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Abstract 

As the deployment and adoption of 5G technology continues to unfold, there is an increasing 

need to comprehend the key drivers that will shape its diffusion in the market. This research 

paper introduces a compartmental model designed to analyze the factors influencing the 

adoption of 5G technology, with a specific focus on user demand. The findings from the 

model's example analysis underscore the critical role played by machine-to-machine (M2M) 

communication use cases and subscriber costs in accelerating the widespread adoption of 5G 

technology. By offering valuable insights into the projected trajectory of 5G diffusion, this 

model can serve as a valuable resource for policymakers and industry stakeholders, aiding 

them in making informed decisions regarding policies, regulations, and strategic investments 

related to 5G technology. 

Keywords: 5G, Diffusion Modeling, Compartmental Analysis, Uncertainty Quantification 

 

1. Introduction 

Understanding the spread of telecommunication services plays a crucial role in evaluating the 

economic feasibility of such technologies. This information is invaluable to 

telecommunications service providers as it aids them in making informed choices regarding 

technology adoption and expanding their capacity. Additionally, policymakers and regulators 

rely on this analysis to shape market dynamics and foster healthy competition. 

While previous generations of mobile networks primarily focused on fulfilling human 

communication needs, 5G extends that scope by encompassing machine-to-machine (M2M) 

communications as well. By providing a robust infrastructure, it offers vast opportunities for 

Internet of Things (IoT) applications, such as connected sensors for creating smart cities, 

robots for enhancing manufacturing processes, and connected vehicles for revolutionizing 

human mobility. This integration of human and M2M communications in 5G networks opens 

up a wide range of possibilities for various industries and sectors. 

On the human communication side, 5G offers faster data speeds, lower latency, and increased 

capacity, allowing for high-quality video streaming, real-time collaboration, and immersive 

experiences. It enhances the overall user experience and enables new applications such as 

augmented reality (AR), virtual reality (VR), and ultra-high-definition multimedia. 



Simultaneously, 5G empowers machine-to-machine communications, facilitating the 

exchange of data between devices and enabling automation and intelligent decision-making. 

This aspect of 5G is particularly valuable in industrial settings, where interconnected devices, 

sensors, and machines can communicate and coordinate seamlessly. It enables advanced 

automation, remote monitoring, predictive maintenance, and efficient resource allocation 

across various sectors, including manufacturing, logistics, transportation, healthcare, and 

smart cities. 

Therefore, 5G integration of both human and machine communications is a key factor driving 

its diffusion. It provides a comprehensive communication platform that caters to the needs of 

humans while enabling seamless connectivity and communication between devices, thereby 

fostering digital transformation across industries. 

However, in the human market, 5G faces competition from various existing and emerging 

technologies. Previous generations of mobile networks, such as 4G, 3G, and 2G, continue to 

offer viable communication options for users, along with alternatives like Wi-Fi networks and 

fixed-line broadband connections. Users' decisions to adopt 5G are influenced by factors such 

as network coverage, data speeds, reliability, and pricing, which play critical roles in shaping 

the competition between 5G and other options in the human market. 

In addition, in the M2M vertical markets, 5G encounters competition from specialized 

technologies designed for IoT applications. Low-Power Wide-Area Networks (LPWANs) like 

Sigfox, LoRaWAN, and NB-IoT, provide connectivity solutions for various M2M use cases, such 

as smart metering, asset tracking, and industrial automation. These technologies offer specific 

advantages such as long-range coverage, low power consumption, and cost efficiency, making 

them attractive options for IoT deployments. The choice between 5G and competing M2M 

technologies depends on factors like application requirements, network coverage, device 

costs, and scalability. 

The competition among various technologies in both the human and M2M markets plays a 

significant role in shaping the diffusion of 5G. The availability and attractiveness of alternative 

options create challenges and opportunities for the adoption of 5G. The success of 5G relies 

not only on its technological advancements but also on its ability to effectively compete in 

terms of network coverage, service quality, pricing, and meeting specific market needs. 

To provide future estimates for the penetration of related mobile services, previous studies in 

the field commonly employ diffusion of innovations theory and time-series forecasting. For 

instance, Smail and Weijia (2017) and Jha and Saha (2018) have utilized S-shaped diffusion 

models to predict the future adoption of innovative 5G services at the national level. In a 

similar vein, Lim and Kim (2017) have proposed the adoption of the Norton-Bass multi-

generation diffusion model to forecast the introduction of 5G mobile telecommunications 

service specifically in South Korea. Additionally, Kalem et al. (2021) have employed the Box-

Jenkins method to determine the optimal timing for 5G investments in Turkey.  

