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Preface

This is the second edition of a book that was originally published in 2009 by
Cambridge University Press. While the core of the book remains the same,
this edition refreshes all of the screenshots based on Excel 2019 and updates
the data used in real-world applications. It also fixes typos and mistakes.
Finally, it includes a new chapter on rational addiction and offers several
new optimization problem examples.

The preface of the first edition said:

In the competitive world of textbooks, different is definitely bad.
Authors and publishers, like politicians, stay in the safe middle.
Straying too far from the herd is almost a sure way to fail. Fear
is strong, but it apparently can be overcome—after all, you are
reading a spectacularly unconventional textbook.

The most obvious difference between this book and the usual
fare is the use of Microsoft Excel to teach economic theory. This
enables students to acquire a great deal of sophisticated, advanced
Excel skills while learning economics. No other book does this.

The use of Excel drives other differences. Excel requires concrete,
numerical problems instead of the abstract functions and graphs
used by other books. Excel’s Solver makes possible presentation
of numerical methods for solving optimization problems and equi-
librium models. No other book does this.

Because numerical solutions are readily available, this book is
able to present and explain analytical methods that have been
pushed to appendixes or completely ignored in mainstream texts.
Every problem is solved twice—once with Excel and once with
equations, algebra, and, when needed, calculus. No other book
does this.

ix
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x PREFACE

Finally, this book is organized differently. It explicitly repeats a
single central methodology, the economic approach, so students
learn how economists think and how to think like an economist.
Other books try to do this, but none brings the economic way of
thinking explicitly to the surface, repeating the message in every
application.

I wrote this book because I learned Visual Basic and quickly
realized that enhancing a spreadsheet with macros made possible
a whole new way of teaching economics. When my students loved
this approach, I wanted to share it with others.

Because this book is so different, it will probably not challenge
the top sellers. It will be the unusual professor who is willing
to try something this new. It requires that the professor care
enough about students and teaching to invest time and energy in
mastering the material. Of course, I think the rate of return is
quite high. My hope is that, though few in number, a committed,
enthusiastic core of adopters will enable this book to survive.

Thank you for trying this unique entry into the competitive mar-
ket for micro theory textbooks. I hope you find that the reward
was worth the risk.

Well, after more than ten years, I can safely say that I certainly was right
that the book would not challenge the top sellers! It strayed far from the
herd and went largely unnoticed. When I asked Cambridge University Press
to do a second edition, they politely declined.

But, I am not giving up. I believe that teaching economics via Excel is a
winner. So, I am ignoring the market, producing my own second edition, and
giving it away for free.

I am well aware that this edition will not attract many adopters and that I
am engaged in a quixotic fight against foes who are not even aware of my
presence. I remain baffled at how badly microeconomics is taught—it is as
if computers were never invented. We can and must do better. I will keep
this book alive in case someone wants to try a novel, innovative approach to
teaching and learning microeconomics.



xi

This edition assumes that many will read it electronically, although you are
free to print it out and I am so old school that I certainly would prefer hand-
writing notes and underlining on paper. Any print shop can do this and,
if anyone asks, explain that this is an open access book and you have legal
right to print it. You can also print it online at sites such as www.lulu.com/.

I think Adobe Acrobat Reader is a good choice if you decide to read it on
screen, but you are, of course, welcome to use your favorite eReader. Here
is a list of 15 pdf readers: blog.hubspot.com/marketing/best-free-pdf-reader.
One advantage of digital access is that links are highlighted for easy clicking.
You should use your pdf reader’s commenting capabilities to highlight, search
(ctrl-f), and take notes. It should also be easy to look up words you do not
know or search for ideas that pique your interest so take full advantage of
the electronic tools at your disposal.

I have been teaching economics for a long time now. I am positive that us-
ing Excel to learn how economists use models and see the world works for
almost all students. You can learn a lot of economics, math, and Excel while
working with this book. Do your best and good luck!

Humberto Barreto
hbarreto@depauw.edu
Greencastle, Indiana
November 11, 2021

https://www.lulu.com/
https://get.adobe.com/reader
https://blog.hubspot.com/marketing/best-free-pdf-reader
mailto:hbarreto@depauw.edu




The idea for the electronic
spreadsheet came to me while I was
a student at the Harvard Business
School, working on my MBA
degree, in the spring of 1978.

Dan Bricklin

User Guide

This book is essentially a manual for how to actively work with and ma-
nipulate the material in Excel. This user guide lists minimum requirements,
provides instructions for downloading all of the materials and software, offers
a few tips before you begin, and describes the organization of the files.

Minimum Requirements

; This book presumes that you have access to and a basic knowledge of Excel.
In other words, you can open an Excel file (called a workbook), write a for-
mula that adds cells together, make a chart, and save the file. As you will see,
however, Excel is much more than a simple adding machine. You will learn
how to use Excel in a more advanced way. In addition to analyzing data and
learning many new Excel functions, you will solve optimization problems with
an add-in (a special file that extends the functionality of Excel) called Solver.

The materials in this book will work on any Windows Excel version all the
way back to 1997 (version 8). The screenshots are based on Excel 2019, but
if you are using an earlier version, it should be easy to figure out what to do.

The workbooks and add-ins are optimized for use with Windows Excel. They
can be accessed with a Macintosh computer, but Solver in Mac Excel is tem-
peramental and buggy. Furthermore, Visual Basic (Excel’s macro language)
on a Mac is limited so not all macros work. The best solution for Mac users
is to emulate Windows with software such as Parallels or Boot Camp. For
students at an educational institution, accessing Excel from a server (see,
for example, VMWare’s Horizon software) is an easy solution for Mac users.
Desktops.depauw.edu gives my students access to a Windows machine run-
ning Excel configured with necessary add-ins.

To ensure that older versions of Excel can open the files, all workbooks have
been saved in “compatibility mode” (Excel 97 – 2003 Workbook) with the

xiii
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.xls filename extension. If you are using Excel 2007 (version 12) or greater,
you should save your completed files in the “Excel macro-enabled workbook”
format, which carries the .xlsm extension. Do not save your files as an Excel
workbook with the .xlsx extension, the macros will not be saved and func-
tionality will be lost.

For non-English versions of Excel, the files will work in the sense that but-
tons, scroll bars, and macros will function; however, the add-ins and other
content will not be translated.

Recently, Microsoft Office has moved online, offering OneDrive and Office 365
cloud access. Regrettably, as of this writing, because of security concerns,
online versions of Office do not support Visual Basic, a limitation which
renders these options useless for working with macro-enhanced files from
within a web browser. You can save a file with macros in your favorite
storage area in the cloud, but you will need to download and open it with a
desktop Excel version to run the macros. Within a browser, macros cannot
be executed.

Downloading and Opening Workbooks

Visit www.depauw.edu/learn/microexcel to download the files that accom-
pany this book. You may download individual files as needed or a com-
pressed archive with all of the files to as many different computers or devices
as needed.

Figure 1 shows that, when opening a workbook with macros, Excel will alert
you to their presence with a security warning under the Ribbon (and right
above the formula bar).

Figure 1: Enable Content when opening a Micro Excel workbook.

https://onedrive.live.com
https://www.office.com/
https://www.depauw.edu/learn/microexcel/MicroBook/excelworkbooks.htm
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If you do not see the security warning or have no opportunity to enable con-
tent, your security level has been set to block all files with macros. Although
malicious code can be harmful, you must dial down the safety measures to
allow Excel to utilize fully the information in the workbook. Close the file
and change the security setting to allow Excel to open files with macros.

Visit Excel’s main support page at support.office.com for more help on set-
ting security and enabling macros.

Tips and Conventions

In this book, a figure refers to a variety of graphics, including charts and
pictures of portions of a sheet (also known as a screenshot, like Figure 1). A
chart or range of cells is often displayed in this printed book as a figure, but
you should look at the live version on your computer screen. Thus, in addi-
tion to a caption, many figures have a source line indicating their location in
the Excel workbook.

The book follows Excel’s naming convention for workbooks, sheets, and cells:
[workbookname]sheetname!cell address. If the caption of a figure says, [Food-
Stamp.xls]BudgetConstraint, then you know the figure can be found in the
FoodStamp.xls workbook in the BudgetConstraint sheet. Note that work-
book and sheet names in the printed text are italicized to help you locate
the proper sheet in a workbook. [RiskReturn.xls]OptimalChoice!B6 refers to
cell B6 in the OptimalChoice sheet of the RiskReturn.xls workbook.

You may need to adjust your display or the objects in Excel. Use the Zoom
button to magnify the display. You can also right-click objects such as but-
tons or scroll bars to select and move them. Once you open a workbook, you
can save it to another location or name (by executing File→ Save As...) and
make whatever changes you wish. This is the same as underlining or writing
in a conventional, printed book.

Finally, if something is not working the way you expect, there are many
possible causes. It is always a good idea to close Excel completely and reopen
it. Even if this does not fix the problem, slowly repeating the steps will help
you debug or describe what is happening.

https://support.office.com/en-us/excel
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Organization of Files

Figure 2 shows the contents of all materials included in the MicroExcel.zip
archive, after downloading it from www.depauw.edu/learn/microexcel.

Figure 2: Organization of files.

The Answers folder contains answers to questions posed in Q&A sheets in
each Excel workbook. Think of the Q&A material in the Excel workbooks
as self-study questions.

There are also Exercises at the end of each chapter. Readers do not have
easy access to the answers to the exercise questions. To see these answers, you
must be an instructor and register online at www.depauw.edu/learn/microexcel.

The SolverCompStaticsWizard folder contains files that use the Compara-
tive Statics Wizard Excel add-in. When used in conjunction with Excel’s
own Solver add-in, these files enable numerical comparative statics analysis
of optimization problems and equilibrium models.

Active Learning

The most important thing you can do as you read this book is experiment.
You might find yourself wondering, “What would happen if this cell was 10
instead of 1?” Do not just wonder, change the cell and see what happens!
There is deep neuroscience at work here. When you are in control and mak-
ing up your own questions, you learn best. The beauty of this approach is
that everything is alive and you can make points move and lines shift. Take
full advantage.

Remember that you can always download the original workbook again if
needed. This means you should not worry about changing anything in a

https://www.depauw.edu/learn/microexcel/MicroBook/excelworkbooks.htm
https://www.depauw.edu/learn/microexcel/MicroBook/excelworkbooks.htm
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workbook. If something goes terribly wrong, simply delete it and download
it again.

There are many books devoted to microeconomics. This one is different be-
cause it is not meant to be simply read. A great deal of its value lies in the
Excel workbooks and additional materials. By reading this book and work-
ing in Excel simultaneously, you will become a sophisticated user of Excel
and learn a great deal of mathematics and, most importantly, economics.

Download the files from www.depauw.edu/learn/microexcel and get to work!

Spreadsheet History and Resources

For more on the history of the electronic spreadsheet, as told by one of the
creators, see bricklin.com/visicalc.htm. This is the source for the epigraph.

I recommend these websites for Excel tips and tricks, workbook and add-in
downloads, and Visual Basic code snippets:

� Tushar Mehta: www.tushar-mehta.com/excel/

� Chip Pearson: www.cpearson.com/excel

� Jon Peltier: peltiertech.com/Excel/

� Andy Pope: www.andypope.info

https://www.depauw.edu/learn/microexcel/MicroBook/excelworkbooks.htm
http://bricklin.com/visicalc.htm
http://www.tushar-mehta.com/excel/
http://www.cpearson.com/excel
https://peltiertech.com/Excel/
http://www.andypope.info




Economics is the science which
studies human behavior as a
relationship between given ends
and scarce means which have
alternative uses.

Lionel Robbins

A First Step

Economists see the world through a special pair of glasses. It takes practice
and concentration to learn how to see things like an economist. The inter-
pretation of reality that is the hallmark of modern economics has been called
the economic way of thinking, the economic approach, and the method of
economics. Thinking and seeing the world like an economist is the ultimate
goal of this book.

You will learn the economic way of thinking by working through many ex-
amples. Here is the first one.

Optimal Allocation of Worker Hours

Suppose that you manage a tech support service for a major software com-
pany. You have two types of callers: Regular and Preferred. Your preferred
customers have paid extra money for faster access, which means they expect
to spend less time waiting on hold. There are equal numbers of the two types
of customers and they call with equal frequency.

Management has given you a fixed number of worker hours per day to an-
swer calls from users needing help. Daily, you have 10 workers, each working
8-hour shifts, and 5 part-time workers (4-hour shifts each); or 100 hours per
day in total to support customers calling for help. These 100 hours comprise
your Total Resources.

When customers call, an automatic message is played asking the caller to
input an ID number and the caller is put on hold. The ID number is used to
identify the caller as a regular or preferred customer.

Keeping callers on hold creates frustrated, unhappy customers. The callers
are already angry since something has gone wrong with the software and

xix
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they need help. The faster you get support to the caller the better. You
keep track of time waiting (the amount of time, in seconds, that the typical
caller is on hold) and you know that it depends on the number of worker
hours available to answer the calls.

To keep things simple, assume typical time waiting = 6000/worker hours
allocated. So, say there are 80 worker hours available to answer preferred
callers. Dividing 6000 by 80 yields 75, which means the typical hold time is
75 seconds. This leaves 20 worker hours for regular callers, so their hold time
is 300 seconds (since 6000/20 = 300). Five minutes is a long time to wait on
the phone!

The problem becomes an economic problem because you have two types of
callers, so you must decide how to allocate your worker hours. When you
have to make a decision where you trade-off one thing for another you are
doing economics. In this case, the more hours you allocate to one type of
caller, the lower that caller’s wait time. That’s the good news.

The bad news is that the fixed amount of caller-support hours means that
more time devoted to one type of caller results, by definition, in fewer hours
to the other type and, therefore, higher waiting times for the other type.

So the general structure of the problem is clear: You must decide how to allo-
cate scarce support resources (worker hours) to two competing ends. Figure
3 shows a simplified picture of the problem.

Figure 3: Allocating a scarce resource to two competing ends.
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A Complication

It is unclear exactly what preferred customers expect. Do they expect to get
help twice as fast or 10 times as fast as regular customers?

To incorporate the fact that the preferred customer merits greater attention,
management gives you a value weight parameter. The value weight tells you
how much more valuable the preferred caller is compared to the regular caller.

We can write the objective function as

TotalT imeWaiting =
6000

RegHours
+ V alueWeight

6000

PrefHours

The objective function says that time spent waiting by a preferred caller is
multiplied by a factor that reflects how much more we value the preferred
customer’s time. If ValueWeight = 1, then preferred and regular callers are
equally valuable. Management has decreed that preferred customers’ time
is worth twice that of regular customers so ValueWeight = 2; you (the call
center manager) cannot change this parameter.

So, if you decide to allocate 50 hours each to the regular and preferred cus-
tomers, then both types of customers will wait 6000/50 = 120 seconds and
our objective function will be 120 + 2 x 120 = 360 seconds.

Is there a better allocation, one that yields a smaller total time waiting (ad-
justed with the value weight), than 50/50? This question, how to allocate
100 worker hours to answering calls from regular and preferred customers in
order to minimize value weighted total time waiting, has an answer, called
the optimal solution. We have to find it.

Setting Up the Problem

We will solve this problem by first organizing the information into three sep-
arate parts. All optimization problems can be set up the same way, with
three components: goal, endogenous variables, and exogenous variables.

The goal is synonymous with the objective function. Endogenous, or choice,
variables can be controlled by the decision maker. Exogenous variables are
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given, fixed constants that cannot be changed by the decision maker. The
exogenous variables (sometimes called parameters or independent variables)
form the environment under which the decision maker acts.

In the tech support time minimization problem, we can organize the infor-
mation like this:

1. Goal: minimize total time waiting (value weighted)

2. Endogenous variables: worker hours allocated to preferred and regular
customers

3. Exogenous variables: total worker hours and value weight

STEP Open the Excel workbook Introduction.xls, read the Intro sheet,
and then go to the SetUp sheet to implement the problem in Excel.

This workbook (along with all of the files that accompany this book) is avail-
able for download at www.depauw.edu/learn/microexcel. The User Guide
has detailed instructions on how to properly configure Excel before down-
loading and opening these files.

Make sure that you enable macros when you open the file. If the buttons do
not work, the most likely suspect is in the security settings.

STEP Answer the three questions in column A (below the exogenous

variables). Check yourself by clicking the See Answer buttons.

Finding the Initial Solution

Now that we have set up the problem, we can turn our attention to finding
the answer, the optimal solution. There are two ways to solve optimization
problems:

� Analytical (algebra and calculus) methods

� Numerical (computer) methods

The analytical method uses pencil and paper to write down equations and
manipulate them to find the answer. It was the only way available until com-
puters came along and gave us algorithms for finding solutions. Numerical

https://www.depauw.edu/learn/microexcel/MicroBook/excelworkbooks.htm
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methods rely on testing many trial solutions very quickly and repetitively,
converging to the answer. We will ignore the analytical approach in this
example and concentrate on showing how Excel’s Solver works.

STEP Click the Data tab (in the Ribbon across the top of the screen),
then Solver (in the Analysis group) to bring up the Solver dialog box (as in
Figure 4). If Solver is not available, then use the Add-in Manager to install
it. Use Excel’s Help if you are having trouble or visit support.office.com.

Figure 4: The Solver dialog box.

Note that necessary information is already entered. The objective cell is the
(value weighted) total time waiting, the changing variable cells (the endoge-
nous variables) are the worker hours devoted to the regular and preferred
customers, and the constraint is that the sum of the worker hours not exceed
the 100 hours you have been given.

STEP Click the Solve button to find the solution to the problem. Click

the OK button in the Solver Results dialog box to accept Solver’s solution
and put the optimal solution in the SetUp sheet.

https://support.office.com
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Congratulations! You, the call center manager, have just used Solver (a nu-
merical methods approach to optimization) to optimally allocate your scarce
resources. We can check Solver’s answer for plausibility, noting that it makes
sense that preferred callers have more hours allocated to them because they
are more valuable. Later, we will see that we can solve this problem using
analytical methods and if the two approaches give the same answer, we can
be confident that we do indeed have the best solution.

Comparative Statics

We have found the initial solution, but we are usually much more interested
in a follow up question: How will the optimal solution change if the environ-
ment changes?

Comparative statics is a shorthand way of describing the following procedure:
Change an exogenous variable, holding the other parameters constant, and
track how the optimal solution changes in response to the shock.

Like finding the initial solution, comparative statics can be done via analyti-
cal (algebra and calculus) and numerical (computer) methods. The Compar-
ative Statics Wizard (CSWiz) add-in was used to explore how the optimal
allocation of total worker hours would change if worker hours were increased
by 10 hours. The CSWiz add-in will be introduced later and you will learn
how to do your own comparative statics analyses. For now, we will focus on
what it produces.

STEP See the results of the comparative statics analysis by going to the
CS1 sheet.

Cells A1:D15 in the CS1 sheet were produced by the CSWiz add-in. It is
easy to see that increased total worker hours are allocated to regular and pre-
ferred customers in a stable pattern. Every additional hour of total resources,
holding value weight (the only other exogenous variable in this simple prob-
lem) constant, produces an increase of 0.586 hours allocated to preferred
customers. The chart below the data (row 16) shows the linear relationship.
Usually, economists want to determine the relationship between optimal en-
dogenous and exogenous variables.
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Summary: Introducing Optimization

This chapter used an example to show how Excel’s Solver can find the optimal
solution. It introduced the basics of optimization, including the three parts
of every optimization problem:

1. Goal (or objective function),

2. Endogenous variables,

3. Exogenous variables.

As you work with this book, you will learn how to use analytical methods
to solve optimization problems. You will also learn how to do comparative
statics analysis via analytical and numerical methods.

This introductory example was completely prepared for you. All you had to
do was click a few buttons. Future problems will gradually relax the Excel
environment, giving you ever more freedom to make decisions and thereby
learn what to do. The ultimate goal is for you to be able to set up and solve
problems yourself.

Exercises

1. Suppose Management decides that preferred customers are three times
as important as regular customers, so that the ValueWeight = 3. With
100 workers hours, what is the optimal solution? Describe your proce-
dure and report the optimal values of PrefHours and RegHours.

2. Compared to the initial solution, when ValueWeight = 2, what is the
change in the number of hours allocated to preferred customers?

3. The percentage change in ValueWeight is 50% (from 2 to 3). What is
the percentage change in the number of hours allocated to preferred
customers?

References

Each section ends with references and resources for further study. A citation
for the epigraph (lead quotation) of the chapter is provided. References may
also contain citations documenting sources used, additional information on
the history of a concept or person, and suggestions for further reading.
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The epigraph to this chapter is found on page 16 of the second edition of
An Essay on the Nature and Significance of Economic Science by Lionel
Robbins. This book was originally published in 1932 and the second edi-
tion is available online at www.mises.org/books/robbinsessay2.pdf. Robbins
rejects old definitions of economics based on content (the study of business
and work) and argues for a definition of economics based on methods used:
optimization and comparative statics. Robbins made the definition of eco-
nomics (in the epigraph to this chapter) famous, but he includes a footnote
that cites various precursors who used a similar description of economics.

For more on Robbins, visit www.econlib.org/library/Enc/bios/Robbins.html.
Econlib says that Robbins’ Essay is “one of the best-written prose pieces in
economics.”

Nobel laureate Gary Becker’s The Economic Approach to Human Behavior
(first published in 1976) has a classic introductory chapter on the meaning of
the economic approach and applies economic analysis to such non-standard
topics as discrimination, crime, and marriage. Becker’s statement, “what
most distinguishes economics as a discipline from other disciplines in the
social sciences is not its subject matter but its approach” (p. 5), greatly
extends the scope of economics.

Modern economics pays little attention to its own history and how we got to
be where we are today. The epigraphs in this book highlight important con-
tributions and individuals (like Robbins and Becker) in the development of
modern economic theory. Remember to experiment by clicking and searching
items that catch your eye.

In Spring 2012, I videotaped my Intermediate Microeconomics classes at
DePauw University. They are about an hour long and are freely available
at www.depauw.edu/learn/microexcel/videos.htm. The introduction lecture
covers material from this chapter.

https://mises.org/library/essay-nature-and-significance-economic-science
http://www.econlib.org/library/Enc/bios/Robbins.html
https://www.google.com/search?q=becker+economic+approach+human+behavior
https://www.depauw.edu/learn/microexcel/videos.htm
https://vimeo.com/channels/microexcel/35972237
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The Theory of
Consumer Behavior
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Perhaps science does not develop
by the accumulation of individual
discoveries and inventions.

Thomas S. Kuhn

Overview

The material in this book is organized into three parts. The first part focuses
on the Theory of Consumer Behavior and derives the demand curve. The
second part derives the supply curve from the Theory of the Firm. Finally,
these curves are combined to explain how the Market System functions as a
decentralized resource allocation mechanism.

Figure I.1 expands the material in the first part, the Theory of Consumer
Behavior, to give a preview of upcoming topics. The Optimal Choice chapter
is key because it shows how to solve the consumer’s optimization problem, but
the chapter that follows is especially critical. It applies comparative statics
analysis, changing the price of a good, holding everything else constant, to
derive a demand curve. This is the most important concept in the Theory of
Consumer Behavior.

Figure I.1: Content map with focus on consumer behavior.

Focus on the repeated patterns as you work through this material. Economics
has a core logic that has been referred to as “the economic way of thinking”
or “the economic approach.” Learning to see and think like an economist
should be your ultimate goal.

3



4

References

The epigraph is from the second page of the introductory chapter to Thomas
S. Kuhn’s classic, The Structure of Scientific Revolutions (originally pub-
lished in 1962). Kuhn argued that progress in science is not generated by
incremental puzzle solving (what he called normal science), but that periods
of calm are followed by crises that lead to paradigm shifts. The book was as
revolutionary as the material it covered, causing debate and controversy in
philosophical and scientific circles.

Kuhn would not have been surprised to hear that the derivation of the de-
mand curve did not proceed in an incremental, linear fashion. In fact, the
idea of demand for a product depending on the price was known well before
we drew graphs of demand curves (in the second half of the 19th century). It
was not until economics adopted quantitative and mathematical techniques
(what we now call the Marginal Revolution) that the theory of consumer be-
havior was developed and we could mathematically derive a demand curve.

https://www.google.com/search?q=kuhn+structure+of+scientific+revolutions
https://www.econlib.org/library/Enc1/NeoclassicalEconomics.html


If we hold money income constant
and allow the price of X to change,
the price ratio line will rotate
about a pivot on the Y axis.

Milton Friedman

Chapter 1

Budget Constraint

The basic idea of the Theory of Consumer Behavior is simple: Given a bud-
get constraint, the consumer buys a combination of goods and services that
maximizes satisfaction, which is captured by a utility function. By changing
the price of a particular item, ceteris paribus (everything else held constant),
we derive a demand curve for that item.

Setting up and solving the consumer’s utility maximization problem takes
some time. We will proceed slowly and carefully. This chapter focuses on
the budget constraint and how it changes when prices or income change.

What can be afforded is obviously a key factor in predicting buying behavior,
but it is only part of the story. With the budget constraint alone, we cannot
answer the question of how much the consumer wants to buy of each product
because we are not incorporating any information about the utility gained
by consumption. After we understand the budget constraint, we will model
the consumer’s likes and dislikes. We can then put the constraint and utility
components together and solve the model.

The Budget Constraint in Equation Form

The budget constraint can be expressed mathematically like this:

p1x1 + p2x2 ≤ m

This equation says that the sum of the amount of money spent on good x1,
which is the price of x1 times the number of units purchased, or p1x1, and
the amount spent on good x2, which is p2x2, must be less than or equal to
the amount of income, m (for money), the consumer has available.

5
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Obviously, the model would be more realistic if we had many products that
the consumer could buy, but the gain in realism is not worth the additional
cost in computational complexity. We can easily let x2 stand for “all other
goods.”

Another simplification allows us to transform the inequality in the equation
to a strict equality. We will assume that no time elapses so there is no saving
(not spending all of the income available) or borrowing. In other words, the
consumer lives for a nanosecond – buying, consuming, and dying the same
instant. Once again, this assumption is not as severe as it first looks. We
can incorporate saving and borrowing in this model by defining one good as
present consumption and the other as future consumption. We will use this
modeling technique in a future application.

Since we know we will always spend all of our income, the budget constraint
equation can be written with an equal sign, like this

p1x1 + p2x2 = m

Since we will want to draw a graph, we can write in the form of the equation
of a line (y = mx+ b) via a little algebraic manipulation:

p1x1 + p2x2 = m

p2x2 = m− p1x1

x2 =
m

p2

− p1

p2

x1

The intercept, m/p2, is interpreted as the maximum amount of p2 that the
consumer can afford. By buying no x1 and spending all income on x2, the
most the consumer can buy is m/p2 units of good 2.

The slope, −p1/p2, also has a convenient interpretation: It states the rate at
which the market requires the consumer to give up x2 in order to acquire x1.
This is easy to see if you remember that the slope of a line is simply the rise
(∆x2) over the run (∆x1). Then,

∆x2

∆x1

= −p1

p2
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A Numerical Example of the Budget Constraint

STEP Open the Excel workbook BudgetConstraint.xls, read the Intro
sheet, and then go to the Properties sheet to see the budget constraint.

Figure 1.1 shows the organization of the sheet. As you can see, the consumer
chooses the amounts of goods 1 and 2 to purchase, given prices and income.

Figure 1.1: The budget line.
Source: BudgetConstraint.xls!Properties

With p1 = $2/unit, p2 = $3/unit and m = $100, the equation of the budget
line can be computed.

STEP Click on the scroll bars to see the red dot (which represents the
consumption bundle), move around in the chart.

By rewriting the budget constraint equation as a line and then graphing it,
we have a geometric representation of the consumer’s consumption possibil-
ities. All points inside or on the budget line are feasible. Points northeast of
the budget line are unaffordable.

By clicking the scroll bars you can easily see that the consumer has many
feasible points. The big question is, Which one of these many affordable
combinations will be chosen? We cannot answer that question with the bud-
get constraint alone. We need to know how much the consumer likes the two
goods. The constraint is simply about feasible options.
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Changes in the Budget Line – Pivots and Shifts

STEP Proceed to the Changes sheet.

The idea here is that changes in prices cause the budget line to pivot or
rotate, altering the slope, but keeping one of the intercepts the same. Note
that changes in income produce a different result, shifting the budget line in
or out, leaving the slope unchanged.

STEP To see how the budget line pivots, experiment with cell K9 (the
price of good 1). Change it from 2 to 5.

The chart changes to reveal a new budget line. The budget line has rotated
around the y intercept because if the consumer decided to spend all income
on x2, the amount that could be purchased would remain the same.

If you lower the price of good 1, the budget line swings out. Confirm that
this is true.

STEP Changing cell K10 alters the budget line by changing the price of
good 2. Once again, change values in the cell to see the effect on the budget
line.

STEP Next, click the Reset button to return the sheet to its initial
values and work with cell K13. Cut income in half. The effect is dramati-
cally different. Instead of rotating, the budget line has shifted in. The slope
remains the same because prices have not changed. Increasing income shifts
the budget line out.

This concludes the basics of budget lines. It is worth spending a little time
playing with cells K9, K10, and K13 to reinforce understanding of the way
budget lines move when there is a change in a price or income. These shocks
will be used again when we examine how a consumer’s optimal decision
changes when prices or income change.

Remember the key lesson: Change in price rotates the budget line, but change
in income shifts it.
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Funky Budget Lines

In addition to the standard, linear budget constraint, there are many more
complicated scenarios facing consumers. To give you a taste of the possibili-
ties, let us review two examples.

STEP Proceed to the Rationing sheet.

In this example, in addition to the usual income constraint, the consumer is
allowed a maximum amount of one of the goods. Thus, a second constraint
(a vertical line) has been added. When the maximum is above the x1 inter-
cept (50 units), this second constraint is said to be nonbinding. As you can
see from the sheet, when the maximum amount constraint is binding, it lops
off a portion of the budget line.

STEP Change cell E13 to see how changing the rationed amount affects
the budget constraint.

As we increase the amount of the subsidy, the horizontal line is extended.
The downward sloping part has the same slope, but it is pushed outwards,

STEP Proceed to the Subsidy sheet.

In this example, in addition to the usual income constraint, the consumer is
given a subsidy in the form of a fixed amount of the good.

Food stamps are classic example of subsidies. Suppose the consumer has
$100 of income, but is given $20 in food stamps (which can only be spent on
food), and food (x1) is priced at $2/unit. Then the budget constraint has
a horizontal segment from 0 to 10 units of food because the most x2 (other
goods) that can be purchased remains at m/p2 from 0 to 10 units of food
(since food stamps cannot be used to buy other goods).

STEP Change cell E13 to see how changing the given amount of food
(which is the dollar amount of food stamps divided by the price of food)
affects the budget constraint.
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Summary: Consumption Possibilities

The budget constraint is a key component of the optimization problem facing
the consumer. Graphing the constraint lets us see the consumer’s options.
Just like a production possibilities frontier tells us what an economy can
produce, the budget constraint shows what a consumer can buy. Any com-
bination on or under the constraint is a feasible option. Points beyond the
constraint are unattainable.

Changing prices has a different effect on the constraint than changing in-
come. If prices change, the budget line pivots, swings, and rotates (pick your
favorite word and remember it) around the intercept. A change in income,
however, shifts the line (out or in) and leaves the slope unaffected.

The basic budget constraint is a line, but there are many other scenarios faced
by consumers in which the constraint can be kinked or nonlinear. Subsidies
(like food stamps) can be incorporated into the basic model. This flexibility
is one of the powerful features of the Theory of Consumer Behavior.

The constraint is just one part of the consumer’s optimization problem. The
desirability of goods and services, also known as tastes and preferences, is
another important part. The next chapter explains how we model satisfaction
from consuming goods and services.

Exercises

1. Use Excel to create a chart of a budget constraint that is based on the
following information: m = $100 and p2 = $3/unit, but p1 = $2/unit
for the first 20 units and $1/unit thereafter. Copy your chart and paste
it in a Word document.

STEP Watch a quick, 3-minute video of how to make a chart in
Excel by visiting vimeo.com/econexcel/how-to-chart-in-excel.

2. If the good on the y axis is free, what does the budget constraint look
like?

3. What combination of shocks could make the new budget line be com-
pletely inside and steeper than the initial budget line?

4. What happens to the budget line if all prices and income doubles?

https://vimeo.com/38178245
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Satisfaction

Preferences

Utility Functions
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[Indifference] curves are negatively sloped, pass
through every point in commodity space, never
intersect, and are concave from above. The
last-mentioned property implies that the
marginal rate of substitution of X for Y
diminishes as X is substituted for Y so as to
maintain the same level of satisfaction.

C. E. Ferguson

2.1 Preferences

The key idea is that every consumer has a set of likes and dislikes, desires, and
tastes, called preferences. Consumer preferences enable them to compare any
two combinations or bundles of goods and services in terms of better/worse
or the same. The result of such a comparison has two outcomes:

� Strictly preferred: the consumer likes one bundle better than the other.

� Indifferent: the consumer is equally satisfied with the two bundles.

In terms of algebra, you can think of strictly preferred as greater than (>),
indifferent as equal (=).

Since the consumer can compare any two bundles, then by repeated com-
parison of different bundles the consumer can rank all possible combinations
from best to worst (in the consumer’s opinion).

Three Axioms

Three fundamental assumptions are made about preferences to ensure inter-
nal consistency:

1. Completeness: the consumer can compare any bundles and render a
preferred or indifferent judgment.

2. Reflexivity: this identity condition says that the consumer is indifferent
when comparing a bundle to itself.

3. Transitivity: this condition defines an orderly relation among bundles
so that if bundle A is preferred to bundle B and bundle B is preferred
to bundle C then bundle A must be preferred to bundle C.

15
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Completeness and reflexivity are easily accepted. Transitivity, on the other
hand, is controversial. As a matter of pure logic, we would expect that a con-
sumer would make consistent comparisons. In practice, however, consumers
may make intransitive, or inconsistent, choices.

An example of intransitivity: You claim to like Coke better than Pepsi, Pepsi
better than RC, and RC better than Coke. The last claim is inconsistent
with the first two. If Coke beats Pepsi and Pepsi beats RC, then Coke must
really beat RC!

In mathematics, numbers are transitive with respect to the comparison op-
erators greater than, less than, or equal to. Because 12 is greater than 8 and
8 is greater than 3, clearly 12 is greater than 3.

Sports results, however, are not like math. Outcomes of games can easily
yield intransitive results. Michigan might beat Indiana and in its next game
Indiana could defeat Iowa, but few people would claim that the two outcomes
would guarantee that Michigan will win when it plays Iowa.

When we assume that preferences are transitive, it means that the consumer
can rank bundles without any contradictions. It also means that we are able
to determine the consumer’s choice between two bundles based on answers
to previous comparisons.

Displaying Preferences via Indifference Curves

The consumer’s preferences can be revealed by having her choose between
bundles. We can describe a consumer’s preferences with an indifference map,
which is made up of indifference curves.

A single indifference curve is the set of combinations that give equal satis-
faction. If two points lie on the same indifference curve, this means that the
consumer sees these two bundles as tied – neither one is better nor worse
than the other.

A single indifference curve and an entire indifference map can be generated
by having the consumer choose between alternative bundles of goods. We
can demonstrate how this works with a concrete example.
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STEP Open the Excel workbook Preferences.xls, read the Intro sheet,
and then go to the Reveal sheet to see how preferences can be mapped and
the indifference curve revealed.

STEP Begin by clicking the Ask? button. For bundle B, enter 4, then
a comma (,), then a 3, then click OK.

We are using the coordinate pair notation so 4,3 identifies a combination that
has 4 units of the good on the x axis and 3 units of the good on the y axis.

The sheet records the bundles that are being compared in columns A and
B and the outcome in column C. The choices are being made by a virtual
consumer whose unknown preferences are in the computer. By asking the
virtual consumer to make a series of comparisons, we can reveal the hidden
preferences in the form of an indifference curve and indifference map.

Notice that Excel plots the point 4,3 on the chart. The green square means
the consumer chose bundle B. This means that 3,3 and 4,3 are not on the
same indifference curve.

STEP Click the Ask? button again. Offer the consumer a choice be-
tween 3,3 and 2,3.

This time the consumer chose bundle A and a red triangle was placed on the
chart, meaning that the point 3,3 is strictly preferred to the point 2,3.

These two choices illustrate insatiability. This means that the consumer can-
not be sated (or filled up) so more is always better. The combination 4,3 is
preferred to 3,3, which is preferred to 2,3 because good x2 is held constant
at 3 and this consumer is insatiable, preferring more of good x1 to less.

To reveal the indifference curve of this consumer, we must offer tougher
choices, where we give more of one good and less of the other.

STEP Click the Ask? button again. This time offer the consumer a
choice between 3,3 and 4,2.

The consumer decided that 3,3 is better. This reveals important information
about the consumer’s preferences. At 3,3, the consumer likes one more unit
of x1 less than the loss of one unit of x2.
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STEP Click the Ask? button several times more to figure out where
the consumer’s break-even point is in terms of how much x2 is needed to bal-
ance the gain from the additional unit of x1. Offer 4,2.5 and then try taking
away less of good 2, such as 2.7 or 2.9. Once you find the point where the
amount of x2 taken away exactly balances the gain in x1 of one unit (from
3 to 4), you have located two points on a single indifference curve. If it is
difficult to see the points on the chart, use the Zoom control to magnify the
screen (say to 200%).

You should find that this consumer is indifferent between the bundles 3,3
and 4,2.9.

STEP Now click the 100 Random ? button.

One hundred pairwise comparisons are made between 3,3 and a random set
of alternatives. It is easy to see that the consumer can compare each and
every point on the chart to the benchmark bundle of 3,3 and judge each and
every point as better, worse, or the same.

STEP Click the Indifference button to display the indifference curve
that goes through the benchmark point (3,3), as shown in Figure 2.1. Your
version will be similar, but not exactly the same as Figure 2.1 since the 100
dots are chosen randomly.

Figure 2.1: Revealing the indifference curve.
Source: Preferences.xls!Reveal
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The indifference curve shows the bundles that are the same to this consumer
compared to 3,3. All of the bundles for which the consumer is indifferent to
the 3,3 bundle lie on the same indifference curve.

The Indifference Map

Every combination of goods has an indifference curve through it. We often
display a few representative indifference curves on a chart and this is called
an indifference map, as shown in Figure 2.2.

Figure 2.2: An indifference map.

Any point on the curve farthest from the origin, in Figure 2.2, is preferred to
any point below it, including the ones on the two lower indifference curves.
The arrow indicates that satisfaction increases as you move northeast to
higher indifference curves.

There are many (in fact, an infinity) of indifference curves and they are not
all depicted when we draw an indifference map. We draw just a few curves.
We say that the indifference map is dense, which means there is a curve
through every point.

STEP Build your own indifference map by copying the Reveal sheet and

clicking the Reset button, then the Indifference button, and then the

Copy Picture button.

This places a picture of the chart under the chart. This is an Excel drawing
object, not a chart object, and it has no fill.
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STEP Change the benchmark to 4,4 in cell B1 and click the Indifference
button to get the indifference curve through the new benchmark point. Click

the Copy Picture button.

This copies the chart and pastes the drawing object over the first one. Since
it has no fill, it is transparent. You can separate the two pictures if you wish
(click and drag), then undo the move so it is on top of the first picture.

STEP Add one more indifference curve to your map by changing the

benchmark to 5,5 and clicking the Indifference button, then clicking the

Copy Picture button.

You have created an indifference map with three representative indifference
curves. Satisfaction increases as you move northeast to higher indifference
curves.

Marginal Rate of Substitution

Having elicited a single indifference curve from the virtual consumer in the
Excel workbook, we can define and work with a crucial concept in the Theory
of Consumer Behavior: the Marginal Rate of Substitution, or MRS.

The MRS is a single number that tells us the willingness of a consumer to
exchange one good for another from a given bundle. The MRS might be −18
or −0.07. Read carefully and work with Excel so that you learn what these
numbers are telling you about the consumer’s preferences.

STEP Return to the Reveal sheet (with benchmark point 3,3) and

click the Copy Picture button to copy and paste an image of the cur-

rent indifference curve below the graph in the Reveal sheet. Now click the

New Preferences button to get a new virtual consumer with different pref-
erences and then display the indifference curve for this new consumer (by

clicking the Indifference button).

Notice that the indifference curve is not the same as the original one. These
are two different consumers with different preferences. You can use the but-
tons to offer the new consumer bundles that can be compared with the 3,3
benchmark bundle, just like before.
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The key idea here is that at 3,3, we can measure each consumer’s willingness
to trade x2 in exchange for x1.

Initially (as shown in Figure 2.1 and in the picture you took), we saw that
the consumer was indifferent between 3,3 and 4,2.9. For one more unit of
x1 (from 3 to 4), the consumer is willing to trade 0.1 units of x2 (from 3 to
2.9). Then the MRS of x1 for x2 from 3,3 to 4,2.9 is measured by −0.1

1
, or−0.1.

With our new virtual consumer, the MRS at 3,3 is a different number. Let’s
compute it.

STEP Proceed to the MRS sheet. Click the Indifference button. Not
only is the indifference curve through 3,3 displayed for this consumer, it also
shows some of the bundles that lie on this indifference curve. We can use
this information to compute the MRS.

You can compute the MRS at 3,3 by looking at the first bundle after 3,3.
How much x2 is the consumer willing to give up in order to get 0.1 more of
x1? This ratio, ∆x2

∆x1
, (the usual “rise over the run” definition of the slope), is

the slope of the indifference curve, which is also the MRS.

The MRS also can be computed as the slope of the indifference curve at
a point by using derivatives. Instead of computing ∆x2

∆x1
along an indiffer-

ence curve from one point to another, one can find the instantaneous rate of
change at 3,3. We will do this later.

The crucial concept right now is that the MRS is a number that measures the
willingness of a consumer to trade one good for another at a specific point.
We usually think of it in terms of giving up some of the good on the y axis
to get more of the good on the x axis.

Do not fall into the trap of thinking of the MRS as applying to the entire
indifference curve. In fact, the MRS is different at each point on the curve.
For a typical indifference curve like in Figure 2.1, the MRS gets smaller (in
absolute value) as we move down the curve (as it flattens out).

The MRS is negative because the indifference curve is sloping downwards:
a decrease in x2 is compensated for by an increase in x1. We often drop
the minus sign because comparing negative numbers can be confusing. For
example, say one consumer has an MRS of −1 at 3,3 while another has an
MRS of −1

3
at that point. It is true that −1 is a smaller number than −1

3
,
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however, we to use the MRS to indicate the steepness of the slope. Thus,
to avoid confusion, we make the comparison using the absolute value of the
MRS. Figure 2.3 shows that the bigger in absolute value is the MRS, the

Figure 2.3: Comparing MRS.

more the consumer is willing to trade the good on the y axis for the good
on the x axis. Thus, an MRS of −1 at 3,3 means the indifference curve has
a steeper slope at that point than if the MRS was −1

3
. We would say the

MRS is bigger at −1 than −1
3

even though −1 is a smaller number than −1
3

because we look only at the absolute value of the MRS.

Funky Preferences and Their Indifference Curves

We can depict a wide variety of preferences with indifference maps. Here are
some examples.

Example 1: Perfect Substitutes — constant slope (MRS)

If the consumer perceives two things as perfectly substitutable, it means they
can get the same satisfaction by replacing one with the other.

Consider having one five-dollar bill and five one-dollar bills (as long as we
are not talking about several hundred dollars worth of bills). If the consumer
does not care about having $10 as a single ten-dollar bill, one five-dollar bill
and five one-dollar bills, or ten one-dollar bills, then the indifference curve
is a straight line as shown in Figure 2.4. You could argue that there is an
indivisibility here and there are actually just 3 points that should not be con-
nected by a line, but the key idea is that the indifference curve is a straight
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Figure 2.4: Perfect substitutes.

line in the case of perfect substitutes. It has a constant MRS (the slope of
the line is −1

5
), unlike a typical indifference curve where the MRS falls (in

absolute value) as you move down the curve.

Example 2: Perfect Complements — L-shaped Indifference Curves

The polar opposite of perfect substitutes are perfect complements. Suppose
the goods in questions have to be used in a particular way, with no room for
any flexibility at all, like cars and tires. You need four tires for a car to work.
With only three tires the car is worthless. Ignoring the spare, having more
than four tires does not help you if you still have just one car.

Figure 2.5 illustrates the indifference map for this situation. It says that
eight tires with one car gives the same satisfaction as four tires with one car.
It also says that eight tires and two cars is preferred to four tires and one car
(or eight tires and one car) because the middle L-shaped indifference curve
(I1) is farther from the origin than the lowest indifference curve (I0).

Figure 2.5: Perfect complements.
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Notice how the usual indifference curve lies between the two extremes of per-
fect substitutes (straight lines) and perfect complements (L-shaped). Thus,
the typical indifference curve reflects a level of substitutability between goods
that is more than perfect complements (one good cannot replace another at
all), but less than perfect substitutes (one good can take the place of another
with no loss of satisfaction).

Example 3: Bads

What if one of the goods is actually a bad, something that lowers satisfaction
as you consume more of it, like pollution? Figure 2.6 shows the indifference
map in this case.

Figure 2.6: Bads.

Along any one of the indifference curves, more steel and more pollution are
equally satisfying because pollution is a bad that cancels out the additional
good from steel. The arrow indicates that satisfaction increases by moving
northwest, to higher indifference curves.

Example 4: Neutral Goods

What if the consumer thinks something is neither good nor bad? Then it is
a neutral good and the indifference map looks like Figure 2.7.

The horizontal indifference curves for the neutral good on the x axis in Fig-
ure 2.7 tell you that the consumer is indifferent if offered more X. The arrow
indicates that satisfaction rises as you move north (because Y is a good and
having more of it increasing satisfaction).
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Figure 2.7: X is a neutral good.

These are just a few examples of how a variety of preferences can be depicted
with an indifference map. When we want to describe generic, typical pref-
erences that produce downward sloping indifference curves, as in Figure 2.2,
economists use the phrase “well-behaved preferences.”

Another technical term that is often used in economics is convexity, as in
convex preferences. This means that midpoints are preferred to extremes. In
Figure 2.8, there are two extreme points, A and B, which are connected by
a dashed line. Any point on the dashed line, like C, can be described by the
equation zA + (1 − z)B, where 0 < z < 1 controls the position of C. This
equation is called a convex combination.

Figure 2.8: Convex preferences.

If preferences are convex, then midpoints like C are strictly preferred to ex-
treme points like A and B. Convexity is used as another way of saying that
preferences are well-behaved.
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An important property that arises out of well-behaved or convex preferences
is that of diminishing MRS. As explained earlier, the MRS varies along an
indifference curve and applies to a specific point (not to the entire curve).
The MRS will start large (in absolute value) at the top left corner, like point
A in Figure 2.8, and get smaller as we travel down the indifference curve to
point B. This makes common sense. The consumer is readily willing to trade
a lot of Y for X (so the MRS is high in absolute value) when he has a lot
of Y and little X. When the amounts are reversed, such as point B, a small
MRS means he is willing to give up very little Y (since he has little of it) for
more X (which he has a lot of already).

Indifference Curves Reflect Preferences

Preferences, a consumer’s likes and dislikes, can be elicited or revealed by ask-
ing the consumer to pick between pairs of bundles. The indifference curve is
that set of bundles that the consumer finds equally satisfying.

The MRS is a single number that measures the willingness of the consumer
to exchange one good for another at a particular point. If the MRS is high
(in absolute value), the indifference curve is steep at that point and the con-
sumer is willing trade a lot of Y for a little more X.

Standard, well-behaved preferences yield a set of smooth arcs (like Figure
2.2), but there are many other shapes that depict preferences for different
kinds of goods and the relationship between goods.

Exercises

1. What is the MRS at any point if X is a neutral good? Explain why.

2. If the good on the y axis was a neutral good and the other good was
a regular good, then what would the indifference map look like. Use
Word’s Drawing Tools to draw a graph of this situation.

3. If preferences are well-behaved, then indifference curves cannot cross.
Use Figure 2.9 to help you construct an explanation for why this claim
must be true. Note that point C has more X and Y than point A,
thus, by insatiability, C must be preferred to A. The key to defending
the claim lies in the assumption of transitivity.
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Figure 2.9: An impossible indifference map.

4. Suppose we measure consumer A’s and B’s MRS at the same point and
find that MRSA = −6 and the MRSB = −2. What can we say about
the preferences of A and B at this point?

References
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ing general equilibrium theory, that made his book different and important.
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[A] cardinal measure of utility is in
any case unnecessary; only an
ordinal preference, involving
“more” or “less” but not “how
much,” is required for the analysis
of consumer’s behavior.

Paul A. Samuelson

2.2 Utility Functions

Previously, we showed that a consumer has preferences that can be revealed
and mapped. The next step is to identify a particular functional form, called
a utility function, which faithfully represents the person’s preferences. Once
you understand how the utility function works, we can combine it with the
budget constraint to solve the consumer’s optimization problem.

Cardinal and Ordinal Rankings

Jeremy Bentham (1748-1832) was a utilitarian philosopher who believed that,
in theory, the amount of utility from consuming a particular amount of a good
could be measured. So, for example, as you ate an apple, we could hook you
up to some device that would report the number of “utils” of satisfaction
received. The word utils is in quotation marks because they do not actually
exist, but Bentham believed they did and would one day be discovered with
an advanced measuring instrument. This last part is not so crazy—an fMRI
machine is exactly what he envisioned.

Bentham also believed that utils were a sort of common currency that en-
abled them to be compared across individuals. He thought society should
maximize aggregate or total utility and utilitarianism has come to be associ-
ated with the phrase “the greatest happiness for the greatest number.” Thus,
if I get 12 utils from consuming an apple and you get 6, then I should get
the apple. Utilitarianism also implies that if I get more utils from punching
you in the face than you lose, I should punch you. This is why utilitarianism
is not highly regarded today.

This view of utility treats satisfaction as if we could place it on a cardinal
scale. This is the usual number line where 8 is twice as much as 4 and the
difference between 33 and 30 is the same as that between 210 and 207.

29
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Near the turn of the 20th century, Vilfredo Pareto (1848-1923, pronounced
pa-RAY-toe) created the modern way of thinking about utility. He held that
satisfaction could not be placed on a cardinal scale and that you could never
compare the utilities of two people. Instead, he argued that utility could be
measured only up to an ordinal scale, in which there is higher and lower, but
no way to measure the magnitude between two items.

Notice how Pareto’s approach matches exactly the way we assumed that a
consumer could choose between bundles of goods as preferring one bundle or
being indifferent. We never claimed to be able to measure a certain amount
of satisfaction from a particular bundle.

For Pareto, and modern economics, the numerical value from a particular
utility function for a given combination of goods has no meaning. These
values are like the star ranking system for restaurants.

Suppose Critic A uses a 10-point scale, while Critic B uses a 1000-point scale
to judge the same restaurants. We would never say that B’s worst restau-
rant, which scored say 114, is better than A’s best, a perfect 10. Instead,
we compare their rankings. If A and B give the same restaurant the highest
ranking (regardless of the score), it is the best restaurant.

Now suppose we are reading a magazine that uses a 5-star rating system.
Restaurant X earns 4 stars and Restaurant Y 2 stars. X is better, but can
we conclude that X is twice as good as Y? Absolutely not. An ordinal scale
is ordered, but the differences between values are not important.

Pareto revolutionized our understanding of utility. He rejected Bentham’s
cardinal scale because he did not believe that satisfaction could be measured
like body temperature or blood pressure. Pareto showed that we could derive
demand curves with the less restrictive more-or-less ranking of bundles.

The transition from Bentham’s cardinal view of utility to Pareto’s ordinal
view was not easy. Using the same word, utility, creates confusion (although,
to be fair, Pareto tried to create a new word, ophelimity , but it never caught
on). It bears repeating that, for a modern economist, although a utility func-
tion will show numerical values, these should not be interpreted on a cardinal
scale, nor should numerical utilities of different people be compared. Since
we cannot make interpersonal utility comparisons to add utilities of different
people, we cannot give me the apple or let me punch you.

https://www.google.com/search?q=ophelimity
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Monotonic Transformation

Once we reveal the consumer’s indifference curve and map, we have the con-
sumer’s rankings of all possible bundles. Then, all we need to do is use a
function that faithfully represents the indifference curves. The utility func-
tion is a convenient way to capture the consumer’s ordering.

There are many (in fact, an infinity) of functions that could work. All the
function has to do is preserve the consumer’s preference ranking.

A monotonic transformation is a rule applied to a function that changes
(transforms) it, but maintains the original order of the outputs of the func-
tion for given inputs. Monotonic is a technical term that means always
moving in the same direction.

For example, star ratings can be squared and the rankings remain the same.
If X is a 4-star and Y a 2-star restaurant, we can square them. X now has 16
stars and Y has 4 stars. X is still higher ranked than Y. In this case, squaring
is a monotonic transformation because it has preserved the ordering and X
is still higher than Y.

Can we conclude that X is now four times better? Of course not. Remember
that the star ranking is an ordinal scale so the distance between items is
irrelevant. We say that squaring is a monotonic transformation because it
maintains the same ordering and we do not care about the distances between
the numeric values. Their only meaning is “higher” and “lower,” which in-
dicate better and worse.

It is a fact that the MRS (at any point) remains constant under any mono-
tonic transformation. This is an important property of monotonic transfor-
mations that we will illustrate with a concrete example in Excel.

Cobb-Douglas: A Ubiquitous Functional Form

STEP Open the Excel workbook Utility.xls, read the Intro sheet, and
then go to the CobbDouglas sheet to see an example of this utility function:

u(x1, x2) = xc1x
d
2

In economics, a function created by multiplying variables that are raised to
powers is called a Cobb-Douglas functional form.
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STEP Follow the directions on the sheet (in column K) to rotate the
2D chart so you are looking down at it.

A top-down view of the utility function looks like an indifference map. The
utility function itself, in 3D, is a hill or mountain (that keeps growing with-
out ever reaching a top—illustrating the idea of insatiability).

With a utility function, the indifference curves appear as contour lines or
level curves. The curves in 2D space are created by taking horizontal slices
of the 3D surface. Every point on the indifference curve has the exact same
height, which is utility.

STEP The exponents (c and d) in the utility function express “likes and
dislikes.” Try c = 4 then c = 0.2 in cell B5.

The higher the c exponent, the more the consumer likes x1 because each unit
of x1 is raised to a higher power as c increases. Notice that when c = 4, the
fact that the consumer likes x1 much more than when c = 0.2 is reflected in
the shape of the indifference curve. The steeper the indifference curve, the
higher the MRS (in absolute value) and the more the consumer likes x1.

STEP Proceed to the CobbDouglasLN sheet, which applies a monotonic
transformation of the Cobb-Douglas function. It applies the natural log func-
tion to the utility function.

Recall that the natural logarithm of a number x is the exponent on e (the
irrational number 2.7128 . . .) that makes the result equal x. You should
also remember that there are special rules for working with logs. Two es-
pecially common rules are ln(xy) = y lnx and ln(xy) = lnx + ln y. We can
apply these rules to the Cobb-Douglas function when we take the natural log:

u(x1, x2) = xc1x
d
2

ln[u(x1, x2)] = ln[xc1x
d
2]

ln[u(x1, x2)] = c lnx1 + d lnx2

The CobbDouglasLN sheet applies the natural log transformation by using
Excel’s LN() function.
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STEP Click on any cell between B12 and Q27 to see the formula. We
are computing the natural log of utility, which is x1 raised to the c power
times x2 raised to the d power.

How does the original utility function compare to its natural log version?

STEP Go back and forth a few times between the two (click on the
CobbDouglas sheet tab and then the CobbDouglassLN sheet tab). It is ob-
vious that the numbers are different.

But did you notice something curious?

STEP Compare the cells with yellow backgrounds in the two sheets
to see that these two combinations continue to lie on the same indifference
curve, even though the utility values of the two functions are different.

The fact that the cells remain on the same indifference curve after undergo-
ing the natural log transformation demonstrates the meaning of a monotonic
transformation. The utility values are different, but the ranking has been
preserved. The two utility functions both maintain the same relationship
between 1,14 and 2,7 and every other bundle.

So now you know that a Cobb-Douglas utility function can be used to faith-
fully represent a consumer’s preferences (including tweaking the c and d
exponents to make the curves steeper or flatter) and that we can use the
natural log transformation if we wish. In addition, economists often use the
Cobb-Douglas functional form for utility (and production) functions because
it has very nice algebraic properties where lots of terms cancel out.

The Cobb-Douglas function is especially easy to work with if you remember
the following rules:

Algebra Rules: xa

xb
= xa−b and xa

b
= xab

Calculus Rule: daxb

dx
= baxb−1dx

These rules may seem irrelevant right now, but we will see that they make
the Cobb-Douglas function much easier to work with than other functions.
This goes a long way in explaining the repeated use of the Cobb-Douglas
functional form in economics.
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Expressing Other Preferences with Utility Functions

STEP Proceed to the PerfSub sheet and look around. Scroll down (if
needed) and look at the two charts.
Notice how this functional form is producing straight line indifference curves
(in the 2D chart). If the consumer treated two goods as perfect substitutes,
we would use this functional form instead of Cobb-Douglas. The coefficients
(a and b) can be tweaked to make the lines steeper or flatter.

STEP Proceed to the PerfComp sheet. This shows how the min() func-
tional form produces L-shaped indifference curves.

The min() function outputs the smaller of the two terms, ax1 and bx2. This
means that getting more of one good while holding the amount of the other
good constant does not increase utility. This produces an L-shaped indiffer-
ence curve.

Finally, the Quasilinear sheet displays indifference curves that are actually
curved, but rather flat.

STEP Go to the Quasilinear sheet and click on the different functional
form options. These are just a few of the many transformations that can
be applied to x1 and then added to x2 to produce what is called quasilinear
utility. Later, we will see that this functional form has different properties
than Cobb-Douglas.

Note that we can represent many different kinds of preferences with utility
functions. An important point is that there are many (to be more exact, an
infinity) of possible utility functions available to us. We would choose one
that faithfully reflects a particular consumer’s preferences. We can always
apply a monotonic transformation and it will not alter the consumer’s pref-
erences.

Computing the MRS for a Utility Function

Now that we have utility functions to represent a consumer’s preferences, we
are able to compute the MRS from one point to another (like we did in the
previous chapter) or by using the instantaneous rate of change, better known
as the derivative.



2.2. UTILITY FUNCTIONS 35

This is not a mathematics book, but economists use math so we need to see
exactly how the derivative works. The core idea is convergence: make the
change in x (the run) smaller and smaller and the ratio of the rise over the
run (the slope) gets closer and closer to its ultimate value. The derivative
is a shortcut that gives us the answer without the cumbersome process of
making the change smaller and smaller.

But this is way too abstract. We can see it in Excel.

STEP Proceed to the MRS sheet to see how the MRS can be computed
via a discrete-size change versus an infinitesimally-small change.

The utility function is x1x2. This is Cobb-Douglas with exponents (implic-
itly) equal to 1.

Suppose we are interested in the indifference curve that gives all combinations
with a utility of 10. Certainly 5,2 works (since 5 times 2 is 10). It is the red
dot in the graph on the MRS sheet (and in Figure 2.10).

Figure 2.10: Computing the MRS.
Source: Utility.xls!MRS

From the bundle 5,2, if we gave this consumer 1 more unit of x1, by how
much would we have to decrease x2 to stay on the U = 10 indifference curve?
A little algebra tells us.
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We know that U = x1x2 and the initial bundle 5,2 yields U = 10. We want
to maintain U constant with x1 = 6 because we added one unit to x1, so we
have:

U = x1x2

10 = 6x2

x2 = 10
6

We have two bundles that yield U = 10 (5,2, and 6,10
6

). We can compute
the MRS as the change in x2 divided by the change in x1. The delta (or
difference) in x2 is −1

3
(because 10

6
is 1

3
less than 2) and the delta in x1 is 1

(6 - 5), so starting from the point 5,2, the MRS from x1 = 5 to x1 = 6 is −1
3
.

This is what Excel shows in cell C18.

Another way to compute the MRS uses the calculus approach. Instead of a
“large” or discrete-size change in x1, we take an infinitesimally small change,
computing the slope of the indifference curve not from one point to another,
but as the slope of the tangent line (as shown in Figure 2.10). We use the
derivative to compute the MRS at a particular point.

For this simple utility function, holding U constant at 10, we can rewrite the
function as x2 in terms of x1, then take the derivative.

U = x1x2

x2 = 10
x1

dx2
dx1

= − 10
x21

At x1 = 5, substitute in this value and the MRS at that point is −10
25

or -0.4.
This is what Excel shows in cell D18. If you need help with derivatives, the
next chapter has an appendix that reviews basic calculus.

Computing the MRS this way relies on the ability to write x2 in terms of
x1. If we have a utility function that cannot be easily rearranged in this
way, we will not be able to compute the MRS. There is, however, a more
general approach. The procedure involves taking the derivative of the utility
function with respect to x1 (called the marginal utility of x1) and dividing by
the derivative of the utility function with respect to x2 (called the marginal
utility of x2). Do not forget to include the minus sign when you use this
approach. Here is how it works.
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With U = x1x2, the derivatives are simple: dU
dx1

= x2 and dU
dx2

= x1. Thus,
we can substitute these into the numerator and denominator of the MRS
expression:

Because we are considering the point 5,2, we evaluate the MRS at that point
(which means we plug in those values to our MRS expression), like this:

Note that minus the ratio of the marginal utilities gives the same answer as
the dx2

dx1
method. Both are using infinitesimally small changes to compute the

instantaneous rate of change of the indifference curve at a particular point.

Also note that the ratio of the marginal utilities approach requires that you
divide the marginal utility of x1 (the good on the x axis) by the marginal
utility of x2 (the good on the y axis). Since we used ∆y

∆x
in the discrete-

size change approach, it is easy to confuse the numerator and denominator
when computing the MRS via the derivative. Remember that dU

dx1
goes in the

numerator.

Comparing ∆ and d Methods

So far, we know there are two ways to get the MRS: move from one point
to another along the indifference curve (discrete change, ∆) or slope of the
tangent line at a point (infinitesimally small change, d). We also know that
we have two ways of doing the latter (solve for x2 then take the derivative or
compute the ratio of the marginal utilities.)

But you may have noticed a potential problem in that the two procedures to
get the MRS yield different answers. In the MRS sheet and our work above,
the discrete change approach tells us that the MRS as measured from x1 = 5
to x1 = 6 is −1

3
, whereas the derivative method says that the MRS at x1 = 5

is -0.4.
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This difference in measured MRS is due to the fact that the two approaches
are applying a different size change in x1 to a curve. As the discrete-size
change gets smaller, it approaches the derivative measure of the MRS. You
can see this clearly with Excel.

STEP Change the step size in cell B7 to 0.5 and watch how cell C18
changes. Notice that the chart is also slightly different because the point at
x1 = 6 is now at 5.5.

You have made the size of the change in x1 smaller so the point is now closer
to the initial value, 5.

STEP Do it again, this time changing the step size in cell B7 to 0.1.
The point with x1 = 5.1 is so close to 5 that it is hard to see, but it is there.
Do one last change to the step size, setting it at 0.01.

With the step size at 0.01, you cannot see the initial and new points because
they are so close together, but they are still a discrete distance apart. Excel
displays the point-to-point delta computation in cell C18. It is really close
to the derivative measure of the MRS in cell D18 because the derivative is
simply the culmination of this process of making the change in x1 smaller
and smaller.

In Figure 2.10, the discrete change approach is computing the rise over the
run using two separate points on the curve, while the calculus approach is
computing the slope of the tangent line.

STEP Look at the values of the cells in the yellow highlighted row.

The MRS for a given approach are exactly the same. In other words, columns
C, H, and M are the same and columns D, I, and N are the same. This shows
that the MRS remains unaffected when the utility function is monotonically
transformed.

Utility Functions Represent Preferences

Utility functions are equations that represent a consumer’s preferences. The
idea is that we reveal preferences by having the consumer compare bundles,
and then we select a functional form that faithfully reflects the indifference
curves of the consumer.
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In selecting the functional form, there are many possibilities and economists
often use the Cobb-Douglas form. The values of utility produced by inputting
amounts of goods are meaningless and any monotonic transformation (be-
cause it preserves the preference ordering) will work as a utility function.
Monotonic transformations do not affect the MRS.

The MRS is an important concept in consumer theory. It tells us the willing-
ness to trade one good for another and this measure the consumer’s likes and
dislikes. Willingness to trade a lot of y for a little x produces a high MRS
(in absolute value) and this indicates that the consumer values x more than y.

The MRS computed from one point to another (∆), but it can also be com-
puted using the derivative (d) at a point. Both are valid and the resulting
number for the MRS is interpreted the same way (willingness to trade).

Exercises

The utility function, U = x− 0.03x2 + y, has a quasilinear functional form.
Use this function to the answer the questions below. You can see what it
looks like by choosing the Polynomial option in the Quasilinear sheet.

1. Compute the value of the utility function at bundle A, where x = 10
and y = 1. Show your work.

2. Working with bundle A, find the MRS as x rises from x = 10 to x =
20. Show your work.

3. Find the MRS at the point 10,1 (using derivatives). Show your work.

4. Why do the two methods of determining the MRS yield different an-
swers?

5. Which method is better? Why?
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Joseph Louis Lagrange, the greatest
mathematician of the eighteenth century,
was born at Turin on January 25, 1736, and
died at Paris on April 10, 1813. . . . In
appearance he was of medium height, and
slightly formed, with pale blue eyes and a
colourless complexion. In character he was
nervous and timid, he detested controversy,
and to avoid it willingly allowed others to
take credit for what he had himself done.

W. W. Rouse Ball

3.1 Initial Solution

What you know so far:

1. The budget constraint shows the consumer’s possible consumption bun-
dles. The standard, linear constraint is p1x1 + p2x2 = m. There are
many other situations, such as subsidies and rationing, which give more
complicated constraints with kinks and horizontal/vertical segments.

2. The indifference map shows the consumer’s preferences. The stan-
dard situation is a set of convex, downward sloping indifference curves.
There are many alternative preferences, such as perfect substitutes and
perfect complements. Preferences are captured by utility functions,
which accurately reflect the shape of the indifference curves.

Our job is to combine these two parts, one expressing what is affordable and
the other what is desirable, to find the combination (or bundle) that maxi-
mizes satisfaction (as described by the indifference map or utility function)
given the budget constraint. The answer will be in terms of how much the
consumer will buy in units of each good.

The optimal solution is depicted by the canonical graph in Figure 3.1. The
word canonical is used here to mean standard, conventional, or orthodox. In
economics, a canonical graph is a core, essential graph that is understood by
all economists, such as a supply and demand graph.

It is no exaggeration to say that Figure 3.1 is one of the most fundamental
and important graphs in economics. It is the foundation of the Theory of
Consumer Behavior and with it we will derive a demand curve.

43



44 CHAPTER 3. OPTIMAL CHOICE

Figure 3.1: The canonical graph of the optimal solution.

One serious intellectual obstacle with Figure 3.1 is that it is highly abstract.
Below we work on a concrete problem, with actual numbers, to explain what
is going on in this fundamental graph.

Before we dive in, we need to discuss solution strategies. There are two ways
to find the optimal solution:

1. Analytical methods using algebra and calculus—this is the conventional,
paper and pencil approach that has been used for a long time.

2. Numerical methods using a computer, for example, Excel’s Solver—this is
a modern solution strategy that uses the computer to do most of the work.

Analytical Approach

Unfortunately, constrained optimization problems are harder to solve than
unconstrained problems. The appendix to this chapter offers a short calculus
review along with a few common derivative and algebra rules. If the material
below makes little sense, go to the appendix and then return here.
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Because this is a constrained optimization problem, the analytical approach
uses the method developed by Joseph Louis Lagrange. His brilliant idea is
based on transforming a constrained optimization problem into an uncon-
strained problem and then solving by using standard calculus techniques. In
the process, a new endogenous variable is created. It can have a meaningful
economic interpretation.

Lagrange gave us a recipe to follow that requires four steps:

1. Rewrite the constraint so that it is equal to zero.
2. Form the Lagrangean function.
3. Take partial derivatives with respect to x1, x2, and λ.
4. Set the derivatives equal to zero and solve for x1*, x2*, and λ*.

A Concrete Example

Suppose a consumer has a Cobb-Douglas utility function with exponents
both equal to 1 and a budget constraint, 2x1 + 3x2 = 100 (which means the
price of good 1 is $2/unit, the price of good 2 is $3/unit, and income is $100).

The problem is to maximize utility subject to (s.t.) the budget constraint.
It is written in equation form like this:

max
x1,x2

U(x1, x2) = x1x2

s.t. 100 = 2x1 + 3x2

This problem is not solved directly. It is first transformed into an uncon-
strained problem, and then this unconstrained problem is solved. Here is
how we apply the recipe developed by Lagrange.

1. Rewrite the constraint so that it is equal to zero.

0 = 100− 2x1 − 3x2

2. Form the Lagrangean function.

Most math books use a fancy script L for the Lagrangean, like this L, but
this is difficult to do in Word’s Equation Editor (which you will be using) so
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an extra-large L will work just as well. Also, many books spell Lagrangean
with an i, Lagrangian, but both spellings are acceptable.

Note that the Lagrangean function, L, is composed of the original objective
function (in this case, the utility function) plus a new variable, the Greek
letter lambda, λ, times the rewritten constraint. Called the Lagrangean mul-
tiplier, λ is a new endogenous variable that is introduced as part of Lagrange’s
solution strategy.

The next step in Lagrange’s recipe can be intimidating. This is not the time
to rush through and turn the page. Refer to the appendix at the end of this
section if things start to get confusing.

3. Take partial derivatives with respect to x1, x2, and λ.

The derivative used here is a partial derivative, denoted by ∂, which is an
alternative way of writing a lowercase Greek letter d (which is why the more
common symbol for the letter δ is also used). The partial derivative symbol
is usually read as the letter d, so the first equation read out loud would be
“d L d x one equals x two minus two times lambda.” It is also common to
read the derivative in the first equation as “partial L partial x one.”

The partial derivative is a natural extension of the regular derivative. Con-
sider the function y = 4x2. The derivative of y with respect to x is dy

dx
=

8x. Suppose, however, that we had a more complicated function, like this:
y = 4zx2. This multivariate function says that y depends on two variables,
z and x. We can explore the rate of change of this function along the x axis
by treating it as a partial function, meaning that we hold the z variable con-
stant. Then the partial derivative of y with respect to x is ∂y/∂x = 8zx. If
we hold x constant and vary z, then the partial derivative of y with respect
to z is ∂y/∂z = 4x2.
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Applying this logic to the Lagrangean in step 2, when we take the partial
derivative with respect to x1, the first term is x2 because it is as if we had
“x4” and took the derivative with respect to x, getting 4.

If we multiply λ through the parenthetical expression in the Lagrangean, we
get:

λ(100− 2x1 − 3x2)

λ100− λ2x1 − λ3x2 = 0

The first and third terms on the left-hand side do not have x1 so the deriva-
tive with respect to x1 is zero (just like the derivative of a constant is zero).
The derivative with respect to x1 of the middle term produces −λ2 which is
written by convention as −2λ.

Can you do the other two derivatives in step 3?

4. Set the derivatives equal to zero and solve for x1*, x2*, and λ*.

There are many ways to solve this system of equations, which are known
as the first-order conditions. Sometimes, this is the hardest part of the La-
grangean method. Depending on the utility function and constraint, there
may not be an analytical solution.

A common strategy involves moving the λ terms in the first two equations
to the right-hand side and then dividing the first equation by the second one.

x2 = 2λ

x1 = 3λ

x2

x1

=
2λ

3λ
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The λ terms then cancel out, leaving us with two equations (the one above
and the third equation from the original three first-order conditions) and two
unknowns (x1 and x2).

x2

x1

=
2

3

100− 2x1 − 3x2 = 0

The top equation has a nice economic interpretation. It says that, at the
optimal solution, the MRS (slope of the indifference curve) must equal the
price ratio (slope of the budget constraint).

From the top equation, we can solve for x2.

x2 =
2

3
x1

We can then substitute this expression into the bottom equation (the budget
constraint) to get the optimal value of x1.

Then we substitute x1* into the expression for x2 to get x2*.

x2 =
2

3
[25]

x2* = 16
2

3

The asterisk is used to represent the optimal solution for a choice variable.
This work says that this consumer should buy 25 units of good 1 and 162

3

units of good 2 in order to maximize satisfaction given the budget constraint.
We can use either equation 1 or 2 from the original first-order conditions to
find the optimal value of λ. Either way, we get λ* = 81

3
.

For many optimization problems, we would be interested in knowing the
numerical value of the maximum by evaluating the objective function (in
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this case the utility function) at the optimal solution. But recall that util-
ity is measured only up to an ordinal scale and the actual value of utility
is irrelevant. We want to maximize utility, but we do not care about its
actual maximum value. The fact that utility is ordinal, not cardinal, also
explains why the optimal value of lambda is not meaningful. In general,
the Lagrangean multiplier tells us how the maximum value of the objective
function changes as the constraint is relaxed. With utility as the objective
function, this interpretation is not applicable.

Numerical Approach

Instead of calculus (via the method of Lagrange) and pencil and paper, we
can use numerical methods to find the optimal solution.

To use the numerical approach, we need to do some preliminary work. We
have to set up the problem in Excel, carefully organizing things into a goal,
endogenous variables, exogenous variables, and constraint. Once we have
everything organized, we can use Excel’s Solver to get the solution.

STEP Open the Excel workbook OptimalChoice.xls, read the Intro sheet,
and then go to the OptimalChoice sheet to see how the numerical approach
can be used to solve the problem we worked on above.

Figure 3.2 reproduces the display you see when you first arrive at the Opti-
malChoice sheet.

Figure 3.2: The initial display in the OptimalChoice sheet.
Source: OptimalChoice.xls!OptimalChoice
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Notice how the sheet is organized according to the three components of the
optimization problem: goal, endogenous, and exogenous variables. The con-
straint cell displays how much of the consumer’s budget remains available
for buying goods. The consumer in Figure 3.2 is not using all of the income
available so we know satisfaction cannot be maximized at the point 20,10.

STEP Let’s have the consumer buy x2 with the remaining $30. At
$3/unit, 10 additional units of x2 can be purchased. Enter 20 in the x2 cell
(B13) and hit the Enter key. The chart refreshes to display the point 20,20,
which is on the budget constraint, and draws three new indifference curves.

Although 20,20 does exhaust the available income, it is not the optimal solu-
tion. While you know the answer is 25,162

3
, there is another way to tell that

the consumer can do better.

STEP Look carefully at the display below the chart. It reveals the MRS
does not equal the price ratio. This immediately tells us that something is
amiss here.

MRS > p1/p2 tells us that the slope of the indifference curve at that point
is greater than the slope of the budget constraint. The consumer cannot
change the slope of the budget constraint, but the MRS can be altered by
choosing a different the combination of goods. This consumer needs to lower
the MRS (in absolute value) to make the two equal. This can be done by
moving down the budget constraint.

If the consumer buys 10 more of good 1 (so 30 units of x1 total), consumption
of x2 must fall by 62

3
units to 131

3
.

STEP Enter 30 in cell B12 and the formula = 13 + 1/3 in B13. Now
you are on the other side of the optimal solution. The MRS is less than the
price ratio.

You could, of course, continue adjusting the cells manually, but there is a
faster way.

STEP Click the Data tab in Excel’s Ribbon (on the top of the screen)
and click Solver (grouped under the Analyze tab) or execute Tools: Solver
in older versions of Excel to bring up the Solver Parameters dialog box (dis-
played in Figure 3.3).
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Figure 3.3: Excel’s Solver interface.

If you do not have Solver available as a choice, bring up the Add-in Manager
dialog box and make sure that Solver is listed and checked. If Solver is not
listed, you must install it. Solver is included in a standard installation of
Excel. For help, try support.office.com or www.solver.com.

Note how Excel’s Solver includes information on the objective function (the
target cell), the choice variables (the changing cells), and the budget con-
straint. These have all been filled in for you, but you will learn how to do
this yourself in future work.

STEP Since all of the information has been entered into the Solver Pa-
rameters dialog box, simply click the Solve button at the bottom of the dialog
box.

Excel’s Solver works by trying different combinations of x1 and x2 and eval-
uating the improvement in the target cell, while trying to stay within the
constraint. When it cannot improve very much more, it figures it has found
the answer and displays a message as shown in Figure 3.4.

https://support.office.com/
https://www.solver.com/


52 CHAPTER 3. OPTIMAL CHOICE

Figure 3.4: Solver reports success.

Although Solver gets the right answer in this problem, we will see in future
applications that Solver is not perfect and does not deserve blind trust.

STEP Click the Sensitivity option under Reports and click OK; Excel
puts the Solver solution into cells B12 and B13. It also inserts a new sheet
into the workbook with the Sensitivity Report.

STEP Click on cells B12 and B13. Notice that Excel did not get exactly
25 and 162

3
. It got extremely close and you can certainly interpret the result

as confirming the analytical solution, but Solver’s output requires interpre-
tation and critical thinking by the user. We will focus on the issue of the
exactly correct answer later.

STEP Proceed to the Sensitivity Report sheet (inserted by Solver) to
confirm that this numerical method gives substantially the same absolute
value for the Lagrangean multiplier that we found via the Lagrangean method
(81

3
). We postpone explanation of this because utility’s ordinal scale makes

interpretation of the Lagrangean multiplier pointless. For now, we simply
note that Solver can report optimal lambda and its results agreed with the
Lagrangean method.

You might notice that Excel reports a Lagrangean multiplier value of -8.33
(with a few more trailing 3s) yet our analytical work did not produce a neg-
ative number. It turns out that we ignore the sign of λ∗. If we set up the
Lagrangean as the objective function minus (instead of plus) lambda times
the constraint or rewrite the constraint as 0 = 2x1 + 3x2 − 100 (instead of
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0 = 100− 2x1 − 3x2), we would get a negative value for λ∗ in our analytical
work. The way we write the constraint or whether we add or subtract the
constraint is arbitrary, so we ignore the sign of λ∗.

To be clear, unlike the sign, the magnitude of λ∗ can be meaningful, but it is
not in this application because utility is not cardinal. We will, however, see
examples where the value of λ∗ is useful and has an economic interpretation.

Using Analytical and Numerical Methods to Find the
Optimal Solution

There are two ways to solve optimization problems:

1. The traditional way uses pencil and paper, derivatives, and algebra. The
Lagrangean method is used to solve constrained optimization problems, such
as the consumer’s choice problem.

2. Advances in computers have led to the creation of numerical methods
to solve optimization problems. Excel’s Solver is an example of a numerical
algorithm that can be used to find optimal solutions.

In the chapters that follow, we will continue to use both analytical and nu-
merical approaches. You will see that neither method is perfect and both
have strengths and weaknesses.

Exercises

The utility function, U = 10x− 0.1x2 + y, has a quasilinear functional form.
Use this utility function to answer the questions below.

1. Suppose the budget line is 100 = 2x + 3y. Use the analytical method
to find the optimal solution. Show your work.

2. Suppose the consumer considers the bundle 0,33.33, buying no x and
spending all income on y. Use the MRS compared to the price ratio
logic to explain what the consumer will do and why.

3. This utility function can be written in a more general form with letters
instead of numbers, like this: U = ax− bxc + dy. If a increases, what
happens to the optimal consumption of x*? Explain how you arrived
at your answer.
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References

The epigraph is from page 421 of W. W. Rouse Ball’s A Short Account of
the History of Mathematics (first published in 1888). Of course, there are
many books on the history of mathematics, but this classic is fun and easy
to read. It mixes stories about people with real mathematical content.

This entire book (and many others) is freely available at books.google.com.
You can read it online or download it as a pdf file.

Appendix: Derivatives and Optimization

A derivative is a mathematical expression that tells you how y in a function
y = f(x) changes given an infinitesimally small change in x. Graphically, it
is the slope, or rate of change, of the function at that particular value of x.

Linear functions have a constant slope and, therefore, a constant value for
the derivative. For the linear function y = 6 + 3x, the derivative of y with
respect to x is written dy

dx
(pronounced “d y d x”) and its value is 3. This tells

you that every time the x variable goes up, the y variable goes up threefold.
So, if x increases by 1 unit, y will increase by 3 units. This is easy to see in
Figure 3.5.

Figure 3.5: A linear function.

Nonlinear functions have a changing slope and, therefore, a derivative that
takes on different values at different values of x. Consider the function y =
4x−x2. Figure 3.6 graphs this function. Its derivative is dy

dx
= 4− 2x. When

https://books.google.com/books?id=Tfa7AQAAQBAJ
https://books.google.com/books?id=Tfa7AQAAQBAJ
https://books.google.com/
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evaluated at a specific point, such as x = 1, the derivative is the slope of the
tangent line at that point.

Figure 3.6: A nonlinear function with tangent line at x = 1.

Unlike the previous case, this derivative has x in it. This means this function
is nonlinear. The slope depends on the value of x. At x = 1, the derivative
is 2, but at x = 2, it is zero (4− 2[2]) and at x = 3, it is -2 (4− 2[3]).

In addition, because it is nonlinear, the size of the change in x affects the
measured rate of change. For example, the change in y from x = 1 to x = 2 is
1 (because we move from y = 3 to y = 4 as we increase x by 1). If we increase
x by a smaller amount, say 0.1 (from 1 to 1.1), then ∆y

∆x
= 3.19−3

1.1−1
= 1.9. By

taking a smaller change in x, we get a different measure of the rate of change.

If we compute the rate of change via the derivative, by evaluating 4− 2x at
x = 1, we get 2. The derivative computes the rate of change for an infinites-
imally small change in x. The smaller the change in x, the closer ∆y

∆x
gets to

dy
dx

. You can see this happening as ∆y
∆x

went from 1 to 1.9 as ∆x fell from 1
to 0.1. If we go even smaller, making ∆x = 0.01 (going from 1 to 1.01), then
∆y
∆x

= 3.0199−3
1.01−1

= 1.99.

Optimizing with the Derivative

An optimization problem typically requires you to find the value of an en-
dogenous variable (or variables) that maximizes or minimizes a particular
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objective function. We can use derivatives to find the optimal solution. This
is called an analytical approach.

If we draw tangent lines at each value of x in Figure 3.6, only one would be
horizontal (with derivative and slope of zero) and that would be the one at
the top. This gives us a solution strategy: to find the maximum, find the
value of x with the flat tangent line. This is equivalent to finding the value
of x where the derivative is zero.

By solving for the value of x where dy
dx

= 0, we find the optimal solution. For
y = 4x − x2, this is easy. We set the derivative equal to zero and solve for
x*.

dy

dx
= 4− 2x* = 0

4 = 2x*

x* = 2

The equation that you make when you set the first derivative equal to zero is
called the first-order condition. The first-order condition is different from the
derivative because the derivative by itself is not equal to anything—you can
plug in any value of x and the derivative expression will pump out an answer
that tells you whether and by how much the function is rising or falling at
that point. The first-order condition is a special situation in which you are
using the derivative to find a horizontal tangent line to figure out where the
function has a flat spot.

A reduced form is the answer that you get when the derivative is set equal to
zero and solved for the optimal solution. It may be a number or a function of
exogenous variables. It cannot have any endogenous variables in the expres-
sion. Sometimes, you cannot solve explicitly for x*. We say there is no closed
form solution in these cases. The solution may exist (and numerical meth-
ods may be used to find it), but we cannot express the answer as an equation.

The second derivative is the derivative of the first derivative. It tells you the
slope of the slope function. For example, if a function has a constant slope,
we saw that its first derivative is a constant value (like 3 in the first example
above). Then the second derivative is zero.

Second derivatives are useful in optimization for the following reason: when
you find the value of the endogenous variable that makes the first derivative
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equal to zero, the point that you have located could be either a maximum or
a minimum. If you want to be sure which one you have found, you can check
the second derivative. For y = 4x − x2, the first derivative is 4 − 2x and
the second derivative is, therefore, -2. Because the second derivative is neg-
ative, we know that our flat spot at x = 2 is a maximum and not a minimum.

In this book, we will not use second derivatives to check that our solutions
are truly maxima or minima. Our functions will be (mostly) well behaved
and we will focus on the economics of the problem, not the mathematics.

In summary, derivatives are used to measure the rate of change of a function
based on a vanishingly small change in x. If we set a derivative equal to zero,
we are trying to find an optimal solution by finding a value for x where the
tangent line is flat. This solution strategy is based on the idea that a point
where the tangent line is horizontal must mean that we are at the top of the
function (or bottom, if we are minimizing).

Useful Math Facts

This appendix concludes with a short list of common rules for taking deriva-
tives and working with exponents. The idea here is to sharpen your math
skills so you can solve optimization problems analytically.

A derivative can be computed by directly applying the definition—i.e., taking
the limit of the change in x as it approaches zero and determining the change
in y. Fortunately, however, there is an easier way. Differentiation rules have
been developed that make it much less tedious to take a derivative. Most
calculus books have inside covers that are full of rules. Many students never
grasp that these rules are actually shortcuts. Here is a short list, with special
emphasis on those used in economics.

The derivative rules are followed by a few algebra rules relating to legal op-
erations on exponents. We will use these rules often to find optimal solutions
and reduce complicated expressions to simpler final answers.

Reading these equations is boring and tedious, but may save a lot of time and
effort in the future (especially if your math is rusty). You should consider
writing out the examples for a different number, say 6. So, instead of x4,
what is the derivative with respect to x for x6?
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Derivative Rules

Let x be the variable and a be a constant.

When you take a derivative of a function with respect to a variable, you
apply the rules to the different parts of the function. For example, if y =
4x − x2, then you apply the d

dx
(ax) = a rule to 4x, getting 4. You apply

the d
dx

(xa) = axa−1 rule to −x2 and get −2x. Thus, the derivative of y with

respect to x is dy
dx

= 4− 2x.

There are other calculus rules, of course, such as the chain rule, but we will
explain them when they are needed.

Laws of Exponents



The methods of mathematics apply as soon
as spatial or numerical attributes are
associated with our phenomena, as soon as
objects can be located by points in space
and events described by properties capable
of indication or measurement in numbers.

R. G. D. Allen

3.2 More Practice and Understanding Solver

We know there are two approaches to solving optimization problems.

1. Analytical methods using algebra and calculus (conventional, paper and
pencil, using the Lagrangean method): The idea is to transform the con-
sumer’s constrained optimization problem into an unconstrained problem
and then solve it using standard unconstrained calculus techniques—i.e., take
derivatives, set equal to zero, and solve the system of equations.

2. Numerical methods using a computer (Excel’s Solver): Set up the problem
in Excel, carefully organizing things into a goal, endogenous variables, exoge-
nous variables, and constraint; then use Excel’s Solver. Use the Sensitivity
Report in the Solver Results dialog box to get λ*.

In this chapter, we apply both methods on a new problem.

Quasilinear Utility Practice Problem

A utility function that is composed of a nonlinear function of one good plus a
linear function of the other good is called a quasilinear functional form. It is
quasi, or sort of, linear because one good increases utility in a linear fashion
and the other does not.

Below are a general example and a more specific example of quasilinear utility.

If c < 1, then the quasilinear utility function says that utility increases at a
decreasing rate as x1 increases, but utility increases at a constant rate as x2

increases.

59
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The optimization problem is to maximize this utility function subject to the
usual budget constraint. It is written in equation form like this:

max
x1,x2,λ

xc1 + x2

s.t. p1x1 + p2x2 = m

We will solve the general version of this problem, with letters representing
exogenous variables instead of numbers, using the Lagrangean method.

