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Abstract 

One of the primary challenges of the telecommunications industry is to address the 

broadband connectivity divide. Policy makers, regulators, and network operators 

are in need to understand the amount of capital required to address this gap and 

generate solid evidence upon which policy options and regulatory remedies should 

be discussed. To date, most studies aimed at estimating the investment associated 

with broadband deployment have consisted in ad-hoc approaches based on cost 

modelling based on average estimations, which lack rigor in terms of considering 

differences in technologies, topography, and population density. In this paper we 

propose a general approach, based on the use of Unconditional Quantile Regressions 

(UQR), that addresses the heterogeneities that arise from considering differentiated 

coverage targets and investment required across the different deployment phases. 

Our tool was found to successfully account for the increasing investment to fulfil 

coverage targets. Moreover, it can be applicable to a wide range of countries, as 

robustness checks conducted provided evidence of being suitable, to some extent, 

for countries with more geographic challenges (e.g., mountains, forests, etc.). On this 

basis, the estimated UQR coefficients were also used to simulate 4G, 5G and FTTH 

expansion for scenarios of accelerated deployments in Latin America, by trading off 

cost and target network quality requirements. We simulated some coverage goals 

above the current trends for 2030, targeting on average 98% of the population 

covered by 4G, 80% of the population covered by 5G, and two-thirds of households 

passed by FTTH. For the overall Latin America region, the extra capital needed 

above current investment trends accounts for $17,101 million over the period 2023-

2029. Considering this challenge, potential regulatory remedies are considered.  

Keywords: Broadband, 4G, 5G, FTTH, Coverage, Investment, Digital Divide  
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1. Introduction 

Closing the digital divide is one of the main challenges that in most public policy 

agendas worldwide, especially in the developing world and most importantly after 

the pandemic. While addressing the divide has a demand dimension (focusing on 

affordability, and digital skills), the supply gap (fulfilling complete coverage) 

remains also critical. As such, the issue remains as to how to deploy broadband 

networks to achieve coverage for all the population. This is especially difficult since 

network deployments are usually profitable in urban areas, but less so in suburban 

and especially rural ones. Thus, estimating the investment effort required to close 

these coverage gaps is complex because the link between investment and coverage 

is not as straightforward and cannot be estimated based on average costs (in other 

words, the per household or population coverage for the remaining 5% could be 
much higher than what the average cost might forecast). 

Naturally, higher telecommunications investment should contribute to increase 

network coverage. However, the link between investment and coverage is not 

necessarily contemporaneous (e.g.: it may occur with a certain time-lag), and clearly 

it cannot be considered uniform, as we should expect it to be stronger at the 

beginning of the deployment phases, focused on urban areas, compared with later 
phases targeting less populated territories.  

In this context, the purpose of this paper is to shed some light on the link between 

telecommunications capital investment and network coverage, and to identify these 

heterogeneous effects related to stages of deployment. Ultimately, the objective is to 

provide a useful tool for policy makers, regulators, and telecommunications 

operators alike -especially in the developing world- attempting to estimate the 

investment required to fulfil universal connectivity plans, and therefore support the 

evaluation of policy and regulatory options (for example, regarding network sharing 

or Universal Service Funds) to fulfil this target.  

To estimate the impact of the investment required to achieve coverage throughout 

the geography of a given country, we follow an approach based on the estimation of 

Unconditional Quantile Regressions (UQR; Firpo, 2007; Firpo et al, 2009). On this 

basis, the coefficients estimated through UQR are applied to a sample of Latin 

American countries in need to accelerate network deployment. In doing so, we 

estimate the investment effort needed to close the coverage gap and we compare it 

against the natural growth extrapolation of current investment trends, to find out 

the magnitude of the “extra” effort required to achieve those targets. 

The remaining of the paper is structured as follows. Section 2 provides a literature 

review of previous research regarding the estimation of broadband deployment 

costs. Section 3 develops the empirical specification and presents the variables to be 

used. Section 4 presents the regression results, first through estimations to the 

mean, and afterwards through the UQR approach. Section 5 provides some 

robustness checks to the conducted estimates. Section 6 develops a simulation for 

the Latin America region. Finally, Section 7 ends with some conclusions and policy 
discussions.  
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2. Research Literature review 

Most studies conducted to assess the investment required to deploy 
telecommunications technologies have focused on cost modelling based on average 
values rather than exploring how the heterogeneous link between investment and 
coverage tends to evolve. In addition, the cost studies that analyse some geographic 
heterogeneities (e.g., mountain ranges) are usually ad-hoc approaches based on 
specific countries, meaning that they are therefore difficult to extrapolate to other 
contexts.   
 
The usual estimations of deployment investment consist in calculating costs by area 
and adding them up, an approach labelled “bottom-up”. This is the main difference 
with our empirical strategy, which consists in analysing the link between coverage 
and aggregated investment, which is more general and possible to extrapolate to 
other contexts, although less detailed as it does not disaggregate costs by area. Our 
strategy can be considered, therefore, a “top-down” approach. In fact, to the best of 
our knowledge, no empirical papers in the literature have followed our empirical 
strategy.  
 
The relevant “bottom-up” research on estimating telecommunications deployment 
investment conducted to date, originated with consulting companies, while others 
have been published in academic journals. In the first category of authors, Cartesian 
(2019) carried out a study to estimate the cost of deploying fiber to the home (FTTH) 
in the United States with the purpose of supporting the discussion of public policies 
related to fulfilling ultra-fast broadband coverage options. The estimation of the 
costs of using fiber optics for fixed network distribution considers population 
density as a determining economic factor, since investment tends to increase with a 
lower density. Cartesian (2019) begin their analysis by segmenting the uncovered 
territory according to population density and creating four groups. Once this is 
done, they calculate the deployment cost for each group based on operator 
experiences and benchmarks. Based on these observations a model is built that 
calculates the cost per household for deployment in each geography. This model 
estimated that the cost per household passed (that is, not connected) by FTTH in 
urban areas is approximately USD 700-1,500,1 while, in rural areas, it ranges 
between USD 3,000 and USD 6,000, depending on population density. From these 
unit values, and based on households not covered by density segment, total 
deployment costs were calculated, projecting that the investment needed to close 
the FTTH coverage gap in the United States is USD 70.1 billion. Beyond the increase 
in cost per household passed as density decreases and topography becomes more 
complex, the study concludes that FTTH deployment in low-density rural areas is 
not economically feasible. In contrast, this area should be served by wireless 
technology. While useful in terms of providing an overall estimate of capital based 
on metrics by density areas, the approach used by Cartesian is difficult to be applied 
to other countries as it requires highly disaggregated census information to 

 
1 Studies conducted for other countries usually estimate lower costs per household. This can be 
related to more expensive costs being faced in the United States in comparison to other economies. 
For example, the FTTH Council Europe (2012) estimated a cost for densely populated European areas 
to be close to 400 euros per household. 
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categorize zones and number of households by zones and analysis of unit 
deployment costs. 
 
As for 5G deployments, a report submitted to the European Commission by a 
consortium made up of Tech4i2, Real Wireless, Trinity College, Interdigital (2016), 
considers that the cost of 5G deployment per subscriber will follow an extrapolation 
of the investment costs for each previous generation of wireless technology. Thus, 
the authors project the cost per user for 5G in a linear manner based on 2G, 3G, and 
4G costs derived from Selian (2001). The cost per subscriber estimated in this highly 
qualitative study includes, according to analysts, radio and backhaul equipment 
costs, excluding maintenance, sales, marketing, billing, and administrative costs. 
Based on this estimate per subscriber, the study estimates a cost of approximately 
140 euros per 5G subscription, projecting a total investment of 58 billion euros to 
cover all member states with 5G. 
 
In a more rigorous study, Oughton and Frias (2017) estimate the costs for 5G rollout 
in Great Britain. The analysis is based on building technology architectures based on 
traffic models, mobile broadband adoption, and population density. Each postcode 
in the country is categorized according to antenna density, extrapolating 4G site 
deployment and future 5G needs. The study defines scenarios based on alternative 
models of infrastructure sharing and quality of service by region. The urban-
suburban scenario defined by the authors stipulates that deployment is carried out 
in all the areas corresponding to first and second level metropolitan centers. This 
strategy is similar to most of the 5G deployment plans formulated by operators in 
advanced economies, where the uniform speed to be offered is symmetrical 50 
Mbps. After this first scenario, further possibilities are considered to expand the 
simulation to rural areas. Each scenario requires different levels of investment, but 
they can be disaggregated in terms of investment by geography. According to this, 
the investment per population in cities with over 1 million inhabitants accounts to 
$45.71 per pop, increasing in suburban areas to $197.16 per pop, and in rural areas 
to $3,981.22 per pop. Based on these estimates, the national rollout of 5G in Great 
Britain will require USD 53.34 billion (not including spectrum costs).   
 