While these studies contribute valuable insights into 5G diffusion, they fail to consider the 

broader implications of 5G adoption in multiple vertical markets on overall 5G demand. To 

address this gap in the existing literature, Kanellos et al. (2023) proposed a system dynamics 

model that incorporates the broader implications of 5G adoption in multiple vertical markets 

on overall 5G demand. By utilizing this approach, Kanellos et al. (2023) capture the dynamic 

relationships between various factors, such as market dynamics, technology adoption 



patterns, and the specific characteristics of different vertical markets. The model allows for a 

nuanced analysis of how the adoption and utilization of 5G technology in vertical markets 

influence the overall demand for 5G services. 

Building upon this foundation, the present study seeks to extend the work of Kanellos et al. 

(2023) by incorporating technology competition through the use of compartmental analysis. 

This approach offers a complementary perspective, allowing for a detailed examination of the 

interplay between competing technologies and their influence on 5G diffusion dynamics. By 

leveraging compartmental analysis, this study aims to enhance our understanding of the 

complex factors shaping the diffusion of 5G technology across various vertical markets. 

The knowledge gained from this research can support informed decision-making and enable 

stakeholders to make strategic choices that align with the dynamic landscape of 5G 

deployment. These findings provide a basis for policymakers and industry leaders to navigate 

the complexities of the 5G ecosystem and optimize their investments and resource allocation 

strategies accordingly. 

The rest of the paper is organized as follows: In Section 2, an overview of the proposed 

compartmental modeling approach for 5G diffusion is presented. Section 3 offers an 

illustrative example that demonstrates the application of the proposed model. Section 4 of 

the paper presents the results of the example application and provides a comprehensive 

analysis of these results. Finally, Section 5 presents the study's conclusions, summarizing the 

key findings and their implications. 

2. 5G Diffusion Compartmental Model Overview 

As the widespread adoption and diffusion of 5G technology are anticipated to be driven by 

both conventional human communications markets and emerging machine-to-machine 

(M2M) vertical markets, it is reasonable to hypothesize that the introduction of 5G in diverse 

vertical markets would positively influence the overall dissemination of the technology. Each 

market's adoption of 5G is expected to exhibit its unique pattern, indicated by the number of 

connected devices. By combining the diffusion patterns of 5G across various vertical markets, 

a comprehensive representation of the overall 5G demand can be obtained. 

To assess the collective impact of 5G adoption in each vertical market on the overall demand 

for 5G services, this study proposes a compartmental modeling approach. The proposed 

methodology builds upon equation-based models, specifically compartmental models, which 

have been widely employed in fields such as epidemiology, engineering, and physics to 

describe the temporal behavior of complex systems. In this context, compartmental models 

can be viewed as an extension to traditional diffusion models, particularly the Bass model 

(Abedi, 2019). 

This approach visualises 5G subscribers (human or machine, potential or active) as different 

compartments, with flows between these compartments and feedback loops controlling the 

flows. These dynamics are represented by differential or difference equations, and they 

simulate subscriber heterogeneity in technology selection. Model results are obtained using 

numerical methods and simulation. 

Given the distinct characteristics of the human communications market and M2M markets, 

separate modeling approaches are employed to accurately capture the dynamics within each 



market. This allows for a comprehensive analysis of 5G diffusion, considering the specific 

factors and considerations that influence adoption within each market segment. 

A. Human Market Modeling 

5G, as the latest generation of mobile network technology, builds upon and succeeds previous 

generations such as 4G (LTE), 3G, and 2G. Each mobile generation represents a significant 

advancement in network capabilities, data speeds, and technological features. While 5G 

introduces substantial improvements, it does not render previous generations obsolete. 

Instead, 4G and 3G networks continue to coexist with 5G, ensuring reliable connectivity in 

areas where 5G infrastructure is not fully deployed. This coexistence allows devices that are 

not 5G-compatible to still access services through the existing network generations. 

To capture the transition from previous mobile telecommunications technologies to 5G, the 

Bass diffusion compartmental model, proposed in Sterman (2002) and Baran (2010), was 

employed. This model was chosen for its ability to offer valuable insights into the adoption 

dynamics of a new technology, including the timing and speed of adoption, as well as the roles 

of innovators and imitators in the process. It consists of two compartments: potential 

adopters (compartment A) representing active subscribers to mobile technologies and 5G 

potential adopters (compartment B) representing subscribers that have transitioned to 5G. 

Under this approach, potential adopters, comprising of the sum of active mobile market 

subscribers of previous mobile network technologies, become 5G subscribers following two 

distinct flows: Innovators and Imitators. Innovators are the first subscribers to adopt the new 

technology, whereas Imitators are subscribers that follow the lead of Innovators. Therefore, 

both flows play crucial roles in the diffusion process of 5G, with the innovators initiating the 

adoption and the imitators driving further adoption through their emulation of the innovators' 

behavior. 

It is worth noting that in saturated markets, where adoption rates stabilize, the number of 

potential adopters may be considered stable over the study period. Alternatively, in markets 

with evolving dynamics, the number of potential adopters can exhibit randomness, that may 

be modeled through a stochastic process. Recognizing these characteristics is crucial for 

studying the diffusion patterns and dynamics of 5G accurately in different market contexts. 

