, z, h) 7→ τ∗(t, z, h) implies that τ∗(tn, zn, hn) → τ∗(t0, z0, h0) =

0,P-a.s. as n → ∞. Again, from Proposition 4.3, dominated convergence yields that Ĵh(tn, zn, hn) →
0, Ĵz(tn, zn, hn) → 0 and Ĵt(tn, zn, hn) → 0. Since (t0, z0, h0) and the sequence (tn, zn, hn) were

arbitrary, we get Ĵ ∈ C1,1,1(O).

On the other hand, by Corollary 6 in [Peskir, 2022], Ĵ solves in the sense of distributions

LĴ(t, z, h) = −Iz + f(I)Wh(t, z, h), (t, z, h) ∈ W,(4.14)

and it is such that

Ĵ(t, z, h) = 0, (t, z, h) ∈ I ∩ {t < T},

Ĵ(T, z, h) = 0, (z, h) ∈ R2
+.

However, Ĵ ∈ C1,1,1(O), so that Ĵzz ∈ C0(W), upon recalling the definition of L as in (4.3) and
that Wh ∈ C0(O). Then, taking any (t0, z0, h0) ∈ ∂W ∩ {t < T} and making limits in (4.14) as
(t, z, h) → (t0, z0, h0) with (t, z, h) ∈ W, we also find

lim
(t,z,h)→(t0,z0,h0)

θ2z2

2
Ĵzz(t, z, h) = −Iz0 + f(I)Wh(t0, z0, h0),

upon using Ĵ(t0, z0, h0) = Ĵh(t0, z0, h0) = Ĵz(t0, z0, h0) = Ĵt(t0, z0, h0) = 0. This shows, as claimed,

that Ĵzz admits a continuous extension to the closure of W ∩ {t < T − ϵ}, for all ϵ > 0. □

Corollary 4.1. Recall (4.1). The function J ∈ C1,2,1(W)∩C1,1,1(O) and solves the boundary value
problem

LJ(t, z, h) = −û(z, h), (t, z, h) ∈ W,

J(t, z, h) = Ŵ (t, z, h), (t, z, h) ∈ I ∩ {t < T},

J(T, z, h) = Ŵ (T, z, h) = 0, (z, h) ∈ R2
+,

Jt(t, z, h) = Ŵt(t, z, h), Jz(t, z, h) = Ŵz(t, z, h), Jh(t, z, h) = Ŵh(t, z, h) on ∂W ∩ {t < T}.

Remark 4.1. It is worth noting that standard PDE arguments could not be directly applied in the
proof of Proposition 4.6 due to the fully degenerate diffusion process (Z1, H1). Therefore, we had to

hinge on a novel series of intermediate results. First, we find the locally Lipschitz continuity of Ĵ (cf.
Proposition 4.3) and then establish the locally Lipschitz continuity of free boundary without relying

upon continuity of Ĵz, Ĵh and Ĵt (cf. Theorem 4.1). Finally, we upgrade the regularity of Ĵ using the
continuity of the optimal stopping time (cf. Propositions 4.5 and 4.6).
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We are now in the conditions of determining a nonlinear integral equation that characterizes
uniquely the free boundary. As a byproduct, such a characterization will result also into an integral

representation for the value function Ĵ . This is accomplished by the next theorem, which exploits

the regularity properties of Ĵ proved so far.

Theorem 4.2. For all (t, z, h) ∈ O, Ĵ from (4.5) has the representation

Ĵ(t, z, h) = E
[ ∫ T−t

0
e−

∫ s
0 (ρ+MH1,h

u )du

(
IZ1,z

s − f(I)Wh(t+ s, Z1,z
s , H1,h

s )

)
1{Z1,z

s ≥b(t+s,H1,h
s )}ds

]
.

(4.15)

Moreover, the optimal boundary b is the unique continuous solution to the following nonlinear integral
equation: For all (t, h) ∈ [0, T ]× R+,

0 = E
[ ∫ T−t

0
e−

∫ s
0 (ρ+MH1,h

u )du

(
IZ1,b(t,h)

s − f(I)Wh(t+ s, Z1,b(t,h)
s , H1,h

s )

)
1{Z1,b(t,h)

s ≥b(t+s,H1,h
s )}ds

]
,

(4.16)

with limt↑T b(t, h) = 0 and such that 0 ≤ b(t, h) ≤ g(t, h) (cf. Lemma 4.2).

Proof. Step 1. We start by deriving (4.15). Let (t, z, h) ∈ O be given and fixed, let (Km)m≥0 be a
sequence of compact sets increasing to [0, T ]× R2

+ and define

τm := inf{s ≥ 0 : (t+ s, Z1,z
s , H1,h

s ) /∈ Km} ∧ (T − t).

Since Ĵ ∈ C1,1,1(O), Ĵzz ∈ L∞
loc(O), and P[(t + s, Z1,z

s , H1,h
s ) ∈ ∂W] = 0 for all s ∈ [0, T − t), we

can apply a weak version of Dynkin’s formula (see, e.g., [Bensoussan and Lions, 1982], Lemma 8.1
and Th. 8.5, pp. 183-186) so to obtain

Ĵ(t, z, h) = E
[
e−

∫ τm
0 (ρ+MH1,h

u )duĴ(t+ τm, Z1,z
τm , H1,h

τm )−
∫ τm

0
e−

∫ s
0 (ρ+MH1,h

u )duLĴ(t+ s, Z1,z
s , H1,h

s )ds

]
.

Therefore, using (4.14), we also find

Ĵ(t, z, h) = E
[
e−

∫ τm
0 (ρ+MH1,h

u )duĴ(t+ τm, Z1,z
τm , H1,h

τm )

+

∫ τm

0
e−

∫ s
0 (ρ+MH1,h

u )du

(
IZ1,z

s − f(I)Wh(t+ s, Z1,z
s , H1,h

s )

)
1{Z1,z

s ≥b(t+s,H1,h
s )}ds

]
,

where we have used again that P[(t+ s, Z1,z
s , H1,h

s ) ∈ ∂W] = 0.
Finally, we take m ↑ ∞, apply the dominated convergence theorem, and use that τm ↑ (T − t) and

Ĵ(T, z, h) = 0 (cf. Proposition 4.6) to obtain (4.15).
Step 2. Next, we find the limit value of b(t, h) when t → T . Firstly, the limit b(T−, h) :=

limt→T b(t, h) exists, since b is locally Lipschitz on [0, T ]× R+. Noticing that b(t, h) ≤ g(t, h) for all
(t, h) ∈ [0, T ] × R+ by Lemma 4.2, we find 0 ≤ b(T−, h) ≤ g(T, h) = 0 due to (4.13), which proves
the claim.

Step 3. Given that (4.15) holds for any (t, z, h) ∈ O, we can take z = b(t, h) in (4.15), which

leads to (4.16), upon using that Ĵ(t, b(t, h), h) = 0 (cf. Proposition 4.6). The fact that b is the unique
continuous solution to (4.16) can be proved by following the four-step procedure from the proof
of uniqueness provided in Theorem 3.1 of [Peskir, 2005]. Since the present setting does not create
additional difficulties we omit further details.

□

5. Optimal solution in terms of the primal variables

In the previous section, we studied the properties of the dual value function J(t, z, h) and used
(t, z, h), where t denotes time, z denotes marginal utility and h denotes health capital, as the coordi-
nate system for the study. In this section, we will come back to study of the value function V (t, x, h)
in the original coordinate system (t, x, h), where x denotes the wealth of the agent.
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Proposition 5.1. The function J in (3.19) is strictly convex with respect to z.

Proof. By the duality relation in Theorem 3.2, we see that z 7→ J(t, z, h) is convex on R+. From

Corollary 4.1, we know that J(t, z, h) = Ŵ (t, z, h) for all (t, z, h) ∈ I. Since W is strictly convex

with respect to z (cf. (3.12)), and recalling that Ŵ = W −zg(t), we conclude that J is strictly convex

with respect to z for (t, z, h) ∈ I̊.
To prove strict convexity of J onW, our argument is inspired by Lemma A.7 in [Federico et al., 2017].