In turn, Katz and Cabello (2019) rely on the capital investment per population from 
the study by Oughton and Frias (2017) as a starting point and estimate the costs of 
deploying 5G networks in a sample of six Latin American countries: Argentina, 
Brazil, Chile, Colombia, Mexico and Peru.2 They are calculated according to the same 
four deployment scenarios of the British study, foreseeing spectrum auctions at the 
end of 2020 and deployment beginning in 2021 and then towards the end of 2022, 
beginning with the use of millimetric bands with small cells. Under these 
assumptions, the authors assume that the deployment of infrastructure would be 
completed by 2027. According to this analysis, the investment required for the 
deployment of 5G in the countries under consideration presents important 
differences once the different deployment scenarios are calculated (for example, a 
full national scenario versus deployment limited to metropolitan areas). For 
example, the investment for deploying 5G in urban and suburban areas reaches USD 
50.77 billion. 

 
2 The authors adjusted CAPEX requirements considering income differentials in each country with 
respect to the UK. 
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Another analysis of the investment required to deploy 5G was carried out for China 
by the Chinese Academy of Information and Communication Technologies (CAICT, 

2020), the research body linked to the Ministry of Industry and Information 
Technology. The premise of this study is an aggressive deployment of 5G 
nationwide, requiring a total investment of $ 232.2 billion by 2025. The investment 
estimate, in this case, was based on a projection of the number of 5G base stations 
to be installed and the average cost of deployment. 
 
In parallel with estimates of investment in specific technologies such as those 
presented above for exclusive cases of FTTH or 5G, research studies have also been 
developed where the analysis focuses on diverse complementary technologies. In 
other words, the estimation is preceded by a technical-economic analysis, 
determining which are the most appropriate technologies to serve a region based 
on specific characteristics of density and topography. 
 
In the first example of this approach, Feijoo and Gomez-Barroso (2013) undertook 
an analysis considering the options of FTTH, VDSL, DOCSIS and LTE to serve 100% 
of homes and companies in Spain. The authors classified each of the Spanish 
municipalities according to their population density, determining that fixed 
broadband is more suited for urban municipalities, while rural ones, defined 
according to a threshold of 100 inhabitants per square kilometre, would be served 
with LTE, with a download speed of 30 Mbps. The authors estimated that to reach 
100% coverage of inhabitants and companies in Spain, 12.6 billion euros would be 
required. 
 
With an exclusive focus on the Spanish rural context, Ovando et al (2015) calculated 
the investment required for coverage according to alternative scenarios of 
competition for infrastructure and sharing of LTE networks. The analysis addressed 
each of the rural municipalities, estimating whether it is possible to serve it through 
competing infrastructure operators offering LTE service for 30 Mbps speed, and if 
this is not feasible, considering an infrastructure sharing model. The study 
estimated a total investment between 755 million and 917 million euros. 
 
Another comparative investment study of different technologies is that of Katz 
(2022), where the author estimates the deployment cost required to cover urban 
and rural communities in the United States. Using a community of 19,000 users as a 
starting point, the analysis compares the cost of acquiring service from a private 
operator with the investment required if the community decides to deploy a private 
network using LTE or Wi-Fi technology. The study calculates the investment 
required for each option and stipulates the demographic and topographic 
conditions that determine the suitability of one or another technology. 
 
In conclusion, the studies reviewed to estimate the investment required for the 
deployment of broadband networks cover a very wide range of methodologies and 
levels of analytical depth. However, most cases are based on ad-hoc analysis for 
specific countries or contexts, not necessarily being capable of addressing a wide 
range of geographies. This study intends to address this gap. In addition, all the 
reviewed studies were conducted before the beginning of 5G network deployment. 
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In contrast, our methodology relies on statistical series from 2012 onwards to build 
econometric models that allow estimating investment and coverage based on real 
data. That said, the research literature review provides useful insights regarding the 
different costs and, in consequence suitability, of technologies by geography: for 
instance, urban areas targets may require advanced fixed and wireless technologies, 
while in rural areas the high capital requirements make 4G as the more accurate 
alternative. 
 
 
3. Empirical specification 

In this section we present the empirical specification and the dataset to be used in 

the study. We start describing the regression model to be estimated to measure 

coverage for 4G, 5G and FTTH technologies. We selected coverage as dependent 

variable as our focus is on the supply-side (network deployment) rather than on the 

demand (usually measured through adoption). The population covered by these 

broadband technologies is expected to be driven by four variables: capital 

investment of telecommunication operators (CAPEX pc), plus a vector X of additional 

controls (population density, population, and GDP per capita). In addition, coverage 

is expected to depend on topographic conditions, such as the presence of forests or 

hilly terrain. As these latest indicators are time-invariant, they will be captured by 

the country fixed effects. As a result, the equation is represented as: 

 

log⁡(𝐶𝑂𝑉𝐸𝑅𝐴𝐺𝐸𝑖𝑡) = 𝛼𝑖 + 𝛽log⁡(𝐶𝐴𝑃𝐸𝑋⁡𝑝𝑐𝑖𝑡−𝑛) + 𝛿𝑋𝑖𝑡 + 𝜀𝑖𝑡 

 

Where i and t denote respectively country and year, and 𝛼𝑖 denotes the certain 

country-level unobservable characteristics Naturally, we expect 𝛽 > 0. However, 

since investment may take some time to be translated into coverage gains because 

of construction times, permit delays, equipment imports required, and the like, we 

will have to determine which is the n period lag that better suits the model (n=0, 1, 

or 2).  

Table 1 presents the descriptive statistics and sources for the variables to be 

included in the regression models. The period considered is 2012-2021, while data 

was compiled for 108 countries (complete list in the Appendix 1). Coverage 

variables are defined as the percentage of population (for 4G and 5G) and 

percentage of households passed (for the case of FTTH). The source for both 

wireless technologies is GSMA Intelligence, while the FTTH variable was 

constructed by relying on the data provided by IDATE, OECD and regulatory 

agencies. CAPEX variables are measured in per capita terms. For mobile CAPEX, the 

data was extracted from GSMA Intelligence, while the fixed CAPEX dataset was built 

using overall telecom CAPEX reported by the International Telecommunications 

Union (ITU), and the share of fixed investment over the total levels, as reported by 

OMDIA. The three control variables were extracted from the World Bank database. 

 



 7 

Table 1. Descriptive statistics  

Variable Mean 
Standard 
deviation 

Obs. Source 

4G Coverage (% population) 0.619 0.377 1,090 GSMA Intelligence 
5G Coverage (% population) 0.045 0.147 1,090 GSMA Intelligence 
FTTH Coverage (% households) 0.262 0.321 1,090 IDATE, OECD, TAS 
FX CAPEX per capita ($) 37.505 49.114 1,090 ITU, OMDIA 
MB CAPEX per capita ($) 37.170 31.879 1,090 GSMA Intelligence 
Density (population/km2) 243.742 778.713 1,090 World Bank 
Population (million) 60.600  186.000 1,090 World Bank 
GDP per capita ($) 19,686.680 22,673.760 1,090 World Bank 

Source: authors’ analysis   

 

As reported, average 4G coverage for the period considered is 61.9%, while 5G 
naturally was at the time in its infancy (4.5%). On the other hand, 26.2% is the 
average for households were passed by fiber networks. Average fixed CAPEX per 
capita is USD 37.5. For mobile CAPEX, averages USD 37.2 per capita. 
 
 
4. Results 
 
4.1. Estimation at the mean 

Before turning into quantile regressions, we will conduct estimates at the mean with 
the objective of identifying the accurate lag between investment and coverage. As 
explained above, a delay exists between the moment that an investment is approved, 
and coverage gains are achieved. We need to estimate this gap to factor it in the 
timing linking capital spending and coverage increases. As the coverage variables 
are transformed into logs, all observations with zero values are dropped from the 
estimation. This means that only observations with positive coverage values are 
considered in the regressions. Table 2 presents the fixed effects model results for 
the case of FTTH coverage.  
 

Table 2. Fixed Effects model: Drivers of FTTH coverage   
Dep. var. = Log (FTTH COV) [I] [II] [III] 

Log (FX CAPEX pc) 
0.371**   
[0.157]   

Log (FX CAPEX pc) t-1 
 0.345**  
 [0.151]  

Log (FX CAPEX pc) t-2 
  0.252 
  [0.156] 

Log (Density) 
-0.594 -0.545 -0.548 
[2.400] [2.315] [2.223] 

Log (Population) 
8.256*** 8.086*** 8.349*** 
[2.824] [2.720] [2.663] 

Log (GDP pc) 
-0.108 -0.068 0.063 
[0.397] [0.385] [0.386] 

R-squared (within) 0.631 0.630 0.625 
Observations 723 723 723 
Note: *** p<1%, * *p<5%. All estimates include country fixed effects and a temporal trend. 

Robust standard errors in brackets. 

Source: authors’ analysis   
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In column [I] we test the contemporaneous link between fixed investment and FTTH 
coverage. The coefficient associated with fixed investment is positive and significant 
(at a 5% level). When we incorporate the first lag of investment (column [II]), the 
coefficient is similar in magnitude and significance, and the model fit remains almost 
unchanged (measured through the R-squared). Finally, if we consider the second lag 
(column [III]), the coefficient is no longer significant and the model fit decreases. 
Based on this evidence, the temporal link between investment and coverage for the 
case of FTTH should be either contemporaneous or with one-lag, but we can discard 
the possibility of the second lag. 
 