Furthermore, to highlight the importance of user transitioning costs, such as the expenses 

associated with acquiring 5G-compatible mobile devices and subscribing to 5G services, a 

selection parameter was integrated into the proposed Bass diffusion model. This parameter 

accounts for the percentage of both Innovators and Imitators who successfully undergo the 

transition to 5G, recognizing that not all subscribers may have the financial capacity to 

complete the transition, despite their desire to do so. This parameter may vary between 

Innovators and Imitators, reflecting potential disparities in the financial circumstances of 

these subscriber segments. By incorporating this parameter, the model acknowledges the 

financial considerations and constraints that can influence the rate of adoption and diffusion 

of 5G technology among different user groups. 

It is noted that subscribers who were unable to complete the transition to 5G due to financial 

constraints are not excluded from the model. Instead, they are considered as potential 

adopters in the future, allowing for the possibility of delayed adoption of 5G. By accounting 

for these potential adopters, the model recognizes that the transition to 5G may occur 

gradually over time as financial barriers are overcome or as more affordable options become 



available. This ensures a comprehensive representation of the adoption dynamics and allows 

for a more accurate assessment of the long-term impact of financial constraints on the 

diffusion of 5G technology. 

Additionally, a feedback loop is incorporated into the proposed selection parameter to 

capture the dynamic nature of market conditions and external influences. This enables the 

simulation of changing transaction costs as the technology matures, providing valuable 

insights into the potential impacts of policy changes or technological advancements on market 

outcomes. 

The proposed human market compartmental model is presented in Fig. 1. 

 
Figure 1. Human Communications Market Compartmental Model 

The underlying stocks and flows are presented below: 

1. flow Probability =
Potential Adopters

Potential Adopters + 5G Adopters
 

2. flow Innovators = s ∙ p ∙ Potential Adopters 
3. flow Imitators = s ∙ q ∙ 5G Subscribers ∙ Probability 
4. stock Potential Adopters -= (Innovators + Imitators) 
5. stock 5G Subscribers += (Innovators + Imitators) 

B. M2M Market Modeling 

In contrast to the human communications market, where 5G faces competition from existing 

mobile technologies for a finite subscriber base, in a M2M market 5G encounters competition 

from specialized technologies designed for IoT applications, such as Zigbee, Z-Wave, NB-IoT 

etc. 

Unlike the saturated human communications market, the maximum number of connected IoT 

devices in an M2M market is not fixed. It can vary over time due to the emergence of new IoT 

use cases and/or market growth. This information is represented by the value of the potential 

connected devices compartment, denoted as M. This compartment represents the total 

number of devices that can be connected in the market at a given time. It includes both 



devices utilizing 5G technology and devices using alternative technologies, both active and 

potential. 

When a new use case or application is introduced, the newly connected devices, regardless of 

their technology, are included in the overall count of connected devices. This process, whether 

stochastic or not, is simulated using a feedback loop to the potential connected devices 

compartment M to ensure accurate representation. 

To track the adoption of specific technologies, two additional compartments are established: 

G for devices that have adopted 5G technology and O for devices utilizing other technologies, 

that compete with 5G. This compartment (O) represents the collective presence of alternative 

technologies competing with 5G in the market. 

In contrast to the human communications market, where 5G diffusion is driven by both 

innovation and imitation, in an M2M market, the selection process is free, allowing each user 

to choose the technology that best suits their needs. This individualized selection process is 

implemented through two distinct adoption flows that originate from the potential connected 

devices compartment, denoted as M, and flow into the compartments representing devices 

utilizing 5G technology (compartment G) and devices utilizing other competing technologies 

(compartment O). 

Besides the addition of newly connected devices, the number of 5G and other technology-

connected devices in the M2M market is also influenced by device deactivation. Device 

deactivation can occur due to various reasons, including technology migration, technological 

obsolescence, device turning unserviceable, end of service, among others.  

In the proposed model, device deactivation is simulated through outgoing flows from the 

compartments of 5G devices (G) and devices using alternative technologies (O). Each of these 

flows further splits into two separate flows to account for technology migration and other 

factors such as technological obsolescence, device unserviceability, or end of service. The flow 

representing technology migration is directed towards the compartment housing devices of a 

different technological category, indicating the transition of devices from one technology to 

another. The other flow is directed towards the potential connected devices compartment 

(M), indicating that the devices have become inactive or are no longer connected. This 

signifies that these deactivated devices have the potential to become new entrants in the 

market. By incorporating these flows, the model captures the dynamics of device deactivation 

and the possibility of devices re-entering the market.  

It is worth mentioning that in the proposed model, the outflows from the compartment M 

(representing technology adoption) and the inflows into the compartment M (representing 

device deactivation) are treated separately. This differentiation adds flexibility to the model, 

allowing the practitioner to define the functions that govern each flow according to their 

specific requirements and objectives. 

