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Abstract

Product lotteries are a sales strategy where companies hide features of differentiated products

from consumers until the purchase is complete. I identify loss aversion as an important

factor explaining the existence of vertical product lotteries. I consider a profit-maximizing

monopolist serving loss-averse consumers with rational expectations about the lottery. I find

that the optimal strategy consists of offering a premium product with high and deterministic

quality and a lottery with stochastic and lower expected quality. When consumers are

reasonably loss averse, I show that the profit increase from adding a quality lottery exceeds

10% compared to the case without a lottery.
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1 Introduction

Offering product lotteries is a selling strategy where sellers hide product information from cus-

tomers prior to the purchase and reveal it once the purchase is finalized.1 In practice, product

lotteries can be observed for horizontally and vertically differentiated products. The car rental

company Thrifty, for example, offers a WildCard program where customers instead of renting a

compact car can opt for a ”special car” deal at a slightly higher price.2 Consumers then either

get a compact car or a free upgrade to a more luxurious and more expensive model.3 The online

travel agencies Hotwire or Priceline4 sometimes combine three hotels with often vastly different

retail prices into a lottery.5

Horizontal product lotteries have been shown to be screening mechanisms that allow for

profitable market segmentation (Thanassoulis, 2004; Anderson and Celik, 2015; Balestrieri et al.,

2021). These findings, however, do not extend to the case of vertical product lotteries. For

vertically differentiated products, unlike horizontally differentiated products, all consumers share

the same preference order. This limits the ability of vertically differentiated offerings to segment

customers based on their preferences. Deneckere and McAfee (1996) show that extending a

product line to sell damaged goods leads to an overall profit cannibalization. Moreover, Mussa

and Rosen (1978) and Myerson (1981) show that an optimal mechanism for one-dimensional

quality preferences is always deterministic, implicitly ruling out vertical product lotteries for

consumers with “standard” preferences. Taken together, these previous findings seem to rule

out profitability of vertical product lotteries. In this article, I show that consumer loss aversion

relaxes that result and can explain the use of vertical product lotteries.6 I therefore identify a

novel mechanism of how probabilistic product quality can be part of a firm’s optimal strategy.

Although there is a substantial body of literature pointing to the empirical relevance of consumer

loss aversion (Kahneman et al., 1991; Camerer, 2005), it has not yet been considered in the context

of product lotteries.

1While probabilistic or opaque selling is the expression used in the marketing literature (e.g., Anderson and
Celik (2015); Zhang et al. (2015)), product lottery is the term commonly used in economics (Thanassoulis, 2004;
Balestrieri et al., 2021). Both terminologies refer to selling practices where product attributes are purposefully
hidden from the consumer. In this article I use the term product lottery following Thanassoulis (2004).

2https://www.thrifty.com/OurCars/WildCard.aspx
3Similar offers by competitors are the “Special Car” deal on Hotwire and the “Supplier’s Choice” deal on Priceline.
4https://tinyurl.com/pricebreaker and https://tinyurl.com/hotrate
5For more examples of vertical product lotteries, see Zhang et al. (2015) or Zheng et al. (2019): an internet
provider, where consumers can choose between one tariff with guaranteed high connection quality or a second
tariff where the provider guarantees connection quality to be in an interval between medium and very high speed,
surprise grab bags, and run-of-house booking schemes where hotels charge a room fee for minimum guaranteed
quality while offering the chance of an upgrade.

6This makes vertical product lotteries a profit-maximizing strategy in the Mussa and Rosen (1978) model.

2



Other attempts to explain the existence of product lotteries include the opportunity for firms

to increase their flexibility or optimize their inventories. Although these aspects are certainly

important, in practice they often explain the existence of product lotteries inadequately. This

is for example the case when firms offer a lottery long time in advance and announce the result

of the lottery immediately after the purchase (Fay and Xie, 2008, 2010; Huang and Yu, 2014).

More recently, marketing researchers have therefore pointed to the importance of behavioral

factors in understanding product lotteries (Fay and Xie, 2008, 2010; Huang and Yu, 2014; Zheng

et al., 2019). Zheng et al. (2019) argue that product lotteries could increase the salience of

product attributes in the lottery and thereby shape the consumer’s quality perception. Such an

argument, however, essentially contradicts the assumption of product quality as an observable

product attribute and is thus only of limited relevance to understand vertical product lotteries.

I consider a monopolist who serves a continuum of loss averse consumers with unit demand.

Accounting for consumers’ loss aversion has been argued to be more consistent with observed

behavior in modest stakes scenarios than risk aversion (Rabin, 2013). Following Kőszegi and

Rabin (2006), I call the utility that consumers derive from owning the good and money “con-

sumption utility”. In addition, I introduce separate gain-loss utility, both in the money and in

the product dimension. I employ a simple lottery structure with a low-quality base option and

the chance for an upgrade to a high-quality alternative. The reference point against which con-

sumers evaluate their outcomes is endogenously formed by their rational expectations about the

lottery outcomes.7 Furthermore, I derive the monopolist’s optimal quality-schedule depending

on the degree of consumer loss aversion and identify a set of conditions under which product

lotteries are part of the monopolist’s optimal strategy.

For moderate levels of loss aversion, I find that it is optimal for the monopolist to expand

his product line to include a product lottery that has lower expected quality than the premium

product. The intuition behind this result is driven by two main insights: On the one hand,

offering a lottery increases the total market share of the monopolist by serving an additional

segment on the low market end. On the other hand, the expected profits and losses of the lottery

act as a screening mechanism that dissuade customers of the premium product from switching

to the cheaper segment. This is because loss averse consumers with a high valuation for quality

incur higher expected losses from random outcomes than consumers with a low valuation for

7Crawford and Meng (2011), Marzilli Ericson and Fuster (2011), Gill and Prowse (2012), Banerji and Gupta
(2014), and Karle et al. (2015) provide evidence for the notion that reference points are driven by consumers’
expectations over outcomes. For papers discussing the limitations of expectation-based reference points, see for
example Gneezy et al. (2017).
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quality. Thus, the probabilistic outcomes reduce the share of high valuation consumers switching

from the premium product to the cheaper alternative, allowing for an overall profit increase.

My contribution to the literature is twofold. First, I provide a novel theoretical explanation

for the existence of vertical product lotteries. In addition, this work serves as a complement

to Deneckere and McAfee (1996), by outlining how monopolistic firms can sell damaged goods

without cannibalizing their own profit. I also show that the profit increases from offering a lottery

can be substantial. Even under conservative assumptions, product lotteries may increase profits

by more than 10% compared to the case where the monopolist offers only deterministic product

quality. Second, I find that offering a lottery with lower expected product quality can be optimal,

even if the highest product quality has the best benefit-to-cost ratio. In contrast to the more

restrictive conditions of Mussa and Rosen (1978) and Myerson (1981), I show that probabilistic

quality choices for a single quality dimension can, in fact, be optimal.
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2 Literature

In their seminal work, Mussa and Rosen (1978) discuss a monopolist’s optimal choices of product

quality and defined properties of an optimal quality-price schedule. Moreover, Myerson (1981)

shows that an optimal selling mechanism is always deterministic in the case of one-dimensional

agent preferences. Based on that, Riley and Zeckhauser (1983) extend this discussion to the

question of whether probabilistic quality choices would be part of an optimal firm strategy. For

the case where product quality can be expressed as a one-dimensional variable they show that

there is always a clear first-best quality choice. They argue that any deviation - be it probabilistic

or deterministic - would be unprofitable.