Next, we turn to 4G coverage (Table 3). We replicate the analysis for the 
contemporaneous value, the first and the second lag for mobile investment. In this 
case, the coefficients are positive and significant in all cases, while the model fit 
increases with the longer lag.  
 
 

Table 3. Fixed Effects model: Drivers of 4G coverage   
Dep. var. = Log (4G COV) [I] [II] [III] 

Log (MB CAPEX pc) 
0.347***   
[0.092]   

Log (MB CAPEX pc) t-1 
 0.464***  
 [0.086]  

Log (MB CAPEX pc) t-2 
  0.544*** 
  [0.098] 

Log (Density) 
1.128 0.453 0.721 

[2.254] [0.378] [2.288] 

Log (Population) 
6.425** 6.488*** 5.310** 
[2.519] [2.366] [2.575] 

Log (GDP pc) 
0.415 0.406 0.394 

[0.406] [0.378] [0.349] 
R-squared (within) 0.294 0.317 0.342 
Observations 940 940 940 

Note: *** p<1%, ** p<5%. All estimates include country fixed effects. Robust standard errors in 

brackets. 

Source: authors’ analysis   

 
Based on these results, the selected lag should be of two time periods. However, it 
does not seem reasonable for the deployment of mobile infrastructure to require 
longer than fixed networks, so by combining the evidence for both FTTH and 4G, we 
consider it reasonable to pursue the analysis by relying in a one-period lag for both 
technologies.   
 
Finally, we perform an estimate for 5G. Naturally, the number of observations drops 
abruptly as only few countries have started to deploy this technology standard by 
2021. In addition, this model is estimated with the more efficient random effects 
procedure rather than with fixed effects, as suggested by the results of the 
conducted Hausman test (Table A.1 in the Appendix 2). In this case, the coefficient 
associated to the first lag of mobile investment is similar as that for the case of 4G. 
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Table 4. Random Effects model: Drivers of 5G coverage   
Dep. Var. = Log (5G COV)  

Log (MB CAPEX pc) t-1 
0.436*** 
[0.169] 

Log (Density) 
0.033 

[0.052] 

Log (Population) 
0.002 

[0.060] 

Log (GDP pc) 
0.419*** 
[0.150] 

R-squared (within) 0.660 
Observations 131 
Note: *** p<1%, ** p<5%, * p<10%. All estimates include country random effects and 

a temporal trend. Robust standard errors in brackets. 

Source: authors’ analysis  

  

In sum, based on regressions at the mean to identify the accurate lag between 

investment and coverage, one year time lag was selected for all technologies. Having 

completed this first analysis, we move to estimate the UQR coefficients that link 

capital spending with technology coverage. 

 

4.2. UQR estimates 
 
As denoted in Section 3, the impact of telecom investment on coverage is captured 
by , that in a standard regression model is assumed to represent the average 
observation. However, to be able to test the hypothesis that the link between 
investment and coverage varies across the actual coverage distribution, we must 
follow a different approach. Quantile regressions are used to obtain an estimate of 
the coefficient of interest in different points of the distribution. In that regard, the 
standard practice has been to use the Conditional Quantile Regression (CQR) 
approach developed by Koenker and Bassett (1978). However, if we use CQR we will 
obtain estimates of the effect of the measure of investment on the conditional 
distribution of coverage, that is likely to differ markedly from the actual distribution. 
In other words, CQR provides the estimated impact of a covariate on a quantile of 
the coverage conditional on specific values of the other covariates. As a result, CQR 
generates estimates that may not be generalizable or interpretable in the population 
context, limiting thus their utility from a policy perspective. Hence, to consider the 
kind of heterogeneities of interest in this study, the effect of investment on different 
parts of the coverage distribution is estimated by means of UQR. Following this 
approach, we can obtain more interpretable results as UQR marginalizes the effect 
over the distributions of the other covariates. As we are especially concerned with 
the effect of increasing investment on the unconditional coverage distribution, the 
UQR is far more suitable to test our hypothesis.  
 
Among the methods proposed so far to implement the UQR approach, we choose 
that proposed by Firpo et al (2009)3, that consists of running a regression of a 

 
3 Other alternatives include the methods by Rothe (2010) and Frölich and Melly (2013). 
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transformation —a (recentred) influence function— of the outcome variable on the 
explanatory variables.  
 
Imagine that we are estimating a regression of an outcome variable Y on a series of 
covariates denoted by X. Let FY represent the marginal (unconditional) distribution 
of the outcome variable, while v reflects the point in the distribution. The influence 
function IF(Y; ν, FY) of a distributional statistic ν(FY) will then represent the influence 
of an individual observation on that distributional statistic. Adding back the statistic 
ν(FY) to the influence function yields what Firpo et al (2009) call as “recentred 
influence function” (RIF), that can be represented as: 
 

𝑅𝐼𝐹(𝑌; 𝑞𝜏, 𝐹𝑌) = 𝑞𝜏 + 𝐼𝐹(𝑌; ⁡𝜈, 𝐹𝑌) 
 
Being 𝑞𝜏 the τ-quantile. In the case of the mean of the distribution (𝜇), RIF is simply 
the outcome variable, so the regression of 𝑅𝐼𝐹(𝑌; 𝜇) will just yield the same result 
as an Ordinary Least Squares (OLS) estimate of Y on X. On the other hand, for the 
case of quantiles, the dependent variable to be estimated is: 
 

𝑅𝐼𝐹(𝑌; 𝑞𝜏, 𝐹𝑌) = 𝑞𝜏 + (𝜏 − 𝟙{𝑌 ≤ 𝑞𝜏})/𝑓𝑌(𝑞𝜏) 
 
As a result, the dependent variable in the regression is the RIF, and a simple OLS 
regression of this new dependent variable can be run on the covariates.  
 
By running this transformed measure as dependent variable, we will be able to 
identify specific coefficients of interest for the different points of the distribution. 
While in a standard regression 𝑌 = ℎ(𝑋, 𝜀) the associated coefficient of interest 

takes the form of 
𝜕ℎ(𝑋,𝜀𝜏(𝑋))

𝜕𝑥
= 𝛽, in the case of UQR estimates, the unconditional 

quantile partial effect associated to the τ-quantile will be: 
 

𝑈𝑄𝑃𝐸(𝜏) = 𝐸 [𝜔𝜏(𝑋)
𝜕ℎ(𝑋, 𝜀𝜏(𝑋))

𝜕𝑥
] 

 
where  𝜔𝜏(𝑋) a weighting function defined as the ratio between the conditional and 
unconditional densities. The full demonstration is provided in Firpo et al (2009). 
 
In sum, the estimation conducted through UQR will provide us with coefficients ⁡𝜏 
for the respective τ-quantiles. In the context of our study, a downward sloping trend 
in the  effects over the quantiles should be read as a higher increase in coverage for 
the less covered countries generated by the increase in investment.  
  
Table 5 provides the results for the UQR estimate of drivers of FTTH coverage. We 
selected the following percentiles of the distribution of the dependent variable: P5, 
P10, P20, P30, P30, P40, P50, P60, P70, P80, P90, and P95. All estimates incorporate 
country level fixed effects and bootstrapped standard errors (200 reps). 
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Table 5. UQR Fixed Effects model: Drivers of FTTH coverage   
Dep. var. =  
Log(COV FTTH) 

FTTH coverage percentile  
P5 P10 P20 P30 P40 P50 P60 P70 P80 P90 P95 

Log(FX CAPEXpc)t-1 
2.015** 0.905* 0.781** 0.555** 0.494*** 0.157 0.100 0.144* 0.078 -0.086 -0.212** 
[1.004] [0.523] [0.393] [0.235] [0.189] [0.153] [0.108] [0.085] [0.096] [0.095] [0.085] 

Log(Density) 
31.673 30.190* 7.187 -9.368 -9.214** -13.212*** -8.317*** -7.059*** -7.509*** -7.494*** -2.261 

[27.108] [17.090] [8.892] [7.931] [4.631] [2.309] [2.425] [1.855] [1.787] [2.598] [2.402] 

Log(Population) 
29.550 6.583 6.588 15.508** 11.140*** 10.794*** 7.456*** 5.239** 5.044*** 4.664 -1.418 

[25.152] [18.125] [9.500] [7.292] [4.261] [2.486] [2.589] [2.124] [1.959] [3.084] [2.965] 

Log(GDP pc) 
4.046 -0.230 -0.756 -0.609 -1042** -1.024** -0.393 0.322 0.071 0.129 0.564** 

[3.804] [1.472] [1.050] [0.769] [0.519] [0.419] [0.341] [0.330] [0.246] [0.295] [0.230] 
R-squared (within) 0.147 0.208 0.231 0.299 0.323 0.344 0.318 0.326 0.246 0.181 0.165 
Observations 723 723 723 723 723 723 723 723 723 723 723 

Note: *** p<1%, ** p<5%, * p<10%. All estimates include country fixed effects and a temporal trend. Bootstrapped standard 

errors in brackets (200 reps).  