By Corollary 4.1, J satisfies in the classical sense on W the linear PDE

Jt +
1

2
θ2z2Jzz + (ρ− r +m0 +m1h−κ)zJz − δhJh − (ρ+m0 +m1h−κ)J = −û(z, h).(5.1)

Fix now (t0, z0, h0) ∈ W and let BR(t0, z0, h0) be the open ball of radius R > 0 centered in

(t0, z0, h0), such that BR(t0, z0, h0) ⊂ W. Then, for (t, z, h) ∈ BR(t0, z0, h0),

Jt +
1

2
θ2z2Jzz + (ρ− r +m0 +m1h−κ)zJz − δhJh − (ρ+m0 +m1h−κ)J + û(z, h) = 0,(5.2)

and, for ϵ > 0 small enough,

Jt(t, z + ϵ, h) +
1

2
θ2z2Jzz(t, z + ϵ, h) + (ρ− r +m0 +m1h−κ)zJz(t, z + ϵ, h)

− δhJh(t, z + ϵ, h)− (ρ+m0 +m1h−κ)J(t, z + ϵ, h) + û(z + ϵ, h)

+
1

2
θ2ϵ2Jzz(t, z + ϵ, h) + θ2zϵJzz(t, z + ϵ, h) + (ρ− r +m0 +m1h−κ)ϵJz(t, z + ϵ, h) = 0.(5.3)

Hence, setting

J ϵ(t, z, h) :=
J(t, z + ϵ, h)− J(t, z, h)

ϵ
,

we find from (5.2) and (5.3)

J ϵ
t +

1

2
θ2z2J ϵ

zz + (ρ− r +m0 +m1h−κ)zJ ϵ
z − δhJ ϵ

h − (ρ+m0 +m1h−κ)J ϵ +
û(z + ϵ, h)− û(z, h)

ϵ

+
1

2
θ2ϵJzz(t, z + ϵ, h) + θ2zJzz(t, z + ϵ, h) + (ρ− r +m0 +m1h−κ)Jz(t, z + ϵ, h) = 0.

Since J is continuously differentiable over [0, T ) × R2
+ (cf. Corollary 4.1), then J ϵ → Jz locally

uniformly over [0, T ) × R2
+. On the other hand, by continuity of Jz and Jzz, we have that Jz(t, z +

ϵ, h) → Jz(t, z, h) and Jzz(t, z + ϵ, h) → Jzz(t, z, h). Hence, by Proposition 5.9 in Chapter 4 of
[Yong and Zhou, 1999] we have that v := Jz is a viscosity solution to

vt +
1

2
θ2z2vzz + (ρ− r +m0 +m1h−κ + θ2)zvz − δhvh − rv + ûz = 0, on BR(t0, z0, h0)

with boundary condition v(t, z, h) = Jz(t, z, h) on ∂BR(t0, z0, h0) and v(T, z, h) = 0.
Let us now repeat the argument, and define

vϵ(t, z, h) :=
v(t, z + ϵ, h)− v(t, z, h)

ϵ
,

which, due again to Corollary 4.1, converges uniformly over compacts of W to vz, i.e. Jzz. Also, vϵ

is a viscosity solution to

vϵt +
1

2
θ2z2vϵzz + (ρ− r +m0 +m1h−κ + θ2)zvϵz − δhvϵh − rvϵ +

ûz(z + ϵ, h)− ûz(z, h)

ϵ

+
1

2
θ2ϵvzz(t, z + ϵ, h) + θ2zvzz(t, z + ϵ, h) + (ρ− r +m0 +m1h−κ + θ2)vz(t, z + ϵ, h) = 0.
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Applying once more Proposition 5.9 in Chapter 4 of [Yong and Zhou, 1999] we have that w := vz
solves in the viscosity sense on BR(t0, z0, h0)

wt +
1

2
θ2z2wzz + (ρ− r +m0 +m1h−κ + 2θ2)zwz − δhwh + (ρ− 2r +m0 +m1h−κ + θ2)w + ûzz = 0,

(5.4)

with the boundary condition w(t, z, h) = Jzz(t, z, h) on ∂BR(t0, z0, h0) and w(T, z, h) = 0. Actually,
since Jzz is continuous on W, the boundary problem associated to Equation (5.4) admits a unique
viscosity solution (cf. Corollary 8.1 in Chapter V of [Fleming and Soner, 2006]).

Define now the second-order differential operator L̃F := Ft +
1
2θ

2z2Fzz + (2θ2 + ρ − r + m0 +

m1h−κ)zFz − δhFh + (ρ +m0 +m1h−κ + θ2 − 2r)F and let τR := inf{s ≥ 0 : (t + s, Z̃1,z
s , H1,h

s )} /∈
BR(t0, z0, h0)} ∧ (T − t), where Z̃ is the process such that (t+ s, Z̃s, H

1
s ) has infinitesimal generator

L̃. Then, introducing

m(t, z, h) := Ez,h

[ ∫ τR

0
e−

∫ s
0 (ρ+MH1

u )duûzz(Z̃
1
s , H

1
s )ds+ e−

∫ τR
0 (ρ+MH1

u )duJzz(t+ τR, Z̃
1
τR
, H1

τR
)

]
,

we see that m(t, z, h) > 0 since Jzz ≥ 0 on O by convexity and ûzz > 0 (cf. (3.10)). However, m is
a viscosity solution to (5.4) and therefore, by uniqueness, m ≡ Jzz. It thus follows that Jzz > 0 on
BR(t0, z0, h0) and we then conclude by arbitrariness of (t0, z0, h0) ∈ W and of R > 0.

□

From Theorem 3.2, for any (t, z, h) ∈ O, we know that V (t, x, h) = infz>0[J(t, z, h) + zx]. Since
z 7→ J(t, z, h) + zx is strictly convex (cf. Proposition 5.1), then there exists an unique solution
z∗(t, x, h) > 0 such that

V (t, x, h) = J(t, z∗(t, x, h), h) + xz∗(t, x, h),(5.5)

where z∗(t, x, h) := IJ(t,−x, h) and IJ is the inverse function of Jz. Moreover, z∗ ∈ C(O), and for
any (t, h) ∈ [0, T ]× R+, z

∗(t, x, h) is strictly decreasing with respect to x, which is a bijection form.
Hence, for any (t, h) ∈ [0, T ] × R+, z

∗(t, ·, h) has an inverse function x∗(t, ·, h), which is continuous,
strictly decreasing, and maps R+ to R+.

Proposition 5.2. One has V ∈ C1,1,1(O) and Vxx ∈ L∞
loc(O).

Proof. From (5.5), using that Jz(t, z
∗(t, x, h), h) = −x, one has

Vt = Jt(t, z
∗(t, x, h), h) + Jz(t, z

∗(t, x, h), h)z∗t (t, x, h) + xz∗t (t, x, h) = Jt(t, z
∗(t, x, h), h),

Vh = Jh(t, z
∗(t, x, h), h) + Jz(t, z

∗(t, x, h), h)z∗h(t, x, h) + xz∗h(t, x, h) = Jh(t, z
∗(t, x, h), h),

Vx = Jz(t, z
∗(t, x, h), h)z∗x(t, x, h) + z∗(t, x, h) + xz∗x(t, x, h) = z∗(t, x, h),

Vxx = z∗x(t, x, h) = − 1

Jzz(t, z∗(t, x, h), h)
, in the a.e. sense.(5.6)

The proof is then completed due to Theorem 4.6. □

Let us now define

(5.7)


b̂(t, h) := x∗(t, b(t, h), h),

Wx := {(t, x, h) ∈ O : (t, z∗(t, x, h), h) ∈ W},
Ix := {(t, x, h) ∈ O : (t, z∗(t, x, h), h) ∈ I}.

Then, by Lemma 4.2 we have

Wx := {(t, x, h) ∈ O : 0 < x < b̂(t, h)}, Ix := {(t, x, h) ∈ O : x ≥ b̂(t, h)},(5.8)

so that we can express the optimal investment time into health in terms of the initial coordinates as:

τ∗(t, x, h) = inf{s ≥ 0 : Xx
s ≥ b̂(t+ s,H1,h

s )} ∧ (T − t).
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Recalling that J ≥ Ŵ on O by (3.19), we notice that if J(t, z∗(t, x, h), h) = Ŵ (t, z∗(t, x, h), h),

then the function z 7→ (J − Ŵ )(t, z, h) attains its minimum value 0 at (t, z∗(t, x, h), h). Hence,

Jz(t, z
∗(t, x, h), h) = Ŵz(t, z

∗(t, x, h), h) = −x.

This means that z∗(t, x, h) is a stationary point of the convex function z 7→ Ŵ (t, z, h) + zx, so that

Ŵ (t, z∗(t, x, h), h) + xz∗(t, x, h) = min
z

(Ŵ (t, z, h) + zx) = min
z

[W (t, z, h)− z(x− g(t))] = V̂ (t, x, h),

by (4.2) and Theorem 3.1. Together with (5.5), we obtain V (t, x, h) = V̂ (t, x, h).

On the other hand, if V (t, x, h) = V̂ (t, x, h), then by (5.5), Theorem 3.1 and (4.2)

J(t, z∗(t, x, h), h) + xz∗(t, x, h) = inf
z
(Ŵ (t, z, h) + zx) ≤ Ŵ (t, z∗(t, x, h), h) + xz∗(t, x, h).(5.9)

Hence, since J ≥ Ŵ on O, J(t, z∗(t, x, h), h) = Ŵ (t, z∗(t, x, h), h).
Combining these two arguments we have that

{(t, x, h) ∈ O : V (t, x, h) = V̂ (t, x, h)} = {(t, x, h) ∈ O : J(t, z∗(t, x, h), h) = Ŵ (t, z∗(t, x, h), h)}.
This, together with (5.8), leads to express the optimal investment time in the original coordinates as

(5.10)

{
τ∗(t, x, h) = inf{s ≥ 0 : Xx

s ≥ b̂(t+ s,H1,h
s )} ∧ (T − t)

= inf{s ≥ 0 : V (t+ s,Xx
s , H

1,h
s ) = V̂ (t+ s,Xx

s , H
1,h
s )} ∧ (T − t).