Rochet (1987), as well as Rochet and Choné (1998) and others (McAfee and McMillan,

1988; McAfee et al., 1989) derive conditions under which lotteries with horizontally differenti-

ated products may be profit increasing. Thanassoulis (2004) and others (Manelli and Vincent,

2007; Pavlov, 2011; Hart and Reny, 2015; Hart and Nisan, 2019) extend this notion and show

that lotteries can be used as screening mechanisms for multiproduct monopolists in order to ef-

fectively price-discriminate. Hart and Nisan (2019) provide numerical evidence, suggesting that

the benefits of lotteries in auctions can be substantial. Balestrieri et al. (2021) apply the concept

of product lotteries specifically to the hospitality sector. They show that product lotteries are

part of an optimal monopolistic strategy based on a Hotelling model of horizontally differentiated

goods. These findings, however, apply to horizontal but not to vertical product lotteries. In the

horizontal case, lotteries are sold at a discount to those consumers with similar valuations for all

product alternatives. Consumers with a clear preference for one of the available alternatives have

no incentive to opt into the lottery. For vertically differentiated products, however, all consumers

have a clear preference for the higher product quality. Deneckere and McAfee (1996) point out

that increasing a product’s attractiveness in the low market end may generate additional sales

but may at the same time reduce overall profits due to cannibalization. In line with this, Johnson

and Myatt (2018) argue that Extending the result of Mussa and Rosen (1978), Bhargava and

Choudhary (2001) prove that in the case of vertically differentiated goods, the monopolist sells

only the most expensive product if it has the best benefit-to-cost ratio.

Marketing scholars have explained the existence of vertical product lotteries with general

observations such as production cost savings and increased flexibility (Fay and Xie, 2008; Jerath

et al., 2010; Balestrieri et al., 2021). These considerations cannot fully explain the phenomenon

for two reasons. Marginal cost savings are negligible in markets where goods are produced
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assemble-to-order and firms gain only little in flexibility when they specify the product after

the purchase. In addition, marketing scholars also recognize that the assumption of perfectly

rational and patient consumers does not help to explain the use of product lotteries (Fay and

Xie, 2008, 2010; Huang and Yu, 2014; Anderson and Celik, 2015; Zhang et al., 2015; Anderson

and Celik, 2020). They point out that the current understanding of probabilistic selling strategies

is incomplete and call for a more extensive analysis, considering also behavioral aspects.

Advancements in behavioral economics spearheaded by Kahneman and Tversky (1979, 1992)

have led to the conclusion that observed consumer behavior often systematically differs from

“rational” consumer behavior, particularly in the context of loss aversion. Kőszegi and Rabin

(2006) extend the concept of loss aversion by including endogenous reference points. Based on

their seminal work, consumer loss aversion has been shown to have important consequences for

optimal firm strategies. Heidhues and Kőszegi (2008) and Carbajal and Ely (2016) integrate

consumer loss aversion into the firm problem and formalize how consumers’ expectations may

affect a firm’s pricing decisions. While these works provide important insights into how loss

aversion changes the firm problem, they treat consumer expectation as (partly) exogenous.

Heidhues and Kőszegi (2014) as well as Rosato (2016) include consumer expectation-building

as an endogenous process into their models and show that it can be optimal for firms to expose

consumers to risk instead of shielding them from it. Risk can be introduced for example by an-

nouncing a distribution of future price discounts (Heidhues and Kőszegi, 2014) or by limiting the

availability of a discounted product (Rosato, 2016). In both cases, the anticipated discount leads

to consumers raising their expectations and consequently accepting an ex-ante unfavorable offer

to avoid the “pain” of walking away empty-handed. Both models, however, rely on the fact that

the element impacting consumers’ expectations is not available at the time of purchase. Thus,

they are not able to explain the existence of product lotteries. Moreover, their models incorpo-

rate uncertainty in the price dimension and thus, do not allow for the analysis of uncertainty in

the product quality dimension.

Beccuti and Möller (2018) show that randomization between delivery and non-delivery is an

optimal monopolistic strategy in the dynamic sale of a perishable good, if sellers are noticeably

more patient than buyers. Screening by different patience levels, however, only applies to the case

where the monopolist offers temporally differentiated products, but not to the case of product

lotteries where the monopolist offers quality differentiated products at the same point in time.

Rochet and Thanassoulis (2019) study optimal price dynamics when sellers have the ability to
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commit to a price path. They interpret the discount factor in the inter-temporal pricing problem

as a probability of delivery, thereby reducing a product’s value in line with the model of Deneckere

and McAfee (1996). Moreover, they show that a monopolist can maximize profit by delaying the

cross-sell to complete a bundle, if the consumers’ valuations do not satisfy the Spence-Mirrlees

sorting conditions. Unlike their model, however, I consider neither product bundles nor temporal

differentiation in the present model.

More recently, Zheng et al. (2019) offer a behavioral explanation by arguing that product

lotteries may increase the salience of product attributes in the lottery and thus shape the con-

sumer’s quality perception. Such an argument, however, essentially contradicts the assumption

of product quality as an observable product attribute and is thus only of limited relevance to

understand vertical product lotteries. Consequently, the question whether and if so under which

circumstances vertical product lotteries are profitable for firms when consumers observe product

quality directly has not been answered.
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3 Model

The model section is split into two parts. First, I setup the model where a monopolist offers one

good in different quality levels. Second, I show that vertically differentiated product lotteries

are part of the monopolist’s profit maximizing strategy when consumers are sufficiently loss

averse. I will first derive general conditions under which my findings hold and then characterize

a complete closed-form solution for the case where the monopolist can increase product quality

at no additional cost, which I argue is the most restrictive case.

3.1 Setup

3.1.1 Monopolist

I consider a profit maximizing and risk-neutral monopolist who produces an indivisible good of

quality β ∈ [0, 1] facing consumers with unit demand. Note that in this model, a quality level

of 0 does not mean that the consumer receives no product. Instead, a quality level of 0 would

correspond to the normalized utility value that a consumer would obtain by consuming an outside

option that is available to all at a price that is also normalized to 0.

The firm chooses price p, quality level β and faces a demand q(p, β). The cost function is

given by C(β, q) with (i) Cβ(β) = c · q with c ∈ [0, 1) and (ii) Cββ(β) = 0. Assumption (i)

ensures that for any chosen β the reservation price in the market is always higher than the cost

of quality. Assumption (ii) additionally ensures that marginal cost of quality is constant. In

a market with only a single quality level the monopolist therefore always supplies a premium

segment with β = 1. A quality-price schedule with a single element is consistent with the model

of Mussa and Rosen (1978) for a single quality dimension and constant marginal cost. Due to

the linearly increasing cost function and the advantage of higher product quality, this outcome

corresponds to the case in the model of Johnson and Myatt (2018) where price discrimination is

cost-driven8. If, instead, price discrimination was elasticity-driven, the optimal menu would be

more complex but may still allow for the profitable integration of product lotteries.