Source: authors’ analysis   

 
From the analysis of Table 5, there seems to be a downward sloping trend for the 
coefficients that link investment and coverage. Just to cite some examples, at the 5th 
percentile, an increase of 1% in investment yields an increase of FTTH coverage of 
2.015% the following year. However, that elasticity takes a value of 0.494% in the 
40th percentile, and of 0.144% in the 70th percentile. From the median onwards, 
some non-significant coefficients appear, and even a negative elasticity is registered 
at the 95th percentile.4 
 
It does not seem to be reasonable to expect a negative elasticity because investment 
should never result in a lower coverage, although the observation is valid to 
illustrate the downward slope. By allocating the corresponding coverage level for 
each estimated decile and considering the positive and significant coefficients from 
Table 5, we can plot the different elasticity levels for each degree of coverage (Figure 
1). Moreover, we can approximate by a potential function the coefficient at each 
potential coverage level.  
 
 

Figure 1. Coefficient for the impact of fixed investment on FTTH coverage 

 
Source: authors’ analysis   

 
4 This negative elasticity may be the result of using fixed CAPEX as the investment variable, rather 
than the specific CAPEX on FTTH technology as would have been desirable, but unfortunately was 
unavailable. We thank an anonymous referee for pointing this. 
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In synthesis, the impact of investment on coverage decreases with coverage because 
the capital required to grow a comparable amount of households is larger with 
diminishing density, a result coincident with Cartesian results presented in the 
review of the literature. The advantage of this methodology is that it can be applied 
to any country where data on coverage, density and population data exists. 
 
Next, in Table 6 we calculate same estimates for the case of 4G technology. Again, a 
clear pattern of downward slope is appreciated for the elasticities once we move 
across to higher percentiles, starting from P10 in this case.  
 
 

Table 6. UQR Fixed Effects model: Drivers of 4G coverage   
Dep. var. = Log(COV 
4G) 

4G coverage percentile 
P5 P10 P20 P30 P40 P50 P60 P70 P80 P90 P95 

Log(MB CAPEXpc)t-1 
1.277** 1.778*** 0.969*** 0.656*** 0.198*** 0.108*** 0.066*** 0.069*** 0.077*** 0.056*** 0.013** 
[0.635] [0.584] [0.252] [0.154] [0.058] [0.034] [0.024] [0.019] [0.022] [0.017] [0.007] 

Log(Density) 
2.169 9.150 0.907 0.636 0.565 0.137 0.108 0.053 -0.588 0.040 0.056 

[7.351] [10.825] [4.485] [2.635] [1.132] [0.708] [0.584] [0.602] [0.516] [0.298] [0.227] 

Log(Population) 
13.352 19.704 17.657*** 10.179*** 3.919*** 1.840** 1.218** 1.151** 1.304** 0.465 0.095 
[8.965] [12.047] [5.625] [3.355] [1.354] [0.788] [0.613] [0.557] [0.617] [0.307] [0.212] 

Log(GDP pc) 
1.774 1.158 0.341 0.085 0.133 0.003 0.101* 0.107** 0.088** 0.062* -0.009 

[1.208] [0.872] [0.523] [0.338] [0.162] [0.085] [0.052] [0.046] [0.037] [0.034] [0.014] 
R-squared (within) 0.127 0.203 0.239 0.207 0.164 0.115 0.102 0.092 0.067 0.045 0.017 
Observations 940 940 940 940 940 940 940 940 940 940 940 

Note: *** p<1%, ** p<5%, * p<10%. All estimates include country fixed effects. Bootstrapped standard errors in 
brackets (200 reps).  
Source: authors’ analysis   

 
 
Mirroring the previous exercise of plotting the elasticity for each coverage level, in 
Figure 2 we present the corresponding chart for the case of 4G.  
 
 

Figure 2. Coefficient for the impact of mobile investment on 4G coverage 

 
Source: authors’ analysis   
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In this case, the function that better fits the evolution of the elasticity is a logarithmic 
one. Interestingly, the fall in the investment impact is less abrupt in the case of 4G 
than in FTTH, something that is explained by the fact that wireless technologies are 
less costly to deploy, and because of this, the territorial scope is usually larger. For 
example, moving from 60% to 80% coverage makes the respective coefficient to 
decrease in more than half of its value, something that does not happen for a similar 
variation in the case of FTTH, because the coverage resulting from the investment 
was already at its minimum level. 
 
Although hardly noticeable in Figure 2, the coefficient that links mobile investment 
with 4G coverage effectively drops abruptly at the end of the distribution. To 
illustrate this point, in Figure 3 we use the estimated coefficients to approximate the 
required increase in investment to increase 4G coverage in 1%. The results are clear 
to suggest that, on average, 4G deployment becomes more expensive as we advance 
in the deployment plans, but a dramatic expansion in costs takes place at the 95th 
percentile, equivalent to a coverage level of 99% in our sample. This explains why it 
is not reasonable to expect 100% coverage in 4G, having to rely instead on an 
alternative technological mix (e.g., satellite or Wi-Fi) to cover the final segments of 
the population. 
 
 

Figure 3. Mobile CAPEX increase needed (%) to increase 4G coverage in 1% 

 
Source: authors’ analysis   

 

 
Finally, it does not seem accurate to perform UQR regressions in the case of 5G 
because of a lack of observations, considering the limited number of countries that 
started to deploy this technology by 2021. In addition, there is clear lack of mature 
countries for this technology to cover a wide range of deployment phases as 
required to identify the heterogeneities found for the cases of FTTH and 4G. The only 
result we dispose of for 5G is the coefficient estimated at the mean in Table 4, 0.436. 
The mean for 5G for the 131 observations of Table 4 is 37.6% of people covered. If 
we compare with 4G, by the time 37.6% persons were covered, the simulated 
coefficient takes a value of 0.795 (according to the logarithmic function presented 
in Figure 2). This means that, at a similar stage of development, the investment in 
4G is 1.8 times more profitable in terms of coverage, than 5G. This is reasonable as 
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5G is a technology that demands much more densification of base stations, which is 
consistent with the findings of Tech4i2, Real Wireless, Trinity College, Interdigital 
(2016) and Selian (2001) presented in the review of the literature, in the sense that 
new technologies are more expensive to deploy than the previous generations. 
 
If we assume that the ratio that explains the differences in investment between 4G 
and 5G can be extrapolated to other points of the distribution, we can simulate, 
based on the trajectory of 4G across the distribution, how the coefficient for 5G may 
take place for each potential coverage level. This will look like in Figure 4. 

 
 

Figure 4. Coefficient for the impact of mobile investment on 5G coverage 

 
Source: authors’ analysis   

 
 
5. Robustness checks 
 
While the estimates conducted by UQR appear to be reasonable, in this section we 

will test some additional checks to find if they are robust enough. This chapter is 

broken down into two sections. First, we check if results vary significantly after the 

introduction of additional controls to account for cross-country disparities. Second, 

we analyse whether our results are applicable to a wide range of countries, even 
those with more problematic geographic contexts.  

 

5.1. Additional controls 
 
While the baseline UQR estimates account for disparities in population, density, and 

income levels, plus the inclusion of fixed effects that absorbs time-invariant 

topographic factors, it could still be argued that additional controls may be needed, 

especially to account for regulation disparities and further sources of costs.5  

 
5 We are grateful for an anonymous referee for raising up this point.  
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Empirically, a well-developed regulatory framework has been found in prior 

research to be relevant to stimulate telecommunications investment (Katz and Jung, 

2021). However, there are other sound regulations that may generate additional 

efficiencies and a better optimization of resources and thus, facilitate coverage 

expansion by reducing investment levels. To account for regulatory differences, we 

compiled the ICT Regulatory Tracker composite index provided by the ITU, a metric 

that records the existence of certain institutional and regulatory characteristics 

considered to be good practices for the sector development. This composite index 

helps to track progress and identify gaps in regulatory frameworks, being based on 
50 indicators.6 

As for further costs sources, we will account for cross-country disparities in labour 

costs, through the monthly average wages for the IT sector reported by the 

International Labour Organization (ILO). Considering that the ILO data is 

incomplete for some countries, we interpolated for missing information by 

assuming that IT wages evolved at a similar rate as the average salaries in each 

economy, and for cases where average salaries were not available, we made yearly 
adjustments based on the inflation.   

Next, we replicated the UQR estimates incorporating as additional controls the 

Regulatory Tracker and the IT wages. Results are presented for the FTTH models 

(Table 7) being the investment coefficients mostly unchanged with respect to those 

reported in Table 5, suggesting that any omission in regulatory or additional cost 

measures should not be biasing the main results. We checked for each of the 

reported points in the distribution to determine if the coefficient associated with 

investment in Table 5 was statistically different to the one provided in Table 7, with 

results not rejecting in neither case the null hypothesis of equality in both 

estimates.7 This provides robustness to the results presented in Table 5. 