The following points are also worth considering: 

1. The proposed approach extends beyond the scope of IoT devices and also includes 

Internet of Everything (IoE) devices. This broader perspective recognizes the 

interconnectedness of various devices and systems within the digital ecosystem. 



2. The analysis can be conducted not only at the market level but also at the application-

use case level. This granularity allows for a more detailed examination of specific 

scenarios and their impact on technology adoption and competition dynamics. 

3. The selection process and timing of 5G adoption, as well as the introduction of 

competing technologies, can vary across different vertical markets and use cases. 

Furthermore, these variables may change over the duration of the study period. This 

variability is crucial for capturing potential network effects and competition-related 

factors that may emerge during the diffusion of 5G. 

The proposed M2M market compartmental model is presented in Fig. 2. 

 
Figure 2. M2M Market Compartmental Model 

The underlying stocks and flows are given below: 

1. flow 5G Adopters = r ∙ M2M Devices 
2. flow 5G Deactivation = t ∙ m ∙ 5G Devices 
3. flow Other Adopters = w ∙ M2M Devices 
4. flow Other Deactivation = v ∙ n ∙ Other Devices 
5. flow 5G to Other Migration = t ∙ (1-m) ∙ 5G Devices 
6. flow Other to 5G Migration = v ∙ (1-n) ∙ 5G Devices 
7. stock M2M Devices += (5G Deactivation - 5G Adopters + Other Deactivation - Other Adopters) 
8. stock 5G Devices += (5G Adopters - 5G Deactivation + Other to 5G Migration) 
9. stock Other Devices += (Other Adopters - Other Deactivation + 5G to Other Migration) 

C. Overall 5G Diffusion Modeling 

Following the different markets’ modeling, the estimation of overall 5G demand involves 

aggregating the demand across vertical markets, which is quantified by the total number of 

connected devices. This computation considers the addition of newly connected 5G devices 

at each time step, allowing for the tracking of 5G diffusion over time. 



Furthermore, when employing stochastic modeling of flow parameters, Monte Carlo 

simulation can be utilized to capture the variable interactions among market characteristics. 

By generating multiple potential diffusion paths for the 5G service, this approach allows for 

the sensitivity analysis of model inputs and the creation of a risk-adjusted forecast for overall 

5G service demand. Sensitivity analysis helps identify how different inputs affect the 

simulation output, providing valuable insights for decision-makers. Furthermore, such a 

forecast acknowledges the inherent uncertainty in the projections, offering a better 

understanding of potential outcomes in various scenarios. This enables decision-makers to 

make informed decisions considering the range of possibilities and associated risks. 

3. Modeling Application 

While 5G technology itself has been deployed in many regions, the full implementation and 

adoption of 5G for IoT applications have been slower in some cases (Blind & Niebel, 2022). 

In order to gain further insight into the proposed diffusion modeling approach, an example 

case is presented considering the absence of actual 5G market diffusion data. In this example, 

a telecommunications sector is examined, comprising of a main human communications 

market as well as four specific M2M vertical markets: automotive, industrial automation, 

smart agriculture, and smart cities. For simplicity, the introduction time of 5G technology is 

assumed to be the same across all markets studied. 

The diffusion pattern of 5G technology is assessed over a 15-year period, which is considered 

a typical lifespan for a mobile network technology. Within this timeframe, two scenarios are 

implemented: 

⎯ In the first scenario, numerical inputs are used for the market parameters. This allows 

for estimating the market and evaluating the model's ability to provide accurate 

estimations. It provides a baseline understanding of the market dynamics based on 

specific input values. 

⎯ In the second scenario, stochastic inputs are employed to assess the impact of 

different parameters on model outputs and to generate a risk-adjusted market 

forecast. By incorporating randomness and variability into the inputs, this scenario 

captures the uncertainties and potential fluctuations in the market. 

Through these scenarios, the model analyzes the adoption and diffusion of 5G technology in 

each market segment and provides insights into the potential dynamics and trends of the 

overall 5G technology. 

A. Deterministic Scenario 

in the deterministic scenario, numerical inputs are used for the market parameters and a 

market estimation is based on these specific input values. Thus, this scenario allows for a 

focused analysis of the market dynamics under predetermined conditions. This approach is 

useful for understanding the potential outcomes and behavior of the market when certain 

parameters are held constant. 

Human Market Modeling 

The proposed modeling methodology focuses on the adoption dynamics of 5G technology, 

considering it as a substitution for existing mobile technologies in the market. As proposed 



earlier, the Bass diffusion model, depicted in Fig. 1, is utilized to gain insights into the adoption 

process.  

In order to forecast the diffusion of 5G technology in the human communications market, the 

proposed approach utilizes five parameters: the market saturation point (S), the innovation 

parameter (p), the imitation parameter (q), and two additional parameters related to the 

technology selection process (s and f). 