3.1.2 Consumers

Consumers are a continuum with mass 1 and have unit demand for the product offered by the

monopolist. The consumers’ individual valuations for (riskless) quality follow distribution F (v)

8See Johnson and Myatt (2003) or Anderson and Dana Jr (2009) for additional discussion on the conditions of
profitable price discrimination
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over the interval [0, 1] with uniform density and there are no income effects. All consumers have

the same outside option, with both its utility and price normalized to 0. If the quality of the

offered product exceeds that of the outside option and β > 0, consumers exhibit individually

different levels of appetite for quality according to vi. Consumers experience utility from two

sources. First, consumption utility determined by their individual valuation for quality. Second,

gain-loss utility in the price and product dimension where they compare the outcome against

their reference points (Kőszegi and Rabin, 2006). Following the notation of Heidhues and Kőszegi

(2014), I write consumption utility as kvi = β · vi and kp = −p. The individual rational reference

points are given by kvi,r = Ei[k
v
i ] and kpr = E[kp], which corresponds to any consumer’s rational

expectations about expected utility in quality and money dimension. A consumer’s gross utility

can be written as:

ui = ui(k
v
i |kvi,r) + ui(k

p|kpr ) = kvi + µ(kvi − kvi,r) + kp + µ(kpr − kp) (1)

The function µ is a two-piece linear function with µ = η for gains and µ = λ · η for losses. The

coefficient η can be interpreted as the relative importance a consumer places on gain-loss utility

relative to consumption utility, whereas λ is the coefficient of loss aversion. For λ = 1, gains

and losses are weighted equally and a consumer with such a loss aversion coefficient would be

considered as loss-neutral. I assume that gain-loss utility is linear around the reference point kjr

with j = p, v and that all consumers are identical in their degree of loss aversion as well as their

valuation for η. That implies that the slope for gains is η and the slope for losses is λ · η with

λ ≥ 1, for all consumers.

3.1.3 Monopolistic choice

The monopolist knows the valuation distribution of the consumers but is unable to discriminate

individual consumers. The monopolist’s problem is to offer optimal menu items mk(lk, pk), each

consisting of a lottery lk =
(
β̄k, βk

, ak

)
with a stochastic quality distribution and an associated

price pk. I focus on the case where the monopolist determines only two menu items, i.e., k = 1, 2,

as it illustrates the underlying mechanism sufficiently, even though the model could be extended

to higher values of k.

For each menu itemmk, the monopolist defines an optimal lottery by choosing a high outcome

β̄k occurring with probability ak, and a low outcome β
k
occurring with probability (1−ak), where

β̄k ≥ β
k
. Moreover, the monopolist chooses an optimal and deterministic price pk for each lottery.
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Characterizing any lottery lk by a high outcome, a low outcome, and their corresponding entry

probabilities is sufficient because a consumer’s gain-loss utility is linear around the reference point.

The reason for that is that a consumer’s utility with a two-piece linear gain-loss function and a

linear willingness to pay for quality is fully characterized by the first moments of the lottery’s

stepwise distribution: expected outcome E[lk] of the quality lottery lk, as well as expected losses

E [lk|lk < E[lk]] and expected gains E [lk|lk ≥ E[lk]]. Additionally, I define bk = β̄k − β
k
≥ 0 as

the quality differential between the high-quality and the low-quality outcome of lottery lk.

In general, representing product quality as a generic lottery allows one to model both deter-

ministic and probabilistic outcomes. This is because the choice of deterministic product quality

can be represented as a degenerate lottery, i.e. a lottery in which all lottery outcomes are iden-

tical. If the monopolist chooses a degenerate lottery with only one outcome, i.e. β̄k = β
k
,

consumers perceive price and product quality as deterministic. Otherwise, if β̄k > β
k
, consumers

perceive prices as deterministic but product quality as probabilistic. Moreover, because all con-

sumers have the same degree of loss aversion, all consumers have the same preference relation over

lotteries l1 and l2. I therefore impose that for all consumers we have l1 ⪰ l2 with E[l1] ≥ E[l2] as

a necessary condition and p1 ≥ p2. Thus, I call l1 the premium lottery and l2 the cheap lottery

(compare Figure (1)).

Figure 1
Schematic structure of the market where consumers opt either for the premium
lottery l1 at price p1, the cheap lottery l2 at price p2, or their outside option with

utility normalized to 0. The consumers are ordered along according to their
valuation for quality and have the same coefficient of loss aversion. The consumer
v̂2 is indifferent between the lottery l2 and the outside option denoted by out. The

consumer v̂1 is indifferent between the lottery l1 and the lottery l2.

Thus, the monopolist’s maximization problem is given the sum of the market shares for each

menu position weighted by price minus cost of production:

max
pk,β̄k,βk

,ak

2∑
k=1

Πk(mk; c, λ, η) (2)

In my further analysis I will show that a monopolist always offers a premium product with β1 = 1,
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and under certain conditions an additional non-degenerate product lottery l2.

3.2 Analysis of results

3.2.1 Deterministic benchmark

I first derive an optimal quality-price schedule following the framework of Mussa and Rosen

(1978), where all quality choices and prices are deterministic. I will use this result as a benchmark

to determine under which conditions product lotteries can be optimal.

Proposition 1. In the absence of consumer loss aversion, the optimal schedule for the monopolist

consists of a single quality-price pair with β∗
1 = 1 and p1 = 1+c

2 . Additionally, the monopolist’s

profit decreases in the number of unique quality levels.

Proof. For a full description of the proof, please refer to the Appendix sections 6.2 and 6.3.1

The monopolist’s problem is to decide how many and which levels of qualities he wants to

offer. First, consider the case where the firm offers only a single quality level β1. Maximizing the

profit function with respect to the price gives p∗1(β1) =
β1+c
2 . It is easy to see that in this case it

would be optimal to maximize quality, i.e. β∗
1 = 1. This is because the marginal willingness-to-

pay for quality increases at a strictly higher rate than the marginal cost of production for quality

and therefore:

Π (p∗1, β1 = 1) = β1
(1− c)2

4
=

(1− c)2

4
(3)

The case where the firm offers multiple quality levels can be solved through backwards induction.

Profit in the segment with the highest quality increases with β1, regardless of the choice for β2.

Thus, we know that the profit-maximizing quality choice in the first segment is β∗
1 = 1, whereas

offering a second quality level β2 in the remaining market. The problem simplifies to finding

the optimal β2 after solving for optimal prices p∗2 and p∗1 and plugging them back into the firm’s

choice. This gives the profit as a function of the quality in the second segment:

Π1,2(β
∗
1 = 1, β2) =

(1− c)2(2− β2)
2

4(4− 3β2)
(4)

Expression (4) is the monopolistic profit as a function of the two distinct quality levels β1 and

β2, with their optimal (interior) prices p1 and p2. Compared to the case with only a single
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segment, offering a second distinct quality level increases the total number of supplied consumers

but reduces the number of consumers purchasing the premium version. The overall decrease in

profit shows that there is no interior optimum for β2 and the firm’s optimal choices are then

β∗
2 = 0 or β∗

2 = 1. Both outcomes have the same interpretation as for β∗
2 = 0 no consumer

will purchase the second segment and only the first segment is relevant, whereas for β∗
2 = 1

the second segment is identical to the first one and thus irrelevant to the firm problem. This

result follows from the assumption that the marginal cost per quality is linear and therefore the

optimal quality level is located in a corner of the solution space. The finding that the single

optimal choice of quality corresponds to its highest available value seems restrictive at first.

Its application in reality, however, can be explained relatively well. Consider the case where a

monopolist’s optimal menu contains a finite number of items n > 1. Think further about all

consumers choosing the product with the lowest quality offered. This market segment cannot be

further subdivided without violating the prior optimality assumption. Thus, the present problem

with a single optimal quality level β1 = 1 corresponds to the sub-problem focusing on the lowest

market segment of a more general menu structure. The results are illustrated in Figure 2.