 
Table 7. UQR Fixed Effects model: Drivers of FTTH coverage 

(Model with additional controls) 
Dep. var. = Log(COV 
FTTH) 

FTTH coverage percentile 
P5 P10 P20 P30 P40 P50 P60 P70 P80 P90 P95 

Log(FX CAPEXpc)t-1 
2.064* 0.933* 0.789** 0.552** 0.527*** 0.148 0.093 0.135* 0.067 -0.079 -0.207** 
[1.110] [0.550] [0.402] [0.252] [0.192] [0.145] [0.114] [0.081] [0.088] [0.097] [0.083] 

Log(Density) 
27.554 29.917** 7.515 -10.454 -8.941* -13.436*** -8.388*** -6.772*** -7.509*** -7.140*** -2.008 

[23.805] [14.624] [9.366] [8.264] [4.706] [2.501] [2.357] [1.759] [1.869] [2.120] [2.078] 

Log(Population) 
40.092 8.256 6.317 17.794** 10.155** 10.868*** 7.406*** 4.348** 4.690** 4.047* -1.849 

[25.883] [17.487] [9.770] [7.851] [4.279] [2.449] [2.682] [1.882] [2.092] [2.420] [2.441] 

Log(GDP pc) 
7.565* 1.077 -0.241 -0.023 -1.199* -1.130** -0.452 0.051 -0.141 -0.220 0.397* 
[3.916] [1.786] [1.152] [0.822] [0.614] [0.435] [0.363] [0.297] [0.297] [0.305] [2.411] 

Regulatory Tracker 
0.042 0.083 0.058 -0.012 0.008 -0.013 -0.007 -0.003 -0.009 -0.011 -0.001 

[0.086] [0.059] [0.039] [0.023] [0.016] [0.011] [0.008] [0.008] [0.007] [0.007] [0.004] 

IT wages 
-0.002*** -0.001** -0.000 -0.000* 0.000 0.000 0.000 0.000* 0.000* 0.000*** 0.000* 

[0.001] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
R-squared (within) 0.164 0.224 0.241 0.305 0.334 0.348 0.321 0.336 0.266 0.197 0.163 
Observations 722 722 722 722 722 722 722 722 722 722 722 

Note: *** p<1%, ** p<5%, * p<10%. All estimates include country fixed effects and a temporal trend. Bootstrapped standard 

errors in brackets (200 reps).  

Source: authors’ analysis   

 
6 See full details in https://app.gen5.digital/tracker/metrics 
7 Available upon request. 

https://app.gen5.digital/tracker/metrics
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For the case of the 4G regressions (Table 8) the inclusion of further controls 

generates some minor differences in the first few quantiles, although the estimates 

behave mostly as those in Table 6. We also checked if each of the reported coefficient 

associated with investment in Table 6 was statistically different to those provided in 

Table 8, with results not rejecting in neither case the null hypothesis of equality in 

both estimates.8 Again, this provides support for our main estimations.  

 

Table 8. UQR Fixed Effects model: Drivers of 4G coverage 
(Model with additional controls) 

Dep. var. =  
Log(COV 4G) 

4G coverage percentile 
P5 P10 P20 P30 P40 P50 P60 P70 P80 P90 P95 

Log(MB CAPEXpc)t-1 
1.015* 1.415** 0.796*** 0.438*** 0.124** 0.084** 0.061*** 0.064*** 0.068*** 0.047** 0.013* 
[0.608] [0.563] [0.253] [0.155] [0.057] [0.033] [0.022] [0.021] [0.024] [0.019] [0.007] 

Log(Density) 
0.176 4.252 -0.369 -0.734 -0.062 -0.299 0.009 -0.047 -0.671 0.016 0.091 

[7.360] [8.413] [4.564] [2.850] [1.064] [0.692] [0.586] [0.613] [0.542] [0.308] [0.267] 

Log(Population) 
12.859 20.431** 17.242*** 8.416*** 3.013** 1.813** 1.125* 1.066* 1.225* 0.310 -0.021 
[9.192] [10.143] [5.641] [3.255] [1.312] [0.762] [0.612] [0.549] [0.681] [0.344] [0.284] 

Log(GDP pc) 
2.754* 2.612** 1.259** 0.915*** 0.332** 0.146** 0.122** 0.128** 0.115*** 0.073* -0.019 
[1.636] [1.212] [0.590] [0.327] [0.165] [0.070] [0.061] [0.050] [0.042] [0.038] [0.021] 

Regulatory Tracker 
0.065 0.076** 0.047*** 0.043*** 0.021*** 0.009*** 0.002 0.002* 0.003** 0.003** 0.001 

[0.044] [0.036] [0.018] [0.013] [0.005] [0.003] [0.002] [0.001] [0.001] [0.001] [0.001] 

IT wages 
-0.000 -0.001** -0.000** -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

R-squared (within) 0.160 0.236 0.273 0.244 0.205 0.158 0.114 0.104 0.078 0.056 0.025 
Observations 927 927 927 927 927 927 927 927 927 927 927 

Note: *** p<1%, ** p<5%, * p<10%. All estimates include country fixed effects. Bootstrapped standard errors in 
brackets (200 reps).  
Source: authors’ analysis   

 

 

5.2. Suitability check for geographically complex countries 
 
Beyond the introduction of additional controls, an additional critique of our model 

could be related to the fact that while it reflects the evolution of the coefficient 

linking investment and coverage for an “average” country, it may not be useful for 

countries exhibiting topographic features with important differences from the 

average one.  

To check if this is the case, we compiled two variables to account for geographic 

complexity. First, we built a variable for average elevation by country.9 Second, we 

extracted from the World Bank the share of each country’s land area covered by 

forests. While it is difficult to find a metric that covers all dimensions of geographic 

complexity, we remain confident that the selected indicators provide an accurate 

and complementary value.  

We start the analysis with the average elevation variable, a measure that takes higher 

values in countries with more mountains, hence, a higher value should be associated 

with larger topographical complexity. The mean of the average elevation variable in 

 
8 Available upon request. 
9 The compilation was done from diverse sources, mainly Wikipedia and ChatGPT. 
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our sample is 535.37 meters. However, the distribution of this variable suggests that 

the main problem may be arising from observations situated at the right-tail of the 

distribution, that is, those that present much higher average elevation than the mean 

(Figure 5).  

Figure 5. Distribution of Average Elevation 

 
Source: authors’ analysis   

 

To check if our main results would change significantly for geographically complex 

countries, we split the sample and re-estimated our UQR models only for those 

observations situated at the final quartile of the distribution of average elevation, 

that is, countries with an average elevation equal or above the corresponding figure 
for the 75 percentile (746 meters). Results are presented next for FTTH in Table 9. 

 

Table 9. UQR Fixed Effects model: Drivers of FTTH coverage 
(Countries with average elevation > 746 meters) 

Dep. var. = Log(COV 
FTTH) 

FTTH coverage percentile 
P5 P10 P20 P30 P40 P50 P60 P70 P80 P90 P95 

Log(FX CAPEXpc)t-1 
0.922 2.929* 1.602* 2.070** 0.653 0.581* 0.151 -0.720 -0.595** -0.299 -0.394 

[1.914] [1.609] [0.898] [0.821] [0.582] [0.345] [0.359] [0.459] [0.279] [0.301] [0.321] 

Log(Density) 
187.586 89.914 90.155* 3.146 36.606 43.822 32.766 22.379 -20.416 -65.986 13.762 

[117.196] [73.908] [53.436] [33.760] [29.527] [32.160] [32.234] [27.856] [29.574] [44.195] [30.460] 

Log(Population) 
1.322 54.526 -57.515 4.887 -36.211 -52.456* -45.653 -36.762 0.576 46.983 -32.430 

[102.475] [63.567] [53.375] [31.813] [27.163] [30.751] [32.616] [26.579] [29.857] [44.692] [27.205] 

Log(GDP pc) 
19.338*** 4.671 -0.706 -0.265 2.283 2.548* 1.890 1.443 0.073 0.668 2.433* 

[6.112] [4.940] [2.455] [2.366] [1.913] [1.345] [1.213] [1.158] [1.361] [1.405] [1.461] 
R-squared (within) 0.483 0.574 0.397 0.326 0.280 0.464 0.510 0.410 0.379 0.366 0.346 
Observations 185 185 185 185 185 185 185 185 185 185 185 

Note: *** p<1%, ** p<5%, * p<10%. All estimates include country fixed effects and a temporal trend. Bootstrapped standard 

errors in brackets (200 reps).  

Source: authors’ analysis   
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In most cases, results are like those of the main estimates, especially for the 

percentiles below the median. Moreover, in some of these cases the coefficients are 

larger than in the original regressions. This can be explained as in more 

geographically complex countries, the population is typically more concentrated in 

the more habitable areas. This would suggest that more concentrated population 

may be faced at the early stages of deployment, with the opposite happening after 

the right-end. 

The significance difference test conducted to check if the parameters of Table 5 differ 

from those of Table 9 suggested that only in 3 of the 11 estimated points of the 

distribution significant differences arise.10 First, in P30, where the coefficient of 

Table 9 was found to be larger than that of Table 5 (significance level 10%), it was 

explained in the previous paragraph. Next, in P70 and P80, where as expected, the 

coefficients of Table 5 were found to be larger (at 10% and 5% significance levels, 

respectively). These results suggest that the model can be considered appropriate to 

simulate investment effects at an “average country with high elevation” at least up 

to percentile 60 of the coverage distribution. If we consider P70 as the point from 

which the original model is no further applicable for these complex countries, this 

point represents in our sample almost 60% of households passed with FTTH. 