1. Rewrite the constraint so that it is equal to zero.

0 = m− p1x1 − p2x2

2. Form the Lagrangean function.

max
x1,x2,λ

L = xc1 + x2 + λ(m− p1x1 − p2x2)

Note that the Lagrangean function, L, has the quasilinear utility function
plus the Lagrangean multiplier, λ, times the rewritten constraint.

Unlike the concrete problem in the previous chapter, which used numeri-
cal values, this is a general problem with letters indicating exogenous vari-
ables. General problems, without numerical values for exogenous variables,
are harder to solve because we have to keep track of many variables and make
sure we understand which ones are endogenous versus exogenous. If the so-
lution can be written as a function of the exogenous variables, however, it
is often easy to see how an exogenous variable will affect the optimal solution.

3. Take partial derivatives with respect to x1, x2, and λ.

Remember that the partial derivative treats other variables as constants.
Thus, the partial derivative of the quasilinear utility function with respect
to x1 has no x2 variable in it.
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4. Set the derivatives equal to zero and solve for x1*, x2*, and λ*.

We use the same solution method as before, moving the lambda terms to
the right-hand side and then dividing the first equation by the second, which
allows us to cancel the lambda terms.

By canceling the lambda terms, we have reduced the three equation, three
unknown system to two equations with two unknowns.

Remember that not all variables are the same. The endogenous variables,
the unknowns, are x1 and x2. The other letters are exogenous variables.

From the first equation, we can solve for the optimal quantity of good 1 (see
the appendix to the previous section if these steps are confusing).
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Notice that we used the rule that (xa)b = xab. Because we wanted to solve
for x1, we raised both sides to the 1

c−1
power so that the c − 1 exponent on

x1 times 1
c−1

would equal 1.

Usually, when we have the MRS equal to the price ratio, we need to solve for
one of the x variables in terms of the other and substitute it into the budget
constraint. However, a property of the quasilinear utility function is that the
MRS only depends on x1; thus by solving for x1, we get the reduced form
solution. When solving a problem in general terms, the answer must be ex-
pressed as a function of exogenous variables alone (no endogenous variables)
and this is called a reduced form.

To get x2, we simply substitute x1 into the budget constraint and solve for
x2.

It is a bit messy, but it is the answer. We have an expression for the optimal
amount of x2 that is a function of exogenous variables alone.

To get the optimal value of lambda, we can use the second first-order condi-
tion, which simply says that λ* = 1

p2
. If you use the first condition, substi-

tuting in the value for optimal x1, it will take a little work, but you will get
the same result.
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Practice with the MRS = p1
p2

Logic

Economists stress marginal thinking. The idea is that, from any position,
you can move and see how things change. If there is improvement, continue
moving. The optimal solution is on a flat spot, where improvement is impos-
sible.

When we move the lambda terms over to the right-hand side and divide the
first equation by the second equation, we get a crucial statement of the fact
that improvement is impossible and we are optimizing.

The familiar MRS equals the price ratio expression, along with the third
first-order condition, which says that the consumer must be on the budget
line (exhausting all income), is a mathematical way of describing marginal
thinking.

The MRS condition tells us that if the MRS is not equal to the price ratio,
there are two possibilities, depicted in Figure 3.7.

Figure 3.7: MRS does not equal the price ratio.

In Panel A, the slope of the indifference curve at point A is greater than
the slope of the budget line (in absolute value). This consumer should crawl
down the budget line, reaching higher indifference curves, until the MRS
equals the price ratio. At this point, the slope of the indifference curve will
exactly equal the slope of the budget line and the consumer’s indifference
curve will just touch the budget line. The consumer cannot possibly get to a
higher indifference curve and stay on the budget constraint. This is the best
possible solution.

In Panel B, the story is the same, but reversed. The slope of the indifference
curve at point B is less than the slope of the budget line. This consumer
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should crawl up the budget line, reaching higher indifference curves, until
the MRS equals the price ratio. At this point, the slope of the indifference
curve will exactly equal the slope of the budget line and the consumer’s in-
difference curve will just touch the budget line.

Numerical Approach to Quasilinear Practice Problem

STEP Open the Excel workbook OptimalChoicePractice.xls, read the In-
tro sheet, and then go to the QuasilinearChoice sheet to see how the numer-
ical approach can be used to solve this problem.

It is easy to see that the consumer cannot afford the bundle 5,20 given the
prices and income on the sheet. If she buys five units of x1, what’s the max-
imum x2 she can buy?

STEP Enter this amount in cell B12. Does the chart and cell B21 con-
firm that you got it right?

If you entered 13 in B12, then the chart updates and shows that the con-
sumer is now on the budget line. In addition, the constraint cell, B21, is now
zero.

Without running Solver or doing any calculations at all, is she maximizing
at 5,13?

The answer is that she is not. It’s hard to see on the chart whether the
indifference curve is cutting the budget line, but the information below the
chart shows that the MRS is not equal to the price ratio. That tells you
that the indifference curve is, in fact, not tangent to the budget line so the
consumer is not optimizing. Because the MRS is greater than the price ratio
(in absolute value) we also know that the consumer should buy more x1 and
less x2, moving down the budget line until the marginal condition is satisfied.
Let’s find the optimal solution.

STEP Run Solver. Select the Sensitivity Report to get λ*.

How does Excel’s answer compare to our analytical answer? Recall that we
found:
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STEP Create formulas in Excel to compute these two solutions (using
cells C11 and C12 would make sense). This requires some care with the

parentheses. Here is the formula for good 1: =(p1 /(c *p2 ))(̂1/(c -1)).

You should discover that Excel’s Solver is quite close to the exactly correct
solution, 6.25, 12.75. We conclude that the two methods, analytical and nu-
merical, substantially agree.

It is true, however, that Solver is ever so slightly off the computed analytical
result. In general, there are two reasons for minuscule disagreement between
the two methods.

1. Excel cannot display the algebraic result to an infinite number of decimal
places. If the solution is a repeating decimal or irrational number, Excel
cannot handle it. Even if the number can be expressed as a decimal—for
example, one-half is 0.5—precision error may occur during the computation
of the final answer. This is not the source of the discrepancy in this case.

2. Excel’s Solver often misses the exactly correct answer by small amounts.
Solver has a convergence criterion (that you can set via the Options button
in the Solver Parameters dialog box) that determines when it stops hunting
for a better answer. Figure 3.8 offers a graphical representation of Solver’s
algorithm in a one-variable case.

Figure 3.8: Solver in action.
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The stylized graph (which means it represents an idea without using actual
data) in Figure 3.8 shows that Solver works by trying different values and
seeing how much improvement occurs. The path of the choice variable (on
the x axis) is determined by Solver’s internal optimization algorithm. By de-
fault, it uses Newton’s method (a steepest descent algorithm), but you can
choose an alternative by clicking the Options button in the Solver dialog box.

When Solver takes a step that improves the value of the objective function
by very little, determined by the convergence criterion (adjustable via the
Options button), it stops searching and announces success. In Figure 3.8,
Solver is missing the optimal solution by a little bit because, if we zoomed
in, the objective function would be almost flat at the top. Solver cannot
distinguish additional improvement.

When we say that the analytical method agrees with Solver, we do not mean
that the two methods exactly agree, but simply that they correspond, in a
practical sense. If Solver is off the exact answer in the 15th decimal place,
that is agreement, for all practical purposes.

Furthermore, it is easy to conclude that Solver must give an exact answer be-
cause it displays so many decimal places. This is incorrect. Solver’s display
is an example of false precision. It is not true that the many digits provide
useful information. The exact answer is 6.25 and 12.75. What you are seeing
is Solver noise. You must learn to interpret Solver’s results as inexact and
not report all of the decimal places.

There is another way in which Solver can fail us and it is much more serious
than incorrectly interpreting the results.

Solver Behaving Badly

STEP Start from x1 = 1, x2 = 20 to see a demonstration that Solver is
not perfect. After setting cells B11 and B12 to 1 and 20, respectively, run
Solver. What happens?

A miserable result (an actual, technical term in the numerical methods lit-
erature) occurs when an algorithm reports that it cannot find the answer or
displays an obviously erroneous solution. Figure 3.9 displays an example of a
miserable result. Solver is clearly announcing that it cannot find an answer.
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Figure 3.9: A miserable result.

If you look carefully at the spreadsheet (click cancel or OK if needed to re-
turn to the sheet), you will see that Solver blew up when it tried a negative
value for x1. The objective function cell, B7, is displaying the error #NUM!
because Excel cannot take the square root of a negative number.

To be clear, when we start from 1,20, Excel tries to move left and crosses
over the y axis into negative x territory. Since the utility function is x0.5

1 , it
tries to take the square root of a negative number, producing an error, and
crashing the algorithm.

When Solver fails, there are three basic strategies to fix the problem:

1. Try different initial values (in the changing cells). If you know roughly
where the solution lies, start near it. Always avoid starting from zero
or a blank cell.

2. Add more structure to the problem. Include non-negativity constraints
on the endogenous variables, if appropriate. In the case of consumer
theory, if you know the buyer cannot buy negative amounts, add this
information.

3. Completely reorganize the problem. Instead of directly optimizing, you
can put Solver to work on equations that must be met. In this problem,
you know that MRS = p1

p2
is required. You could create a cell that is

the difference between the MRS and the price ratio and have Solver
find the values of the choice variable that force this cell to equal zero.
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Let’s try the second strategy.

STEP Reset the initial values to 1 and 20, then launch Solver (click the
Data tab and click Solver) and click the Add button (at the top of the stacked
buttons on the right).

Solver responds by popping up the Add Constraint dialog box.

STEP Select both of the endogenous variables in the Cell Reference field,
select >=, and enter 0 in the Constraint field so that the dialog box looks
like Figure 3.10. Click OK.

Figure 3.10: A miserable result.

You are returned to the main Solver Parameters dialog box, but you have
added the constraint that cells B11 and B12 must be non-negative.

You might notice that you could have have simply clicked the Make Un-
constrained Variables Non-Negative option, but adding the constraint shows
how to work with constraints.

STEP Once back at the main Solver Parameters dialog box, click Solve.

This time, Solver succeeds. Adding the non-negativity constraint prevented
Solver from trying negative x1 values and producing an error.

Perfect Complements Practice Problem

Recall that L-shaped indifference curves represent perfect complements, which
are reflected via the following mathematical function:

u(x1, x2) = minax1, bx2

Suppose a = b = 1 and the budget line is 50 = 2x1 + 10x2.
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First, We want to solve this problem analytically.

The Lagrangean method cannot be applied because the function is not dif-
ferentiable at the corner of the L. The Lagrangean method, however, is not
the only analytical method available. Figure 3.11 shows that when a = b =
1, the optimal solution must lie on a ray from the origin with slope +1.

Figure 3.11: The optimal solution line with perfect complements.

The optimal solution has to be on the corner of the L-shaped indifference
curves because a non-corner point (on either the vertical or horizontal part
of the indifference curve) implies the consumer is spending money on more of
one of the goods without getting any additional satisfaction. Thus, we know
that the optimal solution must lie on the line x2 = x1.

We can combine this optimal solution equation with the budget constraint
to find the optimal solution. The two equation, two unknown system can be
solved easily by substitution.

Of course, we know x2 = x1 so optimal x2 is also 41
6
. Can Excel do this

problem and do we get the same answer? Let’s find out.

STEP Proceed to the PerfectComplements sheet to see how we set up
the spreadsheet in Excel. Click on cell B7 to see the utility function.

STEP Run Solver and get a Sensitivity Report. Solver can be used to
generate a value for the Lagrangean multiplier (via the Sensitivity Report)
even though we could not use the Lagrangean method in our analytical work.
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As with the previous problem (with quasilinear utility), we find that Solver
and the analytical approach substantially agree. The answer is a repeating
decimal, so Excel cannot get the exact answer, 41

6
, but it is really close.

Previously, we saw that Solver could crash and give a miserable result. Now,
let’s learn that Solver can really misbehave.

STEP Starting from x1 = 1, x2 = 1, run Solver. What happens?

You are seeing an example of a disastrous result which occurs when an al-
gorithm reports that it has found the answer, but it is wrong. There is no
obvious error and the user may well accept the answer as true.

Solver reports a successful outcome, but the answer it gives is 1,1 and we
know the right answer is 41

6
for both goods.

Disastrous results include an element of interpretation. In this case, we might
notice that 1,1 is way inside the budget constraint and, therefore, the algo-
rithm has failed. A truly disastrous result occurs when there is no way to
independently test or verify the algorithm’s wrong answer.

Miserable and disastrous results are well defined, technical terms in the math-
ematical literature on numerical methods. Disastrous results are much more
dangerous than miserable results. The latter are frustrating because the
computer cannot provide an answer, but disastrous results lead the user to
believe an answer that is actually wrong. In the world of numerical optimiza-
tion, they are a fact of life. Numerical methods are not perfect. You should
never completely trust any optimization algorithm.

Understanding Solver—Be Skeptical

This chapter enabled practice solving the consumer’s constrained optimiza-
tion problem with two different utility functions, a quasilinear function and
perfect complements. In both cases, we found that Excel’s Solver agreed,
practically speaking, with the analytical method.

The ability to solve optimization problems with two independent methods
means we can be really sure we have found an optimal solution when they
give the same answers.
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In addition, we explored how Solver actually works. It evaluates the objective
function for different values of the choice variables. It continues searching
for a better solution until it cannot improve much (an amount determined
by the convergence criterion).

Solver can fail by reporting that it cannot find a solution (called a miserable
result) or—even worse—by reporting an incorrect answer with no obvious
error (which is a disastrous result).

It is easy to believe that a result displayed by a computer is guaranteed to
be correct. Do not be careless and trusting—numerical methods can and do
fail, sometimes spectacularly.

This point deserves careful repetition. You run Solver and it happily an-
nounces that a solution has been found and offers up a 15 or 16 digit number
for your inspection. The problem, however, is that the solution is way off.
Not in the millionth or even tenth decimal place, but completely, totally
wrong. How this might happen takes us too far afield into the land of nu-
merical optimization, but suffice it to say that you should always ask yourself
if the answer makes common sense.

Solver really is a powerful way to solve optimization problems, but it is not
perfect. You need to always remember this. After running Solver, format the
results with an eye toward ease of understanding and think about the result
itself. Do not mindlessly accept a Solver result. Stay alert even if Solver
claims to have hit pay dirt—it may be a disastrous result!

More explanation of Solver is available in the SolverInstructions.doc file in
the SolverCompStaticsWizard folder.

Exercises

1. In the quasilinear example in this chapter, use the first equation in the
first-order conditions to find λ*. Show your work.

2. Use analytical methods to find the optimal solution for the same perfect
complements problem as presented in this chapter, except that a = 4
and b = 1. Show your work.

3. Draw a graph (using Word’s Drawing Tools) of the optimal solution for
the previous question.
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4. Use Excel’s Solver to confirm that you have the correct answer. Take
a picture of the cells that contain your goal, endogenous variables, and
exogenous variables.

References
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possess a book which presents the mathematical apparatus necessary to a
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Tastes are the unchallengeable
axioms of a man’s behavior; he may
properly (usefully) be criticized for
inefficiency in satisfying his desires,
but the desires themselves are data.

George Stigler and Gary Becker

3.3 Food Stamps

This chapter applies the consumer choice model to a real-world example. We
will see that the model can be used to explain why someone would illegally
sell food stamps. We also tackle an important policy question: If cash domi-
nates food stamps, why not just help low-income people by giving them cash?

A Short History of Food Assistance in the United States

The primary responsibility for ensuring poor people (including children) in
the United States have enough to eat lies with the Department of Agricul-
ture (USDA). They run a program that enables low-income people to spend
government-provided benefits on eligible food in stores.

The USDA’s web page, (www.fns.usda.gov/snap/short-history-snap), is the
source of the information below. The Data and Research tab on the USDA’s
website has usage and cost data—there are around 40 million participants
and the program spends roughly $70 billion per year. This is one of the
largest transfer programs in the fight against poverty. It offers critical sup-
port for low-income households.

The first Food Stamp Program, in 1939, was very different from today’s ver-
sion. Originally, “the program operated by permitting people on relief to buy
orange stamps equal to their normal food expenditures. For every $1 worth
of orange stamps purchased, 50 cents worth of blue stamps were received.
Orange stamps could be used to buy any food. Blue stamps could only be
used to buy food determined by the Department to be surplus.”

Important changes were made in the 1960s and, in 1977, the purchase re-
quirement was eliminated. Households below the poverty line who met other
criteria (such as work or study requirements) were eligible to receive food
stamps. Figure 3.12 shows that these stamps were like paper currency; they
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were rectangular, but only about half the size of a dollar bill. There were
different dollar denominations in a booklet. When buying food at the super-
market, the consumer tore out the stamp and paid for the food. They would
pay for any non-food items with cash or a check.

Figure 3.12: Old US food stamps.
Source: Public domain file photo.

In 2008, it was renamed the Supplemental Nutrition Assistance Program
(SNAP) to avoid stigma. It could be embarrassing to pay with food stamps
since everyone in line immediately knew that you were receiving government
assistance. Today, both names, food stamps and SNAP, are used.

SNAP has always been battered by politics, with benefits expanding and
contracting depending on the rhetoric of the day. There are the usual argu-
ments over administrative costs, but cheating on the part of recipients has
been an especially contentious issue. In 2002, all states were required to use
Electronic Benefits Transfer (EBT) cards. This was supposed to stop the
illegal sale of food stamps (and reduce stigma), but fraud remains a focus of
critics.

We can model and analyze food stamps with the Theory of Consumer Be-
havior. We will focus on how food stamps can be incorporated into the
consumer’s optimization problem and why selling food stamps is so difficult
to stop.
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Food Stamp Theory

Recall from the Budget Constraint chapter that food stamps are a subsidy
that produces a budget constraint with a horizontal segment, as shown in
Figure 3.13. We use the x1 variable on the x axis to represent units of food.
The x2 variable on the y axis captures all other goods lumped together. We
get the flat part of the constraint because food stamps can be used to buy
only food.

Figure 3.13: The budget constraint with food stamps.
Source: FoodStamps.xls!BudgetConstraint

STEP Open the Excel workbook FoodStamp.xls and read the Intro sheet.
Proceed to the BudgetConstraint sheet. Change cell E13 from 10 to 20.

Notice that the horizontal segment, which is the monetary value of the food
stamps divided by the price of food, gets longer. Also notice that the chart
on the right, showing the budget constraint if the food stamp amount was
treated as cash, has no horizontal segment. In the chart on the right, the
value of the food stamp subsidy is computed (xbar times price of food) and
then added to income as if it were cash; hence the name, cash-equivalent
subsidy.

It should be quite clear that the cash-equivalent subsidy provides consump-
tion possibilities that are unattainable above the horizontal segment of the
food stamp budget constraint. The most other goods the food stamp recip-
ient can buy is 331

3
units, while the cash-equivalent consumer can buy 40

units of x2.
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STEP Proceed to the Inframarginal sheet. It combines a food stamp
budget constraint with a Cobb-Douglas utility function.

The word inframarginal (or submarginal) means below the edge or margin.
The edge in this case is the kink in the budget constraint.

This consumer is inframarginal because his optimal solution is on the down-
ward sloping part of the budget line, below the kink. He will use up his
food stamp allotment on food and then spend some of his cash income to get
additional food. The sheet reveals that he buys 35 units of food (valued at
$70, as shown in cell B15), 20 of which he obtains with food stamps and the
remaining 15 he buys with cash.

We can easily see that he is optimizing because the “MRS equals the price
ratio” condition is met. This is reflected in the graph where the highest at-
tainable indifference curve is just touching the budget constraint.

STEP Click on cell B25 to see the formula for the budget constraint.

This formula is using an IF statement to implement the constraint in Excel.
Expressed as an equation, the budget line looks like this:

The first equation says that if the consumer buys an amount of food that is
less than or equal to xbar, that frees up his whole cash income to spend on
good 2. This is the horizontal line component.

Things are more complicated if the consumer wants more than xbar of food.
The second equation says that the consumer will have to use cash to buy
amounts of x1 greater than xbar and it computes the amount of x2 that can
be purchased as a function of x1.

This constraint (rewritten to equal zero) has been entered in a single cell
with an IF statement:

=IF(x1 <x1bar,m/p2 -x2 ,m/p2 -(p1 /p2 )*(x1 -x1bar)-x2 )

The underscore ( ) character is used in the variable names to distinguish
them from cell addresses—e.g., p2 is not cell P2.
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From Excel’s Help on the IF function:

Returns one value if a condition you specify evaluates to TRUE
and another value if it evaluates to FALSE.

Use IF to conduct conditional tests on values and formulas.

Syntax: IF(logical test,value if true,value if false)

Applying this information to the formula in cell B25, we can see that it has
three parts, separated by commas. The first part says that if x1 < x1bar
(that is the condition being evaluated), then the consumer can buy m/p2

amount of x2 (this second part produces the horizontal line in the budget
constraint), else (the third part is what happens if x1 is not less than x1bar)
the consumer can buy x2 along the downward sloping part of the budget line.

This problem shows that Excel can be used to handle complicated examples
in the Theory of Consumer Behavior. This food stamp problem has a kinked
budget constraint, but using Excel’s IF statement allows us to implement
the constraint in the workbook and use Solver to find the optimal solution.

This problem also can be solved via analytical methods, but it is cumber-
some and difficult to deal with the kinked budget constraint. We will use the
easier numerical approach to conduct our analysis.

STEP Proceed to the Distorted sheet.

This sheet is exactly the same as the Inframarginal sheet with one crucial
exception: the preferences, in cells B21 and B22, are different. The consumer
in the Distorted sheet prefers other goods more and food less than the con-
sumer in the Inframarginal sheet.

The change in exponents in the Cobb-Douglas utility function has affected
the indifference map. The curves are much flatter in the Distorted sheet
compared with the Inframarginal sheet.

The Distorted sheet opens with the optimal values for food and other goods
from the Inframarginal sheet. It is obvious that the MRS does not equal the
price ratio and the indifference curve is cutting the budget constraint at the
current bundle of x1 and x2. This consumer is not optimizing at this point.
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Corner Solution

STEP Run Solver on the Distorted sheet.

Solver announces it has found the optimal solution, yet the MRS still does
not equal the price ratio. Is this really the optimal solution? Yes, it is the
optimal solution. We have encountered what is called a corner solution (or
boundary optimum). In this case, the equimarginal condition, MRS = p1

p2
,

does not hold because the optimal solution is found at one of the end points
(or corners) of the constraint.

STEP To see what is happening here, copy the optimal solution from
the Inframarginal sheet (copy cells B13 and B14) and paste in the Distorted
sheet (select cells B13 and B14 and then paste).

The graph and MRS is immediately updated and you can see that the
distorted consumer would not select the inframarginal consumer’s bundle.
Which way should this consumer move—up or down the budget line? The
graph makes clear that up is the right way to go, but you should notice that
the marginal condition, MRS < p1

p2
, tells you the same thing.

STEP Click the Crawl Up the Budget Line button. Click a few more

times and pay attention to the chart and the MRS in cell H26. Also keep an
eye on utility in cell B9. Each click lowers the amount of x1 by one unit and
increases the amount of x2 by 2

3
.

By moving up the budget line, this consumer is improving her satisfaction
and closing the gap between the MRS and the price ratio.

Do not be misled by the display – the indifference curves are not shifting. Re-
member that the indifference map is dense, meaning that every point has an
indifference curve through it. We cannot draw in all of the indifference curves
because the graph would then be solid black. The consumer is simply moving
from one indifference curve to another one that was not previously displayed.

STEP Keep clicking the Crawl Up the Budget Line button. Eventu-

ally, you will hit the kink in the budget line and you will not be able to move
northwest any longer. Instead, you will be on the horizontal segment and
as you move strictly west, utility falls. Notice that the price ratio is now
showing zero.
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On the flat part of the budget line, when the amount of food purchased is
less than or equal to how much food can be bought with food stamps alone,
it makes sense that additional food is free, in terms of spending cash on food.
The consumer simply has to use the available food stamps to acquire food
and this does not reduce cash income.

Once you are on the flat part of the budget line, you should see that the
graph and marginal condition point you to choosing more food.

STEP Click on the Crawl Down the Budget Line button repeatedly to

move east and, eventually, down the budget line. Use the two buttons to
crawl up and down until you find the bundle that maximizes utility.

You should end your travels at the kink – and MRS does not equal the price
ratio there! This happens because the complicated constraint is producing a
corner solution.

The distorted consumer wishes she could continue crawling up the downward
sloping line, consuming less than the food stamp allotment of food and more
of other goods, but she cannot do this. She cannot use food stamps to buy
other goods. Thus, her best, or optimal, solution is at the kink.

In a corner solution, we accept that the “MRS equals the price ratio” con-
dition is not met. We really are maximizing even though the MRS does not
equal the price ratio. We have found the best we can do given the constraints
on our choices.

Another way to explain what is happening is that we always want to mini-
mize |MRS− p1

p2
|. With an interior solution, we can make this difference zero,

but with a corner solution, we cannot because a constraint is preventing us
from reaching MRS = p1

p2
. However, a corner solution does give us the lowest

|MRS − p1
p2
| value and we are doing the best we can at this solution.

Corner solutions are an important concept and we will see them again in fu-
ture work. They arise whenever we are prevented from continuing to improve
by going in a particular direction.
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Cash Instead of Food Stamps

STEP Proceed to the Cash sheet. Notice that cell B24 computes the
cash value of the food stamps and that the chart has a linear budget con-
straint with no kink. Click cell B25 to see that the constraint is the familiar
income minus expenditures, with income equal to the sum of income plus the
cash value of the food stamps.

The idea here is that instead of giving food stamps, we provide low-income
people the cash-equivalent value. They are no longer constrained to buy food
alone, but can purchase any goods with the cash received. The cash subsidy
shifts the budget line out, with no kink or horizontal segment like we saw
with the food stamp program.

The sheet opens with the inframarginal consumer’s optimal solution. It is
the same as before, when she was given food stamps. Cash or food stamps
are the same to this consumer.

STEP Click on the Set to Distorted button to quickly apply the pref-
erences for the distorted consumer. Run Solver.

With cash, the distorted consumer chooses an optimal bundle that is dif-
ferent from the one chosen under the Food Stamp Program. She finds an
interior (as opposed to a corner) solution in the far northwest corner, which
means she has opted for little food and more of other goods.

Figure 3.14 summarizes our work to this point. If you compare the infra-
marginal consumer, by looking top left and then bottom left, in Figure 3.14,
you can easily see that there is no change in his behavior: $40 in food stamps
versus $40 in cash are the same to this consumer.

On the other hand, comparing the top right and bottom right panels in
Figure 3,14 reveals that the distorted consumer chooses less food and more
other goods when given cash. This is why we say her choices are distorted by
the food stamp program. If she had cash, she would make different choices.
The distortion results in a decrease in satisfaction for this consumer.
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Figure 3.14: Comparing food stamps versus cash-equivalent.

The Carte Blanche Principle and Deadweight Loss

Carte blanche, a term of obvious French origin (literally, “blank document”),
means unconditional authority or freedom to act in any way you wish.

In economics, the Carte Blanche Principle means that cash is always as good
as or better than in-kind. Cash allows the consumer to buy anything, while
in-kind transfers, such as food stamps, restrict the set of choices.

Figure 3.14 shows the Carte Blanche Principle in action. Cash dominates
food stamps. If you are an inframarginal consumer, the cash and food stamps
are the same. This consumer is going to buy more food than can be pur-
chased with the allotment of food stamps anyway so if you gave him the cash
equivalent value, he would spend the cash on food.

If you are a distorted consumer, however, you are better off if you are given
cash because cash can be used to buy the other goods that you prefer over
food. With food stamps, when you maximize utility and do the best you can,
you end up at a lower level of utility than if you had the cash-equivalent.
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In economics, deadweight loss is a measure of inefficiency. It is a number
that tells you how much a given solution differs from the best solution. In
this application, deadweight loss is the difference in utility due to using food
stamps instead of cash.

We could try to compute, for each consumer, the maximum utility with cash
minus the maximum utility with food stamps. For the inframarginals, this
number would be zero, but it would be positive for the distorted consumers.

Unfortunately, this approach would be exceedingly difficult to actually carry
out. Even if we managed to do it, remember, we cannot simply add the util-
ity values for different people. Utility is ordinal, ranking only by higher or
lower, with no meaningful information about distance or magnitude. Thus,
we can never add the utilities of different people.

Theory tells us deadweight loss exists, but the inability to make interpersonal
utility comparisons means we are severely limited in how we can measure the
sum of deadweight losses of two or more people. As a first pass, we can try
to figure out how many distorteds and inframarginals there are. After all,
if there are only a few distorted consumers, then we would know that food
stamps were not affecting the decisions of too many people.

A Food Stamp Experiment

The empirical work described below comes from Whitmore’s “What are Food
Stamps Worth?” available at arks.princeton.edu/ark:/88435/dsp01z603qx42c.

Whitmore describes two controlled experiments carried out by the USDA
in the early 1990s. In the San Diego experiment, around 1,000 people who
were receiving food stamps were randomly selected to participate in the ex-
periment. Half were randomly assigned to the control group and given food
stamps as usual, while the other half, the treatment group, were given cash-
equivalent aid (checks).

Of the roughly 500 people given checks, about 100 were distorted—they
bought less food compared to what they bought when they were given food
stamps.

But what were these distorted consumers buying instead of food? This is a
crucial question. Most economists are willing to let individuals choose what

http://arks.princeton.edu/ark:/88435/dsp01z603qx42c


3.3. FOOD STAMPS 83

to buy because the Theory of Consumer Behavior is built on rational, opti-
mizing decision making. The fundamental world view of economic theory is
that individuals know best how to spend their money.

Others, however, argue that low-income consumers make poor decisions if left
free to choose what to buy. They think distortion is a good thing because
they want aid recipients to buy food. Whitmore (p. 3) says this:

To some, this distortion is the best part of the food stamp pro-
gram: the government can ensure that needy families get enough
to eat and that they don’t spend the money on other things.
To others, this distortion represents a waste of resources—it is
inefficient to give in-kind transfers instead of cash.

At its most extreme, the issue can be stated this way: Taxpayers will sup-
port buying food for the poor, but not drugs, alcohol, and other wasteful
consumption. But exactly how distorted consumers would spend cash is an
empirical question and Whitmore has the data to answer it.

Researchers in the San Diego experiment kept careful food diaries. When
Whitmore compared the purchases of the distorted treatment group to the
food stamp control group, she found a marked decrease in a few specific
items, like juice and soda, for distorteds. So, surprisingly,

Even though spending on food declines for the treatment group,
the food diary data from San Diego provide no firm evidence that
cashing-out food stamps leads to declines in nutritional intake,
and suggest that it may actually reduce extreme over-consumption
of calories, an important contributing factor to obesity. (Whit-
more, p. 35)

The picture that many have of the indigent as drug addicts or exceptionally
poor decision makers is unsupported by Whitmore’s data. It is true that if
forced to spend a subsidy on food, low-income households will spend more on
food, but that does not imply that this is better. By definition, low-income
people are struggling with paying for, not just food, but a whole host of
necessities, including shelter, clothing, transportation, and utility bills. A
cash-equivalent subsidy means they can buy food if that is the greatest need
or make other important purchases.
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The Illegal Sale of Food Stamps

The Theory of Consumer Behavior can be used to explain what most people
find puzzling when they first hear about it—there is an active, illegal market
in food stamps. Whitmore (p. 4) estimated that food stamps sold for 61
cents on the dollar. The theory can also explain why it has proven incredibly
difficult to stop the illegal sale of food stamps.

STEP Proceed to the Selling sheet.

Observe that the budget constraint has been modified yet again. The seg-
ment below the food stamp allotment (x1bar) is no longer horizontal. We
have enabled the consumer to sell food stamps and move up the budget con-
straint.

The slope of this portion of the budget constraint is ER ∗ p1/p2,where ER
is the exchange rate of food stamps for cash. With ER initially set at 0.6
(in cell B24), a seller of food stamps would get 60 cents for every dollar of
food stamps sold. The slope of the budget line is 60% of the p1/p2 ratio or 1.2.

Notice that cell B16 has been added and it reports the income generated by
the sale of food stamps. It shows zero because the opening position is at the
kink (20, 33.33) so this distorted consumer isn’t selling any food stamps.

STEP Change cell B13 to 10 and watch how the cells and the chart
change.

B16 now reports that the consumer is making $12 from the sale of food
stamps. They “sold” ten units of food, valued at $20 in cash, but only 60%
of that in food stamps. With p2 = 3, she can buy four more units of x2.

STEP Set cell B14 to 37.33 to move the consumer to the budget line.

But is this is the optimal solution? In fact, comparing cell G27 to H26 tells
you that it is not. The consumer is selling too many food stamps at this point.

STEP Run Solver. You should get a result like Figure 3.15, which shows
the consumer choosing just under 15 units of food and adding $6.29 of food
stamp income (explaining how they managed to buy more than 331

3
units

of x2). Notice also that, once again, the MRS (-0.4) equals the slope of the
budget constraint (-0.4) on the relevant part of the budget line.
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Figure 3.15: Maximizing utility by selling food stamps.
Source: FoodStamps.xls!Selling

The consumer maximizes utility and reaches a higher level of satisfaction than
what is attainable by staying on the kink and not selling the food stamps.
The ability to get higher satisfaction explains the unintended consequence of
an active illegal trade in food stamps.

This analysis does not incorporate the costs of selling food stamps, including
the risk of getting caught. There is no doubt that EBT cards make it more
difficult to sell food stamps, but the inability to stop the illegal trade testi-
fies to the forces at play—the search for higher satisfaction is powerful indeed.

One Last Question

If the Carte Blanche Principle is true, then why does the government use
food stamps instead of cash to help the poor?

Whitmore devotes the conclusion of her paper (p. 38) to answering this
question:

A crucial aspect of the success of the Food Stamp Program is its
political popularity. The Food Stamp Program is not an entitle-
ment program, so its budget must be approved annually in the
Farm Bill. The program’s budget has always been fully funded,
due largely to two factors: its popularity as a targeted welfare
program among voters, and its popularity among farmers because
they think it increases demand for food. (footnote omitted)
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As a practical matter, it is not true that, in general, the poor will squander
cash subsidies or make terrible buying decisions. Giving aid in the form of
food stamps generates a deadweight loss for those distorted consumers who
would have been better off with cash. As Whitmore points out, however, it
is politically impossible to imagine what is today a $70 billion program being
funded annually as a pure cash giveaway. Economics meets politics and the
result is a flawed, but functioning anti-poverty program.

Exercises

1. Which parameter in the Selling sheet, with the exchange rate set to 0.9,
would have to be changed to represent the case of a distorted consumer
who decides not to sell food stamps for cash? What would the value of
this parameter be?

2. Explain under what condition the MRS equals the price ratio rule (as
a condition that the optimal solution has been found) can be violated.

3. A seller of food stamps would obviously prefer a higher price, but what
would be the advantage of a higher price in terms of the Theory of
Consumer Behavior?
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Taxes upon the necessaries of life
have nearly the same effect upon
the circumstances of the people as
a poor soil and a bad climate.

Adam Smith

3.4 Cigarette Taxes

The Carte Blanche Principle says that cash is always as good as or better
than in-kind. There is a corollary from the public finance literature: Lump
sum taxes are better than quantity taxes.

Public finance is a field of economics that studies the role of government
in the economy. Budgeting, collecting taxes, and government spending are
some of the areas studied by public finance economists.

There are, of course, many different kinds of taxes. A lump sum tax is a fixed
amount that must be paid, regardless of how much is purchased. A head tax,
where a fee is charged to each person, is an example of a lump sum tax.

A quantity tax is an amount for each unit sold so it is added to the price of
the product. Federal, state, and local governments levy quantity taxes on
gasoline, alcoholic beverages, and tobacco. Unlike a lump sum tax, if more
is bought, more quantity tax is paid.

Most people are familiar with sales tax, but this is yet another tax variant.
Like a quantity tax, more is paid as more is purchased, but a sales tax is a
percentage of the total purchase value. This is an ad valorem tax, which is
Latin for “according to value.”

The goals of taxation can be complicated. The primary motivation for taxes
is to pay for government spending, but taxes can also be used to discourage
particular activities. Both of these motivations are at play in the case of
cigarettes.
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Cigarette Smoking and Taxes

The average number of cigarettes sold per day in the United States and Japan
since 1900 is shown in Figure 3.16. Visit ourworldindata.org/smoking to see
an interactive version of this chart and add other countries. The pattern is
the same around the world—rising smoking rates reach a peak, then a rapid
decline.

Figure 3.16: Smoking rates in Japan and the United States.
Source: ourworldindata.org/smoking

American soldiers were given cigarettes during the two world wars and this
drove the sharp increase in cigarette smoking. The collapse in its smoking
rate in the 1940s shows that Japan did not do this. In both countries, aware-
ness of the damaging health effects of smoking triggered the decline.

As consumption underwent this long rise and fall, cigarette tax policies
also changed dramatically. Tobacco products have always been taxed, but
cigarette taxes have risen dramatically in the last few decades. Figure 3.17
shows tax rates in US states in 2019.

https://ourworldindata.org/smoking
https://ourworldindata.org/smoking
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Figure 3.17: State cigarette quantity taxes in 2019.
Source: tobacconomics.org

There is wide variation in state cigarette tax rates. In 2019, New York and
Connecticut had the highest state tax of $4.35 per 20-pack of cigarettes. Mis-
souri had the lowest, $0.17 per pack.

Other governmental levels also tax cigarettes. New York City, for example,
adds a $1.50 per pack tax, bringing state and local taxes to $5.85 per pack.
To this we add the federal tax rate of $1.0066 per pack. Finally, smokers pay
a sales tax on the total price paid (including the quantity taxes). In New
York City, a pack of cigarettes cost over $10 in 2019.

We will analyze the quantity tax by using the Theory of Consumer Behavior.
We will also compare it to a lump sum tax—an option that is not currently
being used by the government. To make a good comparison, we have to make
sure that the taxes are revenue neutral. This means that the tax revenues
generated by the tax proposals are the same. It would not be fair to compare
a quantity tax that generated $50 in revenues to a $100 lump sum tax.

https://tobacconomics.org
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Quantity Tax

STEP Open the Excel workbook CigaretteTaxes.xls, read the Intro sheet,
and proceed to the QuantityTax sheet.

Cell B21 enables us to levy a quantity tax. The sheet opens with cell B21 =
0, which means there is no tax.

The sheet also opens with the consumer considering the bundle 20,60. The
MRS is greater than the price ratio (in absolute value) and the consumer can
move down the budget constraint so we know utility is not being maximized.

STEP Utility is maximized at 1250 by consuming 25 units of cigarettes
(x1) and 50 units of other goods (x2). Run Solver to confirm this result.

Suppose we impose a $1/unit quantity tax on cigarettes. What effect does
this have on the consumer?

STEP You can find the consumer’s optimal solution after levying the tax
by changing cell B21 to 1 and running Solver.

Notice how the chart updated when B21 was set to one. The red budget con-
straint shows how the line rotated and swung in when the tax was imposed.
This is the same as increasing the price of good 1. After running Solver, you
can see that the consumer responds by buying fewer cigarettes.

We can also find the optimal solution using analytical methods by solving
the following constrained optimization problem:

max
x1,x2,λ

U(x1, x2) = x1x2

s.t. 100 = 2(x1 +Q Tax) + x2

The consumer wishes to maximize utility (which is Cobb-Douglas with both
exponents equal to 1), subject to the budget constraint, with parameter val-
ues for income and prices plugged in.

We leave Q Tax as an exogenous variable so we can find the optimal solu-
tion as a function of Q Tax. We have worked on this problem before, except
p2 = 1 (instead of 3) and we have added the quantity tax.



3.4. CIGARETTE TAXES 93

The Lagrangean procedure remains the same and we walk through the four
steps to find the answer.

1. Rewrite the constraint so that it is equal to zero.

0 = 100− 2(x1 +Q Tax)− x2

2. Form the Lagrangean function.

Notice that we are working with a mixed concrete and general problem. We
have numerical values for prices, income, and the utility function exponents,
but we have the amount of the quantity tax as a variable. We use this
strategy whenever we want to find the optimal solution as a function of a
particular exogenous variable.

3. Take partial derivatives with respect to x1, x2, and λ.

4. Set the derivatives equal to zero and solve for x1*, x2*, and λ*.

We use the usual solution method, moving the lambda terms to the right-
hand side and then dividing the first equation by the second, which allows
us to cancel the lambda terms.
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Finding an expression for x2 seems like an answer, but it is not because it
is a function of x1. To be a solution (which is called a reduced form), we
must solve for x1 asa function of exogenous variables alone. We must keep
working. Canceling the lambda terms has moved us closer to an answer—we
have reduced the three equation, three unknown system to two equations in
two unknowns.

We substitute the first equation into the second and solve for the optimal
amount of good 1.

Then, we substitute this into our expression for x2 to get the optimal amount
of good 2.

We can check this solution with Solver’s result by substituting Q Tax = 1
into the reduced form solution for the two goods. Optimal cigarette consump-
tion is 50

3
or 162

3
. Because Q Tax does not appear in the optimal solution

for good 2, its value is simply 50 for any value of Q Tax.
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Lump Sum Tax

Let’s see how the consumer would optimize with a lump sum tax that raised
the same tax revenue for the government.

STEP Making sure that you have run Solver in the Quantity sheet with
B21 = 1 so that B11 is approximately 162

3
, proceed to the LumpSumTax

sheet.

The quantity tax imposed in the QuantityTax sheet has been replaced with
a revenue-neutral lump sum tax. With a $1/unit quantity tax, the consumer
purchases 162

3
units of x1, which means the state generates $16.67 of revenue

from the quantity tax. It could have generated the same revenue by taxing
the consumer $16.67, regardless of how much x1 or x2 the consumer bought.
This is called a lump sum tax because you pay a fixed amount (that’s the
“lump sum” part) no matter what you decide to buy.

The difference in the way the lump sum tax operates is reflected in the
budget constraint equation. Instead of being part of the price of good 1 like
a quantity tax, the lump sum tax is subtracted from income.

100 = 2(x1 +Q Tax) + x2

100− Lump Tax = 2x1 + x2

The two charts show how the lump sum tax works differently than the quan-
tity tax. Instead of rotating, the new budget line (in red) in the LumpSum
sheet has shifted inwards. How would the consumer respond to this tax?

STEP Run Solver to find the optimal solution with the lump sum tax.

Before we compare the quantity and lump sum tax solutions, we confirm
Solver’s answer in the LumpSum sheet by solving the problem analytically.

STEP Try your hand at this problem. Check your work (or peek if you

get stuck) by clicking the Show Math button.

Remember, Solver gave you an answer so can be quite sure you are correct
if your analytical work gives the same result.
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Comparing Quantity and Lump Sum Taxes

We now have the data needed to compare the two tax schemes, as shown in
Figure 3.18.

Figure 3.18: Comparing the tax schemes.

The first row shows that the consumer will buy the bundle 25,50 when there
is no tax, generating an optimal utility of 1250. Obviously, there is no rev-
enue because there is no tax.

The second row shows that utility falls to 8331
3

with an optimal solution of
162

3
,50 with a $1/unit of x1 quantity tax. The tax produces $16.67 of revenue

for the government.

The last row shows that a revenue-neutral lump sum tax of $16.67 would
result in purchases of 215

6
and 412

3
, which would give a level of utility of 868.

The primary lesson is that, for this consumer, if the government needed to
raise $16.67 of tax revenue, the lump sum tax is better than the quantity tax
because the consumer’s maximum utility is higher under the lump sum tax.

Notice that we are not violating the rule against interpreting utility values as
being meaningful. We are not comparing two consumers. We are not treat-
ing utility as if it were on a cardinal scale by saying, for example, that there
is a gain of 868 minus 8331

3
equals 342

3
utils of increased satisfaction. We

are merely saying that satisfaction is higher under the lump sum tax scheme
than the revenue-neutral quantity tax.

A graph can be used to explain this rather curious result that lump sum
taxes enable higher utility than equivalent revenue quantity taxes. It is a
complicated graph, so we will build up to it in stages.

The first layer is simply the initial solution, before any tax is applied. It is
shown in Figure 3.19.
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Figure 3.19: The initial optimal solution.

Figure 3.20 shows what happens with a quantity tax. The budget constraint
rotates in because the price paid by the consumer (composed of the price
of the product plus the tax) has increased. The consumer is forced to re-
optimize and find a new optimal solution, labeled Quantity Tax. Utility has
clearly fallen since we are on a lower indifference curve.

Figure 3.20: Applying a quantity tax.

Then we add a final layer to show the lump sum tax, as shown in Figure
3.21. This enables comparison of the two tax schemes.
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Figure 3.21: Adding a lump sum tax.

The lump sum tax budget constraint has to go through the optimal choice
bundle with the quantity tax so that the lump sum tax raises the same rev-
enue as the quantity tax. It also has to be parallel to the original budget
constraint. Because it cuts the indifference curve at the quantity tax’s opti-
mal solution, we know we can move down the budget line and reach a higher
indifference curve than the quantity tax solution.

Figure 3.21 shows that, starting from the Original Choice point, we can com-
pare a quantity tax and a revenue-neutral lump sum tax. Figure 3.21 makes
clear that the lump sum tax enables attainment of a higher level of utility
than the quantity tax because the indifference curve attainable under the
lump sum tax is higher than the indifference curve that maximizes utility
with the quantity tax.

The reason why the lump sum tax is better is due to the fact that it is non-
distorting. It leaves the relative prices of the two goods unchanged.

The Lesson and a Follow-up Question

The lesson is that the Theory of Consumer Behavior has been used to show
that lump sum taxes are better than quantity taxes. Generating the same
amount of revenue, lump sum taxes enable the consumer to reach a higher
level of satisfaction than quantity taxes.
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This begs a question: Why do we see quantity taxes instead of lump sum
taxes? Why are cigarettes (and alcohol and gasoline) so heavily quantity
taxed?

The answer lies in the diversity of consumers. The lesson holds only for each
individual consumer. It is a fact that there is a revenue-neutral lump sum
tax that leaves each individual consumer better off. The amount, however,
of the preferable lump sum tax is different, in general, for each consumer.
It depends on how many cigarettes (or alcohol or gasoline) each consumer
buys. In other words, the lesson does not hold for all consumers taken as a
whole. Thus, a single lump tax for all consumers will not necessarily yield
higher utility than a quantity tax for each consumer.

This point is obvious if you consider a consumer who does not buy the taxed
product at all. This consumer would prefer any size quantity tax to a lump
sum tax. After all, if you do not smoke, you do not have to pay any quantity
tax on tobacco. The collapse in smoking (see Figure 3.16) goes a long way
to explaining why cigarette taxes have soared.

Lump Sum Corollary to the Carte Blanche Principle

We used the Theory of Consumer Behavior to demonstrate a corollary to the
Carte Blanche Principle: for consumers of a particular product, a lump sum
tax is better than a revenue-neutral quantity tax.

If given the option between a quantity and a revenue-neutral lump sum tax,
a consumer who buys the taxed good would prefer the lump sum tax because
it will leave the consumer with a higher level of utility. Unlike the quantity
tax, the lump sum tax will not distort the relative prices faced by the con-
sumer.

Although the Lump Sum Corollary is true, we see quantity taxes for various
products because the Lump Sum Corollary does not apply to all consumers
taken as a group. It is not true that there is a single lump sum tax that is
preferred to a quantity tax by all consumers.
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Exercises

1. Return to the CigaretteTaxes.xls workbook and apply a $2/unit quan-
tity tax. Run Solver. Find the solution by evaluating the reduced form.
Show your work. Do the two methods agree?

2. Repeat this for the lump sum tax. Find the revenue-neutral solution
via Solver, evaluate the reduced form expression at the new Lump Tax,
and compare the two methods. Do the two methods agree?

3. Would the percentage change in the consumer’s consumption of x1 be
more affected by a quantity tax if her indifference curves were flatter,
assuming a Cobb-Douglas utility function? Describe your procedure in
answering this question.
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4.1 Engel Curves

The Theory of Consumer Behavior is built on an optimization problem: max-
imize utility subject to a budget constraint. It is written in equation form
like this:

max
x1,x2

U(x1, x2)

s.t. p1x1 + p2x2 = m

This problem can be solved analytically or with numerical methods and the
solution can be displayed by a canonical graph, as in Figure 4.1. But it turns
out that this is just a first step in how economists think.

Figure 4.1: Displaying the optimal solution.
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The material in this chapter gets to the heart of the economic approach: we
explore how the optimal solution responds to a shock, a change in an exoge-
nous variable, holding everything else constant. This is called comparative
statics.

The most important comparative statics exercise is based on changing a
price, enabling us to derive a demand curve. We start, however, by shocking
income and tracking the response. This produces an Engel curve. Starting
here gives you a chance to absorb and master the logic of comparative statics
before diving into the demand curve.

Initial, Shock, New, Compare

To do comparative statics analysis, we follow a four-step procedure.

1. We find the initial solution.

2. We change a single exogenous variable, called the shock, holding all
other exogenous variables constant. Economists use a Latin phrase,
ceteris paribus, as shorthand. This literally means with other things
held equal and economists use the phrase to mean everything else held
constant.

3. We find the new optimal solution.

4. Finally, we compare the new to the initial solution to see how the
optimal solution responded to the shock.

Comparative statics is the fundamental methodology of economics. It gives
a framework for interpreting observed behavior. This framework has been
given many names, including: the method of economics, the economic ap-
proach, the economic way of thinking, and economic reasoning.

While comparative clearly points to the comparison between the new and
initial solution, the meaning of statics (not be confused with statistics) is
less obvious. It means that we are going to focus on positions of rest and not
worry about the path of the solution as it moves from the initial to the new
point.

There are a few complications and additional issues to be aware of when
doing comparative statics analysis. Analytical and numerical methods can
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be used, but they do not always exactly agree. In addition, we have several
ways of comparing the new and initial solutions. A qualitative compari-
son focuses only on direction (up or down), while quantitative comparisons
compute magnitudes of the change in response (either as a difference or a
percentage change). Finally, we can display the comparative statics analysis
in the canonical graph itself or a separate chart. These three issues will be
demonstrated via example.

Elasticity Basics

Elasticity is a pure number (it has no units) that measures the sensitivity
or responsiveness of one variable when another changes. Elasticity, respon-
siveness, and sensitivity are synonyms. An elasticity number expresses the
impact one variable has on another. The closer the elasticity is to zero, the
more insensitive or inelastic the relationship.

Elasticity is often expressed as “the something elasticity of something,” like
the price elasticity of demand. The first something, the price, is always the
exogenous variable; the second something, in this case demand (the amount
purchased), is the response or optimal value being tracked.

A less common, but perhaps easier, way is to say, “the elasticity of something
with respect to something.” The elasticity of demand with respect to price
clearly shows that demand depends on and responds to the price.

Unlike the difference between the new and initial values, elasticity is com-
puted as the ratio of percentage changes in the values. The endogenous or
response variable always goes in the numerator and the exogenous or shock
variable is always in the denominator.

The percentage change, new−initial
initial

, is the change (or difference), new−initial,
divided by the initial value. This affects the units in the computation. The
units in the numerator and denominator of the percentage change cancel and
we are left with a percent as the units. If we compute the percentage change
in apples from 2 to 3 apples, we get 50%. The change, however, is +1 apple.

If we divide one percentage change by another, the percents cancel and we
get a unitless number. Thus, elasticity is a pure number with no units. So if
the price elasticity of demand for apples is −1.2, there are no apples, dollars,
percents, or any other units. It’s just −1.2.
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The lack of units in an elasticity measure means we can compare wildly
different things. No matter the underlying units of the variables, we can put
the dimensionless elasticity number on a common yardstick and interpret it.
Figure 4.2 shows the possible values that an elasticity can take, along with
the names we give particular values.

Figure 4.2: Elasticity on the number line.

Empirically, elasticities are usually low numbers around one (in absolute
value). An elasticity of +2 is extremely responsive or elastic. It means that
a 1% increase in the exogenous variable generates a 2% increase in the en-
dogenous variable.

The sign of the elasticity indicates direction (a qualitative statement about
the relationship between the two variables). Zero means that there is no re-
lationship—i.e., that the exogenous variable does not influence the response
variable at all. Thus, −2 is extremely responsive like +2, but the variables
are inversely related so a 1% increase in the exogenous variable leads to a
2% decrease in the endogenous variable.

One (both positive and negative) is an important marker on the elasticity
number line because it tells you if the given percentage change in an exoge-
nous variable results in a smaller percentage change (when the elasticity is
less than one), an equal percentage change (elasticity equal to one), or greater
percentage change (elasticity greater than one) in the endogenous variable.

Elasticities are a confusing part of economics. Below are six common mis-
conceptions and issues surrounding elasticity. Reading these typical mistakes
will help you better understand this fundamental, but easily misinterpreted
concept.
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1. Elasticity is about the relationship between two variables, not just the
change in one variable. Thus, do not confuse a negative elasticity as
meaning that the response variable must decrease. The negative means
that the two variables move in opposite directions. So, if the age elas-
ticity of time playing sports is negative, that means both that time
playing sports falls as age increases and time playing sports rises as
age decreases.

2. Elasticity is a local phenomenon. The elasticity will usually change if
we analyze a different initial value of the exogenous variable. Thus,
any one measure of elasticity is a local or point value that applies only
to the change in the exogenous variable under consideration from that
starting point. You should not think of a price elasticity of demand of
−0.6 as applying to an entire demand curve. Instead, it is a statement
about the movement in price from one value to another value close
by, say $3.00/unit to $3.01/unit. The price elasticity of demand from
$4.00/unit to $4.01/unit may be different. There are constant elasticity
functions, where the elasticity is the same all along the function, but
they are a special case.

3. Elasticity can be calculated for different size changes. To compute the
x elasticity of y, we can go from one point to another, %∆y

%∆x
, or use

the derivative’s infinitesimally small change at a point, dy
dx

x
y
. These

formulas will be explained below, but the point now is that economists
are sloppy in their language and do not bother to distinguish elasticity
calculated at a point via calculus (for an infinitesimal change) and
elasticity calculated for a finite distance from one point to another. If
the function is nonlinear, these two methods give different results. If
an economist mentions a point elasticity, it is probably calculated via
calculus as an infinitesimally small change.

4. Elasticity always puts the response variable in the numerator. Do not
confuse the numerator and denominator in the computation. In the x
elasticity of y, x is the exogenous or shock variable and y is the endoge-
nous or response variable. Students will often compute the reciprocal of
the correct elasticity. Avoid this common mistake by always checking
to make sure that the variable in the numerator responds or is driven
by the variable in the denominator.

5. You already know this, but remember that elasticity is unitless. The x
elasticity of y of 0.2 is not 20%. It is 0.2. It means that a 1% increase
in x leads to a 0.2% increase in y.
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6. Perhaps the single most important thing to remember about elasticity
is: Do not confuse elasticity with slope. This may be the most common
confusion of all and deserves careful consideration.

Economists, unlike chemists or physicists, often gloss over the units of vari-
ables and results. If we carefully consider the units involved, we can ensure
that the difference between the slope and elasticity is crystal clear.

The slope is a quantitative measure in the units of the two variables being

compared. If Q* = P
2

, then the slope, dQ*
dP

= 1
2
. This says that an increase

in P of $1/unit will lead to an increase in Q* of 1
2

a unit. Thus, the slope
would be measured in units squared per dollar (so that when multiplied by
the price, we end up with just units of Q).

Elasticity, on the other hand, is a quantitative measure based on percentage
changes and is, therefore, unitless. The P elasticity of Q* = 1 says that a 1%
increase in P leads to a 1% increase in Q*. It does not say anything about
the actual, numerical $/unit increase in P, but speaks of the percentage in-
crease in P. Similarly, elasticity focuses on the percentage change in Q*, not
the change in terms of number of units.

Thus, elasticity and slope are two different ways to measure the responsive-
ness of a variable as another variable changes. Elasticity uses percentage
changes, %∆y

%∆x
, while the slope does not, ∆y

∆x
. They are two different ways to

measure the effect of a shock and mixing them up is a common mistake.

Comparative Statics Analysis of Changing Income

STEP Open the Excel workbook EngelCurves.xls, read the Intro sheet,
and proceed to the OptimalChoice sheet.

We have run Solver and the initial solution, x1* ≈ 25 and x2* ≈ 162
3
, is

displayed.

Our first attempt at comparative statics analysis is straightforward: change
income, ceteris paribus, and compute the response in x1* and x2*.

STEP Change cell B18 to 150 (this is the shock) and then run Solver to
find the new optimal solution.
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The budget line shifts out and the consumer takes advantage by re-optimizing
and moving to a new, highest attainable indifference curve.

STEP Compare the initial and new values of x1* and x2* given the $50
increase in income.

In qualitative terms, we would say that the increase in income has led to an
increase in optimal consumption of the two goods.

In quantitative terms, we can compute the response as the change in the own
units of the two variables.

The own units statement of comparative statics for x1* is ∆x1*
∆m

.

Income rose by $50 and optimal consumption of each good went up by 12.5
units. We compute 37.5−25

150−100
so we say that we get an increase of 1

4
unit for

every $1 increase in income.

Elasticity is another a way to present a quantitative comparative statics re-
sult. We use a formula that multiplies the slope by the initial values.

Income elasticity of x1* = ∆x1*
∆m

m

x1*
= [ 37.5−25

150−100
][100

25
] = 1. This elasticity is

unit elastic. This means that a 1% change in income leads to a 1% change
in the optimal purchase of good 1. We had a 50% increase to income and
that produced a 50% increase in x1*.

The elasticity formula seems mysterious, but it is easily derived from the
definition of the ratio of percentage changes.

%∆x1*

%∆m
=

∆x1*
x1*
∆m
m

=
∆x1*

x1*

m

∆m
=

∆x1*

∆m

m

x1*

The algebra above shows how slope and elasticity are connected. Multiplying
the slope by an initial position is the same as computing a percentage change.

While it is certainly possible to do comparative statics analysis by running
Solver to find the initial solution, changing a parameter on the sheet, running
Solver again to find the new solution, and then comparing the initial and new
solutions, the tediousness of this manual approach is obvious.
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Fortunately, there is a better way. It involves using the Comparative Statics
Wizard Excel add-in.

STEP Click the Reset button to make sure you start from the initial
parameter values.

STEP Install the Comparative Statics Wizard add-in, Cswiz.xla, from
the MicroExcel archive.

Instructions and documentation are available in the CompStatics.doc file in
the SolverCompStaticsWizard folder. You can see which add-ins are installed
by accessing the Add-ins Manager dialog (In Excel 2019, File: Excel Options:
Add-ins: Go).

STEP Once the Comparative Statics Wizard add-in is installed, from the
OptimalChoice sheet, click the Add-ins tab on the Ribbon, then click Wizard
and Comp Statics (in earlier versions, execute Tools: Wizard: Comp Statics)
to bring up the main dialog box of the CSWiz add-in, shown in Figure 4.3.

Figure 4.3: First step in the Comparative Statics Wizard.

STEP Click on the Input button and answer the three questions posed.

You are providing Excel with the information it needs to organize the results.
Clearly, the goal is cell B7 so you will click on cell B7 when prompted by the
first question. Excel enters the absolute reference to that cell ($B$7) in the
dialog box and you click OK. Follow the same procedure for the next two
questions. The endogenous variables are in cells B11:B12 and the exogenous
variables are in cells B16:B20 so can click and drag to select those cells.
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Notice how the Comparative Statics Wizard add-in presumes that you have
properly organized and set up the problem on the spreadsheet.

STEP Once you have provided the goal, endogenous and exogenous vari-

able cells, click the Next button.

Step 2 uses Excel’s Solver to find the initial solution. It temporarily hides
the Comparative Statics Wizard and brings up Solver so you can use it to
find the optimal solution.

STEP At the Step 2 screen, click the Run Solver button to bring up
the Solver dialog box. Click Solve to have Solver find the initial solution.

Read the message in the box after you have run Solver. It explains what you
have done so far.

Having found the initial solution, we are ready to input the shock.

STEP At the Step 3 screen, click the Input button.

As in the first screen, you are asked three questions. The first question asks
for the shock variable itself. In this case, click on cell B18 (the income vari-
able value, not the label). The second question is the amount of change.
Enter 50. The third question is the number of shocks. The default value is
5. Accept this value by clicking the OK button.

You have asked Excel to change income, holding the other variables constant,
from 100 to 150 to 200 to 250 to 300 to 350—five jumps of 50 each from the
100 initial value.

STEP After verifying that you have entered the shock information cor-

rectly, click the Next button to continue.

The Step 4 screen is the heart of the add-in. You have provided the goal,
endogenous and exogenous variable information, Solver found the initial so-
lution, and you have told Excel which variable to shock and how. Excel is
ready to run the problem over and over again for each of the shock variable
values you provided. It is essentially the manual approach, but Excel does
all of the tedious work.
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STEP Click the Run Comparative Statics button. The bar displays

Excel’s progress through the repeated optimization problems. It runs Solver
at each value of income, but it is very fast.

STEP Click the Next button, read the information in the box, and click

the Finish button.

Excel takes you to a sheet it has inserted into the workbook with all of the
comparative statics results. This sheet is similar to the CS1 sheet. Notice
how the results are arranged. It begins with the initial parameter values
(widen column A if needed), then displays a table with income in column A,
followed by maximum utility and the optimal values of the two goods.

The results produced by the Comparative Statics Wizard can be further pro-
cessed as shown in the CS1 sheet.

STEP Proceed to the CS1 sheet. Columns F and G contains slope and
elasticity calculations. Click on the cells to see the formulas.

Notice that you have to be careful with parentheses when doing percentage
change calculations in Excel. Simply entering “= C14 – C13/C13” will not
do what you want because Excel’s order of operations rule will divide C13
by C13 (which is 1) and subtract that from C14.

Income Consumption and Engel Curves

There are two graphs on the CS1 sheet. They appear to be the same, but
they are not. One graph is an income consumption curve and the other is an
Engel curve. They are related and understanding their connection is impor-
tant.

Ernst Engel (not to be confused with Karl Marx’s benefactor and friend,
Friedrich Engels) was a 19th century German statistician who analyzed con-
sumer expenditure data. He found that food purchases increased as income
rose, but at a decreasing rate. This became known as Engel’s Law. A graph
of quantity demanded for a good as a function of income, ceteris paribus, is
called an Engel curve.

The income consumption curve (ICC) shows the effect of the increase in in-
come in the canonical indifference-curves-and-budget-constraint graph. In



4.1. ENGEL CURVES 115

other words, the ICC shows the comparative statics analysis on the underly-
ing, canonical graph. Panel A in Figure 4.4 shows the income consumption
curve.

Figure 4.4: Displaying the results of a shock in income.

Panel B shows that the Engel curve for x1 plots the relationship between in-
come and optimal x1. This presentation graph shows only the optimal value
of the endogenous variable (x1) as a function of the shock variable (m) and
hides everything else. There is an Engel curve graph for x2, but it is not
displayed.

STEP Use your comparative statics results to make Engel and income
consumption curves. This will help you understand the relationship between
the two curves.

For the Engel curve, select data in m (in column A) and x1 (in column C).
For the ICC, you need to select x1 and x2 (in columns C and D). After se-
lecting the data, click the Insert tab in the Ribbon and choose the Scatter
chart type in the Charts group.

The slope of the Engel curve reveals if the good is normal or inferior. A nor-
mal good, as in Figure 4.4, has a positively sloped Engel curve: when income
rises, so does optimal consumption. An inferior good has a negatively sloped
Engel curve, increases in income lead to decreases in optimal consumption
of the good. Figure 4.5 shows this case.
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Figure 4.5: x1 as an inferior good.

Hamburger is the classic inferior good example. As income rises, the idea
is that you eat less hamburger meat and more of better cuts of beef. The
example also serves to point out that goods are not either normal or inferior
due to some innate characteristic, but that the relationship is a local phe-
nomenon. Figure 4.6 shows how a consumer might react across the full range
of income. Do you understand the story this graph is telling?

Figure 4.6: A hypothetical Engel curve for hamburger.

Figure 4.6 shows that hamburger is normal at low levels of income (with in-
creasing consumption as income rises), but inferior at higher levels of income.
Our Cobb-Douglas utility function cannot generate this complicated Engel
curve.
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Analytical Comparative Statics Analysis of Changing
Income

We can derive the Engel curve for the problem in the EngelCurves.xls work-
book via analytical methods.

As usual, we rewrite the constraint and form the Lagrangean, then take
derivatives, and solve the system of equations. The novelty this time is that
we leave m as a letter so that our final answer is a function of income. This
enables us to derive an Engel curve.

1. Rewrite the constraint so that it is equal to zero.

0 = m− 2x1 − 3x2

2. Form the Lagrangean function.

We take derivatives and set them equal to zero.

To solve for the optimal values of x1 and x2, move the lambda terms in the
top two equations to the right-hand side and divide the first equation by
the second to eliminate lambda (and give the familiar MRS = p1

p2
condition.

Then solve for optimal x2 in terms of x1.
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Substitute this expression for x2 into the third first-order condition and solve
for optimal x1.

We can evaluate this expression at any value for m. If we substitute in
m = 100, we get x1* = 25 which is what we got when we solved this problem
with an income of $100.

Our reduced form expression for x1* agrees with the values in columns A and
C of the CS1 sheet that we produced via the numerical approach using the
Comparative Statics Wizard. The numerical method picks individual points
off the Engel curve function that we derived here.

There is also an Engel curve for x2*. It is x2* = 1
6
m.

Of course, these Engel curves are for this particular consumer, with this par-
ticular utility function and set of exogenous variables. Different preferences
will give different Engel curves.

If we make the problem more general, in the sense of substituting letters for
numbers in the Lagrangean, then these exogenous variables will appear in
the reduced form expression. In other words, the one-quarter and one-sixth
constants in the Engel curves will be changed into an expression with the
exogenous variables. Evaluating that expression at the current values of the
exogenous variables will give one-quarter and one-sixth.

If you change an exogenous variable other than income, you will no longer
move along the Engel curve. Instead, you will shift the entire Engel curve.

To compute an own units response in x1* given a change in income, we can
simply take the derivative with respect to m, which is simply 1

4
. This means

the slope of the reduced form is constant at any value of m.
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The elasticity at a given value of m can be computed via the following for-
mula:

dx1*

dm

m

x1*

Because it is calculated at a particular point, this is called point elasticity,
as opposed to an elasticity measured from one point to another. Economists
usually compute and report point elasticities, but they often omit the adjec-
tive and simply call the result an elasticity.

Notice how the point elasticity formula is similar to the elasticity formula

from one point to another, ∆x1*
∆m

m

x1*
. We have simply replaced the delta with

a d—this shows that the two formulas are the same except for the size of the
change in m. Instead of a discrete-size change, the point elasticity formula
is based on an infinitesimally small change in m.

At m = 100, the point income elasticity of x1* = (1
4
)(100

25
) = 1. Good x2

also has a constant unit income elasticity. Rays from the origin always have
constant unit elasticities.

The utility function plays a crucial role in comparative statics outcomes.
Cobb-Douglas utility functions always yield linear Engel curves with con-
stant unit income elasticities. We do not believe that, in the real world,
Engel curves are always linear and unit income elastic. While there are other
utility functions with less restrictive results, they are more difficult to work
with mathematically. Ease of algebraic manipulation helps explain the pop-
ularity of the Cobb-Douglas functional form.

An Engel Curve is Comparative Statics Analysis

This chapter introduced comparative statics analysis. It focused on tracking
the optimal solution as income changes. This is called an Engel curve.

Comparative statics analysis, including elasticities, can be done via numeri-
cal and analytical methods. The Comparative Statics Wizard handles much
of the tedious work in the numerical approach.

We can compute an elasticity in two ways: at a point and from one point
to another. The former uses the derivative and latter is based on a discrete-
size change in the exogenous variable. A point elasticity is one based on
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the derivative. Both elasticities are based on percentage changes, but the
derivative uses infinitesimally small changes in the exogenous variable.

We will often compare the two methods. In this case, the two methods agreed
perfectly. This will not always be true.

Exercises

1. Change the price of good 1 from 2 to 3 in the OptimalChoice sheet of
the EngelCurves.xls workbook. From m = 100, use the Comparative
Statics Wizard to create a graph of the Engel curve for good 1. Title
the graph and label the axes. Take a picture of your graph and paste
it in your Word document.

2. Why is the slope of your graph different than the one in the CS1 sheet?

3. Compute the income elasticity of demand for good 1 from m = 100 to
200. Show your work.

4. Compute the income elasticity of demand for good 1 at m = 100. Show
your work.

5. Why are your answers in question 3 and 4 the same?

References
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I shall also argue that the most secure propositions and the
most reliable predictions, even though they are conditional
predictions, arise out of comparative statics, and that when
we are asked the awkward question “what good is economics
to anyone,” apart from its usefulness in providing a gainful
occupation for economists, the defense rests mainly on the
achievements of rather old-fashioned comparative statics.

Kenneth E. Boulding

4.2 More Practice with Engel Curves

This section derives Engel curves via numerical and analytical methods for
different utility functions. It applies the same logic as the previous chapter.
This is mastery by repetition. Recognizing how the same steps are used is
essential to thinking like an economist.

Quasilinear Preferences

This example uses a quasilinear utility function, U = x
1
2
1 + x2. The budget

constraint is 140 = 2x1 + 10x2.

We begin with the analytical approach. We rewrite the constraint and form
the Lagrangean, leaving m as a letter (since we want to derive an Engel
curve).

We take derivatives and set them equal to zero.

To solve for the optimal values of x1 and x2, we follow our usual approach,
moving the λ terms over to the right-hand side and dividing the two equations
to cancel the λs.

121
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Notice that the MRS is a function of x1 alone. This is a property of the
quasilinear utility function. We can solve for x1* from the MRS equal to the
price ratio equation.

Next, we plug this value into the third first-order condition and solve for x2*.

To compute an own units response in x1* given a change in m, we can sim-
ply take the derivative with respect to m, which is zero (because m does
not appear in the x1* reduced form). Thus, increases in income leave x1*
unchanged. In other words, the Engel curve for good 1 is horizontal at 6.25.

The own units response for x2* is dx2*
dm

m

x2*
= 1

10
. This means that an addi-

tional dollar in income leads to a 1
10

increase in good 2.
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We can use the income elasticity formula, dx1*
dm

m

x1*
, to compute the income

elasticity. At m = 140, the income elasticity of x1* = (0)(140/6.25) = 0,
which is perfectly inelastic. This means that changes in m have no effect at
all on x1*.

These results seem a little strange. Perhaps the numerical approach and Ex-
cel can shed some light on what’s going on here.

STEP Open the Excel workbook EngelCurvesPractice.xls, read the Intro
sheet, then go to the QuasilinearChoice sheet. It shows the optimal solution,
6.25, 12.75, for m = 140. Change income to 160.

As expected the budget line shifts out.

STEP Run Solver to find the new initial solution. The resulting chart
looks like Figure 4.7.

Figure 4.7: Income shock with quasilinear preferences.

Figure 4.7 and your screen show that the value of x1* remained unchanged
as income rose from $140 to $160. This consumer maximizes utility by using
all of the extra $20 in income on good 2.

Figure 4.7 also displays a key property of the quasilinear functional form: the
indifference curves are vertically shifted and actually parallel to each other.
Thus, when we increase income, the new point of tangency is found directly,
vertically up from the original solution.
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STEP Return income to its initial value of $140. Run the Comparative
Statics Wizard, applying 5 shocks to income in $10 dollar increments.

Your results should look like the CS1 sheet.

STEP Create Engel and income consumption curves. For the Engel
curves, this requires making a chart of x1* as a function of m and another
chart of x2* as a function of m. For the income consumption curve, the chart
is x2* as a function of x1*. Each point on this chart is a point of tangency
between the budget line and maximum attainable indifference curve.

Your first attempt at making a chart of x1* as a function of m will not yield
a horizontal line at 6.25. Look closely, however, at the y axis scale. The
problem is that Solver is reporting numbers very close to, but not exactly,
6.25 as income changes.

But these slight differences in optimal x1 are not meaningful. They are Solver
noise. In fact, for all of these values of m, optimal x1 really is exactly 25. We
need to clean up Solver’s results.

Simply changing the display to fewer decimals will not work. This will change
the display of the y axis, but Excel will still have the same number in its
memory. Instead, we have to use Excel’s ROUND function to change the
numbers produced by Solver.

The ROUND function has two arguments, the cell you want to round and
the number of decimal places. So, ROUND(123.456,1) evaluates to 123.5.

STEP Enter this formula in a blank cell, “=ROUND(123.456,-2)” to see
what a negative argument does.

We can use the ROUND function to round Solver’s results to the hundredths
place. Cell F12 shows how this strategy is implemented.

STEP Apply Excel’s Round function to your comparative statics results
and then make a chart of the Engel curve for good 1 using the rounded data.
Your final chart should look like the one in the CS1 sheet.

Finally, we can use the CSWiz results to examine the responsiveness of the
endogenous variables to the changes in income we applied.
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STEP Compute the response to the income changes in own units and
income elasticities for x1* and x1*. Check your work with the results in the
CS1 sheet.

Notice that the responsiveness results from the numerical method are the
same as that via the analytical approach.

Perfect Complements

STEP Proceed to the PerfCompChoice sheet to practice on another util-
ity function. This function reflects preferences in which the two goods are
perfect complements. This gives L-shaped indifference curves, but our anal-
ysis proceeds as usual.

The problem is to maximize the perfect complements utility function sub-
ject to the budget constraint. The PerfCompChoice sheet shows that p1 =
2, p2 = 10, a = b = 1.

We do the problem first via the analytical method, leaving m as a letter so
we can find x1* = f(m) and x2* = f(m)—these are Engel curves for goods
1 and 2.

In section 3.2, we showed how to solve this problem by finding the intersection
of two lines on which the solution must lie. Since a = b = 1, the optimal
solution must be where x1 = x2 (a ray from the origin with slope +1). Of
course, the solution must also lie on the budget line, so we can solve this
system of two equations and two unknowns by substituting in x1 for x2 in
the budget constraint equation.

Since x2 must equal x1 at the optimal solution, we know x2* = m
12

.

To compute an own units response in x1* given a change in income, we can
simply take the derivative with respect to m, which is simply 1

12
. This slope

is constant and the Engel curve is linear.
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The income elasticity at a given value of m can be computed via the point

elasticity formula, dx1*
dm

m

x1*
. At m = 50, the income elasticity of x1* =

1
12

50
4.167

= 1. This means that a 1% change in m will result in a 1% change in
x1*.

STEP Run the Comparative Statics Wizard on the PerfCompChoice
sheet (you can make the change in income $10) and create Engel and in-
come consumption curves.

STEP Compute the response to the income changes in own units and
income elasticities for x1* and x2*.

Check your work with the results in the CS2 sheet. Notice that the results
in Excel are the same as the analytical approach.

The Utility Function Determines the Shape of the Engel
Curve

This section ran a comparative statics analysis of a change in income on
quasilinear and perfect complement utility functions. This enabled practice
in deriving Engel curves and income consumption curves, along with com-
puting responsiveness in own units and elasticities.

The quasilinear function has the peculiar result that the income elasticity of
x1* is zero. This happens because the indifference map of a quasilinear util-
ity function is a series of vertically parallel curves. Thus, when the budget
line shifts out, the new optimal solution is found directly above the initial
solution and x1* remains unchanged.

With the perfect complements utility function, we were able to find an ana-
lytical solution even though we could not use the Lagrangean method. The
Engel curve for x1* has a constant slope and a unit income elasticity. These
are the same properties for the Engel curve we found in the previous chapter
using the Cobb-Douglas functional form.

The shape of the Engel curve, its slope and income elasticity are all influ-
enced by the consumer’s utility function. The relationship is complicated, so
there is no rule or simple statement about how the functional form of utility
determines the Engel curve.
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Ernst Engel wanted to know how spending on food changed as income rose.
He believed food purchases would increase at a decreasing rate as income
increased, as shown in Figure 4.8. This makes common sense. As you get
richer and richer, you can buy a much nicer house and cars, but it is difficult
to spend a lot more on food. This is known as Engel’s Law.

Figure 4.8: Engel’s Law.

None of three utility functions we have encountered thus far (Cobb-Douglas,
quasilinear, and perfect complements) are capable of generating an Engel
curve that conforms to Engel’s Law for food purchases. If we were interested
in food, we would have to find and use a utility function with an Engel curve
that conformed to Engel’s Law. Such functions exist, but as you can imag-
ine, they are more complicated than the computationally simple functions
we have used thus far.

Exercises

1. In the QuasilinearChoice sheet, copy cell B11 and paste it in cell C11.
Set income to $200 and run Solver to find the new optimal solution. In
cell D11, enter a formula to find the difference between cell C11 and
B11. Is this tiny difference meaningful? Explain.

2. Having changed income and run Solver in question 1, if you connected
the initial and new solutions on the chart, you would get a vertical line.
Why is this happening? Will this happen with every consumer?

3. Having changed income and run Solver in question 1, is good 1 a normal
or an inferior good? Explain.
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4. Use Word’s Equation Editor to solve the general version of the perfect
complements problem. In other words, find x1* and x2* for

References

The epigraph is from pages 487 and 488 of Kenneth E. Boulding, “In Defense
of Statics,” The Quarterly Journal of Economics, Vol. 69, No. 4 (November,
1955), pp. 485–502 (www.jstor.org/stable/1881991). As you can tell from
the quotation, Boulding had a well-deserved reputation for witty, biting com-
ments. His defense of comparative statics in the article just cited notwith-
standing, he once quipped, “Mathematics brought rigor to Economics. Un-
fortunately, it also brought mortis.”
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The first “empirical” demand
schedule was published in 1699 by
Charles Davenant.

George Stigler

4.3 Deriving a Demand Curve

We know how to find the initial optimal solution in the Theory of Consumer
Behavior and we have explored the comparative statics properties of a change
in income.

We are well prepared to embark on the most important comparative statics
analysis in the Theory of Consumer Behavior: deriving a demand curve.

Numerical Comparative Statics Analysis of Changing
Price

STEP Open the Excel workbook DemandCurves.xls and read the Intro
sheet,then go to the OptimalChoice sheet.

The problem is set up, but the consumer is not optimizing because the MRS
does not equal the price ratio and the consumer can move to higher indiffer-
ence curves by traveling up the constraint.

STEP Run Solver to find the initial solution: x1* = 25 and x2* = 162
3
.

Next, we explore how this initial optimal solution changes as the price of
good 1 changes, ceteris paribus. This comparative statics analysis will pro-
duce a demand curve.

Before we actually do it, can you anticipate what will happen when we in-
crease the price of good 1? Believe it or not, if you try to figure it out
first—before actually seeing it—you will learn more. Take a moment to
think: what will happen to the graph on your screen when we increase the
price of x1?

Let’s see how you did.

129
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STEP Shock: Change cell B16 to 3.

Figure 4.9 shows how your screen should look. With a higher p1,the budget
constraint rotates in, pivoting on the x2 intercept. The consumer now has
fewer consumption possibilities and needs to re-optimize to find the new
optimal solution.

Figure 4.9: New budget line when p1 rises.

STEP New: Run Solver to find the new optimal solution.

We have completed initial, shock, and new—the last step is to compare.
Figure 4.10 shows a table that displays the comparative statics results.

Figure 4.10: Comparative statics results of an increase in p1.

In qualitative terms, we can see that x1* falls as p1 rises, but x2* remains
unchanged.

Quantitatively, we can compute the own units response in good 1 as new
minus initial x1*, which is 162

3
−25 = −81

3
divided by 1 (from 3−2). This is

the value displayed in the table. The own units response in x2 is zero since
it did not change.
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Responsiveness in percentage terms is the price elasticity of demand. We
need to compute the percentage change in x1* divided by the percentage

change in p1. The numerator is −33% because
16 2

3
−25

25
= −1

3
. The denomina-

tor is 3−2
2

= 0.5 or 50%. So, a 50% increase in price, from p1 = 2 to 3, caused
a 33% decrease in quantity demanded. Thus the price elasticity of demand
is −0.33

0.5
= −2

3
or roughly −0.67. This number is displayed in the table in

Figure 4.10.

The same calculation can be performed on x2. Since we are considering the
effect on good 2 from a shock to the price of good 1, we call this a cross price
analysis. The term cross is used in economics when we examine the effect of
i on j ; an own effect, for example, would be p1 on x1.

We quickly realize that the cross price elasticity, the p1 elasticity of x2, is
zero because the numerator is zero. This is perfectly inelastic or completely
unresponsive.

Comparative statics via numerical methods is easier with the Comparative
Statics Wizard add-in. If it is not installed, return to the beginning of this
chapter to load the CSWiz add-in.

STEP Analyze the effect of a change in p1 by running the CSWiz add-in
and changing the price of good 1 by $1 increments (for five shocks).

You can see a slightly different comparative statics analysis in the CS1 sheet.
Instead of changing price by one dollar increments, the CS1 sheet was per-
formed with a shock size of 0.1.

STEP Use your comparative statics results to make a demand curve, a
graph of x1* = f(p1). To do this, select the p1 data in column A, then
hold down the ctrl key (and keep holding it), while selecting the x1 data in
column C. With cells in columns A and C selected, select the Scatter chart
type. Title the graph and label the axes.

Another way to display the comparative statics results is via the price con-
sumption (or offer) curve, as shown in Panel A of Figure 4.11 for a utility
function that is not Cobb-Douglas and not meant to display the increasing
price analysis that you just completed. Instead, a price decrease is shown.
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Figure 4.11: Three ways to show effects of p1 shock.

There is a lot going on in Figure 4.11. The graph on the left (Panel A)
shows a price decrease swinging the budget constraint out. It uses numbers
to indicate the initial and new optimal solutions.

Panels B and C show demand, but look closely, the axes have been flipped.
Instead of graphing x1 as a function of p1, the exogenous variable (p1) is
on the y axis in Panel B. This is a backwards, but common presentation in
economics. The roots of this strange way of presenting the results can be
traced back in the history of economics to Alfred Marshall in 1890.

Modern economists call the graph in Panel B of Figure 4.11 an inverse de-
mand curve because it is plotted as P = f(Q). The demand curve, the
mathematically correct version, is Q = f(P ) because we plot y = f(x) with
y as the dependent variable that is determined by x.

In introductory economics, the inverse demand curve is used. The professor
just draws a downward sloping line or curve and pronounces that it is ob-
vious that as price goes up, quantity demanded falls (we will soon see that
this is not guaranteed). As the level of sophistication rises, especially if we
are doing econometrics and trying to estimate a demand curve, economists
use the mathematically correct demand curve. Economists are used to both
ways of presenting demand. It is confusing at first, but you can get the hang
of it pretty quickly.

STEP Read the information in the CS1 sheet. It explains how the
ROUND function was used to create the price consumption curve from the
comparative statics results.
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Notice that the price consumption curve for changes in p1 in the Excel work-
book is horizontal. This is a property of the Cobb-Douglas utility function
and is not especially realistic. The indifference map in Figure 4.11 is not
based on a Cobb-Douglas utility function because the price consumption
curve is not horizontal.

Another useful Excel skill to master that is especially relevant right now
involves controlling the x and y axes. Excel’s default is that the leftmost
column of selected data goes on the x axis. If we want to make a demand
curve with the data in the CS1 sheet, this is convenient. We select the data
in column A (p1), hold down the ctrl key and select the data in column C
(x1). When you make a Scatter chart, Excel puts price on the x axis and
quantity on the y axis.

But what if we want to make an inverse demand curve, with p1 on the y
axis? One easy way to do it is by directly editing the SERIES formula in the
chart.

STEP Visit vimeo.com/econexcel/using-series-formula to watch a quick,
5-minute video of how the SERIES formula works.

After you watch the video, try it on your demand curve chart. Can you
flip the axes by directly editing the SERIES formula? Click on your demand
curve, then switch columns A and C in the x and y arguments in the SERIES
formula. To see an example of this, click on the series in the chart in the
CS1 sheet.

Analytical Comparative Statics Analysis of Changing
Price

We take the opportunity here to extend our previous analytical work. We
could just leave p1 as a letter since we want to derive a demand curve, but
we will be more aggressive and leave all exogenous variables as letters. This
will give us the most general answer we can get.

We rewrite the constraint and form the Lagrangean.

https://vimeo.com/38222845
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Although it seems more formidable than when numbers are used in place of
letters, we can apply the usual strategies for taking derivatives and solving
the first-order conditions to find the optimal solution.

We take derivatives and set them equal to zero.

To solve for the optimal values of x1 and x2, we move the lambda terms to
the right-hand side and divide the first equation by the second. This gets
rid of lambda and gives the familiar MRS = p1

p2
condition, which can then be

solved for optimal x2 as a function of optimal x1.

We substitute this expression into the third first-order condition (the budget
constraint) and solve for optimal x1.

This expression contains the demand curve for x1 because it shows the quan-
tity demanded at a given p1. It also contains an Engel curve because it shows
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how x1 varies with income. It also shows how x1 moves when c or d, the con-
sumer’s tastes and preferences, change—although, such a graph is unnamed.

Furthermore, this expression can be evaluated for any combination of exoge-
nous variable values. For example, suppose c = d = 1, p1 = 2, and m = 100.
Then it can be seen easily that optimal x1 = 25. In fact, you can readily see
that the reduced form expression for optimal x1 agrees with the numerical
approach using the Comparative Statics Wizard to recalculate the optimal
solution at given values of p1.

We can use our reduced form expression to calculate an own units response
to a shock in p1 by taking the derivative with respect to p1.

This formidable-looking expression is the instantaneous rate of change of the
demand curve at a particular point. Because x1* is a nonlinear function of
p1, its derivative with respect to p1 contains p1. The fact that the demand
curve is not a line explains why we get different results when we compute
responsiveness with ∆ versus d.

STEP Read the CS1 sheet carefully. Your primary goal is to understand
the relationship between ∆ in cells F14 and G14 versus the derivative in cells
I13 and J13.

The key idea is this: as ∆ gets smaller, it approaches d. Thus, earlier, we
computed the price elasticity of demand from p1 = 2 to 3 and got −0.67. But
the CS1 sheet shows an elasticity of −0.95 (in G14) as we go from p1 = 2 to
2.1 and when we use the derivative formula, which is based on an infinitesi-
mally small change in p1, we get an elasticity of −1.

Notice that, unlike the demand curve, x1* = f(p1), the Engel curve, x1* =
f(m) is a line for the Cobb-Douglas utility function. We say, “x one star
is nonlinear in p one” and “x one star is linear in m.” Because the Engel
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curve is a line, ∆m and the derivative with respect to m give identical re-
sults. The size of the change in m does not matter if the relationship is linear.

The unit price elasticity is a property of a Cobb-Douglas utility function. We
can use the reduced form expression for x1* to show that we always get a −1
price elasticity.

So Cobb-Douglas produces three constant elasticities:

1. Unit income elasticity

2. Unit own price elasticity

3. Zero cross price elasticity

None of these are especially realistic. Cobb-Douglas is common because it is
easy to work with, not because it produces sensible elasticities.

A Point Off the Demand Curve?

Unlike an introductory economics course where demand curves appear out of
the blue as downward sloping lines or curves, understanding where demand
curves come from and what they actually represent are major goals for us.

So far, we have a mechanical understanding of the derivation of demand. Yes,
it is true that changing p1, ceteris paribus, and tracking how x1* changes is
how a demand curve is derived. And, yes, it is true that at every price,
quantity demanded is the solution to an optimization problem for that price.
But let’s try a thought experiment not included in introductory economics.