Due to the regularity of V and the dual relations between V and J (cf. Proposition 5.2), from
Corollary 4.1 we can deduce that V is a solution in the a.e. sense to the HJB equation

0 = max
{
V̂ − V, sup

c,π

[
Vt +

1

2
σ2π2Vxx + (π(µ− r) + rx− c)Vx + u(c, h)− δhVh − (ρ+m0 +m1h−κ)V

]}
.

(5.11)

Then a standard verification argument leads to the following result.

Theorem 5.1. Let (t, x, h) ∈ O and recall that Iu(·, h) denotes the inverse of uc(·, h). Then

c∗(t, x, h) := Iu(Vx(t, x, h), h) and π∗(t, x, h) := − θVx(t,x,h)
σVxx(t,x,h)

(a.e. on O) define the optimal feed-

back maps, while τ∗ = inf{s ≥ 0 : V (t + s,Xx
s , H

1,h
s ) ≤ V̂ (t + s,Xx

s , H
1,h
s )} ∧ (T − t) is the optimal

investment time. Hence, c∗s = c∗(s,Xs, Hs), π
∗
s = π∗(s,Xs, Hs) and τ∗,Pt,x,h-a.s., provide an optimal

control triple.

Thanks to (5.7) and Proposition 5.2 we can finally express the optimal health investment threshold

b̂ and the optimal portfolio π in terms of b and z∗, respectively.

Proposition 5.3. One has that b̂(t, h) = −Wz(t, b(t, h), h) + g(t), for any (t, h) ∈ [0, T ] × R+, and
π∗(t, x, h) = θ

σz
∗(t, x, h)Jzz(t, z

∗(t, x, h), h) for almost all (t, x, h) ∈ O.

Proof. We know that b̂(t, h) = x∗(t, b(t, h), h), where x∗(t, ·, h) is the inverse function of z∗(t, ·, h).
Since Jz(t, z

∗(t, x, h), h) = −x, by taking x = x∗(t, z, h), computations show that

Jz(t, z, h) = Jz(t, z
∗(t, x∗(t, z, h), h), h) = −x∗(t, z, h).

Hence, from Corollary 4.1 and (4.2) we have

b̂(t, h) = x∗(t, b(t, h), h) = −Jz(t, b(t, h), h) = −Ŵz(t, b(t, h), h)

= −Wz(t, b(t, h), h) + g(t).

To prove the second statement, we notice that Vx(t, x, h) = z∗(t, x, h), Vxx(t, x, h) = z∗x(t, x, h) =
− 1

Jzz(t,z∗,h)
(cf. (5.6)), which then yield

π∗(t, x, h) = − θVx(t, x, h)

σVxx(t, x, h)
=

θ

σ
z∗(t, x, h)Jzz(t, z

∗(t, x, h), h), a.e. on O.

□
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6. Conclusions

In this paper, we study a consumption/portfolio problem in which the agent can also choose the
time at which making an irreversible precautionary investment into health, thus facing a trade-off
between a costly health investment and the reduction of her mortality rate. The optimization problem
is formulated as a stochastic control-stopping problem over a random time horizon, which contains
two state variables: wealth and health capital.

We first transform by martingale and duality methods the original problem into its dual problem,
which is a finite time-horizon two-dimensional optimal stopping problem. We then study the optimal
stopping problem by probabilistic arguments. Due to the lack of monotonicity of the optimal stopping
boundary, we prove the boundary’s Lipschitz-continuity in order to deduce regularity properties of the
optimal stopping problem’s value function. Furthermore, we provide an integral equation uniquely
characterizing of optimal boundary. Finally, we obtain the optimal strategies in terms of the primal
variables and show that the agent invests in health optimally whenever her wealth reaches a boundary
surface, which depends on the agent’s age and health capital.

There are many directions towards this work can be generalized and further investigated. By
performing a thorough probabilistic analysis on the regularity of the free boundary, we are able
to provide a complete characterization of the optimal timing of health investment through a non-
linear integral equation. A survey of numerical methods for equations of this kind may be found
in [Atkinson, 1992] (see also classical textbook like [Delves and Mohamed, 1988]). These methods
could be employed (and further generalized) to solve our Equation (4.16). However, since they are
certainly nontrivial, we believe that such numerical computation falls outside the scopes of our work.
The numerical study will also shed light on the sensitivity of the free boundary with respect to
the model’s parameters, as well as on the economic and actuarial insights of the optimal solution.
This analysis is also left for future research. A further immediate question regards the possibility of
studying not only when it is optimal to invest into health, but also how much. Like in consumption
choices (see [Hindy and Huang, 1993] and [Bank and Riedel, 2001]), the agent can invest in health
at “gulps” at any moment, as well as at finite rates over intervals. Therefore, we can model the
health investment It—representing the cumulative amount of health investment paid from time zero
up to t—as a singular control and study the corresponding optimal health investment strategy under
a stochastic regular-singular control framework. We leave this fascinating and challenging research
question for future research.

Appendix A. Technical Estimates

Lemma A.1. Let C0(h) :=
m1h−κ−1(h+

f(I)
δ

)

(1−α)δ eδκT + 1 and c1 :=
1
2(

αθ
1−α)

2 + α
1−α(r +

1
2θ

2) > 0. Then

0 ≤ Wh(t, z, h) ≤ z
α

α−1 (1− α)α
α

1−αC0(h)
ec1T

c1
, ∀(t, z, h) ∈ O.

Moreover,

lim
z→∞

Wh(t, z, h) = 0 and lim
z→0

Wh(t, z, h) = ∞ for (t, h) ∈ [0, T )× R+.

Proof. From (3.12) we compute the partial derivative with respect to h,

Wh(t, z, h) = z
α

α−1 (1− α)α
α

1−α

[ ∫ T−t

0
e

α
1−α

(rs+ 1
2
θ2s)+ θ2α2s

2(α−1)2 e
∫ s
0

(ρ+MH2,h
u (h))

α−1
du×

×
[ m1κ

1− α

(∫ s

0
(he−δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu

)(
he−δs +

f(I)

δ
(1− e−δs)

)
+ e−δs

]
ds

]
(A.1)

with

MH2,h

u (h) := m0 +m1(H2,h
u )−κ = m0 +m1(he−δu +

f(I)

δ
(1− e−δu))−κ, u ≥ 0.(A.2)
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Since α < 1, then Wh(t, z, h) ≥ 0 for any (t, z, h) ∈ O. On the other hand, since he−δs ≤ he−δs +
f(I)
δ (1− e−δs) ≤ h+ f(I)

δ , then (he−δu + f(I)
δ (1− e−δu))−κ−1 ≤ h−κ−1e(κ+1)δs. Therefore, from (A.1)

we have

m1κ

1− α

(∫ s

0
(he−δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu)(he−δs +

f(I)

δ
(1− e−δs)

)
+ e−δs

≤ m1κ

1− α

(∫ s

0
h−κ−1e(κ+1)δue−δudu

)(
h+

f(I)

δ

)
+ e−δs ≤ C0(h).

Combining the above inequality with (A.1), we have

Wh(t, z, h) ≤ z
α

α−1 (1− α)α
α

1−αC0(h)
ec1T

c1
,

where we have used the fact that∫ T−t

0
e

α
1−α

(rs+ 1
2
θ2s)+ θ2α2s

2(α−1)2 e
∫ s
0

(ρ+MH2,h
u (h))

α−1
duds ≤

∫ T−t

0
ec1sds ≤ ec1T

c1
,(A.3)

upon using that e
∫ s
0

(
ρ+MH2,h

u (h)

α−1

)
du ≤ 1, since α < 1.

Finally, it is easy to see that limz→∞Wh(t, z, h) = 0 and limz→0Wh(t, z, h) = ∞ from (A.1). □

Appendix B. Proofs from Section 4

B.1. Poof of Proposition 4.3.

Proof. From (4.5) one has

Ĵ(t, z, h) = Ez,h

[ ∫ τ∗

0
ze−rs−θBs− 1

2
θ2sIds−

∫ τ∗

0
e−

∫ s
0 (ρ+MH1

u )duf(I)Wh(t+ s, Z1
s , H

1
s )ds

]
.

Here we show that Ĵ(t, z, ·) is locally Lipschitz and (4.8) holds for a.e. h ∈ R+ and each given

(t, z) ∈ [0, T ]×R+ (with the null set where Ĵ(t, z, ·) is not differentiable being a priori dependent on

(t, z)). Similar arguments, that we omit for brevity, also show that Ĵ is locally Lipschitz in t and z.