Naturally, for a smaller subsample of more extreme topographically complex 

countries (for example, those located in the last decile of average elevation), the 

applicability of our model is expected to be more limited, although the number of 

observations was not enough to conduct reliable UQR regressions.  

Next, we present the results for the 4G coverage model estimated only for the sample 
of countries with average elevation above 746 meters (Table 10). 

 
Table 10. UQR Fixed Effects model: Drivers of 4G coverage 

(Countries with average elevation > 746 meters) 
Dep. var. =  
Log(COV 4G) 

4G coverage percentile 
P5 P10 P20 P30 P40 P50 P60 P70 P80 P90 P95 

Log(MB CAPEXpc)t-1 
1.776* 1.600** 1.303*** 1.079*** 0.652*** 0.401** 0.116 -0.066 -0.123 -0.078 -0.017 
[0.956] [0.752] [0.501] [0.324] [0.242] [0.156] [0.134] [0.084] [0.081] [0.052] [0.056] 

Log(Density) 
32.560 20.877 20.922 23.493* 31.533** 9.456 4.360 6.064 0.894 -4.024 1.105 

[27.052] [22.956] [15.670] [12.493] [12.816] [7.971] [6.278] [5.096] [4.786] [3.895] [3.545] 

Log(Population) 
-24.515 -6.675 -6.159 -11.488 -20.844* -4.581 -0.649 -3.267 1.526 5.485 -0.444 
[25.464] [22.488] [14.935] [12.380] [12.441] [7.725] [6.361] [5.426] [4.969] [4.032] [3.974] 

Log(GDP pc) 
1.015 0.655 0.221 -0.178 0.161 -0.017 -0.357 -0.308 -0.036 0.043 0.132 

[0.755] [0.767] [0.718] [0.584] [0.400] [0.283] [0.232] [0.191] [0.173] [0.107] [0.100] 
R-squared (within) 0.154 0.241 0.418 0.408 0.364 0.233 0.183 0.126 0.072 0.052 0.023 
Observations 287 287 287 287 287 287 287 287 287 287 287 

Note: *** p<1%, ** p<5%, * p<10%. All estimates include country fixed effects. Bootstrapped standard errors in 
brackets (200 reps).  
Source: authors’ analysis   

 

In most cases, results are like those of the main estimates, with differences across 

the investment parameters not being statistically significant.11 The only significant 

differences arise in P40 and P50 (where the coefficients are larger for the 

 
10 Available upon request. 
11 Available upon request. 
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geographically complex sample, with a significance level of 10%) and in P80 and P90 

(where the baseline coefficients are larger, with a significance level of 5%).  

The increased coefficients in P40 and P50 in the geographically complex subsample 

can be associated with the reasons explained above for the FTTH case: people tend 

to be more concentrated in these cases, favouring the early phases of deployment 

and complicating the situation at the right-tail. This suggests, again, that in these 

complex countries our original model can be appropriate to estimate investment 

effects up to a certain point, beyond it becomes unsuitable for that purpose. 

Assuming that the original model becomes unapplicable for points located in P80 

and beyond, this corresponds in our sample for 4G coverage levels of 98%, still very 

high. This confirms again that wireless technologies are far more suitable than fixed 

ones for geographically complicated areas.   

Next, we mirror the previous exercise but for the subsample of countries with larger 

forest area. Again, the distribution of this variable suggests a twin-peak distribution 

around the variable mean (0.300), with an important mass of observations located 

at the right (Figure 6). We will focus on these complex observations situated in the 

last quartile, those with more than 0.446 of the territory covered by forests.  

 

Figure 6. Distribution of Forest land (%) 

 
Source: authors’ analysis   

 
 
Results for FTTH coverage estimates for the subsample of large forest countries are 

presented in Table 11. The significance difference test conducted to check if the 
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parameters of Table 5 differ from those of Table 11 suggested that in none of the 11 

estimated points of the distribution significant differences arise.12 This suggest that 
the proposed model is also applicable to the average country with large forest.  

 

Table 11. UQR Fixed Effects model: Drivers of FTTH coverage 
(Countries with forest covering > 44.6% of their territory) 

Dep. var. = 
Log(COV FTTH) 

FTTH coverage percentile 
P5 P10 P20 P30 P40 P50 P60 P70 P80 P90 P95 

Log(FX CAPEXpc)t-1 
3.020* 2.727* 1.249* 0.819* 0.928** 0.613* 0.618* -0.077 0.091 -0.098 -0.072 
[1.677] [1.524] [0.690] [0.474] [0.432] [0.356] [0.355] [0.293] [0.279] [0.219] [0.173] 

Log(Density) 
123.114* -43.099 -55.811 -20.061 1.322 10.791 0.306 5.554 13.855 -8.373 8.777 
[68.536] [77.385] [39.759] [26.509] [20.992] [16.257] [17.073] [13.571] [10.552] [9.147] [10.519] 

Log(Population) 
-46.313 138.921* 79.144* 35.699 9.486 -2.233 -8.856 -21.969 -30.162** -11.126 -25.660** 
[50.914] [74.062] [45.266] [28.115] [20.364] [16.804] [19.256] [14.757] [12.090] [10.812] [10.398] 

Log(GDP pc) 
1.092 -1.526 0.284 0.426 0.555 0.745 -1.609* -1.196 -0.259 -1.754** 0.170 

[4.053] [3.003] [1.862] [1.600] [1.313] [1.189] [0.050] [0.777] [0.930] [0.750] [0.969] 
R-squared (within) 0.253 0.395 0.300 0.376 0.459 0.438 0.324 0.332 0.379 0.325 0.296 
Observations 249 249 249 249 249 249 249 249 249 249 249 

Note: ** p<5%, * p<10%. All estimates include country fixed effects and a temporal trend. Bootstrapped standard errors in 

brackets (200 reps).  

Source: authors’ analysis   

 
Finally, in Table 12 we present the results for 4G coverage. The significance 

difference test conducted to check if the parameters of Table 6 differ from those of 

Table 12 suggested that only in 2 of the 11 estimated points of the distribution 

significant differences arise.13 This takes place in P40 and P50, where the 

coefficients of Table 12 were found to be larger (at 5% significance level), possibly 

because in the forest dominated countries people tend to be more concentrated in 

the more habitable areas, favouring the early phases of deployment and 

complicating the situation at the right-tail. 

 
Table 12. UQR Fixed Effects model: Drivers of 4G coverage 
(Countries with forest covering > 44.6% of their territory) 

Dep. var. =  
Log(COV 4G) 

4G coverage percentile 
P5 P10 P20 P30 P40 P50 P60 P70 P80 P90 P95 

Log(MB CAPEXpc)t-1 
0.861 1.609** 1.317*** 0.933*** 0.731*** 0.380*** 0.232* 0.101 0.074 0.111 0.058 

[0.764] [0.675] [0.447] [0.328] [0.230] [0.131] [0.120] [0.071] [0.052] [0.052] [0.051] 

Log(Density) 
-17.868 -45.114 -36.990* -21.091 -6.608 -5.157 0.128 2.376 -2.025 -2.026 -0.093 
[30.555] [33.431] [21.625] [15.821] [11.406] [7.194] [6.688] [4.009] [3.159] [2.584] [1.880] 

Log(Population) 
26.368 57.951* 53.201** 34.805** 13.772 8.215 1.129 -1.212 2.354 1.905 0.007 

[32.135] [35.594] [22.517] [16.374] [11.504] [7.327] [6.772] [3.807] [3.046] [2.514] [1.833] 

Log(GDP pc) 
0.906 -0.170 -1.286 -1.322* -1.147** -0.489 -0.429* 0.010 -0.024 -0.015 0.009 

[0.793] [1.097] [0.933] [0.719] [0.491] [0.335] [0.228] [0.138] [0.087] [0.074] [0.052] 
R-squared (within) 0.082 0.203 0.356 0.313 0.283 0.176 0.096 0.036 0.018 0.023 0.019 
Observations 285 285 285 285 285 285 285 285 285 285 285 

Note: *** p<1%, ** p<5%, * p<10%. All estimates include country fixed effects. Bootstrapped standard errors in 
brackets (200 reps).  
Source: authors’ analysis   

 
All in all, the evidence suggests that the coefficients obtained from our main 

estimates can be considered valid, or even conservative, not only for an “average” 

country, but also for an “average country with large extension of forest” and for an 

 
12 Available upon request. 
13 Available upon request. 
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“average country with high elevation”, in this last case up to the percentiles 70 (for 

FTTH) and 80 (for 4G).   

 
 
6. Simulation for an emerging region: Latin America  
 
After estimating the coefficients that link investment to coverage, it is now possible 
to find out how much investment is required to reach certain broadband 
deployment targets. In this exercise, we focus on a timeline reaching 2030 for the 
Latin America region, a region that urgently needs to accelerate its network 
deployments to close the digital divide.  
   