If we consider what it means to be at a point off the demand curve, such
as point Z in Figure 4.12, it helps us understand that the demand curve is
really like a ridgeline across the top of a mountain range.
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Figure 4.12: Interpreting a point off the (inverse) demand curve..

With a point Z to the right of the inverse demand curve, we know that the
consumer is buying too much x1, as shown by the vertical dashed line in the
graph on the left of Figure 4.12. We cannot precisely plot the point Z on the
indifference curve graph because we do not know how much good 2 the per-
son is buying at point Z. We do know, however, that she is not optimizing. In
other words, at point Z, this consumer is failing to maximize satisfaction and
is not on the tangency of the budget line and highest attainable indifference
curve.

Considering the meaning of a point off the demand curve reveals that a de-
mand curve is a geometrical object with a special characteristic—every point
on the demand curve is a point of maximum utility given prices and income.
If we added an axis for utility, the demand curve would show itself as a
3D object that displayed the maximum utility at each given price. In other
words, the demand curve is a ridgeline that connects mountain peaks, as
shown in the sketch on the right in Figure 4.12.

A Demand Curve Is a Comparative Statics Exercise

Deriving a demand curve is the most important comparative statics exercise
in the Theory of Consumer Behavior. Demand and supply (the most impor-
tant comparative statics exercise in the Theory of the Firm) are at the heart
of the market mechanism.

Given a particular functional form for utility, demand curves can be derived
via numerical methods, picking off individual points on the demand curve
for explicit values of price, ceteris paribus. Slopes and elasticities can be
computed.
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Demand curves can also be derived via analytical methods by finding the
reduced form expression as a function of price (and any other exogenous
variables). Slopes and elasticities can be computed by using the derivative.

For Cobb-Douglas utility, we found that x1* = ( c
c+d

)m
p1

. For this reduced
form, the numerical and analytical methods yield different values for slopes
and elasticities based on changing p1 because the demand curve is a curve,
instead of a line (like the Engel curve). The smaller the discrete change in
p1 used in the numerical method, the closer it gets to the analytical result.

We can also “derive” a demand curve with graphs, as shown in Figure 4.11.
We can display the effect of a price change by rotating the budget line and
showing the initial and new points of tangency. If we display the p1 and cor-
responding optimal amount of x1 in a separate graph, we have graphically
derived a demand curve (or inverse demand curve, if we flip the axes).

Finally, if we work out the implications of a point off the demand curve,
we can see the demand curve in a new light—it is actually a 3D object
represented in 2D space. All of the points on the demand curve are actually
points of maximum utility subject to the budget constraint.

Exercises

1. In the OptimalChoice sheet, click the Reset button and reproduce
Figure 4.10 with a decrease (instead of an increase) in p1 from $2/unit
to $1/unit. Use Word’s Table feature to create the table and fill in the
cells.

2. Use Word’s Drawing Tools to create a graph of the price consumption
curve and demand curve for x1 (as in Figure 4.11) that accurately
reflects the shock and results from question 1.

3. What is the difference between a demand curve and an inverse demand
curve?

References

The epigraph is from page 103 of George J. Stigler, “The Early History of
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Vol. 62, No. 2 (April, 1954), pp. 95–113 (www.jstor.org/stable/1825569)
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Most economists do not care who first came up with the concept of a de-
mand schedule. Most of those who do care believe that it was Gregory King,
a century after Charles Davenant. Stigler was a winner of the Nobel Prize in
Economics and a professor at the University of Chicago. He had a lifelong
passion for the intellectual history of economics. In this article, he showed
that Davenant actually preceded King.

It took a long time to translate demand (and supply) schedules as tables
(with columns for price and quantity) into graphs. Fleeming (pronounced
flem-ming) Jenkin in 1870 is often given credit for drawing the first demand
curve, but there were precursors. Alfred Marshall’s Principles of Economics
(1890) popularized supply and demand graphs. His graphs appeared, how-
ever, only in footnotes.

Marshall’s Principles was the most popular economics book of its era. It is
freely available online at www.econlib.org/library/Marshall/marP.html.

Modern economists sometimes mock Marshall for switching the axes, claim-
ing he made a mistake, but this assertion is incorrect. Marshall put price
on the vertical axis because he wanted to show market demand and supply
curves on a graph as the horizontal sum of individual demand and supply
curves, as in footnote 70 from Book III, Chapter IV. Future generations of
introductory economics students became locked in to the Marshallian inverse
demand and supply curves.

Although you may conclude that Marshall’s violation of accepted mathemati-
cal convention (i.e., independent variables belong on the x axis) is confusing,
the decision was not due to a lack of math knowledge. In fact, Marshall
was a brilliant mathematician, earning Second Wrangler (to the future Lord
Rayleigh) as an undergraduate at Cambridge in the Tripos competition.

To understand how the role of mathematics has changed in economics, con-
sider the recipe Marshall gave a friend for using math in economics: “1) Use
mathematics as a shorthand language, rather than as an engine of inquiry.
2) Keep to them till you have done. 3) Translate into English. 4) Then illus-
trate by examples that are important in real life. 5) Burn the mathematics.
6) If you can’t succeed in 4 burn 3. This last I did often.” (A. C. Pigou,
Memorials of Alfred Marshall, 1925, p. 427.)

https://www.google.com/search?q=alfred+marshall+principles+of+economics
https://www.econlib.org/library/Marshall/marP.html
https://www.google.com/search?q=pigou+memorials+of+alfred+marshall




Quasilinear utility functions are
not particularly realistic, but they
are very easy to work with.

Hal Varian

4.4 More Practice with Deriving Demand

This section derives the demand curve from two different utility functions,
quasilinear preferences and perfect complements, to provide practice deriv-
ing demand curves. Nothing new here, just practice applying the tools,
techniques, and concepts of the economic way of thinking.

Quasilinear Preferences

We begin with the analytical approach. Rewrite the constraint and form the
Lagrangean, leaving p1 as a letter so we can derive a demand curve.

STEP Follow the usual Lagrangean procedure to solve this problem. For
help, refer back to section 4.2 where we solved this same problem except with
m instead of p1.

You should find reduced form expressions like this:

The first expression, x1* = 25
p21

, is a demand curve for x1* because it gives

the quantity demanded of x1 as a function of p1. If we rewrite the equa-
tion in terms of p1 like this, p2

1 = 25

x1*
→ p1 = 5√

x1*
then we have an inverse

demand curve, with price on the y axis as a function of quantity on the x axis.

141
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The derivative of x1* with respect to p1 tells us the slope of the demand
curve at any given price.

The own price elasticity of demand is:

The constant elasticity of demand for good 1 is a property of the quasilinear
utility function. Notice that 2 is the reciprocal of the exponent on x1 in the
utility function. In fact, with U = xc1 + x2, the price elasticity of demand for
x1 is − 1

1−c for values of c that yield interior solutions.

The expression for optimal x2 is a cross price relationship. It tells us how
the quantity demanded for good 2 varies as the price of good 1 changes. The
equation can be used to compute a cross price elasticity, like this:

Unlike the own price elasticity, the cross price elasticity is not constant—it
depends on the value of p1. It is also positive (whereas the own price elas-
ticity was negative). When p1 rises, optimal x2 also rises. This means that
goods 1 and 2 are substitutes.

Complements, on the other hand, are goods whose cross price elasticity is
negative. This means that an increase in the price of good 1 leads to a de-
crease in consumption of good 2.

Demand can also be derived via numerical methods.

STEP Open the Excel workbook DemandCurvesPractice.xls, read the
Intro sheet, then go to the QuasilinearChoice sheet.



4.4. MORE PRACTICE WITH DERIVING DEMAND 143

The consumer is maximizing satisfaction at the initial parameter values be-
cause the marginal condition, MRS = p1

p2
, is met at the point 6.25,12.75

(ignoring Solver’s false precision) and income is exhausted.

We can explore how this initial optimal solution varies as the price of good
1 changes via numerical methods. We simply change p1 repeatedly, running
Solver at each price, while keeping track of the optimal solution at each
price. The Comparative Statics Wizard add-in handles the tedious, cumber-
some calculations and outputs the results in a new sheet for us.

STEP Run the Comparative Statics Wizard on the QuasilinearChoice
sheet. Increase the price of good 1 by 0.1 (10 cent) increments.

You can check your comparative statics analysis by comparing your results
to the CS1 sheet, which is based on 1 (instead of 0.1) dollar size shocks. Of
course, the numbers will not be exactly the same since the ∆p1 shock size is
different.

The columns of price and optimal x1 are points on the demand schedule.
The numerical approach via the CSWiz essentially picks individual points on
the demand curve for the given prices. If you plot these points, you have a
graph of the demand curve.

The analytical approach, on the other hand, gives the demand function as an
equation. You can evaluate the expression at particular prices and generate
a plot of the demand curve.

The two approaches, if done correctly, will always yield the same graphical
depiction of the demand curve. They may not, however, yield the same slopes
or elasticities.

STEP Using your results, create demand and price consumption curves.
Compute the own unit changes and elasticities for x1* and x2*.

The CS1 sheet shows how to do this if you get stuck. You can click on cells
to see their formulas. Think about how the formulas work and how they
compute the answer.

It is critical that you notice that your own unit changes and elasticities are
closer to the instantaneous rates of change in columns I and J of the CS1
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sheet because you have smaller changes in p1 and, for this utility function,
x1* is nonlinear in p1.

Take a moment to reflect on what is going in the calculations presented in
the CS1 sheet. The color-shaded cells invite you to compare those cells.

Now, let’s walk through this slowly.

STEP Click on cell F13 to see its formula.

It is computed as the change in optimal x1 for a $1 increase in p1. There is
a decrease of about 3.47 units when price increases by 1 unit.

STEP Click on cell I12 to see its formula.

It is computed by substituting the initial price, $2/unit, into the expression
for the derivative (displayed as an equation above the cell). The result of the
formula, −6.25, is the instantaneous rate of change. In other words, there
will be a 6.25-fold decrease in optimal x1 given an infinitesimally small in-
crease in p1.

STEP Go to your CSWiz results and, if you have not done so already,
compute the change in optimal x1 for a $0.1 increase in p1.

You should find that your slope is about −5.8. The change in optimal x1

is about 0.58, but you have to divide by the change in price, 0.1, to get the
slope. Notice that your answer is much closer to the derivative-based rate of
change (−6.25). This is because you took a much smaller change in price,
0.1, than the one dollar change in price in the CS1 sheet and you are working
with a curve.

STEP Return to the CS1 sheet and compare cells G13 and J12.

The same principle is at work here. Because the demand curve is nonlinear,
the two cells do not agree. Cell G13 is computing the elasticity from one
point to another, whereas cell J12 is using the instantaneous rate of change
(slope of the tangent line) at a point.

If you compute the price elasticity from 2 to 2.1 (using your CS results), you
will find that it is much closer to −2.
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Finally, you might notice that unlike the Cobb-Douglas utility function,
which produced a horizontal price consumption curve (PCC), the quasilinear
utility function in this case is generating a downward sloping price consump-
tion curve. In fact, the slope of the price consumption curve tells you the
price elasticity of demand: Upward sloping PCC means that demand is in-
elastic, horizontal PCC yields a unit elastic demand (as in the Cobb-Douglas
case), and downward sloping PCC gives elastic demand (as in this case).

Perfect Complements

We begin with the analytical approach.

U(x1, x2) = min{ax1, bx2}

For a = b = 1, we know that we can find the intersection of the optimal
choice and budget lines to get the reduced form expressions for the endoge-
nous variables, x1* = m

p1+p2
(which is the same for x2* since x1* = x2*).

This solution says that when a and b are the same in a perfect complements
utility function, the optimal amounts of each good are equal and found by
simply dividing income by the sum of the prices.

The reduced form expression contains Engel and demand curves. Holding
prices constant, we can see how m affects consumption. Likewise, holding m
and p2 constant, we can explore how optimal x1 varies as p1 changes. This,
of course, is a demand curve for x1.

As usual, we find the instantaneous rate of change by taking the derivative
with respect to p1. The p1 elasticity of x1 is the derivative multiplied by p1

x1*
.

We can also derive demand for a perfect complements utility function via
numerical methods.
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STEP Proceed to the PerfCompChoice sheet and run the Comparative
Statics Wizard with an increase in the price of good 1 of 0.1 (10 cents).

Can you guess what we will do next? The procedure is the same every time:
we solve the model then explore how the optimal solution responds to shocks.

STEP Create demand and price consumption curves based on your com-
parative statics results. Compute the own units changes and elasticities for
x1* and x2*. The CS2 sheet shows how to do this if you get stuck.

As before, you will want to concentrate on how your own units changes and
elasticities are closer to the instantaneous rates of change than the ∆p1 in
columns F and G of the CS2 sheet because you have smaller changes in p1

and we are dealing with a nonlinear relationship.

The lesson is clear: whenever the demand curve is not a line, that is, x1* is
nonlinear in p1, then ∆p1 will not exactly equal dp1. As the size of the dis-
crete change in price gets smaller, the numerical method result will approach
the result based on the derivative.

Although the two methods might not exactly agree, they are usually pretty
close. How close depends on the curvature of the relationship and the size of
the discrete shock. This means you can always check your analytical work by
doing a manual ∆ shock and computing the change from one point to another.

Notice also that the price consumption curve is upward sloping and the price
elasticity is less than one (in absolute value).

Deriving Demand from the Consumer’s Utility Maxi-
mization Problem

The primary purpose of this section was to provide additional practice in
deriving demand with different utility functions. Clearly, the demand curve
is strongly influenced by the utility function that is being maximized given
a budget constraint.

Two examples were used to demonstrate how the analytical and numeri-
cal methods are related. Calculus is based on the idea of infinitesimally
small changes. You can see calculus in action by using the CSWiz to take
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smaller changes in price—which drives the numerical method ever closer to
the derivative-based result.

Exercises

1. Return to the QuasilinearChoice sheet and click the Reset button.
Now change the exponent on good 1 from 0.5 to 0.75. Use the Compar-
ative Statics Wizard to derive a demand curve for this utility function.

2. Working with the same utility function as in the first question, de-
rive the demand for x1* via analytical methods. Use Word’s Equation
Editor as needed. Show your work.

3. Using your results from questions 1 and 2, compute the own price
elasticity via numerical and analytical methods. Do they agree? Why
or why not? Show your work and take screen shots as needed.

References
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in economics are students who should know calculus, but don’t—at least not
very well. For this reason, I have kept calculus out of the main body of the
text.”

The book you are reading at this moment takes a different approach. Calculus
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with the substantial support of numerical methods. If you are a student who
struggles with analytical methods, you will never have a better opportunity
to master calculus and algebra. Do the practice problems with care and
match the analytical and numerical approaches in each application.

https://www.google.com/search?q=varian+intermediate+microeconomics




To my knowledge, no one has
described heroin as a Giffen good.
But the description may be
appropriate for those users who are
addicted.

Neal Kumar Katyal

4.5 Giffen Goods

Demand curves are derived by doing comparative statics on the consumer’s
optimization problem: Change price, ceteris paribus, and track optimal con-
sumption of a good.

In introductory economics courses around the world, demand is always drawn
downward sloping so that as price rises, ceteris paribus, quantity demanded
falls. Economists have long been intrigued, however, by a perplexing possi-
bility: quantity demanded rising as price rises. An upward sloping demand
curve! Can this happen? Yes, but it is quite rare and it took decades to
figure it out.

We begin with a definition: Giffen goods are goods that have upward slop-
ing demand curves. Giffen’s connection to this counter intuitive demand
relationship—price rises and you want to buy more?—is controversial.

Giffen and the Irish Potato Famine

The Great Irish Famine took place during 1845-1848.

To put the disaster in proper perspective, the famine killed at
least 12 percent of the population over a three-year period. An-
other 6-8 percent migrated to other countries. In terms of the
percentage of population affected, the 1845-48 famine is one of
the largest ever recorded. Other famines have killed more people
in total because the affected populations were larger, not the per-
centage of exposure. For instance, the 30 million or more people
who perished in the Chinese famine of 1958-62 were 5 percent or
6 percent of the population. (Rosen, 1999, p. S303)

Why did so many people die? This is a difficult question to answer compre-
hensively. The economics of famine are complicated. The proximate answer
is that the Irish ate a lot of potatoes and a potato blight destroyed the food
source. Rosen (1999, p. S303) says this:
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As difficult as it is to imagine today, on the eve of the famine,
per capita consumption of potatoes is reliably estimated to have
averaged 9 pounds (40-50 potatoes) per person per day (Bourke
1993). Diets were astonishingly concentrated on potatoes, espe-
cially in rural areas. Grain was grown in rural Ireland but was
either sent to towns or exported abroad.

When blight wiped out the potato crop, why didn’t the Irish eat something
else or just import food? This is hard to understand. Books have been writ-
ten on the subject. The Biblio sheet in GiffenGoods.xls has references. In
fact, Amartya Sen won a Nobel Prize in Economics for his work on famine.
It turns out that it is not simply a matter of too little food—amazingly, food
can be just a few miles away and yet many people can be starving!

But our focus is on Giffen goods and the story picks up decades after the
famine. Although there is no evidence that he ever said anything close to
“price increase led to higher quantity demanded,” Sir Robert Giffen (1837–1910)
is credited with using the behavior of potato prices and quantities to state
the claim that quantity demanded rose as prices rose.

Figure 4.13 shows Irish potato prices before, during and after the famine.
Although consumption fell when price spiked in 1847 to more than double
the 1846 price, somehow the legend grew that quantity demanded increased
as prices rose in this time period. Thus, the Irish potato became the canonical
example of a Giffen good—even though there is no evidence that price and
quantity moved in the same direction.

Figure 4.13: Potato price in Waterford, Ireland.
Source: OptimalChoice.xls!OptimalChoice
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Economists began arguing over whether or not quantity demanded rose as
the price spiked and, even if it did not, whether it was theoretically possible.
It would take decades of contentious debate before the matter was settled.

Two Common Mistakes in the Giffen Debate

Before explaining how we could, in theory, get a Giffen good, we need to clear
up two mistakes in thinking about Giffen goods. Both mistakes involve vio-
lating the strict ceteris paribus requirement that underlies a demand curve.
The first mistake has a long history in econometrics and the second is easily
corrected once we remember that we must hold everything else constant.

Estimating demand from observed prices and quantities is quite difficult. It
turns out that plotting price and quantity data over time and fitting a line
is no way to estimate a demand curve.

Suppose that the observed quantity of potatoes sold and consumed really
had increased as the price spiked in 1847. Would that have been a good way
to support the Giffen good claim? Absolutely not.

The problem is that the price and quantity data in different time periods do
not fulfill the ceteris paribus requirement. It is true that price and quantity
changed over time, but presumably so did other factors that affect demand
and supply.

STEP Open the Excel workbook GiffenGoods.xls read the Intro sheet,
then go to the ID sheet and read it carefully. Make sure to click the buttons
and think about the charts that are displayed.

This sheet walks you through a simple example and shows why fitting a line
to observed market price and quantity data is a really bad move. The heart
of the confusion lies in the inability to extract the individual supply and de-
mand curves that produce the observed data. This is called the identification
problem.

So, even if it is true that we see prices and quantities moving together, that
is not a demonstration of Giffen behavior.

The second mistake is less easy to forgive. No complicated issues of estima-
tion are involved. We simply forget that demand requires that the ceteris



152 CHAPTER 4. COMPARATIVE STATICS

paribus condition hold. Suppose you notice that a particular brand of jeans
has become increasingly popular and suddenly more people want it as its
price rises. Have we discovered a Giffen good?

Absolutely not. We are violating the crucial ceteris paribus part of the def-
inition of a demand curve by failing to hold constant everything except a
change in price. In this case, the increased popularity of a particular brand
is a shock to the demand curve, shifting it right. This is not a Giffen good
because we are not working with a single, fixed demand curve. Instead, as in
the second chart in the ID sheet, changes in demand are driving new equi-
librium price–quantity combinations.

Having seen two common mistakes in trying to understand and show Giffen
behavior, both involving violation of the strict ceteris paribus condition, the
natural question then is: Can true Giffen goods, ones that meet the specific
requirements of a demand function, exist? The answer is yes.

Giffen Goods in Theory

The left graph in Figure 4.14 shows the canonical graph of the Theory of
Consumer Behavior displaying a Giffen good, while the right shows its as-
sociated upward sloping demand curve. Notice that the indifference curves
require a little tweaking and somewhat odd placement to make x1 be a Giffen
good. Remember that indifference curves cannot cross, but they do not have
to be similarly shaped and equally separated. For x1 to be Giffen, point 2 in
Figure 4.14 has to lie to the left of point 1 so that the decrease in p1 leads
to a decrease in optimal x1.

Figure 4.14: A Giffen good.
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Do not be confused by the decrease in x1. Quantity demanded fell, but so
did price. Thus, we have a positive relationship between price and quantity
demanded (they are moving together) and an upward sloping demand curve.
This is a Giffen good.

To be crystal clear, it is not the fact that optimal x1 decreased that tells
us we have a Giffen good, but that it decreased as price fell. If we started
at point 2 and raised the price, the budget constraint would swing in, and
we would move to point 1, with an increase in optimal x1. We would have
Giffenness because x1 rose as p1 increased, We would be traveling up the
upward sloping demand curve.

A version of Figure 4.14 is depicted in every microeconomics book that dis-
cusses Giffen goods and, make no mistake, this is a canonical graph in micro
theory. But dead graphs on a printed page (or computer screen) force the
reader to reconstruct individual elements and can be difficult to disentangle.
With Excel at our disposal, we can walk through a numerical example to
gain complete mastery of the concept of Giffenness.

STEP Proceed to the Optimal1 sheet and look at the utility function.

The sheet models a Giffen good. The utility function is admittedly quite
complicated, but a simple functional form like Cobb-Douglas or quasilinear
is never going to produce Giffenness.

The U1 sheet shows that this functional form meets the requirements of
well-behaved preferences. The coefficients have been set to values that do
not violate the axioms of revealed preference in the range we are working in.
The indifference curves, for example, will never intersect.

Another example of a utility function that exhibits Giffen behavior is U =

ax1 + lnx1 +
x22
2

. This is implemented in the Optimal2 sheet. We will use the
Optimal1 sheet here and save the Optimal2 sheet for Q&A work. These are
just two of the many functional forms that meet the requirements of well-
behaved utility that could exhibit Giffen behavior.
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The Optimal1 sheet opens with x1 = 44 and x2 = 11. A single indifference
curve is displayed and it does not have the curvature we have been used to
seeing. Recall that perfect substitutes are straight lines, so we can infer that
this utility function is expressing preferences with a high degree of substi-
tutability between the two goods.

Without running Solver, we know this is the optimal solution because the
MRS equals the price ratio.

STEP It is hard to see that the budget line is just touching the indif-

ference curve, but if you click the Zoom In button, you will see that the
tangency condition is clearly met.

Since we are working on Giffen behavior, we want to explore the effects of a
change in price on the quantity demanded. We will increase the price of x1

and see how the consumer responds. Before we do, think through what will
happen. How will the constraint change and where must the new tangency
point lie if x1 is a Giffen good?

STEP Change p1 to 1.1. What happens?

The budget line pivots around the y intercept. It may look like a parallel
shift, but it really is not.

STEP Click the Zoom Out button to see that the price increase has,
as expected, rotated the budget line in.

The 44,11 initial optimal bundle is no longer affordable. The consumer must
re-optimize.

STEP Run Solver. What happens?

Figure 4.15 shows the result. Optimal consumption of good 2 has collapsed
from 11 to around 1.5 and the consumer now wants to buy 48.6 units of good
1, which is more than the initial amount of 44.
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Figure 4.15: A numerical example of Giffen behavior.
Source: GiffenGoods.xls!Optimal1

This is amazing! The price of good 1 went up by 10 cents (from 1 to 1.1)
and the optimal amount of good 1 increased by 4.6 units (from 44 to 48.6).
Price rose, ceteris paribus, and so did quantity demanded!

This is a concrete, numerical example of a Giffen good. We can use the Com-
parative Statics Wizard to explore more carefully the demand curve resulting
from this bizarre utility function.

STEP Use the Comparative Statics Wizard to trace the demand curve
from 0.1 to 3. Set cell B16 to 0.1, then apply 300 (yes, 300) shocks by incre-
ments of 0.01 with the CSWiz add-in. Finally, create a graph of the inverse
demand curve, p1 as a function of x1*.

Your results should look like Figure 4.16, which is also in the CS1 sheet.
That is certainly a strange looking demand curve. It is Giffen in a range. In
other words, a Giffen good is not intrinsically and everywhere a Giffen good.
Giffenness is a local phenomenon. The demand curve pictured in Figure 4.16
has three different behaviors. As price rises from zero, quantity demanded
falls. This continues until a price of about 70 cents. From there, penny
increases lead to increased consumption of good 1. In this range, x1 is a
Giffen good. There is a third region, at prices such as $2 and $3, where the
good is not Giffen.
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Figure 4.16: The inverse demand curve for x1.
Source: GiffenGoods.xls!CS1

So, this example has shown that Giffen goods are not only possible, they
can be modeled by the Theory of Consumer Behavior. We now know that
there are utility functions that reflect well-behaved preferences that generate
Giffen behavior.

Giffen Goods in Theory and Practice

A Giffen good is a strange creature in economics. The phenomenon of quan-
tity demanded rising as price increases was first purportedly sighted during
the Irish potato famine and named after Sir Robert Giffen, even though there
is no evidence that Giffen actually claimed seeing quantity demanded rise as
prices rose, ceteris paribus.

Certainly there are utility functions that give rise to Giffen goods. Certainly
individual consumers may have well-behaved preferences that yield Giffen
behavior. But has a Giffen good ever been spotted? Do Giffen goods exist in
the real world in the sense that a market demand curve is upward sloping?
This is the subject of much debate. Ceteris paribus is a difficult requirement
to meet.

The actual sighting of a Giffen good in the real world remains contentious.
We know for sure that the original example, potatoes during the Great Irish
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Famine, was flawed and there is little evidence that it was a Giffen good.
The Biblio sheet has a few references that can start you learning more about
the history of Giffen goods in economics.

The next section gives an even deeper explanation for Giffen goods. It es-
tablishes the specific conditions needed for Giffenness to occur.

Exercises

1. Use the results in the CS1 sheet to find the price range for which we
see Giffen behavior. Report your answer and describe your procedure.

2. Use the Optimal1 sheet utility function and parameter values to find
the optimal solution via analytical methods. Show your work. Note
that x1 <

a
b
,so the utility function is

U = ax1 − b
2
x2

1 + cx2 + d
2
x2

2

3. Use Word’s Drawing Tools to reproduce Figure 4.14, depicting x1 as a
Giffen good, but use a p1 increase (instead of a decrease).

References

The epigraph comes from page 2436 of Neal Kumar Katyal, “Deterrence’s
Difficulty,” Michigan Law Review, Vol. 95, No. 8. (August, 1997), pp.
2385–2476, repository.law.umich.edu/mlr/vol95/iss8/3/.

The Biblio sheet in GiffenGoods.xls has a list of references on Giffen goods.
Scroll down to see suggested readings on the Irish potato famine, the history
of Giffen goods in economics, and modern-day efforts at finding Giffen goods.
Click on a link if anything catches your eye and seems worth exploring.

https://repository.law.umich.edu/mlr/vol95/iss8/3/




Eugene (or Eugen or Yevgeni) Slutsky
[1880 – 1948] intended to become a
mathematician, but he was expelled
from the University of Kiev for
participating in student revolts.

Gonçalo L. Fonseca

4.6 Income and Substitution Effects

Without a doubt, the demand curve is the most important idea in the The-
ory of Consumer Behavior. We have derived the demand curve analytically
and numerically. The demand curve tells us the optimal amount to buy at
a given price. It also tells us how quantity demanded will change as price
changes, ceteris paribus.

This section remains focused on the demand curve, extending the analysis of
the consumer’s optimal response to a change in price. The core concept is
that the total effect on quantity demanded (given by the demand curve) for
a given change in price can be broken down into two separate effects, called
income and substitution effects.

Our attention is still on the change in quantity demanded as price changes,
ceteris paribus, but by breaking apart the observed response when price
changes, we get a deeper explanation of demand. We also explain how we
might get a Giffen good.

Intuition

Before diving into complicated graphs and math, let’s review the story be-
hind income and substitution effects. Seeing the big picture improves your
chances of really understanding what income and substitution effects are all
about.

Suppose that, ceteris paribus, price rises. We know the consumer has to
re-optimize. We know the consumer will choose a new optimal combination
of goods. We can see the consumer buy a different amount after the price
changes. If we simply compute the change in the amount purchased of x1

before and after the price change, we are comparing two points on the de-
mand curve. This is called the total effect of a price change.

159
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The breakthrough idea is that the increase in price has two channels by which
it affects the consumer. One channel focuses on the fact that a price increase
is like a decrease in purchasing power. After all, given an income level, if
prices double, then I can buy half of what I bought before. My income has
not changed, but my purchasing power has fallen just the same as if my
income had been cut in half. The income effect reflects the fact that price
changes affect optimal quantity demanded by altering purchasing power.

The other channel is called the substitution effect. The idea is that a price
change in one good alters the relative prices faced by the consumer and
induces substitution of the relatively cheaper good for the relatively more
expensive one. When p1 rises, x1 is relatively more expensive than x2 and so
I am naturally going to avoid x1 and be attracted to x2.

Figure 4.17 shows the two channels below the total effect—they are sub-
merged and not directly observed. Added together, they make up the total
effect.

Figure 4.17: The basic idea behind income and substitution effects.

We will see that the income effect can be either positive or negative, but the
substitution effect is always negative (assuming well-behaved preferences).
When price goes up, the substitution effect says “buy less.” Of course, if
price falls, the reverse occurs and, according to the substitution effect alone,
consumption increases.

The reason the income effect is ambiguous in sign is the fact that there are
normal and inferior goods. If the good is normal, then optimal x1 rises as
income increases, but if the good is inferior, then consumption and income
are inversely related.

Finally, it helps to know the underlying motivation behind the discovery of
income and substitution effects. Economists were arguing about the existence
of Giffen goods. The Law of Demand said price and quantity were inversely
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related. Income and substitution effects explained under which conditions
Giffen behavior (an upward sloping demand curve) is possible. We will see
that if the income and substitution effects work together, then the demand
curve is guaranteed to be downward sloping. Understanding income and sub-
stitution effects will allow us to give a more refined, precise definition of the
Law of Demand.

Numerical Example of Income and Substitution Effects

STEP Open the Excel workbook IncSubEffects.xls, read the Intro sheet,
and proceed to the OptimalChoice sheet.

We have the usual Cobb-Douglas utility function with a conventional budget
line. We have done this problem before and the initial optimal solution is
25,162

3
.

STEP Decrease p1 by 1 to $1/unit (in cell B17).

Figure 4.18 displays what is on your screen. The red line is the familiar
new budget line (after the price decrease). There is, however, a dashed line
that has not been used before. This dashed line represents the outcome of a
thought experiment.

Figure 4.18: Decreasing p1.
Source: IncSubEffects.xls!OptimalChoice

STEP Click the Zoom button to see a second graph of the situation.
It has the axes scale adjusted so you can see better what is going on.
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The dashed line is critical to understanding the splitting of the total effect
into income and substitution effects. It has the same slope as the new budget
line, yet it goes through the initial optimal solution. What we have done is
pretend to take away enough income from the consumer to enable him to
buy the initial bundle with the new, lower p1.

We took away income (shifting down the budget constraint relative to the
new budget line) because the fall in price implies an increase in purchasing
power. Had there been a price rise, we would have had to increase income
to compensate for the price increase.

We will find a tangency solution on the dashed line and this will allow us to
split the total effect into the income and substitution effects.

Of course, nothing like this actually happens in the real world. When the
price falls, the consumer re-optimizes, buying a new optimal bundle, and that
is the end of the story. But for the purposes of understanding the demand
curve, we figure out what the consumer would buy at the imaginary dashed
line and we use that to split the total effect into the substitution and income
effects.

But this is all way too abstract. Let’s actually do it so you can see how
it works. To figure out how much income to take away to cancel out the
changed purchasing power from the price change, we use the Income Adjuster
Equation.

∆m = x1*∆p1

Applied to this problem, we know that x1* is 25 (from the initial optimal
solution) and the change in p1 is −1 (because the price fell from 2 to 1, so
new − initial is 1− 2); thus, we have:

∆m = x1*∆p1

∆m = [25][−1] = −25

The minus tells us that we have to take away income. The dashed line is
based on an income of $75, p1 = 1, and p2 = 3.

In summary, we have three budget lines when we work with income and sub-
stitution effects: (1) the usual initial line, (2) the usual new line from the
change in price, and (3) the imaginary (dashed) line that has been adjusted
to pass through the initial optimal solution.
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We find the usual new optimal solution so we can compute the total effect
first, then we use the dashed line to find the income and substitution effects.

STEP With p1 = 1, run Solver.

Figure 4.19 shows that the consumer chooses the 50,162
3

combination. Thus,
we have two points to consider so far:

� Point A: Initial: At m = 100, p1 = 2, x1* = 25, x1* = 162
3
.

� Point C: New: At m = 100, p1 = 1, x1* = 50, x1* = 162
3
.

Figure 4.19: New optimal solution at p1 = 1.
Source: IncSubEffects.xls!OptimalChoice

Notice that Excel displays three difference curves around the current optimal
solution, but there are actually an infinite number of curves going through
every point in the quadrant. With c = d = 1 being held constant, the indif-
ference map is not changing in any way. We are simply displaying different
indifference curves whenever x1 and x2 in cells B12 and B13 change.

Points A and C are two points on the price consumption curve and two points
on the demand curve. The total effect of a $1/unit decrease in the price of
good 1 can be found by measuring the movement from A to C: for x1, the
total effect is +25 units and for x2, the total effect is zero (x2* = 162

3
before

and after the price shock).
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The total effect can be directly observed. With the initial price, we can see
the consumer purchase 25 units of good 1 and 162

3
of good 2. We see the

price of good 1 fall by $1/unit and watch the consumer respond by buying
25 units more of x1 and leaving the amount of x2 unchanged.

We are now ready for the key move. We will hypothetically take away ex-
actly $25 of income so we can find the optimal solution on the imaginary,
dashed line. The consumer does not actually have income taken away. It
is a thought experiment. Working out what the consumer would do in this
hypothetical situation allows us to split the total effect into its constituent
parts.

STEP Change income to $75 (notice that the budget line now lies on top
of the dashed budget line) and run Solver.

You can safely ignore the steeper line in the chart—all we want is point B,
the optimal solution with the dashed budget line. Solver tells us that point
B is 37.5,12.5. This gives us three points to consider:

� Point A: Initial: At m = 100, p1 = 2, x1* = 25, x2* = 162
3
.

� Point B: Unobserved: At m = 75, p1 = 1, x1* = 371
2
, x2* = 121

2
.

� Point C: New: At m = 100, p1 = 1, x1* = 50, x2* = 162
3
.

Look carefully at the three points and concentrate on how points B and C
differ: C uses new p1 with original m, while B is based on new p1 with ad-
justed m (adjusted in a special way so that the dashed line goes through
point A).

With these three points, we can compute total, income, and substitution
effects for x1 and x2. The three effects are shown by arrows on the axes of
Figure 4.20. This is a complicated graph. Take your time and read it with
care. Try to separate the different elements and lines to different parts of the
problem: initial (A), new (C), and intermediate positions (B).
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Figure 4.20: Total (TE), income (IE), and substitution (SE) effects.

There are effects measured from one point to another for both x1 and x2.
These ∆s are calculated the usual way as new − initial. For x1, we find:

� SE: A to B: 371
2
− 25 = 121

2

� IE: B to C: 50− 371
2

= 121
2

� TE: A to C: 50− 25 = 25

Notice that the total effect (TE) can be found by computing the difference
from A to C (50− 25 = 25) or taking advantage of the fact that SE + IE =
TE, so 12.5 + 12.5 = 25. The effects for x1 are all computed along the x axis
in terms of units of x1.

Analyzing the effect on x2 of a change in p1 gives us cross income and sub-
stitution effects for x2, which are shown by arrows on the y axis, in Figure
4.20.

� SE: A to B: 121
2
− 162

3
= −41

6

� IE: B to C: 162
3
− 121

2
= 41

6

� TE: A to C: 162
3
− 162

3
= 0
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On x2, the income and substitution effects work against each other. The sub-
stitution effect, from A to B, lowers the amount of x2 since p1 fell, making x2

more expensive relative to x1. But when we move from B to C, the income
effect exactly cancels out the SE. The fall in p1 has increased our purchasing
power and, since x2 is a normal good, we want to buy more of it.

It is a property of the Cobb-Douglas utility function that the cross IE and
SE effects cancel each other out, leaving a zero total effect. This is not a
usual or common result and it demonstrates how the functional form imposes
structure on the demand curve.

Let’s return now to x1 and focus on its substitution effect, which we know is
always negative. This leads immediately to a question: If the SE is always
negative, then why is it +12.5 in Figure 4.20?

The answer to this apparent contradiction is that the negative refers to the
relationship, not the actual value of the SE. Given that price fell, an in-
crease in quantity purchased is consistent with a negative effect because it is
the relationship between the two variables that is being described as negative.

Likewise, the sign of the income effect can be tricky. The key is to pay atten-
tion to which shock variable is being considered. The income effect measured
as the response to a change in income is positive, in this case, because as I
move from B to C, my income is increased and I respond by increasing my
optimal consumption of good 1.

Now you might ask, “If the two effects work together, then how is the sub-
stitution effect negative and the income effect positive?” This is because
we defined the income effect as the response to a change in income, like the
movement from point B to C in Figure 4.20. But, if you remember, this
example began with a decrease in the price of good 1. The decrease in the
price of good 1 can be interpreted as an increase in income, in the sense
of greater purchasing power. If we tie the 12.5 increase in good 1 from the
income effect to the decrease in price of good 1, we see that this negative
relationship reinforces the negative substitution effect and gives a negative
total effect.

Now that we know how the income and substitution effects combine to form
the total effect of a price change, we can show how easy it is to compute
them from a reduced form solution.
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We first have to solve the model analytically and get a reduced form expres-
sion as a function of m and p1. We have done this before for a Cobb-Douglas
utility function and found

x1* = (
c

c+ d
)
m

p1

If we substitute in c = d = 1, we have

x1* =
m

2p1

At m = 100 and p1 = 2, x1* = 25. This is the initial solution (point A).

If p1 falls to $1/unit, then we plug in m = 100 and p1 = 1, which gives the
new solution (point C), x1* = 50. The total effect is 50− 25 = 25.

To find the SE, we need point B. We use the reduced form expression to
compute quantity demanded with adjusted m ($75) and new p1 ($1/unit).

x1* =
m

2p1

=
[75]

2[1]
= 37.5

Once we have point B, we have split the total effect from A to C and we can
compute the SE and IE by going from A to B and B to C, respectively. The
SE is 37.5 − 25 = 12.5 and the IE is 50 − 37.5 = 12.5. These results agree
with our earlier work.

Income and Substitution Effects via Graphs

Income and substitution effects are complicated. Figure 4.20 is not easy to
understand. There are three budget lines and a lot going on. So what is so
important about income and substitution effects that makes it worthwhile to
master them?

Income and substitution effects hold the key to explaining how we can get a
Giffen good. They mark real progress in economics, settling a long debate
about whether or not upward sloping demand curves are possible. We will
deconstruct the income and substitution effect graph (Figure 4.20), examin-
ing each layer one at a time, to show the source of Giffen behavior.

We begin with Figure 4.21. On the left we have the initial optimal solution
and the right displays a single point on the demand curve (not shown).
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Figure 4.21: The initial solution.

Next, we decrease the price of good 1, as shown in Figure 4.22, which creates
a new budget line. We know the consumer will re-optimize and choose a
new optimal solution along the new, flatter line, but Figure 4.22 does not
show this new solution quite yet. Instead, it shows the point B solution on a
dashed line with the income that would have to be taken away to cancel out
the increased purchasing power from the price decrease.

Figure 4.22: A p1 decrease and imaginary budget constraint.

Figure 4.22 shows the optimal solution, point B, for the hypothetical situa-
tion with lower p1 and adjusted m. The rightward pointing arrow is the SE
for x1 is the substitution effect, from point A to B on the x axis. The dashed
line has a flatter slope (new p1 is less than initial p1) through point A. This
guarantees that B is to the right of A. This is why the SE is always negative.

It is impossible to draw a point B to the left of A without making the in-
difference curves cross. With MRS = p1

p2
at A, lowering p1 and adjusting m

so dashed line goes through A, means the consumer must move southeast to
find the highest indifference curve tangent to the dashed line.



4.6. INCOME AND SUBSTITUTION EFFECTS 169

Now, we are ready to show point C. We have a known negative substitution
effect and all that remains to be done is to find the indifference curve tangent
to the new budget line (with lower p1). The key insight is that there are
several possible positions for point C. Figure 4.23 shows three possibilities.

Figure 4.23: Understanding Giffen behavior.

Figure 4.23 shows that the final position of point C depends on whether
the good is normal or inferior, with a subcategory of inferior goods that are
Giffen.

� C1: Good 1 is a normal good so the income effect from B to C works
together with the movement from A to B and we end up at point C1.
In this case, and for any point C to the right of B, we get a downward
sloping demand curve.

� Good 1 is an inferior good so the income and substitution effects work
against each other. The movement from B to C will be to the left and
leave us with a point C to the left of B. There are two possibilities:

1. C2: The income effect pushes the consumer to buy less x1, but
it is less than the substitution effect (which leads to buying more
x1 as p1 falls). We end up at point C2 between A and B and the
demand curve is still downward sloping.

2. C3: The income effect not only works against the substitution
effect, it is stronger, swamping it. Point B to C moves in the
opposite direction than A to B and and is bigger than A to B.
This leaves the consumer to the left of B at point C3. The demand
curve is upward sloping. This is a Giffen good.
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It can be difficult to draw a Giffen good correctly because the indifference
curves cannot cross. So, in Figure 4.23, the space available for point C3 is
tight—C3 can only fit to the left of A and to the right of the indifference
curve that is shown tangent to B.

Figure 4.23 also makes clear that it is the indifference curves, which come
from the utility function, that determine how quantity demanded responds
to a change in price. How a good generates utility (i.e., whether utility is
Cobb-Douglas, quasilinear, perfect complements, or another functional form)
determines whether it is normal, inferior, or Giffen.

The decomposition of the total effect into income and substitution effects
provides the condition which must hold for Giffen behavior: the income effect
must work against the substitution effect and be bigger. We can reinforce
this key insight with a mathematical expression that gives more detail on
exactly how we get Giffenness.

The Slutsky Equation

In 1915, decades after the supposed spotting of a Giffen good during the Irish
potato famine, Eugen Slutsky published a paper in an Italian journal that
showed how to decompose the total effect of a price change into income and
substitution effects. He had a mathematical expression that showed how it
was possible to get an upward sloping demand curve!

Unfortunately, his work went unnoticed. Twenty years later, John R. Hicks
(a Nobel laureate in 1972) and R. G. D. Allen rediscovered the ideas in
Slutsky’s paper. Sometimes, the idea of income and substitution effects are
referred to as Slutsky-Hicks or Slutsky-Hicks-Allen. We will keep it simple
and call it the Slutsky Equation.

The Slutsky Equation, which we will not derive, says in mathematical terms
something that we already know: The total effect of a price change can be
expressed as the sum of a substitution and an income effect. It turns out that
there are several ways to express the decomposition with a Slutsky Equation.
Here are two versions:

∆x1

∆p1

=
∆xSE1

∆p1

+
∆xIE1
∆p1

∆x1

∆p1

=
∆xSE1

∆p1

− x1*
∆x1

∆m
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Both equations say the same thing: the total effect, ∆x1
∆p1

, is equal to the sub-

stitution effect,
∆xSE1
∆p1

, plus the income effect. Where they differ is how they
express the income effect.

Look carefully at the denominators. The income effect in the first equation
has a ∆p1 denominator, like the other two terms. What Slutsky figured

out was that the income effect of price change,
∆xIE1
∆p1

, could be written as

−x1*∆x1
∆m

. In other words, the income effect channel of the price change can
be expressed as the amount of good 1 initially purchased times the change in
x1 as income changes (the slope of the Engel curve). Notice the minus sign,
which picks up the fact that when price falls, that is like an increase in income.

Now we can really see how to get a Giffen good, which has an upward slop-
ing demand curve so ∆x1

∆p1
> 0. Since the first term, the substitution effect is

always negative, we definitely need an inferior good so that ∆x1
∆m

< 0 so that
the second term is positive. Obviously, if the good is extremely inferior, so
that ∆x1

∆m
is much less than zero, we might get a Giffen good.

But the Slutsky Equation reveals another way to get Giffen behavior. A
large opposing income effect can be obtained by the good being inferior and
the consumer buying a lot of it so that −x1*∆x1

∆m
is a big positive number to

outweigh the negative substitution effect. If the good is merely inferior, but
the consumer buys little of it, then it less likely to be Giffen.

This is why we look for Giffen behavior in staples, basic commodities that
comprise a large share of the budget. Potatoes for the Irish, rice for Asians,
and tortillas for Mexicans are three examples that economists have examined
for Giffen behavior. For a poor person, these items could be consumed in
large quantities, yet, as income rises, quantity demanded falls so they are
inferior goods. The combination of a large x1* and ∆x1

∆m
< 0 could produce

a large, positive −x1*∆x1
∆m

term that is bigger than the negative substitution
effect.

Remember how we generated Giffen behavior with GiffenGoods.xls in the
previous section? We increased the price from $1/unit to $1.1/unit and op-
timal x1 rose from 44 to 48.6, while optimal x2 fell dramatically from 11 to
around 1.5. Notice how x1 is a staple, dominating the amounts purchased of
the two goods.

We know its Giffen, but is x1 also inferior? Let’s find out.
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STEP Open GiffenGoods.xls and proceed to the Optimal1 sheet. Click

the Reset button and run Solver to make sure you are at the optimal initial
solution of 44,11. Increase m to 60 and run Solver. What happens?

Yes, as we know must be true (since we know x1 is a Giffen good), x1 is an
inferior good: optimal x1 fell (to 39) as income increased to $60. Giffenness
requires that x1 be inferior and this example also reflects the fact that con-
centration of the consumer’s budget on an inferior good contributes to the
production of a Giffen response.

The Biblio sheet in GiffenGoods.xls, from the previous section, had several
references to papers trying to find Giffen goods, yet the jury is still out.
What is unquestioned, however, is the theoretical requirement: it must be
an inferior good so that the IE is in the opposite direction and larger than
the SE.

The Slutsky Equation also enables us to fine tune a statement that is, strictly
speaking, false. Introductory economics students around the world learn the
Law of Demand : when price increases, ceteris paribus, quantity demanded
must fall. In other words, holding everything else constant, quantity de-
manded and price are inversely related and demand is always downward
sloping.

This is fine, at the introductory level, where we do not want to confuse
beginning students, but we know that an upward sloping demand curve is
possible—it is called a Giffen good. They are a violation of the “Law” of De-
mand and we know they could exist. When their price rises, so does quantity
demanded.

Can we rehabilitate the Law of Demand so there is no exception? Yes, we
can. Our knowledge of income and substitution effects points the way. We
can more precisely define the Law of Demand. By inserting a qualifying
clause, we can get the Law of Demand to be exactly right: If the good is
normal, then quantity demanded falls as price rises, ceteris paribus. That is
guaranteed to be true because a normal good has an income effect that works
together with the substitution effect. Thus, there is no way to get Giffenness.

The Cobb-Douglas utility function cannot give Giffen behavior. The reduced

form solution, x1* = ( c
c+d

)m
p1

, means that dx1*
dm

= ( c
c+d

) 1
p1
> 0 so the income
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effect, −x1*dx1*
dm

, is negative. This means the IE and SE are both negative
and work together so there is no way the Cobb-Douglas utility function can
generate Giffenness.

TE = SE + IE

Income and substitution effects are used by economists to better understand
the demand curve and to explain Giffen behavior. By disassembling the to-
tal effect of a price change, the Slutsky Equation shows how a Giffen good
can arise if the income effect opposes and swamps the substitution effect
(which generates an upward sloping relationship between price and quantity
demanded).

Given a utility function and budget constraint, we find the initial optimal
solution (point A). A price change will lead to a new optimal solution (point
C) which we can use to compute the total effect. We can then use the Income
Adjuster Equation to find a hypothetical point B that splits the total effect
into substitution and income effects.

Given a reduced form expression of x* = f(p,m), we can find points A, B,
and C by evaluating the expression at the appropriate p and m values to
compute points A, B, and C.

The Slutsky Equation is a mathematical presentation of income and substitu-
tion effects. The math gives us the insight that the income effect, −x1*∆x1

∆m
, is

composed of initial optimal x1 times the response of x1 to an income change.
This reveals that Giffenness is more likely to be found in inferior goods that
also attract a high concentration of the consumer’s budget.

There are even more ways to express the Slutsky Equation than the two used
in this section. Instead of altering income to allow the consumer to buy the
initial bundle of goods, you can change income to allow the consumer to be
on the initial indifference curve. This is sometimes referred to as the Hicks
substitution effect.

Exercises

1. Reproduce, using Word’s Drawing Tools, Figures 4.21, 4.22, and 4.23,
explaining each graph in your own words.
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2. Repeat question 1, with one key change: apply a price increase in good
1 (instead of a price decrease).

3. In stating the Law of Demand, some economists choose to include a
condition that the good is normal, like this: If the good is a normal
good, then price and quantity demanded are inversely related, ceteris
paribus. Why is the normal good clause needed?

4. Given the demand function, x1* = 20+ m
20p1

, compute the total, income,

and substitution effects when price falls from $5 to $4/unit, with income
of $1000. Show your work.

5. Use the Optimal1 sheet in GiffenGoods.xls to find points A, B, and C
for a shock in p1 from $1 to $1.1/unit. Compute the TE, SE, and IE
for x1. Show your work and explain what you did.

References

The epigraph is from the biography of Slutsky available at the New School’s
History of Economic Thought website, www.hetwebsite.net/het/. The site
was created and is maintained by Gonçalo L. Fonseca. There are sketches of
hundreds of economists, links to other resources, and descriptions of various
schools of thought in economics. The intellectual history of economics is
fascinating and this website is a wonderful place to browse.

http://www.hetwebsite.net/het/


I never saw Slutsky’s work until my own was very far
advanced . . . Slutsky’s work is highly mathematical,
and he does not give much discussion about the
significance of his theory.

J. R. Hicks

4.7 More Practice with IE and SE

This chapter uses a quasilinear utility function to provide practice working
with income and substitution effects. There is a surprising twist when using
the quasilinear functional form. See how fast you can figure it out.

STEP Open the Excel workbook IncSubEffectsPractice.xls, read the In-
tro sheet, then go to the OptimalChoice sheet.

Notice that the absolute value of the MRS is less than the price ratio. Be-
cause the slope of indifference curve at 16.25,10.75 is less than the slope of
the budget constraint, we know the consumer should travel northwest along
the budget constraint, buying more x2 and less x1, until the MRS = p1

p2
.

STEP Run Solver to find the initial optimal solution. Figure 4.24 shows
this result.

Figure 4.24: Initial optimal solution.
Source: IncSubEffectsPractice.xls!OptimalChoice

175
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STEP Proceed to the CS1 sheet. It shows a comparative statics analysis
of an increase in the price of good 1 from $2/unit to $7/unit in $1 increments.
It also charts the results as an inverse demand curve for x1.

The demand curve tracks the total effect of a price change. When the price
of good 1 rises from $2 to $3, the quantity demanded falls from 61

4
to 27

9
. By

subtracting the new from the initial value, we see that the total effect is a
decrease of 317

36
units of x1, displayed in cell F13 as −3.47222.

Income and substitution effects explain how this total effect came to be by
dismantling the total effect into two parts that add up to the total.

The substitution effect tells us how much less the consumer would have pur-
chased when price rises strictly from the fact that the relative prices of the
two goods have changed. We compute how much income we have to give the
consumer to cancel out the reduced purchasing power caused by the price
increase to focus exclusively on the relative price change. The substitution
effect is always negative.

Figure 4.25 shows a typical decomposition of the total effect (TE) into the
substitution effect (SE) and income effect (IE) with indifference curves sup-
pressed to highlight the budget lines under consideration.

Figure 4.25: Typical TE, SE, and IE with p1 increase.

From point A, price rose and the consumer will now be at point C on the new
budget line (labeled p1 ↑). The dashed line is the result of a hypothetical
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scenario in which the consumer has been given enough income to purchase
the initial bundle A. Notice how the original budget line and the dashed line
go through point A. The dashed line has a higher price, but also a higher
income. Thus, the movement from point A to point B reflects solely the dif-
ferent relative prices in the goods, without any change in purchasing power.
This is the substitution effect.

While the substitution effect is focused on relative prices, the income effect
is that part of the response in quantity demanded when price changes that
is due to changed purchasing power. From point B, a decrease in income
from the dashed to the new budget line leads to a decrease in x1 (at point
C). Thus, x1 is a normal good from point B to C in Figure 4.25 and the
two effects are working in tandem. The demand curve is guaranteed to be
downward sloping for this price change.

In the CS1 sheet, we have seen that the demand curve is downward sloping
because quantity demanded falls when price rises. But an open question still
remains: Do the income and substitution effects work as in Figure 4.25?

We know point A, the initial optimal solution, is x1* = 6.25 when p1 =
$2/unit and point C is about 2.78 units of x1 when price rises to $3/unit.
We need point B to do the income and substitution effects analysis.

The first step in finding point B is to use the Income Adjuster Equation to
compute how much income to give the consumer in order to cancel out the
effect of the reduced purchasing power.

∆m = x1*∆p1

∆m = [6.25][+1]

STEP On the OptimalChoice sheet, set cell B16 to 3.

The chart updates, showing the new budget constraint in red (swinging in
since price rose) and the dashed line. To find point B, we need the optimal
solution for the dashed line constraint so we need to change in income on the
sheet.

STEP Set cell B18 to 146.25. This applies the dashed line budget con-
straint to this problem. Run Solver to find point B.
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Your result might surprise you. Solver says the optimal solution is about 2.78
for x1, but that is the same answer we had for point C. What is going on here?

We turn to analytical work to shed light on this mysterious result. Following
the procedure in section 3.2, we found this reduced form solution for the
quasilinear utility function, U = xc1 + x2:

x1* = (
p1

cp2

)
1
c−1

We use the initial values of c and p2 in the OptimalChoice sheet to simplify
things a bit:

x1* = (
p1

[0.5][10]
)

1
[0.5]−1 = (

p1

5
)

1
−0.5 = (

p1

5
)−2 = (

5

p1

)2 =
25

p2
1

This is the same kind of expression, x1* = f(p1,m), that we used in the pre-
vious section for a Cobb-Douglas utility function, x1* = m

2p1
, to find points

A, B, and C.

You might be puzzled. Exactly where is m for the quasilinear reduced form
expression for x1? It is not there, although a mathematician might say that
we could easily include it by writing the reduced form expression like this:

x1* =
25

p2
1

+ 0m

The fact that m does not affect optimal x1 for a quasilinear utility function
is the source of the surprising result for point B. We can apply the usual
procedure for finding points A, B, and C with a reduced form expression to
show this.

Point A is the initial optimal x1 solution so we plug in p1 = 2 and find
x1* = 25

22
= 6.25.

Point C is the new optimal x1 solution so we plug in p1 = 3 and find
x1* = 25

32
= 25

9
= 27

9
.

Point B is found using new p1 and adjusted m, $146.25. But notice that
adjusted m is irrelevant because it does not affect x1. Point B is x1* = 27

9
,

the same as point C.

Figure 4.26 shows what is going on here. Unlike the typical case, there is
no income effect at all with quasilinear utility, so TE = SE. As usual, the
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substitution effect is the move from point A to B and the income effect is the
movement from B to C. The IE is zero because C is directly below B. The
total effect is A to C.

Figure 4.26: TE, SE, and IE with quasilinear utility.

It is the utility function that is driving this result. A utility function with
the functional form U = f(x1)+x2 has no income effect because the indiffer-
ence curves are vertically parallel. If you shift the budget line via an income
shock, the new tangency point will be directly above or below the initial
point. In other words, the income consumption curve is vertical. Thus, the
total effect is composed entirely of the substitution effect. This is the curious
twist produced by the quasilinear functional form.

We saw that the income consumption curve is vertical and Engel curve is
horizontal in section 4.2 (see Figure 4.7). Economics is certainly cumulative
and ideas learned are often worth remembering because they tend to show
up again.

Finally, notice that we now know that quasilinear preferences cannot yield
Giffen behavior. After all, if the substitution effect is always negative and
the income effect is zero, there is no way for the total effect to ever be positive.
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Quasilinear Preferences Yield Zero Income Effects

Splitting a total effect into income and substitution effects works for any
utility function. After finding the total effect, the Income Adjuster Equation
can be used to determine the income needed to cancel out the change in
purchasing power from the price change (i.e., setting the imaginary, dashed
budget line). Finding the optimal solution with the new price and adjusted
income budget constraint determines point B and allows us to split the total
effect in two parts.

Of course, the component parts, SE and IE, need not be equal nor share the
same sign. We know that Giffen goods arise when the income effect opposes
and swamps the always negative substitution effect.

In the case of quasilinear preferences, we have a situation where there is no
income effect. The Slutsky decomposition still applies, however, with the
total effect being entirely composed of the substitution effect.

Exercises

1. Click the Reset button on the OptimalChoice sheet and apply a price
decrease for good 1 from $2/unit to $1.90/unit. Compute the total,
substitution, and income effects. Show your work.

2. Use Word’s Drawing Tools to draw a graph similar to Figure 4.26 that
shows the total, substitution, and income effects from the 10 cent de-
crease in price from question 1.

Questions 3 and 4 are difficult. Revisit questions 2 and 3 in EngelCurvesPrac-
ticeA.doc (in the Answers folder in the MicroExcel archive) for more detail
on the corner solution for this utility function at low levels of income.

3. With quasilinear utility, the income consumption curve is vertical and
the Engel curve horizontal only above a threshold income level. At very

low levels of income, we get a corner solution. Click the Reset button
on the OptimalChoice sheet and set income to 10. This will generate
a corner solution. Compute the total, substitution and income effects
from a 10 cent price increase in good 1 (from 2 to 2.1). Show your
work.

4. Use Word’s Drawing Tools to draw a graph depicting your results for
question 3.
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Usually the first question
anyone asks about a proposed
new tax is “Who pays?” and
about a tax cut is “Who
benefits?”

Joel Slemrod and Jon Bakija

4.8 A Tax-Rebate Proposal

This section examines a tax-rebate plan that provides further practice with
the logic of income and substitution effects. This application shows that they
are more than an intellectual curiosity.

The heart of the idea is for the government to reduce consumption of a par-
ticular good, for example, gasoline, without hurting the consumer.

The idea is to tax a good and then turn around and rebate (give back) all of
the tax revenue to the consumer. Can we alter the consumer’s choices with-
out lowering satisfaction? We keep things simple by ignoring administrative
costs of collecting the tax and rebating it so the tax and rebate leaves the
consumer’s income unchanged. Proponents point out that the government
is not making any money (all of the tax revenue raised is refunded back) so
the consumer is not going to be hurt.

Opponents contend that this scheme will have no effect because the rebated
tax will immediately be spent on the taxed good and we will end up right
where we started.

Who is right? We use the Theory of Consumer Behavior to find out. Along
the way, income and substitution effects will come into play.

A Concrete Example

STEP Open the Excel workbook TaxRebate.xls and read the Intro sheet,
then go to the QuantityTax sheet.

We have a Cobb-Douglas utility function with an option to apply a per unit
(quantity) tax on good 1. The workbook opens with no tax and the consumer
maximizing satisfaction by buying the bundle 25,50, yielding U∗ = 1250.

183
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We begin by applying a quantity tax.

STEP Change cell B21 to 1. Notice that a new budget line appears.
The consumer cannot afford the original bundle and must re-optimize. Run
Solver to find the new optimal solution.

You should find that the consumer will now buy the bundle 162
3
,50 and max-

imum utility falls to 833.33. Cell B22 shows that the government collects
$16.67 ($1/unit tax on the 16.67 units purchased).

The idea behind the tax-rebate proposal called for rebating the tax revenue
so that the consumer would not be hurt by the tax. We need to implement
the rebate part of the proposal.

STEP Change cell B18 to 116.67. This shifts the budget constraint out.
Run Solver to find the optimal solution.

You should find that the consumer optimizes by purchasing 19.445 units of
x1 and 58.335 units of x2.

This result presents us with a problem. This is not the tax-rebate scheme
the government envisioned. After all, the government is collecting more tax
revenue ($19.445) than the consumer is getting as a rebate ($16.67).

Instead of giving the consumer $16.67, let’s give her $19.445. What does the
consumer do in this case?

STEP Change cell B18 to 119.445. This shifts the budget constraint out
a little bit more. Run Solver to find the optimal solution.

Now the consumer buys a little more x1, just over 19.9 units. But we still
do not have a revenue neutral policy. We need to increase m again. This
process of repeatedly doing the same thing is called iteration.

STEP Set the cell B18 value to $100 (initial m) plus the amount of tax
revenue in cell B22. Run Solver.

You can see that we are converging because the increases to income keep
getting smaller and smaller. There is a tax rebate that yields an optimal x1

that generates a tax revenue that exactly equals the tax rebate. The value
of this tax rebate is $20.
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STEP Set cell B18 to $120. Run Solver.

You should see that the optimal solution is 20,60 and maximum utility is
1200. If Solver is off by a little bit (this is false precision), you can enter 20
and 60 in cells B11 and B12. Since they buy 20 units of x1, the consumer
is paying $20 in tax. Since they are getting a tax rebate of $20 (m is set is
120), the tax they pay is exactly canceled out. We are ready to evaluate this
program.

Who’s Right?

Proponents argued that by taxing the good and then turning around and
rebating (giving back) the tax revenues to the consumer, we can alter the
consumer’s choices without lowering satisfaction. Since the government is
not making any money (all of the tax revenue raised is refunded back), the
consumer is not going to be hurt.

Clearly the supporters of the tax-rebate proposal are wrong. The consumer
had an initial U∗ = 1250 and now has a new U∗ = 1200. While we cannot
meaningfully say that utility has fallen by 50 (because utility is measured on
an ordinal, not cardinal scale), we can say that utility has fallen. Thus, in
fact, the consumer is hurt by the tax-rebate proposal.

Critics, on the other hand, believed that this scheme will have no effect since
the rebated tax will immediately be spent on the taxed good and we will end
up right where we started.

Because the consumer went from an initial bundle of 25,50 to 20,60 after the
$20 tax-rebate, it is obvious that the critics are wrong also. This consumer
has altered purchasing plans and is, in fact, buying less x1.

So, wait, who’s right—the critics or the supporters of the scheme? Neither.
They are both wrong. Income and substitution effects will help us explain
why.

We return to the original problem without a tax or rebate and the initial
solution of 25,50. The $1/unit tax is just like a price increase. We can find
point B and compute the substitution and income effects from such a price
change.
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We first use the Income Adjuster Equation.

∆m = x1*∆p1

∆m = [25][+1]

This result says that a $25 increase in income to $125 will allow us to buy
the initial bundle.

STEP Set income in cell B18 to 125 (and confirm that there is a $1/unit
tax in cell B21) and run Solver.

The optimal solution is 205
6
, 621

2
. We have points A, B, and C so we can

compute total, substitution, and income effects of the $1/unit price increase
due to the tax without any rebate.

� SE (A to B): 205
6
− 25 = −41

6

� IE (B to C): 162
3
− 205

6
= −41

6

� TE (A to C): 162
3
− 25 = −81

3

Figure 4.27 displays these results with each point signifying a tangency be-
tween the budget line and an indifference curve (not drawn in to make it
easier to read the graph).

Figure 4.27: TE, SE, and IE for tax without rebate.
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The tax-rebate proposal is closely related to Figure 4.27. The tax is like a
price increase that moves the consumer from A to C and the rebate is like
an income effect that moves the consumer from C to B.

However, if you look carefully, the changes in income are not the same. In
the tax-rebate proposal, the revenue-neutral rebate is $20, whereas in our
income and substitution effect work we gave the consumer $25 to be able to
purchase the original bundle. A $25 rebate is not revenue neutral because
the consumer buys only 205

6
units of x1 so the government ends up losing

revenue. The rebate has to be $20 to be consistent with the break-even logic
of the proposal.

In addition to the income and substitution effects, Figure 4.28 adds point D,
which shows the optimal solution given the tax-rebate proposal. Point D (at
coordinate 20,60) has utility of 1200, which is, of course, lower than point
B (the combination 205

6
, 621

2
yields just over 1300 units of utility). More

importantly for the purposes of evaluating the proposal, utility at point D is
less than utility at point A (where 25,50 generates U∗ = 1250).

Figure 4.28: Understanding the tax-rebate proposal.

The key to the analysis lies with point D in Figure 4.28. It has to be on
the initial budget line to fulfill the revenue-neutral condition of the proposal.
But we know point A was the initial optimal solution on that budget line, so
we can deduce that the consumer prefers point A to point D (and any other
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point on the initial budget line) and will suffer a decrease in satisfaction if
the tax-rebate proposal is implemented.

Tax-rebate Schemes

Taxes are often used to pay for government services and fund programs
deemed worthy by society, but they can also be corrective. Taxes on specific
products can discourage particular activities (think cigarettes and smoking).

Simultaneously taxing a good and rebating the tax revenue periodically ap-
pears as a policy proposal (often with regard to gasoline). Proponents claim
the rebate cancels out the price increase from the tax. The scheme is related
to income and substitution effects. The tax is like a price increase and the
rebate is like an income effect.

Although similar to income and substitution effects, there is one important
difference in tax-rebate proposals: a revenue-neutral rebate does not return
enough income to allow the consumer to buy the pre-tax bundle or to reach
the pre-tax level of satisfaction. Thus, the consumer cannot reach the initial
level of satisfaction.

It is true, however, that a tax-rebate policy will alter consumption patterns.
Whether the loss in utility is compensated by the changed consumption pat-
tern is a different question.

Exercises

1. Analytically, we can show that the demand curves for goods 1 and
2 with a Cobb-Douglas utility function (where c = d) are x1* =

m
2(p1+QT ax)

and x2* = m
2p2

. Use these demand functions to compute

the income, substitution, and total effects for x1 for a $1/unit tax.
Show your work.

2. We know that the tax-rebate scheme gives back too little income to
return the consumer to the initial level of utility (1250 units). With a
$1/unit tax, find that level of rebate where the consumer is made whole
in the sense that U∗ = 1250. Describe your procedure in answering this
question.

3. At point D in Figure 4.28, is the MRS greater or smaller in absolute
value than the price ratio before the tax-rebate scheme is implemented?
How do you know this?
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Our consumers could simply sit down and
consume their endowments. But one
consumer might, for example, be endowed
with a lot of some good that she is not
particularly fond of. She may wish to
exchange some of that good for something
she likes more.

David M. Kreps

5.1 Introduction to the Endowment Model

This chapter introduces a wrinkle to the standard consumer theory model
that greatly enhances its applicability. Instead of treating income as a given
cash amount, we model the consumer as having a given initial endowment
of goods that can be traded for other goods. This transforms the consumer
into a combined consumer and seller.

Although the power of this approach may not be immediately obvious, we
will see that a wide variety of examples such as saving/borrowing, charitable
giving, and much more can be handled with this modification.

The Budget Constraint in an Endowment Model

Instead of the usual income (m) variable, an Endowment Model is charac-
terized by a budget constraint that equates expenditures and revenues from
sales out of the initial endowment.

p1x1 + p2x2 = p1ω1 + p2ω2

The term on the right-hand side says that the consumer has a given amount
of each good, ω1 and ω2 (this is Greek letter omega so we have omega-one
and omega-two). Because the initial amounts of each good are given, ω1 and
ω2 are exogenous variables.

The starting amount of each good, the coordinate pair ω1, ω2, is called the
initial endowment. If we multiply the initial amount of each good by the
price of that good, as done in the right-hand side of the budget constraint
equation, we get a dollar-valued amount that represents the total income
that can be raised by selling the entire endowment.

Thus, the budget constraint says that spending (on the left-hand side) must
equal the value of the consumer’s assets (on the right-hand side).

193
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The classic example to illustrate someone operating with an endowment
model constraint is a farmer who goes to market with his crop. He sells
his produce and, with the revenue obtained by selling, buys other goods.
The core idea is that the farmer is a buyer and a seller.

Perhaps a more modern example is eBay. People sell all kinds of products
and turn around and buy different products. It is a massive online garage-
sale community. Once again, the core idea is that eBayers sell and buy.

In an Endowment Model, what the agent can buy depends on how much
revenue is generated by sales. High prices for goods to be sold are a good
thing from the agent’s point of view because they generate a lot of revenue
with which to buy other goods.

Because Endowment Models transform the consumer into a combined buying-
selling agent, we can get different results than we saw in the Standard Model.
One critical difference is that price increases lead to decreases in quantity de-
manded (assuming the good is normal), as usual, but as price keeps rising,
we can cross the zero barrier and get negative quantity demanded! We will
see that the agent switches from being a buyer to being a seller. This is a
key idea.

Let’s put these abstract ideas into concrete examples so we can understand
what is going on with the Endowment Model.

STEP Open the Excel workbook EndowmentIntro.xls, read the Intro
sheet, then go to the MovingAround sheet. Follow the instructions on the
sheet to learn how we can create a budget line from a single point.

Just like the Standard Model, the agent faces a consumption possibilities
frontier, also known as the budget line, that shows the feasible combina-
tions. Bundles beyond the line are unattainable.

STEP Proceed to the Properties sheet.

Notice how we can use the value of the endowment to measure the agent’s
“income.” Starting with 35,10 and p1 = 2, p2 = 3, the value of the endow-
ment is $100 ($70 from x1 and $30 from x2). The most x2 the agent can have
is 331

3
, the y intercept and the maximum x1, the x intercept, is 50.

https://www.ebay.com/


5.1. INTRODUCTION TO THE ENDOWMENT MODEL 195

The highlighted circle in the graph (reproduced as Figure 5.1) represents the
initial endowment. From the initial allocation of 35,10, the agent can move
northwest, selling x1 and buying x2. Or, the agent can decide to acquire even
more x1 by selling x2 and buying x1, which means traveling in a southeasterly
direction. The slope of the constraint is the usual price ratio.

Figure 5.1: Endowment Model budget constraint.
Source: EndowmentIntro.xls!Properties

What will the consumer do in terms of buying and selling? In other words,
where will the agent end up on the budget line? We do not know because
we do not have any information on this agent’s preferences. Before we tackle
that problem, however, we need to see how the budget constraint changes
when an exogenous variable is shocked.

STEP Proceed to the Changes sheet. Change p1 (in K9) from 2 to 5.

This is different than before. Instead of the budget constraint pivoting about
the y intercept (as in the standard, cash-income model), your screen should
look like Figure 5.2. The budget constraint has pivoted or rotated as it did
before, but the rotation is around the initial endowment. This is a critical
difference.
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Figure 5.2: Endowment Model p1 increase.
Source: EndowmentIntro.xls!Changes

The way the budget constraint has changed reveals important information.
The price increase has improved the agent’s consumption possibilities if she
is planning on traveling northwest on the constraint. This makes sense be-
cause she would be a seller of good 1 and, with the higher price, she would
have more money with which to buy good 2.

On the other hand, if she is a buyer, then we get the usual result that the
budget line has rotated in and reduced the consumption possibilities.

STEP Click the Reset button and change p1 (in K9) from 2 to 1.

Notice how the budget line has swiveled around the endowment again, but
this time the agent is worse off if she is a seller and better off if she is a buyer.

STEP Click the Reset button and change p2 (in K10) from 3 to 6. The
result is exactly the same as when you changed p1 (in K9) from 2 to 1.

This reveals a lesson: All that matters in the Endowment Model are relative
prices, p1

p2
. So p1 = 1, p2 = 3 is the same as p1 = 2, p2 = 6 and p1 = 10, p2 = 30

and any p1 and p2 whose p1/p2 ratio is 1
3
.

Finally, we consider shifts in the budget constraint. We cannot shift m (cash
income) like we did in the Standard Model, but we can shock the initial en-
dowment quantities of goods and this acts like a shift in income.

STEP Click the Reset button and change ω1 (in K13) from 35 to 50.
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The chart now looks like the usual increase in income in the Standard Model.

STEP Click the Reset button and change ω2 (in K14) from 10 to 2.

This generates a downward shift in the budget constraint. So price changes
cause rotations (or pivots or swivels) and endowment shocks produce shifts.

The budget constraint in an Endowment Model plays the same role as the
budget constraint in the Standard Model. It describes the agent’s consump-
tion possibilities. Unlike the Standard Model, however, where price changes
caused rotation around the x or y intercept, price shocks in the Endowment
Model lead to swiveling around the initial endowment. It makes sense that
the initial endowment is going to remain the same as prices change because
the agent is neither buying nor selling at the initial endowment so the price
does not matter at that point.

To get shifts in the budget constraint, we will have to change either ω1 or
ω2. This changes the initial endowment point and allows the agent to buy
and sell from the new endowment point, creating a new budget line.

Now that you understand the budget constraint, we are ready to solve the
agent’s constrained utility maximization problem with the Endowment Model.

The Initial Solution

The utility side of the Endowment Model is the same as the Standard Model.
The agent’s preferences are shown by indifference curves that are represented
mathematically by a utility function.

The agent seeks to maximize utility given the budget constraint. As usual,
we can solve this problem numerically and analytically.

STEP Proceed to the OptimalChoice sheet. Figure 5.3 shows what this
sheet looks like when you first open it.
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Figure 5.3: The initial view of the optimization problem.
Source: EndowmentIntro.xls!OptimalChoice

Notice how the organization is the same as the Standard Model. There is a
goal, endogenous variables (in blue) and exogenous variables (in green). The
agent seeks to maximize utility, represented by a Cobb-Douglas functional
form, by choosing the amounts of x1 and x2 to consume, subject to the bud-
get constraint.

The graph is also similar, with the addition of point E, representing the ini-
tial endowment. There are three representative indifference curves (there are
an infinity of such curves, one through every point in the quadrant).

Although much is familiar, Figure 5.3 and your computer screen do have
some notable innovations. Cells B18 and B19 have been added to the list of
exogenous variables. They represent the given initial endowment. Cell B20
has a formula that computes m, which is not bolded to indicate that it is
derived from other exogenous variables.

In addition, cells C11:E12 are new. Let’s find out what they tell us.

STEP Click on D11 to see its formula, = x1 - w1 .

The underscore ( ) is used to distinguish the names, x1 and w1, from the cell
addresses, X1 and W1. Lowercase w is the closest English character to ω.

More substantively, the formula computes net demand, how much the con-
sumer wants to buy or sell. It takes gross demand, the optimal amount of the
good the agent wishes to end up with, that is, the values of x1 and x2 and
subtracts the initial endowment amounts. There is a gross and net demand
for each good.
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On opening, the net demand for x1 is zero because B11 is set at 35, which is
equal to the agent’s initial endowment of good 1. Suppose the agent decided
to buy three units of good 1.

STEP Change B11 to 38.

Net demand for good 1 is now plus three. That makes sense because the
consumer started with 35 units of good 1, but wants to have 38, so three
more must be purchased.

Of course, the combination 38,10 is unattainable. The consumer must sell
some x2 in order to be able to buy three units of x1. How much needs to be
sold? Two units.

STEP Change B12 to 8.

The agent is back on the budget line and net demand for good 2 is negative.
Cell E12 reports that the agent is a seller of good 2. Clicking on cell E12
reveals an IF formula that displays Buyer or Seller depending on whether
net demand is positive or negative.

Compare the MRS on your screen to the MRS at the initial position from
Figure 5.3. Was buying three units of good 1 with the proceeds from the sale
of two units of good 2 a smart move?

No. The MRS at 38,8 is farther away from the price ratio than the MRS at
35,10. The graph reveals that we moved to a lower indifference curve when
we moved to 38,8.

We need to head the other way. The agent needs to travel up the budget
line, to the northwest, selling good 1 and buying good 2. How much should
be sold and bought?

STEP Run Solver to find the initial solution.

Utility is maximized when gross demands are 25 and 162
3

of goods 1 and 2,
respectively. Net demands are −10 and 62

3
. This means the agent sells 10

units of good 1 and uses the $20 in revenue to buy 62
3

units of good 2.

This is the same solution as in the Standard Model with m = $100. That
makes sense, since the value of the initial endowment is $100.
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We can confirm this result with analytical methods. We follow the recipe for
the Lagrangean method of solving constrained optimization problems.

We will work on a general form of this problem, leaving all exogenous vari-
ables as letters to get a reduced form expression that we can evaluate for
any combination of exogenous values. We rewrite the constraint to that it is
equal to zero and form the Lagrangean.

The third step is to take derivatives with respect to each choice variable and
in the final step we set the three derivatives equal to zero to get the first-order
conditions, which we need to solve for x1*, x2*, and λ*.

Our solution strategy involves moving the lambda terms to the right-hand
side and dividing the first equation by the second to cancel lambda (and
giving the familiar MRS = p1

p2
condition). This equation can then be solved

for optimal x2 as a function of optimal x1.

Although it looks like it, this is not the answer for x2 because it has x1 in
it. The reduced form solution must be a function of exogenous variables
alone. Substitute this expression for x2 into the third first-order condition
(the budget constraint) and solve for optimal x1.
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This expression can be evaluated for any combination of exogenous variable
values. For example, if we use the parameter values in the OptimalChoice
sheet, we can compute that optimal x1 = 25. This agrees perfectly with the
numerical approach.

Furthermore, this expression shows the quantity demanded at a given p1,
ceteris paribus, so it can be used to display a demand curve for x1. There is,
of course, a similar expression for good 2.

In the Standard Model, the reduced form solution was x1* = ( c
c+d

)m
p1

. The
Endowment Model’s solution is the same, except instead of m in the numer-
ator, we have p1ω1 + p2ω2. This makes sense since the value of the initial
endowment is p1ω1 + p2ω2.

With an Endowment Model, we can subtract the initial amount of good 1 to
obtain a net demand curve.

Comparative Statics with the Endowment Model

We can do comparative statics analyses analytically or numerically. The re-
duced form expression can be used to explore the rate of change of optimal
x1 with respect to any exogenous variable. For example, we can take the
derivative with respect to p1.

This is more complicated than usual because p1 appears in two places. We
could use the Product Rule, but it is easier to do some reorganizing and
simplify things before we take the derivative.

https://www.google.com/search?q=product+rule+differentiation
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First, we move p1 from the denominator. This will enable us to use our usual
derivative rule.

x1* = (
c

c+ d
)
p1ω1 + p2ω2

p1

= (
c

c+ d
)(p1ω1 + p2ω2)p−1

1

But we can also multiply p1 through to cancel the p1 in the p1ω1 term.

x1* = (
c

c+ d
)(p1ω1 + p2ω2)p−1

1 = (
c

c+ d
)(ω1 + p−1

1 p2ω2)

Then we can expand to leave p1 isolated in a single term so that the derivative
with respect to p1 is straightforward.

x1* = (
c

c+ d
)(ω1 + p−1

1 p2ω2) = (
c

c+ d
)ω1 + (

c

c+ d
)p−1

1 p2ω2

Now, when we take the derivative with respect to p1, we apply our usual
derivative rule and bring the exponent down and subtract one from the second
term. The first term has a derivative with respect to p1 of zero since it does
not contain p1.

dx1*

dp1

= (−1)(
c

c+ d
)p−2

1 p2ω2

We can evaluate this expression at the initial values of the exogenous vari-
ables to get an instantaneous rate of change in optimal x1 as p1 changes.
Plugging in c = d = 1, p1 = 2, p2 = 3, and ω2 = 10 gives −3.75. This means
that an infinitesimally small increase in p1 would decrease x1 by 3.75-fold.

But what does that number tell us? Is it a lot in the sense of a big response
to a price shock? The slope provides no answer to this question. We need
percentage changes—elasticity—to answer this question.

We can multiply the slope by the initial ratio of p1

x1*
to compute the p1 elas-

ticity of x1*.

dx1*

dp1

p1

x1*
= ((−1)(

c

c+ d
)p−2

1 p2ω2)(
p1

x1*
)

We evaluate this expression at p1 = 2 (and the initial values of the other
exogenous variables).

dx1*

dp1

p1

x1*
= ((−1)(

c

c+ d
)p−2

1 p2ω2)(
p1

x1*
) = −3.75(

2

25
) ≈ −0.3

The elasticity does tell us that the quantity demanded of x1 is quite price
insensitive at the initial solution. An elasticity less than one (in absolute
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value) is said to be inelastic and the closer to zero, the lower the responsive-
ness.

Unlike the Standard Model, where a Cobb-Douglas utility function gives a
unit price elasticity, we get a non-unitary elasticity here because a change in
p1 appears in the denominator and numerator in the reduced form. In the
numerator, the change in price is affecting the value of the agent’s endow-
ment whereas in the Standard Model, income is fixed.

We can also use numerical methods to explore the comparative statics prop-
erties of an own price change.

STEP Use the Comparative Statics Wizard to decrease p1 by 0.1 (10
cents) for 15 shocks (from 2 to 0.5). Be sure to keep track of net demands
and the buyer/seller position in the endogenous variables by using the ctrl
key to select non-contiguous cells, as depicted in Figure 5.4. You want to
track cells B11:B12 and D11:E12.

Figure 5.4: Selecting endogenous variables with CSWiz.

The CSP1 sheet shows what your results should look like. There are several
notable outcomes.

When the price fell from 90 cents to 80 cents, the agent switched from selling
x1 and buying x2 to buying x1 and selling x2. The price of x1 got so low that
even though the agent starts with a lot of x1 (compared to x2), it is better
to buy more x1. The budget line gets flatter as p1 falls, making buying x1 a
better choice than selling it.

Notice the behavior of maximum utility (column B) as price falls. The agent
was a seller at first so falling prices hurt. Below 90 cents, however, the agent
is a buyer of x1 and falling p1 increases utility.

The CSP1 sheet also shows slope and elasticity computations. From p1

$2/unit to $1.90, the slope (yellow background) and elasticity (orange back-
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ground) measures are close, but different than at p1 = 2 (using the deriva-
tive). This is due to the fact that optimal x1 is non-linear in p1. In other
words, x1* = f(p1) is not a line, but a curve (as clearly shown in the chart
below the data).

The Endowment Model Extends the Standard Model

The Endowment Model is the Standard Model of the Theory of Consumer
Behavior with an initial endowment of goods instead of cash income. This
transforms the consumer into the dual-role of seller and buyer of goods.
The driving force in the agent’s decision making remains utility maximiza-
tion. Many of the ideas behind the Standard Model (such as equating the
MRS and price ratio) carry over to the Endowment Model. Of course, the
framework for presenting and understanding the model, comparative statics
analysis, remains the same.

It may seem that replacing income with an initial endowment is a minor
twist, but we will see that the Endowment Model enables analysis of a wide
range of choice problems.

Exercises

1. Perform a comparative statics analysis of c, the exponent on x1, using
the Comparative Statics Wizard. Use increments in c of 0.1. State the
effect of changing c on x1*. Describe your procedure and take screen
shots of your results as needed.

2. Use your comparative statics results to find the c elasticity of x1* from
1 to 1.1. Show your work.

3. Use the reduced form expression in this chapter to find the c elasticity
of x1*. Show your work.

4. Compare your answers from questions 2 and 3. Explain why they are
the same or differ.

References

The epigraph is from page 188 of David M. Kreps A Course in Microeco-
nomic Theory (1990). If you are interested in graduate study in economics,
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this book is worth browsing. In the preface, Kreps says (p. xv), “The pri-
mary target for this book is a first-year graduate student who is looking for
an introduction to microeconomic theory that goes beyond the traditional
models of the consumer, the firm, and the market.” Kreps allows that it
could be used for undergraduate majors taking an “advanced theory” course
or “mathematically sophisticated students,” but he warns that, “The book
presumes, however, that the reader has survived the standard intermediate
microeconomics course.”

The Endowment Model is taking us close to the next level of microeconomic
theory. Google “graduate micro theory” for more advanced micro books.

To learn more about Masters and PhD programs in economics, search for
“graduate economics rankings” and be sure to visit the American Economics
Association’s website at www.aeaweb.org/resources/students/grad-prep.
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The term impatience carries
with it the presumption that
present goods are preferred.
But I shall treat the two terms
(impatience and time
preference) as synonymous.

Irving Fisher

5.2 Intertemporal Consumer Choice

Suppose the government wants to stimulate saving by workers so they won’t
be poor when they retire. Individual Retirement Accounts (IRAs) and 401(k)
(their section in the tax code) plans enable savings to grow tax free, so the
interest rate earned is higher than if returns were taxed. A higher interest
rate should stimulate more saving. But how much more?

Typically, estimates of the interest rate elasticity of savings are positive, but
quite small, say 0.15. If someone had this elasticity, would attempts to stim-
ulate saving by increasing the interest rate be effective?

No, because the low interest rate elasticity of savings means that saving is not
responsive to changes in the interest rate. Suppose the interest rate doubles
so we have a huge 100% change. Because the elasticity is 0.15, that means
we will see only a 15% increase in savings. A more realistic 10% increase in
the interest rate would generate a small 1.5% increase in savings. The small
elasticity tells us that shocks to the interest rate are not going to move the
amount saved by very much.

This is an example of interpreting an elasticity. Computing an elasticity is
important (and you will continue to see examples of how to do it), but un-
derstanding what an elasticity is telling us is even more critical.

Now that we know the elasticity is low and what that means, this leads to a
second question: What would make the interest rate elasticity of savings be
so small? The rest of this chapter offers an application of the Endowment
Model to answer this question. In addition, income and substitution effects
play a major role in the explanation. There is no doubt about it, learn-
ing economics is a cumulative undertaking—the same ideas keep popping up
again and again.

207
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The Intertemporal Choice Model

Intertemporal choice means the agent faces a decision that spans across time
periods. Saving over the years working means less consumption, but that
allows for more consumption when retired. We model the agent as deciding
what to consume every year over their lifespan.

Just as when we modeled the consumer buying just x1 and x2 instead of
many goods and services, we make a simplifying assumption that collapses
many time periods into two: present and future. In the present, right now,
the agent works and in the future, one year later, she does not (she retires).

In addition, there is another implied simplifying assumption: the agent knows
with certainty how long she will live. She is born and works as one-year old,
is retired as a two-year old and dies on the last day of her second year. She
decides, as soon as she is born, how much she will consume in year 1 (the
present) and year 2 (the future).

Instead of having two goods x1 and x2, we have consumption of a single good
in the present, c1, and the future, c2. The price of the single good is $1/unit
so if you have, say, $40, you can buy 40 units. There is no inflation so the
price is the same in both time periods.

Notice the usual modeling technique at work here—realistic details are sim-
ply assumed away. Most people’s lives unfold as follows: Childhood becomes
teen-aged years, and then a long period of working adult life eventually turns
to retirement years and death. The Intertemporal Choice Model collapses all
of that into two time periods. It also assumes away complications from not
knowing exactly when we die.

Faced with criticisms about the unrealistic nature of the model, economists
respond by saying that we are not interested in realism. We reduce the com-
plex real world to a model that can be analyzed with comparative statics to
produce testable predictions. For economists, the goal is not to describe re-
ality, but to predict via comparative statics. We strip away all complications
to create an unreal, incredibly simple model that contains the kernel of the
problem so we can work out how the agent responds to shocks.