Figure 2
Firm profit Π(·) as a function of β2 with β1 = 1 and marginal cost of quality c = 1/2

Increasing the number of unique quality levels strictly decreases the monopolist’s profit, if each

level is chosen by a positive share of consumers. I prove this by backwards induction. Consider

the case where the monopolist chooses an optimal quality level βi in the low market end. Because

βi is for the low market end, it must be that βi < β−i ≤ 1. The monopolist’s problem therefore

reduces to choosing an optimal βi ∈ [0, β−i]. Intuitively, this problem is identical to the firm

problem given in equation (4), scaled to a smaller interval. Analogously, the optimal choice is

then β∗
i = 0.

The underlying intuition is this: The monopolist incurs net losses by offering multiple qual-

ity levels because without any screening mechanisms, consumers self-select into less profitable
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product segments. This result illustrates the commitment problem the monopolist faces in the

deterministic case and is due to the inability to screen for their individual reservation values.

It is similar to the text book example of a monopolist selling a durable good to (sufficiently)

patient consumers. Furthermore, previous works also come to similar conclusions, when analyz-

ing optimal quality schedules in a monopolistic setting (Mussa and Rosen, 1978; Bhargava and

Choudhary, 2001).

3.2.2 Conditions for optimality of lotteries

From the previous section it becomes clear that the monopolist’s optimal choice of quality in any

deterministic segment beyond the first is β∗
i = 0 ∀i ̸= 1. In other words, the optimal strategy

consists of a single unique quality in the deterministic case. I now show that the result of a single

optimal quality level breaks down when the firm has the possibility to offer a quality lottery with

multiple quality outcomes in each segment. Even though this result can be generalized to higher

number of quality levels, I restrict my analysis to the case where the firm supplies to two distinct

and non-empty market segments in order to keep the analytical complexity low.

Proposition 2. Consider the monopolist’s problem to find an optimal quality-price schedule by

offering either deterministic quality or a lottery with two quality levels in both market segments.

1. The monopolist’s optimal strategy includes serving a premium segment with a degenerate

lottery l1, i.e., deterministic quality of β∗
1 = 1

2. For any cost function C(·) there exists a lower threshold of consumer loss aversion λ̂low

above which offering a product lottery with expected quality E[l2], where 0 < E[l2] < β∗
1 ,

increases profits.

3. The value for the lower threshold of consumer loss aversion λ̂low is strictly decreasing in

the marginal cost of quality c.

Proof. For a full description of the proof, please refer to the Appendix sections 6.2 and 6.3.2

Consumers can be ordered according to their taste for quality vi. Let v̂1 be the consumer

indifferent between the premium product and the product lottery with lower expected quality.

Additionally, let v̂2 be the consumer indifferent between the product lottery and the outside

option. By design, it must be that v̂1 ≥ v̂2 and thus, the market shares of the premium segment

and the lottery are 1− v̂1 and v̂1 − v̂2 respectively.
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The first part of my proposition states that product quality in the premium segment is

maximized without any randomness. I already showed that this is true for the deterministic case,

outlined in proposition 1. To show that this is also true when the monopolist can offer stochastic

product quality, two insights are important: First, any consumers profit contribution is higher

in the premium segment than in the lower market segment. This is because profit is strictly

increasing in (expected) product quality (compare expression in (3)) and strictly decreasing in

the level of randomness due to loss aversion.

Second, adjusting quality or price in the premium segment affects the indifferent consumer

v̂1 but not the indifferent consumer at v̂2 (compare (1)). The reason is that the indifferent

consumer’s decision at v̂2 is driven only by the comparison between the lottery and the outside

option. Thus, for any given value of v̂2, profit is maximized by setting β1 = 1. This can be proven

by contradiction. Suppose the premium segment would include stochastic product quality with

positive variance and a high lottery β̄1. The monopolist could then keep v̂1 constant by setting

E[l1] = β̄1 while simultaneously increasing p1, leading to higher profits. This contradicts the

initial assumption of β̄1 with positive variance being an optimal choice and proves the first part

of my proposition.

Regarding the second part of my proposition, consider that we now know that the optimal

quality in the premium segment for the case of lotteries remains the same β1 = 1 with or

without a lottery. We can therefore focus on the question under which conditions a lottery

is profit maximizing compared to the outcome of proposition 1. As outlined in section 3.1.3

expected gains, losses, and value of the lottery in the second segment are fully captured by a low

outcome β2, the quality differential b = β̄2 − β
2
, and the entry probability for the low outcome

P (β
2
) = 1 − a2. I then maximize the firms profit over two segments and solve by backwards

induction for optimal p1 and p2 as functions of all remaining lottery parameters. Note that a

lottery with the two outcomes β2 = 0 and β̄2 = β2 + b2 = 0 is identical to the monopolist’s

optimal choice β2 = 0 in the deterministic case of proposition 1.

I analyze the marginal profit with respect to b, evaluated at the former optimum of l2 =

(0, 0, a2) to check whether a lottery increases profit. If the solution from Proposition 1 (β∗
1 = 1,

β∗
2 = 0) is still the optimal choice, the partial derivative of the profit function has to be negative.

Thus, we differentiate equation (34) with respect to b2 and set β∗
1 = 1 , β∗

2
= 0, and fix a2 as

infinitesimally larger than 0 (compare 6.3.2). The resulting expression (compare Expression 35
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in Appendix) is evaluated at b2 = 0 and has the following form:

∂Π1,2(p1; a2, b2)

∂b2
|β∗

1=1,β
2
=0,b2=0 =

a2(1 + c(−1 + (1− a2)η(1− λ))) + (1− a2)η(1− λ)

16(1 + (1− a2)η(1− λ))
·

(−1 + c+ 3c · (1− a2)η(1− λ)− η(1− a2 − λ+ a2λ))

1

Inequality (5) investigates under which parametric conditions a product lottery is profit maxi-

mizing.

∂Π1,2(·)
∂b2

∣∣∣
b2=0

> 0. (5)

The solution shows that including a product lottery does, in fact, increase firm profit compared

to the deterministic benchmark, depending on the marginal cost of quality c:

1. For c = 0, marginal profit increases in b2 for any level of loss aversion exceeding the lower

threshold

1 +
1

η︸ ︷︷ ︸
λ̂low

< λ. (6)

2. For c ∈ (0, 1), marginal profit increases in b2 if consumer loss aversion lies between the

lower threshold λlow
1 and the upper threshold λhigh

1

1 +
1− c

η(1 + c)︸ ︷︷ ︸
λlow
1

< λ < 1 +
1

η︸ ︷︷ ︸
λhigh
1

. (7)

3. For c ∈ (0, 13), there is an additional lower bound for loss aversion λlow
2 , where λlow

2 > λhigh
1 .

For this cost range, introducing randomness increases profits if either the coefficient of loss

aversion lies in the range given by inequality (7) or it exceeds the limit of λlow
2

1 +
(1− c)

(1− 3c)η︸ ︷︷ ︸
λlow
2

< λ. (8)

Figure 3 shows the range of degree for consumer loss aversion λ under which a lottery is profit
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increasing.