First, it is necessary to establish potential connectivity goals to reduce to the 
minimum the current coverage gaps. The criteria followed was to ensure that 98% 
of the population should be covered to, at least, a 4G network by 2030, while on the 
other hand, that percentage is expanded to 99% by adding the satellite technology 
for rural areas14. This means that 99% of the people will be covered by a broadband 
solution. As for the last generation technologies, the target is that more than 80% of 
the population is covered by 5G, while two-thirds of households should be passed 
by FTTH (Table 13). Naturally, the targets vary by country, attending to the specific 
situation in each case in terms of current network developments.15 
 
There are four countries in the Latin America sample that exhibit high average 
elevation as denoted in Section 5.2: Bolivia (1,192), Chile (1,871), Ecuador (1,117), 
Mexico (1,111) and Peru (1,555). On the other hand, several countries in the region 
have important areas covered by forests, although as explained in 5.2, this does not 
invalidate the results of the baseline model. In all cases, the targets stablished for 
those countries are within the boundaries of applicability of our model according to 
the estimates conducted in Section 5.2, with only two exceptions. First, despite its 
average elevation, we treated Chile as a “normal” country, because these values are 
the results of the Andes mountains traversing the east of country’s geography from 
north to south, while most of the population lives in low elevated areas.16 Second, a 
high value was allocated to Mexico in FTTH deployments because the country 
already presented across all years of our sample equal or higher coverage levels for 
this technology that the Latin America average.   
 
Overall, these targets are ambitious for a region like Latin America, meaning that 4G 
can be effectively the technology to achieve universal coverage, while on the other 
hand, at least two-thirds of the population will be covered by an ultra-fast new 
generation network. 
 
 
 
 
 

 
14 The cost modelling for the Satellite technology is described in the Appendix 3.  
15 Targets were validated through interviews conducted with telecom operators with local presence. 
16 As a reference, the average elevation of Santiago is 570 meters. 
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Table 13. Latin America: 2030 targets to simulate. 

Country 

Targets simulated for 2030 

4G 

Coverage 

4G + Satellite 

Coverage 

5G 

Coverage 

FTTH 

Coverage 
Argentina 98.0% 99.0% 85.0% 68.0% 

Bolivia 95.0% 96.0% 55.0% 35.0% 

Brazil 98.5% 99.0% 85.0% 68.0% 

Chile 98.5% 99.0% 98.5% 85.0% 

Colombia 98.0% 99.0% 75.0% 60.0% 

Costa Rica 98.0% 99.0% 80.0% 60.0% 

Ecuador 95.0% 96.0% 60.0% 60.0% 

Honduras 95.0% 96.0% 50.0% 35.0% 

Jamaica 98.0% 99.0% 50.0% 80.0% 

Mexico 98.0% 99.0% 86.0% 68.0% 

Paraguay 98.5% 99.0% 60.0% 45.0% 

Peru 97.0% 98.0% 65.0% 45.0% 

Trinidad and Tobago 98.0% 99.0% 50.0% 96.0% 

Uruguay 98.5% 99.0% 98.5% 96.0% 

Latin America 98% 99% 81% 65% 
Source: authors’ analysis   

 
These targets can be disaggregated by urban and rural areas (Figure 7). In doing so, 
we considered the latest figures reported by the World Bank for the share of urban 
population by region.17  
 

Figure 7. Latin America: coverage targets by area 

 
Source: authors’ analysis   

 
17 The percentage of the population that does not live in rural areas in each country comes from the 
World Bank, while to identify urban areas with more than 500,000 inhabitants, a review was carried 
out of all the metropolitan areas by country that meet this condition. The difference between the total 
non-rural population and that living in areas with more than 500,000 inhabitants is considered the 
suburban population. Towards 2030, the variation rates of the percentage of inhabitants per area are 
projected according to historical trends. 
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The underlying assumption to disaggregate the targets across urban/rural areas is 
based on the fact that we expect urban areas to be covered first, and once completed, 
the remaining population covered will lie in the suburban and rural territories, in 
that order. As can be seen in Figure 7, all urban areas (above 500.000 inhabitants) 
are targeted to reach almost universal coverage in all three technologies. In contrast, 
for suburban areas, we can expect universal 4G coverage, 81% of population 
covered by 5G, and 37% of FTTH coverage. For rural areas, we can expect 86% of 
4G coverage, which can be expanded to 92% if we add satellite technology. Almost 
no coverage is simulated for rural areas for both 5G (8%) and FTTH (1%). This 
means that rural areas will be massively covered with 4G and Satellite, with almost 
no deployments of the more advanced technologies due to the lack of financial 
feasibility in those territories. 
 
Figure 8 represents the evolution of the target coverage scenario towards 2030, 
along with what we expect to happen according to the current trends.18 A logistic 
function especially suited for technological diffusion is used to illustrate the 
coverage trajectory to the final points. Clearly, the biggest effort is expected to be 
associated to 5G and FTTH technologies.  For the case of 4G, the difference between 
both series is hardly noticeable as their natural coverage trend is only slightly below 
the target. In other words, 4G already is the technology for universalization. 
   
Once identified the target, we estimate the investment required to achieve it. The 
elasticities linking investment with coverage (with a year lag), already estimated in 
the UQR analysis, are used to calculate the required percentages increase in both 
fixed and mobile CAPEX to reach the targets. The coefficient linking investment with 
coverage is adjusted yearly for every country in the simulation, according to their 
respective position in the curves presented in Figure 1, Figure 2 and Figure 4. To 
estimate the “extra” investment needed to reach the targets above current trends, 
we first calculate the investment needed to reach the target scenario, and to that 
figure we subtract the investment needed for the natural growth scenario. The 
difference is effectively the extra effort that the region must do to close the coverage 
gap by 2030.  For the case of the satellite technology, the calculations are based on 
the cost values reported in Table A.2 of Appendix 3 applied to the new users of this 
technology estimated to reach the target (based on Table 13 figures). The 
investment is calculated separately for each technology and added afterwards into 
a single value.19  

 
 
 

 
18 In the case of 4G, it is expected that in most of the countries the evolution of coverage will remain 
unchanged, with marginal increases towards 2030, except for those countries that are currently 
lagging behind, which will experience greater growth. On the other hand, in the case of FTTH and 5G, 
a series of criteria are taken as to what the covered population could be in 2030 according to the 
tendency scenario, based on the relative level of development of each country and the percentage of 
the population living in urban and suburban areas (see detail in Tables A.3 and A.4 in the Appendix 
4). 
19 Following the interviews conducted with industry specialists, we assume a 20% overlap in 4G – 5G 
investments. In addition, we assume that only 35% of 4G investment is destined to expand 
infrastructure, with the remaining 65% destined to expand capacity. 
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Figure 8. Latin America: evolution of broadband coverage according to the 
proposed scenarios 

 
Source: authors’ analysis   

 
 
The extra investment needed above natural investment scenario for the Latin 
America region reaches $17,101 million over the period 2023-2029. That is the 
amount of investment needed to move from the orange curve to the blue one in 
Figure 8. Naturally, the magnitude of the gap varies considerably by country, 
depending on the size and relative distance of the natural growth tendency to the 
target. The largest increase in investment effort is required in the case of Brazil 
($4,373 million dollars), while the lowest is in Trinidad and Tobago ($39 million). 
 
The additional investment can be disaggregated by technology, as represented in 
Figure 9.  
 

 

Figure 9. Latin America: decomposition of additional investment needed by 

technology.  

 
Source: authors’ analysis   
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The main recipient of the extra investment is 5G (40%), followed by FTTH (29%). It 
is not surprising the prevalence of investment in the newer ultra-fast technologies, 
given the lack of current developments, especially for the case of 5G. On the other 
hand, there is still a relevant portion for 4G investment, because in some countries 
this technology is still far from universalization, although already in phases where 
investment effort is required to increase considerably according to the UQR 
estimates.  
 
Finally, we conducted some checks on the estimated costs to compare them with 
those estimated in other research reviewed in section 2. The average cost for each 
new population covered by 5G in our estimation is $62.17 (adjusted by PPP 
conversion factor), a figure that lies between the numbers estimated by Oughton 
and Frias (2018) of $45.71 (in areas above 1 million inhabitants) and $197.16 (in 
suburban areas). Considering that our approach consisted in simulating 5G 
coverage for urban areas, but not necessarily above 1 million people, then the 
estimated costs seem reasonable. In addition, the cost of each new household passed 
by FTTH is $428.8 in our estimation (adjusted by PPP conversion factor), somewhat 
lower than the $700-$1500 interval estimated for US urban areas by Cartesian 
(2019), although very close to the figures provided by the FTTH Council Europe 
(2012) for Europe, that for densely populated areas are close to 400 euros per 
household. Moreover, since the time these previous studies were conducted, a 
declining trend in equipment costs has occurred.  
 
 
7. Conclusions and policy discussions 
 
In this paper we developed a bottom-up tool to estimate the required capital 
investment to accelerate connectivity. We propose a general approach based on the 
use of UQR that addresses the complexities that arise in the link between investment 
and coverage. These complexities are explained as the coverage impact for 
broadband investment is usually stronger at the beginning of the deployment 
phases, where the targets are usually urban areas, in comparison with more later 
deployment phases that target lower populated territories.  
 