First we obtain bounds for the left and right derivatives of Ĵ(t, z, ·). Fix (t, z, h) ∈ O, pick ϵ > 0,

and notice that τ∗ is suboptimal in Ĵ(t, z, h + ϵ) (and independent of ϵ). Then, denoting by Z1,z,ϵ

the solution to (3.18), where H1 is such that H1
0 = h+ ϵ, we obtain

Ĵ(t, z, h+ ϵ)− Ĵ(t, z, h)

≥ −f(I)E
[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1,h+ϵ

u )duWh(t+ s, Z1,z,ϵ
s , H1,h+ϵ

s )

− e−
∫ s
0 (ρ+MH1,h

u )duWh(t+ s, Z1,z
s , H1,h

s )ds

]
= −f(I)E

[ ∫ τ∗

0

(
e−

∫ s
0 (ρ+MH1,h+ϵ

u )du − e−
∫ s
0 (ρ+MH1,h

u )du

)
Wh(t+ s, Z1,z,ϵ

s , H1,h+ϵ
s )

+ e−
∫ s
0 (ρ+MH1,h

u )du

(
Wh(t+ s, Z1,z,ϵ

s , H1,h+ϵ
s )−Wh(t+ s, Z1,z

s , H1,h
s )

)
ds

]

= −f(I)ϵE
[ ∫ τ∗

0

(
e−

∫ s
0 (ρ+MH1,h+ϵ

u )du − e−
∫ s
0 (ρ+MH1,h

u )du

)
ϵ

Wh(t+ s, Z1,z,ϵ
s , H1,h+ϵ

s )

+ e−
∫ s
0 (ρ+MH1,h

u )du

(
Wh(t+ s, Z1,z,ϵ

s , H1,h+ϵ
s )−Wh(t+ s, Z1,z

s , H1,h
s )

)
ϵ

ds

]
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= −f(I)ϵE
[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1,hϵ

u )du

(∫ s

0
m1κ(H1,hϵ

u )−κ−1∂H
1,h
u

∂h

∣∣∣
h=hϵ

du

)
Wh(t+ s, Z1,z,ϵ

s , H1,h+ϵ
s )

+ e−
∫ s
0 (ρ+MH1,h

u )du

(
∂H1,h

s

∂h

∣∣∣∣
h=hϵ

Whh(t+ s, Z1,z,hϵ
s , H1,hϵ

s ) +Whz(t+ s, Z1,z,hϵ
s , H1,hϵ

s )
∂Z1,z,h

s

∂h

∣∣∣
h=hϵ

)
ds

]
,

(B.1)

for some hϵ ∈ (h, h + ϵ), where the last step has used the mean value theorem. Dividing (B.1) by ϵ
and taking limits as ϵ ↓ 0 gives

lim
ϵ→0

inf
Ĵ(t, z, h+ ϵ)− Ĵ(t, z, h)

ϵ

≥ −f(I)E
[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1,h

u )du

[(∫ s

0
m1κ(H1,h

u )−κ−1∂H
1,h
u

∂h
du

)
Wh(t+ s, Z1,z

s , H1,h
s )

+
∂H1,h

s

∂h
Whh(t+ s, Z1,z

s , H1,h
s ) +Whz(t+ s, Z1,z

s , H1,h
s )

∂Z1,z
s

∂h

]
ds

]
.(B.2)

Since symmetric arguments applied to Ĵ(t, z, h) − Ĵ(t, z, h − ϵ) lead to the reverse inequality, we
obtain

lim
ϵ→0

sup
Ĵ(t, z, h)− Ĵ(t, z, h− ϵ)

ϵ

≤ −f(I)E
[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1,h

u )du

[(∫ s

0
m1κ(H1,h

u )−κ−1∂H
1,h
u

∂h
du

)
Wh(t+ s, Z1,z

s , H1,h
s )

+
∂H1,h

s

∂h
Whh(t+ s, Z1,z

s , H1,h
s ) +Whz(t+ s, Z1,z

s , H1,h
s )

∂Z1,z
s

∂h

]
ds

]
.

It now remains to show that Ĵ(t, z, ·) is locally Lipschitz, so that a.e. h ∈ R+ is a point of
differentiability. With the same notation as above, let τ∗ϵ := τ∗(t, z, h+ ϵ) be optimal for the problem
with initial data (t, z, h+ ϵ). By arguments analogous to those used previously we find

Ĵ(t, z, h+ ϵ)− Ĵ(t, z, h)

≤ −f(I)E
[ ∫ τ∗ϵ

0
e−

∫ s
0 (ρ+MH1,h+ϵ

u )duWh(t+ s, Z1,z,ϵ
s , H1,h+ϵ

s )− e−
∫ s
0 (ρ+MH1,h

u )duWh(t+ s, Z1,z
s , H1,h

s )ds

]

≤ −f(I)E
[ ∫ τ∗ϵ

0
e−

∫ s
0 (ρ+MH1,h

u )du

(
Wh(t+ s, Z1,z,ϵ

s , H1,h+ϵ
s )−Wh(t+ s, Z1,z

s , H1,h
s )

)
ds

]
,

(B.3)

due to e−
∫ s
0 (ρ+MH1,h

u )du ≤ e−
∫ s
0 (ρ+MH1,h+ϵ

u )du and Wh ≥ 0 (cf. Lemma A.1). Then, by the Hölder
inequality, we can write from (B.3)

Ĵ(t, z, h+ ϵ)− Ĵ(t, z, h)

≤ E
[ ∫ T

0
f(I)2e−

∫ s
0 2(ρ+MH1,h

u )duds

] 1
2

E
[ ∫ T

0

∣∣∣∣Wh(t+ s, Z1,z,ϵ
s , H1,h+ϵ

s )−Wh(t+ s, Z1,z
s , H1,h

s )

∣∣∣∣2ds] 1
2

.

(B.4)

Clearly, since ρ+MH1,h

u > 0, E
[ ∫ T

0 e−2
∫ s
0 (ρ+MH1,h

u )duds
]
≤ T , and because Wh(t, ·, ·) is continuously

differentiable (cf. (A.1)), there exists a positive function c(t, z, h) such that, for all (z1, h1) and (z2, h2),
|Wh(t, z, h1)−Wh(t, z, h2)|+ |Wh(t, z2, h)−Wh(t, z1, h)| ≤ c(t, z, h)(|z2 − z1|+ |h1 − h2|).

Therefore, from (B.4) we have

Ĵ(t, z, h+ ϵ)− Ĵ(t, z, h) ≤ c(t, z, h)ϵ.
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The estimate in (B.3) and (B.2) imply |Ĵ(t, z, h+ ϵ)− Ĵ(t, z, h)| ≤ ĉ(t, z, h)ϵ, for some other constant
ĉ(t, z, h) > 0 which can be taken uniform over compact sets. Symmetric arguments allow to prove

also that |Ĵ(t, z, h)− Ĵ(t, z, h− ϵ)| ≤ ĉ(t, z, h)ϵ. Therefore, Ĵ(t, z, ·) is locally Lipschitz and for almost
all (t, z, h) ∈ O

Ĵh(t, z, h) = −f(I)E
[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1,h

u )du
[( ∫ s

0
m1κ(H1,h

u )−κ−1∂H
1,h
u

∂h
du

)
Wh(t+ s, Z1,z

s , H1,h
s )

+
∂H1,h

s

∂h
Whh(t+ s, Z1,z

s , H1,h
s ) +Whz(t+ s, Z1,z

s , H1,h
s )

∂Z1,z
s

∂h

]
ds

]
.(B.5)

To simplify (B.5), we need to compute Wh,Whh and Whz firstly. From (A.1) we have

Wh(t+ s, Z1,z
s , H1,h

s ) = Z1,z
s

α
α−1 (1− α)α

α
1−α

[ ∫ T−(t+s)

0
e

α
1−α

(rs+ 1
2
θ2s)+ θ2α2s

2(α−1)2 e
∫ s
0

(ρ+MH2,h
u (H1))

α−1
du×

×
[ m1κ

1− α

(∫ s

0
(H1,h

u e−δu +
f(I)

δ
(1− e−δu))−κ−1e−δudu

)(
H1,h

s e−δs +
f(I)

δ
(1− e−δs)

)
+ e−δs

]
ds

]
= Z1,z

s

α
α−1 (1− α)α

α
1−α

[ ∫ T−(t+s)

0
e

α
1−α

(rs+ 1
2
θ2s)+ θ2α2s

2(α−1)2 e
∫ s
0

(ρ+MH2,h
u (H1))

α−1
du×

×
[ m1κ

1− α

(∫ s

0
(he−2δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu

)(
he−2δs +

f(I)

δ
(1− e−δs)

)
+ e−δs

]
ds

]
,

(B.6)

where we have used the fact that H1
s = he−δs in (4.6) and from (A.2)

MH2,h

u (H1) = m0 +m1(he−2δs +
f(I)

δ
(1− e−δs))−κ.(B.7)

Furthermore, by (A.1) we have

Whz(t+ s, Z1,z
s , H1,h

s ) = −Z1,z
s

1
α−1α

1
1−α

[ ∫ T−(t+s)

0
e

α
1−α

(rs+ 1
2
θ2s)+ θ2α2s

2(α−1)2 e
∫ s
0

(ρ+MH2,h
u (H1))

α−1
du×

×
[ m1κ

1− α

(∫ s

0
(he−2δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu

)(
he−2δs +

f(I)

δ
(1− e−δs)

)
+ e−δs

]
ds

]
.