Figure 3
This plot shows the range of all values of λ under which lotteries are profit

increasing. On the x-axis are the realizations of c and on the y-axis are the values
of the loss aversion coefficient λ. The gain-loss utility parameter η is assumed to be

1. The range of λ, for which lotteries are profitable, are filled in gray.

For any c, there is a non-empty set of values for λ, where offering a lottery maximizes profits

and thus proves the second part of my proposition. The proof for the third part of Proposition 2

follows from looking at the expression for λlow
1 . For any marginal cost c > 0, the partial derivative

of λlow
1 in Equation (7) with respect to c can be written as:

∂λ̂low
1

∂c
=

−2

η · (1 + c)2
< 0. (9)

The expression in (9) is negative for all feasible values of c and η, thus proving that the lower

critical threshold of loss aversion decreases in c. The intuition behind this result is that when

marginal production costs are high, the monopolist can generate cost savings by offering a lottery

instead of a high cost premium product. Put differently, if firms can increase quality at no

additional cost, a firm is less likely to offer a low quality product which leads to a more restrictive

lower threshold. Conversely, higher values of c relax the lower bound on the required level of

consumer loss aversion. In addition, Figure 3 clearly indicates that the set of degree of consumer

loss aversion, for which lotteries are profitable, is staggered over the possible parametrizations

of the cost function C(·). The reason for the existence of an upper limit of loss aversion λhigh
1

for all c > 0 is that for high levels of loss aversion, the willingness to pay for the lottery is lower

than its production costs. This implies that the lottery cannot be attractive to consumers and
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be profitable at the same time.

In general, Proposition 2 illustrates the power of product lotteries as a screening tool when

consumers are sufficiently loss averse. Intuitively, expected gains and losses from the lottery

are higher for consumers with a high appetite for quality. Compared to the deterministic case,

the monopolist is able to screen consumers by offering a product lottery with a relatively high

expected quality compared to its price. Consumers with low appetite for quality are less sensitive

to randomness as they incur smaller expected gains and loss and therefore prefer the lottery over

the premium product. Consumers with high appetite for quality, however, incur substantially

larger gains and losses, making them less prone to self-select into the lower segment.

3.2.3 Characterization of optimal menu with lotteries

Proposition 2 shows that depending on the consumers’ degree of loss aversion the profit maxi-

mizing quality-price schedule involves a lottery. It does not, however, fully describe the optimal

strategy of the monopolist. In this section I will provide a closed-form solution of the monopolistic

strategy for the case where the firm can increase quality at no additional cost, i.e. c = 0.

This case is interesting for three reasons. First, as pointed out in the third part of Proposition

2, the lower threshold for loss aversion λlow
1 decreases in c. Assuming c = 0 therefore sheds light

on the most restrictive case within my model and hence provides a lower bound for the relevance

of product lotteries. Second, the assumption of c=0 reduces the analytical complexity of the

problem and thus results in a solution that is easier to interpret. Third, the assumption of low

(incremental) production costs corresponds most closely to the case in reality where firms try to

sell previously build-up inventory.

Note that a value of β = 0 is equal to the value of the outside option and therefore, for the

sake of the underlying argument, serves as the lottery’s lowest possible outcome. In practice,

however, the value of a lottery’s “worst case” may often be higher than that of the outside option,

i.e. β > 0. The fact that the lottery outcomes and the outside option are perceived to be distinct

would, in practical applications, support the formation of a probabilistic reference point.

Proposition 3. Consider the monopolist’s problem to find an optimal quality-price schedule

consisting of two elements with marginal cost of quality c = 0. If consumers are sufficiently loss

averse, i.e., λ ≥ λ̂low, there exists a closed-form solution for the monopolistic strategy where the

optimal lotteries are characterized by:

1. l∗1 =
(
β̄∗
1 , β

∗
1
, a1

)
with β̄∗

1 = β∗
1
= 1, and a1 ∈ [0, 1]
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2. l∗2 =
(
β̄∗
2 , β

∗
2
, a2

)
with β̄∗

2 = 1, β∗
2
= 0, and a2 =

1
2

(
1 + 1

η(1−λ)

)
Proof. For a full description of the proof, please refer to the Appendix sections 6.2 and 6.3.3

First, note that the optimal choice of quality in the premium segment, β∗
1 = 1, follows directly

from the general proof in Proposition 2 for any 0 ≤ c < 1. Second, I showed in Proposition 2

that for c=0 there is no upper limit to the range of feasible levels of consumer loss aversion. The

screening efficiency of the lottery grows with the degree of consumer loss aversion. The monopolist

therefore maximizes the quality differential between outcomes, by setting β
2
= 0, β̄2 = 1 which

leads to b2 = 1. The expected value of the lottery, as well as expected gains and losses can be

fully calibrated by choosing an appropriate a2. Equation (10) captures the monopolist’s profit

maximization problem with optimal prices p2 and p1, and a2 as choice variables.

max
a2,p1,p2

Π1,2(p1, p2, a2; η, λ) (10)

Given that λ ≥ λ̂low, the monopolist optimally chooses:

p∗1 =
(1 + η(6 + η(−1 + λ))(−1 + λ))2

(8η · (3− η · (1− λ))(1− 3η · (1− λ))(−1 + λ))
, (11)

p∗2 =
((1 + η(6− η(1− λ))(−1 + λ))(1 + η(1− λ))2)

(8η · (3− η · (1− λ))(1− 3η · (1− λ))(1− λ))
, (12)

a2 =
1

2

(
1 +

1

η(1− λ)

)
. (13)

The intuition behind that result is that if consumers are sufficiently loss averse, their perception

of gains and losses acts as a screening mechanism. At the margin, the monopolist gains new,

(previously unserved) consumers who generate more profit than the monopolist loses from con-

sumers in the premium segment switching to the cheaper option. The optimal profit is given

by:

Π1,2(·;λ, η) =
(−3 + η(6 + η · (1− λ))(1− λ))2

16η (−9 + η · (10 + 3η · (1− λ))(1− λ)) · (−1 + λ)
(14)

If the consumer loss aversion coefficient is lower than the threshold above, the opposite happens:
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The marginal profit increase from additional sales is less than the profit loss in the premium

segment. In this case the lottery would not increase the profit of the monopolist and the optimal

strategy is the same as in Proposition 1 with β∗
1 = 1, β∗

2 = 0 and p∗1 =
1
2 for any a2 ∈ [0, 1].
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4 Numerical Example

In this section, I examine the magnitude of the profit increase a monopolist can generate applying

the optimal strategy derived in section 6.3.3. I choose representative values for the coefficient

of loss aversion λ and the relative importance on gain-loss utility η. Figure 4 outlines the firm

profit Π(a2;λ = 1, η = 1) as a function of the probability distribution between lottery outcomes

captured by a2, given optimal values for p1, p2, β = 0 and b = 1. Consumer loss aversion is set

equal to λ = 1 and thus, does not meet the threshold found in section 3.2.3. Offering a lottery

would lead to a loss for the monopolist.

Figure 4
This graph shows the monopolistic profit for the parameter values of c = 1/2,
η = 1 and λ = 1. The orange line corresponds to the monopolist’s profit in
the deterministic case, whereas the blue line shows the monopolist’s profit
from offering an optimal lottery as a function of the lottery parameter a.

Figure 5a with profit Π(a;λ = 1.875, η = 1) and Figure 5b with profit Π(a;λ = 1.75, η = 1),

show the firm profits for values of λ < 2 as a function of the outcome distribution a in the

lottery. In Figure 5a, the profit increase for a lottery with interior optimal prices and quality

levels is clearly visible and around 10% than in the benchmark case. Moreover, the parametric

assumption of η = 1 and λ = 1.875 is is in line with empirical estimations of WTP to WTA

ratios.9 It also meets the no-dominance criterion of gain loss utility, proposed in the behavioral

literature (Herweg et al., 2010).