The market saturation point (S) represents the maximum number of potential adopters in the 

market, indicating the point at which the market becomes saturated with 5G technology. The 

innovation parameter (p) captures the effect of innovation in driving the initial adoption of 

5G, reflecting the willingness of early adopters to embrace new technology. The imitation 

parameter (q) represents the influence of social interactions and the adoption behavior of 

others on the decision-making process of potential adopters. 

The two additional parameters, technology selection parameters (s and f), play a role in 

determining the choice of technology by potential adopters. The parameter s represents the 

number of subscribers who successfully overcome the expenses associated with transitioning 

to 5G technology, whereas the parameter f represents the reduction of transition costs over 

time. These parameters may vary between innovators and imitators. For simplicity, in the 

given scenario, both parameters are considered equal for all types of subscribers. In addition, 

as the feedback parameter f is kept constant, the selection parameter s exhibits a steady 

annual increase. This gradual increment persists until the value of s reaches 1, signifying that 

all subscribers have the financial capacity to bear the expenses associated with migrating to 

5G technology. 

The values of the parameters used in the model for the human communications market are 

presented in Table I for reference. 

Table I. Human Market Deterministic Model Parameters 

Parameter Value 

Population A 10,000,000 

p 0.2 

q 0.3 

s 0.5 

f 0.05 

 

It is important to note that these values are provided for illustrative purposes and may vary in 

different scenarios or real-world applications. 

M2M markets modeling 

To capture the saturation point of a machine-to-machine (M2M) vertical market, the 

maximum allowable number of connected devices is determined. This number is expected to 

increase over time as new IoT or IoE use cases emerge. In the proposed model, this increase 

is simulated using a Poisson process with a constant jump parameter λ, which generates 

random arrivals of new potential devices. In addition, the jump size is held constant 

throughout the simulation. Consequently, the number of potential connected devices in 

compartment M at every time step is calculated by adding the existing potential devices to 

the devices introduced through the jump process. 



According to the proposed M2M market modeling depicted in Figure 2, six parameters are 

employed to describe subscriber flows within the market. These parameters include the 

adoption rates of 5G technology (parameter r) and other technologies (parameter w) by new 

devices, the rates of device deactivation (parameters t and v) for 5G and other technologies 

respectively, along with the proportions of deactivated devices that migrate to a different 

technology or return to the potential devices compartment M (parameters n and m). In the 

given scenario, all six parameters are kept constant.  

The proposed compartmental model is replicated for each of the four M2M markets under 

study, namely automotive, industrial automation, smart agriculture, and smart cities.  

To reflect the distinct dynamics of 5G adoption in each market, different parameter values are 

assigned in the model. These parameter values are determined based on the specific 

characteristics and expectations of the respective M2M markets. The values of the 

parameters employed in the example application for M2M market modeling are presented in 

Table II. 

Table II. M2M Market Deterministic Model Parameters 

M2M Market Automotive 
Industrial 

Automation 

Smart  

Agriculture 
Smart City 

Parameter Value Value Value Value 

Saturation M 5,000,000 1,500,000 750,000 7,500,000 

r 0.3 0.1 0.3 0.3 

w 0.05 0.4 0.05 0.3 

t 0.05 0.25 0.25 0.15 

v 0.05 0.25 0.25 0.15 

m 0.01 0.1 0.1 0.5 

n 0.9 0.5 0.75 0.5 

λ 0.4 0.5 0.5 0.4 

Jump Size 500,000 100,000 50,000 650,000 

 

Several noteworthy observations can be made regarding the specific characteristics of each 

M2M market: 

1. In the automotive and smart agriculture markets, there is a significant preference for 

the adoption of 5G technology. This is reflected in the higher values of parameters r 

and n, indicating a strong inclination towards selecting 5G over alternative 

technologies in these markets. 

2. The industrial automation and smart agriculture markets experience relatively higher 

rates of device deactivation. This can be attributed to the harsh working environments 

and demanding operational conditions in these sectors. The parameters t and v, which 

determine device deactivation, are set accordingly. Additionally, the smaller value of 

parameter m suggests a lower likelihood of migrating deactivated devices to different 

technologies. On the other hand, in the automotive market, where vehicles generally 

have longer lifespans, the opposite scenario is considered, with lower device 

deactivation rates. 

3. The research and development (R&D) activities leading to the introduction of 

innovative IoT use cases are assumed to be similar across all markets. This implies that 



the potential for the emergence of novel IoT applications and use cases is consistent 

across the automotive, industrial automation, smart agriculture, and smart cities 

markets. 

Again, the values of parameters provided in Table II are for illustrative purposes only. In real-

world applications or different scenarios, these parameter values may vary depending on 

various factors such as market conditions, technological advancements, user preferences, and 

other contextual considerations.  

B. Stochastic Scenario 

In the stochastic scenario, stochastic inputs are used to assess the impact of uncertainty of 

different input parameters on model outputs and the generation of a risk-adjusted market 

forecast. This scenario provides insights into potential outcomes across different scenarios 

and aids the decision-making process under uncertain conditions. 