Modeling is not easy. There is science (and math) and art involved. Users
and consumers of these models need sharp critical thinking skills—sometimes
important elements are assumed away.
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We continue building the model by defining the initial endowment as the
amount of present and future income you start with. The initial endowment
in the first year is m1 and in the second year m2. The first year’s initial en-
dowment is income from working and the second year’s initial endowment is
income from sources like Social Security. Thus, it makes sense that m1 > m2,
which says that income is higher during the working than the retired year.
Since the price is $1/unit, the initial endowment incomes are also initial en-
dowment consumption in the two periods.

We are ready to work on the optimization problem itself. We follow the usual
approach, modeling the budget constraint, then satisfaction, then putting the
two together to find the initial solution. Of course, after finding the initial
optimum we will do comparative statics analysis, where we will answer the
question: What causes the interest rate elasticity of savings to be so small?

The Budget Constraint

STEP Open the Excel workbook IntertemporalChoice.xls and read the
Intro sheet, then go to the MovingAround sheet.

The consumer begins at the initial endowment point, 80,20, where 80 repre-
sents her income and consumption in time period 1 (remember that the price
of the good is $1/unit). Income and consumption of 20 in time period 2 is
lower (given that she is not working). These numbers are arbitrary and do
not have any special meaning.

A critical concept for the Endowment Model is that the agent does not have
to stay at the initial position. In this application, she can move by saving or
borrowing. Saving means you consume less in the present and carry over the
unconsumed portion into the future. Saving is like selling present consump-
tion and buying future consumption.

Suppose she saves 30 units of consumption in year 1 by saving $30. What
would be her position in the second year?

STEP Change cell B19 to 50. This implements the plan to increase future
consumption, but look at cells B21 and B22. Instead of simply reallocating
from 80,20 to 50,50, by saving 30 units, she got an extra 6 units in interest
on her savings.
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If you save $30 for one year at 20%, you end up with $56. The $30 you saved
(called the principal) and interest earned of $30 x 20% = $6 makes your
savings worth $36 in the future and we add this to the $20 of initial future
income to get the grand total of $56.

There is an equation that gives us the value of c2 for any chosen value of c1.

c2 = m2 + (m1 − c1) + r(m1 − c1)

The equation says that the amount of consumption in time period 2 equals
the initial endowment amount in time period 2, m2, plus the principal saved,
m1 − c1, plus the interest earned on the amount saved, r(m1 − c1). We can
rewrite this in a simpler form by collecting the savings term.

c2 = m2 + (1 + r)(m1 − c1)

This is the equation of the budget constraint in this model. It shows that the
intercept is m2 + (1 + r)m1 and the slope is −(1 + r) (just multiply through
by (1 + r)). The slope tells us that saving $1 will yield 1 + r dollars in time
period 2.

What would be the maximum consumption possible in time period 2? We
have two ways to answer this question.

STEP Change cell B19 to 0. She consumes nothing now and ends up
with 116 units in the future.

“But she will starve if she consumes nothing in period 1.” That would be
another constraint that is not being modeled. We are not saying she will
consume nothing in the present time period, we are merely exploring the
consumption possibilities.

Saving everything (the same as consuming nothing in the present) can also
be found by computing the value of the y intercept. We can evaluate
m2 +(1+r)m1 at m1 = 80,m2 = 20, and r = 20%, yielding 20+(1+0.2)80 =
116. This is the same answer that we got with Excel.

The y intercept tells us the future value of the agent’s initial endowment,
measuring income in both periods in terms of time period 2.
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Instead of saving, the agent can borrow. Suppose the agent decided to con-
sume more than 80 units in time period 1. How could she do this? Easy: use
her time period 2 income to borrow from it. As before, however, we have to
be careful. The interest rate plays a role.

STEP Change cell B19 to 90. She borrows $10 from her future income.

Does she end up with 90,10—subtracting 10 from c2 and adding it to c1? No
way. As Excel shows, she has to pay interest on the borrowed funds. If she
borrows $10, she ends up with only $8 in the future because she has to pay
back the principal ($10) and the interest ($2).

What is the most she could consume in time period 1?

STEP Change cell B19 to 100. What happens?

She cannot do this. She cannot choose negative x2. She does not have enough
future income to enable 100 units of time period 1 consumption.

STEP Continue entering numbers in cell B19 until you drive c2 (in cells
B23 and B24) to zero.

The x intercept is 962
3
. It is the present value of her endowment, measuring

income in both periods from the standpoint of time period 1.

STEP Proceed to the Properties sheet.

Our work in the MovingAround sheet makes it easy to understand the budget
line displayed in the Properties sheet. Clearly, given an initial endowment,
movement up the budget line is saving and down is borrowing.

These are just consumption possibilities. We do not know what this per-
son will do until we incorporate her preferences. We do know she can be
anywhere on the constraint (including the initial endowment point). It all
depends on her indifference map and where the highest attainable indiffer-
ence curves lie.

STEP Proceed to the Changes sheet. Change the interest rate, cell L8,
to 50%. Your screen will look like Figure 5.5.
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Figure 5.5: Increasing r.
Source: IntertemporalChoice.xls!Changes

Our work with the Endowment Model in the previous section enables us to
easily interpret the result. As before, the budget constraint swivels around
the initial endowment point.

Above the initial endowment point, the increase in r is a good thing, increas-
ing consumption possibilities. If the agent is a saver, the shock is welcome.

Borrowers, however, would not be happy with an increase in r. This is a
price increase to present consumption and reduces consumption possibilities
for borrowers.

STEP Click the Reset button. Change m1 and m2 to see how these
shocks are like an income shock. It maintains the slope, but shifts the bud-
get constraint.

Now that we understand how the budget constraint works, we are ready to
turn to the agent’s goal, maximizing utility.

Preferences

The agent has preferences over present and future consumption that can be
captured by the indifference map.

We use the usual Cobb-Douglas function form to express preferences as a
utility function.
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STEP Proceed to the Preferences sheet. Compare the utility functions
with d = 0.5 and d = 0.1. The utility function allows us to model different
preferences.

Figure 5.6 shows two different agents with different rates of time preference
for future consumption. The person on the right exhibits a strong preference
for present consumption, while the person on the left is more willing to wait.

Figure 5.6: Modeling rates of time preference.
Source: IntertemporalChoice.xls!Preferences

A more immediate gratification personality is represented on the right side
of Figure 5.6. We would say this person is more impatient—he likes present
much more than future consumption. The exponent d is much smaller than
c, which means inputs into the utility function through c2 provide much less
utility than via c1.

The steep indifference curves reveal that he is willing to trade a great deal of
future consumption for a just a little more present consumption. His MRS at
a given point (for example, 6,6) is higher (in absolute value) than the MRS
of the person on the left.

We do not say the person on the right has “bad preferences” (although the
language used in this example, such as impatience does seem to connote dis-
approval). Economists take preferences as given. We are not supposed to
judge them as right or wrong. A person with preferences that substantially
ignore the future is treated the same as someone who does not like broccoli
or likes the color blue.

There is a complication here, however, in that a person’s rate of time prefer-
ence almost certainly changes over time. A young person may not save much
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because she does not value the future, but she may regret her decision when
she gets older. Deciding whose preferences should rule, young or old you, is
a difficult philosophical problem.

With the budget line and preferences, we can now solve the constrained util-
ity maximization problem.

Finding the Initial Solution

STEP Proceed to the OptimalChoice sheet. Figure 5.7 shows the ini-
tial display. The current bundle is 80,20—the initial endowment point. The
agent is not maximizing satisfaction subject to the budget constraint. The
indifference curve is clearly cutting the budget line and, therefore, the agent
should move northwest up the budget line to maximize utility.

Figure 5.7: An inefficient position.
Source: IntertemporalChoice.xls!OptimalChoice

STEP Run Solver to find the initial solution.

The agent opts for the point 644
9
, 382

3
. This means she has decided to save

155
9

of her present consumption. She chooses this present and future combi-
nation, implying this level of saving, because this maximizes utility subject
to the budget constraint.
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Notice that the negative net demand is interpreted as saving. It is computed
as optimal c1 minus the initial endowment of present consumption. As men-
tioned earlier, saving is like selling present consumption to buy greater future
consumption. We often drop the minus sign so we do not get confused by
increases and decreases in saving.

Comparative Statics

We focus on r. We want to know how savings will respond when r changes.
Remember our question: Why is the interest rate elasticity of savings so low?

Before we begin our comparative statics analysis, we need to be clear about
the language used. Since the shock variable, r, is measured as a percent,
things can get confusing once we start working on responses and elasticities.
We need to keep clear the difference between a percentage point change and
percent change. They sound the same, but the former is a difference (∆),
new − inital, and the latter is a percent computation, new−initial

initial
.

So, if r increases from 20% to 30%, that is a 10 percentage point change since
we compute 30 - 20, but a 50 percent change: 30−20

20
. The same language

would be used if we were working with unemployment rates. An increase
from 5% to 6% is a one percentage point increase and a 20% increase.

The finance literature uses basis points for differences in variables measured
in percents. There are 100 basis points in one percentage point. If a bond
yield rises from 3.25% to 3.35%, that is an increase of 10 basis points.

STEP Run the Comparative Statics Wizard, changing the interest rate
by 10 percentage points (0.1) increments. Keep track of c1, c2, net demand,
and whether the person is a saver or borrower (cells D11 and E11).

Your results should be similar to those in the CSr sheet.

STEP Use your CSWiz results to compute the interest rate elasticity of
savings from r = 20% to 30%.

We find that the interest rate elasticity of savings from r = 20% to 30% is
about 0.11. (Check the formula in cell I15 in the CSr sheet if needed.) That
is quite low. A 50 percent increase in r only increased savings by a little over
5 percent.
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This elasticity is similar to the 0.15 elasticity at the beginning of this chap-
ter. Why is this happening? Why is saving so unresponsive to changes in
the interest rate?

The answer lies in the income and substitution effects. For savings, the in-
come and substitution effects from a change in r work in opposite directions
(when c1 is a normal good). Thus, they tend to cancel each other out and
the total effect ends up being small.

To head off serious misunderstanding, you need to know right now that this
does not mean that we are dealing with a Giffen good. We will see that we
are dealing with cross effects when r rises for a saver and Giffen goods are
defined in terms of own effects. Also, c1 and c2 are both normal goods in a
Cobb-Douglas utility function so we know we can’t get Giffenness.

STEP To see how the income and substitution effects apply to this prob-
lem, return to the OptimalChoice sheet. Suppose r increases to 300%.
Change B16 to this absurdly high interest rate.

This huge change enables us to see clearly what is happening on the graph.
The budget line swivels in a clockwise direction, getting much steeper. Re-
member that the slope is −(1 + r) so an increase in r makes the line steeper.
This is good for savers and bad for borrowers.

STEP After changing cell B16 to 300%, run Solver to find the new initial
solution.

Solver gives the new optimal solution, c1* = 562
3

and c2* = 1131
3
, when

r = 300%. Optimal savings has increased from $15.56 to $23.33, so that is
good news, but this is a pretty weak response to the massive increase in the
interest rate from 20% to 300%.

Figure 5.8 shows the initial solution (point A) and the new optimal solution
(point C). It also includes a dashed line that is parallel to point C’s budget
line, but goes through point A. This, of course, is the line that is used to
separate the total effect into income and substitution effects using point B.
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Figure 5.8: Income and substitution effects.
Source: IntertemporalChoice.xls!OptimalChoice: cell F52

How much income (m1) did we have to take away (hypothetically, of course)
to cancel out the income effect of the higher interest rate? We can use Excel
to answer this question.

STEP With r = 300%, enter the initial solution (point A). To minimize
rounding error, use a formula with fractions. So, enter “= 64 + 4/9” in B11
and “= 38 + 2/3” in B12. Now, start decreasing m1 (in cell B17). Your
goal is to find that value of m1 so that the initial solution is on the budget
line—i.e., the constraint cell is zero.

A little experimentation should convince you that m1 = 691
9

is the value that
puts the dashed budget line through the initial solution.

If you want to be daring, you could use Solver. Call Solver, then click the

Reset All button. The objective is the constraint cell (B23) and you want
to make the value of it zero by changing m1 (B17). Solver gives the same
answer as above.

Or, you could use the budget constraint to find the m1 needed to buy the
original optimal bundle with r = 300%. Simply plug in the initial optimal
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solution along with the new value of r (and initial m2) and solve for m1. You
are finding the value of m1 that would enable you to buy the initial optimal
combination with the higher interest rate. The analytical answer agrees with
the numerical approach.

STEP Now, with r = 300% and m1 = 691
9
, run Solver to find point B.

Be careful with the interpretation of savings for point B. Remember that
income is not really m1 = 691

9
, but 80. This means that at point B, the

agent would save $30.59, not $19.07 as displayed in cell D11.

Figure 5.9 shows the results in a table. You can see Figures 5.8 and 5.9 side
by side by scrolling down to row 50 or so in the OptimalChoice sheet. Look
at how the substitution effect leads to a large increase in savings, but the
income effect cancels out part of this increase.

Figure 5.9: Total, income, and substitution effects.
Source: IntertemporalChoice.xls!OptimalChoice: cell M51

The income and substitution effects provide an explanation for the low in-
terest rate elasticity of savings. What is happening is that the two effects
are working against each other when r rises and the agent is a saver.

Does this mean c1 is an inferior good? No. The reason why the effects are
opposing each other is because, for savers, an increase in the interest rate is
like a decrease in the price of future consumption so the effects on c1 and
savings are actually cross effects. Look carefully at Figure 5.8. In the region
of the graph with points A, B, and C, it is as if we decreased p2,and rotated
the budget line up clockwise (with a steeper slope).

Saving and Borrowing Explained

The Intertemporal Choice Model is an application of the Endowment Model
in the Theory of Consumer Behavior. The model says that the agent chooses
the amount to consume in time periods 1 and 2 in order to maximize satis-
faction given a budget constraint.
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The model explains saving (or borrowing) as an optimizing move on the part
of an agent who is trading off present and future consumption.

The model can also explain why the interest rate elasticity of savings is often
estimated as a positive, but small number, which means that saving is quite
unresponsive to the interest rate. The explanation rests on the fact that the
income effect opposes the substitution effect for c1 and savings (for those
with negative net demand for c1).

Exercises

1. Solve the problem in the OptimalChoice sheet using analytical methods.
In other words, find the reduced form expressions for optimal c1, c2,
and saving from

Show your work.

2. Use the parameter values in the OptimalChoice sheet (with r = 20%)
to evaluate your answers for question 1. Provide numerical answers for
the optimal combination of consumption in time periods 1 and 2 and
for optimal saving.

3. Do your answers from question 2 agree with Excel’s Solver results? Is
this surprising? Explain.

4. Use your reduced form solution from question 1 to compute the interest
rate elasticity of savings at r = 20%.

5. In working through this chapter, you found the interest rate elasticity
of savings from r = 20% to 30%. Why is the elasticity computed at a
point (in question 4 above) different from this elasticity?
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The Prophet said: “Charity is a necessity
for every Muslim.” He was asked: “What if
a person has nothing?” The Prophet
replied: “He should work with his own
hands for his benefit and then give
something out of such earnings in charity.”

Prophet Muhammed

5.3 An Economic Analysis of Charity

The phrase “an economic analysis of” is code for “using the framework of
optimization and comparative statics to study observed behavior.” In this
case, we use the Endowment Model from the Theory of Consumer Behavior
to study charitable giving.

How can economics have anything to say about giving away money? Isn’t
charity something really nice people do, not the selfish, rational maximizers
that inhabit economics? Doesn’t this mean that thinking like an economist
is useless for studying charity?

These questions are based on a common misunderstanding that economics
applies only to a subset of the world. So, the mistaken thinking goes, you
can use economics to study certain things like banking or unemployment, but
not war or marriage. This is wrong because modern economics is not defined
by content, but by method. Anything involving choice, like going to war or
getting married or brushing your teeth or joining a church can be analyzed
with the tools of economics.

We will see that the economic approach offers a different view of charitable
giving. By casting the problem as a choice—how much to give is the key
endogenous variable—we can apply the optimizing and comparative statics
framework of economics. We do not claim this is the only or even the best
perspective, but it does provide another way to understand charity.

Basic Facts about Giving

Each year, people all around the world give away a lot of money, goods, and
time (as volunteers). Humans are sympathetic when people close to them
are in distress. All religions encourage charity and caring for people less for-
tunate.

221
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Giving USA provides data on philanthropy in the United States. Figure 5.10,
from the 2018 Annual Report, shows the breakdown of the $410 billion that
were contributed to charities in 2017. To help understand what this number
means, we can compare total contributions to the size of the economy and
we find a giving rate of about 2.1% of GDP.

Figure 5.10: Charitable giving by source of contribution.
Source: Giving USA 2018 Annual Report

The 2018 Annual Report contextualizes total giving by tracking giving over
time, shown in Figure 5.11. Total giving jumped in the mid 1990s and reached
its highest level in 2017. That is good news.

Figure 5.11: Charitable giving over time.
Source: Giving USA 2018 Annual Report

https://givingusa.org/
https://givingusa.org/
https://givingusa.org/
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The Internal Revenue Service is another source of data on charitable giving
because taxpayers claim deductions when they give to charity to lower the
tax owed. The IRS also collects data on non-profit organizations which do
not pay tax, but they have to file Form 990. IRS data can be found at
www.irs.gov/statistics.

Charitable giving data shows that it not only varies over time, there is also
tremendous individual variation. Many people give nothing, others give a
little, and a few people donate a lot. Religions encourage members to tithe,
giving 10% of their income. Upon death, some people give substantial frac-
tions of their estates to charity, while others hand it all to their heirs.

There are many questions we can ask about charitable giving, but our top
three are:

1. Why do people give to charity?

2. What determines how much they give?

3. How can charitable giving be stimulated?

Because this is an economic analysis of charity, we are going to answer these
questions by using the method of economics. We will set up and solve an
optimization problem. This will provide the economic explanation for why
people give and what determines how much they give. We will see that
charitable giving can be stimulated by changing exogenous variables, ceteris
paribus.

Our model will do the usual stripping away of realistic details, making in-
credible simplifying assumptions, to enable us to solve the model and play
comparative statics games. Keep your eye on the procedure as we set up,
solve, and compute our key measure—the tax break elasticity of giving.

An Endowment Model of Giving

As usual, we begin with the budget constraint, then we model preferences,
and we use both to find the initial solution to the problem of maximizing
satisfaction subject to the budget constraint.

The optimization problem is entirely from the donor’s point of view. It is the
donor, the giver, who decides how much, if any, to grant to the beneficiary,
the recipient.

https://www.irs.gov/statistics
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Figure 5.12 depicts the donor’s budget constraint in this application. The
initial endowment is the coordinate pair that represents the donor’s con-
sumption (on the y axis) and the beneficiary’s consumption (on the x axis).
There is only one good (which represents consumption of all goods) and its
price is $1/unit. So, if the donor has $100 and the beneficiary only $10, we
know the initial endowment is at the point 10,100.

Figure 5.12: The budget constraint.

Giving is modeled as moving down the budget line in Figure 5.12. If the
donor gives $20 away, then she will have $80 and the beneficiary will have
$30. Of course, the donor could give all of her money away, choosing to be
at the x intercept. It is easy to see that the donor decides how much, if any,
to give, by choosing a point on the budget line which determines both the
donor’s own consumption and the beneficiary’s consumption.

Thus, at any point on the budget line, we can compute the amount of giving
as simply the vertical distance (along the y axis) from the initial endowment
to the point on the budget line. If the donor decides to stay on the initial
endowment point, then they give nothing to the beneficiary.

The slope of the budget line is −1 because there is a dollar-for-dollar ex-
change from the donor to the beneficiary.

Notice that this budget line does not extend left or northwest from the ini-
tial endowment because that would imply taking money from the beneficiary.
The donor cannot do that.

Finally, because we will (of course) be doing comparative statics analysis,
we point out that a tax break for those who donate money means that the
budget line will have a shallower slope. If the donor gives $1 and is rewarded,
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for example, with a 30gdecrease in taxes, then the recipient gets $1, but the
donor actually gave only 70g. The slope is not −1, but −(1 − TaxBreak).
By adjusting the tax break, we can see how the agent responds.

This is too abstract. It is time to go to Excel to understand how the tax
break really works.

STEP Open the Excel workbook Charity.xls and read the Intro sheet,
then go to the MovingAround sheet.

All you see is a single point at 20,80—this is the initial endowment. The
donor gives nothing and there is no tax break.

STEP Change cell C5, the amount the donor gives, to 20. The benefi-
ciary gets the 20, adding it to his initial 20, and new red dot is at 40,60. The
slope of the constraint is −1, displayed in I5.

Without a tax break, every dollar given is subtracted from the donor and
added to the beneficiary. But the tax code incentivizes giving by lowering
the donor’s tax liability.

STEP Change E5, the amount of the tax break, to 40%. The red dot
jumped up. Hit ctrl-z a few times to move back forth between zero and a
40% tax break.

With or without the tax break, the beneficiary still gets 20, but a tax break
on charitable donations affects how much the donor actually gave up. With a
40% tax break, the sheet shows that the donor really gave up only 12 because
taxes are lowered by 8 (40% of 20). Thus, the slope of the constraint is −0.6.

Wait, if the donor gives 12 and the recipient gets 20, who makes up the dif-
ference? The government. The beneficiary gets the full donation, but the
donor pays less tax to the government. Clearly, by manipulating the tax
break, the government can make charitable giving less expensive to donors.

So, if the tax break increases, what happens to the budget line? Think it
through. You can check yourself when we get to the OptimalChoice sheet.

But before we get there, we have to consider the donor’s preferences. The
constraint is only about possibilities. To know what the donor will do, we
need to know the donor’s utility function.
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The neat trick here is to enable the beneficiary’s consumption to affect the
donor’s satisfaction. The way we model giving is to have the self-interested
agent care about others.

The usual Cobb-Douglas functional form will represent the donor’s satisfac-
tion derived from her own consumption and the beneficiary’s consumption.

U = BeneficiaryConcDonorCond

As usual, the exponents allow us to model different preferences. If c and
d are equal, the donor gets as much satisfaction from her own consumption
as the beneficiary’s consumption. She is a saint. Although possible, this is
unlikely. Most people get more satisfaction from their own consumption and,
thus, d is greater than c.

We will use the OptimalChoice sheet with different exponent values to see
the effect on the graph, but it is worth thinking through two scenarios. What
would happen to the indifference curves, starting from c = d as we lowered
c? What would happen to the indifference curves if c fell all the way to zero?
Again, thinking this through and testing yourself is good way to learn—you
can check your answer in the OptimalChoice sheet.

It is worth remembering that preferences are not right or wrong. We take
them as given and we model the agent as maximizing based on given pref-
erences. It can be difficult to do this—we naturally disapprove of someone
who doesn’t care about others.

Another source of confusion is that preferences can and do change, but that
is not to say that they are chosen by the agent. Changes to preferences are
like shocks to other exogenous variables—they are imposed by forces outside
the agent’s control and then the agent re-optimizes in the new environment.

STEP Proceed to the OptimalChoice sheet to see how the donor’s opti-
mization problem can be implemented in Excel.

The sheet shows a mathematical expression of the constrained utility max-
imization problem. The constraint is different than usual. If we write the
constraint as an equation, we need to compute the y intercept and incorpo-
rate the fact that the donor cannot take from the recipient (the empty space
in the northwest corner of Figure 5.12).
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We cannot use the usual Lagrangean method to deal with this complicated
constraint because it only works with equality constraints. There is an an-
alytical method called Kuhn-Tucker that can be used, but it is beyond the
scope of this book.

Fortunately, the numerical method is still available. For Excel and Solver,
the complicated constraint is easily handled by adding a second constraint
(cell B26) and incorporating it as an inequality—this allows the donor to
choose m1 or greater for the beneficiary. The usual budget line constraint is
in cell B25. Applying both constraints gives Solver the equivalent of Figure
5.12 and it has no trouble finding the optimal solution.

Figure 5.13 shows the starting position. The endogenous variables are con-
sumption by beneficiary and donor. These are chosen by the donor to maxi-
mize utility subject to the budget constraint.

Figure 5.13: Donor with c = d opening position.
Source: Charity.xls!OptimalChoice

The exogenous variables include the amount of the tax break (initially set at
zero so the slope of the budget constraint is −1), prices normalized to one,
the initial endowment, and the impact of donor and beneficiary consumption
on the donor’s utility.

With c = d, the donor cares as much about the beneficiary as herself and
the MRS > p1

p2
at the initial endowment. We know the donor can increase

her satisfaction by traveling down the budget line. For example, suppose the
agent decided to donate $10. How would this affect the chart?

https://www.google.com/search?q=kuhn-tucker
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STEP Change cell B11 to 30 and B12 to 70.

The MRS is now closer to the price ratio and utility has risen (from 1600
to 2100). The agent has moved down the budget line and is on a higher
indifference curve.

STEP Run Solver to find the initial optimal solution.

The agent chooses the point 50,50 to maximize utility (at 2500), which means
she donates $30 to the beneficiary. The net demand is the amount of giving
and we express it as a dollar amount and as a percentage of the donor’s
income (cell D13).

This is one mighty nice donor. She has an incredibly high giving rate of
37.5%. Because c = d, she cares as much about the beneficiary as she does
herself. It makes common sense that she picks an equal 50,50 split as her
optimal solution.

Comparative Statics

There are several shocks to consider. We start with preferences.

STEP Change the exponent for the beneficiary’s consumption to 0.2.

This answers the earlier question about the effect of c on the indifference
curves: they become much flatter as c falls, ceteris paribus. With c = 0.2,
the donor does not care as much about the beneficiary as before.

The shape of the indifference curve is tied to the MRS. With c = 0.2, the
MRS at 50,50 has fallen to 0.2 (in absolute value). The low MRS and flat
indifference curve mean that the donor is willing to trade only a little of her
consumption for a lot of additional beneficiary consumption.

The culmination of lowering c is a donor who does not care about the bene-
ficiary at all. With c = 0, the indifference curves became horizontal, MRS is
zero, and beneficiary consumption is a neutral good.

It is obvious that the donor with c = 0.2 is not going to be as generous as
before when c = 1, but how much will they give?
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STEP Run Solver. Figure 5.14 displays the result.

Figure 5.14: Donor with c = 0.2 corner solution.
Source: Charity.xls!OptimalChoice

The result is a surprise. The best the agent can do is to donate nothing so
that is what she does. Even though the MRS does not equal the price ratio,
this donor is optimizing. This is a corner solution.

Our work thus far provides answers to two of the three questions we initially
asked.

1. Why do people give to charity? To maximize satisfaction. A donor
gives because the consumption of others affects his or her utility. Notice
that giving is perfectly compatible with self-interest. The economic
model says that the donor feels good when she gives and that is why
she gives.

2. What determines how much they give? Clearly preferences matter.
How much the donor cares about others (the exponent c in the donor’s
utility function) plays a major role. Of course, the constraint also
matters. Donor’s income, beneficiary’s income, and the slope of the
constraint affect the amount of giving.

3. How can charitable giving be stimulated?

Let’s work on the third question. We could try to convince people to care
more about others, increasing c (certainly this is a primary goal of religion),
but a way to stimulate giving is to lower the price of giving.
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As we saw earlier, dollars given to charity reduce the donor’s taxable income
and reduce tax owed. If the donor is in a 30% tax bracket, every dollar
donated to charity saves the donor 30 cents in taxes. Thus, the beneficiary
receives the dollar, but the donor is actually paying only 70 cents—with Un-
cle Sam picking up the remaining 30 cents.

What effect will a 30% tax break have on the budget constraint and chari-
table giving of a donor with c = 0.2? Apply the shock in Excel and find out.

STEP Change the tax break variable (B16) to 30% and note that p1 be-
comes 0.70 and the budget line swings out.

The new red budget line is flatter than the original because of the tax break.
This answers the earlier question about the effect of a tax break on the bud-
get constraint: the bigger the tax break, the more the line swings and flattens
out. This is just like lowering p1 in the Standard Model.

Notice that the MRS is greater than the slope of the new budget line. This
agent can improve her utility by traveling down the constraint. This means
she will donate to the beneficiary, as shown in Figure 15.15.

Figure 5.15: The effect of a tax break on giving.

But exactly how much giving does the tax break generate? Let’s find out.

STEP With c = 0.2 and tax break = 30%, run Solver.

In this case, the tax break has induced charitable giving. It is hard to see
on the graph, but the MRS = p1

p2
condition (under the chart) tells you the

indifference curve is now tangent to the budget line. Figure 15.5 shows what
happened.
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With a tax break of 30%, we get $1.67 of giving which is 2.1% of the donor’s
income (the American giving rate in 2018).

We can also explore how responsive our donor would be to further shocks in
the tax break. We will compute the tax break elasticity of giving.

STEP Change the tax break cell to 40%.

That’s a 10 percentage point change in the tax break and a rather hefty 33%
change. The budget line swings out a little bit more, but it is hard to see
the change in the chart. We know, however, since MRS does not equal p1

p2
,

that we need to re-optimize.

STEP Run Solver.

Charity increased from $1.67 to $3.33. That is a big response—a doubling or
100% increase in giving was generated from a 33% increase in the tax break.
That is a tax break elasticity of giving of 3.

STEP Proceed to the CS1 sheet to see a more detailed comparative stat-
ics analysis.

Notice that the shock was 1% point, not 10. Notice also that the elasticity
from a tax break of 30% to 31% is about 2.87 (H17), not 3. Even though we
do not have a reduced form expression, the fact that the measured elasticity
depends on the size of the shock tells us that giving is a non-linear function
of the tax break.

But regardless of whether it is 3 or 2.87, that high an elasticity is really good
news, right? If giving is super-responsive to a tax break, little tweaks in the
tax break will generate big increases in giving.

But we need to be careful in how we interpret our result. We do not know
whether these preferences and other exogenous variables are representative
of many donors. That is an empirical question that requires real-world data.
For example, with c = 0.5, tax break increases are much less effective in
stimulating more giving.

STEP Click the Reset button, change c to 0.5 and the tax break to
30%, and run Solver. Charitable giving is at $17.33.
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This makes sense since giving is much higher than it was when c = 0.2 and
tax break = 30%. But what is the tax break elasticity of giving?

STEP Change the tax break cell to 40% and run Solver. Charitable giv-
ing rises to $18.67.

Ponder the computation for a moment. There are a lot of numbers floating
around. How would you compute the tax break elasticity of giving?

It is the percentage change in giving divided by the percentage change in
the tax break. The numerator is 18.67−17.33

17.33
≈ 7.7%. The denominator is

33% (0.4−0.3
0.3

—notice that it doesn’t matter if you use the percents version,
40%−30%

30%
). Thus, the tax break elasticity is 7.7%

33%
= 0.23.

This result is much less favorable for a policymaker looking to increase char-
itable giving by manipulating the tax break. For this donor, giving is insen-
sitive to tax break increases.

The Theory of Consumer Behavior can explain a wide variety of giving out-
comes. Unfortunately, theory alone does not tell us about the magnitude of
a particular effect in the real world. By changing c, we see that the tax break
elasticity of giving is drastically affected, ranging from extremely elastic (3)
to quite inelastic (0.23). We must gather data and employ econometric tech-
niques to estimate the responsiveness of giving as the tax break changes in
the real world. Theory does, however, give us a framework for analyzing the
problem.

The Economic Approach Is Widely Applicable

Charitable giving can be viewed through the lens of an Endowment Model
using the Theory of Consumer Behavior. The initial endowment is the con-
sumption of the donor and the beneficiary. The donor can choose to give
part, all, or none of her endowment to the beneficiary. The amount she gives
is determined by that point that maximizes her satisfaction subject to the
budget constraint.

We can stimulate giving by lowering the price of giving. This rotates the
budget line and yields a new optimal solution. The amount of the increase
in giving is an empirical question that cannot be answered by theory alone.
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If we view giving as the solution to an optimization problem, we are doing
an economic analysis of giving. “An economic analysis” is a phrase often
used to communicate that the behavior under consideration will be cast in
the framework of optimization and comparative statics.

Many people think economics is about stocks, business, and money. This
content-based definition of economics is too limited. Economics is a method
of analysis and it can be applied to such “non-economic” issues as charity
and many, many other areas.

Seeing charitable giving through the lens of economics does not mean that
this is the only way to study charity. The hope is that it provides insight and
furthers understanding of what is surely a multifaceted, complex process.

Exercises

1. The total change in charitable giving can be explained via the income
and substitution effects for giving. For c = 0.5, compute the income
and substitution effects when the tax break changes from 30% to 40%.
Describe your procedure.

2. Use Word’s Drawing Tools to draw a rough sketch of the income and
substitution effects for giving, labeling points A, B, and C and using
arrows to show the income, substitution, and total effects. Do not
include the indifference curves to reduce clutter.

3. Income and substitution effects were originally used to explain Giffen
goods. If the tax break increase leads to a decrease in charitable giving,
is this Giffen behavior? Why or why not?

References

The epigraph is a hadith, which the website islam.uga.edu/hadith.html ex-
plains is “a saying of Muhammad or a report about something he did.” It
would have been easy to find a quotation on charity from any religion be-
cause a primary purpose of religion is to encourage us to treat each other
with kindness.

If you are thinking of giving to a charitable organization, you can do some
background research at www.guidestar.org/ (free registration required to ac-
cess basic reports) and www.givewell.org/.

http://islam.uga.edu/hadith.html
https://www.guidestar.org/
https://www.givewell.org/
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Kiva.org is a microcredit organization that allows you to make loans to low-
income entrepreneurs all around the world.

If you liked the food stamps application and understand the concept that cash
is as good as or better than in-kind (the Carte Blanche Principle), check out
www.givedirectly.org.

https://www.kiva.org/
https://www.givedirectly.org/
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5.4 An Economic Analysis of Insurance

Why do people buy insurance?

If you are an economist, the answer is easy: because it makes them better
off. According to economists, people solve an optimization problem and it
turns out that those who buy insurance end up with greater satisfaction, on
a higher indifference curve, than if they did not buy insurance.

We will use an Endowment Model to explain how and why insurance is an op-
timal choice. We will see yet another application of how to solve a constrained
utility maximization problem and perform comparative statics analyses.

But the really deep lesson is that the Theory of Consumer Behavior is amaz-
ingly flexible and can answer questions from a wide range of problems. In
this chapter, we have explored why people save and borrow, give to charity,
and, now, buy insurance.

First, we will set up the problem with the usual constraint, indifference
curves, and initial optimal solution (with MRS equal to the slope condition).
The presence of risk, a probability that an event occurs, throws a curveball
into the analysis, but we will convert things into our usual framework.

Second, we will do comparative statics. For example, we derive a demand
curve for insurance. We can explore the effects of a higher premium, the
price of insurance, on the quantity of insurance demanded. We are on the
lookout for the premium elasticity of insurance.

An Endowment Model of Insurance

There are three parts to every optimization problem. In this case, we have
the following:

235
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1. Goal : maximize satisfaction (as represented by the utility function).

2. Endogenous variables : consumption in two states of nature, good and
bad; by choosing the amount of insurance, we control two choice vari-
ables at once.

3. Exogenous variables : initial assets, potential loss, probability of loss,
insurance premium, and preferences over the states of nature.

As usual, we start with the constraint, then turn to preferences, and finally
use the constraint and utility function to find the initial solution.

STEP Open the Excel workbook Insurance.xls and read the Intro sheet,
then go to the Constraint sheet.

The idea is that you have an asset, say your car or house, which may suffer
a given amount of damage from an accident, called the PotentialLoss, with a
known probability, π (the Greek letter, pi) that the damage occurs. Initially,
the PotentialLoss is $10,000, which is only a fraction of the value of the house.

You can buy K dollars of insurance, this is the InsuredAmount, by paying a
price (called a premium) of γ (the Greek letter, gamma) per $100 of insur-
ance coverage. On opening, you are not buying any insurance.

If you buy insurance, then if the accident occurs, you get reimbursed for the
loss. You can buy insurance in $100 increments, up to the PotentialLoss,
in which case you would be fully insured. The trade-off is that you have to
pay for insurance up front, before you know if the accident will happen or not.

After you decide how much insurance to buy, there are two possible out-
comes, known as states of nature: the bad and good outcomes.

STEP Click on cell B18 to see the formula for your consumption in the
bad outcome.

The ConsumptionBad outcome means the accident actually occurred, leav-
ing your consumption as InitialAssets − PotentialLoss + K − γK. You
subtract the loss that occurred and the amount you paid for insurance (γK),
but you add the amount K that the insurance company pays you because
you suffered the accident. You could be fully covered, but you do not have
to be. You decide how much insurance to buy.
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Your consumption in the good state of nature is simply InitialAssets− γK.
You do not suffer the accident, but you still have to pay for the insurance.

STEP Click on cell B19 to see the formula for the good outcome.

Cells B23:B25 display in which state of nature you end up. Cell B23 has the
formula “=RAND().” This draws a number from a uniform distribution on
the interval [0,1].

STEP Hit the F9 key on your keyboard repeatedly to understand Excel’s
RAND() function works.

Each time you hit the F9 key, Excel draws a random number from 0 to 1
in cell B23. The number drawn is never smaller than zero or bigger than one.

Cell B24 converts the random draw in the cell above it into a zero or a
one—zero means the accident did not happen (good outcome) and one means
it did (bad outcome). It uses an IF statement to display a “1” (the accident
happened) when the random draw is less than 0.01 (the value of π in cell B8).

It is hard to see that anything is really happening in cell B24 because the
probability of the accident occurring is so small.

STEP Change π to 50%, then hit F9 a few times. You should be able to
see cell B24 flip from 0 to 1 and back again as the random draw is less than
0.5 and greater than 0.5.

Notice that the FinalAssets variable, cell B25, depends on whether or not
the accident occurred.

Next, let’s buy some insurance to see what that does to the spreadsheet.

STEP Click the Reset button and set cell B13 to $1000. This will cost
you $10.

Notice the values for the good and bad states of nature. You have altered
both. If the accident occurs, your consumption is $25,990, which is $990 bet-
ter than the $25,000 for the bad outcome when you did not buy insurance.
Of course, the good outcome is $10 lower (at $34,990) in the good outcome
because you have to pay for the insurance even when the accident does not
occur.
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STEP Click the Graph the Constraint button. Click OK to the “4”

points default option and read each text box as it appears. At the end, the
budget line is displayed (see Figure 5.16).

Figure 5.16: The budget line.
Source: Insurance.xls!Constraint

From the initial endowment (Cb, Cg without insurance), you can move down
the budget line by buying insurance. You lower your consumption in the
good state of nature (Cg is on the y axis), but raise it in the bad state of
nature (Cb is on the x axis).

The terms of trade (the slope of the budget line) are determined by gamma
(the insurance premium). The slope of the budget line is − γ

1−γ , which with

γ = 0.01 is −1
99

= 0.01 (the “01” keeps repeating forever). The graph rounds
the slope to five decimal places.

Changes in initial assets or potential loss shift the budget constraint. We
are interested, however, in deriving a demand curve for insurance so we will
shock the insurance premium (the price of insurance). This will pivot or
rotate the budget line.

STEP Change the insurance premium to $1.20 per $100 of insurance cov-
erage.

You see the familiar swinging in (clockwise rotation) from a p1 increase. A
buyer of insurance would be disappointed in this shock because her consump-
tion possibilities are diminished.
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Now that we understand the constraint, we turn to the agent’s tastes. We
model utility as preferences over the two states of nature. The fact that there
is risk involved in which state of nature occurs complicates things.

Instead of having utility simply depend on the amount of consumption in
the good and bad outcomes, we include the agent’s expectations about the
chances of each outcome occurring. Fortunately, our usual Cobb-Douglas
functional form can incorporate this new information.

We use the exponents in the Cobb-Douglas functional form to represent the
agent’s beliefs about the probability of the accident occurring. There are
two simplifying assumptions. The first is that the agent accurately gauges
the probability of loss, which means we can use π as the exponent in the
utility function. The second assumption uses the fact that there are only
two mutually exclusive outcomes so the bad outcome occurs with probability
π and the good outcome has likelihood 1 − π. The possibility of a partial
loss is assumed away.

The utility function is then

U = Cπ
b C

1−π
g

The idea behind the utility function is simple: The higher the probability
of loss, the more the agent will care about the bad outcome. In terms of
the indifference map, the higher π, the steeper the indifference curves. This
means the agent cares more about consumption in the bad state of nature
as risk rises.

Unlike the Standard Model where the exponents in the Cobb-Douglas utility
function can be used to represent changes in preferences, changes in the ex-
ponents do not indicate a change in preferences for the utility function with
risk. To get a change in preferences, we need an entirely different utility
function.

It is beyond the scope of this book, but there is a great deal of research
on choosing with random outcomes. The field of behavioral economics was
born with the discovery of paradoxes, violations of transitivity and other
inconsistencies, when people made choices involving randomness. Our Cobb-
Douglas utility function can be written as an expected utility function by
simply taking the natural log:

lnU = πCb + (1− π)Cg
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This function reflects risk averse preferences. It is a starting point for mod-
eling attitudes and feelings toward risk and randomness.

STEP Proceed to the Preferences sheet to see an implementation of the
Cobb-Douglas utility function.

The sheet tries to give a new way of understanding how constrained utility
maximization works. It shows consumption in the bad and good states of
nature, $25,000 and $35,000, respectively, without insurance. This is the
initial endowment point.

With π = 1%, we can compute the level of utility for the initial endowment
combination of consumption in the bad and good states of nature. This is
shown in cells D13 and E13. We can also compute the MRS at the initial
endowment, displayed in cells G13 and H13.

The Dead and Live utility and MRS are the same because we are at the
initial endowment. The Dead cells are numbers. They will not change when
we change the cells in column B. The Live cells contain formulas. They will
update when you change the values of Cb, C + g, and π.

STEP Ponder and answer the question in cell A6. Click on the Answer
when you are ready. Do the same for B10.

The Live utility and MRS cells change when you change cells B13 and B14.
As you moved down from the initial endowment, utility rose and the MRS
fell. It got closer to the slope which means we are closer to the optimal so-
lution.

We are ready to find the initial optimal solution.

STEP Proceed to the OptimalChoice sheet.

The OptimalChoice sheet reproduces the Constraint sheet, but it adds the
indifference map to the chart and displays the slope of the budget line and
the MRS at the bottom of the chart. It also displays the utility in cell B20
from the chosen consumption in the two states of nature.

It is really hard to see what is happening with the indifference curve at the
initial endowment and the slope of the budget line.
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STEP Zoom in—double-click the y axis and make the minimum bound
34800 and the maximum bound 35200.

You can now see clearly that when MRS > slope of the budget line, the
budget line cuts the indifference curve. By moving down the budget line,
you can reach higher levels of satisfaction.

STEP Enter 5000 in cell B13 to see where the agent stands when buying
$5000 of insurance.

The chart shows movement down the budget line to a higher level of utility.
We are closer to the optimal solution, but not there yet because MRS is not
equal to the slope of the budget line.

STEP Run Solver to find the optimal solution.

The Solver dialog box is notable for the fact that there are no constraints.
The way we implemented the problem in Excel enabled us to directly max-
imize the utility cell by choosing a single variable, the amount of insurance
purchased. We can still use, however, the canonical Theory of Consumer
Behavior graph to show the result.

At the optimal solution, the consumer decides to buy $10,000 of insurance.

In the bad state, if the accident occurs, the agent is fully covered, so is con-
sumption $35,000? No, because the agent has to pay $100 for the insurance,
so consumption would be $34,900 in the bad state.

In the good state, where there is no accident, consumption is also $34,900.
This is surprising. Insurance has removed the effect of risk. Consumption is
the same in both states. This is an extreme example of diversification.

Diversification is a strategy to lower risk by spreading your wealth over differ-
ent states of nature. By moving $100 from the good state of nature (buying
insurance), the agent has a guaranteed level of utility regardless of whether
the accident happens. Without insurance, the expected return is $34,900
since 99% x $35,000 + 1% x $25,000 = $34,900. But the agent has to put
up with the risk of every 1 in 100 times getting $25,000. By diversifying, the
expected return is the same, $34,900, with absolutely no risk.

Such a perfect result—the complete elimination of risk—relies on the fact
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that the two states of nature are perfectly correlated. In the real world, when
states of nature are not perfectly correlated (such as the stock market), di-
versification can lower risk while maintaining the same expected return, but
it cannot completely eliminate it.

We know that people buy insurance because it increases satisfaction. This
application models choosing the amount of insurance that maximizes utility
subject to the budget constraint. Next, we use the model to derive a demand
curve for insurance.

Comparative Statics

The procedure is straightforward: we vary the insurance premium (the price
of insurance), γ, ceteris paribus, and track the optimal amount of insurance
purchased (K ) to derive a demand curve for insurance.

We use numerical methods and leave the analytical work for the exercises.

STEP In the OptimalChoice sheet, change γ to $1.30 per $100 of insur-
ance. What happens?

The budget line (displayed in red on your screen) gets steeper. The agent
needs to re-optimize.

STEP Run Solver to find the new optimal solution.

If you did not zoom in on the y axis as instructed earlier, it is hard to see
on the chart, but the cells below the chart confirm that the MRS equals the
slope of the budget line when the agent buys $1847 of insurance.

We can conclude that demand for insurance is downward sloping when the
premium rises from $1.00 to $1.30 since the amount of insurance purchased
fell from $10,000 to $1847. That is extremely responsive.

STEP Compute the price elasticity of demand. Proceed to the CSgamma
sheet to check your answer. Notice that Excel tries to help when you enter
the formula by formatting the result as dollars. This is incorrect. Elasticity
is unitless.

The CSgamma sheet shows that the CSWiz add-in was used to explore the ef-
fect of the insurance premium on the amount of insurance purchased. Gamma
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was incremented by 0.1 (10 cents) with 10 shocks. Optimal K, γK,Cb, and
Cg were tracked as γ changed. The sheet includes a chart of K* = f(γ), the
demand curve for insurance.

Notice the curious behavior of the model as γ rises: at $1.40, optimal K
becomes negative. This is an Endowment Model. When premium prices get
high enough, the agent switches from buying insurance to selling insurance!

If this option is not allowed, you can impose the constraint in Excel that K
be greater than or equal to zero. Then, with high premiums, the consumer
is at a corner solution and buys no insurance.

Modeling Insurance via the Endowment Model

Insurance is another application of an Endowment Model in the Theory of
Consumer Behavior. The usual ideas were applied: the budget constraint,
preferences, and MRS equals slope of budget line at the optimal solution.
In addition, the usual recipe of the economic approach, finding the initial
optimum and then comparative statics, was followed.

But this application does have its own twists and novelties. We used a Cobb-
Douglas functional form to model satisfaction where the exponents reflect the
probabilities of the states of nature. We also used Excel’s Solver without a
budget constraint because of the way we implemented the problem in Excel.
To be clear, this problem can be solved via the Lagrangean method (see the
first exercise question) and we could have implemented a “max U subject to
a constraint” model in Excel. We would get, of course, the same answer.

Exercises

1. Use analytical methods to derive a general reduced form solution for
K*. Show your work.

Although you can use the Lagrangean method, it is easier to maximize
the utility directly, substituting in the values for each state of nature.

max
K

U = Cπ
b C

1−π
g
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The key is that consumption in the good and bad states of nature
depends on K :

Cb = InitialAssets− PotentialLoss+K − γK

Cg = InitialAssets− γK

We can simply substitute these equations into the utility function and
maximize this:

max
K

U = [InitialAssets−PotentialLoss+K−γK]π[InitialAssets−γK]1−π

2. Compare the analytical versus numerical approaches by evaluating your
answer to question 1 at the initial parameter values in the Optimal-

Choice sheet. (Click the Reset button if needed.) Do you find that
K* = $10, 000?

3. Use your reduced form for K* to find the probability of loss elasticity
of insurance demand at π = 1%. Show your work. If you cannot find
the reduced form, use

4. Use the Comparative Statics Wizard to find the probability of loss
elasticity of insurance demand from π = 1% to 1.1%. Take a picture
of your results, including the elasticity calculation.

5. Compare your answers in question 3 and 4. Do these elasticities differ?
Why or why not?
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In the late 1990s, the price of term life insurance fell dramatically.
This posed something of a mystery, for the decline had no obvious
cause. Other types of insurance, including health and automobile
and homeowners’ coverage, were certainly not falling in price. Nor
had there been any radical changes among insurance companies,
insurance brokers, or the people who buy term life insurance.
So what happened? The Internet happened. In the spring of
1996, Quotesmith.com became the first of several websites that
enabled a customer to compare, within seconds, the price of term
life insurance sold by dozens of different companies. (p. 66)

The freakonomics.com website has podcasts and other resources.

https://freakonomics.com
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One of the best-documented propositions in
the field of finance is that, on average,
investors have received higher rates of
return for bearing greater risk.

Burton Malkiel

6.1 Risk Versus Return

In finance, a portfolio means the total holdings of stocks, bonds, and other
securities of an individual (or other entity, such as a trust or foundation).

Because the investor can decide which securities to include in her portfolio,
in other words, because choices are made, we can apply the method of eco-
nomics. Optimal Portfolio Theory is the name given to the application of
the Theory of Consumer Behavior to analyze decisions about which assets
to hold.

An important stop on our journey is shown in Figure 6.1, the initial solution
to the constrained optimization problem.

Figure 6.1: The initial solution.
Source: RiskReturn.xls!OptimalChoice

There are some strange features in Figure 6.1 and you are not expected to
understand it right away. Perhaps the weirdest thing is that the budget con-
straint and indifference curves are upward sloping. Because risk (on the x
axis) is a bad (not a good), the agent substitutes more of the bad for more
of the good (return, on the y axis) on an indifference curve.

249



250 CHAPTER 6. BADS

There are also, however, elements that are familiar and comfortable in Fig-
ure 6.1. There are exogenous (green) and endogenous (blue) variables with
a goal. There is a constraint and a few curves with a tangency highlighted
that is obviously the optimal solution. And we can see the usual MRS =
slope condition below the chart.

Of course, Figure 6.1 is just the initial optimal solution. There is more to do
than simply finding the initial solution. That is why Figure 6.1 is an impor-
tant stop on our journey, but we have more to travel. We want to explore
how the optimal solution changes as one of the exogenous variables changes,
ceteris paribus. This is called comparative statics analysis.

The procedure that defines the Theory of Consumer Behavior is clear: con-
straint, preferences, find initial solution, then comparative statics to make
statements about how a shock variable affects an optimal choice variable. We
will do an elasticity computation and interpretation of the shock. The short
way of saying all of this is to just say that we are going to do an economic
analysis of portfolio choice.

But since we will be talking about returns from assets, volatility, and the
stock market, let’s look at some data to make sure we understand some basic
facts.

Stock Market Returns

STEP Open the Excel workbook RiskReturn.xls and read the Intro sheet,
then go to the Data sheet.

The sheet has returns from the S&P 500 index, a group of 500 large compa-
nies, downloaded from www.moneychimp.com/features/market cagr.htm.

These data are used to show that returns are quite volatile. The sheet also
explains the difference between the arithmetic and geometric mean.

STEP Read the explanation in the Data sheet, scroll down to see the

data (all the way down to 1871), and then click the Next button.

This reveals more material. Keep reading and clicking the Next buttons

until you get to the end and then be sure to click the More button.

http://www.moneychimp.com/features/market_cagr.htm
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Of utmost importance is that you understand the volatility in the S&P 500
returns. They swing wildly and unexpectedly, from incredible spurts of 50%
to staggering losses of almost negative 50%.

STEP Look in columns A and B of the Data sheet at the 1930s, during
the Great Depression. Scroll slowly back up, looking at the data.

The volatility in the stock market, measured by the standard deviation, SD,
of almost 20%, is unwelcome and unsatisfying. The fear of financial disaster
and the risk of losing money lowers utility.

Then why do people put their money in assets like the S&P 500? Because
the overall annual return is high—much higher than safer, less volatile assets.
For the S&P 500, the overall annual return (as you now know, measured by
the geometric mean, GM, or compound annual growth rate, CAGR) is about
9% per year.

The stock market’s 9% annual return is much higher than that available from
a safe, stable asset that produces consistent annual returns like US Treasury
Bills. Cell H10 in the More sheet shows that the SD is a mere three percent-
age points. The variability arises because the yield changes over time, but
once you buy a US Treasury note for a particular length of time, you can
be quite sure that you will be paid. But right below the SD we see that the
overall annual return is one-third of the stock market’s return.

The key point is that financial markets offer the investor a menu of options,
from low risk, low return to high risk, high return, and the investor chooses.
All we need to do is model that choice as an optimization problem.

Optimal Portfolio Theory

The Compare, Mix, and Constraint sheets in RiskReturn.xls demonstrate
that an investor can mix two assets, a risk-free and a risky asset, to create a
portfolio that has a particular combination of risk and return.

The investor is not free to pick any combination of risk and return. They
must stay within the constraint imposed by the market. The idea is that you
have a fixed amount of money, say $10,000, to allocate across two assets.
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The risk-free asset, say a US Treasury Bill, has a certain (practically speak-
ing) rate of return, say 5% per year, which is unrealistically high for the
current climate. Thus, you are sure to get 5% of $10,000, or $500, along
with your initial investment of $10,000 at the end of the year. Each year, a
$10,000 investment is guaranteed to produce $500 of return.

The risky asset, say a mutual fund of stocks, has a greater return, but also
volatility in the actual realized return. We will suppose that the actual return
will be drawn from a normal distribution centered on 12%, with a spread of
20%. Both of these values are a little higher than the historical experience
of the S&P 500 (in the Data sheet). Our parameter values mean that the
typical realized value in our hypothetical world will be around 12% ± 20%
points. It also means you will actually lose money (suffering a negative re-
turn) about a quarter of the time.

But this is way too abstract. To understand the meaning of these parameters,
let’s work on a concrete problem with actual numbers and a clear display of
what is going on.

STEP Go to the Compare sheet.

The bell-shaped curve is the normal distribution from which each year’s re-
turn will be drawn. The center and spread are controlled in cells A2 and C2.

The sheet allows you to run the two investments against each other and
shows how volatility impacts the annual returns.

STEP Click the Invest One Year button.

For the risk-free asset, cells I3 and L3 show 5% and $500. In other words, if
you place $10,000 in the risk-free asset, these are the returns on that invest-
ment.

The risky asset is different. Cells J4 and M4 show a number that is taken
from the normal distribution on the left of your screen, centered on 12 with
an SD of 20. Thus, the number in J4 is likely to be around 12, but could
easily be in the range −8 to 32 (±1 SD from the average) and roughly 95%
of the time will be between −28 and 52 (±2 SDs from 12).

STEP Click the Invest One Year button a few times.
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You can clearly see what is happening here. The return from the risk-free
asset is always the same, but the risky asset bounces around.

Once you have more than one year of returns, the display shows more infor-
mation in columns P:S. You can see the arithmetic mean of the returns, SD,
the exact geometric mean, and its approximation.

STEP Click the Invest One Year button many times, at least 20.

Notice what is happening to the average of the returns of the risky asset as
you keep adding years: The average return is converging to 12% (the average
return from the normal distribution in A2). In other words, over the long
haul, the risky asset will outperform the risk-free asset. However, in any one
year, the risky asset can do pretty badly. Look at your screen to confirm
that this is true. You will see some whopper losses (and gains)—just like the
real-world S&P 500 data.

STEP Click the Reset button and set the dispersion to 6% (in C2).

Repeatedly (many times) click the Invest One Year button.

The SD of the normal distribution controls the variability. The lower SD
makes the normal distribution much more spiked. In other words, the draws
from the distribution are much more concentrated at the average and it is
much less likely that you will see values far from the center of the distribution.

As you get one yearly return after another (keep drawing more returns), it
is easy to see that the returns are much closer to 12%. You will rarely lose
money with an average of 12% and an SD of 6%.

In finance, risk is denoted by the Greek letter sigma, σ. The SD and σ are
the same thing. Both represent risk as volatility and bounce in returns, in-
cluding the possibility of negative returns. Risk is bad and undesirable. The
lower the risk, the better.

What determines the amount of risk in the risky asset? That depends on the
asset. We have seen that the S&P 500 has a lot of volatility. From 1871 to
2019, it has experienced an overall annual return of about 9% with an SD of
18%. The More sheet showed that other assets have different volatility. So,
the investor is given the average and SD parameters of various assets and
chooses what to invest in.
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Although we ran risk-free and risky assets in the Compare sheet, in fact, the
choice is not simply between a risk-free and a risky asset. You can combine
the two in varying proportions.

For example, you could split your investment and put $5000 in the risk-free
and $5000 in the risky asset. In this case, your return would be halfway
between the risk-free and risky assets:

rf + rm
2

= 8.5%

Although the return is lower than using the risky asset alone, your risk, the
variability in returns, would be cut in half also.

STEP Proceed to the Mix sheet to see this idea in action.

The Mix sheet is the same as the Compare sheet, except it has a scroll bar
in H1 to control the allocation of your $10,000 across the two assets.

STEP After you set the scroll bar value (any value will do; pick the one

you think makes the most sense for you), click the Invest One Year button
many times.

You should be able to see that the average return for your mix (or portfolio)
converges on a return that is in between the risk-free and risky assets. In
other words, you can choose the return and risk that you get. You must,
however, trade them off—more return requires accepting more risk.

STEP Experiment. Use the Reset button to try different mixes and
parameter values (yellow-backgrounded cells A2, C2, and F2).

You can copy the Mix sheet (right-click the sheet tab, select Move or Copy,
and check Create a Copy) if you want to compare different scenarios. The
more you experiment, the more you learn.

Your work in the Compare and Mix sheets makes understanding the con-
straint much easier because you have seen that there are two assets that can
be mixed to form a portfolio with a continuous range of risk and return pos-
sibilities. This constitutes the constraint for the investor. He or she is free to
choose combinations of risk and return, trading higher risk for greater return.
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STEP Proceed to the Constraint sheet.

There are two endogenous variables, YourRisk and YourReturn, in cells B14
and B15. These are the risk and return you have chosen, in other words,
a single point on the budget line. However, we can create a single vari-
able, YourMix (just like in the Mix sheet) that controls the proportion of
your investment in the two assets and the values of risk and return you select.

Clearly, you can mix the risk-free and risky assets in any combination from
0 to 100%. Zero means you buy just the risk-free asset and 100% means you
buy only the stock market.

Do not confuse the exogenous variable Market Risk with the endogenous
variable YourRisk. The riskiness of the risky asset, sigma, is exogenous to
the agent. But the agent determines how much risk to take and, therefore,
the chosen amount of risk is endogenous.

STEP Change B13 to 20%, 50%, and 90%.

As you change B13, the red dot moves on the constraint. You can put the red
dot wherever you like along the line. At 50%, you are setting YourRisk to
10% (this is the variability in the 50/50 portfolio) and YourReturn to 8.5%
(halfway between rf and rm).

The equation of the budget line (derived in the Constraint sheet) is

Y ourReturn = rf +
rm − rf

σ
Y ourRisk

Clearly, if you choose a risk of zero, then your return is the risk-free return.
This is the y intercept. As you accept more risk, your return grows with a
slope given by

rm−rf
σ

Notice that combinations under the budget constraint are feasible, but will
not be selected because more return can always be obtained at the same risk
by going straight up. Points to the northwest of the line are more desirable,
but are unattainable.

Which mix is the best, the optimal choice? We cannot answer this question
with the constraint alone. It tells us only the choices we can make. To answer
the question, we need to model preferences.
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But before we leave the constraint, let’s explore the effect of a change in
sigma, Market Risk. This will be our shock variable when we do compara-
tive statics analysis.

Remember when you lowered the SD to 6% and that made the variability
in the risky asset go way down? That was a welcome shock. What would
happen to the constraint if we applied that shock? Before we do it, ponder
the question. Do you have an answer? Let’s see how you did.

STEP Change Market Risk, cell B10, to 6.

The budget line rotates up (counterclockwise) around the y intercept. This
gives the investor access to higher returns with the same risk or the same
return with less risk. Mathematically, it also makes sense since we lowered
the denominator in the slope, so the slope term increased, making the line
steeper.

STEP Proceed to the Preferences sheet to see how we handle risk as a
bad.

Our usual Cobb-Douglas functional form can be modified to reflect a bad
with a simple tweak:

U(Y ourRisk, Y ourReturn) = (30− Y ourRisk)aY ourReturnb

The clever trick here is subtracting a variable from a constant, which has
been chosen to be bigger than the possible values of the variable. By hav-
ing a constant, 30, which is a bigger number than the relevant range for
Risk (from zero to 20), as we increase the chosen amount of YourRisk,
30–Y ourRisk falls. This gives us a bad because utility falls as YourRisk
rises (for Y ourRisk < 30). YourReturn is a good—as YourReturn rises, so
does utility.

The chart shows three representative, upward sloping indifference curves.
The investor gets equal satisfaction by the combinations of risk and return
on a single indifference curve. If the investor takes on more risk, she must
be given more return to compensate.

STEP The agent is free to choose any combination of risk and return
that is on the budget line. Change B12 to 50.
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Figure 6.2 shows the result. In addition to the three original indifference
curves with a black dot, three new curves are displayed along with a red dot.
The black dot is the initial 75% mix choice and it produced Dead Utility of
153.75 and a Dead MRS of about 0.6833.

Figure 6.2: The investor’s indifference map, a = b = 1.
Source: RiskReturn.xls!Preferences

The red dot is live in the sense that it depends on the value of B10. The
chart displays the indifference curve that goes through the mix value in B10,
along with an indifference curve and another below it.

A mix of 50% risky is better than 75% for this investor because utility went
up. The red dot is on a higher indifference curve. Notice also that the MRS
fell, getting closer to the slope of the budget line. That means the investor
is getting closer to the optimal solution.

STEP Change B12 to 90.

Now the reverse is true. The red dot is on a lower indifference curve and the
MRS is farther away from the slope.

STEP Change the exponent on YourReturn in B19 to 4 and click the

Set button.

The indifference curves are now much flatter. What does this mean?

STEP Change B12 to 50 and 90.

We are getting different results than before? What is going on?
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If b > a, the investor cares more about return than risk. The flat indifference
curves (with low MRS) mean that they are willing to accept a lot of risk for
a little more return. These preferences mean that this investor will find an
optimal solution with a high risk, high return combination.

STEP Change B19 to 0.4 and click the Set button. Explore the satis-
faction produced by mixes of 50% and 90%. What do you learn?

With a low b (lower than a), this investor is more concerned with risk. They
are conservative and their optimal solution will lie on a low mix value. In
fact, these preferences produce a corner solution, with the investor putting
all $10,000 into the risk-free asset.

Preferences are not right or wrong. If you are young and saving for retire-
ment, it makes sense that a < b, but even then, if a person does not like risk,
that is not a defect. An aggressive investor is not in any sense better than
a conservative investor. Some people like risk and others do not in the same
way that some people like broccoli or the color blue and others do not.

Preferences are not set in stone. They can be affected by the environment. A
short time horizon, such as needing funds for college in a year, will rotate the
indifference map, reflecting an investor who is more conservative. Likewise,
retired people, typically, become more conservative and less willing to accept
risk.

With the constraint and preferences modeled, we are ready to find the opti-
mal solution.

STEP Proceed to the OptimalChoice sheet to see the numerical method
in action.

The OptimalChoice sheet opens with an inefficient solution. The MRS is
greater than the slope of the budget line so the indifference curve cuts the
line. The agent should move down the line, accepting less return for less risk.
This increases satisfaction. But how far down to travel?

STEP Run Solver to find the answer to this question.

At the optimal solution, the MRS equals the slope of the budget line and the
agent is on the highest attainable indifference curve.
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For this agent (with these attitudes toward risk and return) and the given
market trade-off between risk and return (captured by the equation of the
budget constraint), the optimal solution is found with a mix of about 39%
of funds invested in the risky asset. Thus, the optimal risk to accept is 76

7

and the optimal return is 73
4
.

Via analytical methods, we can use this Lagrangean to find optimal YourRisk
(x1) and YourReturn (x2).

Try doing this problem and if you get stuck, the solution for a similar prob-
lem in the Q&A sheet is in the Answers folder.

Comparative Statics

As usual, there are a number of comparative statics exercises to consider
and they can be done via numerical or analytical methods. Let’s explore the
effect of an increase in sigma, the amount of risk the market forces you to
bear in return for better performance.

STEP In the OptimalChoice sheet, increase σ from 20 to 25. What hap-
pens?

Figure 6.3 and your screen show a new, red budget line that has rotated
clockwise and down.

Figure 6.3: Increasing sigma, Solver yet to be run.
Source: RiskReturn.xls!OptimalChoice
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The flatter slope is bad for the investor because consumption possibilities
have been reduced. The market says that for a given amount of return, you
must accept more risk. How will the investor respond to this shock?

STEP Run Solver to find out.

You will see that the agent chooses less risk and less return. What elasticity
is under consideration here? There are several. There is the sigma elasticity
of YourRisk, the sigma elasticity of YourReturn, and the sigma elasticity of
YourMix.

Of course, these elasticities can also be computed at a point, using the deriva-
tive. One of the exercises asks you to do exactly that.

STEP Try your hand at computing the sigma elasticity of YourRisk from
σ = 20% to 25%. Check your answer in the CSsigma sheet.

Of course, these elasticities can also be computed at a point, using the deriva-
tive. One of the exercises asks you to do exactly that.

Because the change in sigma is a change in the slope of the budget line, we
can use the Slutsky decomposition approach to break down the total effect
into income and substitution effects. This work is left for you as an exercise.

Asset Allocation is an Optimization Problem

Optimal Portfolio Theory is yet another application of the Theory of Con-
sumer Behavior. The twist here is that one of the choices, risk, is a bad. The
agent cannot ignore risk. She is forced to accept more risk to secure greater
return.

The core concepts of the Theory of Consumer Behavior remain easily vis-
ible: a budget constraint describing consumption possibilities, preferences
translated into an indifference map, maximization of utility given a budget
constraint, and MRS equals slope of budget line at the optimal solution.

Perhaps most importantly, once we cast the problem as a choice, how to
allocate assets among stocks, bonds, and other financial instruments, we are
firmly in the land of Economics. This particular optimization problem is
different from previous applications in that individuals are keenly interested
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in getting the optimal solution right. There is often a lot of money at stake
and mistakes can prove costly (for example, with a retirement portfolio).

As economists, we remain interested in comparative statics. Changing pref-
erences are an important shock variable in this application. We do not shake
our heads at the conservative investor who finds an optimal solution (given
conservative preferences) at a low risk, low return point.

Exercises

1. Use the equation that follows to solve for YourRisk* (x1) and YourRe-
turn* (x2) in terms of the exogenous variables. Show your work.

2. Use your reduced form solution to find the sigma elasticity of YourRisk
at σ = 20% (and the values of the other exogenous variables from the

initial position of the OptimalChoice sheet—click the Reset button if
needed). Show your work.

3. Use Word’s Drawing Tools to draw a well-labeled graph that depicts
the total, income, and substitution effects for YourRisk. Make the
substitution effect greater than an opposing income effect.

4. Compute the total, income, and substitution effects for YourRisk for
the change in sigma from 20% to 25%. Show your work and describe
your procedure.

References

The epigraph is from page 184 (9th edition) of a classic, excellent book on
personal finance and the stock market. A Random Walk Down Wall Street
by Burton Malkiel was originally published in 1973 by W. W. Norton &
Company and the 12th edition came out in 2020. This is not one of those
silly books with a scheme to beat the market. Malkiel is sober and reliable.
On page 26, he says,

https://www.google.com/search?q=malkiel+random+walk+down+wall+street
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Let me make it quite clear that this is not a book for speculators; I
am not going to promise you overnight riches. I am not promising
you stock-market miracles. Indeed, a subtitle for this book might
well have been The Get Rich Slowly but Surely Book.

For a much deeper analysis of finance with an Excel-based presentation style,
see Principles of Finance with Excel by Simon Benninga (New York: Oxford
University Press, 2017. 3rd edition).

https://www.google.com/search?q=benninga+principles+of+finance+with+excel


Minivans have the lowest fraction of driver
fatalities that are men under 26 years old (4
percent); sports cars have the highest (39
percent). So we suspect that differences in
the behavior of their drivers account in large
measure for why these two classes of
vehicles pose such different risks to the
people who operate them.

Thomas P. Wenzel and Marc Ross

6.2 Automobile Safety Regulation

Cars are much, much safer today than in the past. Everyone knows that seat
belts, airbags, and anti-lock brakes have made cars safer. The future holds
great promise: guidance and avoidance systems, fly-by-wire technology that
will eliminate steering columns, and much more; culminating in self-driving
vehicles that communicate with each other.

But cars remain dangerous, both to vehicle occupants and others, such as
cyclists and pedestrians. The United States uses the Fatal Accident Report-
ing System (FARS) to gather information about every motor vehicle crash
in which someone dies. Such an event requires sending detailed information
to FARS. Police record many variables, including time, weather conditions,
demographic data, and whether drugs or alcohol were involved.

STEP To see the data, open the Excel workbook SafetyRegulation.xls
and read the Intro sheet, then go to the Data sheet.

You can see that 36,650 people died in 2018 in a traffic accident. About half
of the fatalities were drivers, almost 5,000 were motorcyclists, and 7,354 were
non-motorists.

While FARS has data on the total number of deaths back to 1994 (36,254),
simply comparing total fatalities over time is not a good way to measure
driving safety. Under Other National Statistics, the data show that, year
after year, there are many more people driving cars many more miles. So,
we need to adjust the total number of fatalities to account for these increases.

We need a fatality rate, not the total number of fatalities. By dividing total
deaths by the number of miles traveled, we get a measure of fatalities per
mile traveled. This results in a tiny number so, to make it easier to read, the
fatality rate is reported per 100 million miles traveled.

263
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Adjusting with miles traveled is not the only way to create a fatality rate.
The Data sheet shows rates based on population, registered vehicles, and
licensed drivers. They all tell the same story.

Figure 6.4 shows the United States traffic fatality rate. The number of fa-
talities per 100 million miles traveled has fallen from 1.73 in 1994 to 1.17
in 2017, which is about a 30% decrease during this time period. That is
welcome news.

Figure 6.4: Traffic fatalities per 100 million miles traveled.
Source: SafetyRegulation.xls!Data

www-fars.nhtsa.dot.gov/

Less encouraging in Figure 6.4 is the leveling off since 2009 and the increase
from 2014 to 2016. Distracted driving because of phone use and texting are
suspected contributors.

The data in FARS only track fatalities and, thus, say nothing about nonfa-
tal accidents. It turns out we are doing better here also—injury rates and
severity of injury have also declined.

So, all is well? Actually, not exactly.

Although it may seem greedy, fatalities and injuries should have fallen by a
lot more. We are doing better because fatal accident and injury rates have

https://www-fars.nhtsa.dot.gov/
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fallen, but we should be doing much, much better. After all, the car you
drive today is much, much safer than a car from 20 or 30 years ago. If the
vehicle you drive today is much safer than vehicles from 20 or 30 years ago,
then fatal accident and injury rates should have fallen more to reflect these
improvements. So, what is going on?

Economics can help answer this question. We will apply the remarkably
flexible Theory of Consumer Behavior to driving a car. Any problem that
can be framed as a choice given a set of exogenous variables can be analyzed
via the economic approach. There are certainly choices to be made while
driving: what route to take, how fast to drive, and what car to drive are
three of many choices drivers make. We will focus on a subset of choices that
involve how carefully to drive.

Theoretical Intuition

The key article that spawned a great deal of further work in this area was
written in 1975 by University of Chicago economist Sam Peltzman. The
abstract for “The Effects of Automobile Safety Regulation” (p. 677) says,

Technological studies imply that annual highway deaths would
be 20 percent greater without legally mandated installation of
various safety devices on automobiles. However, this literature
ignores offsetting effects of nonregulatory demand for safety and
driver response to the devices. This article indicates that these
offsets are virtually complete, so that regulation has not decreased
highway deaths. Time-series (but not cross-section) data imply
some saving of auto occupants’ lives at the expense of more pedes-
trian deaths and more nonfatal accidents, a pattern consistent
with optimal driver response to regulation.

This requires some translation. By technological studies, Peltzman is refer-
ring to estimates by engineers that are based on extrapolation. Cars with
seat belts, airbags, anti-lock brakes, and so on are assumed to be driven in
exactly the same way as cars without these safety features. This will give
maximum bang for our safety buck.

Economics, however, tells us that we won’t get this maximum return on im-
proved safety features because there is a driver response to being in a safer
car. By offsetting effects, Peltzman means that the gains from the safety
devices are countered, offset, by more aggressive driving.

https://www.jstor.org/stable/1830396
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Peltzman’s key insight, which separates an economist from the way an en-
gineer considers the problem, is to incorporate driver response. He says on
page 681:

The typical driver may thus be thought of as facing a choice,
not unlike that between leisure and money income, involving the
probability of death from accident and what for convenience I will
call “driving intensity.” More speed, thrills, etc., can be obtained
only by forgoing some safety.

This claim sounds rather outrageous at first. Do I suddenly turn into an Indy
500 race car driver upon hearing that my car has airbags? No, but consider
some practical examples in your own life:

� Do you drive differently in the rain or snow than on a clear day?

� Do speed bumps, if you can’t swerve around them, lead you to reduce
your speed?

� Would you drive faster on a road in Montana with no cars for miles
around versus on the Dan Ryan Expressway in Chicago? In which case,
Montana or Chicago (presuming you are actually moving on the Dan
Ryan), would you pay more attention to the road and your driving?

� If your car had some magic repulsion system that prevented you from
hitting another car (we almost have this), would you drive faster and
more aggressively?

Economists believe that agents change their behavior to find a new optimal
solution when conditions change. In fact, many believe this is the hallmark
of economics as a discipline. Many non-economists either do not believe this
or are not aware of how this affects us in many different ways.

If you do not believe that safer cars lead to more aggressive driving, consider
the converse: Do more dangerous cars lead to more careful driving? Here is
how Steven Landsburg puts it:

If the seat belts were removed from your car, wouldn’t you be
more cautious in driving? Carrying this observation to the ex-
treme, Armen Alchian of the University of California at Los An-
geles has suggested a way to bring about a major reduction in
the accident rate: Require every car to have a spear mounted
on the steering wheel, pointing directly at the driver’s heart.
Alchian confidently predicts that we would see a lot less tail-
gating. (Landsburg, p. 5)
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The idea at work here is only obvious once you are made aware of it. Con-
sider the tax on cars over $30,000 passed by Congress in 1990. By adding a
10% tax to such luxury cars, staffers computed that the government would
earn 10% of the sales revenue (price x quantity) generated by the number
of luxury cars sold the year before the tax was imposed. They were sadly
mistaken. Why?

People bought fewer luxury cars! This is a response to a changed environ-
ment. You cannot take for granted that everyone will keep doing the same
thing when there is a shock.

This idea has far-reaching application. Consider, for example, its relevance
to the field of macroeconomics. Robert Lucas won the Nobel Prize in Eco-
nomics in 1995. His citation reads, “for having developed and applied the
hypothesis of rational expectations, and thereby having transformed macroe-
conomic analysis and deepened our understanding of economic policy.” (See
www.nobelprize.org/prizes/economic-sciences/1995/press-release/)

What exactly did Lucas do to win the Nobel? One key contribution was
pointing out that if policy makers fail to take into account how people will
respond to a proposed new policy, then the projections of what will happen
will be wrong. This is called the Lucas Critique.

The Lucas Critique is exactly what is happening in the case of safety features
on cars. Economists argue that you should not assume that drivers are going
to continue to behave in exactly the same way before and after the advent
of automobile safety improvements.

What we need is a model of how drivers decide how to drive. The Theory of
Consumer Behavior gives us that model. You know what will happen next:
we will figure out the constraint. And after that? Preferences. That will be
followed by the initial solution and, then, comparative statics. We will find
the effect of safer cars on accident risk. This is the economic approach.

The Initial Solution

The driver chooses how intensively to drive, which means how aggressively
to drive. Faster starts, not coming to a complete stop, changing lanes, and
passing slower cars are all more intensive types of driving, as are searching
for a song or talking on your phone while driving. More intensive driving
saves time and it is more fun. Driving intensity is a good and more is better.

https://www.nobelprize.org/prizes/economic-sciences/1995/press-release/
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Unfortunately, it isn’t free. As you drive more intensively, your chances of
having an accident rise. No one wants to crash, damaging property and in-
juring themselves or others. Your accident risk, the probability that you have
an accident, is a function of how you drive.

The driver chooses a combination of two variables, Driving Intensity and
Accident Risk, that maximize utility, subject to the constraint.

The equation of the constraint ties the two choice variables together in a
simple way.

DrivingIntensity = SafetyFeatures ∗ AccidentRisk

Safety Features represents the exogenous variable, safety technology, and
provides a relative price at which the driver can trade risk for intensity.

On the Initial line in Figure 6.5, the driver is forced to accept a great deal of
additional Accident Risk for a little more Driving Intensity because the line
is so flat.

Figure 6.5: The driver’s constraint.

When cars get safer, the constraint line gets steeper, rotating counterclock-
wise from the origin, as shown in Figure 6.5. There are two ways to un-
derstand the improvement made available by better safety technology. The
horizontal, dashed arrow shows that you can get the same Driving Intensity
at a much lower Accident Risk. You can also read the graph vertically. For a
given Accident Risk, a safer car gives you a lot more Driving Intensity (follow
the vertical, solid arrow).
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Figure 6.5 shows that safer technology can be interpreted as a decrease in
the price of Driving Intensity. It affects the graph just like a decrease in p2

in the Standard Model.

The constraint is only half of the story. We need preferences to find out how
a driver will decide to maximize satisfaction.

We use a Cobb-Douglas functional form to model the driver’s preferences
for Accident Risk (x1) and Driving Intensity (x2), subtracting Accident Risk
from a constant so that increases in x1 lead to less utility.

U(x1, x2) = (1− x1)cxd2

Risk is measured between zero and 100 percent so 0 ≤ x1 ≤ 1. As x1 in-
creases in this interval, utility falls. The indifference curves will be upward
sloping because x1, Accident Risk, is a bad.

We can solve this model via numerical and analytical methods. We begin
with Excel’s Solver.

STEP Proceed to the OptimalChoice sheet.

The sheet shows the goal, endogenous variables, and exogenous variables.
Initially, the driver is at 25%,0.25, which is a point on the budget line (be-
cause the constraint cell shows zero). We will use % notation for Accident
Risk because it is a probability. The unrealistically high chances of an acci-
dent were chosen to maximize visibility on the graph. We use decimal points
(such as 0.5) for the driving intensity variable, which we interpret as an index
number on a scale from 0 to 1.

We know the opening point is feasible, but is it an optimal solution?

In previous Excel files, the graph is immediately displayed so you can in-
stantly see if there is a tangency. The missing graph gives you a chance to
exercise your analytical powers. Can you create a mental image of the chart
even though it is not there? Remember, comparing the slope of the budget
line to the MRS at any point tells us what is going on.

The slope is simply the Safety Features exogenous variable, which is +1. So
now the graph looks like Figure 6.5 with a 45 degree line from the origin.
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But what about the indifference curves? The MRS is minus the ratio of
marginal utilities. With c = d = 1, we have

We evaluate this expression at the chosen point, 25%, 0.25, and get

We immediately know the driver is not optimizing.

In addition, we know he can increase satisfaction by taking more risk and
more intensity, traveling up the budget line because the indifference curve is
flatter (1

3
) than the budget line (+1) at the opening point of 25%,0.25.

Do you have a picture in your mind’s eye of this situation? Think about it.
Remember, the MRS is smaller than the slope so the indifference curve has
to be flatter where it cuts the line.

STEP When you are ready (after you have formed the mental picture of

the situation), click the Show Chart button to see what is going on at the
25%,0.25 point.

The canonical graph (with a bad) appears and the cells below the chart show
the slope and MRS at the chosen point.

STEP Next, run Excel’s Solver to find the optimal solution.

With c = d = 1 and a Safety Features value of 1, it is not surprising that the
optimal solution is at 50%,0.50. Of course, at this point, the slope = MRS.

To implement the analytical approach, the Lagrangean looks like this:

An exercise asks you to find the reduced form solution.
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Comparative Statics

Suppose we get safer cars so the terms of trade between Driving Intensity
and Accident Risk improve. What happens to the optimal solution?

STEP Change cell B16 to 2.

How does the engineer view the problem? To her, the driver keeps acting the
same way, driving just like before. There will be a great gain in safety with
much lower risk of an accident. This is shown by the left-pointing arrow in
Figure 6.6. Intensity stays the same and risk falls by a great deal.

Figure 6.6: Improved safety features shock.
Source: SafetyRegulation.xls!OptimalChoice

For the engineer, because Driving Intensity remains constant, if it was 0.5,
then improving Safety Features to 2 makes the accident risk fall to 25%. We
simply travel horizontally along a given driving intensity to the new con-
straint.

The economist doesn’t see it this way at all. She sees Driving Intensity as a
choice variable and as the solution to an optimization problem. Change the
parameters and you change the optimizing agent’s behavior. It is clear from
Figure 6.6 that the driver is not optimizing because the slope does not equal
the MRS.

STEP With new safety technology rotating the constraint line, we must
run Solver to find the new optimal solution.

The result is quite surprising. The Accident Risk has remained exactly the
same! What is going on? In Peltzman’s language, this is completely offset-



272 CHAPTER 6. BADS

ting behavior. The optimal response to the safer car is to drive much more
aggressively and this has completely offset the gain from the improved safety
equipment.

How can this be? By decomposing the zero total effect on Accident Risk into
its income and substitution effects, we can better understand this curious
result.

Figure 6.7 shows what is happening. The improved safety features lower the
price of driving intensity, so the driver buys more of it. On the y axis, the
substitution and income effects work together to increase the driver’s speed,
lane changes, and other ways to drive more intensively. On the x axis, which
measures risk taken while driving, the effects oppose each other, canceling
each other out and leaving no gain in accident safety.

Figure 6.7: Income and substitution effects.

As driving intensity gets cheaper, the substitution effect (the move from A
to B in Figure 6.7) leads the driver to choose more intensity and pay for it
with more risk. The income effect leads the driver to buy yet more intensity
and (because risk is a normal bad) less risk. The end result, for this utility
function, is completely offsetting behavior.

Of course, this is not necessarily what we would see in the real world. We
do not know how many drivers are represented by these preferences. The
income effect for risk could outweigh the substitution effect, leaving point C
to the left of A in Figure 6.7.
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Theory alone cannot answer the question of what we will see in the real world.
Empirical work in this area does confirm that offsetting behavior exists, but
there is disagreement as to its extent.

An Economic Analysis of Driving

Choices abound when it comes to cars and driving. Should I take the highway
or stay on a surface street? Change the oil now or wait a while longer? Pass
this slow car or just take it easy and get there a few minutes later? Because
there are choices, we can apply economics. This chapter focused on applying
the Theory of Consumer Behavior to the choice of how intensively to drive.
The agent is forced to trade off a bad (the risk of having an accident) for
getting there faster and greater driving enjoyment.

Yes, teenagers make different choices than older drivers and everyone drives
differently on a congested, icy road than on a sunny day with no traffic, but
our comparative statics question focused on how improved automobile tech-
nology impacts the optimal way to drive.

Offsetting behavior is an application of the Lucas Critique: do not extrap-
olate. Instead, we should recognize that agents change their behavior when
the environment changes. Theory cannot tell us how much offsetting behav-
ior we will get. Only data and econometric analysis can tell us that.

Economists believe that we have not had as great a reduction in automobile
fatalities and injuries as our much, much safer cars would enable because
drivers have chosen to maximize satisfaction by trading some safety for driv-
ing intensity. Offsetting behavior explains why we aren’t doing much, much
better in traffic fatalities. But do not despair—we are maximizing satisfac-
tion given our new technology.

Exercises

1. Use the equation that follows to solve for x1* and x2* in terms of S
(safety features). Show your work.

2. Use your reduced form solution to find the S elasticity of x1* at S = 1.
Show your work.
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3. If the utility function was such that Driving Intensity was a Giffen
good, describe where point C would be located on Figure 6.7.

4. If the utility function was such that Driving Intensity was a Giffen
good, would this raise or lower traffic fatalities? Explain.
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In the past it was futile to double the wages
of an agricultural worker in Silesia who
mowed a certain tract of land on a contract,
in the hope of inducing him to increase his
exertion. He would simply have reduced by
half the work expended.

Max Weber

6.3 Labor Supply

We began the Theory of Consumer Behavior with the Standard Model where
cash income (m) is given. The Endowment Model replaced given cash in-
come with an initial endowment of two goods so the budget constraint became
p1x1 + p2x2 = p1ω1 + p2ω2. We then focused on choices with bads—risky as-
sets and accidents.

The application in this section is another example using a bad. As always,
our eventual goal is comparative statics and elasticity. In this case, we will
derive a supply curve for labor and concentrate on the wage elasticity of labor
supply.

An innovation in this section is that the accompanying Excel workbook is less
finished than usual. This enables you to practice implementing the model in
Excel.

Setting Up the Problem

Instead of a mere consumer, the agent in this application is a consumer and
worker.

Although an initial amount of non-labor income is assumed, total income
can be increased by working. More hours at work means more income and
greater consumption of goods and services. Consumption is good, but work
is bad. Therein lies the problem.

Our consumer/worker can buy a single good, G, representing all consumer
goods, at price p. Utility increases as she consumes more G.

The 24 hours in a day are divided into two types: work and leisure. The
number of hours spent working in one day, H, is chosen by the agent. Earned
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income is simply wH,where w is the wage rate in $/hr. Although work gen-
erates income, our agent does not like to work. H is a bad in the utility
function.

With this background, we are ready to organize the information into the
three areas that comprise an optimization problem:

1. Goal : maximize utility, which is a function of goods consumed, G, and
work, H, where H is a bad.

2. Endogenous variables : G, the amount of goods consumed, and H, the
number of hours worked.

3. Exogenous variables : p, the price of the composite good; w, the wage
rate; m, unearned, non-labor income; and parameters in the utility
function.

The solution to this constrained optimization problem is depicted on a graph
with a budget constraint and set of indifference curves. We consider each of
these elements separately and then combine them.

Budget Constraint

The budget constraint is m + wH ≥ pG. This equation says that total in-
come is composed of unearned income (m) and earned income (wH). The
inequality means that the consumer/worker cannot spend more on goods and
services (pG) than the total income available.

Because no time elapses in this optimization problem, there is no reason for
the agent to save (i.e., spend less than available) and we can make the con-
straint a strict equality, m+wH = pG. This allows us to use the Lagrangean
method to solve the problem analytically.

In terms of a graph, it is easy to see that we can write the constraint as the
equation of a line (with G on the y axis and H on the x axis) by dividing
by p:

m+ wH = pG

G =
m

p
+
wH

p
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Suppose w = $10/hr, m = $40, and p = $1/unit. What would the constraint
look like?

STEP Open the Excel workbook LaborSupply.xls and read the Intro
sheet, then go to the YourConstraint sheet.

Your task is to fill in the G column and create a chart of the constraint.
There are three steps.

STEP Click on B12 and enter a formula equal to the equation for G. The
cells w, p, and m are not named so you should use absolute references ($ in
front of column letters and row numbers) to enable easy filling down of the
formula.

When finished, the formula in B12 should look like this: = $B$4/$B$3 +
($B$2/$B$3)*A12.

STEP The next step is to fill down the formula.

STEP Finally, create a chart with H and G as the source data. Be sure
to label the axes of your chart.