(B.8)

From (4.6) we observe that

∂Z1,z
s

∂h
= −Z1,z

s

∫ s

0
m1κ(H1,h

u )−κ−1e−δudu = −Z1,z
s

∫ s

0
m1κh−κ−1eδκudu,

which, combined with (B.8), gives

Whz(t+ s, Z1,z
s , H1,h

s )
∂Z1,z

s

∂h
= Wh(t+ s, Z1,z

s , H1,h
s )

α

1− α

∫ s

0
m1κh−κ−1eδκudu,

m1κ

∫ s

0
h−κ−1eδκuduWh(t+ s, Z1,z

s , H1,h
s ) +Whz(t+ s, Z1,z

s , H1,h
s )

∂Z1,z
s

∂h

=
Wh(t+ s, Z1,z

s , H1,h
s )

1− α

m1h−κ−1

δ
(eδκs − 1).(B.9)

Therefore, combining (B.2) and (B.9), we have

Ĵh(t, z, h) = −f(I)Ez,h

[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1

u )du
[
Whh(t+ s, Z1

s , H
1
s )e

−δs

+
1

1− α
Wh(t+ s, Z1

s , H
1
s )

m1

δ
h−κ−1(eδκs − 1)

]
ds

]
,
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which completes the proof. □

B.2. Proof of Proposition 4.4.

Proof. Since Ĵ(t, z, h) ≥ E
[ ∫ T−t

0 ze−rs−θBs− 1
2
θ2sIds−

∫ T−t
0 e−

∫ s
0 (ρ+MH1,h

u )duf(I)Wh(t+s, Z1,z
s , H1,h

s )ds
]

(cf. (4.5)), and by Lemma A.1 we know that limz→∞Wh(t, z, h) = 0, we can conclude that limz→∞
Ĵ(t, z, h) = ∞. The fact that limz→0 Ĵ(t, z, h) = 0 directly follows from the bounds of Ĵ in Proposi-
tion 4.1. □

B.3. Proof of Theorem 4.1.

Proof. The proof is organized in five steps.

Step 1. For ϵ > 0, define the function

F ϵ(t, z, h) := Ĵ(t, z, h)− ϵ.

Let now (t, z, h) ∈ W, λϵ, Lϵ
1, L

ϵ
2 ≥ 0 (possibly depending on (t, z, h)), and, for u ∈ R, denote by

Bδ(u) := {u′ ∈ R : |u′ − u| < δ}, δ > 0. Since F ϵ is locally Lipschitz continuous in O (cf. Proposition
4.3), if the following conditions are satisfied

(i) F ϵ(t, z, h) = 0;
(ii) ||F ϵ

z (t, z, h)||−1
∞ < λϵ;

(iii) ||F ϵ
t (Bδ(t)×Bδ(z)×Bδ(h))||∞ ≤ Lϵ

1 and ||F ϵ
h(Bδ(t)×Bδ(z)×Bδ(h))||∞ ≤ Lϵ

2,

then a version of the implicit function theorem (see, e.g., the Corollary at p.256 in [Clarke, 1990]
or Theorem 3.1 in [Papi, 2005]) implies that, for suitable δ′ > 0, there exists a unique continuous
function bϵ(t, h) : (t− δ′, t+ δ′)× (h− δ′, h+ δ′) 7→ (z − δ′, z + δ′) such that

Ĵ(t, bϵ(t, h), h) = ϵ in (t− δ′, t+ δ′)× (h− δ′, h+ δ′).

Also, the following inequalities hold true:

(B.10)
|bϵ(t1, h)− bϵ(t2, h)| ≤ λϵLϵ

1|t1 − t2|, ∀ t1, t2 ∈ (t− δ′, t+ δ′),

|bϵ(t, h1)− bϵ(t, h2)| ≤ λϵLϵ
2|h1 − h2|, ∀ h1, h2 ∈ (h− δ′, h+ δ′).

According to Proposition 4.3, we have Ĵz(t, z, h) > 0 for a.e. z inside W due to Whz(t, z, h) ≤ 0 in
(B.8). Then, by Propositions 4.2 and 4.4 it clearly follows that such a bϵ above indeed exists, and
also bϵ(t, h) > b(t, h) > 0.

Moreover, the family (bϵ)ϵ>0 decreases as ϵ → 0, so that its limit b0 exists. Such a limit is such that
the mapping (t, h) 7→ b0(t, h), is upper semicontinuous, as decreasing limit of continuous functions,

and b0(t, h) ≥ b(t, h). Since Ĵ(t, bϵ(t, h), h) = ϵ, it is clear that taking limits as ϵ → 0, we get

Ĵ(t, b0(h, t), h) = 0 by continuity of Ĵ (cf. Proposition 4.3), and therefore b0(t, h) ≤ b(t, h) due to the
definition of the stopping region I in Lemma 4.2. Hence,

lim
ϵ→0

bϵ(t, h) = b(t, h), for all (t, h) ∈ [0, T ]× R+.(B.11)

Step 2. We here prove that bϵ(t, h) is bounded uniformly in ϵ. Clearly, we can restrict the
attention to ϵ ∈ (0, ϵ0) for some ϵ0 > 0. From Lemma 4.2 we know that b(t, h) ≤ g(t, h). Since now
limϵ→0 bϵ(t, h) = b(t, h) (cf. (B.11)), we thus have that 0 ≤ bϵ(t, h) ≤ 1 + g(t, h), ∀ϵ ∈ (0, ϵ0), which
provides the desired uniform bound.

Step 3. According to Step 1, we need to verify conditions (ii) and (iii).
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Step 3-(a). We here determine an upper bound for |Ĵh(t, bϵ(t, h), h)|. Recalling Ĵh(t, z, h) as in
Proposition 4.3, we have

Ĵh(t, bϵ(t, h), h) = −f(I)Ebϵ(t,h),h

[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1

u )du
[
Whh(t+ s, Z1

s , H
1
s )e

−δs+

1

1− α
Wh(t+ s, Z1

s , H
1
s )

m1

δ
h−κ−1(eδκs − 1)

]
ds

]
.

Since Wh(t, z, h) > 0 for all (t, z, h) ∈ [0, T )× R2
+ (cf. (A.1)), we have

|Ĵh(t, bϵ(t, h), h)| ≤ f(I)Ebϵ(t,h),h

[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1

u )du
[∣∣∣Whh(t+ s, Z1

s , H
1
s )
∣∣∣e−δs

+
1

1− α
Wh(t+ s, Z1

s , H
1
s )

m1

δ
h−κ−1(eδκs − 1)

]
ds

]
.(B.12)

To proceed further, we determine Pbϵ(t,h),h-a.s. upper bounds for Wh(t+ s, Z1
s , H

1
s ) and |Whh(t+

s, Z1
s , H

1
s )|. Firstly, we give the upper bound of Wh(t+ s, Z1

s , H
1
s ). From (B.6) we have

Wh(t+ s, Z1
s , H

1
s ) = Z1

s

α
α−1 (1− α)α

α
1−α

[ ∫ T−(t+s)

0
e

α
1−α

(rs+ 1
2
θ2s)+ θ2α2s

2(α−1)2 e
∫ s
0

(ρ+MH2,h
u (H1))

α−1
du×

×
[ m1κ

1− α

(∫ s

0
(he−2δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu

)(
he−2δs +

f(I)

δ
(1− e−δs)

)
+ e−δs

]
ds

]
,

(B.13)

where MH2,h

u (h) is defined in (A.2).

Since he−2δs ≤ he−2δs+f(I)
δ (1−e−δs) ≤ h+f(I)

δ , then (he−2δu+f(I)
δ (1−e−δu))−κ−1 ≤ h−κ−1e2(κ+1)δs.

Therefore, from (B.13) we have

m1κ

1− α

(∫ s

0
(he−2δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu)(he−2δs +

f(I)

δ
(1− e−δs)

)
+ e−δs

≤ m1κ

1− α

(∫ s

0
h−κ−1e2(κ+1)δue−δudu

)(
h+

f(I)

δ

)
+ e−δs

≤
m1h−κ−1κ(h+ f(I)

δ )

(1− α)(2κ+ 1)δ
e(2κ+1)δT + 1 =: C1(h).

Combining the above inequality with (B.13), we have Pbϵ(t,h),h-a.s.