9Experimental estimates of the loss aversion parameter as the WTP to WTA ratio, range from 1 to 3 (Kahneman
et al., 1991; Benartzi and Thaler, 1995; Thaler et al., 1997; Kahneman et al., 1999; Booij et al., 2010)
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(a) λ = 1.875 (b) λ = 1.75

Figure 5
This graph shows the monopolistic profit for the parameter values of c = 1/2,
η = 1 and 1 < λ < 2. The orange line corresponds to the monopolist’s profit
in the deterministic case, whereas the blue line shows the monopolist’s profit
from offering an optimal lottery as a function of the lottery parameter a.
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5 Discussion

Product lotteries or probabilistic selling strategies are a mode of sales with relevant real-world

applications. Although it has already been shown that horizontal product lotteries can increase

profits, there is a lack of understanding of why and how vertical product lotteries work. This

article therefore examines the role of consumer loss aversion in vertical product lotteries.

My analysis of a profit-maximizing monopolist serving loss averse consumers has two major

findings. First, I find that if consumers are moderately loss averse, vertical product lotteries can

be profit increasing for a multitude of different cost functions. I identify two distinct dynamics

regarding the loss aversion threshold. On the one hand, the lower bound for the level of consumer

loss aversion decreases in the marginal cost of production because the monopolist can save costs

from reducing quality. On the other hand, lottery profitability is limited by an upper bound on

the feasible level of consumer loss aversion. This upper bound exists due to the expected value

of the lottery decreasing in the level of consumer loss aversion and thus leading to negative profit

contributions. However, it corresponds to the no-dominance criterion that can be found in the

literature, e.g., in Herweg et al. (2010), and therefore does not have a strong, restrictive character.

Second, I provide a closed-form solution to the monopolist’s problem when the marginal cost of

production is c = 0 and consumers are sufficiently loss averse. The optimal strategy consists

of offering a premium product with high, deterministic quality and a product lottery with low

and stochastic quality. In addition, I show that for levels of loss aversion in line with empirical

estimates, the lottery can generate over 10% profit increases compared to the case without lottery.

My results hinge on specific assumptions. First, I make a strong and simplifying assumption

about the distribution of consumers in the market in order to minimize technical complexities.

Although this may seem like a severe limitation at first glance, note that for most of the presented

results these distribution assumptions are not necessary. Whether or not a lottery can be profit

increasing is determined by the demand gradients at the cutoff points between segments, thus

technically allowing for a broader range of distributional assumptions. Second, in the closed-form

solution of the monopolist’s optimal menu, I assume that the value of the lottery’s low outcome

is equal to the consumers’ outside option. One may question whether consumers do, in fact,

build probabilistic reference points and do not simply take the value of the “base” option as

reference point. It is important to note, however, that by choosing a worst case outcome higher

than the outside option, may ensure that consumers do, in fact, build a probabilistic reference

points and do not use the outside option’s value as heuristic. In other words, even the most
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unattractive lottery outcomes on Priceline are offered at a discount compared to the normal

retail price and would therefore likely be considered distinct from the outside option. Third,

consumers are modeled as perfectly informed with frictionless access to all relevant information.

In reality, however, numerous frictions such as imperfect information processing or status-quo

biases, e.g., in terms of brand loyalty, may be guiding consumers’ choices. Implications may

be that in reality consumers at the margin between two segments are not as quick to switch

their choices as assumed in this article. Such a dynamic may even lead to lotteries being more

profitable than assumed in this context.

In reality, product lotteries seem to be predominantly used in the hospitality or tourism in-

dustry, e.g. for rental cars, hotel bookings, or even restaurants selling surprise meals at reduced

prices.10 There are different aspects that may help to understand why this phenomenon seems

to be relevant in the aforementioned industries. First, firms require price setting market power

in order to implement price setting schemes such as lotteries. My model uses the assumption

of a monopolist, which can be easily extended to the case with monopolistic competition. Mo-

nopolistic competition in turn has been argued to give a fairly accurate description of industry

structure especially in the hospitality sector (Cosman and Schiff, 2019). Second, the framework

of reference-dependent utility requires that consumers both have expectations about their con-

sumption utility as well as fairly sophisticated expectations about lottery outcomes. One could

argue that people feel stronger about a free upgrade to their rental car than they do about the

quality of the paper they put in their printer. Third, in situations where consumer identify

strongly with the outcome of a lottery, i.e., show high levels of loss aversion, profitability is

most easily ensured when the cost of additional quality is low. In the tourism and hospitality

industries, production or investment decisions are often made in advance and thus may lead to

unused resources that could be allocated at little additional cost. Lottery structures may then be

adequate tools for firms to sell unused inventory without the risk to hurt their normal product’s

market share.

In conclusion, this article provides a novel perspective on the role of loss aversion as a screening

mechanism and suggests that it may be an important factor explaining the popular use of product

lotteries as a sales channel. Even though my insights are focused on vertically differentiated

product lotteries, loss aversion may be just as relevant for horizontally differentiated product

lotteries. Future research may lead to important insights in two ways. Theoretical research may

10The app “Too Good To Go” lets users buy left-over meals at drastically reduced prices after normal business
hours. Source: https://toogoodtogo.ch/
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be able to find out whether more general forms of gain-loss utility lead to similar results as in

this article. From an applied perspective, the insights from this article may help to generate

hypotheses to empirically test the role of loss aversion in product lotteries.
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Kőszegi, B. and M. Rabin (2006). A model of reference-dependent preferences. The Quarterly Journal of

Economics 121 (4), 1133–1165.

Manelli, A. M. and D. R. Vincent (2007). Multidimensional mechanism design: Revenue maximization

and the multiple-good monopoly. Journal of Economic Theory 137 (1), 153–185.

Marzilli Ericson, K. M. and A. Fuster (2011). Expectations as endowments: Evidence on reference-

dependent preferences from exchange and valuation experiments. The Quarterly Journal of Eco-

nomics 126 (4), 1879–1907.

McAfee, R. P. and J. McMillan (1988). Multidimensional incentive compatibility and mechanism design.

26



Journal of Economic Theory 46 (2), 335–354.

McAfee, R. P., J. McMillan, and M. D. Whinston (1989). Multiproduct monopoly, commodity bundling,

and correlation of values. The Quarterly Journal of Economics 104 (2), 371–383.

Mussa, M. and S. Rosen (1978). Monopoly and product quality. Journal of Economic Theory 18 (2),

301–317.

Myerson, R. B. (1981). Optimal auction design. Mathematics of Operations Research 6 (1), 58–73.

Pavlov, G. (2011). A property of solutions to linear monopoly problems. The BE Journal of Theoretical

Economics 11 (1).

Rabin, M. (2013). Risk aversion and expected-utility theory: A calibration theorem. In Handbook of the

fundamentals of financial decision making: Part I, pp. 241–252. World Scientific.