We checked the robustness of our results by adding additional controls and by re-
estimating our main UQR results for a subsample of geographically complex 
countries, those situated in the last quartile of the distribution of average elevation. 
These checks provided robustness to our results, as they were not significantly 
altered by the addition of controls, and when estimating the regressions for the 
geographically complex subsample the baseline coefficients proved to be valid for 
most of the coverage distribution, although beyond percentiles 70 (for FTTH) and 
80 (for 4G) of these countries the model loses suitability. This means that our model 
valid for a very wide range of countries, although we do not expect to represent 
accurate estimates for specific extreme situations. 
 
Our approach has some limitations that are necessary to consider. Our analysis 
would have benefited from more precise data, such as CAPEX figures specific to each 
of the technologies (FTTH, 4G or 5G), rather than our current measures broadly split 
by wireline or wireless networks. Moreover, an analysis conducted with operator-
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level observations would have provided more granularity and detail, although 
unfortunately that was not possible.  
 
Considering that the increase in investment required to accelerate network 
deployments is significant, public policies should pursue regulatory frameworks 
especially designed to facilitate investments and optimize network rollouts. These 
recommendations can be grouped into two main categories: those that stimulate 
investment, and those that, for a given investment levels, contribute to expand 
coverage.  
 
In the first group, we can summarize the need to promote sound regulatory 
frameworks, based on flexible and light conditions avoiding the introduction of 
restrictions that may disincentivize investment. Other relevant topics to promote 
investment include taxation frameworks, comprising also the regulatory and other 
fees paid by the operators to public authorities, something that reduces the available 
funds to invest. In that respect, and considering the massive amounts expected to be 
involved in 5G investment in the following years, spectrum costs should be reduced, 
through allocation mechanisms such as beauty contests, linked to operators’ 
deployment plans. Ensuring healthy competition conditions is also essential to 
stimulate investment and to create dynamic efficiencies. Finally, institutional quality 
(e.g.: protection of property rights) is also important to incentivize investment, as 
network deployments are largely irreversible, and the investment returns usually 
require several years to materialize. 
 
In addition, for a given investment level, several regulations can facilitate coverage 
expansion, if they promote efficiencies and generate flexibilities for network 
optimization. Within this group we can highlight the need to ensure initiatives 
aimed to incentivize infrastructure sharing and co-investments between network 
operators.  
 
All in all, the effort of closing the coverage divide involves all stakeholders of the 
telecommunications industry, where operators invest, and governments and 
regulators create the required incentives for the investments to take place. Only 
with cooperation among all involved parties this ambitious objective can be 
achieved, especially considering that the industry is facing an uncertain scenario, 
with decreasing income and margins. 
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Appendix 

 

1. List of Countries in the Sample 

Sub-Sahara Africa: Angola, Kenya, South Africa, Benin, Madagascar, Tanzania, 

Botswana, Mozambique, Uganda, Burundi, Nigeria, Zambia, Cameroon, Senegal, 

Zimbabwe, Cote d’Ivoire  

Latin America and Caribbean: Argentina, Dominican Republic, Nicaragua, 

Barbados, Ecuador, Panama, Bolivia, El Salvador, Paraguay, Brazil, Guatemala, Peru, 

Chile, Haiti, Trinidad and Tobago, Colombia, Honduras, Uruguay, Costa Rica, Jamaica, 

Venezuela, Cuba, Mexico  

North America: Canada, United States  

Asia – Pacific: Australia, Japan, Philippines, Bangladesh, Korea, Singapore, China, 

Malaysia, Sri Lanka, India, New Zealand, Thailand, Indonesia, Pakistan, Vietnam, 

Islamic Republic of Iran  

Western Europe: Austria, Germany, Netherlands, Belgium, Greece, Norway, Bosnia 

and Herzegovina, Iceland, Portugal, Croatia, Ireland, Spain, Cyprus, Israel, Sweden, 

Denmark, Italy, Switzerland, Finland, Luxembourg, Turkey, France, Malta, United 

Kingdom  

Eastern Europe: Armenia, Hungary, Romania, Azerbaijan, Kazakhstan, Russia, 

Belarus, Latvia, Slovak Republic, Bulgaria, Lithuania, Slovenia, Czech Republic, 

Poland, Ukraine, Estonia  

Arab States: Algeria, Kuwait, Qatar, Bahrain, Lebanon, Saudi Arabia, Egypt, 

Morocco, Tunisia, Jordan, Oman, United Arab Emirates 

 

2. Criteria for selection of random-effects model in 5G coverage 

estimation 

The 5G coverage estimate was conducted through the more efficient random-effects 

approach as by applying the Hausman test we couldn’t reject the null hypothesis 

that the difference in coefficients with the fixed effects model is not systematic 
(Table A.1). Under these circumstances, random effects model is acceptable.   

Table A.1. Hausman test to select between Fixed and Random Effects model  
 Fixed 

Effects 
Random 
Effects 

Difference 
Standard 
deviation 

Log(MB CAPEX pc) t-1 -0.109 0.436 -0.545 0.191 
Log(Density) -5.362 0.033 -5.395 3.832 
Log(Population) 1.193 0.002 1.190 5.248 
Log(GDP pc) -0.288 0.419 -0.706 0.598 
Null hypothesis Difference in coefficients is not systematic  
Chi-squared 8.80 
P-value 0.117 

Source: authors’ analysis   
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3. Cost modeling associated with satellite technology. 

Considering the relevance of satellite technology for the universalization of 

connectivity, the costs of cellular backhaul for satellite have also been estimated. In 

this case, UQR procedures are not appropriate as due to its nature, the cost of 

satellite coverage does not vary by geographical area. On the other hand, there is not 

enough public information to conduct regressions at the mean for the satellite 
technology.  

To overcome this imitation, we relied on information provided by the Satellite 

industry, from where the current CAPEX costs related to the deployment of the 

cellular backhaul solution (satellite installation and equipment) have been taken 

into account, as well as the OPEX costs considering the capacity per user (based on 

capacity costs and their estimated projection according to the industry). Other costs 

faced by the satellite industry have been included, such as support and maintenance 

expenses. The estimates are based on a growth scenario that reaches 20 GB per 

month per user in 2030 (Table A.2). 

 

Table A.2. Analysis of Cellular Satellite Backhaul Costs 
Segment 2023 2024 2025 2026 2027 2028 2029 2030 

GB/User 6.0 7.3 8.7 10.0 12.5 15.0 17.5 20.0 

Users per-base station 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 

Dedicated capacity per base station 27.1 33.1 39.1 45.1 56.4 67.7 79.0 90.3 

Initial payment per link (CAPEX) USD 6,348.5 6,348.5 6,348.5 6,348.5 6,348.5 6,348.5 6,348.5 6,348.5 

Monthly payment per link (OPEX) USD/month 4,766.4 5,680.0 6,428.5 7,110.4 8,590.8 10,077.4 11,502.9 12,869.1 

Equivalent monthly payment per user 
USD/user/month 

4.8 5.7 6.4 7.1 8.6 10.1 11.5 12.9 

Source: Hispasat projections based on the Latin America region 

 
 
 
 
 
 
 
 
 

4. Criteria for estimating tendency scenarios in Latin America 
 

For each country in Latin America, we projected a tendency scenario towards 2030, 
something that was needed to define the targets to simulate above those tendencies. 
Criteria for FTTH is detailed in Table A.3, while for the case of 5G the details are 
reported in Table A.4. 
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Table A.3. Criteria for defining the FTTH tendency scenario for 2030 

Group Country 
FTTH coverage 

2021 
2030 

Outliers  

Trinidad and Tobago 95% 
All urban and suburban 

population  
Uruguay 91% 

Jamaica 68% 

Advanced 

Chile 67% All urban population 

(>500.000 inhabitants) 

+ up to 50% of 

suburban population, 

depending on the 

country   

Brazil 56% 

Argentina 55% 

Average 

Mexico 46% 

70%-90% of urban 

population (>500.000 

inhabitants) 

Ecuador 34% 

Colombia 28% 

Bolivia 26% 

Costa Rica 24% 

Lagging  

Peru 22% 50% of urban 

population (>500.000 

inhabitants) 

Paraguay 5% 

Honduras 0% 
Source: authors’ analysis   

  

Table A.4. Criteria for defining the 5G tendency scenario for 2030 

Group Country 
5G coverage 2025 (GSMA 

Intelligence) 
2030 

Advanced 

Chile 45% All urban population 

(>500.000 inhabitants) + 

40%-70% of suburban 

population, depending on 

the country   

Mexico 43% 

Brazil 45% 

Average 

Ecuador 40% 

95%-100% of urban 

population (>500.000 

inhabitants) 

Argentina 35% 

Colombia 30% 

Paraguay 30% 

Peru 27% 

Uruguay 25% 

Costa Rica 20% 

Bolivia 17% 

Lagging 

Honduras 0% 70%-75% of urban 

population (>500.000 

inhabitants) 

Jamaica 0% 

Trinidad and Tobago 0% 
Source: authors’ analysis   

  

 

 

 

 