Wh(t+ s, Z1
s , H

1
s ) ≤ Z1

s

α
α−1 (1− α)α

α
1−αC1(h)N(t+ s, h),(B.14)

where (cf. (A.3))

N(t+ s, h) :=

[ ∫ T−(t+s)

0
e

α
1−α

(rs+ 1
2
θ2s)+ θ2α2s

2(α−1)2 e
∫ s
0

(ρ+MH2,h
u (H1))

α−1
duds

]
≤ ec1T

c1
.(B.15)

We continue by obtaining an upper bound for |Whh(t+ s, Z1
s , H

1
s )|. From (A.1) we compute

Whh(t, z, h) = z
α

α−1 (1− α)α
α

1−α

[ ∫ T−t

0
ec1+

∫ s
0

(ρ+MH2,h
u (h))

α−1
du m1κ

1− α

[( ∫ s

0
(H2

u)
−κ−1e−δudu

)2
×

×
( m1κ

1− α
H2

s

)
+ 2e−δs

∫ s

0
(H2

u)
−κ−1e−δudu−H2

s

∫ s

0
(κ+ 1)(H2

u)
−κ−2e−2δudu

]
ds

]
,
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so that we have Pbϵ(t,h),h-a.s.

|Whh(t+ s, Z1
s , H

1
s )|

≤ Z1
s

α
α−1 (1− α)α

α
1−α

[ ∫ T−t−s

0
ec1+

∫ s
0

(ρ+MH2,h
u (H1))

α−1
du m1κ

1− α
×

×
[( ∫ s

0
(he−2δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu

)2( m1κ

1− α
(he−2δs +

f(I)

δ
(1− e−δs))

)
+ 2e−δs

∫ s

0
(he−2δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu

+ (he−2δs +
f(I)

δ
(1− e−δs))

∫ s

0
(κ+ 1)(he−2δu +

f(I)

δ
(1− e−δu))−κ−2e−2δudu

]
ds

]
.(B.16)

Since he−2δs ≤ he−2δs+f(I)
δ (1−e−δs) ≤ h+f(I)

δ , then (he−2δu+f(I)
δ (1−e−δu))−κ−1 ≤ h−κ−1e2(κ+1)δu

and (∫ s

0
(he−2δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu

)2( m1κ

1− α
(he−2δs +

f(I)

δ
(1− e−δs))

)
≤ h−2κ−2

(2κ+ 1)2δ2
e2(2κ+1)δT m

1κ(h+ f(I)
δ )

1− α
,

2e−δs

∫ s

0
(he−2δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu ≤ 2h−κ−1e(2κ+1)δT

(2κ+ 1)δ
,(

he−2δs +
f(I)

δ
(1− e−δs)

)∫ s

0
(κ+ 1)(he−2δu +

f(I)

δ
(1− e−δu))−κ−2e−2δudu

≤ 1

2
h−κ−2(h+

f(I)

δ
)e(2κ+2)δT .

By using the latter inequality in (B.16) we obtain Pbϵ(t,h),h-a.s.

|Whh(t+ s, Z1
s , H

1
s )| ≤ Z1

s

α
α−1 (1− α)α

α
1−α

[ ∫ T−(t+s)

0
ec1+

∫ s
0

(ρ+MH2,h
u (H1))

α−1
duC2(h)ds

]
= Z1

s

α
α−1 (1− α)α

α
1−αC2(h)N(s+ t, h),(B.17)

where N(s+ t, h) is defined in (B.15) and

C2(h) :=
h−2κ−2

(2κ+ 1)2δ2
e2(2κ+1)δT m

1κ(h+ f(I)
δ )

1− α
+

2h−κ−1e(2κ+1)δT

(2κ+ 1)δ
+

1

2
h−κ−2(h+

f(I)

δ
)e(2κ+2)δT .

Then, (B.12), (B.14) and (B.17) yield

|Ĵh(t, bϵ(t, h), h)|

≤ f(I)Ebϵ(t,h),h

[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1

u )du
[
Z1
s

α
α−1 (1− α)α

α
1−αC2(h)N(t+ s, h)

+ Z1
s

α
α−1C1(h)α

α
1−αN(t+ s, h)

m1

δ
h−κ−1eδκs

]
ds

]
≤ f(I)C3(h)Ebϵ(t,h),h

[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1

u )duZ1
s

α
α−1N(t+ s, h)(1 + eδκT )ds

]
= f(I)C3(h)(1 + eδκT )Ebϵ(t,h),h

[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1

u )duZ1
s

α
α−1N(t+ s, h)ds

]
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≤ f(I)C3(h)(1 + eδκT )(1 + g(t, h))Ebϵ(t,h),h

[ ∫ τ∗

0
e−(rs+θBs+

1
2
θ2s)Z1

s

1
α−1N(t+ s, h)ds

]
:= Lϵ

2(t, h),

(B.18)

where C3(h) := max{(1−α)α
α

1−αC2(h),
C1(h)
1−α α

α
1−α m1

δ h−κ−1} and we have used the fact that bϵ(t, h) ≤
g(t, h) + 1 in Step 2.

Step 3-(b). We here determine a lower bound for Ĵz(t, bϵ(t, h), h). From (4.9), we have

Ĵz(t, bϵ(t, h), h) = Ebϵ(t,h),h

[ ∫ τ∗

0
e−rs−θBs− 1

2
θ2s

(
I − f(I)Whz(t+ s, Z1

s , H
1
s )
)
ds

]
,(B.19)

and from (B.8) we have Pbϵ(t,h),h-a.s.

Whz(t+ s, Z1
s , H

1
s ) = −Z1

s

1
α−1α

1
1−α

[ ∫ T−(t+s)

0
e

α
1−α

(rs+ 1
2
θ2s)+ θ2α2s

2(α−1)2 e
∫ s
0

(ρ+MH2,h
u (H1))

α−1
du×

×
[ m1κ

1− α

(∫ s

0
(he−2δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu

)(
he−2δs +

f(I)

δ
(1− e−δs)

)
+ e−δs

]
ds

]
.

(B.20)

Since he−2δs ≤ he−2δs+ f(I)
δ (1−e−δs) ≤ h+ f(I)

δ , then (he−2δu+ f(I)
δ (1−e−δu))−κ−1 ≥ (h+ f(I)

δ )−κ−1,
and therefore[

m1κ

1− α

(∫ s

0
(he−2δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu

)(
he−2δs +

f(I)

δ
(1− e−δs)

)
+ e−δs

]
≥

m1κ(h+ f(I)
δ )−κ−1

1− α

1− e−δs

δ
he−2δs + e−δs ≥ e−δs ≥ e−δT .

Hence, from (B.20) we can write Pbϵ(t,h),h-a.s.

Whz(t+ s, Z1
s , H

1
s ) ≤ −Z1

s

1
α−1α

1
1−α

[ ∫ T−(t+s)

0
e

α
1−α

(rs+ 1
2
θ2s)+ θ2α2s

2(α−1)2 e
∫ s
0

(ρ+MH2,h
u (H1))

α−1
due−δTds

]
= −Z1

s

1
α−1α

1
1−α e−δTN(t+ s, h),

where N is defined in (B.15), so that from (B.19) we obtain

Ĵz(t, bϵ(t, h), h) ≥ f(I)e−δTα
1

1−αEbϵ(t,h),h

[ ∫ τ∗

0
e−(rs+θBs+

1
2
θ2s)Z1

s

1
α−1N(t+ s, h)ds

]
=:

1

λϵ
1(t, h)

.

(B.21)

From (B.10) (with λϵ = λϵ
1), (B.18) and (B.21) we conclude that the family of weak derivatives

(|∂hbϵ(t, h)|)ϵ≥0 is uniformly bounded; i.e.,

sup
ϵ≥0

|∂hbϵ(t, h)| ≤ sup
ϵ≥0

(λϵ
1(t, h)L

ϵ
2(t, h))

= C3(h)(1 + eδκT )α
1

α−1 eδT (1 + g(t, h)).(B.22)

Step 4. We here show that bϵ is locally-Lipschitz continuous in t.
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Step 4-(a). We here find an upper bound for |Ĵt(t, bϵ(t, h), h)|. Recalling Wh(t, z, h) as in (A.1),
we have Pbϵ(t,h),h-a.s.

Wht(t+ s, Z1
s , H

1
s ) = −Z1

s

α
α−1 (1− α)α

α
1−α

[
ec1(T−t)+

∫ T−t
0

(ρ+MH2,h
u (H1))

α−1
du×

×
[ m1κ

1− α
(

∫ T−(t+s)

0

(
(he−2δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu

)(
he−δse−δ(T−(t+s))

+
f(I)

δ
(1− e−δ(T−t−s))

)
+ e−δ(T−t−s)

]]
.(B.23)

Also, since Ĵt(t, z, h) = −f(I)Ez,h

[ ∫ τ∗

0 e−
∫ s
0 (ρ+MH1

u )duWht(t+ s, Z1
s , H

1
s )ds

]
by (4.10), (B.23) im-

plies that

|Ĵt(t, bϵ(t, h), h)| ≤ f(I)Ebϵ(t,h),h

[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1

u )duZ1
s

α
α−1 (1− α)α

α
1−αO(t+ s, h)ds

]
,(B.24)

where

O(t+ s, h) := ec1(T−t)+
∫ T−t
0

(ρ+MH2,h
u (H1))

α−1
du
[ m1κ

1− α
(

∫ T−(t+s)

0

(
(he−2δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu

)
×

×
(
he−δse−δ(T−(t+s)) +

f(I)

δ
(1− e−δ(T−t−s))

)
+ e−δ(T−t−s)

]
.