The chart is based on hour intervals of work, but fractions of hours are possi-
ble. Thus, your chart should be a scatter chart with points connected by lines.

STEP Click the Reveal the Constraint button to see a finished version
of the budget constraint.

The agent is free to choose any point on the constraint. The y intercept, 40
(equal to m

p
), yields a small value of consumption, but the agent does not

have to work. Movement up the line yields more G, but requires more H.

Points to the northwest of the line are unattainable. For example, the con-
sumer/worker cannot afford the 10,200 combination. Working 10 hours adds
$100 to the $40 non-labor income. This is not enough to buy $200 worth of
goods.

What shock would enable our consumer/worker to buy the 10,200 combina-
tion?
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There are three possibilities, one for each exogenous variable in the con-
straint.

STEP From the Constraint sheet (click the Reveal the Constraint but-
ton from the YourConstraint sheet if needed), change the wage to 16 in B2.

The constraint rotates up, counterclockwise, with a steeper slope and the
same intercept, and the combination 10,200 is now feasible, which is easily
confirmed by looking at the chart and row 22.

Changes in wages, ceteris paribus, rotate the constraint around the unearned
income intercept.

STEP Return the wage to 10 in B2 (the constraint returns to its initial
position when you hit the Enter key) and set p (in B3) to 0.7.

Instead of raising the wage, we have made the composite good cheaper. As
with a wage increase, this is welcome news since there are more consumption
possibilities.

The constraint appears to simply rotate up again, but look more carefully at
the chart and underlying data. The slope is steeper, but the intercept has
also changed. The $40 of unearned income now buys a little more than 57
units of G. As before, it is easy to see that the combination 10,200 is now
feasible.

Changes in price (p), ceteris paribus, rotate and shift the constraint.

STEP Return the price to 1 in B3 (the constraint returns to its initial
position when you hit the Enter key) and set m (in B4) to 100.

This time, the constraint shifts vertically up. With $100 of unearned and
$100 of earned income (from working 10 hours), the combination 10,200 is
now feasible.

Changes in unearned income (m), ceteris paribus, shift the constraint.

Changes in w, p, and m affect the constraint. The initially unattainable
combination of 10,200 can be made feasible by appropriately changing any
of one of these three exogenous variables.
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Preferences

In previous applications with bads, we used a Cobb-Douglas utility function
and subtracted the bad from a constant. The same approach is adopted here.

Because the time period under consideration is a day, which has 24 hours,
preferences can be represented by U(H,G) = (24−H)cGd.

With H = 0, the agent gets the maximum value from the first term of the
utility function, but remember that earned income will then be low and,
therefore, G will be small.

Like the budget constraint, we need a visual representation of the utility
function.

STEP Proceed to the YourIndiffCurve sheet to implement the utility
function in Excel.

The sheet is unfinished. You need to fill in column B and draw a graph of
the indifference curve. The indifference curve is initially based on c = d = 1
and a level of utility of 1960.

To fill in column B, you need to solve for the value of G that yields a utility
level of 1960, given H. In other words, rewrite the utility function in terms
of G, like this:

STEP Use the expression above to enter a formula in B12 that computes
the value of G necessary to produce a utility of 1960 when H = 2.

Your formula should look like this: = ($B$5/((24 - A12)(̂$B$3)))(̂1/$B$4).
It evaluates to a value of G = 89.09. This result makes sense because when
H = 2, then 24 − 2 = 22 and 22 x 89.09 (since c = d = 1) equals a utility
value of 1960.
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Notice again the use of absolute references.

STEP Fill down the formula and draw a chart with H and G as the
source data. Label the axes.

Your chart is a graph of a single indifference curve. In fact, the entire quad-
rant is full of these upward sloping indifference curves and utility increases
as you move in a northwesterly direction (taking less of the bad, H, and more
of the good, G). This is the usual indifference map when we have a bad on
the x axis.

Click the Reveal the Indiff Curve button to check your work or if you need
help.

Finally, remember that changes in the exponents make the indifference curves
flatter or steeper. A Q&A question explores this point.

Finding the Initial Optimal Solution

Having modeled the constraint and preferences, we are ready to find the ini-
tial solution.

The numerical approach is covered here; the analytical method is an exercise
question.

STEP Proceed to the YourOptimalChoice sheet.

It is blank! You need to implement the problem in this sheet and run Solver
to find the initial solution.

Organize the problem into the usual components: goal (maximize utility),
endogenous variables (H and G), exogenous variables (w, p,m, c, and d), and
a cell for the constraint.

The utility function is U(H,G) = (24−H)cGd. The wage rate is $10/hr, the
price of G is $1/unit, unearned income is $40, and c = d = 1.

Click the Reveal the Optimal Choice button once you are finished or if you

get stuck and need help.
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Figure 6.8 shows the canonical graph of the initial optimal solution for the
consumer/worker’s constrained utility maximization problem.

Figure 6.8: The initial solution.
Source: LaborSupply.xls!OptimalChoice

This consumer/worker maximizes utility by working 10 hours, thereby earn-
ing $100 and then buying 140 units of G. There is no better solution. Trav-
eling up or down the budget constraint is guaranteed to lower utility because
the indifference curve is just touching the constraint at 10,140. The mathe-
matical way of saying this is that the MRS = w

p
at 10,140.

Comparative Statics: Deriving Labor Supply

How does H* respond as the wage rate changes, ceteris paribus? This com-
parative statics question yields the labor supply curve.

We concentrate on the numerical approach and leave the analytical method
for an exercise question.

STEP Proceed to the OptimalChoice sheet (in the YourOptimalChoice

sheet, click the Reveal the Optimal Choice button if needed). Use the Com-

parative Statics Wizard to pick a few points off of the labor supply curve.
Make the size of the change in the wage rate 10 and apply the default five
shocks.
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Use the CSWiz data to compute the wage elasticity of hours worked from
w = $10 to $20/hr. Create a graph the supply and inverse supply of labor
curves.

STEP Proceed to the CS1 sheet and scroll down (if needed) to check
your work.

Notice the labor supply and inverse labor supply curves (scroll down if
needed). The shape of the curve is intriguing. As wage rises, optimal H
seems to level off—it continues to increase, but ever more slowly.

Notice also that the computed wage elasticity of labor supply from w = 10 to
20 in E14 is quite small at 0.1. This means that hours worked is unresponsive
to changes in wages.

Labor supply has been extensively studied and extremely small elasticities
with respect to wage are commonly found (see McClelland and Mok (2012)
for a review of the literature). Income and substitution effects explain this
result.

STEP Return to the OptimalChoice sheet and click the Reset button,
then change the wage rate (in B16) from 10 to 20.

The budget constraint rotates up (counterclockwise) in the chart—a welcome
change in consumption possibilities. The initial optimal solution, 10,140, is
no longer optimal. The consumer/worker needs to re-optimize.

STEP Run Solver (with w = 20).

The new optimal solution is at H = 11. A 100% increase in the wage (from
10 to 20) has produced a total effect of a 1 hour, or 10%, increase in hours
worked.

We can decompose this total effect into income and substitution effects by
shifting down the budget line to cancel out the increased purchasing power of
the wage increase. In other words, we need to draw in an imaginary, dashed
line that goes through the initial solution, with a steeper slope caused by the
higher wage.

We can use a modified version of the Income Adjuster Equation to determine
the amount of income we need to take away. Recall that we determine how
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much income to change via ∆m = x1∆p1. In the labor supply model, x1

is obviously H, and the price is now the wage, but we also need a sign
change. An increase in the wage increases consumption possibilities in the
labor supply model so we need a minus sign to show that wage increases
must be offset by income decreases. Below is our modified Income Adjuster
Equation with values substituted in:

∆m = (∆H*)(−∆w)

∆m = (10)(−10) = −100

This says that we must lower unearned income by $100 to cancel out the
increased purchasing power from the $10/hr wage increase.

STEP Confirm that w = 20 (in B16) and change m to −60 (in B17).

Notice that the budget line goes through the initial combination, 10,140.
The line is not dashed, but it should be. Remember that this budget line
does not actually exist. No one is going to take $100 from the agent. We are
doing this to decompose the total effect of the wage increase into the income
and substitution effects.

STEP Run Solver with w = 20 and m = −60.

H* = 13.5 hours of work and Figure 6.9 shows the three effects.

Figure 6.9: Total, income, and substitution effects.
Source: LaborSupply.xls!OptimalChoice
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The substitution effect is +3.5, the movement from H = 10 (the initial opti-
mal solution) to 13.5 (the optimal solution with the higher wage, but lower
m). It is the horizontal movement from point A to B.

The income effect is −2.5, the movement from H = 13.5 (point B) to H =
11 (point C). The negative sign is important. It says that when income rises,
the agent buys less of the bad.

The total effect is, of course, the observed movement from point A to point
C, a 1-hour increase in hours worked. This is what would actually be ob-
served as the wage rose from $10/hr to $20/hr.

Figure 6.9 makes clear why the response of hours worked to a wage increase is
inelastic—the income and substitution effects are working against each other.
The fact that the relative price of goods for an hour of work is cheaper drives
the agent to work and consume more (this is the substitution effect, from A
to B). But the increase in purchasing power encourages the agent to work
less (from B to C, the income effect). The total effect on hours worked is
small when the two effects are added together.

In fact, the income and substitution effects can explain an even more curious
phenomenon that has been observed in the real world—hours worked actually
falling as wage rises. Figure 6.10 shows the underlying graph and derived
labor supply curve for an unknown utility function. Unlike the labor supply
derived from the Cobb-Douglas utility function, which was always positively
sloped, the labor supply curve in Figure 6.10 is said to be backward bending.
At low wages, increases in wage lead to more hours worked (such as from
point 1 to 2), but the supply curve becomes negatively sloped when wages
rise from point 2 to 3.

Figure 6.10: A backward bending supply curve.
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We have already seen that the small wage elasticity from point 1 to 2 is
caused by the income effect’s working against the substitution effect. The
same explanation underlies the negative response in hours worked as wages
rise from point 2 to 3. In this case, not only does the income effect oppose
the substitution effect, it actually swamps it.

Figure 6.11 shows what happens when we are on the backward bending
portion of the labor supply curve. The substitution effect always induces
more hours worked as wages rise. This is the movement from A to B. The
income effect, however, counters some of this increase in hours worked. We
can afford to work less (from B to C) because the wage is higher. When we
are on the backward bending portion of the labor supply curve, the income
effect actually overcomes the substitution effect so that the total effect (A
to C) is a reduction in hours worked as the wage rises. In Figure 6.11, any
point C to the left of A yields a point on the backward bending portion of
the labor supply curve.

Figure 6.11: Income and substitution effects when H* falls as w rises.

Wage rises and I work less sounds just about as weird as price rises and I
buy more. Is this Giffen behavior?

No because the wage change is not an own price effect. Figure 6.12 shows
p1 and p2 changes in the Standard Model where two goods are purchased
given fixed income. On the left, the change in p1 produces an own effect on
x1 and a cross effect on x2.If x1 rises as p1 rises, then x1 is Giffen. If x2

rises as p1 rises (notice the cross effect), however, that does not make x2 a
Giffen good. We use the cross effect to say that the goods are substitutes
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(instead of complements). To determine whether x2 is Giffen, we have to use
the graph on the right of Figure 6.12. If x2 rises as p2 rises (notice the own
effect), then x2 is Giffen. In other words, we need an own price change to
determine Giffenness.

Figure 6.12: Understanding own and cross effects.

Figure 6.12 makes clear that a change in the wage in the labor supply opti-
mization problem is like a change in the price of x2 in the Standard Model.
The wage change is like the graph on the right, with an upward sloping bud-
get constraint. The rotation is around a fixed value—the x intercept in the
Standard Model and unearned income in the labor supply model. Thus, the
change in wage is an own price effect for G (on the y axis) and a cross price
effect for H (on the x axis).

Because a change in the wage exerts a cross effect on hours worked, we cannot
say anything about Giffenness for hours worked. We could, however, say that
G was Giffen if it fell when wage rose. That would really be weird. Look
at the figures of income and substitution effects in this chapter and you will
never find a final point C that lies below an initial point A. In fact, leisure
(work’s counterpart) is usually treated as a normal good: higher income leads
to more leisure (and less work).

Deriving the Labor Supply Curve

Labor Economics is a major field within Economics. As a course, it is usu-
ally offered as an upper-level elective, with Intermediate Microeconomics as
a prerequisite. Labor supply and demand are fundamental concepts. The
former is based on a model in which work is a bad (the opposite of leisure,
which is a good) and a consumer/worker maximizes satisfaction subject to a
budget constraint.
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By changing the wage, ceteris paribus, we can derive a labor supply curve.
Economists are well aware that labor supply is often quite insensitive to
changes in wages. This is explained by the opposing substitution and income
effects. The backward bending portion of the labor supply curve is observed
when the income effect swamps the substitution effect. This is not Giffen
behavior, however, because we are dealing with a cross (not own) price effect.

Exercises

1. Use the Lagrangean method to solve this consumer/worker’s constrained
optimization problem:

Show all of your work.

2. Do your results for H* and G* agree with the numerical approach in
the text? Is this surprising?

3. Using the Comparative Statics Wizard, the wage elasticity of labor
supply from $10/hr to $20/hr is 0.1. Use your reduced form solution
for H* to find the wage elasticity of labor supply at w = $10/hr. Show
your work.

4. Does your point wage elasticity from the previous question equal 0.1
(the wage elasticity based on a $10 wage increase)? Why or why not?

5. Whether the labor supply curve is upward sloping or backward bend-
ing has nothing to do with the Giffenness of work. If labor supply is
positively sloped, G and H are substitutes or complements, but which
one? Draw a graph that helps you explain your answer.

References

The epigraph comes from page 355 of Max Weber’s classic, General Economic
History , originally published in German in 1923 and translated to English
by Frank H. Knight in 1927. If you are unfamiliar with Weber (pronounced
vay-ber), he was interested in the way capitalism changed people’s minds
and values, especially how it made people more rational and calculating.

https://www.google.com/search?q=weber+general+economic+history
https://www.google.com/search?q=weber+general+economic+history
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With respect to labor supply, the consumer/worker’s goals and attitudes are
a critical issue. In this chapter, labor supply was derived as the solution to
an optimization problem. The agent, however, might not be an optimizer,
but a target earner, working only enough hours to make a certain amount of
money. If wages double, hours worked are cut in half. If everyone was a target
earner, the typical way to attract more workers—pay more—would not work.

Consider this abstract from Henry Farber’s 2003 NBER working paper, “Is
Tomorrow Another Day? The Labor Supply of New York Cab Drivers”:

I model the labor supply of taxi drivers as the result of optimiza-
tion based on an inter-temporal utility function. Since income
effects in response to temporary fluctuations in daily earnings op-
portunities are likely to be small, cumulative hours will be much
more important than cumulative income in the decision to stop
work on a given day. However, if these income effects are large due
to very high discount and interest rates, then labor supply func-
tions could be backward bending, and, in the extreme case where
the wage elasticity of daily labor supply is minus one, drivers
could be target earners. Indeed, Camerer, Babcock, Lowenstein,
and Thaler (1997) and Chou (2000) find that the daily wage elas-
ticity of labor supply of New York City cab drivers is substan-
tially negative and conclude that it is likely that cab drivers are
target earners. I conclude from my empirical analysis, based on
new data, of the stopping behavior of New York City cab drivers
that, when accounting for earnings opportunities in a reduced
form with measures of clock hours, day of the week, weather,
and geographic location, cumulative hours worked on the shift is
a primary determinant of the likelihood of stopping work while
cumulative income earned on the shift is weakly related, at best,
to the likelihood of stopping work. This is consistent with there
being inter-temporal substitution and inconsistent with the hy-
pothesis that taxi drivers are target earners.

See http://www.nber.org/papers/w9706.

Google Scholar has tens of thousands of papers on Uber and how drivers
decide how many hours to work.

Robert McClelland and Shannon Mok’s 2012 working paper that summarizes
the wage elasticity literature, “A Review of Recent Research on Labor Sup-
ply Elasticities,” is freely available from the Congressional Budget Office at

http://www.nber.org/papers/w9706
https://scholar.google.com/scholar?&q=uber+hours+worked
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www.cbo.gov/publication/43675. A remarkable finding is that men’s much
larger substitution effect than women’s has all but disappeared so that men
and women today respond similarly to wage shocks.

https://www.cbo.gov/publication/43675
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Price dispersion is a manifestation—and,
indeed, it is the measure—of ignorance in
the market.

George Stigler

7.1 Fixed Sample Search

The Theory of Consumer Behavior is based on the idea that buyers choose
how much to buy based on preferences, income, and given prices. We know,
however, that buyers do not face a single price—there is a distribution of
prices and sellers change their prices frequently.

You would think consumers would be unable to choose in such an environ-
ment. After all, how can they know the budget constraint without prices?
The answer is that they search or, in other words, they go shopping, and then
use the lowest prices found to solve their constrained utility maximization
problem.

Search Theory is an application of the economic approach to the problem of
how long to shop in a world of many prices. Search is a productive activity
because it enables one to find lower prices, but it is costly. One can search
too little, ending up paying a high price, or search too much—spending hours
to find a price that is a few pennies lower does not make much sense.

This chapter introduces the consumer’s search optimization problem and is
based on the idea that consumers decide in advance how many price quotes
to obtain, according to an optimal search rule. This type of search procedure
is known as a fixed sample search.

Describing the Search Optimization Problem

We assume that consumers do not know the prices charged by each firm.
We simplify the problem by assuming that the product in different stores is
identical (i.e., homogeneous) so the consumer just wants to buy at the lowest
price. Unfortunately, finding that lowest price is costly so the buyer has to
decide how long to search.

293
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STEP Open the FixedSampleSearch.xls workbook and read the Intro
sheet, then proceed to the Setup sheet.

The first task is to create the distribution of prices faced by the consumer.
We assume that prices remain fixed during the search process.

STEP Click the Create the Population button.

You will be asked a series of questions that will establish the prices charged
by all of the sellers. This is the population. The idea is that consumer will
sample (draw) from the population. This is shopping.

STEP Hit OK when asked the number of stores selling the product to
accept the default number of 1000 (no comma separator when entering num-
bers in Excel). Choose Uniform for the distribution and then press OK to
accept 5 when prompted for the number of stores. Accept the default values
of 0 and 1 for the minimum and maximum prices.

After you hit Enter, you will see a column of red numbers in column A that
represent the prices charged by each of the 1,000 stores selling the product.
The consumer knows that stores charge different prices, but cannot immedi-
ately see each individual store price. They cannot see the lowest and highest
price stores in cells B2 and B3.

STEP Scroll down to see the prices charged at each store and confirm
that the minimum price store, displayed in cell F2, is correct.

It is difficult to see by simply scrolling down and looking at the prices, but the
uniform distribution you used means that prices are scattered equally from
zero to one. The normal distribution, on the other hand, would concentrate
prices near the average, with fewer low and high prices (like a bell-shaped
curve). The log-normal is the most realistic of the three—prices have a long
right-hand tail (with a few stores charging very high prices). The primary
advantage of the uniform distribution is that it is the easiest to work with
analytically.

Figure 7.1 shows a histogram of 1,000 prices from U[0,1]. This notation
means that we include the endpoints so we have a uniform distribution with
a zero minimum and a maximum of one (giving an average of 0.5 and an SD
of 0.2887).
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Figure 7.1: An example uniform distribution of prices.

The prices are not exactly evenly distributed on the interval from zero to one.
They are drawn from a uniform distribution on the interval 0 to 1, but each
realization of 1,000 prices deviates from a purely rectangular distribution due
to randomness in sampling from the uniform distribution. The more stores
you include in the population, the closer Figure 7.1 will get to a smooth,
rectangular distribution. You can see a histogram of your population prices
by scrolling over to column AA of the Setup sheet.

Consumers know the distribution of prices, but they do not know which firm
is charging which price, so they cannot immediately go to the firm that has
the lowest price. Instead, the fixed sample search model says that the con-
sumer chooses a number of prices to sample (which you set as 5) and then
chooses the lowest of the observed prices.

STEP Click the Draw a Sample One Price at a Time button. A price

will appear in the sample column, and a pop-up box tells you where that
price came from. Hit OK each time the display comes up. You will hit OK
five times because you chose to sample from five stores.

The consumer chooses among the 1,000 stores randomly and ends up with
five observed prices. Column L reports the sample average price, the SD of
the sampled prices, and the minimum price in the sample (in cell L7). The
consumer will purchase the product at the minimum price observed in the
sample.

Why doesn’t the consumer visit every store and then pick the lowest price?
Because it is costly to obtain price information, as shown in cell L11. Each
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shopping trip (to collect a price) costs 4 cents. To sample all 1,000 stores
would cost the consumer an exorbitant $40. On average, the consumer would
pay $0.54 (the average of the price distribution plus the cost of obtaining one
price) by buying the product at the very first store visited. Clearly, it is bet-
ter to buy immediately, n = 1, than to sample every store, n = 1,000, but
what about other fixed sample sizes? How much will the consumer pay, on
average, when sampling five stores?

STEP Hit the Draw a Full Sample button repeatedly to draw more

samples of size five. Keep your eye on the total price paid in cell L22.

Every time you get a new sample, you get a new total price (composed of the
minimum price in sample plus 20 cents). There is no doubt about it—the
total price the consumer ends up paying is a random variable. This makes
this problem difficult because we need to figure out what the consumer can
expect to pay usually or typically. We want to know the average total price.
The next section shows how.

Monte Carlo Simulation

The plan is to alter the spreadsheet so a new sample can be drawn simply
by recalculating the sheet, which is done by hitting the F9 key. We can then
install the Monte Carlo simulation add-in and use it to repeatedly draw new
samples, tracking the lowest price in each sample.

STEP Select cell range J2:J6. You should have five cells highlighted. In
the formula bar, enter the following formula:

=DRAWSAMPLEARRAY()

and then press Ctrl + Shift + Enter (hold down and continuing holding down
the Ctrl key, then hold down and continue holding down the Shift key, and
then hit the Enter key). Your sample of five prices will appear in the sample
column.

After you select the cells, do not simply hit the Enter key. This will put the
formula only in the first cell. You want the formula in all five cells that you
selected. You have to press Ctrl + Shift + Enter simultaneously.
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You have used an array function (built into the workbook) that spans the
five cells you selected. You cannot individually edit the cells. If you mis-
takenly try to do so and get stuck, hit the esc (escape) key to return to the
spreadsheet.

When using this array function, it may display #VALUE. Simply hit the
F9 key when this happens to refresh the function. If that does not work,
recreate the population.

When using the DRAWSAMPLEARRAY() function, you must be sure to
set the number of draws in cell C15 to correspond to the number of cells
selected and used by the function. If there is a discrepancy, a warning will
be displayed.

STEP Hit F9 a few times and keep your eye on cells L7, the minimum
price, and L22, the total price paid.

These cells update each time you hit F9. A new sample of five prices is
drawn and the minimum price and total price paid are recalculated for the
new sample.

The DRAWSAMPLEARRAY() function enables Excel to display the min-
imum (best) price random variable, but we need to figure out the average
minimum price when five price quotes are obtained. This can be done by re-
peatedly resampling and tracking each outcome – this is called Monte Carlo
simulation.

STEP Install the Monte Carlo simulation Excel add-in, MCSim.xla, avail-
able freely from www3.wabash.edu/econometrics and the MicroExcel archive
(in the same folder as the Excel workbook for this section). Full documenta-
tion is available at this web site. This powerful add-in enables sophisticated
simulations with the click of a button.

Remember that installing an add-in requires use of the Add-ins Manager.
Do not simply open the MCSim.xla file.

Once installed, you can use the add-in to determine the average minimum
price and total price paid for the product when five prices are sampled.

STEP Run the Monte Carlo simulation add-in on cells L7 and L22 with
10,000 repetitions.

http://www3.wabash.edu/econometrics/
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Your MCSim add-in dialog box should look like Figure 7.2. Click the Proceed
button to run the simulation.

Figure 7.2: Configuring the MCSim dialog box.

Your simulation results will look something like Figure 7.3, but your results
will be slightly different. The average of the minimum price distribution
should be near 0.17 (1/6). Thus, the consumer will usually pay around $0.37
(adding the 20 cents in search cost) for the product. The total price paid is
a shifted version of the best price.

Figure 7.3: Monte Carlo simulation results with n = 5.
Source: FixedSampleSearch.xls!MCSim

So now we know that the consumer can expect to pay about $0.37 when
searching five stores. This is better than buying at the first store visited,
which was $0.54. Compared to the buying at the first store, the expected
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marginal gain of shopping at five stores, in terms of a lower expected min-
imum price, is $0.50 − $0.17 = $0.33. The additional cost of searching for
five prices instead of one is $0.16. The additional benefit is greater than the
additional cost is another way to know that five stores is better than one store.

But we want to know more than just that searching five stores is better than
buying at the first store; we want to find the best sample size—the one that
gives the lowest total price paid.

STEP Hit the Clear the Sample button. Change the number of draws

in cell C15 to 10. Select cell range J2:J11 and then type in the formula bar:
=DRAWSAMPLEARRAY(). Then press the Ctrl + Shift + Enter combi-
nation to input the array formula. Your sample of 10 prices will appear in
column J.

Hit F9 a few times and watch what happens to cell L7, the minimum price.
It bounces, but with 10 prices instead of five, it bounces around a different,
lower mean.

STEP To find the typical price the consumer can expect to pay, run a
Monte Carlo simulation of the minimum and total price when 10 stores are
visited.

Figure 7.4 shows the exact average best price and average total price as a
function of the sample size for the U[0,1] price distribution. Your simulation
results for the best price for n = 10 should be close to $0.0909.

Figure 7.4: Optimal Search with a Uniform Distribution on the interval [0,1].
Source: FixedSampleSearch.xls!Summary
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The typical $0.0909 best price when 10 prices are obtained is lower than
when we shopped at five stores, but notice that it isn’t worth it. The cost of
obtaining 10 prices ($0.40) is so high that the total price paid is higher than
getting just five prices. In fact, getting four prices is the optimal sample size.

Analytical Methods

The optimal search optimization problem can be solved via analytical meth-
ods. For the uniform price distribution on the interval from zero to one, the
average minimum price in the consumers’ hands after visiting n firms is

AveragePmin =
1

n+ 1

The equation for the average minimum price shows that it is decreasing as n
rises and it does so at a decreasing rate. In other words, there are diminish-
ing returns to searching for low prices.

The consumer’s optimization problem is to minimize the expected total cost
of acquiring the product, where P (n) represents the expected minimum price
that we know is a function how many prices are collected:

min
n
TC = P (n)q + cn

We also know that for U[0,1], P (n) = 1
n+1

so we have:

min
n
TC =

1

n+ 1
q + cn

To find optimal n, take the derivative with respect to n and set it equal to
zero:

dTC

dn
= − 1

(n+ 1)2
q + c = 0

1

(n+ 1)2
q = c

This equimarginal condition says that the optimal sample size is found where
marginal savings from additional search equals marginal cost. As long as the
savings from searching an additional store exceeds the cost of collecting one
more price, the consumer will continue to search. The marginal savings is
just the drop in the expected price, times the number of units that the con-
sumer wants to purchase.
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From the equimarginal condition, we can solve for optimal n to get a reduced
form solution.

1

(n+ 1)2
q = c→ q = c(n+ 1)2 →

√
q

c
= n+ 1→

√
q

c
− 1 = n*

With q = 1 and c = $0.04, we have the same solution we found earlier:

n* =

√
q

c
− 1 =

√
1

0.04
− 1 = 4

Comparative Statics

The reduced form expression makes comparative statics analysis straightfor-
ward. It is obvious that higher c, search cost, leads to lower optimal sample
size, as shown in Figure 7.5.

Figure 7.5: Optimal search with changing search cost for q = 1.

Search cost is not the same for each consumer. Time is an important element
of search cost. Those with more valuable time and, therefore, higher search
cost will optimize by obtaining fewer price quotes.

The availability of information is another component of search cost. Infor-
mational advertising is how firms let consumers know where they are and
what prices are being charged. We can model this type of advertising as a
decrease in search costs—today, all the consumer has to do is go online to see
what prices are being offered. Search costs are still positive (consumers do
not know, for example, whether all firms advertise or just some), but lower
than without advertising. Consumers obtain the product for a lower total
price when advertising lowers search costs.

If we allow for multiple purchases, that is, a value of q > 1, then the returns
to search increase and, other things equal, the optimal number of searches
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increases. The effect of increasing q on the relationship between the cost of
search and the optimal number of searches is shown in Figure 7.6.

Figure 7.6: Optimal search with changing n and q.

For example, the driver of an 18-wheel truck that carries two 200-gallon diesel
tanks is going to search more than someone looking to fill her car with gas.
But this example leads to the next chapter, where we introduce a different
search model.

Results of Fixed Sample Search

Incomplete price information leads to an entirely new optimization problem.
Because consumers will not search every store, since that is too expensive, we
see price dispersion. This is a major result of search theory and it deserves
further explanation.

You would think that competition would tend to make prices of the same
product equal. This is known as the Law of One Price. But this only applies
to a world where consumers can costlessly gather prices.

In other words, the Law of One Price will fail to hold whenever it is costly to
collect price data. This is true in the real world, where some consumers will
end up paying higher prices than others because the minimum price in their
particular information set is different than the minimum price in another
consumer’s set.

Because lower search costs induce more search, a reduction in search costs
would have the effect of reducing (but not eliminating) price dispersion. Be-
cause optimizing consumers will choose not to canvass every store for prices
as long as search is costly, price dispersion will exist. This is the key result
of the fixed sample search model.
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Economists have been interested in search theory for decades. The internet
promised a big decrease in search cost and it may well have delivered that,
but more recently, technology has really upended search theory. Today, your
online search behavior is monitored and your clicks influence the prices you
see.

The next level search models do not treat the population of prices as given
and do not allow the consumer to randomly sample without changing the
price distribution. Consumers still have an optimization problem to solve,
but so do firms.

Exercises

Suppose the price distribution of 1,000 firms is uniform, with an average price
of $50 and an SD of $28.87. Search cost, c, is $1 per price.

1. On what interval (from the minimum to the maximum) are prices
equally likely to fall?

2. Implement this problem in the Setup sheet and run a Monte Carlo
simulation with a sample size of 20. Take a picture of your results (like
Figure 7.3) and paste it in a Word document. What is good about
obtaining 20 prices? What is bad?

3. Use the equation for the average minimum price as a function of n for
this distribution, AveragePmin = 100

n+1
, to find the optimal sample size.

Show your work.

4. Find the c elasticity of n at q = c = 1. Show your work.
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Job offers are independent random selections
from the distribution of wages. These offers
occur periodically and are either accepted or
rejected. Under these conditions it is easy to
show that the optimal policy for the job
searcher is to reject all offers below a single
critical number and to accept any offer
above this critical number.

J. J. McCall

7.2 Sequential Search

We introduced Search Theory with a Fixed Sample Search Model. A con-
sumer samples from the population of stores and gets a list of n prices for a
product, then chooses the minimum price. The bigger n, the lower the mini-
mum price in the list, but the price paid to obtain the price quotes increases
as n rises. The consumer has to decide how many prices to obtain.

This section explores the properties of a different situation that is known as
the Sequential Search Model. Unlike fixed sample search, where the consumer
obtains a set of price quotes and then picks the lowest price, sequential search
proceeds one at a time. The consumer samples from the population and gets
a single price, then decides whether or not to accept it. If she rejects it, she
cannot go back. As the epigraph shows, the sequential search model is easily
applied to job offers, but it will be applied in this chapter to another common
search problem—buying gas.

Setting Up the Model

Imagine you are driving down the road and you need fuel. As you drive,
there are gas stations (say N = 100) to the left and right (taking a left does
not bother you too much) and you can easily read the price per gallon as you
drive up to each station. If you drive past a station, turning around is out
of the question (there is traffic and you have a weird phobia about U-turns).

There is a lowest price station and the stations can be ranked from 1 (lowest,
best price) to 100 (highest, worst price). You do not know the prices coming
up because the stations are randomly distributed on the road. The lowest
price station might be 18th or 72nd or even the very first one. Figure 7.7 sums
it all up.

305
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Figure 7.7: Deciding where to buy gas.

Suppose you focus on the following question: How do you maximize the
chances of finding the cheapest station?

You might argue that you should drive by all of the stations, and then just
pick the best one. This is a terrible idea because you cannot go back (re-
member, no U-turns). Once you pass a station, you cannot return to it. So,
this strategy will only work if the cheapest station is the very last one. The
chances of that are 1 in a 100.

A strategy for choosing a station goes like this: Pick some number K < N
where you reject (drive by) stations 1 to K, then choose the first station that
has a price lower than the lowest of the K stations that you rejected.

Perhaps K = 50 is the right answer? That is, drive by stations 1 to 50, then
look at the next (51st) station and if it is better than the lowest of the 50
you drove by, pull in. If not, pass it up and consider the 52nd station. If it is
cheaper than the previous 51 (or 1 to 50 since we know the 51st station isn’t
cheaper than the cheapest of the first 50), get gas there.

Continue this process until you get gas somewhere, pulling into the last
(100th) station if you get to it (it will have a sign that says, “Last chance gas
station”).

This strategy will fail if the lowest price is in the group of the K stations
you drove by, so you might want to choose K to be small. But if you choose
K too small, you will get only a few prices and the first station with a price
lower than the lowest of the K stations is unlikely to give you the lowest price.

So, K = 3 is probably not going to work well because you probably won’t get
a super low price in a set of just three so you probably won’t end up choosing
the lowest price. For example, say the first three stations are ranked 41, 27,
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and 90. Then as soon as you see a station better than 27, you will pull in
there. That might be 1, but with 26 possibilities, that’s not likely.

On the other hand, a high value of K, say 98, suffers from the fact that the
lowest price station is probably in that group and you’ve already rejected it!
Yes, this problem is certainly tricky.

The Sequential Search Model can be used for much more than buying gas—it
has extremely wide applicability and, in math, it is known as optimal stop-
ping. In hiring, it is called the secretary problem. A firm picks the first K
applicants, interviews and rejects them, then picks the next applicant that
is better than the best of the K applicants. It also applies to many other
areas, including marriage—search online for Kepler optimal stopping to see
how the famous astronomer chose his spouse.

STEP Open the Excel workbook SequentialSearch.xls and read the Intro
sheet, then proceed to the Setup sheet.

Column A has the 100 stations ranked from 1 to 100. The lowest priced
station is 1, and the highest priced station is 100.

STEP Click the Randomly Assign button. It shuffles the stations, ran-

domly distributing them along the road you are traveling in column D.

Cell B7 reports where the lowest priced station (#1) is located. Columns C
and D report the location of each station. Column D changes every time you

click the Randomly Assign button because the stations are shuffled.

Cell F2 sets the value of K. This is the choice variable in this problem. Our
goal is to determine the value of K that maximizes the probability that we
get the lowest priced station.

On opening, K = 10. We pass up stations 1 to 10, then take the next station
that is better than the best of the 10 stations we rejected.

STEP Click the How Did I Do? button. This reshuffles the stations
and draws a border in column D for the cell at the Kth station.

Cell F5 reports the best of the K stations (that were rejected). Cell F7 dis-
plays the station you ended up at.

https://www.google.com/search?q=kepler+optimal+stopping


308 CHAPTER 7. SEARCH THEORY

STEP Scroll down to see why you ended up at that station and read the
text on the sheet.

Cell F7 always displays the first station that is better (lower) than the best
of the K stations in cell F5.

STEP Repeatedly click the How Did I Do? button. After every click,
see how you did. Is 10 a good choice for K ?

The definition of a good choice in this case is one that has a high probability
of giving us the cheapest station. Our goal is to maximize the chances of get-
ting the cheapest station. We could have a different objective, for example,
minimize the average price paid, but this would be a different optimization
problem. For the classic version of the optimal stopping problem, we count
success only when we find the cheapest station.

STEP Change K to 60 (in F2) and repeatedly click the How Did I Do?
button. Is 60 better than 10?

This is difficult to answer with the Setup sheet. You would have to repeatedly

hit the How Did I Do? button and keep track of the percentage of the time
that you got the cheapest station. That would require a lot of patience and
time tediously clicking and recording the outcome. Fortunately, there is a
better way.

Solving the Problem via Monte Carlo Simulation

The Setup sheet is a good way to understand the problem, but it is not
helpful for figuring out the optimal value of K. We need a way to quickly,
repeatedly sample and record the result. That is what the MCSim sheet does.

STEP Proceed to the MCSim sheet and look it over.

With N = 100 (we can change this parameter later), we set the value of K (in
cell D7) and run a Monte Carlo simulation to get the approximate chances
of getting the best station (reported in cell H7).

Unlike the MCSim add-in used in the previous section, this Monte Carlo
simulation is hard wired into this workbook. Thus, it is extremely fast.
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STEP With N = 100 and K = 10, click the Run Monte Carlo Simulation
button. The default number of repetitions is 50,000, which seems high, but a
computer can do hundreds of thousands of repetitions in a matter of seconds.

Figure 7.8 shows results. Choosing K = 10 gives us the best station about
23.4% of the time. Your results will be slightly different.

Figure 7.8: Monte Carlo simulation results.
Source: SequentialSearch.xls!MCSim

Notice that we are using Monte Carlo simulation to approximate the exact
answer. Monte Carlo simulation cannot give us the exact answer. By in-
creasing the number of repetitions, we improve the approximation, getting
closer and closer, but we can never get the exact truth with simulation. The
answer it gives depends on the actual outcomes in that particular run. The
only way simulation would give the exact answer is if it was based on an
infinite number of repetitions.

Can we do better than getting the best station about 23% of the time?

We can answer this question by exploring how the chances of getting the
lowest price varies with K. By changing the value of K and running a Monte
Carlo simulation, we can evaluate the performance of different values of K.

STEP Explore different values of K and fill in the table in cells J3:M10.

As soon as you do the first entry in the table, K = 20, you see that it beats
K = 10.
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STEP Use the data in the filled in table to create a chart of the chances
of getting the lowest price station as a function of K. Use the button under
the table to check your work.

What do you conclude from this analysis?

One problem with Monte Carlo simulation is the variability in the results.
Each run gives different answers since each run is an approximation to the
exact answer based on the outcomes realized. Thus, it seems pretty clear
that the optimal value of K is between 30 and 40, but using simulation to
find the exact answer is difficult.

Figure 7.9 displays results of series of Monte Carlo experiments. Notice that
we doubled the number of repetitions to increase the resolution. The best
value of K appears to be 36, but the noisiness in the simulation results makes
it impossible to determine the answer.

Figure 7.9: Zooming in on the value of optimal K.
Source: SequentialSearch.xls!Answers

With Monte Carlo simulation, we can continue to increase the number of
repetitions to improve the approximation.

STEP Proceed to the Answers sheet to see more simulation results.

The Answers sheet shows that even 1,000,000 repetitions are not enough to
definitively give us the correct answer. Simulation is having a difficult time
distinguishing between a stopping K value of 36 or 37.
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An Exact Solution

This problem can be solved analytically. The solution is implemented in Ex-
cel. For the details, see the Ferguson citation at the end of this chapter.

STEP Proceed to the Analytical sheet to see the exact probability of get-
ting the cheapest station for a given K -sized sample from N stations from 5
to 100.

For example, cell G10 displays 32.74%. This means you have a 32.74% prob-
ability of getting the cheapest station out of 10 stations if you drive by the
first six stations and then choose the next station that has a price lower than
the cheapest of the K stations you drove by.

For N = 10, is K = 6 the best solution?

No. The probability of choosing the cheapest station rises if you choose K =
5. The 3 and 4 choices are close, but clearly, optimal K = 3 (with a 39.87%
likelihood of getting the cheapest station) is the best choice.

In the example we have been working on, we had N = 100. Monte Carlo
simulations showed optimal K around 36 or 37, but we were having trouble
locating the exact right answer.

STEP Scroll down to see the probabilities for N = 100. Click on cells
AL100 and AM100 to see the exact values. The display has been rounded
to two decimal (percentage) places, but the computation is precise to more
decimal places.

K* = 37 just barely beats out K = 36. The fact that they almost give the
exact same chances of getting the lowest price explains why we were having
so much trouble zooming in on the right answer with Monte Carlo simulation.

It can be shown (see the Ferguson source in the References section) that
optimal K is N

e
, giving a probability of finding the cheapest station of 1

e
. For

N = 100, N
e
≈ 36.7879.

If K was a continuous endogenous variable, N
e

would be the optimal solution.
But it is not, so the exact, correct answer is to pass on the first 37 stations
and then take the first one with a lower price than the lowest price of stations
1 to 37.
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It is a mystery why the transcendental number e, the base of natural loga-
rithms, plays a role in the solution.

Figure 7.10 shows that as N rises, so does optimal K. What elasticity is under
consideration here?

Figure 7.10: Exact probabilities of finding the cheapest station.
Source: SequentialSearch.xls!Analytical

The answer is the N elasticity of K. From N = 50 to 100 is a 100% increase.
What happens to optimal K ? It goes from 18 to 37, so a little more than a
100%. The elasticity is slightly over one. If you use the continuous version
of K, then K exactly also doubles and the N elasticity of K is exactly one.

Sequential Search Lessons

Unlike the Fixed Sample Search Model (where you obtain a set of prices and
choose the best one), the Sequential Search Model says that you draw sample
observations one after the other. This could apply to a decision to choose a
gas station. As you drive down the road, you decide whether to turn in and
get gas at Station X or pass up that station and proceed to Station Y.

Faced with price dispersion, a driver deciding where to get gas can be mod-
eled as solving a Sequential Search Model. Although there can be other
objectives (such as getting lowest average price), the goal could be to max-
imize the chances of getting the lowest price. We found that as N rises, so
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does optimal K. The more stations, the more driving you should do before
picking a station.

Like the Fixed Sample Search Model, the Sequential Search Model does not
have any interaction between firms and consumers. Price dispersion is given
and the model is used to analyze how consumers react in the given environ-
ment.

In the pre-internet and smartphone days, deciding where to get gas was quite
the challenge. A driver passing signs with prices (like Figure 7.7) was a pretty
accurate representation of the environment. There was no Google maps or
apps displaying prices all around you. Notice, however, that the Law of One
Price does not yet apply to gas prices.

Ferguson points out that our Sequential Search Model (which mathemati-
cians call the secretary problem) is part of a class of finite-horizon problems.
“There is a large literature on this problem, and one book, Problems of Best
Selection (in Russian) by Berezovskiy and Gnedin (1984) devoted solely to
it” (Ferguson, Chapter 2).

Fixed Sample and Sequential Search Models are merely the tip of the iceberg.
There is a vast literature and many applications in the economics of search,
economics of information, and economics of uncertainty.

Exercises

1. Use the results in the Analytical sheet to compute the N elasticity of
K* from N = 10 to 11. Show your work.

2. Use the results in the Analytical sheet to draw a chart of K* as a
function of N. Copy and paste your graph in a Word document.

3. Run a Monte Carlo simulation that supports one of the N -K* combina-
tions in the Analytical sheet. Take a picture of your simulation results
and paste it in a Word document.

4. Explain why the Monte Carlo simulation was unable to exactly replicate
the percentage of times the lowest priced station was found.



314 CHAPTER 7. SEARCH THEORY

References

The epigraph is from pages 115 and 116 of J. J. McCall, “Economics of
Information and Job Search,” The Quarterly Journal of Economics, Vol.
84, No. 1 (February, 1970), pp. 113–126, www.jstor.org/stable/1879403.
This paper shows that sequential search (with recall) dominates fixed sam-
ple search. For more on this point, see Robert M. Feinberg and William
R. Johnson, “The Superiority of Sequential Search: A Calculation,” South-
ern Economic Journal, Vol. 43, No. 4 (April, 1977), pp. 1594–1598,
www.jstor.org/stable/i243526.

Thomas Ferguson, Optimal Stopping and Applications is freely available on-
line at www.math.ucla.edu/ tom/Stopping/Contents.html. Ferguson offers
a technical, mathematical presentation of search theory.

C. J. McKenna, The Economics of Uncertainty (New York: Oxford Univer-
sity Press, 1986), is a concise, nontechnical introduction to imperfect infor-
mation models.

John Allen Paulos, Beyond Numeracy (New York: Alfred A. Knopf, 1991),
p. 64, discusses the optimal interview problem with an easy, intuitive style.

https://www.jstor.org/stable/1879403
https://www.jstor.org/stable/i243526
https://www.math.ucla.edu/~tom/Stopping/Contents.html
https://www.google.com/search?q=McKenna+Economics+of+Uncertainty
https://www.google.com/search?q=beyond+numeracy+paulos


This course surveys research which incorporates
psychological evidence into economics. Topics
include: prospect theory, biases in probabilistic
judgment, self-control and mental accounting with
implications for consumption and savings, fairness,
altruism, and public goods contributions, financial
market anomalies and theories, impact of markets,
learning, and incentives, and memory, attention,
categorization, and the thinking process.

MITOpenCourseware

Chapter 8

Behavioral Economics

The field of Behavioral Economics (and Behavioral Finance) is a growing
research area that focuses on how decisions are actually made. It is closely
tied to psychology and neuroscience. Behavioral economists reject the idea of
utility maximization as an assumed black box. Both experimental methods
and sophisticated procedures (such as MRI brain scans) are used to exam-
ine how real-world problems are actually solved. A number of results have
emerged that challenge the conventional wisdom in mainstream economics.

One area of long-standing interest in psychology involves repeated choice
problems. This chapter focuses on a particular kind of repeated choice in
which the satisfaction obtained currently depends on past decisions. This is
called distributed choice.

Suppose you are deciding whether to watch TV or play a video game. You
face this choice repeatedly. The satisfaction from watching TV or playing a
video game depends on how often that choice has been made before. What
is the best combination of TV and video games over a period of time and,
more importantly, how well do people handle this kind of repeated choice?

Instead of explaining why the repeated choice optimization problem is diffi-
cult and presenting results from human trials, it is more fun (and you will
learn more) to let you first participate in an experiment.

The Choice Game

STEP Open the Excel workbook Melioration.xls and read the Intro sheet,
then go to the Choice Game sheet to play this simple game.

315
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Your goal is to click the A or B buttons as many times as possible in 10
minutes. When you make a choice, by clicking on one of the buttons, you
are forced to wait. Waiting is costly because you cannot click (make another
choice) while waiting.

STEP Click the Practice option button (near the top left corner of the
screen) to see how the game works.

You get up to 100 practice trials. In practice mode, time is not kept. You
can take as long as you want between button clicks. Practice now.

There is definitely something going on that you are trying to figure out and
there is an optimal strategy. You can click the same button over and over or
switch back and forth.

Are you ready to play? Unlike practice, when you play, a timer will be run-
ning. You will not use the buttons on the sheet like you did in practice mode.
The buttons will be on a dialog box, right next to each other. You will have
10 minutes to make as many choices as possible. The time remaining will be
displayed as you play.

Ten minutes might be too long for you to play so click the Exit Now button
if you want to stop playing. As long as you start play and make a few choices,
you will be able to continue working and learning about melioration.

STEP Click the Play option button. Good luck!

After you finish the game, a message box displays your score and a Results
sheet shows a record of your picks. It reports results based on a full ten
minutes of play, so if you stopped prematurely, you can ignore your results.

Let’s deconstruct this game and see how it works. Figure 8.1 shows the first
10 choices made by a player. The player started with A, then switched to B
with his 7th choice, but switched back to A, then ended with B.
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Figure 8.1: Ten plays of the game.

STEP You can see the full record of yet another player by clicking the

Show Example button (near cell G9 in the Results sheet, which was re-

vealed when you finished playing the choice game).

This player tried streaks of A and B. Notice how the time paused changed.

These results sheets also compare the number of choices made to the maxi-
mum possible and computes a score as a percentage of the maximum. Let’s
find out how the maximum can be attained and why people are usually so
bad at playing this game.

Actual Results

Experimental trials with this game were conducted by Herrnstein and Prelec
(1991) and you can compare how you did to the average result (and to the
player in the MoreResults sheet).

STEP Click the Show Data button in the MoreResults sheet.

The Data sheet shows how 17 subjects played the choice game that you just
played. Each dot in the chart, reproduced in Figure 8.2, shows the fraction
of times that a player chose A (on the x axis) and the corresponding average
delay endured by that player (on the y axis). The player with the shortest
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delay, the first one in the table, also has the most choices (number of choices
= 600/average delay) and is the winner in this set of players. How did you do?

Figure 8.2: Actual results from a single session of the choice game.
Source: Melioration.xls!Data, revealed after game played.

STEP To add your result to the chart in Excel, copy your results from
cells J2 and K2 of the Results sheet, select cell A23 in the Data sheet, and
Paste Special (Values) (or simply type in the two numbers). A red dot will
appear in the chart. This shows how you did.

Did you beat the best player out of the 17 in the chart? We know you could
have because even the best player in that group of 17 failed to optimize. The
explanation for this failure requires that we understand the delay function
for each choice.

The heart of the choice game is the wait time between choices. The duration
of the pause is a function of the previous 10 choices (including the current
choice). For choice A, the wait time, in seconds, is 2 + 0.4 x Proportion of A
Choices in the last 10 choices. So, if the last 10 choices had been B, then A
would have a very short and satisfying pause time of just 2 seconds. As you
click on A, however, the pause time for choice A rises by 0.4 seconds until it
hits a maximum of 6 seconds.

Choice B’s wait time is determined by 8 - 0.4 x Proportion of B Choices in
the last 10 choices. As you click on B, the duration of the pause gets lower
and lower until reaching a minimum of 4 seconds.
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STEP Confirm that the wait times were determined as described by re-
turning to the three results sheets and examining the pause times in columns
B and C.

You can see that the first clicks of A and B had pause times of 2 and 8
seconds, respectively. You can also check that each pause time is following
the functions described above. The MoreResults sheet with the streaky A
and B strategy makes it easy to see the mechanics of the choice game.

Choice A exhibits increasing marginal cost—every time you click on A, you
are penalized and forced to wait longer. Choice B rewards you with a de-
crease in wait time when it is clicked, but the wait time starts very high so
you have to be persistent and stick to it. Plus, choice A is always 2 seconds
lower than choice B so you are constantly being lured toward choice A.

Most people play this game by being attracted to A’s short wait time, until
it gets unbearable and they switch to B. But they can’t stay with B long
because it is painful to wait at first and they do not have the patience and
self-discipline to stick with B. Sound familiar? B could be exercise or dieting
or studying—you know you should and it gets easier if you stick to it, but it
can be hard to start.

Now that you know the rules of the game, how do you actually optimize with
this game? Simple—start with choice B and never deviate.

STEP To see this optimal strategy in action, go to the Solution sheet by

clicking the Show Solution button in the Data sheet (below the chart).

Column B shows what happens when you exclusively choose A. It starts well,
but you end up with many 6 second pauses.

STEP Scroll down to see that you make 103 choices in 600 seconds, yield-
ing an average delay of 5.8 seconds. This is a poor outcome.

Column F displays what happens when B is exclusively chosen. The first
few wait times are long, but each choice of B lowers the wait time until the
minimum, 4 seconds, is reached.

STEP Scroll down to see that clicking choice B every time lets you make
144 choices (with an average delay of 4.167 seconds).
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The strategy of choosing B exclusively cannot be beat (except for an endgame
correction, which is one of the exercise questions). If the player switches from
B to A, the temporary gain is swamped by higher wait times when the in-
evitable switch back to B occurs.

To be sure that this point is clear, consider switching after having reached
the 4 second minimum pause time for choice B. What would happen?

STEP Change cell K15 (in the Solution sheet) to A.

Five consecutive A choices are made and each one has a pause time less than
or equal to four seconds, as shown in column L. Thus, we have saved time.
But when we switch back to B (since we know A’s pause time will continue
to rise and we can get to 4 seconds with B), we have to suffer higher pause
times. The trade-off is not worth it. We end up making fewer choices (142
instead of 144) and suffering a longer average delay.

The Solution sheet makes clear the following key point: The optimal strategy
is to choose B exclusively and never deviate. If you failed to do this, do not
worry; you have plenty of company. Very few humans figure this out.

Melioration Explained

Herrnstein and Prelec (1991) designed the experiment to test for the presence
of something called melioration (pronounced mee-lee-uh-RAY-shun). To me-
liorate (or ameliorate) means to make better or more tolerable. Melioration
says that we are drawn to choices that immediately reduce pain or give imme-
diate satisfaction. We do a poor job of maximizing when there is a trade-off
between short- and long-run returns. We are shortsighted and look to make
immediate improvements. In fact, melioration has been found in other ani-
mals besides humans.

The attraction of switching to A and having the pause time fall is melioration
at work. The immediate pain of waiting is lessened and, thus, players are
drawn toward choice A.

In addition to the actual choices from the 17 players, Figure 8.3 shows wait
times for choices A and B given the proportion of A choices in the previous
10. It is easy to see, once again, that the optimal solution is to choose B
exclusively because that lets you travel down the solid line to the intercept
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at 4 seconds. If you ever jump on the A train, you are swept upwards toward
a 6-second wait time.

Figure 8.3: Understanding melioration.
Source: Melioration.xls!Data, revealed after game played.

Figure 8.3 shows that if the last 10 choices were B and then A was chosen,
the player would immediately gain a reduction in wait time from 4 to 2 sec-
onds (jumping from the higher to the lower line). For a few choices, the
player would be better off, but after the 5th consecutive A choice, the wait
time would be greater than 4 seconds. The player would be forced to endure
longer wait times than would have been obtained by sticking with B.

Furthermore, it is hard to switch to B because wait time immediately jumps
by 2 seconds. The player will have to suffer through the ride down the B line,
with choice A promising a 2-second decrease with every click. The immediate
attraction of the 2-second decrease is the core of the melioration process that
guides subjects to choose A.

Figure 8.3 makes clear that the 17 human subjects who played the choice
game failed to optimize. The fraction of allocation to A should be zero, but
most players do not do this. This begs the question, so what?

Herrnstein and Prelec (1991) argue that the lack of optimization is a big deal.
For them, choice is often not a single, isolated decision, but a series of many
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decisions, distributed over time. Frequency of athletic exercise, buying lot-
tery tickets, choices of restaurants, and rate of work in freelance occupations
are some of the examples offered.

For all of these distributed choice problems, melioration is common and this
means people systematically fail to optimize. “This would imply that prefer-
ences as revealed by the marketplace may be a distortion of the true under-
lying preferences” (Herrnstein and Prelec, 1991, p. 137). Melioration helps
explain complaints about one’s own behavior (such as exercising too little),
which is part of a growing literature on self-control. It also may contribute
to the study of impulsiveness and addiction.

Of course, this presumes that the laboratory findings carry over to real-world
settings. This is often an Achilles’ heel of experimental economics. Results
are often criticized as having little external validity because they are based
on fake scenarios played by college students. Herrnstein and Prelec (1991)
acknowledge that little money was at stake (they paid their players based on
performance), but they rely on two other motivating factors. “First, delays
are genuinely annoying and the difference between two and four seconds is
not trivial, as any computer user will appreciate. Second, the ‘puzzle’ nature
of the experiment presents a challenge that is presumably satisfying to solve”
(Herrnstein and Prelec, 1991, p. 144).

Others have tried to nail down exactly what causes melioration and how it
can be overcome. Neth, Sims, and Gray (2005, p. 357) were surprised:

We hypothesized that frequent and informative feedback about
optimal performance might be the key to enable people to over-
come the documented tendency to meliorate when choices are
rewarded probabilistically. Much to our surprise, this intuition
turned out to be mistaken. Instead of maximizing, 19 out of
22 participants demonstrated a clear bias towards melioration,
regardless of feedback condition.

The Future of Behavioral Economics

With faculty, courses, conferences, and specialized journals, there is no doubt
that Behavioral Economics is here to stay. In 2002, the Nobel Prize in Eco-
nomic Sciences was awarded to Daniel Kahneman and Vernon Smith for

https://www.google.com/search?q=daniel+Kahneman+nobel+prize
https://www.google.com/search?q=vernon+smith+nobel+prize
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work incorporating psychology and laboratory methods in the study of deci-
sion making. Richard Thaler won the Nobel in 2017 for his contributions to
behavioral economics.

Unlike conventional economics, which simply assumes optimizing behavior
and rationality, behavioral economists seek to determine under what condi-
tions agents struggle to optimize. They work with psychologists and neuro-
scientists to devise tests and laboratory experiments. The key result is that
they find persistently sub-optimizing behavior.

Melioration is but one simple example of work in this area. Melioration
means that decision makers fail to optimize because they focus on the small
(immediate, single choice) instead of the large (future, many choices). This
can be applied any time that incremental steps lead to an undesirable place:

A person does not normally make a once-and-for-all decision to
become an exercise junkie, a miser, a glutton, a profligate, or a
gambler; rather, he slips into the pattern through a myriad of
innocent, or almost innocent choices, each of which carries little
weight. Indeed, he may be the last one to recognize “how far he
has slipped,” and may take corrective action only when prompted
by others. (Herrnstein and Prelec, 1991, p. 149)

According to the behavioral economists, the list of examples where humans
struggle to optimize is actually quite long. Evaluating probabilities (such
as risk), choice over time, and misperception of reality are all areas being
actively studied.

It remains unclear whether the results being generated by behavioral economists
are merely a series of peculiar puzzles that will extend the boundaries of eco-
nomics or more serious anomalies that will one day bring down the paradigm
of rationality and optimizing behavior that is the hallmark of modern, main-
stream economics.

Exercises

If you did the Q&A problems and changed the parameters, set them back to
the original values (2 and 0.4 for A and 8 and −0.4 for B).

1. With your observation included, copy and paste the chart titled Actual
Trial Results in a Word document. Comment briefly on how you did.

https://www.google.com/search?q=richard+thaler+nobel+prize
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2. What endgame correction could be implemented to increase the to-
tal number of choices? What is the true, exact maximum number of
choices? Explain.

Herrnstein and Prelec (1991), p. 142, point out that, “In fact, the
subjects showed no evidence of having been influenced by the endgame
contingency.”

3. With columns Q:U in the Solution sheet, use Solver to find the optimal
solution to the choice game. Notice how the choice variables have been
constrained. How does Solver do? Explain.

4. Training someone to touch type does not guarantee continued touch
typing in the workplace. How would melioration explain this result?
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Richard Thaler and Cass Sunstein, Nudge: Improving Decisions About Health,
Wealth, and Happiness (2008).
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https://www.google.com/search?q=thaler+winner%27s+curse
https://www.google.com/search?q=thaler+winner%27s+curse
https://www.google.com/search?q=ariely+predictably+irrational
https://www.google.com/search?q=ariely+predictably+irrational
https://www.google.com/search?q=Kahneman+thinking+fast+slow
https://www.google.com/search?q=lewis+undoing+project
https://www.google.com/search?q=thaler+misbehaving
https://www.google.com/search?q=thaler+sunstein+nudge
https://www.google.com/search?q=thaler+sunstein+nudge




How use doth breed a habit in a man!

William Shakespeare

Chapter 9

Rational Addiction

This chapter is different. It does not have steps that you follow as you work
in Excel. It does not have any exercise questions. There is an Excel file that
you will open and work on, but it is entirely self-contained. Just open the
file and start reading.

Before you begin, however, consider a little of the science behind learning.
Once we know how we learn, then we can optimize!

The Neuroscience of Learning

Suppose you want to improve your free throw shooting and you really cared
about this so you decided to practice for one hour per day for two weeks.
Most people think that standing at the free throw line and shooting free
throws would be the best use of your time, but this is wrong. A much better
use of your one hour per day is to shoot from all over the court—spend 10
minutes in one spot, then move to another spot, varying distance from say 10
to 20 feet (the free throw line is 15 feet from the basket). This is interleaved
practice and it works also for learning and studying.

Interleaved practice is counter-intuitive and paradoxical. Many coaches refuse
to believe it, but careful controlled experiments in a variety of applications
reveal it is a fundamental principle (Brown, et al., 2014). It works for physical
skills (don’t throw 100 curve balls, interleave with other pitches), memoriza-
tion (don’t repeat one thing, interleave items), and higher learning—reflect
on how this book has repeated concepts like elasticity in a variety of appli-
cations.
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In addition to interleaving, below is a list of best-practice learning strategies
that you can apply to every course you take:

1. Interleaved Practice (switching)

2. Spaced Practice (avoid cramming)

3. Elaboration (invent your own how and why questions)

4. Concrete Examples (the more specific, the better)

5. Dual Coding (words and visuals)

6. Retrieval Practice (repeatedly recall what you know)

Unbeknownst to you, this book has been using all of these strategies to help
you learn.

To get more information on these six science-based ways to learn more effi-
ciently, visit these two web sites:

� www.learningscientists.org/posters

� www.youtube.com/watch?v=CPxSzxylRCI

And one more thing that you believe about learning that is wrong: you think
your ability to learn economics (or math or music) is preordained. Your brain
either has a knack for economics or it does not and, if not, you cannot learn
economics (or math or music). This is wrong.

Neuroscience makes clear that your brain is plastic. It is moldable and flex-
ible. You have already learned a great deal of economics, math, and Excel.
Yes, some details are fuzzy and you have not mastered every single thing,
but keep trying. As you see more examples and applications, it gets easier
to grasp and your understanding deepens.

Rational Addiction

As you work on the Excel file, you will be reviewing concepts and feel comfort-
able with Solver, charts, and Excel itself. This will reinforce basic material
that you already know, but you will also be exposed to some new ideas as
you continue to master the economic way of thinking.

https://www.learningscientists.org/posters
https://www.youtube.com/watch?v=CPxSzxylRCI
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This application is controversial and generates passionate debate. Non-
economists, especially, find it outrageous. After you finish, you can make
up your own mind on what you think about it.

Open RationalAddiction.xlsm to begin.

References

The epigraph is from Shakespeare’s Two Gentlemen of Verona. The Conver-
sation sheet in RationalAddiction.xlsm explains what it means.

The full story behind the puzzling interleaved practice phenomenon and much
more about how we learn is in Peter Brown, Henry Roediger III, and Mark
McDaniel (2014), Make it Stick: The Science of Successful Learning .
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Part II

The Theory of the Firm
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For Friedman, lack of realism of assumptions
is not a virtue. It is a necessary evil: to base
theories on absolutely realistic assumptions
is like drawing a map on a one-to-one scale.

Mark Blaug

Overview

Consumer Theory focuses on the buyer. It models a consumer’s optimization
problem and emphasizes deriving a demand curve as the most important re-
sult.

The Theory of the Firm is about the seller. Firm decisions about inputs
and outputs are modeled as optimization problems. The key result will be
deriving a supply curve.

The chapters are organized as shown in Figure II.1. Notice that the produc-
tion function is the first idea presented. It plays a role in each of the three
optimization problems faced by the firm.

Figure II.1: Content map with focus on the theory of the firm.

Figure II.1 also provides a broad overview of the entire landscape. We have
completed the Theory of Consumer Behavior and, once we finish our work
in the Theory of the Firm, we will be ready to analyze the behavior of con-
sumers and firms together in part III, the Market System.
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Unlike the Theory of Consumer Behavior, the Theory of the Firm is made
up of three interrelated optimization problems.

1. Input cost minimization: Choose inputs to minimize the cost of pro-
ducing a given level of output. Derive the cost function by changing q
and tracking the minimum total cost.

2. Output profit maximization: Choose output to maximize profits. De-
rive the supply curve by changing the price and tracking the optimal
output.

3. Input profit maximization: Choose inputs to maximize profits. Derive
an input demand curve by changing an input price and tracking optimal
input use.

Of course, optimization and comparative statics play a prominent role, but
watch out for these three crucial innovations in the Theory of the Firm.

1. Market structure: The Theory of the Firm includes the market envi-
ronment as an important consideration in the model. The firm can be
a price taker, a perfectly competitive firm, or a price maker, a monop-
olist. There are many other market structures, for example, oligopoly
(where there are a few firms) and monopolistic competition.

2. Time period: The Theory of the Firm distinguishes between long run
and short run decision making horizons. In the long run, all factors
are freely variable and firms may enter or exit the industry. In the
short run, at least one input (usually capital) is fixed and the firm may
cease production (shut down), but it must pay fixed costs whether it
produces or not.

3. Output is cardinally measurable: Unlike utility, the output produced
by a firm and the resulting revenues, costs, and profits can be directly
observed and measured on a cardinal scale. Thus, we will be able to
use and interpret the Lagrangean multiplier.

Methodology

The assumptions underlying the Theory of Consumer Behavior are never
seen in reality and the Theory of the Firm doubles down on this strategy by
making even more outlandish assumptions. The time has come to explain
why economists do this.
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Each discipline has its own rules for determining truth and acceptable pro-
cedures for producing knowledge. These rules and norms are known as the
methodology. For example, economics utilizes highly abstract models. The
assumptions of these models are plainly unrealistic and false. Real-world
human beings do not behave like perfectly rational, calculating machines.
Then why do economists assume they do?

The classic defense of unrealistic assumptions is “The Methodology of Pos-
itive Economics,” the first chapter in Milton Friedman’s (1953) Essays in
Positive Economics . Friedman’s argument was initially controversial, but
it became conventional thinking in economics. Friedman urged economists
to ignore how unrealistic the assumptions were and focus on the predictive
power of a model. If you want to predict how billiard balls will move when hit
by an expert pool player, vectors and complicated mathematics are involved.

It seems not at all unreasonable that excellent predictions would
be yielded by the hypothesis that the billiard player made his
shots as if he knew the complicated mathematical formulas that
would give the optimum directions of travel, could estimate ac-
curately by eye the angles, etc., describing the location of the
balls, could make lightning calculations from the formulas, and
could then make the balls travel in the direction indicated by the
formulas. (Friedman, 1953, p. 21)

The Theory of the Firm (like the Theory of Consumer Behavior) is built on
the idea of decision makers acting as if they were rationally calculating and
optimizing agents. This is plainly unreal, but the point is not to describe
how consumers or firms actually make decisions. Instead, we want a model
that makes predictions about changes in output, for example, as product
price changes (this is a supply curve).

We know firms do not take price as given and there is no such thing as perfect
competition in the real world, but we assume this because we are not trying
to build an accurate representation of an actual firm. Instead, we want to
able to predict how a firm responds to a price shock—just like we want to
predict how a billiard ball will move when struck.

It is quite easy to forget the methodology of economics and find oneself won-
dering how economists can believe such a ridiculously unreal and abstract
model of a firm. Remember, economists do not test theories via the assump-
tions—it is the implications that matter.

https://www.google.com/search?q=friedman+essays+in+positive+economics
https://www.google.com/search?q=friedman+essays+in+positive+economics
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The usefulness of abstract models and unrealistic assumptions often drives
opinion or evaluation of the work. For example, the economic theory of ratio-
nal addiction says addicts rationally “choose” harmful addiction or dangerous
activities. To some, this is so obviously untrue that they cannot engage with
the theory.

The term homo economicus , a non-existent version of homo sapiens, is used
to mock the narrow, calculating humans that inhabit the made-up world of
economics.

In France, over a thousand Economics graduate students signed a letter in
2000 attacking the abstract, unrealistic, mathematical training they were re-
ceiving. This launched the Post-Autistic Economics movement.

Friedman’s view came to dominate mainstream economics, but it did not end
the argument in philosophical circles and heterodox economics. The debate
about methodology rages on while most economists continue to build and
work with highly abstract, completely unrealistic models.

Your Role—A Reminder

As before, mastery of the Theory of the Firm requires your effort, energy,
and engagement. Be sure to experiment, changing cells and asking “what
if” questions as you proceed through the Excel workbooks. Focus on the
repeated patterns and continue to add to your stock of knowledge.

Remember that economics has a core logic that has been referred to as “the
economic way of thinking” or “the economic approach.” Learning to see and
think like an economist should be your ultimate goal.

References

The epigraph is from page 703 of the third edition (1978) of Mark Blaug’s
Economic Theory in Retrospect (originally published in 1962). Blaug’s con-
cluding chapter, “A Methodological Postscript,” is a good review of how
theories develop and knowledge grows.

Methodology is part of the philosophy of science. Economists pay little
attention to methodology, but that does not mean it is unimportant.
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Let us choose that function P ′ = bLkCk−1

and find such numerical values of b and k
that P will “best” approximate P [output]
in the sense of the Theory of Least Squares.
Then relative to the indices and the period
we have the norm P = 1.01L
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Charles W. Cobb and Paul H. Douglas

Chapter 10

Production Function

The production function is the backbone of the Theory of the Firm. It de-
scribes the current state of technology and how input can be transformed
into output.

The production function can be displayed in a variety of ways, including
product curves and isoquants. In every optimization problem faced by the
firm, the production function is included.

Key Definitions and Assumptions

Inputs, also known as factors of production, are used to make output, some-
times called product. As shown in Figure 10.1, the firm is a highly abstract
entity—a black box—that transforms inputs into output.

Figure 10.1: The black box nature of the firm.

The specific details of how the firm is organized and how it actually combines
the inputs to make goods and services is ignored by the theory, hidden in the
black box.

Inputs are often broken down into large categories, such as land, labor, raw
materials, and capital. We will simplify even further by collapsing everything
that is not labor into the capital category.
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Labor, L, is human toil and effort. It is measured in units of time, usually
hours.

Capital has a confusing history in economics. As a factor of production, cap-
ital, K, means things that produce other things, such as machinery, tools, or
equipment. That is different from financial or venture capital that is a fund
of money. The title of Karl Marx’s famous book, Das Kapital, uses capital
in the sense of wealth, denominated in money. The Theory of the Firm’s K
is measured in numbers of machines.

Like labor, capital is rented. The firm does not own any of its machines or
buildings. This is extremely unrealistic, but allows us to avoid complicated
issues involving depreciation, financing of machinery purchases (debt versus
equity, for example), and so on.

Another extreme simplifying assumption is that there is no time involved.
Like the consumer maximizing utility subject to a budget constraint, the firm
exists only for a nanosecond. It makes decisions about how much to produce
to maximize profits with no worries about inventories or the trajectory of
future sales. It produces the output in an instant.

We avoid complications arising from the production of more than one good
or service by assuming that the firm produces only one product. That makes
revenues simply price times quantity sold of the one product.

Without going into detail again about unrealistic assumptions, it seems help-
ful to point out that we are not trying to build an accurate model of a real-
world firm. Our primary goal is to derive a supply curve. We want to know
how a firm responds to a change in price, ceteris paribus. By assuming away
many real-world complications, we can model the firm’s maximization prob-
lem, solve it, and do comparative statics to get the supply curve.

Mathematical Representation

Just like the Theory of Consumer Behavior, which uses a utility function
to model tastes and preferences, the Theory of the Firm uses a production
function to capture the ability of firm’s to transform inputs into outputs.
Unlike utility, production is objective and observable. We can count how
much output is made from a given number of hours of labor and machines.
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The production set describes all of the technologically feasible outputs from
a given amount of inputs. The production function describes the maximum
output possible from a given amount of inputs. Notice how the production
function assumes the inputs are being used in the best way possible.

The most abstract, general notation for a production function is y = f(L,K).
The f() represents the technology available to the firm. A specific, con-
crete example of a production function is the Cobb-Douglas functional form:
y = ALαKβ. Let’s see what it looks like in Excel.

STEP Open the Excel workbook ProductionFunction.xls, read the Intro
sheet, then go to the Technology sheet to see an example of the production
function.

In Figure 10.2, the production set is the surface of the 3D object and every-
thing inside; the production function is just the surface.

Figure 10.2: The production function.
Source: ProductionFunction.xls!Technology.

The production function implicitly includes an already solved engineering
optimization problem—it gives the maximum output from any given com-
bination of inputs. In other words, we are assuming that the inputs are
organized in their most productive configuration and nothing is wasted.

Notice that the Cobb-Douglas function on the Technology sheet has been set
up so it can be controlled by a single parameter, α (alpha), by making the
exponents α and (1− α). Use the scroll bar to change alpha and notice how
the shape of the production function surface changes. Alpha is a parameter
that takes values between zero and one.
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STEP Click the Reset button to return the sheet to its default, initial
position.

Product Curves

In addition to the 3D view, the production function can be displayed in other
ways. To graph the production function in two dimensions, we need to sup-
press an axis. If we keep output and suppress one of the input axes we get a
total product curve. If we suppress output and keep the two inputs, we get
an isoquant.

Product and output mean the same thing. The total product curve is the
number of units of output produced as one input is varied, holding the other
constant.

STEP Click the TPL and TPK buttons to see the product curves for
labor and capital.

In addition to the total product curves, there are average and marginal prod-
uct curves. The average product is simply output per unit of input. Thus,
the average product of labor is Y/L and the average product of capital is
Y/K.

The marginal product curves tell us the additional output that is produced as
input is increased, holding the other input constant. Marginal product can
be computed based on finite-size changes in an input or via the derivative.

Via calculus, the marginal product is simply the derivative of the production
function with respect to the input. For the Cobb-Douglas function in the
Technology sheet, the marginal products are found by taking the partial
derivatives with respect to L and K :

MPL =
∂Y

∂L
= (1− α)AKαL(1−α)−1 = (1− α)AKαL−α

MPK =
∂Y

∂K
= αAKα−1L1−α

STEP Scroll down and click on cell C52 to see that the marginal product
is computed via the change in output from an increase of 2 hours of labor,
with K = 4.
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This computes the marginal product of labor as the rise over the run from
L = 0 to L = 2 on the total product curve.

STEP Click the Show MPL button and then click on cell C58 to reveal
the marginal product computed via the derivative.

Since the total product is a curve, the slope of the tangent line at L = 2 is
not the same as the rise over the run from one point to another.

STEP Now look at the total, marginal, and average product curves.

Notice how the product curves are drawn based on a given amount of capital.
If the amount of capital changes, then the product curves shift.

Marginal and average product can be graphed together because they share a
common y axis scale, output per unit of input. The total product curve can
never be graphed with the marginal and average product curves because the
total product curve uses output as its y axis scale.

The graphs demonstrate that when total product increases at a decreasing
rate, marginal product is decreasing. When total output increases at a de-
creasing rate as more input is applied, ceteris paribus, we are obeying the
Law of Diminishing Returns. As long as alpha is between zero and one, our
Cobb-Douglas production function exhibits diminishing returns.

The Law of Diminishing Returns does not deny that there can be ranges
of input use where output increases at an increasing rate. It says that,
eventually, continued application of more input along with a fixed factor of
production must lead to diminishing returns in the sense that output will
increase, but not as fast as before. Thus, the Law of Diminishing Returns
is simply a statement that marginal productivity must, eventually, be falling.

As with utility, the Cobb-Douglas functional form is convenient, but there
are many, many other functional forms available.

STEP Proceed to the Polynomial sheet to see a different functional form.
The charts are strikingly different than before.

Unlike the Cobb-Douglas functional form, which always shows diminishing
returns, the polynomial production function exhibits all three different phases
of returns: increasing, diminishing, and negative returns.
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At low levels of labor use, output is increasing at an increasing rate so the
total product curve is curved upward and marginal product is increasing. In
this range, as long as marginal product is rising and output is increasing at
an increasing rate, output rockets upward, growing faster and faster.

When the marginal product curve reaches its peak, the total product curve
is at an inflection point. From here, additional labor leads to increases in
output, but at a decreasing rate, leveling off as L increases. We say that
diminishing returns have set in.

The Polynomial sheet is color coded so it is easy to see where the total prod-
uct curve changes character. Cells with yellow backgrounds signal the range
of labor use where diminishing returns apply.

As more and more labor is used, total product reaches its maximum point
(where marginal product is zero). Beyond this point, we are in a range of
negative returns. This is a theoretical possibility, but not a practical one.
No profit-maximizing firm would ever operate in this region because you can
get the same amount of output with fewer workers.

It is worth remembering that the Law of Diminishing Returns does not say
that we always have diminishing returns for every level of labor use. Instead,
the law says that, eventually, diminishing returns will set in. It is also impor-
tant to understand the difference between diminishing and negative returns.
The former says output is rising, but slower and slower, while the latter says
output is actually falling.

Notice the relationship between the marginal and average product curves.
It is no coincidence that the marginal product curve intersects the aver-
age product curve at the maximum value of the average product. There is a
guaranteed relationship between marginal and average curves: Whenever the
marginal is greater than the average, the average must be rising and when-
ever the marginal is less than the average, the average must be falling. Thus,
the only time the two curves meet is when the marginal and average are equal.

STEP Change the parameter for the b coefficient from 30 to 40.

Notice that the S shape becomes much more linear. The range of increasing
returns is larger and we do not hit negative returns over the observed range
of L from 0 to 25.
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STEP Set the parameter for the b coefficient to 80.

Over the observed range of L from 0 to 25, we see only increasing returns.

STEP Change the δL parameter from 1 to 2. This makes L go up by
two and the range goes from 0 to 50.

Diminishing returns do kick in; it just takes more labor for the Law of Di-
minishing Returns to be observed when the b coefficient is set to 80.

Diminishing versus Decreasing Returns

One extremely confusing thing about the Law of Diminishing Returns has to
do with another concept called returns to scale. Unlike the Law of Dimin-
ishing Returns—which is based on applying more and more of a particular
input while holding other inputs constant—returns to scale focuses on the
effect on output of changing all of the inputs by the same proportion.

There is no law for returns to scale. A production process may exhibit in-
creasing, decreasing, or constant returns to scale, across all values of input
use. For example, the Cobb-Douglas function in the Technology sheet has
constant returns to scale because if you double L and K, you are guaranteed
to double output.

You can see this is true by comparing the points 2,2 and 4,4 in the table in
the Technology sheet. A more complete demonstration uses a little algebra.
We begin with the production function:

AKαL1−α

Next, we double both L and K :

A(2K)α(2L)1−α

We expand the terms with exponents:

A(2α)(Kα)(21−α)(L1−α)

We collect the “2” terms:

A(2α+(1−α)(Kα)(L1−α)
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The alphas add to zero (α− alpha = 0) so we get:

A2KαL1−α

Thus, we have shown that doubling the inputs from any input levels leads
to doubling the output, and this is called constant returns to scale. If the
exponents in the Cobb-Douglas function do not sum to 1, then the function
does not exhibit this property.

The Cobb-Douglas function in the Technology sheet obeys the Law of Dimin-
ishing Returns for each input (with 0 < α < 1), yet it has constant returns to
scale. Do diminishing returns imply decreasing returns to scale? No, abso-
lutely not. The two concepts are independent. They ask different questions.
The Law of Diminishing Returns is about what happens to output when a
single input is increased, ceteris paribus, and decreasing returns to scale says
that output will less than double when all inputs are doubled.

Isoquants

In addition to product curves, another way to represent the production func-
tion uses the isoquant. The prefix iso, meaning equal or the same (as in
isosceles triangle), is combined with quant (referring to the quantity of out-
put) to convey the idea that the isoquant displays the combinations of L and
K that yield the same output.

STEP Return to the top of the Technology sheet and click the Isoquant

button (near cell H28) to see the isoquant map, as displayed in Figure 10.3.

Figure 10.3: Isoquants for a Cobb-Douglas technology.
Source: ProductionFunction.xls!Technology.
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An isoquant is simply a 2D, top down view of the 3D surface. Unlike the
product curves, which give a view from the side, the isoquant shows L and
K on the x and y axes, respectively, and suppresses output.

Notice that Excel cannot correctly draw the isoquant map, putting garbled
characters in the bottom left-hand corner of the chart and producing a squig-
gly, jagged display at the bottom.

You might be thinking that it looks a lot like an indifference map. There are
definitely strong parallels between isoquants and indifference curves. Both
are top-down views of a 3D object and, therefore, both are level curves or
contour plots. Both are used to find and display the solution to an optimiza-
tion problem.

However, there is one critical difference: unlike an indifference curve, each
isoquant is, in principle, directly observable and the isoquants can be com-
pared on a cardinal scale. With indifference curves, the utility function is
a convenient fiction and the numerical values merely reflect rankings. No
one cares that a particular indifference curve yields 28 utils of satisfaction.
This is not the case for isoquants because the suppressed axis, output, is
measurable. You can certainly say that one isoquant gives twice the output
as another or that one isoquant gives 17 more units of output than another.

One way in which indifference curves and isoquants are the same is that
we can compute the slope between two points or the instantaneous rate of
change at a point on an isoquant. To avoid confusion with MRS, we call this
slope the technical rate of substitution, TRS. With labor on the x axis and
capital on the y axis, the TRS tells us how much capital we can save if one
more unit of labor is used to produce the same level of output.

From one point to another, the TRS can be computed as the rise over the
run, δK

δL
. At a point, we compute the TRS as the ratio of the derivatives with

respect to L and K from the production function:

TRS = −MPL
MPK

= −
∂f(L,K)
∂L

∂f(L,K)
∂K

Whereas MRS is universally used for the slope of an indifference curve, MRTS
(marginal rate of technical substitution) is sometimes used for the slope of
the isoquant. MRTS and TRS are perfect synonyms. We will use TRS.
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The TRS (like the MRS) is a number that expresses the substitutability of
labor for capital at a point on an isoquant. So, the TRS of two different L
and K combinations on the same isoquant might be −100 and −2. The TRS
= −100 value says that the firm can replace 100 units of capital with 1 unit
of labor and still produce the same output. The isoquant would be steep at
this point. If a point has a TRS = −2, 1 unit of labor can replace 2 units of
capital to get the same output. The isoquant at this point would be much
flatter than the point with the TRS = −100.

Just like the MRS, the TRS tells us how steep the isoquant is at a point.
The steeper the isoquant, the more capital can be replaced by labor and still
produce the same output.

Technological Progress

Over time, technology—our ability to transform inputs into output—improves.
Electric power and computers are examples of technological progress that en-
ables more output to be produced from the same input.

There are two kinds of technological change. The Cobb-Douglas functional
form can be used to illustrate each type.

Suppose increased education improves the productivity of labor. This would
be modeled as an increase in the exponent for labor in the Cobb-Douglas
production function. Small changes, say from 0.75 to 0.751, lead to large
responses (e.g., in output or labor use) because we are working with an ex-
ponent. This is known as labor-augmenting technological change.

We could also have a situation where the coefficient A in the function AKαLβ

increased over time. As A rises, the same number of inputs can make more
output. This technological progress is said to be neutral (in terms of the
utilization of L and K ) because TRS does not depend on A.

We can show this by walking through the steps needed to find the TRS.
First, we compute the marginal products of L and K from the function,
Y = ALαKβ:

MPL =
∂Y

∂L
= αALα−1Kβ

MPK =
∂Y

∂K
= βALαKβ−1
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The TRS is minus the ratio of the marginal products:

TRS = −MPL
MPK

= −αAL
α−1Kβ

βALαKβ−1
= −αK

βL

The A terms cancel out, which means that the ratio of the marginal produc-
tivities of each input depends only on each input’s exponent and the amount
of the input used.

The Firm as a Production Function

The production function is the starting point for the Theory of the Firm. As
with utility, many, many functional forms can be used to represent real-world
production processes.

Economists represent the production function not as a 3D object, but in two
dimensions. We get product curves (total, marginal, and average product
curves) by focusing on output as a function of a single input, holding all
other inputs constant. An isoquant suppresses the output and shows the
different combinations of L and K that produce a given level of output.

The TRS is similar to the MRS, and it will play an important role in the
understanding the firm’s cost minimizing input choice.

Remember to keep straight the difference between the Law of Diminishing
Returns and idea of returns to scale. The former applies more and more of a
single input, holding all other inputs constant; the latter reports what hap-
pens to output when all inputs are changed by the same proportion. Those
are two different things.

Exercises

1. Starting from a blank workbook, with K = 100, draw total, marginal,
and average product curves for L = 1 to 100 by 1 for the Cobb-Douglas
production function, Q = LαKβ, where α = 3/4 and β = 1/2. Use the
derivative to compute the marginal product of labor.

Hint: Label cells in a row in columns A, B, C, and D as L, Q, MPL,
and APL. For L, create a list of numbers from 1 to 100. For the other
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three columns, enter the appropriate formula and fill down. For MPL,
do not use the change in Q divided by the change in L; instead enter
a formula for the derivative for the MPL at a point.

2. For what range of L does the Cobb-Douglas function in question 1
exhibit the Law of Diminishing Returns? Put your answer in a text
box in your workbook.

3. Determine whether this function has increasing, decreasing, or constant
returns to scale. Use the workbook for computations and include your
answer in a text box.

4. From your work in question 3 and the comment in the text that you
cannot have constant returns to scale “if the exponents in the Cobb-
Douglas function do not sum to 1,” provide a rule to determine the
returns to scale for a Cobb-Douglas functional form.

5. Is it possible for a production function to exhibit the Law of Dimin-
ishing Returns and increasing returns to scale at the same time? If so,
give an example. Put your answer in a text box in your workbook.

6. Draw an isoquant for 50 units of output for the Cobb-Douglas function
in question 1.

Hint: Use algebra to find an equation that tells you the K needed to
produce 50 units given L. Create a column for K that uses this equation
based on L ranging from 20 to 40 by 1 and then create a chart of the
L and K data.

7. Compute the TRS of the Cobb-Douglas function at L = 23, K = 312.5.
Show your work on the spreadsheet.
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The term “isoquant” was introduced by R.
Frisch but originally for a different concept,
for which it should have been reserved.

Joseph Schumpeter

11.1 Initial Solution

Input cost minimization is one of the three optimization problems faced by
the firm. It revolves around the question of choosing the best combination
of inputs, L and K, to produce a given level of output, q.

The best combination is defined as the cheapest one. The idea is that many
combinations of L and K can produce a given q. We want to know the
amounts of labor and capital that should be used to produce a given amount
of output as cheaply as possible.

Of course, we answer this question by setting up and solving an optimization
problem; then we do comparative statics. Because there is a constraint (we
must produce the given q), we will use the Lagrangean method.

Setting up the Problem

The economic approach organizes optimization problems by answering three
questions:

1. What is the goal?

2. What are the choice variables?

3. What are the given variables?

The goal is to minimize total cost, TC, which is simply the sum of the amount
paid to the workers, wL, and the amount spent on renting machines, rK.

The endogenous variables are L and K. Labor is measured in hours and cap-
ital is the number of machines. The firm can decide to produce the given
output by being labor intensive (using lots of labor and little capital), or
roughly equal amounts of both, or by renting a lot of machinery and using
little labor.
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The exogenous variables are the input prices, wage rate (w), and the rental
price of capital (r). The wage rate, or wage for short, is measured in $/hour
and the rental price of capital is $/machine. We assume that the firm is a
price taker in the markets for labor and capital so it can rent as much L and K
as it wants at the given w and r. The amount to produce, q, is also an exoge-
nous variable in this problem. We are not considering how much should be
produced, but what is the best way to produce any given amount of output.
Finally, the firm’s technology, the production function, f(L,K), is also given.

Because the firm has to produce a given amount of output, we know this is
a constrained optimization problem. Our work in the Theory of Consumer
Behavior has made us expert at solving this kind of problem. As you will
see, the analysis is similar, but there are some striking differences.

One thing that does not change is our framework. We first explore the
constraint to determine our options, then focus on the goal (to minimize
TC ), and, finally, we will combine the two to find the initial optimal solution.

The Constraint

The menu of options available to the firm is given by the isoquant. It serves
as the constraint because the firm is free to choose L and K on the condi-
tion that it must produce the assigned level of output. Mathematically, the
equation for the constraint is simply the production function, q = f(L,K).

STEP Open the Excel workbook InputCostMin.xls, read the Intro sheet,
then go to the Isoquant sheet to see the isoquant displayed in Figure 11.1.