Human Market Modeling 

To incorporate variability and address the inherent uncertainty in the proposed model, the 

evolution of the market saturation point is simulated using a wiener process. The wiener 

process introduces random fluctuations over time, reflecting the unpredictable nature of 

market dynamics. 

Furthermore, in order to facilitate a comprehensive analysis of the model's sensitivity to 

different input parameters, it is assumed that all five input parameters follow a uniform 

distribution. This choice allows for a wide range of potential values for each parameter, 

enabling a thorough exploration of their impact on the model's output. 

It is important to note that in the model, the value of each parameter is subject to random 

variation at each time step. This stochastic element adds further complexity and realism to 

the model, enabling a more accurate assessment of the potential outcomes and future trends 

in the market. Moreover, the upper barrier of 1 for the selection parameter s is maintained, 

similarly to the deterministic scenario. 

The values of the parameters used in this scenario to model the human communications 

market, along with their respective distributions, are presented in Table III. Once again, these 

values are provided for demonstration purposes and may vary in different scenarios or real-

world applications. 

Table III. Human Market Stochastic Model Parameters 

Parameter Distribution 
Value 

Min Max 

Population A - 10,000,000 devices 

A volatility σ Wiener 0,1 

p 

Uniform 

0.1 0.4 

q 0.2 0.5 

s 0,3 0,5 

f 0,01 0,1 

 

 

 



M2M Markets Modeling 

To begin with, in the stochastic model, market saturation variability is achieved through two 

methods. Firstly, the market saturation point is determined using a wiener process, 

introducing random fluctuations over time. Secondly, the jump parameter λ, which represents 

the probability of potential devices added to the M compartment at a given time step, and 

the jump size, indicating the magnitude of this addition, follow uniform distributions. These 

stochastic components add uncertainty to the model and allow for a more realistic 

representation of market dynamics. 

In addition to the market saturation variability, the characteristic parameters of the market 

are also assumed to follow a uniform distribution. This assumption allows for a range of 

possible values for these parameters, taking into account the inherent uncertainty and 

variability in the market. 

Similar to the deterministic scenario, in the stochastic scenario, the proposed compartmental 

model is replicated for each of the four M2M markets being studied: automotive, industrial 

automation, smart agriculture, and smart cities. This replication allows for the individual 

modeling and analysis of each market, taking into account their unique characteristics and 

dynamics. 

It is important to note that the values of the modeling parameters used in the stochastic 

scenario were derived from the market intuitions and insights obtained in the deterministic 

scenario. The parameter values were selected to reflect the specific characteristics and 

dynamics of each M2M market under study. However, in the stochastic scenario, the values 

of these parameters are allowed to change randomly at each time step, introducing variability 

and capturing the inherent uncertainty of real market conditions. 

Table IV presents the values of the parameters used in the stochastic scenario for M2M 

market modeling, providing insight into the specific parameter settings that have been 

employed to simulate the adoption process for 5G technology in each market segment. These 

values are provided for illustrative purposes and may vary in different scenarios or real-world 

applications. 

Table IV. M2M Market Stochastic Model Parameters 

M2M Market Automotive 
Industrial 

Automation 

Smart  

Agriculture 
Smart City 

Parameter 
Distribution/ 

Process 

Value Value Value Value 

Min Max Min Max Min Max Min Max 

Population M - 5,000,000 1,500,000 750,000 7,500,000 

M_Volatility_σ Wiener 0.05 0.1 0.05 0.2 

r 

Uniform 

0 0.3 0 0.1 0 0.3 0 0.3 

w 0 0.05 0 0.4 0 0.05 0 0.3 

t 0 0.1 0.2 0.4 0.2 0.4 0.1 0.2 

v 0 0.1 0.2 0.4 0.2 0.4 0.1 0.2 

m 0 0.02 0.05 0.2 0.05 0.2 0.35 0.65 

n 0.5 0.95 0.35 0.65 0.5 0.9 0.35 0.65 

λ 0.3 0.5 0.35 0.65 0.35 0.65 0.3 0.5 

Jump Size 150,000 750,000 10,000 200,000 10,000 100,000 250,000 800,000 

 

4. Application Results and Discussion 

Following the proposed modeling approach, the total number of newly connected devices 

that utilize 5G technology is determined by summing all relevant flows associated with 5G 



during a specific time step. This provides insights into the diffusion pattern of 5G technology 

over the studied time period, as well as the total number of active and potential devices, the 

devices utilizing competing technologies, and the remaining population of potential adopters. 

The modeling results for the deterministic scenario, as shown in Fig. 3, demonstrate the 5G 

diffusion over a 15-year period.  