(B.25)

In order to obtain an upper bound for (B.25), we use he−2δs ≤ he−2δs + f(I)
δ (1− e−δs) ≤ h+ f(I)

δ ,

which gives (he−2δu + f(I)
δ (1− e−δu))−κ−1 ≤ h−κ−1e2(κ+1)δu and thus

m1κ

1− α
(

∫ T−(t+s)

0
(he−2δu +

f(I)

δ
(1− e−δu))−κ−1e−δudu)(he−δse−δ(T−(t+s))

+
f(I)

δ
(1− e−δ(T−t−s))) + e−δ(T−t−s)

≤ m1κ

1− α

∫ T−t−s

0
h−κ−1e(2κ+2)δue−δu(h+

f(I)

δ
) + 1 ≤

m1κ(h+ f(I)
δ )−κ−1

(1− α)(2κ+ 1)δ
e(2κ+1)δT + 1 =: C4(h).

Therefore, from (B.7) and (B.25) we have

O(t+ s, h) ≤ C4(h)e
c1(T−t)+

∫ T−t
0

(ρ+MH2,h
u (H1))

α−1
du ≤ C4(h)e

c1T ,(B.26)

where c1 = (r + 1
2θ

2) α
1−α + 1

2(
αθ
α−1)

2 > 0. Then by (B.24) and (B.26) we know

|Ĵt(t, bϵ(t, h), h)| ≤ f(I)Ebϵ(t,h),h

[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1

u )duZ1
s

α
α−1 (1− α)α

α
1−αC4(h)e

c1Tds

]
= f(I)C4(h)e

c1T (1− α)α
α

1−αEbϵ(t,h),h

[ ∫ τ∗

0
e−

∫ s
0 (ρ+MH1

u )duZ1
s

α
α−1ds

]
= f(I)C4(h)e

c1T (1− α)α
α

1−α (bϵ(t, h))
α

α−1Ebϵ(t,h),h

[ ∫ τ∗

0
e−

∫ s
0 (r+θBu+

1
2
θ2)duP 1

s (h)
1

α−1ds

]
= f(I)C4(h)e

c1T (1− α)α
α

1−α (bϵ(t, h))
α

α−1Ebϵ(t,h),h

[ ∫ τ∗

0
e(rs+θBs+

1
2
θ2s) α

1−α (eρs+
∫ s
0 MH1

u du)
1

α−1ds

]
≤ f(I)C4(h)e

c1T (1− α)α
α

1−α (bϵ(t, h))
α

α−1Ebϵ(t,h),h

[ ∫ τ∗

0
e(rs+θBs+

1
2
θ2s) α

1−αds

]
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= f(I)C4(h)e
c1T (1− α)α

α
1−α (bϵ(t, h))

α
α−1E

[ ∫ τ∗ϵ

0
e(rs+θBs+

1
2
θ2s) α

1−αds

]
:= Lϵ

1(t, h),

(B.27)

where τ∗ϵ := τ∗(t, bϵ(t, h), h).

Step 4-(b). In this step we perform two changes of probability measures through a Girsanov argu-

ment in order to take care of the expectation on the very right-hand side of (B.27). We define the
probability measure Q on (Ω,FT ) as

dQ
dP

= exp

{
−θBT − 1

2
θ2T

}
.

By Girsanov’s Theorem, the process BQ := {Bs + θs, s ∈ [0, T ]} is a standard Brownian motion
under the new measure Q.

From the expectation on the very right-hand side of (B.27) we then have

E
[ ∫ τ∗ϵ

0
e

α
1−α

(rs+θBs+
1
2
θ2s)ds

]
= EQ

[ ∫ τ∗ϵ

0
e

α
1−α

(rs+ 1
2
θ2s)e

α
1−α

θBseθBs+
1
2
θ2sds

]
= EQ

[ ∫ τ∗ϵ

0
e

rα
1−α

se
−θ2

2(1−α)
s
e

θ
1−α

BQ
s ds

]
.(B.28)

Next, we define another auxiliary probability measure Q̃ on (Ω,FT ) such that

dQ̃
dQ

= exp

{
θ

1− α
BQ

T − 1

2

θ2

(1− α)2
T

}
.

By Girsanov’s Theorem, we obtain the process BQ̃ := {BQ
s − θ

1−αs, s ∈ [0, T ]}, which is a standard

Brownian motion under the new measure Q̃.

From (B.28) finally find

EQ

[ ∫ τ∗ϵ

0
e

rα
1−α

se
−θ2

2(1−α)
s
e

θ
1−α

BQ
s ds

]
= EQ

[ ∫ τ∗ϵ

0
e

rα
1−α

se
−θ2

2(1−α)
s
e

θ
1−α

BQ
s e

− 1
2

θ2

(1−α)2
s
e

1
2

θ2

(1−α)2
s
ds

]
= EQ̃

[ ∫ τ∗ϵ

0
e

rα
1−α

se
θ2αs

2(1−α)2 ds

]
≤ c2EQ̃

[ ∫ τ∗ϵ

0
ds

]
= c2EQ̃[τ

∗
ϵ ],(B.29)

where c2 := e
rα
1−α

T e
θ2αT

2(1−α)2 .

Step 4-(c). We here determine another lower bound for Ĵz. From Proposition 4.3, we have

Ĵz(t, bϵ(t, h), h) = Ebϵ(t,h),h

[ ∫ τ∗

0
e−rs−θBs− 1

2
θ2s

(
I − f(I)Whz(t+ s, Z1

s , H
1
s )
)
ds

]
,

which, due to Whz(t, z, h) < 0 for all (t, z, h) ∈ [0, T )× R2
+ (cf. (B.8)), yields

Ĵz(t, bϵ(t, h), h) ≥ IE
[ ∫ τ∗ϵ

0
e−rs−θBs− 1

2
θ2sds

]
:=

1

λϵ
2(t, h)

.

Recalling the measure Q from Step 4-(b) above, we change measure from P to Q in the right-hand
side of the inequality above and obtain

Ĵz(t, bϵ(t, h), h) ≥ IE
[ ∫ τ∗ϵ

0
e−rs−θBs− 1

2
θ2sds

]
= IEQ

[ ∫ τ∗ϵ

0
e−rsds

]
≥ Ie−rTEQ

[ ∫ τ∗ϵ

0
ds

]
= Ie−rTEQ[τ

∗
ϵ ].(B.30)
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Step 4-(d). Our aim here is to bound of
EQ̃[τ

∗
ϵ ]

EQ[τ∗ϵ ]
, uniformly with respect to ϵ. This term arises from

the ratio of the two expectations in (B.29) and (B.30).

Since the dynamics of Zϵ
s under P are

dZϵ
s = (ρ− r +MH1

s )Zϵ
sds− θZϵ

sdBs, Zϵ
0 = bϵ(h, t),

those become under Q (remember that BQ := {Bs + θs, s ∈ [0, T ]})

dZϵ
s = (ρ− r +MH1

s + θ2)Zϵ
sds− θZϵ

sdB
Q
s , Zϵ

0 = bϵ(h, t),

while they are

dZϵ
s = (ρ− r +MH1

s + θ2 − θ2

1− α
)Zϵ

sds− θZϵ
sdB

Q̃
s , Zϵ

0 = bϵ(h, t),

under Q̃ (here recall that BQ̃ := {BQ
s − θ

1−αs, s ∈ [0, T ]}).