Figure 11.1: An isoquant from a Cobb-Douglas production function.
Source: InputCostMin.xls!Isoquant.
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Like the budget constraint in the Theory of Consumer Behavior gives us con-
sumption possibilities, the isoquant gives the firm its feasible input options.
All combinations below and left of the isoquant are ruled out. For example,
there is no way to produce 100 units of output, holding quality and every-
thing else constant, with the L,K combination of 100,20. The technology is
simply not advanced or powerful enough to make 100 units of output with
100 hours of work and 20 machines.

The points above and to the right of the isoquant are feasible, but they are
clearly wasteful. In other words, the firm could produce 100 units of output
with an L,K combination of 250,50, but the isoquant tells the firm it does
not need that much labor and capital to make 100 units. At 250,50, it could
travel straight down to K = 10 and still produce q = 100 or straight left
(on the horizontal line at K = 50) until it hit the isoquant and use a lot less
labor. The firm could also travel in a diagonal, southwest direction until it
hit the isoquant to economize on both inputs.

Points off the isoquant to the northeast (such as 250,50) are said to be techni-
cally inefficient. The inefficient part tells us that the firm is not minimizing
its total cost at that point; technical describes the fact that the firm is not
organizing its inputs so as to maximize output. In other words, the firm is
not correctly solving the engineering optimization problem represented by
the production function. Making 100 units of output with 250 hours of labor
and 50 machines means that you are not getting the most out of your labor
and capital. Economists call this situation technically inefficient.

Since the firm cannot choose a combination below the isoquant and it is
wasteful to choose a combination above the isoquant, we know the answer
has to lie on the isoquant.

STEP Use the scroll bar next to cell B11 to see the input mixes the firm
might choose. As you change cell B11, the cell below changes also. It has
a formula that computes the amount of K needed to produce the required
output when you choose a value for L.

The idea is quite clear: The firm will roll around the isoquant in search of
the best combination. Rolling is a good word choice and image to remem-
ber—the firm is free to choose a point high up or roll down to the bottom
right. Because we do not have the input prices, we cannot find the optimal
solution with the isoquant alone.
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STEP Change the exogenous variables to see how the isoquant is af-
fected. Increases in A, c, and d pull the isoquant down. That makes sense
given that these shocks are all productivity enhancing and the firm will need
less L and K to make the given q = 100.

Lowering q has the same effect, but this is not a productivity shock. You are
simply telling the firm it does not have to produce as much as before so it
makes sense that it can use less labor and capital.

Notice how the constraint for this input cost minimization problem is a curve,
not a line like it was for the utility maximization problem. Mathematically,
that does not matter much, but it will impact the graph we draw to show
the initial solution.

Goal

With the constraint in hand, we are ready to model the goal. In this prob-
lem, the goal is represented by a series of isocost (equal cost) lines.

Total cost is TC = wL + rK. If we solve this equation for K (in order to
graph it in L-K space), we get the equation of a line:

TC = wL+ rK

rK = TC − wL

K =
TC

r
− w

r
L

The K (or y axis) intercept is TC
r

and the slope is −w
r
.

Isocosts are a little tricky at first because you are used to seeing a linear
constraint and a set of indifference curves. Input cost minimization has a
curved constraint and a set of linear isocosts. In the equation of the line
above, TC can take on any value. Thus, there is an isocost for TC = $500
and another for TC = $500.01 and an isocost for every single dollar amount.
Every L,K point is on an isocost and the L,K points that have the same TC
are on the same isocost.

STEP Proceed to the Isocost sheet to see how the isocost lines are used
to find the optimal solution.
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Each point on a particular isocost line has the exact same total cost. So, the
point on Figure 11.2 (and on your screen) has a cost of $500 (since 2 x 190
+ 3 x 40 = 500).

Figure 11.2: Three representative isocost lines.
Source: InputCostMin.xls!Isocost.

STEP Click the Show Goal to see how the firm’s cost minimization goal
is represented on this graph.

The firm can move to a new point by choosing a different combination of L
and K. If the new point has the same TC of $500 as the initial point, then
it will be on the same $500 isocost.

STEP Increase L by 30 and decrease K by 20 so you will be at another
point on the same isocost line of $500.

Now you know that all points on the TC = $500 isocost line share the same
total cost of $500. It is also obvious that the slope of each isocost line is −2

3

since w = 2 and r = 3.

Because the firm can choose the input mix, it can choose any combination
of L and K, provided that the chosen combination can produce the given
amount of output. The firm wants to hire as few inputs as it can (to save
on costs), but it has to meet the production target. How can it solve this
problem?
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The Initial Optimal Solution

We have the constraint (the isoquant) and the goal (get to the lowest isocost
possible), so now we combine the two to find the optimal solution.

STEP Proceed to the OptimalChoice sheet.

The starting position shows an L,K combination that costs $482.81. You
can confirm this number both in cell B7 and on the chart (the middle label
for the middle line).

The idea is to be on the lowest isocost line (i.e., the one with the smallest
intercept) that is just touching the isoquant because that means the firm will
be minimizing the total cost of producing the given level of output.

Clearly, the starting position is not optimal. You can see that the isocost
is intersecting the isoquant. This information is also revealed by the slope
and TRS information below the chart. The TRS, which is the slope of the
isoquant at a point, is greater (in absolute value) than the slope of the isocost
line at that point.

At the opening position, the firm is said to suffer from allocative inefficiency
because it is on the isoquant, but it fails to choose the cost minimizing input
mix. Because it is on the isoquant, we know it is not technically inefficient—it
is using the opening combination of L and K to get the maximum output.
The problem is that it is using the wrong combination of inputs in the sense
that there is a cheaper way to produce the given output.

We know there are two ways to solve optimization problems: analytically
and numerically. Because we have Excel and the problem implemented on
the sheet, we begin with the numerical approach.

STEP Run Solver. The optimal solution is depicted by the canonical
graph displayed in Figure 11.3.

Solver’s answer, which is correct, has the firm choose an L,K combination
whose isocost just touches the isoquant. There is no cheaper combination
that can produce 100 units with the existing technology (given by the pro-
duction function). If the firm went to an isocost that was one cent lower, it
could not rent enough L and K to make 100 units of output.
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Figure 11.3: The initial optimal solution.
Source: InputCostMin.xls!OptimalChoice, after running Solver.

We can confirm Solver’s result by applying the Lagrangean method to solve
this constrained optimization problem.

We start by writing down the problem, using the parameter values from the
OptimalChoice sheet.

min
L,K

TC = 2L+ 3K

s.t. 100 = L0.75K0.2

The first step is to rewrite the constraint so that it is equal to zero.

100− L0.75K0.2 = 0

The second step is to form the Lagrangean by adding lambda, λ, times the
rewritten constraint to the original objective function. We use an extra-large
L for the Lagrangean function that is not at all related to the L for labor.

min
L,K,λ

L = 2L+ 3K + λ(100− L0.75K0.2)

The third step to finding the optimal solution is to take the derivative of the
Lagrangean with respect to each endogenous variable and set each derivative
to zero (giving us the first-order conditions).
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The fourth, and last, step is to solve this system of equations for L*, K*, and
λ*. The system of three equations contains the answer, that is, the values
of L and K that minimize TC. Our task is to use the equations to find these
values that satisfy the three equations.

There are many ways to solve the system, but we will use the same approach
that we used in the Theory of Consumer Behavior. We will reduce the sys-
tem from 3 to 2 to 1 equation and unknown.

We move the terms with lambda in the first two equations to the right-hand
side and then divide the first equation by the second. The Cobb-Douglas
production function is easy to work with because the exponents of L and K
sum to -1 and 1, respectively, when you apply the xa

xb
= xa−b rule.

As you can see above, this strategy cancels the lambdas and gives an expres-
sion for L = f(K), which, in conjunction with the third first-order condition,
reduces the system to two equations with two unknowns.

L = 5.625K

100− L0.75K0.2

We substitute the expression for L into the constraint (the third first-order
condition) and solve for K*.
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Then, substituting K* back into the expression for L = f(K), we get L*.

L = 5.625K

L = 5.625[32.588]

L* = 183.31

Substituting L* and K* into the original objective function, we can compute
the minimum cost of producing 100 units.

TC = 2L+ 3K

TC = 2[183.1] + 3[32.588]

TC* = $464.38

The analytical solution agrees with Solver’s answer.

The work we did in dividing the first equation by the second yields an
equimarginal condition that is similar to the MRS = p1

p2
rule from constrained

utility maximization. At the optimal solution, we have

2

3
=

3.75K

L

The left-hand side is the input price ratio and the right-hand side is the TRS.
Thus, at the optimal solution we know that input price ratio must equal the
TRS. This is a mathematical statement of the tangency we see in Figure 11.3.

If this equimarginal condition is not met, but the firm is on the isoquant (i.e.,
it is technically efficient), then we have allocative inefficiency. If |TRS| > w

r
,

then the isocost is cutting the isoquant and the firm can lower total costs by
rolling down the isoquant. The reverse, of course, applies if |TRS| < w

r
.

STEP If you have not done so already, double-click inside the box around
cell J25 and use the scroll bar to show how the isocost and isoquant graph
matches up with the TRS = w

r
equimarginal condition.
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Comparing Consumer and Firm

Figure 11.3 bears a striking resemblance to the canonical graph used in the
Theory of Consumer Behavior and the analytical work also contains strong
similarities, but there are some critical differences between the consumer and
firm optimization problems. Figure 11.4 presents a side-by-side comparison
to highlight the contrasts between them.

Figure 11.4: Comparing consumer and firm optimization problems.

It makes sense to use the knowledge and skills learned from the Theory of
Consumer Behavior, but do not fall into a false sense of security. The input
cost minimization problem has its own characteristics and terminology.
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Cost Minimization is One of Three Problems

The Theory of the Firm is actually a set of three interrelated optimization
problems. The initial solution to the firm’s cost minimization problem fo-
cuses attention on the cheapest combination of inputs to produce a given
level of output.

We can apply the same techniques we used to solve the consumer’s utility
maximization problem. The canonical graph is similar to the standard graph
from the Theory of Consumer Behavior, but as Figure 11.4 shows, there are
substantial differences between utility maximization and cost minimization.

One important similarity is the continued use of the comparison of a price
ratio to the slope of a curve to determine whether the optimal solution has
been found. In the case of the constrained cost minimization problem, the
firm will choose that combination of inputs where TRS = w

r
. If this condition

is not met, the direction of the inequality (¿ or ¡) tells us which way the firm
should move to find the minimum total cost.

Now that we understand the firm’s cost minimization problem and have found
the initial solution, we are prepared to take the next step—comparative stat-
ics analysis. The economic approach is unrelenting and monotonous. We ap-
ply the same framework to every problem. Through practice and repetition,
you will learn to think like an economist.

Exercises

1. The Q&A sheet asks you to change r to 30 and use Solver to find
the initial solution. Find the initial solution to this same problem via
analytical methods and compare the two results. Are they the same?
Show your work.

2. The fixed proportions production function, q = min{αL, βK} is anal-
ogous to the perfect complements utility functional form. Suppose
α = β = 1, w = 10, r = 50, and q = 100. Find L*, K*, and TC*.
Show your work. Use Word’s Drawing Tools to draw a graph of the
optimal solution.
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3. Given the quasilinear production function, q =
√
L + K, and input

prices r = 2, and w = 5, find the cheapest way to produce 1000 units
of output. Use analytical methods and show your work.

4. Set up the problem in question 3 in Excel and use Solver to find the
optimal solution. Take a screen shot of the solution on your spread-
sheet and paste it into a Word document.

5. Can isoquants intersect? Explain why or why not.
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Several hundred years ago, an unknown
inventor combined charcoal, sulfur and
saltpeter and lit it afire. When the dust
settled the world was changed forever.

The Story of the Gun

11.2 The Enfield Arsenal

This chapter departs from the usual presentation style employed in this book.
There is no Excel workbook associated with this application. Instead, you
will be given the opportunity to answer questions and the answers are pro-
vided at the end of the chapter. Each question is highlighted by the usual
Step marker. Try to work out each question on your own before looking at
the answers.

There are four goals:

1. To understand cost minimization with isoquants and isocosts.

2. To provide an example of how theory can be applied to real-world
problems.

3. To illustrate how economics can help us understand what we observe.

4. To see that economics has wide and varied application.

The inspiration and source of this application of cost minimization is from
Edward Ames and Nathan Rosenberg, “The Enfield Arsenal in Theory and
History,” The Economic Journal (Vol. 78, No. 312, December, 1968), pp.
827–842, www.jstor.org/stable/2229180.

Ames and Rosenberg were economic historians and that immediately leads to
a puzzler: how are economic historians different from regular historians? The
answer has to do with the economic approach. Once trained as an economist,
the methods and way of thinking can be applied to events and outcomes from
the past. This is what Ames and Rosenberg did with the Enfield Arsenal.
But before we get to that, we need to understand what rifling is all about.
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Rifling

Rifles are a relatively recent innovation in firearms. Figure 11.5 shows an
early version of the famous Enfield rifle with labels for the three main parts:
the lock, stock, and barrel.

Figure 11.5: The Enfield rifle that was stored in the Enfield Arsenal.
Source:

collegehillarsenal.com/index.php?route=information/blogger&blogger id=9

It is the barrel that distinguishes rifles from smooth-bore muskets. The bar-
rel of a rifle has a striated pattern that spins the bullet, increasing velocity
and accuracy compared with a ball from a musket.

STEP Watch this short video on rifling from The Story of the Gun:
vimeo.com/25200729.

But the Enfield rifle was important not because it rifled, but because of how
it was made.

The American System of Manufacturing

Ames and Rosenberg (p. 827) explain what the Enfield Arsenal was in the
introduction to their paper:

This paper analyses a particular historical event, the establish-
ment of the Enfield Arsenal, in the context of the literature cited.
The British Government committed itself to the construction of
the Enfield Arsenal in 1854 because it wished to be able to make

https://collegehillarsenal.com/index.php?route=information/blogger&blogger_id=9
http://vimeo.com/25200729
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large numbers of rifles for an impending war with Russia (now
known as the Crimean War). The event is important because it
marked the beginning of the movement of mass-production tech-
niques from the United States to Europe. Technical changes in
gunmaking in the nineteenth century were a major source of new
machine techniques; and industrialisation in the nineteenth cen-
tury is overwhelmingly the history of the spread of machine mak-
ing and machine using.

So an arsenal is an armory, a warehouse of guns and ammunition. Enfield is
a place in England and the Enfield Arsenal is literally a building constructed
by the British government in 1854 that would be used to store rifles made
with mass-production techniques.

The Enfield Arsenal was special because it was the first time the British
would use mass-production techniques to make weapons. Up to this point,
the British had made guns the old-fashioned way—by hand in the small shops
of thousands of skilled artisans in the area around Birmingham. The stock
was carefully carved by an experienced craftsman who fitted the stock with
the lock and barrel. It was like a tailor making a bespoke suit—each rifle
was one of a kind. A work of art.

Ames and Rosenberg (p. 832, footnotes omitted) point out that making the
stock by hand was especially slow and expensive to do:

The gunstock was one of the most serious bottlenecks in firearms
production. In England, at the time of the Parliamentary hear-
ings, out of about 7,300 workmen in the Birmingham gun trade,
the number of men employed in making gunstocks totalled per-
haps as many as 2,000. Its highly irregular shape for long seemed
to defy mechanical assistance, and the hand-shaping of the stock
was a very tedious operation. Furthermore, the fitting and re-
cessing of the stock so that it would properly accommodate the
lock and barrel were extremely time-consuming processes, the
proper performance of which required considerable experience.
With Birmingham methods, it required 75 men to produce 100
stocks per day. Using the early (1818) version of the Blanchard
lathe, 17 men could produce 100 stocks per day.

This quotation requires some explanation. First, the reason for the Parlia-
mentary hearings was that British politicians were angry with the Birming-
ham gunsmiths for not adopting fast, efficient mass-production techniques.
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There was an investigation and testimony was given. How could upstart
Americans have better technology than the British, a nation that dominated
the entire globe? It was a national embarrassment!

Second, the quotation mentions the Blanchard lathe. This is a machine that
cuts and shapes wood (and other materials like metal), but it is easier to
understand if you see it.

STEP Watch this video, vimeo.com/25200825, to understand how a lathe
works and how the production of precision parts makes Diderot’s dream come
true.

The video explained that the new country of the United States of America
needed weapons so the Springfield Armory was built in 1794 in Springfield,
Massachusetts. At first, stocks were made by hand, just like in Birmingham.
They were then individually fitted to each rifle.

But in 1818, the Blanchard lathe burst on the scene. The narrator, echoing
the British Parliamentary hearings, says, “Prior to the Blanchard Lathe, it
took one to two days to make a rifle stock by hand. Now, a twelve-year-old
boy could turn out a dozen stocks in a single day.”

The Blanchard lathe enabled a reorganization of the production process. In
factories in the northeast, the United States began to use mass-production
techniques to make rifles and pistols (and then bicycles, sewing machines,
typewriters, and so on). This is the American system of manufacturing. A
key element is that a machine can make a precision part so many almost
identical parts can be made and then the product is assembled.

The video points out that the history of gun-making is closely tied to the
rise of mass-production techniques and precision manufacturing. In the
video, William Ruger cites an idea from French philosopher Denis Diderot
(1713–1784). Ruger says Diderot’s theory at that time was that “It would be
possible to make all of the individual parts alike and then at the last minute
assemble them, rather than fitting them together as you went, which was the
customary thing up to that time.”

Adam Smith (1723 - 1790) was a contemporary of Diderot. For Smith, the di-
vision of labor explained the explosion in productivity that he saw all around
him as the Industrial Revolution began.

http://vimeo.com/25200825
https://www.google.com/search?q=industrial+revolution
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Breaking production into a series of steps and then assembling the parts
enables many more units of output to be produced. This is called the divi-
sion of labor. Smith emphasized several reasons for the greater productivity
enabled by the specialization of labor:

1. Practice makes perfect: focusing on a single task makes you very good
at it.

2. Saves time: no need to set things up when you move to a new task.

3. Innovation: adjustments are made by workers who are expert in a
particular task.

Machines such as the Blanchard lathe feed into the division of labor by en-
abling much finer specialization. For rifles, production with a lathe meant
that they were no longer one of a kind. They were all alike and could be
easily connected to the lock and barrel to make a rifle.

By applying Diderot’s theory of assembling perfectly fitted parts and Smith’s
division of labor, the Springfield Armory was able to enjoy a huge increase
in productivity compared with Birmingham methods.

So now you know exactly what a lathe is and how mass production played
a key role in the exponential increases in productivity during the Industrial
Revolution, but there is one more important advantage to mass production.
Let’s see if you can figure it out.

STEP What are the tremendous advantages of interchangeable parts in
a rifle (or anything else for that matter) for the end user?

The answer is at the end of this section, but take a few minutes to think
about the question. What advantage would soldiers using rifles that were all
alike have over enemies using individually made rifles?

Two Big Questions

The key date in this story is 1854. Until this time, the British used Birming-
ham methods, which means an experienced craftsman made each entire gun
by hand. They shaped the stock, then attached it to the lock and the barrel.
Each part was slightly different and could not be easily replaced if damaged.
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Beginning in 1854, rifles produced for the Enfield Arsenal, however, were
made with interchangeable parts (including stocks made on lathes) that could
be put together in an assembly line. Once in use, broken parts could be re-
moved and new ones snapped on.

Ames and Rosenberg (pp. 839–840, footnotes omitted) sum up the situation:

As of 1785, neither the British nor the Americans could make
guns with interchangeable parts. As of 1815, Americans could
make guns with interchangeable metal parts, but could not make
interchangeable gunstocks. As of 1820, they could make inter-
changeable gunstocks. At any date, presumably, they could use
not only current methods but earlier methods which these had
displaced.

The United States had been mass-producing guns with interchangeable parts
since 1815. The British waited until 1854 to use the superior, mass-production
techniques. This gives rise to two big questions:

1. Why did the British wait so long to use mass-production techniques to
make rifles with interchangeable parts?

2. Why did the British switch to mass-production techniques in 1854?

1. Why Did the British Wait so Long?

A possible answer to the puzzle of why British gunsmiths did not adopt the
new technology is that the British did not know about the Blanchard lathe
so that is why they did not use it?

STEP Is lack of knowledge about American technology a good answer?
Why or why not?

Another possible answer is poor management. Maybe British rifle manu-
facturers were lazy, stupid, and careless? The right answer—adopt mass-
production techniques—was staring them in the face and they ignored it.

STEP Is managerial failure a good answer? Why or why not?

Economic historians give a third answer to why the British did not adopt
the Blanchard lathe. They use the economic way of thinking. They look for
differences in the environment that would lead to different optimal solutions.
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In other words, Ames and Rosenberg stop searching for why the British made
a mistake and accept the fact that their refusal to adopt mass-production
techniques was actually smart and correct. They look for reasons that justify
the British decision to reject the Blanchard lathe.

This is crazy, right? It is obvious that mass production is better. Well, it
turns out that there are two critical differences between the United States
and Britain in the first half of the 19th century that play an important role
in deciding how to make rifles.

First, the two countries had quite different labor forces. The British had
a cohort of skilled rifle craftsmen and the United States did not. As the
Parliamentary hearings noted, there were several thousand skilled craftsmen
in Birmingham making stocks and rifles. The United States was a young
country with mostly unskilled, male workers. Few skilled craftsmen would
emigrate to the United States since they had good, high paying jobs at home.

These supply and demand differences meant that, in the United States, wages
for skilled craftsmen were much higher than in Britain, and wages for un-
skilled labor were lower.

Second, wood was plentiful and cheap in the United States, but it was much
more expensive in Britain. Ames and Rosenberg offer the following footnote
(p. 831) to help explain why wood plays a critical role:

Report of the Small Arms Committee, op. cit., Q. 7273-81 and
Q. 7520-7521; G. L. Molesworth, “On the Conversion of Wood
by Machinery,” Proceedings of the Institution of Civil Engineers,
Vol. XVII, pp. 22, 45-6. In the discussion which followed Mr.
Moleworth’s paper Mr. Worssam, a prominent English dealer
in woodworking machinery, made some interesting comparative
observations which were summarised as follows: “He had seen
American machines in operation, and he found that, although
they might be adapted for the description of work required in
that country, they were not so suitable for English work, in which
latter high finish and economy of material were of greatest impor-
tance. In America the saws were much thicker than those used in
the English saw-mills, so that they consumed more power, wasted
more material, and did not cut so clean, or so true, though there
was less care required in working them” (ibid., pp. 45-6).
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A key point in this long quotation is that American saws (and, of course,
lathes) “wasted more material.” A British skilled craftsman making stocks
from lumber would be careful to “economize” on the material. In America,
a 12-year old boy working with a lathe (a dangerous job) would not care at
all about wasting wood.

The different endowments of wood in the two countries meant that the Blan-
chard lathe was much more expensive to operate in Britain than in America.

Now that we know how the United States and Britain differed with respect
to (1) wages for skilled and unskilled labor and (2) operating costs for the
Blanchard lathe, we are ready to make the case for the economic explanation
for why the British waited so long to adopt mass-production techniques.

As is typical in economics, the exposition will rely on graphs. But instead of
just reading the explanation, you will try to do it yourself first. The idea is
to apply the input cost minimization problem to this scenario. You can, of
course, simply jump to the end of the section to see the answers, but you will
learn much more if you try to do it yourself first. Follow the instructions and
hints offered below and see how close you get. Make sure you understand
where you made a mistake or in what ways you were confused.

STEP Draw graphs that show how the different resource endowments
and input prices affected the optimal input mix. Use the detailed instruc-
tions that follow as a guide. How do the graphs explain why the British
waited so long to adopt mass-production techniques?

We will use two sets of two graphs. The first set of two graphs will be for the
labor force difference between the United States and Britain. The second set
shows the effect of the different endowments of wood.

Begin by drawing a graph representing the British situation in 1820 with
respect to using skilled and unskilled labor to make, for example, an order
of 1,000 rifles. It should have skilled labor on the y axis and unskilled labor
on the x axis. Draw in an isoquant (representing the combinations of skilled
and unskilled labor that would make the requested 1,000 rifles).

Draw another graph, next to the first one, that is exactly the same. Your
second graph represents the United States’ options for making 1,000 rifles in
1820. The fact that both isoquants are the same means that the two coun-
tries had access to the same technology and are making the same product.
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Next, you need to draw the isocost lines. This is where the difference in labor
force comes into play. We know the British have skilled labor and the United
States does not—immigrants to the United States were not typically experi-
enced, educated workers, but young, unskilled males. That means the price
of skilled labor is much higher in the United States. How is that reflected in
the isocosts for your two graphs?

The second set of graphs uses L and K as the inputs. As before, draw a
pair of graphs side by side, one for the British and the other for the United
States, with machinery on the y axis and labor on the x axis. Include the
isoquants. Once again, the isoquants are the same, meaning that the British
were aware of and could have used American methods.

The key to the economic explanation for why the British did not do what
the Americans were doing lies in the isocosts. Remember that early versions
of the Blanchard lathe used a lot of wood and this increases the price of
machinery. If r is much higher in Britain than in the United States, how
does this affect the isocosts?

Take a moment to look at your two sets of graphs. How can they be used to
explain why the British rejected mass production before 1854?

Proceed to the end of this section to check your graphs and answers.

2. Why Did the British Switch in 1854?

The second big question revolves around the British decision to switch in
1854 and mass produce the Enfield rifle. Why did they do this? Why did
they abandon their decades-old system of production centered in Birming-
ham, with a network of many small artisans and smiths that made firearms
to individual order or in small batches?

Our first possible answer matches up with the lack of knowledge answer
to the first big question. Maybe, in 1854, the British heard that mass-
production techniques utilizing the Blanchard lathe were available and im-
mediately moved to adopt the new production methods?

STEP Is sudden awareness of new American technology a good answer?
Why or why not?
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The second possible answer, like before, relies on management. Maybe they
wised up? What if British firearms manufacturers recovered from their slum-
ber and moved quickly to modernize their industry?

STEP Is managerial improvement a good answer for the switch? Why
or why not?

You probably got the first two right, but the third one is harder. It might
be easy in general terms, but getting the details can be complicated.

The third answer is based on economic reasoning. This means that when
we see changes in behavior, we look for changes in the environment. We do
not search for events or causes that changed a mistake into the right answer.
Instead, we accept that the answer to not use mass production was correct
for, say, 1830, but the new optimal solution, in 1854, was to switch to the
American system.

This is a key aspect of the economic approach, and it can be challenging to
grasp. Our instinct when we see something change is to think of correction
or improvement. Economists do not think this way. We see optimization
everywhere so if something changes, it was optimal before and it has moved
to a new optimal solution because of an exogenous shock.

The search is on for shocks that switch the correct answer from “reject” to
“accept” interchangeable parts.

There are two ways in which Britain before 1854 differed from Britain after
1854 and these two ways impacted wages and the operating cost of machin-
ery. These changes act as shocks on the input cost minimization problem
and produce a new optimal solution. We first have to figure out the shocks,
then we can see how they affect the optimal solution.

STEP Answer these two questions:

1. What happened to the British labor force?

2. What happened to the Blanchard lathe?

You may not be an expert on British labor in the 19th century or know any-
thing about the Blanchard lathe, but you can think about what might have
happened. Try to come up with a hypothesis. Think of recent changes in the
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labor force that you have heard about, especially those driven by technology
(e.g., driverless cars and trucks). Think about how machines, computers,
and technology in general have changed over time.

After checking your answer at the end of this section, so now you know what
happened, you are ready to draw graphs that illustrate the economic histo-
rian’s explanation for the British switch in production technique.

STEP Draw graphs that show how the changes mentioned affected the
optimal input mix. How do the graphs explain why the British switched to
mass-production techniques in 1854?

Draw two pairs of graphs just like before (unskilled and skilled labor on one
and machinery and labor on the other), but this time we are comparing envi-
ronments before and after 1854 in Britain (the United States has nothing to
do with this). First, compare the optimal mix of unskilled and skilled labor
for Britain in 1820 versus 1854. Remember that the skilled craftsmen died
and were not replaced so the skilled wage rate rose. How does this make the
1854 graph different from the 1820 graph?

In the second set of two graphs, with machinery and labor on the axes, we
know that machinery got better and better (wasting less and less wood) over
time so r fell. What will this shock do to the isocost lines?

Check out the suggested answers at the end when you are finished. Take the
time to debug any mistakes. Make sure you understand how the isocost lines
shift and how the comparison of two graphs yields answers to the questions.

Evaluating this Application

At the beginning, we had four goals:

1. To understand cost minimization with isoquants and isocosts.

2. To provide an example of how theory can be applied to real-world
problems.

3. To illustrate how economics can help us understand what we observe.

4. To see that economics has wide and varied application.
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You decide to what extent the goals were met. At the very least, you learned
a little about American manufacturing in the 19th century and rifles (includ-
ing where the phrase “lock, stock, and barrel” comes from).

The application should help you understand the conventional isoquant–isocost
graph and the firm’s input cost minimization problem. Remember that the
higher the price of the input on the x axis or lower the price of the input on
the y axis, the steeper the isocosts.

But the real deep learning and big picture idea concerns how economists view
the world. This is called economic reasoning or the economic approach. We
did “an economic analysis of the Enfield Arsenal.”

The idea is that economics is not a discipline organized around content (the
stock market or money, for example), but a way of thinking. Economists often
interpret observed behaviors as optimal solutions to optimization problems
and they see change as driven by a shock that takes us from one optimal
solution to another.

Thinking like an economist is difficult and sometimes counter-intuitive, but
it can provide an interesting perspective on the world. Certainly, Ames and
Rosenberg gave us a novel view of the issues surrounding the Enfield Arsenal.

Exercises

1. Explain why the endowment of wood affects the price of machinery
used in producing rifles in the 19th century.

2. What could have caused the British to switch to mass-production tech-
niques before 1854? Give a concrete example.

3. If the British had used the Blanchard lathe in 1820, then that would
have been allocatively inefficient. Draw a graph that shows this and
explain what it means.

4. Ames and Rosenberg (p. 836) include additional differences between
America and Britain, such as the fact that the British consumer liked
fancier gunstocks:

American machine processes could not produce guns of the
kind favoured by English civilians. The Blanchard lathe pro-
duced stocks of a standard size, whereas English buyers did
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not want standard gunstocks. The English methods were
suited to catering to the idiosyncratic needs of individual
users.

How would this information change the comparison of the isoquant–isocost
graph in the two countries?
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Appendix: Suggested Answers

STEP What are the tremendous advantages of interchangeable parts in
a rifle (or anything else for that matter) for the end user?

Fixing broken rifles! You can quickly repair a mass-produced rifle if one of
its pieces (lock, stock, or barrel) breaks. A rifle built by hand is useless once
one of its individual parts fails. You would need a skilled craftsman to fix it.

On a battlefield, you could cobble together parts from different broken units
to create operating weapons. And anyone could do this—they would not
have to be a skilled craftsman.

In general, with precision parts, if the product breaks, you can buy a replace-
ment part to repair the product. With bespoke items, you need an expert to
adjust and refit to repair it.

STEP Is lack of knowledge about American technology a good answer?
Why or why not?

This is a ridiculous explanation. Granted there is an ocean, but given the
common language and communication, this answer makes no sense. In fact,
there is lots of evidence that the British knew all about the American meth-
ods. They simply chose not to use them.

STEP Is managerial failure a good answer? Why or why not?

Like lack of knowledge, this is not a very satisfying answer. There is no reason
to believe these specific people were especially poor managers. Economists
are wary of this type of answer. Self-interested agents who respond to incen-
tives are unlikely to make bad decisions, especially with great sums of money
and lives at stake.

There is a subtle point to be made here that separates economists and non-
economists. The latter are much more likely to accept mistake and stu-
pidity to explain an observed decision or behavior that turned out badly.
Economists tend to stick with rational, optimizing agents and explain bad
choices as a result of lack of information or differing objectives.
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STEP Draw graphs that show how the different resource endowments
and input prices affected the optimal input mix. Use the detailed instruc-
tions that follow as a guide. How do the graphs answer explain why the
British waited so long to adopt mass-production techniques?

The isoquant is exactly the same in each graph in Figure 11.6. US skilled
labor wages were very high because there were few experienced craftsmen
migrating to the United States, but lots of young, unskilled workers. The
slope of each isocost is the input price ratio, −wUnskilled

wSkilled
. Thus, the US isocost

lines are flatter than Britain’s. This leads to a different cost-minimizing input
mix.

Figure 11.6: The effect of different wages for labor.

The price of machinery includes the cost of wood use just like a car’s operating
cost includes the cost of gasoline. The early versions of the Blanchard Lathe
were quite wasteful, but this did not matter in the heavily forested United
States. In Britain, however, wood was expensive. The British Isles were
mostly deforested by then. This makes the isocost lines steeper in Figure
11.7 for Britain. Once again, factor prices help determine the input mix.

Figure 11.7: The effect of different prices for machinery.
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So how do these graphs explain how economists view this historical episode?
Varying resource endowments mean that each country faces its own set of
input prices, which in turn lead to different cost-minimizing solutions. For
the United States, unskilled labor with the Blanchard lathe was the cheapest
way to make rifles. Not so for the British. At that time and place, with the
skilled craftsmen and lack of cheap wood, rejecting mass production was the
optimal decision.

In fact, the economic approach says something even more outlandish. Had
the British used mass production for rifles before 1854, that would have been
a mistake! Take the US tangency point and transfer it to the British graph
in Figures 11.6 and 11.7. Producing with the US input mix is allocatively
inefficient for Britain—that is, the British would not be minimizing cost.

Economists have no problem with agents making different choices. This does
not mean that one is right and the other is wrong. All it means is that they
face different prices. They are both optimizing. That is a difficult idea to
wrap your head around. Ponder it.

STEP Is sudden awareness of new American technology a good answer?
Why or why not?

This answer makes little sense. American and British people and entrepreneurs
moved freely across the Atlantic and were well aware of production methods
in each country. The claim that a new technique was suddenly made known
to the British is absurd.

STEP Is managerial improvement a good answer for the switch? Why
or why not?

This answer is pretty silly. To be credible, it requires an explanation for
the sudden change from stupid, lazy, and careless producers of firearms to
smart, energetic, and focused ones. There is no evidence of an explosion in
managerial aptitude or a burst in managerial education. For this argument
to be convincing, we will need a lot more evidence on British management
prowess and how it changed over time.
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STEP Answer these two questions:

1. What happened to the British labor force?

2. What happened to the Blanchard lathe?

The British labor force underwent a profound structural adjustment. The
skilled craftsmen in the Birmingham gun trade died off and were not re-
placed. No skilled gunstock maker would suggest that his son follow him
into the trade. They could see the writing on the wall—the machines were
taking over. As the supply of these workers dwindled, the wages of skilled
rifle artisans in Birmingham rose.

Perhaps more important is the second shock. The Blanchard lathe was con-
tinually improved over time; more modern versions of the lathe wasted a lot
less wood. Today, a lathe uses a laser sight to precisely cut the wood. No
human could possibly compete with it.

As the lathe wasted less wood, the operating cost of machinery fell. This is
a nice example of how the price of an input can represent more than simply
the out-of-pocket cost paid for the input. In this example, the price of a
lathe is not simply the price paid for the machine itself; it includes the price
of the wood used.

So, the shocks to the input cost minimization problem are that the skilled
labor wage rose relative to the unskilled and r fell relative to w.

Notice how we first figure out what happened and then we model it. That is,
we incorporate the story into one of the variables. In this case, the changing
labor force increases the wage of skilled labor and the improving Blanchard
lathe decreases r.

STEP Draw graphs that show how the changes mentioned affected the
optimal input mix. How do the graphs explain why the British switched to
mass-production techniques in 1854?

A high price of skilled labor makes the isocost lines flat (the slope falls in
absolute value because the denominator increases). This leads to a more
unskilled-labor intensive optimal input mix. As skilled craftsmen disap-
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peared and their wages rose, there was greater incentive to use unskilled
labor. Notice how the comparison in Figure 11.8 is across time periods.

Figure 11.8: The effect of changes in the British labor force.

The price of machinery fell and fell as machines got better and better, making
the isocost lines steeper and steeper (r is in the denominator) as shown in
Figure 11.9, and leading to the adoption of mass-production techniques in
Britain—the Enfield Arsenal was born.

Figure 11.9: The effect of improvement in the Blanchard lathe.

Notice how the Britain in 1854 graphs in Figures 11.8 and 11.9 are the same as
the US graphs in Figures 11.6 and 11.7. This shows that when Britain faced
the same input prices as the United States, they made the same, optimal
decisions.



There are reasons to hope that another type
of production function, more diversified than
Douglas’s, may soon be available, and from
these it would be possible to derive cost
functions typical for particular industries.

Hans Staehle

11.3 Deriving the Cost Function

We have solved the input cost minimization problem so the next task is com-
parative statics analysis. We will focus on shocking q (the quantity the firm
must produce) and track minimum total cost. The relationship between TC*
and q is called the cost function.

The novelty here is that we are not interested in how the optimal values of
the endogenous variables, L and K vary as we shock q. Instead, we focus on
the objective function, minimum total cost, and how it changes as q changes.

Another important aspect of comparative statics analysis for the input cost
minimization problem is that, unlike utility in the Theory of Consumer Be-
havior, total cost can be cardinally measured. We can compare the total
costs of different firms and perform arithmetic on total cost. If the minimum
TC for q = 10 is $40 and it rises to $45 when q = 11, we can say TC in-
creased by $5. Because TC is cardinal, we will be able to interpret and use
the Lagrangean multiplier.

As usual, we will explore both ways to do comparative statics:

� Numerical methods using a computer: Excel’s Solver and the Compar-
ative Statics Wizard.

� Analytical methods using algebra and calculus: conventional paper and
pencil.

Numerical Methods to Derive the Cost Function

STEP Open the Excel workbook DerivingCostFunction.xls, read the In-
tro sheet, and proceed to the OptimalChoice sheet.

383
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The organization is the same as in the InputCostMin.xls workbook. The
cost-minimizing way of producing 100 units of output is to use about 183.3
hours of labor with 32.6 machines, which costs $464.38. There is no other
combination of L and K that makes 100 units at a lower cost.

What happens if the firm needs to produce more, say, 110 units of output?

STEP Change cell B18 to 110.

The chart updates, showing a new (red) isoquant. The initial combination
is not a viable option because it cannot produce 110 units. The firm has to
re-optimize.

STEP Run Solver to find the new optimal solution.

The cost-minimizing amounts of labor and capital increase to produce the
higher output required and the minimum total cost is now $513.39. We are
looking for the minimum total cost. We want to know the cheapest way of
producing any given output. This is called the cost function.

We can show the comparative statics analysis on the isoquant-isocost graph
or on a presentation graph where we plot TC* = f(q), ceteris paribus. If we
connected the points of tangency of isoquants and isocosts, we would get the
least cost expansion path (LCEP).

Our work thus far has revealed two points on the LCEP and cost function:
when q = 100, TC = $464.38 and when q = 110, TC = $513.39. Let’s use
the Comparative Statics Wizard to get more data so we can draw the LCEP
and cost functions and understand how they are related.

STEP Return cell B18 to 100, then run the Comparative Statics Wizard,
applying 10 q shocks in increments of 10.

The CS1 sheet shows what your results should look like. The CS1 sheet
includes two graphs, the isoquant-isocost graph with the least cost expansion
path and the cost function, as shown in Figure 11.10.
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Figure 11.10: Deriving the cost function.
Source: DerivingCostFunction.xls!CS1

Figure 11.10 should remind of you of other graphs we have drawn, such as
Engel and demand curves. On the left, using the display of the optimal
solution to the input cost minimization problem, we show how different q
produce a set of tangency points that comprise the LCEP.

On the right in Figure 11.10, we show only the minimum cost of producing
each level of q, and hide everything else. This allows us to highlight the
relationship between TC and q.

The two graphs in Figure 11.10 make clear that the source of the cost func-
tion is the optimal solution of the cost minimization problem as q varies.
Just like demand curves do not come out of thin air, but are derived from
utility maximization, cost functions are derived from input cost minimization.

We are interested in the shape of the cost function. It looks like a line, but
is it really linear? To find out, we can see if it has a constant slope. If the
slope is changing, we know the function is not linear.

STEP In your CS sheet, find the slope at different points on the function
by computing the change in TC divided by the change in q.

Click the Unhide Column E button (near cell C9 in the CS1 sheet) if you
are stuck or to check your work. It is clear that the slope changes as output
changes. This means that the cost function is nonlinear.
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Analytical Methods to Derive the Cost Function

We can use the Lagrangean method to find TC* = f(q). We will leave q as
a letter instead of a number so that the reduced-form solution will include
q. Then we can plug in any value of q to find minimum cost for that q and
easily draw a graph of the cost function.

The solution closely follows the work we did at the beginning of this chap-
ter, but we proceed step-by-step to practice and reinforce the Lagrangean
method.

The problem is

min
L,K

TC = 2L+ 3K

s.t. q = L0.75K0.2

The first step is to rewrite the constraint so that it is equal to zero.

q − L0.75K0.2 = 0

The second step is to form the Lagrangean by adding lambda, λ, times the
rewritten constraint to the original objective function. We use an extra-large
L for the Lagrangean function that is not at all related to the L for labor.

min
L,K,λ

L = 2L+ 3K + λ(q − L0.75K0.2)

The third step to finding the optimal solution is to take the derivative of the
Lagrangean with respect to each endogenous variable and set each derivative
to zero (giving us the first-order conditions).

The fourth, and last, step is to solve this system of equations for L*, K*, and
λ*. We move the terms with lambda in the first two equations to the right-
hand side and then divide the first equation by the second. The exponents
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cancel nicely (see section 11.1) and we get L = 5.625K. This is not a reduced-
form solution because L is not a function of exogenous variables alone. We
substitute this expression for L into the third first-order condition to get
optimal K and then optimal L as shown below.

Finally, we substitute the optimal solutions for L* and K* into the original
objective function.

This expression is the total cost function. It gives the cheapest cost of produc-
ing any given amount of output. If q = 100, TC = $464.38. Not surprisingly,
this agrees with our results using numerical methods.

Notice also that the cost function is clearly nonlinear. It is increasing at an
increasing rate because the exponent on q is greater than one ( 1

0.95
≈ 1.05).

The derivative of TC with respect to q, the slope, is not constant because
it depends on q. If the exponent was exactly 1, then the slope would be
constant and the TC would be a line. The fact that this exponent is only
slightly greater than one explains why TC looks almost linear in Figure 11.10.

Interpreting Points Off the Cost Function

When we derived the demand curve from the “maximize utility subject to a
budget constraint” optimization problem, we explored what it meant to be
off the demand curve (see Figure 4.12). We learned that points to the left
or right of the inverse demand curve (with price on the y axis) mean that
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the consumer is not optimizing, i.e., the consumer is not choosing a point of
tangency between the indifference curve and budget constraint.

We can conduct the same kind of inquiry here, asking this question: What
does it mean to be off the cost function?

Unlike the inverse demand curve, where the exogenous variable is on the y
axis, the cost function is graphed according to usual mathematical conven-
tion, with the exogenous variable, output, on the x axis. Thus, points off the
curve are interpreted vertically above or below the cost function.

What does it mean if a point is above the cost curve? Figure 11.11 helps us
answer this question. On the left is the familiar isoquant/isocost graph. The
cheapest way to produce q0 units of output is with the L and K combination
at the point labeled TC*. The graph on the right of Figure 11.11 shows that
TC* is the point on the cost function at an output of q0.

Figure 11.11: Understanding points off the cost function.

Point Z, a point above the cost function, reveals that the firm is producing
the level of output q0 at a total cost above the minimum total cost. This
means that the firm is choosing an input mix that is not cost minimizing.
Point Z on the graph on the left of Figure 11.11 must lie on an isocost above
the tangent isocost. We do not know exactly where point Z is on the graph on
the left (so we do not know if there is technical or allocative inefficiency), but
we do know it has to be somewhere on the isocost labeled TCz that has a to-
tal cost the same as the cost of producing point Z (on the graph on the right).

Point Y on the right side of Figure 11.11 is below the cost function. How
can this point be generated by the graph on the left? It cannot. There is
an isocost with a total cost equal to that at point Y, but it is below the iso-
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quant and, therefore, unattainable. In other words, point Y does not actually
exist. The firm cannot produce q0 units of output at any cost less than TC*.

Another way of thinking about TC geometrically, is that there are points
above TC, but only empty space below it. Sure, on a printed page, chalk-
board, or computer screen, there is white space above and below TC and
you can write on it (just like point Y in Figure 11.11), but this is misleading.
In fact, below TC there is nothing, total void. If you tried to put a point
there, your hand would go through the paper!

This has implications beyond pure theory. The fact that there are no points
below the cost function means that we should never fit a line through a cloud
of points to estimate a cost function. Instead of a least squares approach to
estimating a cost function, estimation techniques in the stochastic frontier
literature are based on fitting a curve around the observed points, as in Figure
11.12.

Figure 11.12: Estimating a cost function.

Shifts in the Cost Function

You learned in Introductory Economics that price causes a movement along
a demand curve, but other shocks (like increasing income) change demand
causing the entire curve to shift. The same thing happens with the cost
function. Changing q leads to moving along the TC function, but other ex-
ogenous variables cause shifts in the cost function.

STEP Proceed to the CostFn sheet.

https://www.google.com/search?q=stochastic+frontier+analysis
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The sheet displays a cost function charted from the data above it. The data
in columns L and M are actually formulas for the reduced-form expressions
for L* and K*. Column N has the minimum total cost for the benchmark
problem and will not change because the cells are merely numbers (so it is
labeled “Dead (Initial)”). Column O, however, has the reduced-form expres-
sion for TC* and will update if any of the underlying parameters are changed
(hence the “Live” label).

STEP Click on a few cells in columns L, M, N, and O to see the formulas
and values.

The general versions of the reduced forms for the Cobb-Douglas production
functions are provided and entered in cells. The expressions look daunting
(and they are tedious to derive), but the derivation is straightforward: leave
every exogenous variable as a letter and find the optimal solution for L,K, λ,
and total cost.

Initially, N and O are the same because the exogenous variable values have
not been changed yet. Let’s do that now.

STEP Change cell B20, the exponent on L, to 0.8.

Your screen looks like Figure 11.13. The increase in labor productivity has
shifted down the total cost curve. This makes sense. The increase in c has
made it cheaper to produce any given output.

Figure 11.13: Total cost shifts down when labor productivity rises.
Source: DerivingCostFunction.xls!CostFn
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You can experiment with other shocks to the cost function. Change input
prices, input exponents, or A to see how the cost function shifts. Click the

Reset button or ctrl-z (undo) after every trial. Connect what you see on
the screen with the shock you applied. Changes in q have no visible effect
because you simply move along the cost function.

Interpreting λ*

We end this chapter by showing that the Lagragean multiplier, λ* has a use-
ful interpretation in the input cost minimization problem. We will see that
λ* gives an easier way to derive a cost function than solving the constrained
cost minimization problem with q as a letter and finding TC* = f(q).

The cost function shortcut uses the fact that λ* gives the instantaneous rate
of change in the optimum value of the objective function as the constraint
varies. Thus, λ* signals how relaxing the constraint would impact the goal.

For utility maximization, we could relax the constraint by increasing income.
The budget constraint in the Lagrangean is m−p1x1−p2x2 = 0 so as m rises,
the consumer will be able to reach greater maximum utility. The Lagrangean
multiplier tells us how much more utility is gained as income increases. Un-
fortunately, utility is ordinal so λ* does not have a useful interpretation in
the Theory of Consumer Behavior.

Things are different in the constrained input cost minimization problem. The
objective function in this case is minimum total cost and is measured on a
cardinal scale. We can directly observe minimum total cost and meaningfully
compare how it changes within a firm and across firms. This means we can
apply the interpretation of λ* to input cost minimization.

The constraint in the Lagrangean is q−f(L,K). If we vary the constraint by
having the firm produce one more unit of output, we know total cost would
rise as we moved to a higher isoquant. The value of λ* tells us by how much
minimum total cost would rise.

For example, at q = 100 in DerivingCostFunction.xls, λ* is about $4.89. You
can confirm this by numerical methods (using Excel’s Solver and getting the
Sensitivity Report) or by analytical methods, solving for λ* from the three
first-order conditions. Either way, you will get (almost exactly) the same
answer.
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But what does this tell us? The $4.89 value means that if we increase out-
put by an infinitesimally small amount, minimum total cost will go up by
$4.89-fold. Let’s use Excel to work on this.

STEP Click the Reset button in the CostFn sheet and take a look at
the highlighted cell with a yellow background (P8). Click on it and read the
formula.

The value of P8 is $4.99. That is close to the value of λ* of $4.89, but not
quite exactly the same. What is going on?

STEP Go to the CS1 sheet and take a look at the highlighted, yellow-

backgrounded cell (E15) (click the Unhide Column E button if needed). Its
value is $4.90.

This is much closer to λ*’s value of $4.89. Why? Because the change in q is
much smaller in the CS1 sheet than in the CostFn sheet. As the change in q
approaches zero, the change in TC* divided by the change in q will approach
λ*.

STEP Return to the CostFn sheet and change cell K8 from 200 to 110.
This replicates the CS1 sheet value for λ*. Next, set K8 to 101. What do
you see?

With K8 set to 101 so that ∆q = 1, ∆TC
∆q

= $4.89, the value of λ*. Well,

actually, not exactly $4.89. If we displayed more decimal places in P8 and
computed the value of λ* to more decimal places, the two would not agree.
But they would get closer the smaller we made ∆q.

Of course, this is nothing more than a demonstration of the idea of the deriva-
tive. If you are puzzled as to how ∆TC

∆q
can be that close to λ* in the CS1

sheet (a one cent difference seems pretty small), given that the change in q
is 10 units (which is hardly infinitesimally small), the answer lies in the total
cost function: It simply is not very curvy. Because TC* follows almost (but
not quite) a straight line, computing the slope from q = 100 to q = 110 is
close to the slope of the tangent line at q = 100.

The purpose of the work above was to convince you that λ* = dTC
dq

. The
Lagrangean multiplier gives the instantaneous rate of change in minimum
total cost with respect to output.
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STEP You can confirm the claim that λ* = dTC
dq

by changing the param-
eters in the CostFn sheet and keeping your eye on the rose-backgrounded
cell H31. It computes the difference between λ* in H13 and dTC

dq
in H30. The

difference is always zero because these two things, λ* and dTC
dq

are equivalent.

You might ask, “So what?” In other words, what can we do with the knowl-
edge that λ* = dTC

dq
? A lot. For one thing, we can easily derive the cost

function. After all, the rate of change in total cost as output changes is
marginal cost (MC). Thus, λ* = dTC

dq
= MC(q). This means we can easily

get the total cost function by simply integrating λ* with respect to q.

Furthermore, as we will see when we solve the output profit maximization
problem, we usually want marginal revenue and marginal cost, so knowing
that λ* = dTC

dq
can be a real shortcut. If we have λ*, then we do not have to

derive TC* = f(q) and then take the derivative to get MC.

The Cost Function has Parents

This section included some complicated ideas, but we end by prioritizing
things. There is no doubt that the most important idea is that the cost
function has a source and does not appear from nowhere. This is captured
by Figure 11.10—the cost function is derived by doing comparative statics
analysis on the input cost minimization problem.

Although we are often interested in the response of an endogenous variable
to a shock, comparative statics in the input cost minimization problem is
focused on how the objective function, minimum total cost, is affected by
shocking q. Minimum total cost as a function of q is the cost function.

By explaining what it means to be above or below the cost function in terms
of the isoquant–isocost graph, we emphasized the idea that the cost func-
tion shows the cheapest way to produce any given output. A good way to
remember this is to ponder the striking fact that there is no space below the
cost function, meaning that it is impossible to produce the given output any
cheaper than the cheapest way possible.

Changes in other parameters besides output cause the entire cost function to
shift because minimum total cost depends on all of the exogenous variables.
If q changes, we move along the cost function; other shocks shift TC.
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Finally, we explained a mathematically sophisticated idea: λ* provides infor-
mation on the rate of change of the optimum value of the objective function
as the constraint is relaxed. This interpretation of the Lagrangean multiplier
holds for every constrained optimization problem.

We did not apply this interpretation in the Theory of Consumer Behavior
because utility (the objective function) cannot be cardinally measured. In
the old days, when utility was believed to be cardinally measured in utils, λ*
was the marginal utility of money. λ* would tell you the rate of change in
maximum utility if you gave the consumer an infinitesimal increase in income.

Since total cost is directly observable and countable, λ* can be correctly in-
terpreted as marginal cost, dTC

dq
. This gives a shortcut to the cost function

and MC.

Exercises

1. With the production function, q = L0.75K0.5, and exogenous variables
w = 2, r = 3, use Excel to create a graph of the cost function for the
same q values as the one in the CS1 sheet. Copy and paste your graph
in a Word document.

2. How is the cost function you just derived different from the one in the
CS1 sheet? Which variable is responsible for generating this difference?

3. From the cost functions in the CS1 sheet and question 1, what can you
deduce about cost functions derived from Cobb-Douglas production
functions?

4. If someone solves an input cost minimization problem and finds that
λ* = 50, what does this mean?

References

The epigraph is from page 333 of Hans Staehle, “The Measurement of Sta-
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American Economic Review, Vol. 32, No. 2, Part 1 (June, 1942), pp.
321–333, www.jstor.org/stable/1803513. Staehle was optimistic in 1942 that
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advances in statistics and data collection would enable economists to esti-
mate cost functions for particular industries. Unfortunately, it is fair to say
that Staehle’s dream of the discovery of flexible functional forms remains
unfulfilled. Empirical work on cost functions usually finds that firms face
linear (or nearly linear) total costs (yielding horizontal average and marginal
costs) over large ranges of output.





Only 11 percent of firms report
that their MC curves are rising. By
contrast, about 40 percent claim
that their MC curves are falling.

Alan Blinder, Elie Canetti, David
Lebow, and Jeremy Rudd

11.4 Cost Curves

In the next chapter, we will work on the firm’s second optimization problem:
maximize profits by choosing the amount of output to produce. Because
profits are revenues minus costs, the cost function plays an important role in
the firm’s profit maximization problem.

This section is devoted to the terminology of cost curves and an exploration
of their geometric properties. Derived from the cost function, a variety of
cost curves are used to solve and display the firm’s profit-maximization prob-
lem. This section defines and derives them.

A basic idea that is easy to forget is that there are many shapes of cost
functions. Our work on deriving the cost function used a Cobb-Douglas
production function and that gives rise to a particularly shaped cost function.
A different production function would give a different cost function. A key
idea is that q = f(L,K) determines the shape of TC* = f(q).

Names and Acronyms

You know that if we track TC*, minimum total cost, as a function of q, we
derive the cost function. Since we will be using other measures of costs, to
avoid confusion, we refer to the cost function as the total cost (TC ) function.
The total cost function has units of dollars ($) on the y axis. We can divide
total costs into two parts, total variable costs, TVC, and total fixed costs,
TFC.

TC(q) = TV C(q) + TFC

If the firm is in the short run, it has at least one fixed factor of production
(usually K ) and the total fixed costs are the dollar value spent on the fixed
inputs (rK ). Notice that the total fixed costs do not vary with output. TFC
is a constant and does not change as output changes so there is no “(q)” in
the TFC function like there is on TVC and TC.

397
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The total variable costs are the costs of the factors that the firm is free to
adjust or vary (hence the name “variable costs”), usually L. As output rises,
firms need more inputs to produce the increased output so total variable
costs rise.

In the long run, defined as a planning horizon in which there are no fixed
factors, there are no fixed costs (TFC = 0) and, therefore, TC(q) = TV C(q).
In other words, the total cost and total variable cost functions are identical.

In addition to total costs, the firm has average, or per unit, costs associated
with each level of output. Average total cost, ATC (also known as AC ), is
the total cost divided by the output level.

ATC(q) =
TC(q)

q

Average variable cost, AVC, is total variable cost divided by output.

AV C(q) =
TV C(q)

q

Average fixed cost, AFC, is total fixed cost divided by output.

AFC(q) =
TFC(q)

q

Notice that AFC(q) is a function of q even though TFC is not because AFC
is TFC divided by q. Since the numerator is a constant, AFC(q) is a rect-
angular hyperbola (y = c/x) and is guaranteed to fall as q rises. This can
be confirmed by a simple example. Say TFC = $100. For very small q, such
as 0.0001, AFC is extremely large. But AFC falls really fast as q rises from
zero (and AFC is undefined at q = 0). At q = 1, AFC is $100, at q = 2,
AFC is $50, and so forth. The larger the value of q, the closer AFC gets to
zero (i.e., it approaches the x axis).

It is easy to show that the average total cost must equal the sum of the
average variable and average fixed costs:

TC(q) = TV C(q) + TFC

TC(q)

q
=
TV C(q)

q
+
TFC

q

ATC(q) = AV C(q) + AFC(q)

https://www.google.com/search?q=rectangular+hyperbola
https://www.google.com/search?q=rectangular+hyperbola
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We often omit AFC(q) from the graphical display of the firm’s cost struc-
ture (see Figure 11.14) because we know that AFC(q) = ATC(q)−AV C(q).
Thus, average fixed cost can be easily determined by simply measuring the
vertical distance between ATC and AVC at a given q.

The facts that AFC(q) = ATC(q) − AV C(q) and AFC goes to zero as q
rises means that AVC must approach ATC as q rises. Always draw AVC
getting closer to ATC as q increases past minimum AVC. Figure 11.14 obeys
this condition.

Unlike the total curves, which share the same y axis units of dollars, the
average costs are a rate, dollars per unit of output. You cannot plot total
and average cost curves on the same graph because the y axes are different.

Another cost concept that we get from the total cost function is marginal cost
(MC). Like average costs, MC is a rate and it comes in $/unit. Marginal cost
is often graphed together with the average curves (as shown in Figure 11.14).

Marginal means additional in economics. Marginal cost tells you the addi-
tional cost of producing more output. If the change in output is discrete,
then we are measuring marginal cost from one point to another on the cost
curve and the equation looks like this:

MC(q) =
∆TC(q)

∆q

If, on the other hand, we treat the change in output as infinitesimally small,
then we use the derivative and we have:

MC(q) =
dTC(q)

dq

Because TFC does not vary with q, marginal cost also can be found by tak-
ing the derivative of TVC(q) with respect to q.

Average cost and marginal cost are used to refer to entire functions (see
Figure 11.14), but also to specific values. For example, if ATC = $10/unit
and MC = $3/unit at q = 5, this means that it costs $10 per unit to make
the five units and, thus, the firm had $50 of total costs to make five units.
The MC tells us that the 5th unit costs an additional $3 so the total cost
went from $47 for 4 units to $50 for 5 units.
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The Geometry of Cost Curves

The average and marginal curves are connected to each other and must be
drawn according to strict requirements. Whenever a marginal curve is above
an average curve, the average curve must be rising. Conversely, whenever a
marginal is below an average, the average must be falling.

For example, consider the average score on an exam. After the first 10 stu-
dents are graded, there is an average score. The 11th student is now graded.
Suppose she gets a score above average. Hers is the marginal score and we
know it is above the average so it has to pull the average up. Suppose the
next student did poorly. His marginal score is below the average and it pulls
the average down. So, we know that whenever a marginal score is below the
average, the average must be falling and whenever a marginal score is above
the average, the average must be rising. The only time the average stays the
same is when the marginal score is exactly equal to the average score.

This relationship between the average and marginal means that the marginal
cost curve must intersect the average variable and average total cost curves
at their respective minimums, as shown in Figure 11.14. From q = 0 to the
intersection of MC with ATC, MC is below the ATC and the ATC falls. To
the right of the intersection of MC with ATC, MC is above the ATC so the
ATC is pulled up. MC and AVC curves share the same relationship.

Figure 11.14: Marginal and average relationships.
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Figure 11.14 also shows a property that was highlighted earlier: The gap
between ATC and AVC must fall as q rises.

You will understand these abstract ideas better by exploring concrete exam-
ples. Three cost functional forms will be examined:

1. Cobb-Douglas Cost Curves

2. Canonical Cost Curves

3. Quadratic Cost Curves

Instead of memorizing specific facts or points, look for the pattern and re-
peated connections. Focus on the relationship between the total and average
and marginal curves.

STEP Open the Excel workbook CostCurves.xls and read the Intro sheet,
then go to the CobbDouglas sheet to see the first example.

1. Cobb-Douglas Cost Curves

The CobbDouglas sheet is the CostFn sheet from the DerivingCostFunc-
tion.xls workbook with the ATC and MC curves plotted below the TC curve.
Column I has a formula for the TC curve using L* and K*, from which we
can compute ATC and MC in columns J and K. Click on an MC cell, for
example, cell K4, to see that the cell formula is actually for λ*. We are using
the shortcut that λ* = MC.

With L and K both endogenous, there are no fixed factors of production.
This means we are in the long run and there are no fixed costs. Thus, TC
= TVC and ATC = AVC.

It is immediately obvious that the marginal and average curves do not look
at all like the conventional family of cost curves as shown in Figure 11.14.
In fact, a Cobb-Douglas production function cannot give U-shaped average
and marginal cost curves as in Figure 11.14.

Remember that there are many functional forms for cost curves (total, av-
erage, and marginal) and the shape depends on the production function. In
other words, the production function is expressed in the cost structure of a
firm.
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STEP Set the exponent on capital, d, to 2 to replicate Figure 11.15.

Figure 11.15: Total cost shifts down when labor productivity rises.
Source: CostCurves.xls!CostFn, after setting d = 2.

Because average cost is falling as q rises in Figure 11.15 (and your computer
screen), it means that total cost is increasing less than linearly as output
rises. The total cost graph on your screen confirms that this is the case. It
costs $33 to make 200 units, but only $43 to make 400 units. Double output
again to 800. How much does it cost? Cell I9 tells you, $55. This is puzzling.
If input prices remain constant, how can we double output and not at least
double costs?

The answer lies in the production function. You changed the exponent on
capital, d, from 0.2 to 2. Now the sum of the exponents, c + d, is greater
than 1. For the Cobb-Douglas production function, this means that we are
operating under increasing returns to scale. This means that if we double
the inputs, we get more than double the output. Or, put another way, we
can double the output by using less than double the inputs.

This firm can make 400 units cheaper per unit than 200 units. It can make
800 units even cheaper per unit because it is taking advantage of the increas-
ing returns to scale.

Increasing returns are a big problem in the eyes of some economists because
they lead to a paradox: One firm should make all of the output. There are
situations in which increasing returns seem to be justified, such as the case of
natural monopolies, in which a single firm provides the output for an entire
industry because the production function exhibits increasing returns to scale.



11.4. COST CURVES 403

The classic examples are utility companies, e.g., electric, water, and natural
gas companies. Often, these firms are nationalized or heavily regulated.

We can emphasize the crucial connection between the production function
and the cost function via the isoquant map.

STEP Scroll down to row 100 or so in the CobbDouglas sheet.

The three isoquants are based on a Cobb-Douglas production function with
parameter values from the top of the sheet, except for d, which can be ma-
nipulated from the Set d radio buttons (above the chart). The three red
points are the cost-minimizing input combinations for three different output
levels: 100, 120, and 140.

Above the graph, the value of the sum of the exponents, initially 0.95, is dis-
played. A description of the shape of the total cost function, which depends
on the value of c + d, and a small picture of that shape is shown. Figure
11.16 has the initial display.

Figure 11.16: Isoquants determine the shape of the cost function.
Source: CostCurves.xls!CobbDouglas.

The spacing between the points is critical. The distance from A to B is a
little less than that from B to C. This means that as output is increased from
120 to 140, the firm needs a bigger increase in inputs than when q rose from
100 to 120.
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As output continues rising by 20 units, the next isoquant we have to reach
is getting farther and farther away, requiring progressively more inputs, and
progressively higher costs. This is why TC is increasing at an increasing rate.

STEP Click on the d = 0.25 option.

The isoquants shift in because it takes fewer inputs to make the three levels
of output depicted. The distance between the isoquants has decreased and
TC is linear. Most importantly, the distance between the points is identical.

With c + d = 1, the spacing of the isoquants is constant. As q increases by
20, the next isoquant is the same distance away and the firm increases its
input use and costs by a constant amount. This is why the TC function is a
line, increasing at a constant rate.

STEP Click on the d = 0.3 option.

Once again, the chart refreshes and isoquants shift in. Now the distance
between the isoquants is decreasing. As q rises, the isoquants get closer to-
gether and the total cost function is increasing at a decreasing rate.

STEP Click on the d = 0.35 option.

This produces even stronger increasing returns and a TC function that bends
faster than d = 0.3.

The fundamental point is that the distance between the isoquants reflects
the production function. There are three cases:

1. If the distance is increasing as constant increases in quantity are ap-
plied, the total cost function will increase at an increasing rate.

2. If the distance remains constant, the cost function will be linear.

3. If the distance get smaller as output rises, the firm has costs that rise
at a decreasing rate.

This holds for all production functions and, in the case of Cobb-Douglas, it is
easy to see what is going on because the value of c + d immediately reveals
the returns to scale and spacing between the isoquants.
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But the advantage of Cobb-Douglas in easily displaying the three cases (de-
pending on the value of C + d) means it cannot do all three cases at once.
A Cobb-Douglas production function can generate a TC functon that is in-
creasing at an increasing or constant or decreasing rate, but not all three.

The shape of the cost function is dependent on the production technology.
Repeatedly cycle through the radio buttons, keeping your eye on the iso-
quants, the distance between the points, and the resulting total cost func-
tion. Your task is to understand and cement the relationship between the
production and cost functions.

An accordion is a good metaphor for what is going on. When scrunched up,
the isoquants are being squeezed together, which gives increasing returns to
scale and TC increasing at a decreasing rate. When the accordion is ex-
panded and the isoquants are far apart, we have decreasing returns to scale
and TC rising at an increasing rate.

Do not be confused. The reason why increasing (decreasing) returns to scale
leads to TC rising at a decreasing (increasing) rate (they are opposite) is that
productivity (returns to scale) and costs are opposites. Increased productiv-
ity enables slower increases in costs of production. Production increasing at
an increasing rate and costs increasing at a decreasing rate are two sides of
the same coin.

2. Canonical Cost Curves

STEP Proceed to the Cubic sheet.

This sheet displays the canonical cost structure, in other words, the most
commonly used cost function. It produces the familiar U-shaped family of
average and marginal costs (which Cobb-Douglas cannot).

The canonical cost curves graph can be generated by a cost function with a
cubic polynomial functional form.

TC(q) = aq3 + bq2 + cq + d

The d coefficient (not to be confused with the d exponent in the Cobb-
Douglas production function) represents the fixed cost. If d > 0, then there
are fixed costs and we know the firm is in the short run.
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Once we have the cost function, the top curve on the top graph in the Cubic
sheet, we can apply the cost definitions (from the beginning of this section)
to get all of the other cost curves. The other total curves are:

TV C(q) = aq3 + bq2 + cq

TFC = d

STEP Click on each of the three curves in the top graph of the Cubic
sheet to see the data that are being plotted.

Now turn your attention to the bottom graph. The curves in the bottom
graph are all derived from the top graph. Notice that the y axis label is dif-
ferent, the totals in the top have units of $, while the average and marginal
curves have a y scale of $/unit (of output).

STEP Click on each of the three curves in the bottom graph to see the
data that are being plotted.

Custom formatting has been applied to the numbers in the average and
marginal cost cells to display “$/unit” in each cell. It is easy to forget that
“$” is not the units of average and marginal cost curves.

The average total and average variable costs are easy to compute: simply
divide the total by q. You can confirm that column E’s formula does exactly
this. There is no ATC value for q = 0 because dividing by zero is undefined.

We can also divide the equation itself by q to get an average. This is done
for AVC. The formula in cell F2 is “= a *(A6ˆ2) + b *A6 + c ” because
dividing TV C(q) = aq3 + bq2 + cq by q yields = aq2 + bq + c. Notice that
AVC for q = 0 does exist.

Marginal cost is more difficult to understand than average cost. Marginal
cost is defined as the additional cost of producing more output. “More” can
be an arbitrary, finite amount (such as 1 unit or 10 units) or an infinitesi-
mally small change in the number of units.

If we use an arbitrary, finite amount of increase in q, then we compute MC
as ∆TC

∆q
. We can also compute MC for an infinitesimally small change, using

the derivative, dTC
dq

. These two computations will be exactly the same only
if MC is a line.
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The two approaches are applied in columns G and H. The derivative of TC
with respect to q is:

TC(q) = aq3 + bq2 + cq + d

dTC

dq
= 3aq2 + 2bq + c

Notice how we apply the usual derivative rule, bringing the exponent down
and subtracting one from the exponent for each term. The d coefficient,
TFC, disappears because it does not have q in it (or, if you prefer, think of
d as dq0). The expression for MC is entered in column G.

Column H has MC for a discrete-size change. You can vary the size of the
change in q by adjusting the step size in cell B3.

STEP Make the step size smaller and smaller. Try 0.1, 0.01, and 0.001.

As you make the step size smaller, the values in column H get closer to those
in column G. This, once again, demonstrates the concept of the derivative.

Another way to get the cost function is to use the neat result from La-
grangean method. We can simply use λ* = MC and we have the MC curve.
No delta-size change or derivative required. If what we really wanted was
the total cost function, then we would have to integrate the λ* function with
respect to q. The constant of integration is the fixed cost, which would be
zero in the long run.

The family of cost curves in the Intro and Cubic sheets (and in Figure 11.14)
are the canonical cost curves displayed in countless economics textbooks.
You might wonder, if not Cobb-Douglas, then what production function
could produce such a cost function? That is not an easy question to an-
swer. In fact, the functional form for technology that would give rise to the
canonical cost curves is quite complicated and it is not worth the effort to
painstakingly derive the usual U-shaped average and marginal cost curves
from first principles.

It is sufficient to know that a production function underlies the polynomial
TC function and its resulting U-shaped average and marginal cost curves.
We also want to keep in mind that if input prices rise, the cost curves shift
up and, if technology improves, they shift down.
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3. Quadratic Cost Curves

STEP Proceed to the Quadratic sheet to see a final example of cost
curves.

It is immediately clear that the quadratic functional form is a special case of
the cubic cost function, with coefficients a and c equal to zero.

Look at the top chart and connect the shapes of the TC, TVC, and TFC
functions to the functional form TC(q) = bq2 + d. Given the coefficient val-
ues in the sheet, this gives TC(q) = q2 + 1, TV C(q) = q2, and TFC = 1.

The bottom chart does not look familiar, but it obeys the definitions of aver-
age and marginal cost explained earlier in this section. ATC is TC(q) divided
by q : ATC(q) = q + 1

q
. Similarly, AVC is TV C(q)/q, which is q (a ray out

of the origin). MC is the derivative of TC with respect to q, which is 2q.

Although not the usual U-shaped curves, the MC curve (actually, MC is
linear) intersects AVC and ATC at their minimums. When MC is below
ATC, ATC is falling, but beyond the point at which MC intersects ATC (at
the minimum ATC ), MC is above ATC and ATC is rising. As q increases,
AVC converges to ATC, which implies that AFC goes to zero.

The shapes of the cost curves are not the usual U-shaped average and
marginal curves, but this is another of the many possible cost structures
that could be derived from a firm’s input cost minimization problem.

The Role of Cost Curves in the Theory of the Firm

Cost curves are not particularly exciting, but they are an important geomet-
ric tool. When combined with a firm’s revenue structure, the family of cost
curves is used to find the profit-maximizing level of output and maximum
profits.

Cost curves can come in many forms and shapes, but they all share the basic
idea that they are derived by minimizing the total cost of producing output,
where output is generated by the firm’s production function. Different pro-
duction functions give rise to different cost functions.
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The shape of the cost function, rising at an increasing, constant, or decreas-
ing rate, is determined by the production function. With increasing returns
to scale, for example, a firm can more than double output when it doubles
its input use. That means, on the cost side, that doubling output will less
than double total cost. Returns to scale can be spotted by the spacing be-
tween the isoquants. With increasing returns to scale, for example, the gaps
between the isoquants get smaller as output rises.

No matter the production function, it is always true that for output levels
at which marginal cost is below an average cost, the average must be falling
and MC above AVC or ATC means AVC or ATC is rising. It is also true
that, in the short run (when there are fixed costs), AVC approaches ATC as
output rises.

Lastly, consider the message conveyed by Figure 11.17. The arrows show the
progression—average and marginal curves come from the total cost function,
which comes from the input cost minimization problem (with the production
function expressed in the isoquants).

Figure 11.17: Connecting cost graphs.

Economists use graphs to communicate. It may seem like graphs are con-
jured out of thin air, but this is false. All graphs have a genealogy and a
story to tell. When you know where graphs come from, that helps in reading
them correctly.
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Exercises

1. A Cobb-Douglas production function with increasing returns to scale
yields a total cost function that increases at a decreasing rate. Use
Word’s Drawing Tools to draw the underlying isoquant map for such a
production function.

A commonly used specification for production functions in empirical work is
the translog functional form. There are several versions. When applied to
the cost function, you get a result like this:

lnTC = α0+α1 lnQ+α2 lnw +α3 ln r +α4 lnQ lnw +α5 lnQ ln r +α6 lnw ln r

Notice that the function is a modification of the log version of a Cobb-Douglas
function. In addition to the individual log terms there are combinations of
the three variables, called interaction terms.

Click the Exercise Questions button at the bottom of the Q&A sheet in

the CostCurves.xls workbook to reveal a sheet with translog cost function
parameters. Use this sheet to answer the following questions.

2. Enter a formula in cell B18 for the TC of producing 100 units of output,
given the alpha coefficient and input price values in cells B5:B13. Fill
your formula down and then create a chart of the total cost function
(with appropriate axes labels and a title). Copy and paste your chart
in a Word document.

Hints: TC = e lnTC and the exponentiation operator in Excel is
EXP(). “=EXP(number)” in Excel returns e raised to the power of
that number.

3. Compute MC via the change in output from 100 to 110 in cell C19.
Report your result.

4. Compute MC via the derivative at Q = 100 in cell D18. Report your
result.

Hint: d
dx

(ef(x)) = ef(x) d
dx

(f(x))

5. Compare your results for MC in questions 3 and 4—are your answers
the same or different? Explain.
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people; the concept itself may not even be a natural one” (p. 216). The
question was, therefore, phrased in terms of “variable costs of producing ad-
ditional units.”

The results confirmed what many who have attempted to estimate cost curves
know: The canonical, U-shaped family of cost curves makes for nice theory,
but it is not common in the real world. In fact, many business leaders have no
idea what marginal cost is or how to measure it. Do not lose sight, however,
of the purpose of the Theory of the Firm. It is not designed to realistically
describe a living firm. The Theory of the Firm is a severe abstraction with a
primary goal of deriving a supply curve. The next chapter does exactly that.
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There are many occasions, therefore, when several
explorers are surprised, and somewhat pained, on
meeting each other at the Pole. Of such an occasion
the history of the “marginal revenue curve” presents
a striking example. This piece of apparatus plays a
great part in my work, and my book arose out of the
attempt to apply it to various problems, but I was
not myself one of the many explorers who arrived in
rapid succession at this particular Pole.

Joan Robinson

12.1 Initial Solution

With a total cost function, TC(q), and its associated average and marginal
cost curves, we are ready to solve the the firm’s output profit maximiza-
tion problem. The firm chooses the amount of output that maximizes profit,
defined as total revenue minus total cost. This is the second of three opti-
mization problems that make up the Theory of the Firm.

All firms face this profit maximization problem, but this chapter works with
a perfectly competitive (PC) firm in the short run (SR). There are, of course,
many other market structures and types of firms, but perfect competition is
the first step from which more sophisticated scenarios arise.

The firm’s market structure tells us the environment in which it operates.
Its market structure determines the firm’s revenue function. A PC firm is
the simplest case because it takes price as given. Thus, revenues are simply
price times quantity and the revenue function is linear.

Remember that we are not trying to describe the actual operation of a busi-
ness. In fact, a truly perfectly competitive firm does not exist in the real
world. The concept is an abstraction that enables derivation of the supply
curve. This is our goal.

Remember also that the short run is defined by the fact that at least one
input (usually K ) is fixed. In the long run, the firm is free to choose how
much to use of every factor. K is fixed not because it is immovable (like a
pizza oven or a building), but because the firm has contracted to rent a cer-
tain amount. It cannot increase or decrease the amount of K in the short run.

Profit maximization and its graphs may be familiar from introductory eco-
nomics. This experience will help you, but do not be complacent. Keep your
eye on how the economic way of thinking is being applied in this case and
make connections with other optimization problems we have explored.

415
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Perfectly Competitive Market Structure

A perfectly competitive firm sells a product provided by countless other firms
selling that homogeneous (which means identical) product to perfectly in-
formed consumers. Because the product is homogeneous, there are no quality
differences or other reasons for consumers to care about who they buy from.
Because consumers are perfectly informed, they know the price of every seller.

Thus, the PC firm’s market structure is one of intense price competition.
Every firm sells the product at the exact same price because if anyone tried
to sell at even a tiny bit higher than the market price, no one would buy
from them.

The shorthand term for this environment is price taking. The PC firm must
take the price and cannot choose its price—price is exogenous to the firm.

In addition to price taking, the market structure of the PC firm is charac-
terized by an assumption about the movement of other firms into and out
of the industry: free entry and exit. Firms can enter or leave the market,
selling the same good as everyone else, at any time.

These two ideas, price taking and free entry, distinguish the PC firm from
its polar opposite, monopoly. A monopolist chooses price and has a barrier
to entry. Between these two extremes are many other market structures in
which real-world firms actually exist.

The PC firm’s market structure means that an individual PC firm does not
worry about what other firms are doing. Each firm simply chooses its own
output to maximize profit and does not watch the other firms to gain a
strategic advantage. In this sense, there is no rivalry in perfect competition.

Setting Up the Problem

As usual, we organize the optimization problem into three parts:

1. Goal: maximize profits (π, Greek letter pi), which equal total revenues
(TR) minus total costs (TC ).

2. Endogenous variable: output (q).

3. Exogenous variables: price of the product (P), input prices (the wage
rate (w) and the rental rate of capital (r)), and technology (parameters
in the production function).



12.1. INITIAL SOLUTION 417

Unlike the consumer’s utility maximization and the firm’s input cost mini-
mization problems, this profit maximization problem is unconstrained. The
firm does not have a restriction, like a budget constraint or isoquant, that
limits its choice of output to a particular range. It can choose any non-
negative level of output.

This greatly simplifies the optimization problem. For the analytical method,
it means we do not need the Lagrangean method. All we need to do is take
a single derivative and set it equal to zero.

Finding the Initial Solution

Suppose the cost function is:

TC(q) = aq3 + bq2 + cq + d

Then we can form the PC firm’s profit function and optimization problem
like this:

max
q
π = TR− TC

max
q
π = Pq − (aq3 + bq2 + cq + d)

As usual, we have two ways to solve this optimization problem: numerically
and analytically.

STEP Open the Excel workbook OutputProfitMaxPCSR.xls and look
over the Intro sheet.

The Intro sheet is not meant to be immediately understood. It offers high-
lights of material that will be explained and prints as one landscaped page.
It provides a compact summary of the optimal solution of the output profit
maximization problem for a perfectly competitive firm in the short run.

STEP Proceed to the OptimalChoice sheet to find the initial solution.

The sheet is organized into the components of an optimization problem, with
goal, endogenous, and exogenous variable cells.

Initially, the firm is producing nine units of output and making $11.74 of
profit. Is this the highest profit it can possibly make?
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No. The sheet reveals the information needed to give this answer. By com-
paring marginal revenue (MR) and marginal cost (MC ), we immediately
know that the firm would make a mistake (we would say it is inefficient) if
it produced just nine units.

The MC of the ninth unit is $3.52 as shown in cell B22, but what about MR?
Perhaps you remember from introductory economics that P = MR for per-
fectly competitive firms? We can see that the additional revenue produced
by the last unit, $7 (the price), is greater than the additional cost, $3.52 (cell
B22). Thus, the firm should produce more. How much exactly should the
firm produce?

STEP Run Solver to find out.

Look carefully at B22. At the optimal solution, q* ≈ 13.09, MC = $7
per unit. P = MC, a special case of MR = MC for a PC firm, is
the equimarginal condition in this problem, analogous to MRS = p1

p2
and

TRS = w
r
. When the equimarginal condition is met, the firm is guaranteed

to be maximizing profits.

To find the optimal solution via the analytical method, we take the derivative
of the profit function with respect to q, set it equal to zero, and solve for q*.
Our cubic cost function introduces the complication that the solution has
two roots so we have to use the quadratic formula.

STEP Click the Show the Analytical Solution button to see how to

solve this problem with calculus.

Cell AC17’s formula has the root that maximizes profits (the other root
minimizes profits—more on this in the next section). As usual, Solver and
calculus agree (not exactly, but they give effectively the same answer).

Representing the Optimal Solution with Graphs

Since this is an unconstrained optimization problem (unlike utility maxi-
mization and input cost minimization), the graphical display of the optimal
solution is different.

The firm’s output profit maximization problem is usually represented by a
graph that depicts the family of cost curves along with marginal and av-

https://www.google.com/search?q=quadratic+formula
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erage revenue. Figure 12.1 and the Intro sheet shows this canonical graph
for a perfectly competitive firm (signaled by the fact that firm demand is
horizontal, so marginal revenue equals demand).

Figure 12.1: The canonical output profit maximization graph.
Source: OutputProfitMaxPCSR.xls!Intro.

Figure 12.1 is the usual display of the optimal solution, but it is actually part
of a much larger graphical display.

STEP Proceed to the Graphs sheet to see how Figure 12.1 fits into the
bigger picture, also shown in Figure 12.2. Zoom out to see all four graphs.

Figure 12.2: Four graphs of output profit maximization.
Source: OutputProfitMaxPCSR.xls!Graphs.
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Each of the four graphs in Figure 12.2 and on your screen can be used to
show the firm’s optimization problem and its solution. We will walk through
each one.

1. The top left graph plots total revenue and total cost. TR is linear
because the firm’s market structure is perfect competition, hence, it is
a price taker. The cubic total function produces the shape of TC. The
firm wants to choose q to maximize the difference between revenues
and costs.

2. The top right graph shows the profit function, which is TR−TC. The
firm wants to choose q so that it is at the highest point on the profit
hill.

3. The bottom right graph displays marginal profit, which can be ex-
pressed as the derivative of the profit function with respect to q. The
firm can find the maximum profit by choosing q so that marginal profit
is zero. This is the first-order condition from the analytical solution.

4. Finally, the bottom left graph is the usual display. The firm chooses q
where MR (which equals P given that the firm is a price taker) equals
MC. Profits can be calculated as the area of the rectangle (AR−ATC)q.

To be clear, all four graphs in Figure 12.2 show the same optimal q and
maximum profits, but the graph that is most often used is the bottom left.
It highlights the comparison of MR and MC and the family of cost curves
provides information about the firm’s cost structure. We can also find profits
as the area of the rectangle (with blue top and dashed line bottom).

STEP Move the output with the slider control (in the middle of the four
charts) to the left and right of q* to see how the profit rectangle changes.

Only when q is such that MR = MC do you get the maximum area of the
profit rectangle. Moving left from optimal q, you can make the rectangle
taller, but you must make it shorter to do this and you end up with less area.
You can make the rectangle longer by moving right from optimal q, but ATC
rises and the rectangle gets thinner, so once again the area falls.

The intersection of MR and MC immediately reveals the optimal q. Profits
at any q are also easily seen as the area of a rectangle, length times width,
with units in dollars. Because the y axis is a rate, $/unit, and the x axis is
in units of the product, multiplying the two leaves dollars. In other words,
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say the product is milk in gallons. Then price, average total, and average
variable cost are all in $/gallon. Suppose that at a price of $2/gallon, MR =
MC at an output of 7,000 gallons and ATC = $1.50/gallon at this output.
Clearly, profits are ($2/gallon - $1.50/gallon) x 7,000 gallons, which equals
$3,500.

We can compute profits from the profit rectangle at any level of output.
The height of the rectangle is always average revenue (which equals price)
minus average total cost. This vertical distance is average profit. When mul-
tiplied by the level of output, we get profits, in dollars, at that level of output.

The bottom left graph has another advantage over the other graphs. It
can be used to explain a curious and puzzling feature of a firm’s short run
profit maximization problem. The story revolves around a firm with negative
profits and what it should do in this situation.

The Shutdown Rule

The firm has an option when maximum profits are negative: it can sim-
ply shut down, close its doors, hire no workers, and produce nothing. The
Shutdown Rule says the the firm will maximize profits by producing nothing
(q* = 0) when P < AV C.

The key to whether the firm shuts down or continues production in the face
of negative profits lies in its fixed costs. If the firm can do better by shutting
down and paying its fixed costs instead of producing and choosing the level
of output where MR = MC, then it should produce nothing.

Continuing production in the face of negative profits versus shutting down
are actually the last two of four possible profit positions for the firm.

1. Excess Profits: π* > 0 and P > ATC

2. Normal Profits: π* = 0 and P = ATC

3. Negative Profits, Continuing Production: π* < 0 and P ≥ AV C

4. Shutdown: π* < 0 and P < AV C

Case 1, excess profits, occurs whenever maximum profits are positive. The
example we have been working on is this case. With P = 7, we know that
q* = 13.09 and π* = $20.23.
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STEP In the Graphs sheet, click on the pull down menu (over cell R5)
and select the Zero Profits option.

Your screen now looks like Figure 12.3.

Figure 12.3: Case 2: Normal (zero) profits.
Source: OutputProfitMaxPCSR.xls!Graphs.

Notice that the price ($5.373) in the bottom left chart just touches the min-
imum of the average total cost curve. The profit rectangle has zero area
because it has zero height. The best the firm can do is zero profits—all other
choices of q lead to lower (negative) profits.

In the top left graph, you can see that TR just touches TC. In the top right
graph, the top of the profit hill just touches the x axis. These charts confirm
what the bottom left chart tells us—with P = $5.373, q* yields π* = 0.

The third and fourth profit cases are the flip side of the first two in the sense
that price is so low that profits are now negative. This means firms will
leave in the long run, but another question arises: should the firm shut down
immediately or continue production?

STEP Click on the pull down menu (over cell R5) and select the Neg
Profits, Cont Prod option.
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With the Neg Profits, Cont Prod option selected, P = 5.10. The firm pro-
duces q* = 11.43 and suffers negative maximum profits of −$3.16. Notice
that price is below ATC in the bottom left graph, so that the profit rectan-
gle, (AR - ATC )q, will be a negative number. (The area is not negative, but
it is interpreted as a negative amount since revenues are below costs.) In the
top left graph, the TR line is below the TC curve. In the top right graph,
the profit function is below the x axis. There is a maximum, or top of the
hill, but it is negative, like a mountain under water.

Keep your eye on the top right graph, reproduced as Figure 12.4. Notice
that the top of the profit function is higher than the intercept (where q =
0). It is better for the firm to continue production, even though it is earning
negative profits of −$3.16 at the optimal output level, because it would make
an even lower negative profit of −$5 (the fixed cost) if it shut down.

Figure 12.4: Case 3: Negative profits, continuing production.
Source: OutputProfitMaxPCSR.xls!Graphs.

The canonical graph of profit maximization can be used to determine whether
the firm should produce or shut down by comparing price to average vari-
able cost. The Shutdown Rule is easy: hire no labor and produce nothing if
P < AV C.