 

Figure 3. 5G Diffusion – Deterministic Scenario 

As it can be seen in Fig.3, the human market plays a significant role in driving the adoption of 

5G technology, representing nearly half of the connected devices and reaching market 

saturation after 10 years. Following closely are the automotive and smart city M2M markets, 

which exhibit a high potential device base and a strong preference for 5G technology. On the 

other hand, the smart agriculture and industrial automation markets, which do not exhibit a 

strong preference for 5G, follow behind in terms of 5G adoption. 

Furthermore, in Fig. 4, the distribution of the device population is depicted, showing the 

allocation between 5G and other competing technologies, as well as the remaining potential 

connections.  

 

Figure 4. Device Allocation – Deterministic Scenario 
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Fig. 4 highlights that the number of 5G connected devices is consistently growing over time. 

On the other hand, the number of devices utilizing other technologies gradually diminishes, 

primarily as a result of the replacement of previous mobile technologies by 5G in the human 

communications market. However, an interesting trend emerges after the first 10 years, 

where the number of devices utilizing other technologies begins to rise again. This increase 

can be attributed to the adoption of these technologies by devices in the M2M markets, 

reflecting the specific dynamics and preferences within those sectors. 

Moreover, considering the inherent uncertainty and variability of the stochastic model's 

parameters, a Monte Carlo simulation is employed. This simulation generates multiple 

potential diffusion paths for 5G technology, incorporating the effects of uncertain factors on 

adoption and usage patterns. The outputs of the simulation include a risk-adjusted forecast 

for the overall demand of 5G technology. This forecast provides valuable insights into the 

potential impact of varying uncertainties on the adoption and usage of 5G technology, as 

described in Section 3B above. 

The results of the Monte Carlo simulation, depicting the distribution of the forecasted 5G 

device population at the end of the 15-year period, are presented in Fig. 5. 

 
Figure 5. 5G Device Risk – Adjusted Forecast 

Based on the risk-adjusted forecast outcomes using the proposed modeling approach, it is 

projected that the quantity of active 5G devices at the end of the 15-year period will follow a 

lognormal distribution. The mean value of this distribution is estimated to be μ = 20,901,986, 

with a standard deviation of σ = 2,451,187. Additionally, in the base case scenario, the model 

predicts a total of 20,133,071 connected 5G devices at the end of the 15-year period. It's 

important to note that this is the expected outcome based on the given parameters and 

assumptions. However, there is variability in the forecast, and the maximum estimated 

number of connected devices is projected to be 34,624,265, while the minimum is estimated 

to be 13,780,764. 

Similarly, the results of the Monte Carlo simulation show that the population of devices 

adopting a competing technology to 5G also follows a lognormal distribution. The mean value 

of this distribution is estimated to be μ = 6,012,155, with a standard deviation of σ = 1,408,639. 



In the base case scenario, the model predicts 6,066,764 connected devices adopting the 

competing technology. In addition, the maximum number of connected devices in this 

category could reach 14,694,763, while the minimum is estimated to be 2,203,526.  

These simulation results are depicted in Figure 6, providing insights into the range of potential 

outcomes and the level of uncertainty associated with the adoption of competing 

technologies in the market. 

 
Figure 6. Devices Utilizing Other Technologies Risk - Adjusted Forecast 

In order to assess the influence of individual parameters on the modeling results, a global 

sensitivity analysis was conducted for the 5G device population. This analysis involved 

sampling model parameters from a uniform distribution with a range of +/- 10% around their 

specified values.  

Global sensitivity analysis results are presented in Table V. It is noted that only the parameters 

that contributed more than 1% to the variation in the total 5G device population at the end 

of the 15-year period are included. 



Table V. Global Sensitivity Analysis Results 

Contribution to variance 

Parameter Value Contribution 

Human Communications market device starting 

population 
+61,4% 

Positive 

Automotive M2M market potential device starting 

population 
+11,6% 

Positive 

Smart City M2M market potential device starting 

population 
+5,3% 

Positive 

Smart City M2M market 5G adoption flow r 

maximum value 
+2,8% 

Positive 

Automotive M2M market 5G adoption flow r 

maximum value 
+2,6% 

Positive 

Smart City M2M market Poisson parameter λ 

maximum value 
-1,5% 

Negative 

Automotive M2M market device population jump 

size maximum value 
+1,2% 

Positive 

Automotive M2M market Poisson parameter λ 

minimum value 
-1,2% 

Negative 

Smart City M2M market other technologies 

deactivation flow parameter v maximum value 
+1% 

Positive 

Based on the global sensitivity analysis results, the three parameters with the highest positive 

contributions, accounting for 78.3% collectively, are the starting maximum potential device 

population in the human communications, automotive, and smart city markets. These 

markets, as identified in the deterministic analysis, play a significant role in driving the overall 

5G device population. Following these parameters, the maximum adoption flow parameter 

(r) in the automotive and smart city M2M markets also contributes positively to the variation. 