Now, if on (Ω,F ,Q) we define

dZ̃ϵ
s = (ρ− r +MH1

s + θ2 − θ2

1− α
)Z̃ϵ

sds− θZ̃ϵ
sdB

Q
s , Z̃ϵ

0 = bϵ(h, t).

and τ̃∗ϵ := inf{s ∈ [0, T − t] : (t+ s, Z̃ϵ
s, H

1
s ) ∈ I}, then we see that

Law(Zϵ
s|Q̃) = Law(Z̃ϵ

s|Q), Law(τ∗ϵ |Q̃) = Law(τ̃∗ϵ |Q),

where τ∗ϵ := inf{s ∈ [0, T − t] : (t+ s, Zϵ
s, H

1
s ) ∈ I}. Moreover by the comparison principles for SDEs

we have that Zϵ
s ≥ Z̃ϵ

s,Q-a.s., for all s ∈ [0, T − t] since α < 1, and therefore, we have τ∗ϵ ≥ τ̃∗ϵ ,Q-a.s.,
and

EQ̃[τ
∗
ϵ ] = EQ[τ̃

∗
ϵ ] ≤ EQ[τ

∗
ϵ ].(B.31)

Step 4-(e). Combining (B.10) (with λϵ = λϵ
2), (B.27), (B.28), (B.29), (B.30) and (B.31) we have

sup
ϵ≥0

|∂tbϵ(t, h)| ≤ sup
ϵ≥0

(λϵ
2(t, h)L

ϵ
1(t, h))

≤ sup
ϵ≥0

f(I)C4(h)e
c1T (1− α)α

α
1−α (bϵ(t, h))

α
α−1E

[ ∫ τ∗ϵ
0 e(rs+θBs+

1
2
θ2s) α

1−αds

]
Ie−rTEQ[τ∗ϵ ]

≤ sup
ϵ≥0

f(I)C4(h)e
c1T (1− α)α

α
1−α (bϵ(t, h))

α
α−1 c2EQ̃[τ

∗
ϵ ]

Ie−rTEQ[τ∗ϵ ]

≤ f(I)C4(h)e
c1T (1− α)α

α
1−α (b(t, h))

α
α−1 c2

Ie−rT
.(B.32)

Step 5. Combining the findings of the previous steps, by (B.10) we have that bϵ is locally-
Lipschitz continuous, with Lipschitz constants that are independent of ϵ (see (B.18), (B.21) and
(B.32)). Furthermore, the family (bϵ)ϵ is also uniformly bounded (cf. Step 2).

Hence, by Ascoli-Arzelà theorem we can extract a subsequence (ϵj)j∈N such that bϵj → g uniformly,
with g being Lipschitz continuous with the same Lipschitz constant of bϵ. However, bϵj converges to
b (cf. Step 1), which, by uniqueness of the limit, is then locally Lipschitz continuous.

□
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B.4. Proof of Lemma 4.3.

Proof. The claim is trivial for (t, z, h) such that z < b(t, h), hence we fix (t, z, h) ∈ O with z ≥ b(t, h)
in the subsequent proof. It is easy to check that τ̂(t, z, h) ≥ τ∗(t, z, h) by their definitions. In order
to show the reverse inequality, the rest of the proof is organized in two steps.

Step 1. We claim that

τ̂(t, b(t, h), h) = 0, P−a.s.

due to the Lipschitz continuity of b(t, h) and the law of the iterated logarithm of Brownian motion. As
a matter of fact, we fix a point (t0, z0, h0) ∈ ∂W ∩ {t < T} and take a sequence (tn, zn, hn)n∈N ⊆ W
with (tn, zn, hn) → (t0, z0, h0) as n → ∞. We also fix ω ∈ Ω0, with P(Ω0) > 0, and assume that
lim supn→∞ τ̂(tn, zn, hn)(ω) =: λ > 0. Hence,

Z1,zn
s (ω) ≥ b(tn + s,H1,hn

s ), ∀n ∈ N, ∀s ∈ [0,
λ

2
].

Upon using that (t, h) 7→ b(tn + s,H1,hn
s ) is Lipschitz continuous (cf. Theorem 4.1), we let n → ∞

and obtain

Z1,z0
s (ω) ≥ b(t0, h0) + b(t0 + s,H1,h0

s )− b(t0, H
1,h0
s ) + b(t0, H

1,h0
s )− b(t0, h0)

= b(t0, h0) +

∫ s

0
∂tb(t0 + u,H1,h0

s )du+

∫ h0e−δs

h0

∂hb(t0, u)du.(B.33)

However, from (B.22) and (B.32) we have

∂hb(t0, u) ≥ −κ̄1C3(u)(1 + g(t0, u)),

∂tb(t0 + u,H1,h0
s ) ≥ −κ̄2C4(h0e

−δs)b(t0 + u, h0e
−δs)

α
α−1 ,

where κ̄1 := (1 + eδκT )eδTα
1

α−1 and κ̄2 :=
f(I)ec1T (1−α)α

α
1−α c2

Ie−rT , which used in (B.33) give

Z1,z0
s (ω) ≥ b(t0, h0)−

∫ s

0
κ̄2C4(h0e

−δs)b(t0 + u, h0e
−δs)

α
α−1du−

∫ h0e−δs

h0

κ̄1C3(u)(1 + g(t0, u))du

= b(t0, h0)−
∫ s

0
κ̄2C4(h0e

−δs)b(t0 + u, h0e
−δs)

α
α−1du+

∫ h0

h0e−δs

κ̄1C3(u)(1 + g(t0, u))du

≥ b(t0, h0)−
∫ s

0
κ̄2C4(h0e

−δs)b(t0 + u, h0e
−δs)

α
α−1du

≥ b(t0, h0)− k̄3(s)s,

where k̄3(s) := k̄2C4(h0)maxu∈[0,λ
2
][b(t0 + u, h0e

−δs)
α

α−1 ]. Since b(t0, h0) = z0, then we have

z0e
(ρ−r− 1

2
θ2)s+

∫ s
0 MH

u due−θBs(ω) ≥ z0 − k̄3(s) · s.(B.34)

By the law of the iterated logarithm (cf. Theorem 9.23 in [Karatzas and Shreve, 1998a]), for all ϵ > 0
we have (along a sequence of times converging to zero)

Bs(ω) ≥ (1− ϵ)

√
2s log(log(

1

s
)),(B.35)

which combined with (B.34) yields

z0e
(ρ−r− 1

2
θ2)s+

∫ s
0 MH

u due
−θ(1−ϵ)

√
2s log(log( 1

s
)) ≥ z0 − k̄3(s) · s.

On the other hand, since ex = 1 + x + O(x2) when x ≈ 0, the last display equation implies (for s
small enough) that

z0

[
1− θ(1− ϵ)

√
2s log(log(

1

s
)) + (ρ− r − 1

2
θ2)s+

∫ s

0
MH

u du

]
≥ z0 − k̄3(s) · s,

31



which simplified gives

z0θ(1− ϵ)

√
2s log(log(

1

s
))− z0(ρ− r − 1

2
θ2)s− z0

∫ s

0
MH

u du ≤ k̄3(s) · s.(B.36)

Then dividing by s and letting s ↓ 0, we obtain that the left hand side of the inequality in (B.36) is

∞ (since
√
2s log(log(1s ))/s → ∞ for s ↓ 0), but the right hand side of the inequality in (B.36) is the

constant k̄3(0). Thus, we reach a contradiction and τ̂(t, b(t, h), h) = 0,P-a.s.

Step 2. In order to prove that τ̂(t, z, h) ≤ τ∗(t, z, h), one can use arguments as in the proof of
Lemma 5.1 in [De Angelis and Ekström, 2017].

□

Appendix C. Some auxiliary results

Lemma C.1. Let x > g(t) be given, let c ≥ 0 be a consumption process satisfying

Et,x,h

[ ∫ T

t
γs,tcsds

]
= x− g(t).

Then, there exists a portfolio process π such that the pair (c, π) is admissible and

Xc,π,τ
s > g(s), for s ≥ τ.

Proof. Let us define Ls :=
∫ s
t γu,tcudu and consider the nonnegative martingale

Ms := E[LT |Fs], t ≤ s ≤ T.

According to the martingale representation theorem, there is an F-adapted process ϕ satisfying∫ T
t ||ϕu||2du < ∞ almost surely and

Ms = Mt +

∫ s

t
ϕudBu = x− g(t) +

∫ s

t
ϕudBu, t ≤ s ≤ T.

Define then the nonnegative process X by

Xs :=
1

γs,t
E
[ ∫ T

s
γu,tcudu

∣∣∣∣Fs

]
+ g(s) =

1

γs,t
[Ms − Ls] + g(s),

so that Xt = x,Mt = x− g(t). Itô’s rule implies

d(e−rsXs) = −cse
−rsds− Ie−rsds+ e−rsπsσdBs,

where πs :=
1

γs,tσ
[ϕs + (Ms −Ls)θ]. It is easy to check that π satisfies

∫ T
t |πs|2ds < ∞ a.s. (see, e.g.,

Theorem 3.3.5 in [Karatzas and Shreve, 1998b]). We thus conclude that Xs = Xc,π,τ
s when s ≥ τ ,

by comparison with (2.5). Finally, since Xs > g(s) for s ≥ τ , the pair (c, π) is admissible, and
Xc,π,τ

s > g(s), for s ≥ τ.
□

Lemma C.2. For any τ ∈ S, let x > 0 be given, let c ≥ 0 be a consumption process. For any
Fτ -measurable random variable ϕ with P[ϕ > 0] = 1 such that

Et,x,h

[
γτ,tϕ+

∫ τ

t
γs,tcsds

]
= x,

there exists a portfolio process π such that the pair (c, π) is admissible and

Xc,π,τ
s > 0, for s ≤ τ, ϕ = Xc,π,τ

τ .

Proof. The proof is similar to Lemma 6.3 in [Karatzas and Wang, 2000], and we thus omit details.
□
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