STEP Look at the bottom left graph on your screen. It confirms that
the Shutdown Rule works. Profits are negative because price is below av-
erage total cost, but the firm will continue production because P > AV C.
When the relationship between P and AVC is such that price is greater than
average variable cost, it means that the top of the profit function is higher
than the y intercept, as in Figure 12.4.
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STEP Click on the pull down menu (over cell R5) and select the Neg
Profits, Shutdown option. Figure 12.5 displays the top right graph.

Figure 12.5: Case 4: Negative profits, shut down.
Source: OutputProfitMaxPCSR.xls!Graphs.

In this case, the top of the profit function is below the y intercept. In other
words, the maximum profit if the firm produces, −$9.81, is worse than the
negative profit incurred if the firm shuts down, −$5. The firm optimizes by
choosing q* = 0, that is, shutting down.

STEP Look at the bottom left graph on your screen. Once again, we
have confirmation of the Shutdown Rule. With P = 4.5, P < AV C and the
firm should shut down.

STEP Carefully watch the canonical (bottom left) and profit function
(top right) graphs as you change the price (with the pull down menu over
cell R5).

As long as P > AV C, the top of the profit hill is above the y intercept.
If P = AV C, the two are exactly equal and the firm is indifferent between
producing and shutting down.

P < AV C is the magic cutoff point. When this happens, the top of the
hill is below the y intercept (which is the negative profit suffered if the firm
produces nothing). Thus, the firm’s best choice is to produce nothing.
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Here is why the rule works. Multiply the Shutdown Rule by q to get:

(P < AV C)q

Pq < AV Cq

TR < TV C

TR < TV C is a restatement of the Shutdown Rule—produce nothing if total
revenue cannot cover total variable costs. This makes sense. Why produce
if you can’t even pay for the variable expenses? You are better off not pro-
ducing at all.

If total revenue is less than average total cost, then profits are negative. How-
ever, the firm can be in a situation where TR < TC, but TR > TV C. If so,
then production makes sense because you will be able to reduce some of the
fixed costs you have to pay no matter what you do. Profits are negative, but
it is better to produce than not produce because variable costs are covered
and fixed costs are at least partially reduced.

STEP For a summary of the four cases and what the Shutdown Rule is

doing, click the Show Cases button (over cell AC5).

What’s Normal about Zero Profits?

In economics, zero profits are called normal profits. This is confusing. Zero
sounds bad, not normal. There is a logical explanation, but it requires a
clear separation of accounting versus economic profits. They differ because
economists include opportunity costs when calculating economic profits.

� Accounting profits = revenues - explicit costs

� Economic profits = revenues - explicit costs - opportunity costs

In economics, without an adjective, “profits” means economic profits. So,
when profits are zero that means economic profits are zero. Economic prof-
its have had an extra item subtracted, the opportunity costs of using firm
resources to make this particular product.

An accountant would subtract explicit (out-of-pocket) costs (wages, rent,
etc.) from revenues and if this number is positive, announce that the firm
is making money. The economist would then subtract the cost of the profits
that could be made by the next best alternative industry that the firm could
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be in. If economic profits are zero, it means the opportunity costs are exactly
equal to the accounting profit and the firm cannot do better by switching to
its next best alternative.

Although this may seem needlessly contorted at first, there is a nice interpre-
tation of economic profits: If positive, the firm will stay in the industry and
new firms will enter in the long run; if negative, the firm will exit in the long
run; and if zero, there will be neither exit nor entry in the long run. It is in
this sense of equilibrium that we say zero profits are normal. With π = 0,
there is stability and no tendency to change in the movement of firms.

The distinction between economic and accounting profits also explains why
positive profits are excess profits. It is not meant as a pejorative term, but
to indicate that the firm is earning greater profits than are needed to keep
producing that product in the long run. Excess profits also mean that others
are attracted and will enter that industry.

Economists are not concerned with how much money the firm made, but with
profits as a signal to entry and exit. Defining economic profits as accounting
profits minus opportunity costs gives us a profit measure that tells us whether
the firm will stay or leave in the long run.

Shutdown Rule and Corner Solution

The Shutdown Rule is usually covered in introductory economics. Memoriza-
tion is often all that is achieved. We can do better by properly situating the
Shutdown Rule in the landscape of mathematical and economic concepts—it
is a corner solution.

Recall that, in the Theory of Consumer Behavior, there are situations in
which the MRS does not equal the price ratio, yet the solution is optimal.
This is a corner solution.

Food stamps are an example. The fact that food stamps can only be used
to buy food creates a horizontal segment on the budget constraint so that
a consumer might not be able to make MRS = p1

p2
. At the kink in the con-

straint, the consumer is optimizing even though the equimarginal condition
is not met.
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Corner solutions are a general phenomenon. They can be seen whenever a
restriction or border blocks further improvement in the objective function.
Consider Figure 12.6 which sketches a maximization problem to highlight the
difference between an interior and a corner solution. In panel B, the agent
cannot choose negative values of the x variable and, therefore, the function
is cut off by the y axis.

Figure 12.6: Understanding the corner solution.

In panel B, although the marginal condition is not met, we have an optimal
solution, defined as doing the best we can without violating any constraints.

Shutting down is another example of a corner solution because, once again,
the equimarginal condition is not met at q = 0, yet producing nothing is the
optimal solution. Shutting down is an unusual example of a corner solution
because there is a place where the marginal condition is met (there is an
output where MR = MC), but it is not optimal. The profit function twists
in such a way (see Figure 12.5) that profit is decreasing as output rises from
zero. This means that profits would go up if we were able to produce negative
output. Since we are not allowed to choose q < 0, we have a corner solution.

How can we know if we should choose q at MR = MC, the interior solution,
or shut down, the corner solution? The only way is to compare the profit
positions at the two quantities. The good news is that no checking is required
for cases 1 and 2. As long as profits are non-negative, there is no way that
a profit of minus total fixed cost can be better than the interior solution of
q where MR = MC. But, whenever, MR = MC yields negative maximum
profits, comparing those negative profits to TFC is necessary. Or, you could
just use the Shutdown Rule and see if P ¡ AVC, which will give the same,
correct answer.
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The complexity of the firm’s profit maximization problem in the short run,
with its shutdown possibility, should increase your sensitivity to lurking prob-
lems with analytical and numerical methods. We know neither is perfect so
there may be glitches in applying these methods to the firm’s profit maxi-
mization problem. The Q&A sheet provides an example. Be sure to look
carefully at questions 2 and 3.

Finding and Displaying the Initial Solution

The output profit maximization problem for a PC firm in the short run is a
single-variable (q) unconstrained problem. It can be solved with numerical
and analytical methods. The equimarginal rule applied is that MR = MC
and since price taking behavior means that P = MR for a PC firm, the
equimarginal rule is often shown as P = MC.

The firm’s profit maximization problem contains a complication in the short
run. If maximum profits are negative, it is possible that the firm is better off
not producing anything. A shortcut to determine whether or not to produce
when π* < 0 is the Shutdown Rule, P < AV C.

The initial optimal solution is displayed by a canonical graph that super-
imposes the firm’s revenue side (average and marginal revenue) over its cost
structure (average and marginal costs). Optimal output is easily found where
MR intersects MC (as long as P > AV C) and maximum profit is displayed
as the area of the appropriate rectangle. The ability to instantly show the
optimal solution, maximum profits, and whether or not to shut down ex-
plains the popularity of this graph.

You can think of the firm as walking through a series of three steps when
solving its profit maximization problem:

1. Choose q where MR = MC in the canonical graph.

2. Compute profits at q* via (AR− ATC)q (the profit rectangle).

3. If profits are negative, shut down if P < AV C.

The PC firm’s profit maximization is simpler in the long run. If π < 0, firms
exit the industry; π > 0 (also known as excess profits) lead to entry. Thus, in
long run equilibrium (a state never actually attained), P = ATC and π = 0
for all firms. This is why zero economic profits are called normal profits.
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Exercises

1. Use Excel’s Solver to find the optimal output and profit for a firm with
cost function TC = 2q2 + 10q + 50 and P = 40. Take a screen shot of
your optimal solution (including output and profits) and paste it in a
Word document.

2. Use analytical methods to solve the problem in the previous question.

3. For what price range will the firm in question 1 shut down? Explain.

4. If fixed costs are higher, will this influence the firm’s shutdown decision?
Explain.
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As all the functions φk(Dk) are supposed to
increase with Dk, the expression for Dk

derived from the equation p = φk(Dk) is
itself a function of p, increasing with p.
[Translation: The supply curve, q* = f(P )
is derived from P = MC and it is upward
sloping because MC is upward sloping.]

Augustin Cournot

12.2 Deriving the Supply Curve

The most important comparative statics analysis of the firm’s output profit
maximization problem is based on tracking q* (quantity supplied) as price
changes, ceteris paribus. This gives us the firm’s supply curve.

An important thing to remember is that the supply curve has two parts:

1. MC when P > min AVC

2. Zero otherwise (Shutdown Rule)

As usual, we have numerical and analytical methods at our disposal for the
comparative statics analysis that generates the supply curve. Before we
begin, we show how Solver can be modified to deal with the shut down
possibility and revisit the fact that it is not a silver bullet.

Solver Issues

STEP Open the Excel workbook DerivingSupply.xls, read the Intro sheet,
then go to the OptimalChoice sheet to see an implementation of a PC firm’s
profit maximization problem in the short run.

The sheet looks like the OptimalChoice sheet in the OutputProfitMaxPCSR.xls
workbook (from the previous section), but it has a few additional cells.

The IF statements in cells C4 and C8 of the OptimalChoice sheet are a con-
venient way to incorporate the firm’s shutdown option.

STEP Click on C8 to reveal its formula: = IF(max profit >= − d, q, 0).
We will use this cell as the correct optimal solution in all cases, including the
shutdown case.

431
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It is easy to see that Solver has been run because at q ≈ 10 in cell B8,
MR = MC since P = 4 and cell B18 reports MC = 4. This q, however,
is not the optimal solution because cell B4 shows that π = −15 (using the
common convention that “()” denote negative numbers). This firm would
be better off not producing at all and suffering a loss of TFC = −5. The
Shutdown Rule says the same thing since P < AV C (cell B15 is $5).

While Solver’s answer is wrong (because it found the top of the profit hill,
which is lower than the y intercept at −TFC), we can add a step to Solver
where we check for exactly this situation. This is what cells C8 and C4 do.

The expression max profit ≥ −d is used to test if Solver’s answer (the in-
terior solution) has higher profits than negative total fixed costs (the corner
solution). If true, it keeps Solver’s solution; if false, the optimal solution is
zero (shut down).

Solver will find the best of the positive levels of output in cell B8 and the IF
statement in cell C8 checks to make sure that the best solution (of the q >
0) is better than shutting down and producing nothing (q = 0).

With P = 4, the best of all of the positive levels of output, q = 10, provides
a profit of minus $15. Cells C4 and C8 show that producing nothing yields
a higher profit (and smaller loss) of minus $5 and is the correct optimal so-
lution.

While this is an improvement over manually checking Solver’s answer, there
is another potential problem with Solver in this application.

STEP To see the problem, set P (cell B12) to 7 and run Solver.

The optimal q is approximately 13.09 and the firm is enjoying excess profits.
Cells B4 = C4 and B8 = C8 because Solver’s answer gives profits greater
than minus TFC. All is well.

STEP Now set cell B8 = 1. Run Solver from this initial value.

Solver’s result is disastrous! What happened?

STEP Click the Solver Explained button to see why starting from q =

1 leads Solver astray.
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The explanation on the sheet makes it clear that the initial or starting value
can play a critical role when numerical methods are utilized. This profit
maximization problem has a sufficiently complicated surface that a numer-
ical algorithm, such as Solver, cannot easily distinguish between local and
global optimal solutions. There is no simple fix. The lesson is that you have
to know the optimization problem you are dealing with and be careful inter-
preting the answers provided by a numerical algorithm.

The explanation of Solver’s failure involves the minimum point of the profit
function and this provides an opportunity to explain the two roots in the
quadratic formula. A picture, in this case, really is worth a thousand words.

STEP Click the Show Analytical Solution button.

Cell Z17 has the other root from the quadratic formula (computed by adding
instead of subtracting the square root term). Both roots are places where
the profit function is flat (in the top right graph on the sheet). Notice how
the dashed lines from the max and min profit points lead to points where
marginal profit (mπ) is zero. These are the two roots in the quadratic for-
mula.

The two roots can also be seen in the canonical, bottom left graph as the two
points where MR and MC intersect. Of course, we only care about the root
that maximizes profits. One way to ensure that MR = MC yields a profit
max is to make sure that MC < MR to the left of the intersection. In other
words, MC cuts MR from below.

Numerical Methods to Derive the Supply Curve

STEP Set cell B8 back to 10 and P = 4 so Solver will converge to the
local max at q = −15.

STEP Run the Comparative Statics Wizard from P = 4 with 0.05 sized
shocks 100 times. Track the C4 and C8 cells as endogenous variables. You
can safely ignore the warning—you are using the CSWiz to keep track of
these cells, but will not include them as changing cells in the Solver dialog
box.
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Your results will look like those in the CS1 sheet. Notice that at low prices,
the firm is producing nothing. This is the part of the supply curve where the
firm shuts down to maximize profits.

The supply curve and inverse supply curves can be graphed with the CSWiz
data, as shown in Figure 12.7 and the CS1 sheet. Of course, the tail runs
along the quantity axis all the way to zero. Just as with the demand curve,
q = f(P ) is the supply curve and flipping the axes, P = f−1(q), gives the
inverse supply curve.

Figure 12.7: Deriving supply and inverse supply curves.
Source: DerivingSupply.xls!CS1.

Figure 12.7 applies our usual graphical exposition. The leftmost chart is the
underlying graph from which the other charts are produced. We shock P and
track q*. This gives the supply curve.

Unlike the demand curve, however, notice that the supply curve follows MC
as long as P is not below AVC. The discontinuity is at the minimum AVC.
Row 32 of the CS1 sheet shows the break occurs for this cost function be-
tween $4.90 and $4.95. Prices below this minimum AVC value result in no
quantity supplied since the firm shuts down.

Analytical methods can be used to find the discontinuity. First, we obtain
an expression for AVC.

TC = 0.04q3 − 0.9q2 + 10q + 5

TV C = 0.04q3 − 0.9q2 + 10q

AV C =
TV C

q
= 0.04q2 − 0.9q + 10
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Then we take the derivative of AVC with respect to q and set it equal to
zero to find its minimum point.

min
q
AV C = 0.04q2 − 0.9q + 10

dAV C

dq
= 0.08q − 0.9 = 0

q* =
0.9

0.08
= 11.25

By plugging this minimum value of output into the AVC function, we know
the price at which the discontinuity kicks in.

AV C[q = 11.25] = 0.04[11.25]2 − 0.9[11.25] + 10 = 4.9375

In the CS1 sheet, the discontinuity occurs when price rises from $4.90 to
$4.95. Our analytical work tells us that the discontinuity is exactly at
$4.9375. Any price below this yields optimal q of zero.

Notice how we used the derivative to find the value of q at which the rate
of change for the AVC curve was zero. This is the bottom of the U-shaped
AVC curve and prices below this AVC result in shutting down. The lesson
is that derivative is a tool that has a variety of uses.

The CS1 sheet also computes the price elasticity of supply in column E.

STEP Scroll down to see a comparison of slope and elasticities via the
∆ and derivative approaches.

In this case, the two approaches are not exactly the same because q* is non-
linear in P. The sheet has all of the details in case you want to refresh your
understanding of this concept.

Analytical Methods to Derive the Supply Curve

For the analytical approach, we use a different cost function to give us more
practice.

TC(q) = q2 + 20

With this quadratic cost function, we can set up and solve the PC firm’s profit
maximization problem. Because it is a perfectly competitive firm, we know
price is given and, thus, TR = Pq. Therefore, the optimization problem is:

max
q
π = Pq − (q2 + 20)
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We proceed by taking the derivative with respect to q and setting it to zero,
then solving this first-order condition for optimal q.

dπ

dq
= P − 2q = 0

q* =
1

2
P

This is the supply function. It gives the quantity supplied by a firm at every
given price. For example, with P = 20, q* = 10.

The inverse supply curve is found by expressing the equation as P = f(q).

P = 2q*

The supply function tells us that q* increases by one-half fold for every in-
crease in P. The size of the change in P does not matter since dq

dP
is constant.

The price elasticity of supply is +1.

dq

dP
=

1

2
dq

dP

q

P
=

1

2

P
1
2
P

= 1

We can compute the price elasticity of supply from one point to another. We
know that at P = 20, q* = 10. If P = 30, q* = 15. A 50% rise in price led
to a 50% increase in quantity supplied so the price elasticity of supply is +1.
The result is the same as the derivative approach because q* is linear in P.

A PC firm with a quadratic cost function will not shut down with any price
greater than zero. By constructing its family of cost curves and graph of the
optimal solution, we can see why. We begin with the cost curves. We know
TV C = 2q and TFC = 20. Then we can find the average and marginal
curves.

ATC(q) =
TC

q
=
q2 + 20

q
= q +

20

q

AV C(q) =
TV C

q
=
q2

q
= q

MC(q) =
dTC

dq
=
d(q2 + 20)

dq
= 2q
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STEP Proceed to the Graphs sheet to see the four graph display of the
optimal solution for this problem.

If P = 20, then q* = 10 and π* = $80. It is also obvious that there is no
positive price at which this firm will shut down because AVC is simply a ray
with slope +1 out of the origin. Thus, price can never fall below AVC.

Notice also how there is only one point where MR = MC, unlike the two
intersections we saw with the cubic cost function. The quadratic cost function
cannot produce the S-shape TC needed for the profit function to have a
minimum profit at the bottom of a U-shape. The profit function in the top
right graph has a single top of the hill (where mπ = 0).

Points Off the Supply Curve

As we did with the demand curve (see Figure 4.12), we can explore the mean-
ing of being off the supply curve. The interpretation is quite similar.

STEP Return to the CS1 sheet and manipulate the point off the supply
and inverse supply curves with the scroll bar in column E.

Figure 12.8 shows what is on your screen, but in Excel you can move the red
dot. As you do, the chosen q and profit for that quantity is displayed.

Figure 12.8: Points off the supply curve.
Source: DerivingSupply.xls!CS1.

Profits are maximized when you are on the supply curve. It is clear that the
supply curve, like the demand curve, has a hidden third dimension—profit
for supply and utility for demand. The right most panel shows the mountain
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and how you approach the top at the optimal solution. The ridgeline con-
necting the mountain tops is the supply curve. Like the demand curve, points
off the supply curve are associated with lower values of the objective function.

Notice how the point off the curve moves in a vertical fashion in the supply
curve graph and horizontally on the inverse supply curve graph. This hap-
pens because price is constant (at P = 6.25). With the price on the x axis,
points can be above or below the supply curve. Points off the inverse supply
curve are to the right or left because P is on the y axis.

Finally, on the inverse supply curve, the inefficiency of being off the curve is
obvious because output levels off the inverse supply curve means the firm is
not choosing a point where MR(= P ) = MC.

The Supply Curve has Parents

Like demand and cost curves, supply is derived from an optimization prob-
lem. Knowing where key relationships come from separates introductory
from more advanced economics and is an important aspect of mastering the
economic way of thinking.

The supply curve is a comparative statics analysis of the effects on optimal
quantity as price changes, ceteris paribus.

Unlike the demand curve, the supply curve has a discontinuity because the
firm will shut down if price falls below AVC. The supply curve depends crit-
ically on the firm’s cost function. The inverse supply curve is simply MC
above AVC and zero otherwise. The firm will choose that level of output
where MR(= P ) = MC as long as P > AV C.

Like the demand curve, points off the supply curve are interpreted as ineffi-
cient solutions to the optimization problem. Although possible, no optimiz-
ing agent would choose a point off the supply (or demand) curve.

Exercises

1. What happens to the short run supply curve if wages rise? Explain.
Use Word’s Drawing Tools to create a graph depicting your answer.

2. What happens to the inverse short run supply curve if wages rise?
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Explain. Use Word’s Drawing Tools to create a graph depicting your
answer.

3. What happens to the short run supply curve if the rental rate of capital
increases? Explain.

4. What happens to the short run supply curve if the price (P) increases?
Explain.

5. Suppose a firm is off its short run supply curve, but at a point where
MR = MC. Use Word’s Drawing Tools to a draw the profit func-
tion for this situation and label a point Z that meets the supposed
conditions.

References
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supply and demand with price on the x axis. Cournot was not bound by
Marshall’s convention of P on the y axis since Marshall’s famous graphs of
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Why was the spread of crops from
the Fertile Crescent so rapid? The
answer depends partly on that
east-west axis of Eurasia.

Jared Diamond

12.3 Diffusion and Technical Change

The Theory of the Firm is a highly abstracted model of a real-world firm,
yet there are fundamental ideas that can be applied to observed firm behav-
ior. This section does exactly that, applying the Shutdown Rule to explain
differing rates of diffusion of new technology.

The Shutdown Rule, P < AV C, says that firms will not produce when price is
below average variable cost because profits are maximized (and losses min-
imized) by shutting down instead of producing at the best of the positive
output choices (at MR = MC).

Diffusion of new technology is the process by which new methods of produc-
tion are adopted by firms. The speed of diffusion is critical—the faster firms
upgrade and modernize, the richer the society. We will see that some indus-
tries have fast and others slow diffusion with the Shutdown Rule playing a
key role.

Setting the Table

Consider two thoughts that are both wrong:

1. Always upgrade to have the best equipment or to use “best practice”
techniques.

2. Never throw working machinery away or abandon a process that can
produce output.

The first statement is wrong because firms would always be replacing almost
new machinery, tools, and plant to have the very latest equipment. The sec-
ond statement is the polar opposite of the first: Now you keep using ancient
machinery that was long ago superseded by better technology just because
it is still functioning.

441
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There has to be a middle ground between these two extremes and a logical
way to determine when to replace equipment.

Consider these two words that are accepted as synonymous in common usage,
but are different in the language of the specialized literature of diffusion:

1. Outmoded : machinery that is not the best at the time, but is still used.

2. Obsolete: machinery that is scrapped (thrown away) yet still functions.

Your phone is outmoded if it is not the latest, greatest available version.
When you replace your phone with a new one, the old one becomes obsolete.
At any point in time, a few people have the newest, fanciest model; the rest
have versions of outmoded models still in use; and there are many obsolete
models that are no longer being used. As time goes by, the newest model
becomes outmoded and, eventually, obsolete.

The distinction between outmoded and obsolete sharpens our focus on this
question: When does machinery go from being outmoded to obsolete?

Another important idea is labor productivity : the ability of labor to make
output. This is measured in two ways, output per hour or labor required to
produce one unit of output.

The output per hour version is simply the average product of labor, q
L

. The
bigger this ratio, the more productive is labor. You can take the recipro-
cal and ask, “How much labor is needed to make one unit of output?” This
measure, called the unit labor requirement, gets smaller as labor productivity
improves.

There are two ways of increasing labor productivity:

1. Better labor: increasing education.

2. Better machinery: technical (or technological) change.

Most people only think of the first way. More educated and skilled labor
obviously will be more effective in translating labor input into output. But
holding labor quality constant, if workers have better technology, such as
computers or power tools, then labor productivity rises.

So, if you want to increase ditch digging productivity, you can improve the
worker (think ditch digging classes) or you can improve the technology. A
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worker with a shovel digs a ditch a lot faster than one without. But the
explosion in productivity and output really occurs when you give the worker
a backhoe.

But here’s the curious thing, after backhoes are invented and brought on-
line, if you look at the entire industry of ditch digging, you will see many
different methods being used. Not everyone will instantly adopt the backhoe.

The question we are interested in boils down to explaining the rate of diffu-
sion: how rapidly do the latest, best machinery and methods spread?

The mere existence of a new machine (e.g., a backhoe) is not enough to spur
economy-wide increases in labor productivity. If the machine is not adopted
rapidly, it will have little effect on the economy. We want fast diffusion so new
methods spread quickly. This will boost productivity and economic growth.

The rate of diffusion is like adding a drop of red dye in a bucket of water.
How rapidly will the water turn red? What factors affect the rate of diffu-
sion? If we stir, the rate of diffusion rockets—how can we “stir” the economy
to speed up diffusion?

It turns out that the rate of diffusion of technical change in an economy
varies across industries and depends on specific characteristics. We are not
searching for an unknown constant, but for the factors that explain wide
variation in rates of diffusion—sometimes backhoes are rapidly adopted and
other times not.

The rate of diffusion depends on whether machinery is determined to be out-
moded versus obsolete. If machines are scrapped and replaced with the latest
technology fairly quickly, then the rate of diffusion of technical change will
be fast. If old technology is kept online and in production for a long time,
then the rate of diffusion of technical change will be slow.

Before we see how the Shutdown Rule plays a critical role in deciding whether
machinery is outmoded or obsolete, we review data used by W. E. G. Salter
(1960) to support the claim that the rate of diffusion varies across industries.
We also introduce a new graph that captures the idea of a distribution of
methods or vintages of machinery.

https://www.google.com/search?q=backhoe
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On the Variation of Methods Used Across Industries

Salter presents data on a variety of goods. He focuses on the methods of
production used at any point in time. It is quite obvious that there is al-
ways a mix of technologies being used. As new plants come online and new
machinery is installed, older plants with older machinery remain in operation.

For example, Salter’s Table 5, reproduced as Figure 12.9, shows a mix of
technologies used in pig-iron production. Notice that the labor productivity
of the best-practice plants (the latest technology) rises from 1911 to 1926.
The industry average, however, lags behind because the latest technology is
not immediately adopted by every manufacturer. The machine charged and
cast method (the right most column) is the best technology, but even by 1926,
30.6% of the firms are not using it. These firms remain in operation with older
technology. This slow diffusion hampers industry-wide labor productivity.

Figure 12.9: Slow diffusion in pig-iron production.
Source: DiffusionTechChange.xls!Data.

Figure 12.10 (Salter’s Table 6) focuses on the production of five-cent cigars.
Salter keeps constant the quality and type of cigar, the five-cent variety, to
focus on an apples-to-apples comparison of production methods. Because
the measure of productivity is the labor required to make 1,000 five-cent
cigars, the lower the hours required, the greater the labor productivity. The
two-operator machine is the best practice, but three other methods are also
used. Once again, the point is that a mix of methods are used and all of
them combined determines industry-wide productivity.
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Figure 12.10: Various methods of producing five-cent cigars.
Source: DiffusionTechChange.xls!Data.

Figure 12.11 offers a final example of Salter’s point that an economy’s labor
productivity depends on the technology actually being utilized to make out-
put. The Range of all plants column shows substantial variation in output
from the best-practice firms to the least productive methods still being used.
Notice that lower numbers are higher productivity because, as the title says,
we are measuring “labour content per unit of output.”

Figure 12.11: Variation in labor productivity across six industries.
Source: DiffusionTechChange.xls!Data.

For bricks, with 17 plants in operation, the middle 50% range is from a best
0.93 hours to make 1,000 bricks to 1.75 hours. That is a huge difference and
it is just the middle 50%. Take a moment to look at the ranges of the other
products in Figure 12.11.

The Ratio of range to mean columns measure the rate of diffusion. If some-
how every plant adopted the best-practice method, this ratio would be zero.
Thus, houses and men’s shoes are industries with much faster diffusion than
the others.
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Pig-iron, five-cent cigars, and products in Figure 12.11 are examples of a
widespread phenomenon that was of great interest to Salter. The rate of dif-
fusion of new technology is neither constant nor instantaneously fast. Salter
wanted to know what diffusion depends on in the hope of manipulating it.
After all, if there is a policy or lever we can pull to speed up diffusion, we
would improve productivity and increase output.

A Graph is Born

Salter used an uncommon graph, an ordered histogram, to show how an in-
dustry incorporated various technologies in production.

Figure 12.12 (Salter’s original Fig. 5) uses rectangles to indicate each method
or vintage of machinery. We call this a Salter graph.

Figure 12.12: Salter graph of the mix of technologies.

The greater the base of each rectangle in Figure 12.12, the greater the share
of the industry’s output for that particular technology. So, in the middle
of the graph, the wider rectangle has a bigger share of the output than the
narrower one right next to it. The sum of lengths of the bases have to add
up to 100% of the industry output.

The height of each rectangle tells you how much labor is needed to make
one unit with that technology. The lower the height (because the y axis
shows the labor required to make one unit of output), the greater the labor
productivity for that technology.
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The Salter graph has to have a stair-step structure because the rectangles
are ordered according to when they came online. The oldest technology is
to the right and the newest is to the left. The left-most rectangle is the
best-practice technology at that time and all of the other rectangles are at
different stages of outmodedness.

The Salter graph in Figure 12.12 is actually a single frame of a motion pic-
ture. As time goes by, and new techniques are invented and brought online,
some of the right most rectangles will “fall over” and be replaced by a new
shorter rectangle coming in from the left. Figure 12.13 shows a possibility
for the next frame in the movie.

Figure 12.13: Salter graph as time goes by.

The base of the rectangle of the newest technology in Figure 12.13 equals the
sum of the widths of the three rectangles representing obsolete technologies,
which fall off the graph because they are no longer used.

The wider the base of the newest technology, the better in terms of fast
diffusion of technological change and rapid increases in industry-wide pro-
ductivity. If a new technology swept through an industry like wildfire, the
Salter graph would show it as having a very long base, indicating it was pro-
ducing a large share of industry output.

Another, less favorable possibility is that the newest technology has a small
width. This would mean that few firms have adopted the best-practice
method and industry-wide productivity will not improve by much. The in-
dustry will remain dominated by outmoded methods.
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Consider the two Salter graphs in Figure 12.14 (Salter’s original Fig. 12).
They are enhanced by a strip in the middle, the height of which represents
the industry average productivity.

Figure 12.14: A comparison of two industries.

We would much prefer the industry on the left in Figure 12.14 because it has
a lower industry average unit labor requirement, which means it has higher
productivity. This is a result of much more rapid diffusion of newer, higher
productivity technology.

The industry average shaded bar is a weighted average of all of the technolo-
gies in existence at any point in time. This statistic is the correct way to
add up the rectangles with differing widths into a single measure of industry
productivity. To understand how to do this, we turn to a concrete example
in Excel.

STEP Open the Excel workbook DiffusionTechChange.xls, read the Intro
sheet, then go to the IndustryAverage sheet to see how a weighted average
is computed and how the Salter graph works.

Cells C9 and C10 show how two technologies contribute to the industry out-
put. Initially, Methods A and B produce 50% of the total output. Because A
(the superior, best-practice technology) requires only 1 hour of labor to make
a unit of output, whereas B (an outmoded technology) requires 2 hours, the
industry average productivity is 1.5 hours per unit of output.

STEP Click on the scroll bar a few times to increase A’s share of total
output to 90%. Notice how the Salter graph changes as you manipulate the
scroll bar.
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The Salter graph now shows A’s share as a much wider rectangle (indicating
much faster diffusion) and the red, industry (weighted) average rectangle is
much shorter. Although the simple average does not change, the weighted
average falls because more of the output is being generated by the more
productive A technology. The weighted average computation (implemented
in the formula for cell M10) is:

WeightedAverage =
OutputA

TotalOutput
UnitLReqA +

OutputB
TotalOutput

UnitLReqB

STEP Click on the scroll bar to decrease A’s share of total output to 10%.

This time, the industry (weighted) average is 1.9 because only 10% of the
output is produced with the best-practice technology. This would be an ex-
ample of slow diffusion.

The contributions of each technology to industry output, weighted by the
share of total output, is a good way to show how the rate of diffusion affects
industry-wide productivity.

Having seen data that there is substantial variation in the rate of diffusion
and that a Salter graph displays this variation, we are ready to explain why
we see industries with mixes of technologies. We answer two questions:

1. Why is a machine that works sometimes kept (so it is outmoded) and
other times scrapped (so it is obsolete)?

2. What determines the rate of diffusion of technical change?

1. Outmoded versus Obsolete?

We assume that new technologies are being constantly generated in all indus-
tries, but some are adopted more quickly. Why is that? Why are some fac-
tories and technologies quickly replaced while others remain online? Salter’s
work pointed to an easily overlooked element: the cost structure of the firms
in an industry.

STEP Proceed to the Output sheet. The opening situation is depicted
in Figure 12.15.
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Figure 12.15: Explaining why machinery is outmoded versus obsolete.
Source: DiffusionTechChange.xls!Output.

The graph shows two firms, one that is labor intensive and the other capital
intensive. The capital intensive firm has a larger gap between ATC and AVC
because it has higher fixed (capital) costs. The much lower AVC curve will
prove to be critical.

Both firms in Figure 12.15 are earning small, but positive economic profits.
As time goes by, however, new technologies are introduced and incorporated
in newly built factories with shiny, modern equipment. The products from
firms with the newest factories with their best-practice methods (the left-
most rectangle in a Salter graph) can be made more cheaply so competitive
pressure drives the price down.

STEP Click on the scroll bar to lower the price.

Since you know the Shutdown Rule, it is easy to see that the L-intensive firm
will shut down first. As soon as you make P < AV C, the factory is obso-
lete and taken offline. The factory on the left will survive as an outmoded
technology that is still in operation for much longer. You will have to keep
driving the price down for much longer to see it shut its doors.

All firms use the same Shutdown Rule, but differing cost structures is what
makes some factories stay in production while others close down.

So, to directly answer the question, Why is a machine that works sometimes
kept (so it is outmoded) and other times scrapped (so it is obsolete)? Because
the Shutdown Rule, P < AV C, determines the difference between outmoded
and obsolete technology. Old plants that are kept online, using outmoded
machines, operate in an environment in which profits may be negative, but
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P > AV C. These plants will remain in operation as long as revenues cover
variable costs. Once P < AV C, we know the machines will be scrapped and
become obsolete as the factory is closed down.

2. What Does the Rate of Diffusion Depend On?

Figure 12.15 shows that the firm’s cost structure is one of the factors which
determine the rate of diffusion of technical change. Industries with capital
intensive production and low variable costs will have slow rates of diffusion
because plants and technologies will remain online until P < AV C.

Steel is a good example of such an industry. Old factories remain in produc-
tion alongside modern mini-mills. The Salter graph looks like the right panel
in Figure 12.14 and the cost structure is given by the left panel in Figure
12.15.

On the other hand, industries who produce in a way that labor is dominant
and fixed costs are low will see rapid rates of diffusion of new methods. Legal
services are a good example. Cost curves look like the right panel in Figure
12.15 so when new computers and information systems (such as LexisNexis)
are developed, they are rapidly adopted and old ways are discarded. Thus,
the Salter graph looks like the left panel in Figure 12.14.

Another factor affecting the rate of diffusion is the speed at which price falls.
Competition among firms can be intense or muted. If, for example, the gov-
ernment protects an industry from foreign competition with trade barriers,
preventing price from falling, the rate of diffusion of new technology and
growth of labor productivity are retarded. This has certainly played a role
in the rate of diffusion in the steel industry.

So, what determines the rate of diffusion of technical change? There are
three factors:

1. New ideas and inventions from research and development (R&D): This
is the creativity of the society. Curiosity and willingness to experiment
produce a stream of better methods. The faster the flow, the better.

2. The cost structure of the firm: Capital intensive industry with high
fixed and low variable costs retards diffusion of new technology. The
new ideas are there, but the old ways stay online.

https://www.google.com/search?q=lexisnexis
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3. The speed at which price falls: If it is slow, we get slow diffusion. We
want to encourage competition so price puts pressure on outmoded
methods and drives them to be obsolete.

The first factor is the obvious one that everyone thinks of when explaining
why technology affects labor productivity and economic growth. Innovation
is the implementation of invention—new ideas are the raw material which
expand the production function.

But Salter identified another crucial factor: Even if new technology exists,
it will be mixed with existing technology and the rate at which it is adopted
will depend on the Shutdown Rule. Highly capital intensive industries with
low AVC will feel the drag of old technology for a long time because the gap
between ATC and AVC will be great. Old methods will stay outmoded as
long as P > AV C.

The Shutdown Rule compares average variable cost to price. Both mat-
ter. Low AVC will keep old methods around, but so will slow decline in
P. Although economists usually defend free trade policies on the basis of
comparative advantage, this analysis points to another reason for allowing
foreign competition in domestic markets. As price is pushed down, firms are
forced to modernize, taking old methods offline and investing in the newest
technology. Steel tariffs are an example.

You might be confused about the claim that competition makes price fall
as time goes by. It seems like inflation, prices rising, is the usual state of
affairs. The explanation lies in the difference between real and nominal price.

In nominal terms, also known as current prices, the price of a light bulb is
definitely higher today than 10 years ago and much higher than 100 years ago.

But in this application, the correct price to consider is the real price, in
terms of actual input use. In real terms, the price of lighting is incredibly
lower today. Figure 12.16, created by Nobel Prize winner William Nordhaus,
tells an amazing story. In terms of the number of hours of work needed to
buy 1,000 lumen hours, the price of light went from incredibly expensive for
thousands of years to a free fall since the 1800s. In terms of input use, as
technology improves, costs and, therefore, price of the output fall over time.

https://www.google.com/search?q=nordhaus+nobel
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Figure 12.16: Labor price of light: 1750 b.c. to present.
Source: Bresnahan and Gordon (eds.), 1997, p. 54.

Nordhaus argues that “price indexes can capture the small, run-of-the-mill
changes in economic activity, but revolutionary jumps in technology are sim-
ply ignored by the indexes” (Bresnahan and Gordon, eds., 1997, p. 55).
Thus, the real price of lighting, in terms of the labor used, keeps falling and
falling as time goes by.

It Is Diffusion, not Discovery, that Really Matters

Wilfred Edward Graham Salter was an Australian economist born in 1929.
His promising career was tragically cut short when he died in 1963 after
battling heart disease. His dissertation, finished in 1960, was published by
Cambridge University Press as Productivity and Technical Change and was
met with wide acclaim.

Salter was amazed by the ability of markets to incorporate new technology
to increase output per person. He realized that scientific knowledge, tech-
nology “on the shelf,” is not the only or even the most important driver of
rapid growth. The new technology has to be implemented, actually used in
production, and the faster it is adopted, the faster the economy grows.



454 CHAPTER 12. OUTPUT PROFIT MAXIMIZATION

Salter’s primary contribution was in showing that the rate of diffusion varies
tremendously and depends on the cost structures of firms. Industries with
high fixed and low variable costs have large ATC − AV C gaps that imply
long time spans for outmoded technology.

We want nimble, adaptive firms and startups that challenge established ti-
tans. Replacing old with new machinery is necessary for rising productivity.
Economies with ossified, rigid institutions are stagnant. There was a silver
lining after Germany and Japan’s factories were destroyed during World War
II. The latest, greatest technology could be used to make all of an industry’s
output and productivity increased rapidly.

Exercises

1. Sometimes a best practice investment is quickly leapfrogged by newer
technology. Google “fiber optic overinvestment” to see an example.
Briefly describe what happened and cite at least one web source.

2. Automobile emissions requirements are stricter in Japan than in the
United States (where many areas have no vehicle inspection at all).
In both countries, newer cars pass inspection (if required) easily, but
older cars are more likely to fail inspection and be removed from the
operating car fleet. Draw hypothetical Salter graphs, with emissions
on the y axis, for the car fleets of Japan and the United States that
reflect the stricter emissions standards in Japan.

3. What happens to a late model year Toyota or Honda that has failed
an emissions inspection in Japan and, therefore, cannot be used there?
Google “Japan used engines” to find out. What effect does this have
on the United States Salter graph that you drew above?

4. The National Highway and Traffic Safety Administration maintains a
data base of car characteristics by model year. For miles per gallon
(MPG) performance, they show the following:

Figure 12.17: MPG by year for US domestic passenger cars.
Source: one.nhtsa.gov/cafe pic/CAFE PIC fleet LIVE.html.

https://one.nhtsa.gov/cafe_pic/CAFE_PIC_fleet_LIVE.html
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These data cannot be used to show a Salter graph (with MPG on the
y axis) of the US car fleet. Why not? What additional information is
needed?
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What is the Marginal
Revenue Product* of
Barry Bonds?

John Palmer in The
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13.1 Initial Solution

Recall that the firm’s backbone is the production function. Inputs, or factors
of production, typically labor (L) and capital (K ) are used to make output,
or product (q).

In previous chapters, we explored the firm’s input cost minimization and
output profit maximization problems. This chapter returns to the input side
and works on the firm’s third optimization problem: input profit maximiza-
tion.

We continue working with a perfectly competitive (PC) firm, but we extend
the assumption of perfect competition to input markets. Thus, not only is
the firm one of many sellers of a perfectly homogeneous product with free
entry and exit, it is also one of many buyers of labor and capital. Our firm
is an output and input price taker.

This means that our PC firm only chooses the amount of input to hire, not
how much to pay for it. If it has market power, then the firm not only de-
termines how much to hire, but also gets to choose the input price. In this
case, we say the firm has monopsony power.

While you have surely heard of monopoly, monopsony may be new to you.
They are similar in that one is selling (monopoly) and the other buying
(monopsony) and that means price (output or input) is no longer exogenous.
A classic example is the only hospital in a small town hiring nurses. Another
example is a big box retailer. Walmart is such a big buyer that they have
monopsony power. They can negotiate with suppliers and extract cheaper
prices from them. Notice that a firm can have both monopoly and monop-
sony power.

In a Labor Economics course, you study how firms can take advantage of the
ability to set input prices to make greater profits. We assume this possibility

459
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away and stay with a PC firm that takes the wage rate (w) and rental rate
of capital (r) as given. Our PC firm is such a small buyer that it can hire as
much L and K as it wants at the going w and r.

Setting Up the Problem

There are three parts to every optimization problem. Here is the framework
for a PC firm.

1. Goal : Maximize profits (π), which equal total revenues minus total
costs. To distinguish the input from the output side, we use the terms
total revenue product (TRP) and total factor cost (TFacC ). The idea
is that labor and capital are used to make product that is sold so price
times the number of units produced is the TRP.

2. Endogenous variables : labor and capital, in the long run; only L in the
short run.

3. Exogenous variables : price (of the product, P), input prices (the wage
rate and the rental rate of capital), and technology (parameters in the
production function).

As usual, we will work with a Cobb-Douglas production function, with α > 0,
β > 0, and α + β < 1.

q = AKαLβ

Revenues are the output price multiplied by the output produced, TR =
Pq. We substitute the production function for q in TR to get total revenue
product:

TRP = PAKαLβ

The units of TRP are dollars (just like total revenue). The “revenue prod-
uct” language indicates that we are considering the amount of revenue ($)
produced by the inputs.

The costs are simply the amounts spent on labor and capital, wL + rK.
These are called total factor costs.

The firm chooses L and K to max profits.

max
L,K

π = PAKαLβ − (wL+ rK)
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Finding the Initial Solution

First the problem is solved using numerical methods, and then the analytical
approach is used.

STEP Open the Excel workbook InputProfitMax.xls and read the Intro
sheet,then go to the TwoVar sheet to see the problem implemented in Excel.

The sheet is named TwoVar because both inputs are choice variables, which
means this is a long run profit maximization problem. As usual, the sheet is
organized into the color-coded components of an optimization problem, with
goal, endogenous, and exogenous cells.

STEP Read the description of the firm, a bakery, and scroll down to the
endogenous variables.

On opening, the sheet has 500 hours of labor hired and 100 units of capital
rented, yielding a profit of $936. Is this the best this firm can do? Cells B48
and B49 show the marginal revenue product of labor and marginal factor
cost. By hiring one more hour of labor, revenues would rise by more than
costs, so profits would increase. Clearly, therefore, this bakery is not opti-
mizing.

STEP Run Solver to find the initial solution. Your screen should look
like Figure 13.1.

Figure 13.1: The initial optimal solution.
Source: InputProfitMax.xls!TwoVar.
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The firm hires roughly 1,431 hours of labor and rents 153 machines (but click
on cells B34 and B35 to see more decimal places). This yields a maximum
possible profit of just over $1,900.

Notice that the marginal revenue product and marginal factor cost cells are
now exactly equal at $20/hour. This is no coincidence. The equimarginal
condition for input profit maximization is that MRP = MFC. Since the
firm is an input price taker, MFC = w (just like P = MR for a PC firm) so
it is also true that MRP = w at the optimal solution.

Finally, notice the breakdown of the firms revenues in rows 44 to 46. Labor’s
share (wL), capital’s share (rK ), and profits (whatever is left) add up to
100%. K and L’s shares, 75% and 20% equal α and β. Is that a coincidence?
No, that’s a property of the Cobb-Douglas functional form. The exponent
tells you the share of revenues that factor will receive.

We can also solve this problem via the analytical approach. We know the
objective function and can substitute in each of the parameter values.

max
L,K

π = PAKαLβ − (wL+ rK)

max
L,K

π = 2 ∗ 30 ∗K0.2L0.75 − (2L+ 3K)

Next, we take derivatives with respect to L and K, set them equal to zero,
and use algebra to solve the two equation system of first-order conditions.

We can move the 20 and 50 to the right hand side and this immediately
reveals the equimarginal conditions: MRPL = w and MRPK = r.

We solve the first equation for L and substitute it into the second equation
to solve for optimal K. We use the rule that (xa)b = xab to solve for L.



13.1. INITIAL SOLUTION 463

Substitute the expression for L into the second first-order condition.

Compute optimal L from the expression for L.

L* = 2.254K0.8 = 2.254[152.6842]0.8 = 1431.414

Compute maximum profits.

π* = 2∗30∗[152.6842]0.2∗[1431.414]0.75−2∗[1431.414]−3∗[152.6842] = $1908.55

This analytical solution is extremely close to Excel’s solution. Practically
speaking, as we would expect, the two solutions are the same.

The Short Run

A slightly different version of the firm’s input profit maximization problem
involves the short run when capital is not variable. By putting a bar over K,
we highlight that capital is fixed.

max
L

π = PAK̄αLβ − wL− rK̄)

We do the analytical solution first this time and in general form. There is
only one derivative (since there is only one choice variable) and one first-order
condition.
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STEP To see the numerical version of this problem, proceed to the
OneVar sheet.

Notice that there is only one endogenous variable, L. Capital has been moved
to the exogenous list because we are in the short run.

Notice also that there are two graphs. Each one can be used to represent the
initial solution.

Below the graphs, you can see that the marginal revenue product of labor
does not equal the wage. As you know, this means you need to run Solver
because the firm is not optimizing.

STEP Run Solver to find the initial solution. Your screen should look
like Figure 13.2.

Figure 13.2: The initial optimal solution in the short run.
Source: InputProfitMax.xls!OneVar.

The bottom graph shows that the optimal labor use can be found where the
marginal revenue product of labor (the curve) equals the wage (at $20/hr).
This is the canonical graph for the input side profit maximization problem.
Like MR = MC on the output side, the intersection of the two marginal
relationships instantly reveals the optimal solution.
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The top graph is a different way of viewing the exact same problem. It is
using the production function as a constraint (the TRP curve) and three
representative isoprofit lines are displayed. Each isoprofit line shows the
combination of L and q that gives the same profit. The firm is trying to get
on the highest isoprofit (to the northwest) while meeting the constraint. It
can roll on the TRP curve (like it rolled on the isoquant) until it hits an
isoprofit line that is tangent to the TRP.

The constrained optimization problem can be written like this:

max
L,q

π = Pq − wL− rK̄

s.t. q = AK̄αLβ

The Lagrangean method could be applied to solve this problem. Naturally,
the exact same solution is obtained if we use the Lagrangean or the more
common approach of directly substituting the constraint (the production
function) into the revenue function.

Suppose we wanted to check if the analytical and numerical results are the
same. We need to evaluate the expression for optimal L at the parameter
values in the OneVar sheet.

The expression is complicated enough that entering it in a cell as you would
write it is a bad idea. The parentheses are likely to cause confusion. It is
better to create houses for each part then fill them in. Here’s how.

STEP Watch this short video on how to enter a complicated formula in
Excel: vimeo.com/415967747.

Entering parentheses as pairs, is a good habit to develop when working in a
spreadsheet. It is easy to make an order of operations mistake or get mis-
matching parentheses if you try to enter the formula like you would on a
piece of paper.

STEP Enter the formula in cell M28 (just like in the video) to practice
building houses in formulas in Excel.

In so doing, you confirm that the analytical and numerical methods yield
substantially the same answer.

https://vimeo.com/415967747
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Another Short Run Production Function

A Cobb-Douglas production function has many advantages, including that
the sum of exponents reveals whether returns to scale are increasing, con-
stant, or decreasing if they are greater, equal, or less than one. However,
once the exponents are set, the function can only exhibit those returns to
scale.

Likewise, in the short run, with K fixed, our Cobb-Douglas functional form
showed the Law of Diminishing Returns because β = 0.75. A more flexible
functional form would enable production to have increasing and diminishing
returns as more labor is added.

Like the cubic polynomial we used for the total cost function, a cubic func-
tional form can give us an S-shaped TRP curve.

TRP = aL3 + bL2 + cL

STEP Proceed to the Graphs sheet to see this functional form imple-
mented in a set of four graphs that can be used to represent the firm’s input
profit maximization problem (Figure 13.3).

Figure 13.3: Four graphs for input profit maximization.
Source: InputProfitMax.xls!Graphs.
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It is striking that these graphs mirror the four graphs we used to describe the
firm’s output side profit maximization problem. The two top graphs show
total revenue and total cost on the top left, along with total profits on the
top right. The bottom graphs display a series of marginal and average curves
on the bottom left and marginal profit on the bottom right.

If you look carefully, you will notice that things are switched around a bit.
Instead of total cost being a curve (as it is on the output side), it is a straight
line because total factor cost on the input side in the short run is wL+ rK̄.
On the other hand, total revenue product (so named to distinguish it from
total revenue on the output side) is a curve (instead of a straight line).

Unlike the canonical output side profit maximization graph with U-shaped
MC, ATC, and AVC curves and a horizontal P = MR line, the bottom
left graph has a horizontal MFC line and the MRP and ARP functions are
curves and they are upside down.

But there are also key similarities. The equimarginal rule is in play: MFC =
MRP reveals the labor use that maximizes profits. Also, a rectangle of
(ARP − AFC)L gives an area that is equal to profits. The length of the
profit rectangle ranges from zero to the chosen amount of labor hired. The
height is the difference between average revenue product, ARP, and average
factor cost, AFC. The area of this rectangle is profit because ARP − AFC
is profit per hour so multiplying by L, measured in hours, yields profits.
Another way to think about this is that multiplying L by ARP yields total
revenues (since L ∗ TRP/L = TRP ) and multiplying L by AFC gives total
costs (since L ∗ TFacC/L = TFacC). Subtracting the total cost rectangle
from the total revenue rectangle leaves the profit rectangle.

Another similarity between output and input profit maximization is that the
firm has the same four profit positions.

STEP In the Graphs sheet, click on the pull down menu (near cell P4)
and cycle through all of the profit positions.

As with the output side, the shock is output price. As it falls, so do maxi-
mum profits.

The Neg Profits, Cont Prod and Neg Profits, Shutdown options show that the
firm will shut down when the w > ARP . This is analogous to the P < AV C
Shutdown Rule. Keep your eye on the total profits in the top right graph
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to see that the story is the same—the firm is deciding whether the negative
profit at best of the positive levels of L is better than hiring no L at all.

The connection between input and output is simple. The firm shuts down
when w > ARP which we can multiply by L to give wL > TRP . But wL
and TRP are TVC and TR on the output side. Divide both by q and we get
AV C > P , which is the same as P < AV C, the usual output side Shutdown
Rule. In addition, the wL > TRP version of the Shutdown Rule supports
the claim that revenues must cover variable costs for a firm to produce.

Input Profit Maximization Highlights

At this point, you might be suffering from repetitive stress syndrome—we
seem to be going over and over the same ideas. That is an important level to
attain in mastering the economic way of thinking. The body of knowledge in
economics is grounded in a core methodology of optimization and compara-
tive statics. The framework is used over and over and over again.

Like every optimization problem, the input side profit maximization prob-
lem can be organized into a goal, endogenous, and exogenous variables. This
problem has a canonical graph (with MFC and MRP as the key elements)
and an equimarginal rule MFC = MRP .

Because the firm is an input price taker, MFC = w. This means that every
additional hour of labor adds w to total cost. If the firm was a monopsony,
this would not be true and the optimization problem would be more compli-
cated.

Finally, because the input profit maximization problem is the flip side of
the output side profit maximization problem, it should not be surprising
that we can represent the initial solution with a set of four graphs. The
parallelism carries through all the way to the Shutdown Rule, where w >
ARP is equivalent to P < AV C. We will stress the connections between
input and output side again in the next chapter.

Exercises

1. Use the TwoVar sheet to compute the long run beta elasticity of L*
from beta = 0.75 to beta = 0.74. Show your work.
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2. In the Q&A sheet, question 4 asks you to find short run beta elasticity
of L* from beta = 0.75 to beta 0.74. The InputProfitMaxA.doc file in
the Answers folder shows that the answer is about 28. Explain why the
short run elasticity (which is admittedly quite large) is much smaller
than the long run elasticity that you computed in the previous question.

3. Use Excel to set up and solve (with Solver, of course) the constrained
version of the input profit maximization problem in the OneVar sheet.
Take a screenshot of your solution (including the constraint cell) and
paste it in your Word document.

4. In the Graphs sheet, select the Neg Profits, Shutdown case. Does the
top, right graph support the w > ARP Shutdown Rule? Explain.
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To be sure, we are living in a dessert age.
We want things to be sweet; too many of us
work to live and live to be happy. Nothing
wrong with that; it just does not promote
high productivity. You want high
productivity? Then you should live to work
and get happiness as a by-product.

David Landes

13.2 Deriving Demand for Labor

A profit-maximizing firm with Cobb-Douglas technology and given prices in
all markets (P, w, and r) in the short run can be modeled as solving the
following optimization problem:

max
L

π = PAK̄αLβ − wL− rK̄)

The previous section found the initial solution for this problem. This section
is devoted to comparative statics analysis. How will this firm respond to a
change in one of its exogenous variables, ceteris paribus?

Although there are several exogenous variables from which to choose, the
responsiveness of optimal L to a change in the wage is of utmost importance.
This comparative statics analysis will give us the short run demand for labor.

After deriving the demand for labor in the short run, we will examine the long
run demand for labor. A comparison of short and long run wage elasticities
of labor reveals that labor demand is more responsive in the long run. We
then explore how changes in P affect L*.

Demand for Labor in the Short Run

We begin with numerical methods for a comparative statics analysis of a
change in the wage (also called the wage rate is measured in $/hr).

STEP Open the Excel workbook DerivingDemandL.xls and read the In-
tro sheet, then go to the OneVar sheet.

The layout is the same as the InputProfitMax.xls workbook in the previ-
ous section. It is clear from the graphs and the equivalence of wage and
MRP below the graphs that the firm is at its optimal solution. The yellow-
backgrounded cell, the wage rate, is the shock variable on which we will focus.

471
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STEP Change the wage in the OneVar sheet to $19/hr from the initial
value of $20/hr.

It is difficult to see anything in the top graph, however, the isoprofit line is
no longer tangent to the TRP. The bottom graph clearly shows that the red
diamond (at L = 1431 hours) has a marginal revenue product greater than
the marginal factor cost (equal to the wage). Cells H40 and I40 show that
the wage is less than MRP.

STEP Since the firm is no longer optimizing, run Solver to find the new
optimal solution.

You will find that, to maximize profits, the firm will hire 1757 hours when the
wage falls to $19/hr, ceteris paribus. At this level of labor use, the marginal
revenue product once again equals the marginal factor cost.

Although we have only two data points, it should be clear that the firm will
hire that amount of labor where the marginal revenue product equals the
wage, in the short run. This means that the marginal revenue product curve
is the firm’s (inverse) demand for labor curve. Quote the firm a wage and it
will look to its MRP curve to decide how much labor to hire.

We have two points on the demand for labor curve; at w = $20/hr, L* =
1431 hours and at w = $19/hr, L* = 1757 hours. Can we pick more points
off of the demand for labor curve?

STEP Set the initial wage back to $20/hr and use the Comparative Stat-
ics Wizard to apply five $1/hr decreases in the wage. Create charts of the
demand for labor and the inverse demand for labor.

Your results should look like those in the CS1 sheet. The CSWiz output
makes common sense. As the wage drops, the firm hires more labor. Look
also at the objective function—as wage falls, maximum profits are rising.
The key idea here is that firm hiring decisions are driven by profit maximiza-
tion. The reason why L increases as w falls is that this response is profit
maximizing.

Like demand curves in the Theory of Consumer Behavior, the price—the
wage in this case—can be placed on the x or y axis. The two displays use
the same information and convey the same message.
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We can also derive the short run demand for labor via analytical methods.
This problem was presented in the previous section. For your convenience,
it is repeated below.

We need to leave w as a variable, but for maximum generality we solve for
L* as a function of all parameters.

max
L

π = PAK̄αLβ − wL− rK̄)

We take the derivative with respect to L, set it equal to zero, and solve for
L*.

This expression is the demand curve for labor. If we substitute in values for
all exogenous variables except w, we can plot L* as a function of w, ceteris
paribus.

Do the numerical methods based on the CSWiz add-in agree with the ana-
lytical derivation of the demand for labor?

STEP In the CS1 sheet, click on cell C16. This is Solver’s answer for L*
when the wage is $20/hr.

Do not be misled by all of the decimal places. That is false precision.

STEP Click on cell E26. It displays L* when the wage is $20/hr based
on the reduced-form solution.

Do not be misled by the number displayed in cell E26. This is Excel’s display
for the formula entered into that cell. Excel’s memory has a different number.
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STEP Widen column E to see more decimal places.

We proceed slowly because things can get confusing here. Consider this
hierarchy of truth:

1. Solver is giving a number close to the exact right answer in cell C16.

2. Excel is representing the exact right answer as a decimal in cell E26.

3. The exact right answer is w
βPAK̄α

1
β−1 evaluated at w = $20/hr, along

with the other parameter values.

STEP To see that E26 is not the exact answer, make column E very wide,
then select cell E26 and click Excel’s Increase Decimal button repeatedly.

You will see that, eventually, Excel will start reporting zeroes. Excel has fi-
nite memory and, therefore, it cannot compute an infinite number of decimal
places for the exact answer. The decimal representation of the exact answer
stored in Excel’s memory is not the exact answer.

To be clear, Excel can display the exact answer if it is an integer or fraction
that can be represented with finite memory. For example, x

7
, evaluated at

x = 14 is 2 so, no problem for Excel. If 2 is the answer, Excel has it ex-
actly right. Evaluating at x = 1 means there is no decimal representation
with a finite number of digits. Excel cannot display the exact answer in
this case. Enter = 1/7 in a cell, widen the column, and click the Increase
Decimal button repeatedly to see that Excel eventually starts showing zeroes.

Thus, neither E26 nor C16 is the exact answer. They are both so close to the
answer, however, that we can say they “substantially agree” and are correct.

We can also use the analytical approach to reinforce the idea that the short-
run (inverse) demand for labor is the marginal revenue product of labor.

The first-order condition gives the equimarginal rule.

dπ

dL
= βPAK̄αLβ−1 = w

The term on the left is the MRP. Evaluating the βPAK̄α portion at their
initial values gives 123.0187 (as shown in cell K26 of the CS1 sheet). Thus,
MRP = 123.0187Lβ−1 and at β = 0.75, MRP = 123.0187L0.25.
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The CS1 sheet has an inverse demand for labor chart. Is the relationship in
this chart the same as the MRP function that we just found? Let’s find out.
By finding the function that fits the data in the inverse demand for labor
chart, we can compare this relationship to the MRP function.

STEP Right-click on the series in the inverse demand for labor chart
and select the Add Trendline option. Select the Power fit, scroll down and
check the Display equation on chart option. Click OK. Move the equation
(if needed) and increase the font size to see it better. Scroll right to see what
your chart should look like.

The answer is clear: The fitted curve that reveals the function for the inverse
demand curve for labor is the marginal revenue product of labor curve. The
fitted curve’s coefficient and exponent are almost exactly that of the MRP.

Next, we turn our attention to the wage elasticity of labor demand. We can
compute the elasticity at a point or from one point to another. We do the
former below and leave the latter as an exercise question.

Elasticity at a point begins by finding the derivative of the reduced-form
expression. We substitute in the known value for βPAK̄α = 123.0187 in the
denominator and β = 0.75 in the exponent.

L* = (
w

βPAK̄α
)

1
β−1 = (

w

123.0187
)

1
0.75−1 = (

w

123.0187
)−4

To take the derivative with respect to w, we isolate w.

L* = (
w

123.0187
)−4 =

w−4

123.0187−4
= (

1

123.0187−4
)w−4

Now we can apply our usual derivative rule, moving the exponent to the front
and subtracting one from it.

dL*

dw
= −4(

1

123.0187−4
)w−5

This expression is merely the slope or instantaneous rate of change of optimal
labor hired as a function of the wage. To find the elasticity, we must multiply
the derivative by the ratio w/L.

dL*

dw

w

L
= −4(

1

123.0187−4
)w−5w

L
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But we have an expression for L, so we substitute it in.

dL*

dw

w

L
= −4(

1

123.0187−4
)w−5 w

( 1
123.0187−4 )w−4

The 123.0187−4 terms cancel. And w−5 times w in the numerator is w−4 so
that cancels with w−4 in the denominator. We are left with this.

dL*

dw

w

L
= −4

As has happened before (remember the price and income and cross price elas-
ticity of demand?), the Cobb-Douglas functional form produces a constant
wage elasticity of short run labor demand.

This elasticity value says that labor demand is extremely responsive to changes
in the wage. We would not expect to find such a large wage elasticity of short-
run labor demand in the real world. For a Cobb-Douglas production function,
the elasticity is driven by the value of beta. If we had left β in the expression
for optimal L instead of using 0.75 (see the first two exercise questions), we
would get this expression for the wage elasticity of labor demand:

dL*

dw

w

L
=

1

β − 1

If we compute the elasticity from one point to another, say from a wage of
$20/hr to $19/hour (see exercise question 3), we will get a different answer
than −4. That makes sense since we know that L* is non linear in w. As the
change in the wage approaches zero, the elasticity computed from one point
to another approaches −4.

13.2.1 Demand for Labor in the Long Run

If we relax the assumption that capital is fixed, we change the firm’s planning
horizon from short to long run. The TwoVar sheet implements the firm’s
long run input profit maximization problem. There are two endogenous vari-
ables, labor and capital, and no fixed factors of production.

STEP To derive the firm’s long run demand for labor, use the Compar-
ative Statics Wizard from the TwoVar sheet. As you did in the short run
analysis, apply $1 decreases in the wage.
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Your results should show labor use rising as wage falls, just as in the short
run. But what about the elasticity—is it the same in the short and long run?

STEP Use your CSWiz results to compute the wage elasticity of labor
demand from a wage of $20/hr to $19/hr. Is it close to −4, the point elas-
ticity at w=$20/hr?

The CSCompared sheet is similar, but not the same as your results. It shocks
wage by $1/hr increments in the short and long run.

The difference in the elasticity is dramatic—labor demand is incredibly re-
sponsive in the long compared to the short run. The elasticity almost triples,
from −3.5 to almost −11. You should find the same result with your CSWiz
data for a wage decrease—the long run elasticity is much higher (in absolute
value) than in the short run. What is going on?

Figure 13.4 provides an answer to this question. The movement from point
A to B is the short run response for a $1/hr wage increase. As the short run
results in the CSCompared sheet show, when the wage rises from $20/hr to
$21/hr, L* falls from roughly 1,431 hours to 1,178 hours.

Figure 13.4: Why L* is more responsive to ∆w in the long than short run.

In the short run, capital stays fixed and the firm moves along its marginal
revenue product curve (which as we already know is the firm’s short run
demand for labor) as the wage changes. The K = 153 in the parentheses
signals that this is the value of K for this MRP schedule.
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In the long run, however, the adjustment is different. The data in the
CSCompared sheet show clearly that the firm will change both labor and
capital as the wage rises. Notice that capital falls from 153 machines to 73
machines as the wage rises from $20/hr to $21/hr.

This change in capital shifts labor’s marginal revenue product curve. As
shown in Figure 13.4, the firm’s long run response to the change in the wage
is from A to C, not simply A to B. It decreases labor use as it moves along
the initial MRP and then again when MRP shifts as K falls. This is the
reason why the wage elasticity of labor demand is more responsive in the
long run.

Figure 13.5 shows the firm’s long run demand for labor and that it is no
longer the MRP curve. Because capital falls as wage rises, leading to a
further decrease in labor hired, the firm is much more responsive to changes
in the wage.

Figure 13.5: The long run demand for labor.

It is clear that the inverse labor demand curve shown in Figure 13.4 is flatter
in the long run than the MRP curve (which is the short run inverse demand
for labor). A wage decrease would stimulate more labor hired in the long
than short run because K would rise in the long run.

The Shutdown Rule and the Demand Curve for Labor

Recall that, on the output side, the supply curve is the MC curve when
P > AV C.If P < AV C where MR = MC, then the firm ignores this
marginal signal (which is the top of a local profit hill) and shuts down (q = 0).
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The supply curve has a tail where the quantity supplied is zero when the price
falls below average variable cost.

There is a similar tail, with L = 0, on the demand curve for labor. The
previous section showed that if w > ARP , the firm will shut down, hiring no
labor and producing no output.

STEP Proceed to the Graphs sheet to quickly review this concept. Use
the pull down menu to change the firm’s output price and place the firm in
any of the four profit positions. Select Neg Profits, Shutdown to see that the
firm will shut down when P is so low that it shifts ARP down so much that
w > ARP . This is analogous to the P < AV C Shutdown Rule.

The Shutdown Rule means that we have to change our definition of the
demand curve for labor to get it exactly right. In the short run, the inverse
demand curve is the MRP curve, as long as w > ARP ; otherwise it is zero,
as shown in Figure 13.6.

Figure 13.6: The short run inverse demand for labor.

The Shutdown Rule is usually presented from the output side as P < AV C.
This version of the rule is perfectly compatible with the input side version
of the shutdown rule, w > ARPL. Either wage increases or output price
decreases can trigger a shutdown.

In Figure 13.6, it is easy to see what is happening when wage increases—the
horizontal MFC line shifts up and it rises above ARP, the firm shuts down.
What is happening on the output side? Remember that as wage rises, cost
curves on the output side shift up. At the precise point at which a higher
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wage triggers the decision to not hire any labor, the AVC curve will have
shifted above P and the firm will decide to not produce any output.

The same story is at work when P falls. On the output side, it easy to
see that when the horizontal P = MR line falls below AVC, the firm shuts
down. What is happening on the input side? As P falls, the MRP and ARP
curves in Figure 13.6 shift down. At the precise moment when P falls below
AVC and the firm decides to produce no output, the ARP shift below the
horizontal wage line in Figure 13.6 and the firm will decide to hire no labor.

Demand for Labor Depends on P

Another comparative statics analysis for input profit maximization revolves
around the effect that P has on L*. This shows how the demand for labor is
a derived demand from the desirability of the product. In other words, the
stronger the demand for the product, the greater the demand for labor.

Suppose demand for bread rises in our Excel workbook. This increases P,
ceteris paribus. What happens to L? We explain the short run response here
and leave the long run for exercise questions 4 and 5.

STEP Return to the OneVar sheet. Return the wage to $20/hr. Run
Solver.

Instead of simply changing P and running Solver again, we want to see what
effect P has on the graphs that show the initial solution.

STEP Change P to $2.10 and look carefully at the charts.

It is difficult to see that the TRP curve has changed so that it is no longer
tangent to the isoprofit line, but the bottom chart clearly shows that the
initial solution is no longer optimal. What happened?

From our analytical work, we know that MRP = βPAK̄αLβ−1 so it is clear
that an increase in P will shift the MRP curve up. That is what you are
seeing in the bottom graph on the OneVar sheet. Return P to $2/unit to
see that MFC stays constant (w remains unchanged), but MRP is moving.

STEP With P=$2.10, run Solver. What happens to L*?
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Not surprisingly, the firm wants to hire more labor. The reason is that the
MRP curve shifts and a new solution is found where the new MRP = w. La-
bor cost and productivity are unchanged, but the demand for labor is affected
by consumer’s desire for the product (expressed through the P). We say that
that demand for labor is a derived demand—the firm’s need for labor (and
other inputs) comes from the fact that it has customers who want its product.

Figure 13.7 shows what happens as you increase the product price. If the
demand for a firm’s output is high, the price will be high, and this will induce
an increased demand (shift) for labor.

Figure 13.7: Demand for L is a derived demand.

It is easy to see that labor is a derived demand by considering professional
sports. Pro athletes in major sports make a lot of money because they are
in high demand. Sports teams know that the price of the good they produce
(including broadcast and streaming revenue) is high. The output side is most
definitely reflected in the input side via the product price.

Marginal Productivity Theory of Distribution

The input side profit maximization problem can be used to examine the dis-
tribution of firm revenues. The basic idea is that shares are a function of
an input’s productivity: The more productive the input, the greater its share.

STEP From the TwoVar sheet, run a comparative statics experiment
that changes the exponent on labor from 0.75 to 0.755 (5 shocks of 0.001).
In the endogenous variables input box, be sure to track not only L and K,
but also the shares received in cells C44:C46.
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Check your results with the CS3 sheet. The CS2 sheet has the outcome of
a change in alpha, the exponent on capital. It explains how “large” shocks
of, say, 0.1 will cause catastrophic failure as α + β approaches +1. This is
why the change in beta so small—to stay away from the singularity.

By increasing the exponent on labor in the Cobb-Douglas production func-
tion, labor’s productivity rises. In other words, labor can make more output,
ceteris paribus, as the exponent on labor increases. The firm maximizes
profit by using more labor and labor’s share of firm revenues rises.

The CSWiz data show that we can immediately determine the percentage
share of revenues gained by each input by the input’s exponent in the produc-
tion function. Although a different production function may not have this
simple short-cut to determine the percentage share of revenues accruing to
each input, it remains true that an input’s share will depend on its marginal
productivity.

Whereas algebraic convenience and simplicity are often invoked as a rationale
for utilizing the Cobb-Douglas functional form, in the case of factor shares, a
strong empirical regularity supports the use AKαLβ. About 2/3 of national
income has gone to labor and 1/3 to capital. “In fact, the long-term stabil-
ity of factor shares has become enshrined as one of the “stylized facts” of
growth” (Gollin, 2002, pp. 458–459). More recent measurements of factor
shares shows that capital is gaining a greater share and this is an active,
exciting area of research.

Labor Demand Highlights

The most important comparative statics exercise on the input side is to derive
the demand for inputs. This chapter focused on labor demand and showed
that the short run demand for labor is the marginal revenue product of labor
curve.

In the long run, however, the demand for labor is not the MRP curve be-
cause K* changes as w changes. For this same reason, labor demand is more
responsive to changes in the wage in the long run.

Whether in the long or short run, the demand curve for labor is subject to
the same Shutdown Rule qualification as the supply curve for output. If the
wage is higher than the ARP at the point at which MRP = MFC, the firm

https://www.google.com/search?q=singularity+definition
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will hire no labor. This coincides perfectly with the firm’s decision to shut
down on the output side, producing no output.

In addition to changes in the wage, this chapter explored the effects of a
change in product price. As P increases, L* rises. In terms of the canonical
graph, an increase in P shifts the MRP and leads to a new optimal solution.
This leads economists to think of and say that labor demand is a derived
demand because the price of the product influences how much labor the firm
wants.

This section ended by pointing out that an input’s productivity determines
its share of firm revenues. As productivity rises, so does the percentage share
accruing to that input. Productivity is a key variable in determining input
use and distribution of revenues.

Exercises

1. Derive the wage elasticity of short run labor demand for the general

case where L* = ( w
βPAK̄α )

1
β−1 . Show your work, using Word’s Equation

Editor.

2. Does your result from the previous question agree with the −4 value
obtained in the text?

3. Compute the wage elasticity of short run labor demand (using the pa-
rameter values in the OneVar sheet) from w=$20/hr to $19/hr. Show
your work.

4. Use the Comparative Statics Wizard to analyze the effect of an increase
in the product price in the long run. Compute the P elasticity of L*
from P = 2.00 to P2.10. Copy and paste your results in a Word
document.

5. Is L* more responsive to changes in P in the short run or long run?
Explain why.
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[That long run responses are more elastic
than short run responses] is commonly
believed to be empirically true, simply as a
matter of assertion. It is interesting and
noteworthy that this type of behavior is in
fact mathematically implied by a
maximization hypothesis.

Eugene Silberberg

Chapter 14

Consistency

We have considered three separate optimization problems in our study of
the perfectly competitive (PC) firm. Figures 14.1, 14.2, and 14.3 provide a
snapshot of the initial solution and the key comparative statics analysis from
each of the three optimization problems.

This chapter ties things together with the fundamental point that these three
problems are tightly integrated and are actually different views of the same
firm and same optimal solution. Change an exogenous variable and all three
optimization problems are affected. The new optimal solutions and compar-
ative statics results are consistent—i.e., they tell you the same thing and are
never contradictory.

Figure 14.1 shows the input side cost minimization problem. Quantity is
exogenous in this problem and the firm looks for the input mix that minimizes
the total cost of producing the given q.

Figure 14.1: Initial cost minimization and cost function.

485
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The right panel in Figure 14.1 shows the cost function that comes from track-
ing minimum total cost as q varies, ceteris paribus.

Figure 14.2 shows output side profit maximization. The PC firm (since
P = MR is a horizontal line) gets average and marginal cost curves from the
cost function and finds the quantity that maximizes profit.

Figure 14.2: Initial profit maximization and the supply curve.

The right panel in Figure 14.2 shows where supply curves come from: shock
P, ceteris paribus, and track optimal q.

Figure 14.3 returns to the input side, but this time the firm solves a profit
maximization problem, choosing how much labor to hire.

Figure 14.3: Initial profit maximization and the demand for labor.

The right panel in 14.3 shows how changing w, ceteris paribus, produces the
demand curve for labor.
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These three optimization problems share a common methodology. In each
case, we set up and solve the problem, then do comparative statics analysis.
There are other shocks that can be explored, but the one shown here is the
most important.

But there is one last crucial concept that is the focus of this chapter: these
three problems do not exist in isolation, instead, they are woven together to
comprise the Theory of the Firm. The relationships among the three exhibit
a consistency that can be demonstrated with Excel.

Perfect Competition in the Long Run

STEP Open the Excel workbook Consistency.xls and read the Intro

sheet; then proceed to the TheoryoftheFirmLongRun sheet. Use the Zoom In
button to fit the graphs on your screen so that all of them can be seen si-
multaneously.

The first and most important point is that all three optimization problems,
in unison, comprise the Theory of the Firm. Perhaps because they see it in
introductory economics, many students think of the output profit maximiza-
tion graph as the firm. The display in Consistency.xls gives a strong visual
presentation and constant reminder that the firm has three facets.

Gray-backgrounded cells are dead (click on one to see that it has a number,
not a formula). They serve as benchmarks for comparisons when we do com-
parative statics.

The output and input profit maximization graphs do not have the usual
U-shaped curves because the production function is Cobb-Douglas. This
functional form cannot generate conventional U-shaped MC and AC curves
(or upside down U-shaped MRP and ARP). There is no separate AVC curve
because we are in the long run, so AC = AV C.

STEP Compare the initial solutions for each of the three problems.

There are several ways in which they agree.

1. L* and K* are the same in the Input Profit Max (left) and Input Cost
Min (middle) graphs.
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2. If you use these amounts of L and K, you will produce 636 units of
output, as shown in the Output Profit Max (right) graph.

3. π* is the same in the Input and Output Profit Max graphs. There is
no profit in the Input Cost Min graph because there is no output price
(P) and, therefore, no revenue in that optimization problem.

4. Total cost from each side is exactly the same. You can find TC from
the Input Profit Max by creating a cell that computes wL*+rK*. This
will equal $36,262. From the Output Profit Max side, calculate TC by
subtracting revenue, Pq, from profit. Again, you get $36,262.

We can also see consistency in the ways in which the three optimization
problems respond to shocks. As you would expect, the comparative statics
results are identical.

STEP Wage increase of 1%. Change cell B2 to 20.2. Use the Zoom In
button if needed to see more clearly how the graphs have changed.

Figure 14.4 shows the results.

Figure 14.4: Wage shock in the long run.
Source: Consistency.xls!TheoryoftheFirmLongRun

On the Input Profit Max graph, we see that optimal labor use has fallen by
14.7% as wage rose by 1% (so the wage elasticity of labor from wage = $20/hr
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to $20.20/hr is −14.7). Labor demand collapsed because the horizontal wage
line shifted up and because the MRP schedule shifted left. The latter effect
is due to the fact that optimal K fell.

On the Input Cost Min graph, we see that the firm is minimizing the cost of
producing a lower level of output. In other words, we are on a new isoquant.
Notice that the changes in L* and K* are consistent with the decreases re-
ported from the Input Profit Max results.

The wage increase in the Output Profit Max graph is felt via the shifting up
of the cost curves. The firm decreases q* because MC shifted up and there-
fore the intersection of MR and MC occurs to the left of the initial solution.

Figure 14.4 and your screen shows how the Theory of the Firm reacts in a
consistent manner to a wage shock. Is this true of other shocks? Yes. Here
is another example.

STEP Click the Reset button, and then implement a labor productiv-
ity increase to 0.751 by changing cell F2.

Figure 14.5 shows the dramatic results of this shock. Input use and output
produced have increased by about 18% in response to this tiny change in c.

Figure 14.5: Labor productivity shock in the long run.
Source: Consistency.xls!TheoryoftheFirmLongRun
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As with the wage shock, comparison of the effects of the change in c on the
three optimization problems shows consistency. The two input side problems
show that input use is the same and the inputs used will make the desired
output on the output side. Profits on the input and output sides are the
same. The productivity increase has shifted MRP up and cost curves down.

Other shocks are explored in Q&A and exercise questions. In every case,
changing an exogenous variable, ceteris paribus, produces effects felt through-
out the three optimization problems and the results are always consistent.

Perfect Competition in the Short Run

STEP Go to the TheoryoftheFirmShortRun sheet to explore the compar-
ative statics properties of the three optimization problems in the short run.

This sheet has several differences compared to the previous overall view of
the firm in the long run.

� There is an additional exogenous variable, K, because we are in the
short run. Its value is set to the long run optimal solution for the
initial values of the other parameters.

� There is a missing graph in the input profit max problem. With K
fixed, we no longer need to depict its optimal solution.

� There is a straight, horizontal line in the isoquant side graph. With K
fixed, the firm will not be able to roll around the isoquant to find the
cost-minimizing input mix. It must use the given amount of K.

� There is an extra cost curve in the output profit max graph. Having K
fixed means there is a fixed cost so we now have separate average total
and average variable costs.

STEP Compare the initial solutions for each of the three problems. As
expected, they agree in input use, output produced, and profits generated.

As before, we can change the light-green-backgrounded exogenous variable
cells in row 2 and follow the results in the graphs.

STEP Apply a wage increase of 1%. Change cell B2 to 20.2. Use the

Zoom In button if needed to see more clearly how the graphs have changed.



491

Figure 14.6 shows the results of this shock.

Figure 14.6: Wage shock in the short run.
Source: Consistency.xls!TheoryoftheFirmShortRun

The usual consistency properties are readily apparent. We observe the same
change in L*, q*, and π* across the board. Notice that the input profit max
problem does not show a shift in MRP because K is fixed.

If we compare the short (Figure 14.4) to the long run (Figure 14.6), we see
that the responsiveness of the changes in endogenous variables is greater in
the long run. Labor and output fall by more in the long run. Profits, how-
ever, fall by less in the long run.

STEP Click the Reset button, then implement a labor productivity in-
crease to 0.751 by changing cell F2.

Figure 14.7 displays the results.

Figure 14.7: Labor productivity shock in the short run.
Source: Consistency.xls!TheoryoftheFirmShortRun
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Figure 14.7 shows consistency in the results and, once again, the long run
changes are more responsive than in the short run. L and K fall by more
and the increase in profits is higher in the long run.

Long versus Short Run

When we compared the short and long run results for shocks in w and c,
the long run exhibited greater responsiveness in labor and output. Is there
a general principle at work?

Yes. The general law is that long run responses are always at least as or more
elastic than in the short run. This is known as the Le Chatelier Principle.

Le Chatelier’s idea, which he originally applied to the concept of equilibrium
in chemical reactions, was introduced to economics by Nobel laureate Paul
Samuelson in 1947.

The Le Chatelier principle explains how a system that is in equi-
librium will react to a perturbation. It predicts that the system
will respond in a manner that will counteract the perturbation.
Samuelson, following the methods of the hard sciences, has trans-
ported this principle of chemist Henri-Louis Le Chatelier to eco-
nomics, to study the response of agents to price changes given
some additional constraints. In his extension of this principle,
Samuelson uses the metaphor of squeezing a balloon to further
explain the concept. If you squeeze a balloon, its volume will de-
crease more if you keep its temperature constant than it will if you
let the squeezing warm it up. This principle is now considered
as a standard tool for comparative static analysis in economic
theory. (Szenberg, et al., 2005, p. 51, footnote omitted)

In the context of the short and long run responses to shocks by a firm, the
Le Chatelier Principle says that long run effects are greater because there
are fewer constraints.

When the wage rises, a firm in the short run is stuck with its given quantity
of K. In the long run, however, it will be able to adjust both L and K and it
is this additional freedom of movement that guarantees at least as great or
a greater response in input use and output produced.
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For increasing c, the Le Chatelier Principle is reflected in the fact that labor
demand is much more responsive in the long run than the short run. In the
long run, the firm is able to take greater advantage of the labor productiv-
ity shock by renting more machines and hiring even more labor. This is, of
course, reflected in the greater profits obtained in the long run in response
to the increased c.

A Holistic View of the Firm

Figures 14.1, 14.2, and 14.3 are fundamental graphs for the Theory of the
Firm. They represent the three optimization problems that, in unison, com-
prise the theory. The firm is not merely its output side representation, but in-
cludes all three optimization problem, as shown in the Consistency.xls work-
book.

The input cost min (isoquants and isocosts that can be used to derive the
cost function), output profit max (horizontal P with the family of cost curves
that yield a supply curve), and input profit max graphs (horizontal w with
MRP generating a demand curve for an input) are all intertwined. Not only
do they all yield consistent answers for the initial solution, they all provide
consistent comparative statics responses.

If we compare short and long run effects of shocks, we see that the firm re-
sponds more energetically in the long run. The wage elasticity of labor is
greater (in absolute value) in the long run and, via consistency, so is the wage
elasticity of output. Similarly, the c elasticities of labor and output are also
greater in the long run.

Both of these results are examples of the Le Chatelier Principle: With fewer
constraints, responsiveness increases. Since the short run prevents K from
varying, the firm is less able to adjust to a shock. It can only vary L and,
thus, its adjustment is more restricted and inelastic.

Exercises

1. What happens in the long run when price increases by 1%? Implement
the shock and take a picture of the results, then paste it in a Word
document. Comment on the changes in optimal labor, capital, output,
and profits.
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2. Compute the long run output price elasticity of labor demand. Show
your work.

3. Apply the same 1% price increase in the short run. Take a picture of
the results, then paste it in your Word document. Comment on the
changes in optimal labor, capital, output, and profits.

4. Compute the short run output price elasticity of labor demand. Show
your work.

5. Compare the price elasticities of labor demand in the long (question 2)
and short run (question 4). Is the Le Chatelier Principle at work here?
Explain why or why not.

6. With output price 1% higher, increase the wage by 1% in the long and
short run. Do these two shocks cancel each other out in either case?
Explain.
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Instead of using marginal conditions as
Cournot had done, Marshall used total ones.
Perhaps for that reason, Cournot’s
marginal-revenue concept was forgotten and
had to be rediscovered in the 1930s.

Hans Brems

Chapter 15

Monopoly

Like the perfectly competitive firm, a monopolist has three interrelated op-
timization problems. Attention is focused on the output profit max problem
because that is where the essential difference lies between a perfectly com-
petitive (PC) firm and a monopoly. We know that via consistency, monopoly
power manifests itself on the input side also. A monopoly will produce less
than a PC firm and, in turn, hire less labor and capital.

Unlike a PC firm, a monopoly chooses output and the price at which to sell
the product. This makes the monopoly problem harder to solve. Fortunately,
your experience with optimization, comparative statics, and graphical dis-
plays give you the background needed to understand and master monopoly.

Definition and Issues

A monopoly is defined as a firm that is the sole seller of a product with no
close substitutes. The definition is inherently vague because there is no clear
demarcation for what constitutes a close substitute.

Consider this example: In the old days, a local cable provider might have an
exclusive agreement to provide cable TV in a community. One could argue
that the cable provider was a monopoly because it was the sole seller of cable
TV. But what are the substitutes for cable TV?

Years ago, cable TV was the only way to access subscription channels such
as ESPN and HBO. Commercial broadcasts (with national broadcasters such
as ABC, NBC, and CBS and local channels) were a poor substitute for cable
TV. In this environment, cable TV would be a good example of a monopoly.

495
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Today, however, cable TV has strong competition from satellite services and
streaming services from the web. Even if a firm had an exclusive franchise
to deliver cable TV in a community, there are many ways to get essentially
the same package of channels. Today, cable TV is not a monopoly.

Of course, cable TV is not a good example of perfect competition either. The
cable company does not accept price as a given variable. It is in the middle,
somewhere between perfect competition and monopoly. Markets served by
a few firms are called oligopolies. Add more firms and you eventually get
monopolistic competition. The study of how firms behave under a variety of
market structures is part of the subdiscipline of economics called Industrial
Organization. Figure 15.1 sums things up.

Figure 15.1: A continuum of market structures.

Barrier to Entry

To remain a monopoly, the firm must have a barrier to entry to prevent
other firms from selling its product. In the cable TV example, the barrier to
entry was provided by the exclusive agreement with the community. Such
governmental restriction is a common form of a barrier to entry.

Another way to erect a barrier to entry is control over a needed input. AL-
COA (the Aluminum Corporation of America) had a monopoly in aluminum
in the early 20th century because it owned virtually all bauxite reserves.

If a product requires entry on a large scale, like automobile manufacturing,
this is considered a barrier to entry. To compete against established car com-
panies, a firm must not only produce cars, but also many spare parts and
figure out how to sell the product.

Like the concept of a close substitute, a barrier to entry is not a simple yes
or no issue. Barriers can be weak or strong and they can change over time.
Cable TV’s barrier was eroded not by changes in legal rules, but by techno-
logical change—the advent of satellite TV and the web.
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Monopoly’s Revenue Function

We know that the firm’s market structure impacts its revenue function. The
simplest case is a perfectly (or purely) competitive firm. It takes price as
given and, therefore, revenues are simply price times quantity. For a perfect
competitor, even though market demand is downward sloping, the firm’s own
individual demand curve is perfectly elastic at the given, market price.

Because the PC firm can sell as much as it wants at the given price, selling
one more unit of output makes total revenue (TR) increase by the price of
the product. Marginal revenue (MR) is defined as the change in TR when
one more unit is sold. Thus, for a PC firm, MR = P .

This is not true for a monopoly. A critical implication of monopoly power is
that MR diverges from the demand curve. But this is too abstract. We can
use Excel to make these concepts clearer.

STEP Open the Excel workbook Monopoly.xls and read the Intro sheet,
then go to the Revenue sheet to see how monopoly power affects the firm’s
revenue function.

The sheet opens with a perfectly competitive revenue structure. Total rev-
enue is a linear function of output and, therefore, P = MR with a horizontal
line in the bottom graph. A graph with a linear TR and corresponding hor-
izontal MR means it is a PC firm.