Riley, J. and R. Zeckhauser (1983). Optimal selling strategies: When to haggle, when to hold firm. The

Quarterly Journal of Economics 98 (2), 267–289.
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6 Appendix

6.1 Consumer problem

In this article, consumers are assumed to be loss averse expected utility maximizers. I consider

the monopolist’s problem to define an optimal menu with two menu positions mk = (lk, pk) with

k = 1, 2, consisting of a quality lottery lk and a price pk. Furthermore, I restrict my analysis to

a simple lottery setup where lk(β̄k, βk
, ak) has two outcomes β̄k and β

k
. The reason for that is

that in this model gain-loss utility is linear around the reference point with different slopes for

gains and losses. A full characterization of expected gains and losses thus consists the reference

point, as well as the first moment above and below the reference point. The monopolist is able

optimally calibrate Rk, gk, and hk by choosing low and high lottery outcomes β
k
, β̄k ∈ [0, 1], as

well as their entry probabilities ak = P (β̄k) and (1 − ak) = P (β
k
). Furthermore, let bk be the

quality differential between the high and the low outcome and thus,

bk = β̄k − β
k
. (15)

A lottery lk is fully characterized by:

1. Expected outcome of the lottery as the unconditional expected value of the quality distri-

bution:

Rk = E[lk] =
(
β
k
+ ak · bk

)
(16)

2. Expected gain as the conditional expectation for the quality variable to exceed the expected

value of the lottery:

gk = E [lk|lk ≥ Rk] = ak · (1− ak) · bk
(
β
k
+ ak · bk

)
(17)

3. Expected loss as the conditional expectation for the quality variable to be below the ex-

pected value of the lottery:

hk = E [lk|lk < Rk] = ak · (ak − 1) · bk (18)

28



Given any consumer’s individual appetite for quality vi, purchasing a lottery lk therefore leads

to expected gross utility of:

E [ui(·)] = vi · (Rk + η · (gk + λ · hk))− pk (19)

6.2 Generic firm problem solution

In line with Expression 2, the monopolist’s profit can be written as the sum of the profits made

with each menu position mk, subject to the parameters for the cost of production and the

consumers’ degree of loss aversion:

2∑
k=1

Πk(mk; c, λ, η) (20)

I solve this problem sequentially by first writing the profit as a function of all relevant variables

and parameters. Then I optimize the profit over both menu items to find the interior optima for

p2 and p1. I then examine the resulting expression for the monopolist’s profit in terms of the

optimal quality choices in the two menu positions mk with k = 1, 2.

I solve the firm problem sequentially where I first maximize profit and derive interior optima

for the prices p1 and p2. Using these optimal prices, the monopolist’s profit is then written

as a function of the different quality choices of the monopolist. As shown in Section 3.2.2,

the monopolist in the premium segment always offers a deterministic level of product quality

β∗ = 1. Note that for further reference and better distinction, the premium segment is denoted by

P and the lottery as L. In the premium segment, expected gains and losses are zero and hence,

gP = hP = 0 with RP = 1. Gross utility in the premium segment thus equals the individual

valuation for quality minus the price, i.e., vi − pP .

As highlighted in Figure (1), the boundaries between the lottery segment and the premium

segment are given by v̂L(·) and v̂P (·). The share of consumers opting for the lottery is then given

by v̂P − v̂L, where v̂P is the consumer’s valuation that is indifferent between the lottery and the

premium product, whereas v̂L is the consumer’s valuation that is indifferent between the lottery

and the outside option. The lower boundary v̂L(·) can be understood as the marginal consumers

for which the participation constraint is met in order to be served by the monopolist. It requires

that the marginal consumer choosing the lottery experiences utility at least high as the outside
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option of 0:

vi · (RL + η · (gL + λ · hL))− pL ≥ 0

The consumer located at the cutoff v̂L is then given by:

v̂L · (RL + η · (gL + λ · hL))− pL
!
= 0. (21)

Solving Expression (21) for v̂L gives the consumer that is just indifferent between the lottery and

the outside option:

v̂L =
pL

(RL + η · (gL + λ · hL))
(22)

The cost of quality in the lottery segment is c ·RL and thus, the profit in the lower segment can

be written as:

ΠL(pL, ·) = (pL − c ·RL) (v̂P − v̂L) (23)

Replacing v̂L from Expression (22) in Expression (23) and optimizing for pL gives the following

FOC:

∂ΠL(pL, ·)
∂pL

!
= 0

⇐⇒ p∗L(v̂p) =
1

2
· (c ·RL + v̂p · (RL + η · (gL + λ · hL))) (24)

The marginal consumer v̂P , indifferent between purchasing the premium product at price pP and

the lottery at price p∗L is characterized by the following equality:

v̂P − pp
!
= v̂P · (RL + η · (gL + λ · hL))− p∗L (25)
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Replacing p∗L with Expression (24) and solving for v̂P gives us:

v̂P − pp
!
= v̂P · (RL + η · (gL + λ · hL))−

1

2
· (c · E(β) + v̂p · (RL + η · (gL + λ · hL)))

⇐⇒ v̂P − pp
!
= v̂P ·

(
1− 1

2

)
· (RL + η · (gL + λ · hL))−

1

2
c ·RL

⇐⇒ v̂P
!
=

1

2
· v̂P · (RL + η · (gL + λ · hL)) + pp −

1

2
c ·RL

⇐⇒ v̂P ·
(
1− 1

2
(RL + η · (gL + λ · hL))

)
!
= pp

⇐⇒ v̂P
!
=

(2 · pp − c ·RL)

(2− (RL + η · (gL + λ · hL)))
(26)

Plugging in Expression (26) for v̂P into the solution for p∗L(v̂P ) in Expression (24) and v̂L(pL),

we can rewrite:

p∗L(v̂p, ·) = c ·RL − pp +
(2 · pp − c ·RL)

(2− (RL + η · (gL + λ · hL)))
(27)

v̂L =
1

2
·
(

2 · pp − c ·RL

2− (RL + η · (gL + λ · hL))
+ c · c ·RL

(RL + η · (gL + λ · hL))

)
(28)

I now look at total profit to find the interior optimum for p∗P :

ΠP,L(·) = (pP − c)(1− v̂p) + (pL − c ·RL) · (v̂P − v̂L)

Plugging the solutions from Expressions (26), (27), and (28) gives:

ΠP,L(·) = (pP − c) ·
(
1 +

(2 · pP − c ·RL)

(2− (RL + η · (gL + λ · hL)))

)
+

(
c ·RL − pP (RL + η · (gL + λ · hL))

)
(
2− (RL + η · (gL + λ · hL))

)2 · (RL + η · (gL + λ · hL))
(29)
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Optimizing Expression (29) for the interior optimum of pP then gives us the following FOC:

∂ΠP,L (·)
∂pP

!
= 0

⇐⇒ p∗P =
(2− (RL + η · (gL + λ · hL)))2

(−8 + 6 (RL + η · (gL + λ · hL)))

+
c · (−4 + 2η · gL +RL(2 +RL + η · gL)) + (2 +RL) · ηλ · hL))

(−8 + 6 (RL + η · (gL + λ · hL)))
(30)

Plugging Expression (30) into the monopolist’s profit function in Expression (29):

ΠP,L(·) =
1

36
·
(
8− 24c+ 6c ·RL − 3(RL + η · (gL + λ · hL))+

9c2 ·R2
L

RL + η · (gL + λ · hL)
+

4(1− 3c(−1 +RL))
2

4− 3(RL + η(gL + λhL))

)
(31)

6.3 Calculations for model findings

6.3.1 Optimal strategy with deterministic product quality

From the previous analysis I know that the optimal strategy of a monopolist in the deterministic

case consists of one premium segment with maximum quality, β∗
P = 1 and β∗

L = 0. In a first

step, I look at the case where the monopolist offers a menu with two degenerate lotteries in

order to model deterministic quality levels. Note that if quality is deterministic, consumers do

not experience reference dependent gains or losses, as expectation about quality and realized

quality perfectly coincide, i.e. b = 0, a ∈ [0, 1] and Rk = βk. Substituting the Expressions (15),

(19), (17), and (18) into the profit function given in Expression (31), gives Expression (32). This

expression is the monopolistic profit as a function of the deterministic quality level βP , with

optimal (interior) quality β∗
P = 1 and prices p∗P and p∗L.