On the other hand, the parameter with the highest negative contribution (-1.5%) is associated 

with the maximum value of the Poisson parameter that determines jumps in population 

within the smart city market. This parameter indicates a potential decrease in the adoption 

rate or growth of 5G devices within the smart city market, leading to a negative impact on the 

overall 5G device population forecast. 

Table VI presents the contributions of each market to the variability of the 5G device 

population at the end of the 15-year period.  

Table VI. Contribution to 5G Device Population Variability by Vertical Market 

Contribution to variance 

Parameter Value Contribution 

Human Communications  +63,1% Positive 

Automotive +19,4% Positive 

Smart City +14,1% Positive 

Smart Agriculture -1,8% Negative 

Industrial Automation +1,5% Positive 

The human market has the highest positive contribution, accounting for 63.1% of the total 

variability. This indicates that the human communications market plays a dominant role in 

driving the variation in the 5G device population. 



Following the human market, the automotive M2M market has a positive contribution of 

19.4%, while the smart city market contributes positively with 14.1%. These markets also have 

a significant impact on the overall variability of the 5G device population. 

In contrast, the smart agriculture and industrial automation M2M markets have relatively 

smaller effects on the 5G population, with contributions of less than 2%. The smart agriculture 

market, in particular, exhibits a negative impact with a contribution of -1.8%, indicating a 

potential decrease in the 5G device population within this market. 

Last, the cumulative contribution of the M2M markets is 36.9%, while the human 

communications market accounts for 63.1% of the total variability. These findings highlight 

the dominant role of the human market in driving the adoption and diffusion of 5G 

technology, while the M2M markets have a relatively smaller impact on the overall 5G device 

population. 

Considering the results of the global sensitivity analysis, the stochastic model parameter value 

assumptions, and the findings from the deterministic model, it becomes clear that the main 

driver of the 5G population is the number of potential 5G connected devices, coupled with 

the preference towards 5G technology. 

The deterministic model demonstrates that 5G technology is capable of capturing the entire 

human communication market within a period of 10 years, indicating a significant migration 

of mobile network subscribers towards 5G. This highlights the strong preference for 5G 

applications in the human market, driving its contribution to the overall 5G device population. 

In addition, despite the smart city M2M market having a larger potential device population 

(7.5 million devices) compared to the automotive market (5 million devices), the strong 

preference for 5G applications in the automotive market positions it as the second-largest 

contributor to the 5G population. This suggests that a higher number of devices in the 

automotive market are expected to utilize 5G technology compared to the smart city market. 

Furthermore, the M2M markets with smaller starting device populations, such as industrial 

automation and smart agriculture, have a relatively smaller impact on the overall 5G 

population, despite the strong preference towards 5G in the smart agriculture market. This 

indicates that the initial device population size plays a role in determining the influence of a 

specific market on the 5G population. 

Overall, the findings highlight the significance of the potential 5G device base and the 

preference for 5G technology in driving the adoption and diffusion of 5G, with the human 

communications market playing a dominant role. 

5. Conclusion 

In this paper, a compartmental model is proposed to forecast the diffusion of 5G technology 

and provide insights into the potential factors influencing the adoption of future 5G 

technology, particularly focusing on user demand. The model's effectiveness is demonstrated 

through an example application that simulates the dynamics of 5G technology adoption. 

The analysis highlights the importance of two key factors in driving the diffusion of 5G 

technology: the presence of 5G use cases and the preference for utilizing this technology. 

These factors have a significant impact on the overall adoption and diffusion of 5G technology. 



Firstly, the existence of 5G use cases plays a crucial role in driving the adoption of this 

technology. The identification and development of compelling use cases that leverage the 

unique capabilities of 5G, such as high data rates, low latency, and massive connectivity, are 

essential in attracting users and driving the demand for 5G services. 

Secondly, the preference towards the use of 5G technology significantly influences its 

diffusion. Users' willingness to adopt and migrate to 5G technology plays a vital role in its 

overall adoption rate. Factors such as the perceived benefits of 5G, improved user experience, 

and the availability of compatible devices contribute to users' preference for 5G over other 

existing technologies. This preference drives the demand for 5G services and leads to a higher 

adoption rate. 

By highlighting these factors, the analysis underscores the need for the development of 

compelling use cases and the importance of creating a positive user experience to drive the 

widespread adoption of 5G technology. It also emphasizes the significance of understanding 

users' preferences and addressing their needs to encourage the adoption and diffusion of 5G 

technology. 

These insights can inform stakeholders, including policymakers, network operators, and 

service providers, in their strategic planning and decision-making processes. By focusing on 

developing attractive use cases and addressing user preferences, they can effectively drive 

the adoption and diffusion of 5G technology, ultimately realizing its full potential and reaping 

the benefits it offers. 

Future research could extend the proposed model to include other factors, such as regulatory 

frameworks, network infrastructure, and technological capabilities, to gain a more 

comprehensive understanding of the 5G technology adoption process and to explore the 

adoption dynamics of the upcoming 6G technology.  
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