ΠP,L(·) =
1

36
·

(
8− 24c+ 6c · β

L
− 3β

L
+

9c2 · β2
L

β
L

+
4(1− 3c · (−1 + β

L
))2

(4− 3β
L
)

)

⇐⇒ ΠP,L(·) =
(1− c)2 · (2− β

L
)2

4(4− 3β
L
)

(32)
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The overall decrease in profit shows that there is no interior optimum for βL and the firm’s

optimal choice is β∗
L = 0 or β∗

L = 1, which leads to:

ΠP,L(βP , βL
, β̄L) =

(1− c)2

4
(33)

6.3.2 Calculations for conditions for optimality of lotteries

Again, we know that the optimal strategy of a monopolist in the deterministic case consists of one

premium segment with maximum quality, β∗
P = 1 and β∗

L = 0. The profit expression (33) serves

as benchmark in order to determine under which condition lotteries are a beneficial addition to

the firm strategy. In fact, profit increases due to randomness are possible if a marginal increase

of randomness, leads to marginal net growth of profit compared to the optimal solution for

deterministic quality choices. I therefore express the monopolist’s profit function with optimal

prices p∗P and p∗L as a function of the lottery parameters aL and bL:

ΠP,L(aL, bL; η, λ, c) =[
− ((aL − 1)aLbLηλ+ aLη(bL − aLbL) + aLbL + β

L
− 2)2+

c
(
2aLη(bL − aLbL) + (aL − 1)aLbLηλ(aLbL + β

L
+ 2) + (aLbL + β

L
)
)
+

c
(
(aLbL + β

L
)(aLη(bL − aLbL) + aLbL + β

L
+ 2)− 4)

)]
·

1(
6η((aL − 1)aLbLλ+ aL(bL − aLbL)) + 6(aLbL + β

L
)− 8

) (34)

I now induce marginal uncertainty into the former optimum in Expression (34) by choosing

aL ∈ (0, 1) and by allowing for positive quality differential between the high and the low lottery

outcome bL = β̄ − β. I then compute the partial derivative of ΠP,L with respect to bL and

evaluate it at bL = 0 whether a positive quality differential leads to a profit increment:

∂ΠP,L(·)
∂bL

|β∗
1=1,β=0,bL=0 = (35)

aL(1 + c(−1 + (1− aL)η(1− λ))) + (1− aL)η(1− λ)

16(1 + (1− aL)η(1− λ))

·(−1 + c+ 3c · (1− aL)η(1− λ)− η(1− aL − λ+ aLλ))

1
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If the partial derivative in Expression (35) is positive, it implies that increasing the quality

differential between the two outcomes and hence offering a non-trivial product lottery, leads to

an overall increase of profit over both segments. Evaluating the lottery profitability condition in

Expression (36)

∂ΠP,L(·)
∂bL

|β∗
1=1,β=0,aL∈(0,1),bL=0 > 0 (36)

gives three distinct sets of conditions under which a product lottery is profit maximizing:

1. For c = 0, marginal profit increases in bL for any level of loss aversion exceeding the lower

threshold of

1 +
1

η︸ ︷︷ ︸
λ̂low

< λ (37)

where

lim
aL→0

λ̂low = 1 +
1

η
. (38)

2. For c ∈ (0, 1), marginal profit increases in b if consumer loss aversion lies between the lower

threshold λlow
1 and the upper threshold λhigh

1

1 +
(1− c)

η(1− aL)(1 + c)︸ ︷︷ ︸
λlow
1

< λ < 1 +
1

η(1− aL)︸ ︷︷ ︸
λhigh
1

(39)

where

lim
aL→0

λlow
1 = 1 +

1− c

η(1 + c)
, (40)

lim
aL→0

λhigh
1 = 1 +

1

η
. (41)

3. Figure (3) shows how for c ∈ (0, 13), there is an additional lower bound for loss aversion

λlow
2 , with λlow

2 > λhigh
1 . For this range of c, introducing randomness increases profits if

either the coefficient of loss aversion lies in the range given by inequality (39) or it exceeds
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the limit of λlow
2

1 +
(1− c)

(1− aL − 3c(1− aL))η︸ ︷︷ ︸
λlow
2

< λ (42)

where

lim
aL→0

λlow
2 = 1 +

(1− c)

(1− 3c)η
(43)

6.3.3 Calculations for characterization of optimal menu with lotteries

I consider the monopolists profit given in Expression (34) where the marginal cost of production

is c = 0. If Expression (37) does not hold, i.e., λ < 1 + 1
η , the profit-maximizing strategy for

the monopolist is identical to the deterministic benchmark case (33). The reason is that in this

case the lottery would not be able to segment consumers sufficiently. This would mean that the

monopolist loses more profit in the premium segment than it gains in profit in the cheap segment

of the market. Therefore, it would be optimal to offer no quality gradation and would simplify

the monopolist’s decision problem to the problem with deterministic product quality. I therefore

focus now on the case where consumers are sufficiently loss averse and Expression (37) holds.

Expression (44) shows that the monopolist’s profit monotonously increases with b.

∂ΠP,L(·)
∂bL

> 0 (44)

The monopolist therefore optimally maximizes the quality differential in the lottery by choosing

β∗
L
= 0,

β̄∗
L = 1, (45)

Plugging values from (45) into Expression (34) for the firm’s profit simplifies to:

ΠP,L(aL;λ, η) =
(2 + a2Lη(−1 + λ) + aL(1 + η(1− λ)))2

4(4 + aL(3− 3η(−1 + λ)) + 3a2Lη(−1 + λ))
(46)
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Maximizing Expression (35) for the optimal choice a gives

a∗L =
1

2
+

1

(2η − 2ηλ)
. (47)

Using the Expressions (45) and (47) to specify the optimal prices ((30) and (24)) and the points

of indifference between the premium product, the lottery, and the outside option ((26) and (28))

gives:

p∗P =
(1 + η(6 + η(−1 + λ))(−1 + λ))2

(8η · (3− η · (1− λ))(1− 3η · (1− λ))(−1 + λ))
(48)

p∗L =

(
(1 + η(6− η(1− λ))(−1 + λ))(1 + η(1− λ))2

)
(8η · (3− η · (1− λ))(1− 3η · (1− λ))(1− λ))

(49)

vp =
1

3
+

1

(3− η(1− λ))
− 1

(3− 9η · (1− λ))
(50)

vL =
1

6
·
(
1 +

3

3− η(1− λ)
+

1

(η − 3ηλ)

)
(51)

Based on the solutions (48) to (51), the firm’s profit can be expressed through λ and η:

ΠP,L(·;λ, η) =
(−3 + η(6 + η · (1− λ))(1− λ))2

(16η(−9 + η · (10 + 3η · (1− λ))(1− λ)) · (−1 + λ))
(52)
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