Unlike a PC firm, a monopoly faces the market’s downward sloping demand
curve. We can model a linear inverse demand curve simply as P = p0 − p1q.
Because the slope parameter, p1, in cell T2 is initially zero, TR is linear and
MR is horizontal.

STEP To show how monopoly power affects the firm’s revenue function,
click on the Price Slope scroll bar.

Notice that as you increase the slope parameter, MR diverges more from D.

The smaller (in absolute value) the price elasticity of demand, the greater
the divergence of MR from D and the stronger the monopoly power.

We will see that the monopolist uses the divergence of MR from D to extract
higher profits than would be possible if there were other sellers of the product.
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When drawing MR and D in the case of a linear inverse demand curve, keep
in mind these two basic rules:

1. MR and D have the same intercept.

2. MR bisects the y axis and D.

We can derive these properties easily. With our inverse D curve, P = p0−p1q,
we can do the following:

TR = Pq

TR = (p0 − p1q)q

TR = p0q − p1q
2

MR =
dTR

dq
= p0 − 2p1q

Clearly, both D and MR share the same intercept, p0. Because the slope of
MR is −2p1, it is twice the slope of D, which is simply −p1.

Thus, when you draw a linear inverse demand curve and then prepare to
draw the corresponding MR curve, remember the two rules: (1) the inter-
cept is the same and (2) MR has twice the slope so at every y axis value,
MR is halfway between the y axis and the D curve.

Figure 15.2, with an inverse demand curve slope of −1, shows the monopoly’s
revenue function. Unlike the PC firm, TR is a curve and MR diverges from
D. MR bisects the y axis and D. The dashed line at $20/unit, for example,
shows the distance from the y axis to MR is 10, the same as MR to D.

Figure 15.2: TR, D, and MR functions for a monopolist.
Source: Monopoly.xls!Revenues
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Notice that where MR = 0 at q = 20, TR is at its maximum. At this quan-
tity, the price elasticity of demand is exactly −1.

Figure 15.2 shows that MR can be negative. This can happen because there
are two opposing forces at work. Increasing quantity increases TR, since
TR = Pq. However, the only way to sell that extra product is to lower the
price (by traveling down the demand curve) so TR falls. When the increase
to TR by selling additional output outweighs the effect of the drop in the
price, MR is positive. Eventually, however, with a linear demand curve, the
monopolist will reach a point at which the increase in revenue for selling one
more unit is negative. In the range of output (q > 20 in Figure 15.2) where
MR < 0, the effect of the decreased price outweighs the positive effect of
selling more output.

When MR > 0, the price elasticity of demand is greater than 1 (in abso-
lute value). When MR is negative, demand is inelastic. The monopolist will
never produce on the negative part of MR, which is the same as the inelastic
portion of the demand curve.

There is a neat formula that expresses the relationship between MR and P.
With an inverse demand curve, P (Q), we know that TR = P (Q)Q. From
the TR function we can take the derivative with respect to output to find
the MR function. We use the Product Rule:

MR =
dTR

dQ
= P +

dP

dQ
Q

If we factor out P from this expression, then MR can be rewritten as:

MR = P +
dP

dQ
Q = P (1 +

dP

dQ

Q

P
) = P (1 +

1

ε
)

The Greek letter epsilon (ε) is the price elasticity of demand (dQ
dP

P
Q

). The
expression shows that MR = P under perfect competition because an in-
dividual firm faces a perfectly elastic demand curve. This means epsilon is
infinite and its reciprocal is zero.

It also shows that the more inelastic the demand curve (the closer ε is to 0),
the greater the separation between MR and the demand curve (P). If ε = 0,
then MR is undefined. With ε = 0, inverse demand is a vertical line. The
monopoly would charge an infinite price.

https://www.google.com/search?q=calculus+product+rule
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Setting Up the Problem

There are three parts to every optimization problem. Here is the framework
for a monopolist’s output side profit maximization problem.

1. Goal: maximize profits (π), which equal total revenues (TR) minus
total costs (TC ).

2. Endogenous variables: output (q) and price (P)

3. Exogenous variables: input prices (the wage rate and the rental rate of
capital), demand function coefficients, and technology (parameters in
the production function).

A monopoly differs from a PC firm only on the revenue side—price is now
endogenous. The cost structure is the same. The monopoly has an input
cost min problem and it is used to derive a cost function. Increases in input
prices shift cost curves up and improvements in technology shift cost curves
down. The monopolist has a long and short run, just like a PC firm, and in
the short run there is a gap between ATC and AVC that represents fixed
costs.

Finding the Initial Solution

We will show the conventional approach to solving the monopoly problem
first, then turn to an alternative formulation based on constrained optimiza-
tion.

The conventional approach is to find optimal q where MR = MC, then get
optimal P from the demand curve, and then compute optimal π as a rect-
angle. This is the standard approach and there is a canonical graph that
goes along with this approach. Its primary virtue is that it can be easily
compared to the perfectly competitive case.

The conventional approach can be demonstrated with a concrete problem.
Suppose the cost function is TC = aq3 + bq2 + cq + d. Suppose the market
(inverse) demand curve is P = p0 − p1q. Thus, TR = Pq = (p0 − p1)q.

With this information, we can form the firm’s profit function and optimiza-
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tion problem, like this:

max
q
π = TR− TC

max
q
π = (p0 − p1)q − (aq3 + bq2 + cq + d)

We first solve this problem with numerical methods, then analytically.

STEP Proceed to the OptimalChoice sheet and look it over.
The profit function has been entered into cell B4. Quantity and price are
displayed as endogenous variables, but q is bolded to indicate that it is the
primary endogenous variable. In other words, Solver will search for the profit-
maximizing output and, having found it, will compute the highest price that
can be obtained from the demand curve.

The firm is making $245 in profits by producing 10 units of output and
charging $34.50 per unit, but this is not the profit-maximizing solution. We
know this because the marginal revenue of the 10th unit is $29/unit, whereas
the marginal cost of that last unit is only $4/unit. Clearly, the firm should
produce more because it is making more in additional revenues from the last
unit produced than the additional cost of producing that unit.

STEP Run Solver to find the optimal solution.

At the optimal solution, the equimarginal condition, MR = MC, is met.
With positive profits, this is a clear signal that we have found the answer.

Before you click the Analytical Solution button, try doing the problem

on your own. This is a single variable unconstrained maximization because
P = p0−p1q has been substituted into the profit function. Take the derivative
with respect to q, set it equal to zero, and solve for optimal q. Substituting
in the parameter values to make it a concrete problem makes it easier to do
the math:

max
q
π = (40− 0.55)q − (0.04q3 − 0.9q2 + 10q + 50)

You can check your work by clicking the Analytical Solution button. You

can also confirm that the two approaches, Solver and calculus, agree.

STEP Proceed to the OutputSide sheet to see a familiar set of four
graphs.
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As usual, the totals are on the top and the average and marginal curves on
the bottom. The cost curves are the quite similar to the PC firm’s output
profit maximization graphs, but the revenue curves are quite different.

Figure 15.3: Monopoly output profit maximization graphs.
Source: Monopoly.xls!OutputSide

The bottom left-hand corner graph in Figure 15.3 is the canonical graph for
a monopolist. It can be used to quickly find q*, P*, and π*. Here’s how to
read and use the conventional monopoly graph:

1. Finding q*: Choose q where MR = MC. This gives the biggest the
difference between TR and TC and puts you on top of the profit hill
(in the top right graph).

2. At q*, travel straight up until you hit the demand curve to get P*.
This is the highest price that the monopolist can get for the chosen
level of output.

3. Create the usual profit rectangle as (AR–ATC)q*. It has length q*
and height AR − ATC (where AR = P ). The area of this rectangle
equals the distance of the line segment between TR and TC, which is
the height of the profit hill.

Play with the slider controls to improve your understanding of the graphs
and relationships.
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STEP Click the Fixed Cost slider to manipulate total fixed costs (d in
the cubic cost function).

Changes in fixed costs do not affect the monopolist’s optimal quantity and
price solution. This is just like the perfectly competitive case.

STEP Click the Reset button; explore changes in the price intercept
to see how the firm responds. At a low enough price intercept, profits be-
come negative and, just like a PC firm, if P < AV C, the firm will shut down.

You can also control the firm’s monopoly power by manipulating the inverse
demand curve’s slope.

STEP Set the Price Slope slider to zero. What happens?

You stripped the monopoly of its price power and it is a PC firm.

No Supply Curve for Monopoly

Monopolists do not have a supply curve. This seems like a strange statement
since monopolies produce output and so “supply” whatever good or service
of which they are the sole seller. But the key lies in the definition of a supply
curve: given price, the supply curve gives the quantity that will be produced.

Because a PC firm is a price taker, it is possible to shock P and see how the
optimal output changes. We can derive q* = f(P, ceteris paribus) and this
is called a supply curve.

Unlike a perfectly competitive firm, for which price is exogenous, a monopoly
chooses the price. Thus, we cannot ask, “Given this price, what is the op-
timal quantity supplied?” With price as an endogenous variable, it cannot
serve as a shock variable in a comparative statics analysis.

We can (and you just did) shock a monopolist’s demand curve parameters
such as the intercept and slope, but this is not an exogenous change in the
price of the product. The experiment of changing the price cannot be applied
to a monopolist and, therefore, the monopolist has no supply curve.
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Measuring Monopoly Power

Another common misconception is that monopoly is either zero or one. In
fact, it is a continuum and you can have more or less monopoly power. There
are several ways to measure it.

STEP Proceed to the Lerner sheet.

This sheet demonstrates the point that the more inelastic the demand faced
by a monopolist, the greater the monopoly power. In other words, from a
profit-maximizing point of view, it is better to have a monopoly over a prod-
uct that everyone desperately needs (i.e., very inelastic) than to be the sole
seller of a product that has a highly elastic market demand curve.

Abba Lerner formalized this idea in a mathematical expression that bears
his name, the Lerner Index. “If P = price and MC = marginal cost, then
the index of the degree of monopoly power is P−MC

P
.” (Lerner, 1934, p. 169).

This measure of monopoly power uses the gap between P and MC as a per-
centage of P.

The Lerner Index takes advantage of the fact that a monopolist will choose
that quantity where MR = MC, then charge the highest price possible for
that quantity. The higher the price that can be charged, the more inelastic
is demand and the greater the monopoly power.

The Lerner sheet compares two monopolies with the exact same cost struc-
ture (assumed for simplicity to have a constant MC = AC). They both
produce the same profit-maximizing quantity, but Firm 2 faces a more in-
elastic demand curve than Firm 1 and, therefore, it has a bigger gap between
price and marginal cost.

STEP Click on cells B16 and I16 to see the simple formulas for the Lerner
Index.

The idea is that the bigger the divergence between price and marginal cost,
the greater the monopoly power. Firm 2 has more monopoly power than
Firm 1 and more monopoly profits. The Lerner Index for each firm reflects
this.

Notice that a perfectly competitive firm that sets MC = P will have a Lerner
Index of zero. As the index approaches one, monopoly power rises.

https://www.google.com/search?q=abba+lerner
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STEP Change Firm 2’s demand parameters to 130 for the intercept and
20 for the slope. The y axis is locked down so the entire D and MR functions
are not displayed.

The optimal quantity is still 3, but P and profits are higher, as is the Lerner
Index.

STEP Make the demand curve more inelastic at Q = 3 by setting the
demand parameters to 190 and 30.

Optimal P has increased again, along with profits. The Lerner Index reflects
the greater monopoly power.

STEP One last time, change the demand parameters to 6010 and 1000.
The graph is hard to read because only MR is shown; D is literally off the
chart.

Firm 2 continues to produce the same output as Firm 1, but has a much,
much higher optimal price and maximum profits. Its Lerner Index is close
to one. It cannot rise above one, but the closer it gets, the greater the diver-
gence of P and MC so the greater the monopoly power.

The Lerner sheet also shows that the Lerner Index can be expressed as the
reciprocal of the price elasticity of demand at the profit-maximizing price.
The few algebra steps needed to connect the Lerner Index to the price elas-
ticity start in row 25.

STEP Set Firm 2’s demand parameters back to 70 and 10, and then click

the Show Elasticity button.

The price elasticity of demand for the two firms is displayed. If you click in
the cells, you can see the formula. Notice that the reciprocal of the inverse
demand curve’s slope is used to compute the price elasticity of demand cor-
rectly.

Firm 2’s price elasticity of demand at the profit-maximizing price is lower
than Firm 1’s. The lower the price elasticity and the higher the Lerner Index,
the greater the firm’s monopoly power.
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STEP Proceed to the Herfindahl sheet for a quick look at another way
to measure monopoly power.

Instead of measuring the markup of price over marginal cost, we can see how
big the firms are in an industry. Strictly speaking, a monopoly is one firm
so it would have a 100% market share, but in practice, firms have monopoly
power even though they are not technically monopolies. Any firm that faces
a downward sloping demand curve and has the ability to set its price is said
to have monopoly power.

If a market has many firms, each with the same share of total sales, we have
a competitive market structure. If, on the other hand, only a few firms exist,
the market is monopolized. The question is how to measure the degree of
monopolization?

We can sort the firms in an industry from highest to lowest share and then
add the shares of the four biggest firms. This gives the four firm concentra-
tion ratio in cell D5. It turns out this is not a very good way to distinguish
between concentrated and unconcentrated industries.

The problem is that the four firm concentration ratio tells you nothing about
the sizes of the top four firms or the rest of the market. The four firm con-
centration ratio is 70%, which seems pretty highly concentrated. The biggest
firm’s share, 30%, is almost one-third of the entire industry.

STEP Click on the Distribution A button.

The four firm concentration ratio is the same as before (70%), but this in-
dustry is clearly much more concentrated. Firm A is even bigger and the
others are tiny.

STEP Click on the Distribution B button.

The four firm concentration ratio is the same as before (70%), but this in-
dustry is clearly less concentrated. The four top firms are equal so no one
firm really dominates.

The primary virtue of the four firm concentration ratio is that it is easy to
compute and understand. However, because we have three scenarios with
wildly different shares for the top four firms yielding the same four firm con-
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centration ratio, we can conclude that this ratio is a poor way to determine
whether firms in a market are in a competitive or monopolistic environment.
The four firm concentration ratio might be easy to compute and understand,
but it is incapable of picking up differences in the distribution of shares.

A better way to judge concentration is via the Herfindahl Index. Unlike the
Lerner Index, there is confusion about who invented it. Hirschman concludes,
“The net result is that my index is named either after Gini who did not in-
vent it at all or after Herfindahl who reinvented it. Well, it’s a cruel world”
(Hirschman, 1964, p. 761). It is sometimes called the Herfindahl-Hirschman
Index (HHI).

Fortunately, its computation is simpler than its paternity. The idea is to
square each share and sum, like this:

H =
n∑
i=1

S2
i

The index ranges from 1/n to 1 (when using decimal values of shares). The
higher the index, the greater the concentration. By squaring the shares, it
gives more weight to bigger firms: for example, 0.12 = 0.01, while 0.32 = 0.09.

The Herfindahl sheet shows the computation. Notice how each value in col-
umn B is squared in column G. The sum of the squares is in cell G15 and it
is the value of the Herfindahl Index.

STEP Click on the three buttons one after the other to cycle through
them. Notice how the Herfindahl Index changes (but the four firm concen-
tration ratio does not).

For Distribution A, the H value is 0.325. This is quite high. The 0.1375
value with Distribution B means there is more competition in this scenario
than the other two.

The Herfindahl Index is not perfect because no single number can completely
describe an entire distribution. It is, however, better than the four firm con-
centration ratio and often used to measure the degree of market competition.

The United States Department of Justice is charged with regulating the con-
duct and organization of businesses. The mission of the Antitrust Division is
to promote economic competition. They use the Herfindahl Index as part of
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their Horizontal Merger Guidelines (www.justice.gov/atr/horizontal-merger-
guidelines-08192010). Markets with a Herfindahl Index less than 0.15 are
“unconcentrated,” values between 0.15 and 0.25 are “moderately concen-
trated,” and anything over 0.25 is “highly concentrated.”

The Department of Justice deems any proposed merger that increases the
Herfindahl Index by more than 0.01 (100 points in the scale they use) in
concentrated markets as warranting scrutiny. They can go to court to block
mergers to prevent too much concentration. They can also break up com-
panies that have too much monopoly power. This is known as antitrust law
and is part of the Industrial Organization field of economics.

An Unconventional Approach

The monopolist’s profit maximization problem can also be solved by choos-
ing P and q simultaneously subject to the constraint of the demand curve.
While this is not the usual way of framing the monopoly’s optimization prob-
lem, it enables practice with the Lagrangean method of solving constrained
optimization problems and reading isoprofit curves.

The analytical solution is based on rewriting the constraint so it is equal to
zero (P − (p0 − p1q) = 0), forming the Lagrangean, setting derivatives equal
to zero, and solving the system of equations for the optimal solution.

Set each derivative equal to zero and solve the three first-order conditions for
q*, P*, and λ*. From the first equation, λ = −q, substitute into the second
equation:

P − 3aq2 − 2bq − c+ [−q]p1 = 0

From the third first-order condition, P = p0 − p1q, so

(p0 − p1q)− 3aq2 − 2bq − c− qp1 = 0

https://www.justice.gov/atr/horizontal-merger-guidelines-08192010
https://www.justice.gov/atr/horizontal-merger-guidelines-08192010
https://www.google.com/search?q=antitrust+law
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Rearrange the terms to prepare for using the quadratic formula.

STEP Proceed to the ConOpt sheet to see formulas based on the La-
grangean solution starting in cell F24.

Naturally, we get the same, correct answer as the unconstrained version.

The ConOpt sheet shows that monopoly as a constrained optimization prob-
lem can be depicted with a graph. The pink curves are isoprofit curves and
the black line is inverse demand. The MR curve is not drawn because it is
not used. The firm is trying to get to highest isoprofit without violating the
demand curve constraint. Clearly, the opening values are not optimal.

STEP Run Solver and get a Sensitivity Report to confirm the value of
lambda star is minus optimal quantity. Notice how the Solver dialog box is
set up so Solver chooses cells B8 and B9 subject to the constraint.

After running Solver, the graph, reproduced in Figure 15.4, shows the usual
tangency result.

Figure 15.4: The constrained optimization version of the monopoly problem.
Source: Monopoly.xls!ConOpt
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The point of tangency provides the optimal q and P solution, while the value
of the isoprofit curve at that point is the level of profits.

Do not be confused. The constrained version is rarely used. The conven-
tional approach is the canonical output profit maximization graph (bottom
left in Figure 15,2). This graph shows the optimal q where MR = MC and
easily displays P* from the demand curve and π* as a rectangle.

Figure 15.4 gives the same optimal solution, but presents the problem in a
different way. Understanding that the demand curve serves as a constraint on
monopoly is helpful. Monopoly power is not infinite. A monopolist cannot
choose a ridiculously high price and a high quantity. As price rises, quantity
sold must fall.

Monopoly Basics

A monopoly differs from a perfectly competitive firm in that a monopolist
can choose the quantity and price, whereas a perfect competitor is a price
taker. In addition, a monopolist has a barrier to entry that enables it to
maintain positive economic profits even in the long run.

The two are the same, however, in the cost structure (like a perfect competi-
tor, the monopolist derives its cost function from the input cost minimization
problem) and the fact that it seeks to maximize profits (where MR = MC
as long as P > AV C).

We depict the monopolist’s optimal solution with a graph that superimposes
D and MR over the family of cost curves (MC, ATC, and AVC ). Like a PC
firm, a monopolist can suffer negative profits in the short run and it will shut
down when P < AV C.

Monopoly’s canonical graph (the bottom left chart in Figure 15.2) belongs
in the pantheon of fundamental graphs in economics. Like the indifference
curves with a budget constraint or supply and demand, a linear inverse de-
mand with its associated marginal revenue showing optimal q (at the inter-
section of MR and MC, of course) and optimal P is a truly classic graph.

One way to measure monopoly power is by the Lerner Index. The greater
the gap between price and marginal cost, the greater the monopoly power.
The greater the price elasticity of demand, the lower the Lerner Index and
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the weaker the monopoly power.

The Herfindahl Index is another way to measure the strength of monopo-
lization in a market. It measures industry concentration. Unlike the four
firm concentration ratio, it uses market shares of every firm to create a single
number that reflects the concentration of an industry. Mergers that boost
the Herfindahl Index by more than 0.01 (100 points) in concentrated markets
are carefully scrutinized by the Department of Justice because it is presumed
that the market will not be competitive.

We concluded this chapter with an unconventional analysis. The monopoly’s
profit maximization problem can be cast as a constrained optimization prob-
lem. In addition to providing practice with the Lagrangean method, this way
of looking at monopoly makes quite clear that the monopolist must obey the
demand curve.

Exercises

1. De Beers is an internationally famous company that had a monopoly
over diamonds. Google “synthetic diamonds” to learn more. Include
web citations with supporting evidence in your answers to these two
questions.

(a) What was their barrier to entry when they had a monopoly?

(b) What happened to their monopoly?

2. Use Word’s Drawing Tools to depict a monopoly shutting down in the
short run. Explain the graph.

3. In the ConOpt sheet, set the demand intercept (cell B13) to 9 and
the fixed cost (B18) to 180. Run Solver. Why is Solver generating a
miserable result? What is the correct answer?

4. Use Word’s Drawing Tools to depict the effect of monopoly from the
input side profit maximization perspective. Explain the graph.

Hint: With perfect competition, L* is found where w = MRP (where
MRP is based on the given, constant price, PxMP ). With monopoly,
however, P and MR diverge.

5. Is the effect of monopoly on the input side consistent with the effect of
monopoly on the output side? Explain.

https://www.google.com/search?q=%22synthetic+diamonds%22
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Von Neumann hovered for a moment by two rather sloppily dressed
graduate students who hunched over a peculiar-looking piece of
cardboard. It was a rhombus covered with hexagons. It looked like a
bathroom floor. The two young men were taking turns putting down
black and white go stones and had very nearly covered the entire board.

Later that evening, at a faculty dinner, he buttonholed Tucker and
asked, with studied casualness, “Oh, by the way, what was it they were
playing?” “Nash,” answered Tucker, allowing the corners of mouth to
turn upwards ever so slightly, “Nash.”

Sylvia Nasar

Chapter 16

Game Theory

In perfect competition, firms are price takers with no power to affect the
market price. Each firm optimizes by choosing q to equalize MC and P.

In monopoly, the sole seller of a product with no close substitutes optimizes
by choosing q to equalize MC and MR and then charges the highest price
that clears the market (given by the demand curve).

In both market structures, the profits of the individual firm are not affected
by what anyone else does. In perfect competition, there are so many other
firms that Firm i does not care about what Firm j is doing. In monopoly,
there is no other firm to worry about.

What about market structures between the extremes of perfect competition
and monopoly? Oligopoly is a market dominated by a few firms. Their deci-
sions are interdependent. In other words, what each individual firm chooses
does affect the sales and profits of the other firm. To optimize, each firm
must anticipate what their rivals will do and then choose its best options.
This is clearly a more realistic model than that of perfect competition and
monopoly, which rely on idealized, abstract descriptions of firms that have
no real-world counterparts.

How do oligopolies behave? We know that, like other firms, they optimize
given the economic environment, but because of interdependence, it is much
more difficult to analyze.

This chapter opens the door to the analysis of strategic behavior. It presents
a few basic ideas from the fields of Game Theory and Industrial Organization.
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Interdependence and Nash Equilibrium

It seems obvious when we say that firms are interdependent, but exactly
what does this mean? Consider two power companies that generate and sell
electricity. This is a good example of a homogeneous product. We assume
consumers do not care at all which of the two firms provides electricity to
their homes.

To keep it simple, suppose that each power company can choose either a high
level of output or a low level of output. Market price is a function of the out-
put decisions of the two firms. Each power company’s profits are functions
of their own decision to produce and the market price.

Figure 16.1 displays a payoff matrix, which shows the possible choices and
outcomes. You read the entries in the payoff matrix like coordinate pairs on
a graph, the first part is for Firm 1 and the second for Firm 2. The $300,
$300 pair in the top left of the four entries says that Firm 1 chose high output
and Firm 2 chose high output. Each firm ends up with low profits.

Figure 16.1: The payoff matrix.

If Firm 2 had chosen low output (top right), Firm 1 profits would be much
higher, $1,000, because it made a lot of output and price rose when Firm 2
decided to cut back.

This particular game is a one-shot, simultaneous-move game known as the
Prisoner’s Dilemma. You have probably seen it before. Two criminals are
arrested and questioned separately. If both stay silent, they get 1 year in
jail. If both confess, they get 3 years. But if one confesses and the other does
not, the one who talks gets no jail time and the silent one gets 10 years.

You can match those outcomes to the payoff matrix in Figure 16.1. The
outcome that is best for both firms together is $1600 total, with $800 for
each company. But, like the criminals version of the game, that is going
to be an unlikely outcome. Suppose that both agree beforehand that they

https://www.google.com/search?q=prisoner%27s+dilemma
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are going to collude and both choose low output. Unless they can write a
binding agreement that is enforceable (so a cheater can be punished), there
is an incentive for each firm to change its decision and choose high output
if it thinks that the other firm will stick with low output. As a result, both
firms end up with low profits (and both criminals confess).

If you think the other firm is going to cheat, your best move is to also cheat.
If you think the other firm is going to honor the agreement, your best move,
in the sense of profit maximization, is to cheat and produce a high output
(assuming this is a one-time game and you never have to see your opponent
again). It looks like cheating, producing high output (or confessing), is the
best move no matter what the other firm does. We say that this game has a
dominant strategy—produce high output (confess).

This result illustrates the reason why cartels—groups of firms that get to-
gether to charge the monopoly price and split the monopoly profits—are
unstable. It is difficult for oligopolistic firms to get together and act like a
monopoly because there is an incentive for individual firms to cheat on the
agreement and produce more to take advantage of high prices.

Because of the interdependence of firms’ decision making, competition among
firms in an oligopoly may resemble military operations involving tactics,
strategies, moves, and countermoves. Economists model these sophisticated
decision making processes using game theory, a branch of mathematics and
economics that was developed by John von Neumann (pronounced noy-man)
and Oskar Morgenstern in the 1930s. One of the most important contribu-
tors to game theory is John Nash, a mathematician who shared the Nobel
Prize in Economics.

A game-theoretic analysis of oligopoly is based on the assumption that each
firm assumes that its rivals are optimizing agents. That is, managers act as
though their opponents or rivals will always adopt the most profitable coun-
termove to any move they make. The manager’s job is to find the optimal
response.

Nash’s most important and enduring contribution is the concept named after
him, the Nash equilibrium. Once we are in a world where firms are interde-
pendent and one firm’s profits depends on what other firms do, we are out
of the world of exogenously given price that we used for perfect competi-
tion and out of the isolated world of the monopolist. John Nash invented
an equilibrium concept that describes a state of rest in this new world of
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interdependence.

A Nash equilibrium exists when each player, observing what her rivals have
chosen, would not choose to alter the move she herself chose. In other words,
this is a no regrets equilibrium: After observing the outcome, the player does
not wish she would have done something else instead.

We will explore in detail a concrete example of a duopoly (a market with
two firms) with a single Nash equilibrium. Remember, however, that this
is simply one example. Some games have one Nash equilibrium, some have
many, and some have none. There are many, many games and scenarios in
game theory and we will look at just one simple example.

The Cournot Model

Augustin Cournot (pronounced coor-no) was a remarkably creative 19th-
century French economist (see the References in section 12.2). Cournot orig-
inally set up a model of duopolists who produce the same good and optimize
by choosing their own output levels based on assumptions about what the
rival will do.

Here is the set up:

� Two firms.

� Each produces the exact same product.

� Constant unit cost.

� Firms choose output levels at the same time.

� Both know the market demand for the product.

The profit of each firm depends on how much it produces and how much its
rival produces. If the rival produces a lot, the the market price falls. The in-
terdependence is that one firm’s decision about how much to produce affects
the price and, thus, the rival’s profit.

What strategy should each firm use to choose its output level? The answer
depends on its beliefs regarding its rival’s behavior.
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STEP Open the Excel workbook GameTheory.xls and read the Intro
sheet, then go to the Parameters sheet.

Market demand is given by the linear inverse demand curve and, for simplic-
ity, we assume a linear total cost function. This means that MC = AC is a
horizontal line.

STEP Proceed to the PerfectCompetition sheet.

With many small PC firms, the industry as a whole will produce where de-
mand intersects supply (which is the sum of the individual firm’s MC s). The
graph shows that a perfectly competitive market will produce 15,000 kwh at
a price of 5g/kwh.

What happens if a single firm takes over the entire market?

STEP Proceed to the Monopoly sheet. Use the Choose Q slider control
to determine the profit-maximizing quantity. Keep your eye on cell B18 as
you adjust output. The optimal output is found where MR = MC.

The monopolist will produce 7500 kwh and charge a price of 12.5g/kwh. This
solution nets a maximum profit of 56,250 cents.

Not surprisingly, compared to the perfectly competitive results, monopoly
results in lower output and higher prices.

Cournot was the first to ask the question, “What happens if the industry is
shared by two firms?”

To understand the answer, the concept of residual demand is crucial because
it enables us to solve the firm’s optimization problem. Residual demand is
the demand curve facing the firm after the sales from the other firm are sub-
tracted. From there, the reaction function for each firm is derived from a
comparative statics analysis. The two reaction functions are then combined
to yield the Nash equilibrium, which is the answer to Cournot’s question.
That is confusing. We turn to Excel to see each step and how it all works.
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Residual Demand

To figure out the quantity and price combination with two competing firms,
we need to understand how the firms will behave.

STEP Proceed to the ResidualDemand sheet.

This sheet shows how Firm 1 decides what to do, given Firm 2’s output de-
cision. Think of the chart as belonging to Firm 1. It will use this chart to
decide what to do, given different scenarios.

Conjectured Q2, in cell B14, is the key variable. A conjecture is an educated
guess. It is based on incomplete information. Firm 1 does not know and
cannot control what Firm 2 is going to do. Firm 1 must act, however, so it
treats Firm 2’s output decision as a conjecture and proceeds based on that
projected value.

Conjectured Q2 is an exogenous variable for Firm 1. It does not know what
Firm 2 will do and cannot control it. The conjectured output of Firm 2 may
be different from Firm 2’s actual output. Firm 1 can, however, examine how
it would react to different possible values of Firm 2 output.

The ResidualDemand sheet opens with Conjectured Q2 = 0. In this scenario,
Firm 2 produces nothing and Firm 1 behaves as a monopolist, producing
7,500 kwh and charging a price of 12.5g/kwh.

STEP Click five times on the scroll bar in cell C14. With each click,
Conjectured Q2 rises by 1,000 units and the red lines in the graph shift left.

The red lines are the critical factor for Firm 1. They represent residual de-
mand and residual marginal revenue. The idea behind residual demand is
that Firm 2’s output will be sold first, leaving Firm 1 with the rest of the
market.

The residual in the name refers to the fact that Firm 2 will supply a given
amount of the market and then Firm 1 is free to decide what to do with the
demand that is left over.

With each click, Firm 2 was producing more and so the demand left over for
Firm 1 was falling. This is why the residual demand shifts left when Firm 2
produces more.

https://www.google.com/search?q=conjecture+definition
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As the Parameters sheet shows, the inverse demand curve for the entire mar-
ket is given by the function P = 20 − 0.001Q. If Conjectured Q2 = 5,000,
then the residual inverse demand curve is P = 20−0.001Q−0.001(5000). In
other words, we subtract the amount supplied by Firm 2. Thus, the residual
inverse demand curve is P = 15− 0.001Q.

Figure 16.2 shows how the residual demand is shifted left by 5,000 kwh when
Conjectured Q2 is 5,000. The key idea is that Firm 2’s output is subtracted
from the demand curve and what is left over, the residual, is the demand
faced by Firm 1.

Figure 16.2: Residual demand.
Source: GameTheory.xls!ResidualDemand

Once we have residual demand for Firm 1, we can find the profit-maximizing
solution. Firm 1 derives residual MR from its residual demand curve and
uses this to maximize profits by setting residual MR = MC. In Figure
16.2, Firm 1 is not maximizing profits by producing 7,500 units and charging
7.5g/kwh. Notice that the price is read from the residual demand curve, not
the full market demand curve.

STEP Use the scroll bar (below the chart) to find Firm 1s optimal solu-
tion when Conjectured Q2 is 5,000.

You should have found that optimal Q is 5,000 kwh, optimal P = 10g/kwh
and maximum π are 25,000 cents.
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The Reaction Function

Now that we know how the duopolist uses residual demand to choose the
quantity (and price) that maximizes profits, we can proceed to the next step
in answering Cournot’s question: “What happens if the industry is shared
by two firms?”

We track each duopolist’s optimal output as a function of Conjectured Q2.
This gives the reaction (or best response) function. The reaction function is
a comparative statics analysis based on shocking Conjectured Q2.

STEP Fill in the table in the Residual Demand sheet. You are picking
points off of Firm 1’s reaction function.

You already have two of the rows. In addition to the optimal solution at
Conjectured Q2 = 5,000 which we just found, when Conjectured Q2 = 0,
optimal output is 7,500 and optimal price is 12.5g/kwh. Fill in the rest of
the table.

STEP Check your work by clicking the Check Table button.

The filled in table is giving us Firm 1’s reaction function. It is similar to the
output of the CSWiz—the leftmost column is the exogenous variable and the
other columns are endogenous responses.

Deriving Firm 1’s reaction function is an important step in figuring out how
two firms will interact. The reaction function gives us Firm 1’s optimal
response to Firm 2’s output decision. We do not know, however, what Firm
2 will actually do. It has a reaction function just like Firm 1. The two firms
must interact to determine what will happen in the market.

Finding the Nash Equilibrium

Residual demand enabled us to understand the reaction function. We are
now ready for the third and final step so we can answer Cournot’s question
concerning the results of a duopoly. Remember, perfect competition gives
15,000 kwh of output and monopoly gives only 7,500 (and at a higher price).
Presumably, duopoly is between them, but where?

STEP Proceed to the Duopoly sheet.
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The display is new, but easy to understand. Instead of working with just
Firm 1, both are shown. They have the same costs.

The sheet has buttons that make it a snap to see what each firm will do.
The analytical solution is used so you do not have to run Solver every time
Conjectured Q2 changes.

STEP Notice that Conjectured Q2 (in cell B13) is zero. To find the op-

timal solution, click the Choose q1* button.

Not surprisingly (given our earlier work with the residual demand graph)
since Conjectured Q2 is zero, Firm 1 chooses to produce 7500 kwh.

But look at cell G13—Firm 1 has optimized, but now we need to ask what
Firm 2 would do if Firm 1 made 7,500 kwh? Firm 2 wants to maximize
profits just like Firm 1.

STEP Click the Choose q2* button.

Firm 2’s solution makes sense. If Firm 1 makes 7,500 kwh, then Firm 2
maximizes profits by taking the residual demand and producing 3,750 kwh.
Their combined output means P = 8.75.

This is not, however, an equilibrium solution because Firm 1 is not going to
produce 7,500 kwh. Why not?

STEP Look at cell B13. Click on cell B13.

B13’s formula, =G20, makes clear how Firm 1’s decision is connected to its
rival. If Firm 2 says it wants to produce 3,750, then Firm 1 regrets and will
change its previous choice. We need to find the optimal output for Firm 1
given Firm 2’s new level of output.

STEP Click the Choose q1* button.

Firm 1 chooses to make 5,625 kwh (based on Firm 2’s output of 3,750 kwh),
but now we return to Firm 2. Will it produce 3,750 kwh? No. When Firm
1 changed its output, cell G13 updated. Like B13, G13 connects Firm 2’s
optimal decision to Firm 1’s output choice.



522 CHAPTER 16. GAME THEORY

It is Firm 2’s turn to regret its previous decision. Firm 2 can make higher
profits by changing its output when Firm 1 makes 5,625 kwh. How much
will Firm 2 want to produce? Let’s find out.

STEP Click the Choose q2* button.

Firm 2 is set, but what about Firm 1? Does it regret making 5,625? Yes, it
does because it can make higher profits by changing its decision.

We will not be in equilibrium until both firms are happy with their output
choice and do not wish to change it. Since Firm 2 changed its output, Firm
1 will want to change its output.

STEP Click the Choose q1* button.

You might be thinking that this will never end. That is incorrect. It will
end. You can actually see it end.

STEP Repeatedly move back and forth, clicking the Choose q2* and

Choose q1* buttons, one after the other. What happens?

After repeatedly clicking, you are looking at convergence. Clearly, the two
optimal output levels closed in on 5,000—this is the Nash equilibrium so-
lution to this problem and the answer to Cournot’s question. The duopoly
will produce a combined total of 10,000 kwh with a price of 10g/kwh. This
makes sense since it is in between the perfectly competitive (15,000 kwh) and
monopoly outcomes (7,500 kwh).

Manually optimizing for each firm in turn, back and forth, until the equi-
librium solutions comes into focus is a great way to understand the concept
of a Nash equilibrium. It is a position of rest where neither firm regrets its
previous decision. In fact, a Nash equilibrium is often referred to as a “no
regrets” point. There is, however, a faster way to find the position of rest.

STEP click the Nash Equilibrium button.

This button does all of the hard work for you. It alternately solves one firm’s
problem given the other firm’s output many times. It continues to maximize
firm profits until there is less than a 0.001 difference between a firm’s optimal
output and its optimal output based on the conjectured output of its rival.
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STEP To see this, click on cells B20 and G20. They are close to 5,000,
but not exactly 5,000.

The Nash Equilibrium button also displays the individual firm’s reaction

functions (scroll down if needed). In this case, the two reaction functions are
identical.

Finally, the Nash Equilibrium button shows the two reaction functions on

the same chart and the intersection instantly reveals the Nash equilibrium.
Figure 16.3 shows the Nash equilibrium chart with additional elements to
help explain it.

Figure 16.3: Nash equilibrium.
Source: GameTheory.xls!Duopoly

Point 1 in Figure 16.3 represents the first time Firm 1 maximized profits,
with Conjectured Q2 of zero. Point 2 shows Firm 2’s optimization based on
Firm 1 making 7,500 kwh. You can see, by following the arrows, how this
would lead to the intersection as the Nash equilibrium.

You might wonder why the reaction functions are not the same in Figure
16.3 since they are identical when graphed by themselves (as shown below
the buttons in the Duopoly sheet). The answer lies in the axes—to plot them
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both on the same graph, we use the reaction function for Firm 2 and the in-
verse reaction function for Firm 1. Scroll down to see the inverse reaction
function starting in row 63.

Remember: A Nash equilibrium exists when each player, observing what her
rivals have chosen, would not choose to alter the move she herself chose.
Nash equilibrium is a no regrets point for all players.

Figure 16.3 shows that the Nash equilibrium is at the intersection of the two
reaction functions. Only there will both firms decline the offer to change
their optimal decisions. This is a position of rest.

Evaluating Duopoly’s Nash Equilibrium

We know the answer to Cournot’s question. Duopoly, at its Nash equilib-
rium, leaves us in between perfect competition and monopoly. But we can
say more about the duopoly outcome. We focus on profits.

STEP In cell D16 in the Duopoly sheet, enter a formula that adds the
profits of the two firms at the Nash equilibrium. What are industry profits?

You might recall monopoly had maximum profits of 56,250 cents. That is
better than the 50,000 cents you just computed with your formula in cell
D16 of = B16 + G16.

Can duopolists increase their profits to 56,250 like a monopolist? Yes, they
can, but they will not be able to honor their commitments.

STEP Set quantities for both firms (in cells B20 and G20) to 3,750. What
happens to profits?

Amazingly, they go up. If the two rivals can agree to simply split the
monopoly output of 7,500 kwh, each will make 28,125 cents and match the
monopoly outcome.

But this will not last. Why not? Why don’t the two firms get together and
produce 3,750 units each and make greater joint profits than the Nash equi-
librium solution? A single click reveals the answer.

STEP Click the Choose q1* button or the Choose q2* button.
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If the rival makes 3,750 kwh, the firm maximizes profits at 5,625 kwh. In
other words, they have an incentive to cheat—just like in the Prisoner’s
Dilemma game.

As soon as one takes advantage, the other fires back and they spin back to
the Nash equilibrium.

You might suggest writing a contract, but that is illegal and unenforceable
in the United States. There are other options and strategies, but they would
take us too far from Intermediate Microeconomics. One strong attraction
that is easy to see is merger. If the two firms combine into a single entity, they
will be a monopoly and enjoy monopoly profits. Presumably, the Department
of Justice would object.

Interdependence

Game theory is an exciting, growing area of economics. Its primary appeal
lies in the realistic modeling of agents as strategic decision makers playing
against each other, moving and countering. This is obviously what a real-
world firm does.

The Cournot model is a simple game matching two firms against each other.
It illustrates nicely the notion of interdependence and how one firm moves,
and then the other responds, and so on. Whereas some games do not have a
Nash equilibrium, the Cournot duopolists do settle down to a position of rest.

The Summary sheet has the outcomes from perfect competition, duopoly,
and monopoly. It is clear that monopoly maximizes firm profits, but perfect
competition offers the consumer the lowest price and most output. We will
return to this comparison in the third and final part of this book.

We have just scratched the surface of game theory. There are many, many
more games. The workbook RockPaperScissors.xls lets you play this child’s
game in Excel. Section 17.7 on Cartels and Deadweight Loss has another
application of game theory.

For an entertaining version of the Prisoner’s Dilemma in a game show, see
this Golden Balls episode finale: tiny.cc/splitsteal. And for a really clever
twist, watch this one: tiny.cc/ibrahim. Nick’s strategy has been outlawed
from the show. The Cornell game theory blog has an entry explaining it:
tiny.cc/splitstealanalysis.

http://tiny.cc/splitsteal
http://tiny.cc/ibrahim
http://tiny.cc/splitstealanalysis
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Exercises

These exercises are based on c1 = 5. If you did the Q&A questions and
changed this parameter, change it back to its original value.

1. If Conjectured Q2 is 15,000, why does Firm 1 decide to produce noth-
ing? Use the ResidualDemand sheet to support your explanation.

2. Suppose Firm 1 produces 4,500 kwh and Firm 2 produces 6,000 kwh.
Does Firm 1 have any regrets? Does Firm 2 have any regrets? Enter

these two values in the Duopoly sheet and click the Choose q buttons.

Which firm changed its mind? Why?

3. Click the Reset All button in the Duopoly sheet. Explore the effect
of changing Firm 1’s cost function so that c2 (cell B10) is 0.001 (with
B11 = 5). How does this affect the Nash equilibrium?
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The Butterfly Effect
acquired a technical name:
sensitive dependence on
initial con-ditions.

James Gleick

Overview

The first part of this book was the Theory of Consumer Behavior. It mod-
eled a consumer’s utility maximization problem and emphasized deriving a
Demand Curve as the key result.

The Theory of the Firm comprised the second part. Firm decisions about
inputs and outputs were modeled as optimization problems. The key result
was deriving a Supply Curve from the perfectly competitive firm’s output
profit maximization problem.

This third part will put together consumers’ demand and firms’ supply in
an equilibrium model. This will show how individual markets solve society’s
resource allocation problem. In addition, we will introduce an equilibrium
model that incorporates all markets simultaneously.

Before we begin, we review these three key ideas:

1. Optimization versus equilibrium.

2. Partial and general equilibrium.

3. Society’s resource allocation problem.

1. Optimization Versus Equilibrium

The stress thus far has been on optimization. Consumers maximize utility,
firms minimize costs and maximize profits. We have used numerical and an-
alytical methods, including the Lagrangean, to solve these problems.

The market system, however, is an equilibrium model. There are similari-
ties between optimization problems and equilibrium models. They both rely
heavily on comparative statics and we will continue to use numerical and
analytical methods, but there are critical differences.

531
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In an optimization problem, an agent explicitly chooses, setting the values of
endogenous variables. For example, a consumer picks from available options
to maximize utility and a firm manipulates variables to maximize profit. An
optimal solution means the best choice is made (from the decision maker’s
point of view).

Unlike optimization problems, equilibrium models do not have an agent di-
rectly controlling or setting values of a variable. Instead, forces within the
model drive variables to positions of rest. No agent actually picks the solu-
tion in an equilibrium model. Instead, the equilibrium solution means that
there is no tendency to change in the endogenous variables (those determined
within the model).

The notation we will use is common in economics, but often goes unremarked
and unnoticed. A star, or asterisk, means optimal. We have found x1* = 25
and L* = 1431. The star means this value is the best value the agent can
choose.

In equilibrium models, the solution is denoted by a subscript “e.” We might
find that Qe = 100. This means that the system settles down and is at rest
at this value.

Unlike optimization problems, an equilibrium solution says nothing about
the desirability of the solution. In other words, we cannot conclude that
an equilibrium solution is a good one simply because it is the equilibrium
solution. We could be at rest at a bad place.

Finally, unlike optimization problems, economists are often interested in the
equilibration process, that is, the path followed to the final resting place. If
it exists, the type of convergence, direct or oscillatory, can be studied. The
equilibration process is beyond the scope of this book, but it helps show
the difference between optimization and equilibrium. There is no process in
optimization—the agent chooses the best solution and if there is a shock,
the agent instantly re-optimizes. Not so with equilibrium. A shock will put
forces into play that move the system.

Confusing equilibrium with optimal is common, but bad practice. They are
different in the fundamental fact that optimization has an agent choosing
and equilibration does not. Never automatically assume that an equilibrium
solution is optimal.
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2. Partial and General Equilibrium

While all equilibrium models rely on the concept of rest or stability as a key
marker of the equilibrium solution, the market system was analyzed in two
fundamentally different ways:

1. Partial equilibrium: Focus on a single good or service, in isolation.

2. General equilibrium: Consider all of the goods or services together.

Partial equilibrium was made famous by Alfred Marshall. He not only pop-
ularized putting price on the y axis, he made the graphical display of supply
and demand curves for individual goods and services popular, especially in
the English-speaking world. It is easy to see the equilibrium solution at the
intersection of the supply and demand curves and, we will see, the graph can
be used to evaluate the equilibrium outcome.

In the rest of Europe, a different tradition arose. Spearheaded by increas-
ingly sophisticated mathematical economists, such as Leon Walras and Vil-
fredo Pareto, a more holistic approach to the market system was developed.
Instead of looking at a single product or industry, all goods and services are
simultaneously analyzed.

You are already familiar with partial equilibrium because supply and de-
mand graphs are a staple of high school and introductory economics courses.
General equilibrium theory, however, will be new and challenging.

Make no mistake, they are not equal. General equilibrium is superior to par-
tial equilibrium analysis, but it is also more complicated and difficult. In our
study of the market system, we will first analyze individual markets using
conventional supply and demand graphs, then we turn to general equilibrium
analysis.

In both partial and general equilibrium analyses, we first determine the equi-
librium solution and then judge it by comparing it to an optimal solution.
We avoid the fundamental error of conflating equilibrium with optimal. We
may find that an equilibrium solution is, in fact, optimal, but we will also
see situations where this is not so and the market fails.

https://www.google.com/search?q=alfred+marshall
https://www.google.com/search?q=leon+walras
https://www.google.com/search?q=vilfredo+pareto
https://www.google.com/search?q=vilfredo+pareto
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3. Society’s Resource Allocation Problem

The partial and general equilibrium models explain how markets function in
solving a particularly fundamental optimization problem. It is so important
that is it often referred to as The Economic Problem.

Figure III.1 depicts the problem. Given scarce resources of labor and capital
(representing all inputs), society must decide what to produce, how much of
each product to make, and how to distribute the output.

Figure III.1: Society’s resource allocation problem.

This problem can be solved by tradition, authority, or the market system.
Most people do not realize that the last way is a brand new approach. Of
the roughly 200,000 years that humans have been on this planet, traditional
and authoritarian arrangements are by far the usual ways to solve society’s
resource allocation problem. The market system emerged only in the last
couple of hundred years.

This may seem incorrect given that money and prices have been around for
a long, long time. A moment’s reflection should convince you that trading is
not a sufficient condition to determine whether a market system is being used
to solve society’s resource allocation problem. After all, societies in Biblical
times had bazaars where people bought and sold goods and the former Soviet
Union had stores where people paid rubles for groceries, but neither of these
societies had market economies.

Cuba has had not one, but two currencies for decades (tourists must use the
Cuban convertible peso or CUC, while Cubans use pesos), but no one would
say it has a market economy. No, the presence of money is not a litmus test
for a market system.
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Societies based on the market system do not use supply and demand to
allocate resources for every good and service. It is obvious that military
equipment, such as tanks, in Figure III.1, are not produced according to
perfectly competitive conditions via supply and demand. There is only one
buyer, the government, and a few sellers (manufacturers of military vehicles).
Likewise, no modern society uses the market system for medical care.

One could argue that all goods and services are regulated or controlled to
some degree and, while there is some truth to this, it is also mostly true that
many individual farmers decide what to grow based on market prices and
this is a hallmark of the market system.

Unlike other ways of allocating resources, the market system allows each
agent to decide how to use their labor and other privately owned resources.
In a market system, individual resource owners respond to incentives. Unlike
traditional and authoritarian systems, which rely on custom and command
to get work done and products made, markets use the lure of gain to attract
effort and capital.

The market system takes advantage of individual self-interest, using prices
as incentives and signals. Whether self-interest is innate or learned is a deep
philosophical question, but there is no doubt that players in a market system
are driven to succeed and they calculate (and maximize, as they see it) before
deciding what to do.

Although the market system, or simply markets, is the usual terminology
today, other names have been used, such as capitalism, private property, free
enterprise, price system, and laissez faire. Adam Smith’s An Inquiry into
the Nature and Causes of the Wealth of Nations (1776) is the first attempt
at a comprehensive explanation of how a decentralized system that allows
individual resource owners to decide where and how to use society’s inputs
can give a reasonable solution to society’s economic problem. Notice the
date—1776—before then, no one had to explain the market system because
it did not exist.

This is not a history book, but you should be aware that the market system
first emerged in western Europe around the 1700s, give or take a hundred
years. It is difficult to pinpoint exactly where and when because there is
no single event or marker. From close up, focusing on the 15th to the 20th

centuries, it was a long, gradual transformation of society that took a few

https://www.google.com/search?q=smith+wealth+of+nations
https://www.google.com/search?q=smith+wealth+of+nations
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hundred years. From far away, on a scale of centuries stretching back thou-
sands of years, it was a sudden, explosive societal change.

One way to convey the stunning explosion in economic output before and
after the emergence and spread of the market system is by examining the
historical performance of different countries. We know the world was poor
for millennia and then things changed fast, but economic historians have
painstakingly compiled estimates of output per person to help us under-
stand the evolution. Angus Maddison, for example, devoted his career to
measuring long run economic growth around the world. The data are here:
www.ggdc.net/maddison/Maddison.htm. There are output and population
measures for countries all the way back to 1 AD. Figure III.2 plots real GDP
per capita for 12 western European countries.

Figure III.2: Western Europe’s historical economic performance.

The hockey stick depicted in Figure III.2 tells a remarkable story. Before the
market system, although individual people (kings or other elites) could be
rich, almost everyone knew only grinding poverty. Then, suddenly, something
happened in western Europe that changed everything. Economies literally
took off and the modern world was born. For an excellent, brief review of
the rise of the market system, see the second chapter, “The Economic Revo-
lution,” in Robert Heilbroner’s classic best-seller, The Worldly Philosophers .

The intellectual history of research on capitalism and markets is also quite
fascinating. A great deal of work revolves around the idea of patterns emerg-

http://www.ggdc.net/maddison/Maddison.htm
https://www.google.com/search?q=heilbroner+worldly+philosophers
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ing without direct, top-down control. Smith invoked the image of an “invis-
ible hand” and Nobel Prize winning economist Friedrich Hayek coined the
oxymoron “spontaneous order.” In mathematics today, nonlinear dynamics
and chaos theory focus on “self-organizing behavior.” This idea, a pattern
out of nothing, is critical to understanding the market system and the role
of supply and demand.

Many have noticed that birds fly in a V, ants can form long chains and
never seem to get stuck in traffic, and many animals (bees, locusts, and fish)
swarm—they seem to act as if they had a collective mind. How do they do
it? They do not rely on a single command center or leader to tell each one
what to do. There are no orders given. There is no central direction. Instead,
each individual follows simple rules that, taken together, produce a pattern
or coherent order.

In computer science, the Game of Life is an artificial world that produces
patterns from trivially simple rules. There are many examples on the web,
such as this recent one, in honor of John Conway who recently passed away:
b3s23life.blogspot.com/2020/01/a-gentleman-and-scholar.html. Search “game
of life excel” for spreadsheet versions. LifeWiki has history, explanations, and
many examples: www.conwaylife.com/wiki.

The point is that complicated movements of gliders and other objects that
would seem to require central control can be generated in a decentralized
way. Thus, the Game of Life is just another application—like supply and
demand—of the general principle that patterns can be formed not only by
top-down direction (like a marching band), but by decentralized systems with
no controller at all.

The difficult idea to grasp is that supply and demand analysis is more than
two intersecting lines. We are actually studying a pattern-generating sys-
tem. Supply and demand is the model used by economists to explain how
multitudes of interacting agents in markets can solve society’s incredibly
complicated resource allocation problem.

For the purposes of understanding how the market system works, an individ-
ual market will be defined by the commodity bought and sold. Thus, there
is a market for broccoli and a market for engineers and a market for tutors.
Every good and service allocated by the market system has a supply and
demand.

http://b3s23life.blogspot.com/2020/01/a-gentleman-and-scholar.html
https://www.google.com/search?q=game+of+life+excel
https://www.google.com/search?q=game+of+life+excel
https://www.conwaylife.com/wiki
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By having a market for each product, we can use each individual market’s
equilibrium output as the market system’s answer to the resource allocation
problem. There is no central planner or controller who decides how much gas
to produce. Buyers and sellers interact and establish an equilibrium price
and quantity that determines how much of society’s scarce resources are de-
voted to gas. If you think the price of gas is too high or we are allocating too
much of society’s scarce resources to producing gas, there is no one to call.
The price and output are determined by the decentralized market system
based on the operation of supply and demand.

The idea that a pattern emerges from the interaction of agents is fundamental
to the market system. Watch the The Invisible Hand and the Market Sys-
tem, freely available at vimeo.com/econexcel/invisiblehand, to get a deeper
understanding of these issues.

Organization

The organization of material in this part is straightforward, perhaps decep-
tively so. Figure III.3 shows the overall view of the book and the two chapters
in this part.

Figure III.3: Content map with focus on the market system.

The partial equilibrium chapter has sections devoted to both theory and ap-
plications (including government interventions) of supply and demand anal-
ysis. General equilibrium presents only exchange to give you a glimpse of
how the model works.

It seems odd to say, but we will ignore a critical, fascinating part of the
market system. Even a casual observer would notice that the market system
exhibits high rates of innovation and technological change (which is what

https://vimeo.com/econexcel/invisiblehand
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produced the striking Figure III.2), but we will limit our analysis to explor-
ing how the market system functions in a static environment in which the
only issue is resource allocation (given constant technology).

In the conclusion, after you have mastered partial and general equilibrium
analysis, we will return to the question of the dynamic analysis of the market
system.
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Credit for the ubiquitous demand and supply
diagrams in principles texts is usually given to
Fleeming Jenkin [1870]. ...For the first time, a real
visual sense of the market is located. Pride of place
goes to the equilibrium price.

Judy Klein

17.1 Supply and Demand

We begin our analysis of the market system by making an obvious, but nec-
essary point: A market demand (or supply) curve is the sum of individual
demand (or supply) curves.

STEP Open the Excel workbook SupplyDemand.xls, read the Intro sheet,
then go to the SummingD sheet.

The sheet has three consumers, with three different utility functions and dif-
ferent incomes. We assume the consumers face the same prices for goods 1
and 2. We set p2 = 10, but leave p1 as a variable to derive the individual
demand curve for each consumer.

STEP Confirm, by clicking on a few cells in the range B18:D22, that
the formulas in these cells represent the individual demand curves for each
consumer. Notice that the graphs below the data represent the individual
demand (x1* = f(p1)) and inverse demand (p1 = f(x1*)) curves.

Given individual demands, market demand can be found by simply summing
the optimal quantity demanded at each price.

STEP Confirm, by examining the formula in cell E18, that market de-
mand has been computed by adding the individual demands at p1 = 1. The
same, of course, holds true for the other points on the market demand curve.

Because we often display demand schedules as inverse demand curves, with
price on the y axis, the red arrow (see your screen and Figure 17.1) shows
that market demand is the result of a horizontal summation. At p1 = 5, we
read off each of the individual quantities demanded and add them together
to obtain the market quantity demanded of 24.3 units.
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Figure 17.1: Horizontal summation to get market demand.
Source: SupplyDemand.xls!SummingD.

Supply works just like demand. We add individual supply curves (horizon-
tally if we are working with inverse supply curves) to get the market supply
curve. Because individual supply curves are P above AVC, we know that the
market supply curve is simply the sum of the marginal costs above minimum
AVC of all the firms producing the particular good or service sold in this
market.

So the way it works is that each of the individual buyers and sellers opti-
mizes to decide how much to buy or sell at any given price. The Theory of
Consumer Behavior and the Theory of the Firm are the sources of individual
demand and supply.

Once we have the many individual demand and supply curves, we add them
up. So market demand and supply are composed of the sum of many individ-
ual pieces. Some consumers want a lot of the product at a given price, while
others want less (or maybe none at all), but they all get added together to
form market demand. The same is true for supply.

Initial Solution

The next step is obvious: market supply and demand are combined to gen-
erate an equilibrium solution that determines the quantity produced and
consumed. This equilibrium solution is the market’s answer to society’s re-
source allocation problem.

The simple story is that price adjusts, responding to surpluses and shortages,
until it settles down at its equilibrium level, where quantity demanded equals
quantity supplied. This is the intersection of the two curves.

It is confusing, but true that in the supply and demand model, price and
quantity are endogenous variables. How can price be endogenous—don’t
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consumers and PC firms take the price as given? Yes, they do and for indi-
vidual buyers and sellers, price is exogenous, but, for the system as a whole,
price is endogenous.

At the individual agent level, price is given and cannot be controlled by the
agent so it is exogenous. But we are now at a different level. We are allowing
forces of supply and demand to move the price until it settles down. Thus, at
the level of the market, we say price is endogenous because it is determined
by forces within the system.

It is worth repeating that equilibrium means no tendency to change. When
applied to the model of supply and demand, equilibrium means that price
(and therefore quantity demanded and supplied) has no tendency to change.
A price that does have a tendency to change (because there is a surplus or
shortage) is a disequilibrium price.

We can put these ideas in the same framework that we used to solve opti-
mization problems. There are two ways to find the equilibrium solution and
they yield the same answer:

1. Analytical methods using algebra: conventional paper and pencil.

2. Numerical methods using a computer: for example, Excel’s Solver.

STEP Proceed to the EquilibriumSolution sheet to see how the supply
and demand model has been implemented in Excel.

The information has been organized into three main areas: endogenous vari-
ables, exogenous variables, and an equilibrium condition. Excel’s Solver will
be used to find the values of the endogenous variables that meet the equilib-
rium condition.

As usual, green represents exogenous variables, the coefficients on the de-
mand and supply curves.

Although price and quantity are both endogenous variables, price is bolded
to indicate that the model will be solved by finding the equilibrium price
and then the equilibrium quantity (demanded and supplied) is determined.
This is similar to the approach we took with monopoly where we maximized
profits by choosing q, then found P from the demand curve.
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Finally, the equilibrium condition is represented by the difference between
quantity demanded and supplied.

On opening, the price is too high. At P = 125, quantity demanded (Qd) is
112.5 and Qs is about 173. Thus, have a surplus (Qd < Qs) and, therefore,
price is pushed down (as firms seek to unload unsold inventory).

STEP Use the scroll bar next to the price cell to set the price below
the intersection of supply and demand. The dashed line (representing the
current price) responds to changes in the price cell (B12).

Notice how the quantity demanded and supplied cells also change as you ma-
nipulate the price, which makes the equilibrium condition cell (B17) change.

With P below the intersection, the market experiences a shortage (Qd > Qs)
and price is pushed up. The force in the market model is the pressure gen-
erated by surpluses (excess supply) or shortages (excess demand).

Obviously, the equilibrium price is found where supply and demand inter-
sect. At this price, there is no tendency to change. The forces of supply and
demand are balanced. We can find this price by adjusting the price manually
and keeping our eye on the chart or by using Excel’s Solver.

STEP Open Solver.

The Solver dialog box appears, as shown in Figure 17.2. Notice that the
objective is not to Max or Min, but to set an equilibrium condition equal
to zero. Notice also that P, price, is being used to drive the market to
equilibrium and there are no constraints.

Figure 17.2: Solver dialog box.
Source: SupplyDemand.xls!EquilibriumSolution.
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STEP Click Solve to find the equilibrium solution.

The chart makes it easy to see that Solver is correct. At P = 100, Qd =
Qs = 125. Without a surplus or shortage, there is no tendency for the price
to change and we have found the equilibrium resting point.

The equilibrium quantity, 125 units, is the market’s answer to society’s re-
source allocation problem. It says that we should send enough resources
from the scarce, finite amount of inputs available to produce 125 units of
this product.

We envision a supply and demand diagram for every product and the equi-
librium quantity, in each market, is the market’s answer to how much we
should have of each commodity.

The analytical approach is easier than the math we applied for optimization
problems because there is no derivative or Lagrangean. All we need to do is
find the intersection of supply and demand.

Given either market supply and demand curves Q = f(P ) or inverse supply
and demand functions, P = f(Q), we find the equilibrium solution by setting
supply and demand equal to each other.

The inverse functions in the Excel workbook are:

P = 350− 2Qd

P = 35 + 0.52Qs

Setting the inverse functions equal to each other, we replace the Qd and Qs

with Qe because we are finding the value that lies on both of the curves:

350− 2Qe = 35 + 0.52Qe

385 = 2.52Qe

Qe =
315

2.52
= 125

Substituting this solution into either inverse function yields Pe = 100.
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We can also easily flip the inverse functions, solving for Q in terms of P, to
obtain the demand and supply functions:

P = 350− 2Qd → 2Qd = 350− P → Qd = 175− 1

2
P

P = 35 + 0.52Qs → 0.52Qs = P − 35→ Qs =
1

0.52
P − 35

0.52

If we set demand equal to supply, using Pe to denote the common value we
seek, we find the equilibrium price:

175− 1

2
Pe =

1

0.52
Pe −

35

0.52

175 +
35

0.52
=

1.26

0.52
Pe

Pe =
175 + 35

0.52
1.26
0.52

= 100

Plugging this equilibrium price into either function gives Qe = 125.

This work shows something obvious, but worth making clear: we can use
P = f(Q) functions to find Qe, then Pe or we can use Q = f(P ) functions
to find Pe, then Qe. We get the same result either way since we are merely
flipping the axes.

If you think using supply and demand functions (Q = f(P )) to get Pe and
then Qe is more faithful to what is going on in the market, you are a Mar-
shallian for that is exactly how he saw markets functioning. And that is why
P is on the y axis—so the reader sees it fluctuate up and down until it settles
down to its equilibrium value.

We finish our work on the initial solution by pointing out that it is not
surprising that numerical methods, using Solver, agree with the analytical
approach. Given supply and demand for this product, we know that the
market equilibrium solution would call for producing 125 units. The market
system would, therefore, allocate the labor and capital needed to make this
amount.
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Elasticity

We can compute the price elasticity of demand and supply at the equilibrium
price (the point elasticity) by applying our usual formula, dQ

dP
P
Q

. This time,

we must use the demand and supply curves, Q = f(P ).

STEP Click the Show Point Elasticity button to see the calculation.

Although it has text wrapped around it, the number displayed for the price
elasticity of demand is based on this part of the formula: (−1/d1) ∗ (P/Qd).

With Qd = d0
d1
− 1

d1
P , it is easy to see that dQ

dP
= − 1

d1
and then we multiply by

P
Q

. Likewise, the price elasticity of supply is the slope of the supply function

times the P
Q

ratio.

At the equilibrium price and quantity, demand is much more price inelastic
than supply. This does not matter right now, but it will in future work.

STEP With P = 100, click on the price scroll bar and watch the price
elasticities. Keep clicking until you set P = 125.

As you increase price, the elasticities change. Even though the slopes are
constant, the supply and demand elasticities change because the P

Q
ratio is

changing. Multiplying the slope by a price-quantity coordinate produces a
percentage change measure of responsiveness.

The price elasticity of demand at P = 125 is −0.56 means that a 1% increase
in the price leads only to a 0.56% decrease in the quantity demanded. This
means demand is not very responsive since the percentage change in quantity
is less than the percentage change in the price. Notice, however, the demand
is more responsive at P = 125 than it was at Pe = 100.

We will see in future applications of the supply and demand model that the
price elasticities play crucial roles. For now, remember that slope and elas-
ticity are not the same and that the price elasticity tells us how responsive
quantity demanded or supplied is to a change in the price.

Economists can be sloppy and say things like “demand is elastic” or “inelastic
supply.” This, of course, is nonsense. All downward-sloping, linear, inverse
demand curves that cut both axes have elasticities that range from negative
infinity at y-intercept to zero at the x-intercept. Statements like “demand is
elastic” typically refer to a specific, usually equilibrium, price.
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Long Run Equilibrium

Another concept at play in the model of supply and demand is that of long
run equilibrium.

In the long run (when there are no fixed factors of production), a competitive
market has another adjustment to make. In addition to responding to pres-
sure from surpluses and shortages, the market will respond to the presence
of non-zero profits.

The story is simple. Excess profits (economic profits greater than zero) will
lead to the entry of more firms. This will shift the inverse supply curve right,
lowering the price until all excess profits are competed away.

If the long run price is too low, firms suffering negative profits will exit,
shifting the inverse supply curve left and raising prices. Thus, a long run
competitive equilibrium has to look like Figure 17.3.

Figure 17.3: Long run equilibrium.

The left panel in Figure 17.3 shows supply and demand in the market as a
whole, while the right panel depicts a single firm that is just one of the many
firms in this perfectly competitive industry. The two graphs have the same y
axis, but the scale of the x axis is different. A single firm can only produce
a few units (q), but “millions” (an arbitrary number chosen just as an ex-
ample) are bought and sold in the market (uppercase Q for emphasis). The
idea is that there are many firms, each producing small amounts of the same
output. In the aggregate, they make “millions” of units, but one individual
firm produces only a tiny amount of the total.
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Notice how the market demand curve is downward sloping, but the firm’s
demand curve is horizontal. This is the classic price taking environment in
which a PC firm operates. Notice also that the market supply curve is the
sum of the individual firm MC curves because individual firm supply is MC
where P > AV C. We could chop off the bottom of the market supply curve
(below Pe), but that would be confusing.

The long run adjustment process endogenizes the number of firms. This
means that forces within the model determine how many firms there will be.
This is not true in the short run, where the number of firms is assumed fixed
(although they can shutdown if P < AV C) and the only adjustment is that
market surpluses and shortages are eliminated by price movements.

Notice that the long run equilibrium price meets two equilibrium conditions:

1. Quantity demanded equals quantity supplied so there is no surplus or
shortage in the market.

2. Economic profits are zero so there is no incentive for entry or desire to
exit.

Long run equilibrium is even more fanciful and unrealistic than our abstract
models of the consumer and firm. There has never been and never will be
a market in long run equilibrium. Its primary purpose is as an indicator of
where a market is heading.

The long run equilibrium model tells us that even though we are at an equi-
librium with no surplus or shortage (such as with Pe = 100 in the Excel
workbook), further adjustments will be made depending on the profit posi-
tion of the firms. If profits are positive, entry will increase supply and lower
price; while negative profits will lead to exit, decreased supply and higher
prices.

In the Excel workbook, we do not know if the market is in long run equilib-
rium when Pe = 100 because we do not have a representative firm with its
cost curves so we can determine its profits.

A key takeaway is that, like price, the number of firms is endogenous in the
long run because there are forces in the model that determine its value. No
one sets the number of firms. The interaction of buyers and sellers is gener-
ating the number of firms as an equilibrium outcome.
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Comparative Statics

Comparative statics analysis with the supply and demand equilibrium model
is familiar. Most introductory economics courses emphasize shifts in supply
and demand. Here is a quick review, with special emphasis on equilibrium
as an answer to society’s resource allocation problem.

A change in any variable that affects supply or demand, other than price,
causes a shift in the inverse supply or demand curve. A change in price
causes a movement along stationary supply and demand curves. An increase
in demand or supply means a rightward shift in inverse demand or supply.

For demand, the shift factors are income, prices of other goods related in
consumption (i.e., complements and substitutes), tastes, consumers’ expec-
tations about future prices, and the number of buyers. The usual shift factors
for supply include input prices, technology, firms’ expectations, and the num-
ber of sellers.

As usual, comparative statics analysis consists of finding the initial solution,
applying the shock, determining the new solution, and comparing the initial
to the new solution. In the case of supply and demand, we want to make
statements about the changes in equilibrium price and quantity. Pe and Qe

are the endogenous variables in the equilibrium model and we track how they
respond to shocks.

For example, new technology lowered costs, What would that do to equi-
librium price and quantity? We can use the EquilibriumModel sheet to see
what happens.

STEP Make sure P = 100 so the market is in equilibrium, then click on
the s0 slider to lower the inverse supply curve intercept to 15.

The graph updates as you change the s0 and a new, red inverse supply curve
appears. The original, black line remains as a benchmark, but there is only
one demand and supply at any point in time.

At P = 100, there is a surplus. We need to find the new equilibrium solution.

STEP Run Solver to find the new Pe and Qe.

Figure 17.4 shows the result. The equilibrium price falls (from $100/unit



17.1. SUPPLY AND DEMAND 553

to roughly $84/unit) and the equilibrium quantity rises from (from 125 to
about 133 units).

Figure 17.4: Comparative statics with the supply and demand model.
Source: SupplyDemand.xls!EquilibriumSolution.

The decentralized market system has generated a new answer to society’s re-
source allocation problem. Ceteris paribus, if a product enjoys a productivity
increase from a new technology, making it cheaper to produce the product,
the system will produce more of it.

This response makes common sense, but it is absolutely critical to under-
stand that the increase in output is not decreed from on high. It is bubbling
up from below—output rises because supply shifts and market forces lower
prices and raise output.

We do not examine the equilibration process from the initial to the new so-
lution when doing comparative statics analysis. We might directly converge
to the new equilibrium, with price falling gradually until Qd = Qs. Or, price
might collapse, falling below the equilibrium price, then rising above it, and
so on. This would be oscillatory convergence.

With comparative statics, however, the focus is entirely on comparing the
new to the initial solution. We may, in fact, be interested in the path to
the new equilibrium, but that would take us into comparative dynamics—a
topic for advanced microeconomics.
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Applying Supply and Demand

To escape the usual trap of thinking of supply and demand in purely graph-
ical terms, we apply the model to a real world example. We avoid graphs
completely and focus on the mechanics and logic of supply and demand.

The market system uses supply and demand for outputs and inputs. This
example focuses on labor, but there are many applications of supply and
demand for capital—perhaps the stock market is the most prominent.

Consider that most fans of American football would not know the second
highest paid position in the NFL. Everyone knows quarterbacks are the high-
est paid, but what position is second? Are star running backs, wide receivers,
or maybe linebackers then next highest paid? No, the answer is left tack-
les—www.spotrac.com/nfl/positional/.

In The Blind Side: Evolution of a Game (2006), Michael Lewis explains that
free agency, allowing players to sell their services to the highest bidder, rad-
ically altered the pay structure of the NFL. How did this happen? Supply
and demand.

First, Lewis (p. 33) explains, there is little supply for the left tackle position.

The ideal left tackle was big, but a lot of people were big. What
set him apart were his more subtle specifications. He was wide
in the ass and massive in the thighs: the girth of his lower body
lessened the likelihood that Lawrence Taylor, or his successors,
would run right over him. He had long arms: pass rushers tried
to get in tight to the blocker’s body, then spin off it, and long
arms helped to keep them at bay. He had giant hands, so that
when he grabbed ahold of you, it meant something.

But size alone couldn’t cope with the threat to the quarterback’s
blind side, because that threat was also fast. The ideal left tackle
also had great feet. Incredibly nimble and quick feet. Quick
enough feet, ideally, that the idea of racing him in a five-yard
dash made the team’s running backs uneasy. He had the body
control of a ballerina and the agility of a basketball player. The
combination was just incredibly rare. And so, ultimately, very
expensive.

https://www.spotrac.com/nfl/positional/
https://www.google.com/search?q=lewis+blind+side
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In addition to low supply, there is high demand. The left tackle is charged
with protecting the quarterback’s blind side, the direction from which defen-
sive ends and blitzing linebackers come shooting in, causing sacks, fumbles,
and worst of all, injuries. Because the quarterback is the team’s most prized
asset, the left tackle position is a highly sought-after bodyguard.

But even more surprising than the fact that blind side tackles are the second
highest paid players in the NFL is that this was not always the case. Lewis
reports that for many years, linemen were low paid, as shown in Figure 17.5.

Figure 17.5: NFL salaries in 1990, before free agency.
Source: Lewis, p. 227.

So, why do blind side tackles make so much money today? NFL players did
not enjoy free agency until the 1993 season. Up to that time, players were
drafted or signed by teams and could move only by being traded.

Then the players’ union and team owners signed a contract that enabled free
agency for players so they could move wherever they wanted. In return, the
players agreed to a salary cap that was a percentage of league-wide team
revenue. Free agency meant that a player could sell himself to the highest
bidder—in other words, the market would operate to establish player salaries.

At first, everyone was shocked. Teams spent outlandish sums on unknown
linemen. Players that most fans never heard of made millions. Then a start-
ing left tackle for the Bills, Will Wolford, announced his deal: $7.65 million
over three years to play for the Colts. No one had ever paid so much money
for a mere lineman. Not only that, his contract stipulated that Wolford was
guaranteed to be the highest paid player on offense for as long as he was on
the team.

The NFL threatened to invalidate this outrageous contract. In the end, the
deal was allowed, but the commissioner decreed that such terms in a contract
could never be used again.
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Lewis, pp. 227–228 (emphasis added), explains what had happened:

The curious thing about this market revaluation is that noth-
ing had changed in the game to make the left tackle position
more valuable. Lawrence Taylor had been around since 1981.
Bill Walsh’s passing game had long since swept across the league.
Passing attempts per game reached a new peak and remained
there. There had been no meaningful change in strategy, or rules,
or the threat posed by the defense to quarterbacks’ health in ten
years. There was no new data to enable NFL front offices to value
left tackles—or any offensive linemen—more precisely. The only
thing that happened is that the market was allowed to function.
And the market assigned a radically higher value to the left tackle
than had the old pre-market football culture.

Economics students around the world study supply and demand, but they
think it is a graph. It is so much more than an X. It is a model that explains
how pressures from buyers and sellers are balanced.

This example shows that markets value commodities by reflecting the under-
lying demand and supply conditions. Blind side tackles are worth a lot of
money in the NFL. Before markets were used, they were grossly underpaid.
There were no statistics for linemen like yards rushing or field goal percent-
age so they could not differentiate themselves. The market system, however,
expressing the desires of general managers and reflecting the true importance
of the blind side tackle, correctly values the position.

Markets are neither moral nor caring. They are a way to consolidate informa-
tion from disparate sources. Prices are high when everyone wants something
or there is very little of it available. For blind side tackles, with both forces
at work, the market system was a bonanza.

Supply and Demand and Resource Allocation

This introduction to the market system via partial equilibrium showed how
an individual market settles down to its equilibrium solution. Much of this
material is familiar because most introductory economics courses emphasize
supply and demand analysis.
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There are two fundamental concepts, however, that are critical in gaining a
deep understanding of supply and demand.

1. Supply and demand curves do not materialize out of thin air. They
are the result of comparative statics analyses on consumer and firm
optimization problems. In other words, supply and demand must
be interpreted as the reduced-form solutions from utility- and profit-
maximizing agents. Figure 17.6 drives this point home by adding rep-
resentative consumer and firm graphs to supply and demand.

Figure 17.6: An overall view of supply and demand.

The notation in Figure 17.6 is awkward because we are combining consumer
and firm theories which have their own individual histories. Thus, X in the
left panel is the number of units of the same good that is produced by the firm
in the right panel with label “q (units).” Likewise, P in the middle and right
panels equals Px in the left panel. Notational awkwardness notwithstanding,
it is true that consumers generate demand for every good and service and the
sum of individual demands is market demand. The same holds for supply
and firms. Figure 17.6 is a great way to put it all together.

2 Supply and demand is a resource allocation mechanism. It is the equi-
librium quantity that is of greatest importance in the supply and de-
mand model because this is the market’s answer to society’s resource
allocation problem. The price is the variable that drives a market to
equilibrium, but it is Qe that represents how much of society’s scarce
resources are to be allocated to the production of each commodity,
according to the market system.

A picture of this is in the Intro sheet. Now that you have finished this
section, take another look at it and walk through it carefully.
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Introductory economics students are taught supply and demand, but they
do not understand that the market demand and supply curves are reduced
forms from individual optimization problems. Deriving demand and supply
is a bright line separating introductory from intermediate courses.

In addition, introductory courses stress price and equilibration (surpluses and
shortages) as students learn the basics of supply and demand. Unfortunately,
this means students miss the fundamental point: the equilibrium quantity is
the decentralized, market system’s answer to how much of society’s scarce
resources should be devoted to this particular commodity. There are graphs
like Figure 17.6 for every good or service allocated by the market.

While the graphics in the Intro sheet emphasize the importance of Qe, Fig-
ure 17.7 offers another way to explain what supply and demand is really all
about. Filling in the mountain of society’s finite resources with a checker-
board pattern conveys that the factors of production are individually owned
and controlled. Each square represents the resources controlled by each per-
son. Every person owns a tiny piece of the mountain and decides what do
with that labor and capital.

Figure 17.7: Individual ownership of resources.

Every product allocated by the market system has a supply and demand that
attracts individual resources owners. Out of this cacophony of interactions,
an equilibrium is found and resources flow to the production of an amazing
variety of goods and services. This is the truly fascinating aspect of supply
and demand. Each agent is self-interested and thinking only of their own
gain, but the outcome of the market system establishes a pattern that an-
swers the question of how to use scarce resources.
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Of course, the checkerboard pattern in Figure 17.7 makes it seem like ev-
eryone controls equal shares, yet there is no question that some people own
more resources than others. Inequality in the distribution of resources can be
a serious obstacle facing the market system. It will not work well if resources
are grossly unequally distributed.

This leads to another common misconception regarding equilibrium and de-
sirability. Can we conclude, by virtue of the fact that the market is in
equilibrium, that the market system has correctly solved society’s optimiza-
tion problem? Absolutely not. Equilibrium does not automatically equal
optimal. The next section tackles this issue.

Exercises

STEP Click the Reset button in the EquilibriumSolution sheet to set
the coefficients to their initial values.

1. Use the scroll bar in cell C7 of the EquilibriumSolution sheet to set the
intercept of the inverse demand curve to 375. Use Excel’s Solver to
find the equilibrium solution. Take a picture of the answer and paste
it in your Word document.

2. Solve the equilibrium model with d0 = 375 via analytical methods.
Show your work, using Word’s Equation Editor as needed.

3. Because the intercept increased compared with the initial values of
the parameters, we know there has been an increase in demand. How
has the market responded to this shock? Is the market’s response
reasonable?

References

The epigraph is from page 111 of Judy Klein, “The Method of Diagrams
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The basic questions about resource use that must be answered by society
can be traced to Paul Samuelson’s Introductory Economics textbook (first
published in 1948) and Frank Knight’s The Economic Organization (1933).
“Samuelson boiled Knight’s five functions down to three: i) What commodi-
ties shall be produced and in what quantities?, ii) How shall they be pro-
duced?, and iii) For whom are they to be produced? ’These three questions,’
Samuelson adds, paraphrasing Knight, ’are fundamental and common to all
economies.’” See Ross B. Emmett, “Frank H. Knight and The Economic
Organization,” Michigan State University Working Paper No. 0405–01, p.
16, papers.ssrn.com/sol3/papers.cfm?abstract id=922531.

Michael Lewis’ book, The Blind Side: The Evolution of a Game was a huge
hit in 2006. It was made into a movie in 2009, winning a Best Picture
nomination and the Academy Award for Best Actress for Sandra Bullock.
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https://www.google.com/search?q=knight+Economic+Organization
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=922531
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It follows that consumer’s surplus is not a
concept which can be attributed to Marshall
as something rather peculiarly his own. All
that belongs exclusively to him is the name.

R. W. Houghton

17.2 Consumers’ and Producers’ Surplus

Society’s resource allocation problem is an especially important optimization
problem. It is an easy problem to envision. Pile up of all of society’s factors of
production and then ask, “How should we use these resources? What should
we make? How much of each product should be produced? How should we
distribute the output?” These are questions about resource allocation.

An important idea is that of a constraint. Needs and wants by consumers
far outstrip available resources. More of one means less of other goods and
services.

The previous section showed how supply and demand establishes an equi-
librium price and output. The latter is the market system’s answer to the
resource allocation questions.

Although we are not studying alternative resource allocation methods, it is
worth pointing out that if supply and demand is not used, that does not
make difficult choices go away. Scarcity means there is not enough to go
around. We may decide we do not want to use markets to allocate scarce
organs, but we will still need a mechanism to decide whose lives are saved.

This section changes the focus from how supply and demand works to an
evaluation of the market system’s solution. The approach is clear: We first
consider what an optimal allocation would look like, and then check to see
whether the market’s allocation conforms to the optimal solution.

Finding the Optimal Quantity in a Single Market

To find the optimal solution, we conduct a fanciful analysis. Like the imag-
inary budget line we used to find income and substitution effects, we work
out a thought experiment that actually can never be carried out.

561
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Suppose you had special powers and could allocate resources any way you
wanted? Your official title might be Omniscient, Omnipotent Social Planner,
or OOSP, for short. You are omniscient, or all knowing, so you know every
consumer’s desires and every firm’s costs of production. Because you are
omnipotent, or all powerful, you can decide how much to produce of each
good and service and how it is produced and distributed.

Because this is partial equilibrium analysis, we focus on just one good or
service. The question for you, OOSP, is, “How much should be produced of
this particular commodity?”

One way for you to answer this question is to measure the total gain obtained
by the consumers and producers of the good. When we compute the gain,
we subtract the cost of acquiring the product for consumers and, for firms,
the costs of production. The plan is to compute the total net gain for dif-
ferent quantities and pick that quantity at which the total gain is maximized.

The notion of net gain, something above the cost that is captured by con-
sumers and firms, is the fundamental idea behind consumers’ and producers’
surplus. Consumers’ surplus is the gain from consumption after accounting
for the costs of purchasing the product. Producer’s surplus is the difference
between total revenues and total variable costs. In the long run, it is profit.

We begin with producers’ surplus because it is uncontroversial. We will see
that consumers’ surplus is problematic.

Producers’ Surplus

At any given price, if sellers get that price for all of the units sold, they get
a surplus from the sale of each unit except the last one. The sum of these
surpluses is the producer’s surplus. The sum of all of the producer’s surpluses
in the market is the producers’ surplus, PS.

The location of the apostrophe matters. Producer’s surplus is the surplus
obtained by one firm. If the focus is on all of the firms, we use producers’
surplus.

STEP Open the Excel workbook CSPS.xls, read the Intro sheet, then go
to the PS sheet.
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The sheet displays an inverse supply curve given by P = 35 + 0.52Qs. The
area of the green triangle is PS. To see why, consider the situation when
output is 75 units and the price is $74/unit.

The very last unit sold added $74 to total cost (given that we know that the
supply curve is the marginal cost curve). Thus, the 75th unit sold yielded no
surplus. In general, the marginal unit yields no surplus.

But what about the other units? All of the other units are inframarginal
units. In other words, these are units below the marginal (last) unit and,
in general, the inframarginal units generate surplus. The firm is receiving a
price in excess of marginal cost for these units, from 1 to 74, and, therefore,
it is reaping a surplus each of those units. We can add them up to get pro-
ducer’s surplus.

Consider the 50th unit. The marginal cost of the 50th unit is given by
35 + 0.52 ∗ 50 = $61. The firm would have been willing to sell the 50th

unit for $61, but it was paid $74 for that 50th unit. So, it made $13 on the
50th unit.

STEP Look at cell Q68. It reports the surplus generated by the 50th

unit, $13, as we computed above. Look at cell Q28. It reports the surplus
generated by the 50th unit, $33.80.

Cell R19 adds the surpluses from all of the inframarginal units. Notice how
PS steadily falls from the first to the last unit. The key to PS is that all
quantities are sold at the same price, but marginal cost starts low and rises.
The firm makes a surplus above MC on all output except the last one.

Cell R19 differs from cells B19 and B21 because cell R19 is based on an in-
teger interpretation of output. If output is continuous, then we can compute
the PS as the area of the triangle created by the horizontal price and the
supply curve.

Notice that cell B19 offers another way to understand PS. If supply is marginal
cost, then the area under the marginal cost curve is total variable cost. Be-
cause marginal cost is linear, the computation is easy. If MC was a curve,
we would have to integrate. Total revenue is simply price times quantity.
Cell B19 computes TR − TV C, the excess over variable cost, which is the
producers’ surplus.
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STEP If Qs = 95, what is PS? Use the scroll bar in cell C12 to set quan-
tity equal to 95.

At 95 units of units of output, MC is $84.40. At that price, the 95th unit
has no surplus. But all of the other, inframarginal units generate surplus,
adding up to $2,346.50.

STEP Explore other quantities and confirm that as output rises, so does
producers’ surplus.

Consumers’ Surplus

The idea is the same. At any given price, if a buyer pays that price for all of
the units bought, she gets a surplus from the purchase of each unit except
the last one. The sum of these surpluses is the consumer’s surplus. The sum
of all of the consumer’s surpluses is the consumers’ surplus, CS.

STEP Proceed to the CS sheet.

Given the inverse demand curve, P = 350 − 0.2Qd, we can easily compute
CS for a given quantity as the area of the pink triangle.

At Qd = 95, the price so consumers will buy 95 units is $160/unit. The last
unit purchased provides no surplus, but the inframarginal units generate CS.
The area under the demand curve, but above the price, is a measure of the
net satisfaction enjoyed by consumers.

Consumers’ surplus comes from the fact that consumers would have paid
more for each inframarginal unit than the price they actually paid so they
get a surplus for each marginal unit.

STEP Use the quantity scroll bar to confirm that as output rises, so does
consumers’ surplus.

As mentioned earlier, there is a problem with consumers’ surplus. We will
finish how OOSP could use CS and PS before explaining the problem.
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Maximizing CS and PS

Producers’ surplus is the amount by which the total revenue exceeds vari-
able costs and measures gain for the firm. Consumers’ surplus also measures
gain because it is the amount by which the total satisfaction provided by the
commodity exceeds the total costs of purchasing the commodity.

Both parties, consumers and producers, gain from trade. This is why a trade
is made—both buyer and seller are better off. When you buy something, you
part with some money in exchange for the good or service. If the purchase
is voluntary, you must value what you are getting more than what you paid
for it or else you would not have bought it. Similarly, the seller values the
money you pay more than the good or service or else she would refuse to
sell at that price. The gains from voluntary trade are captured in the terms
consumers’ and producers’ surplus.

Casting the problem in terms of surplus received by buyers and sellers leads
naturally to this question: What is the level of output that maximizes the
total surplus? After all, it is clear that as quantity changes the CS and PS
also change.

Thus, OOSP is faced with the following optimization problem:

max
q
CS(q) + PS(q)

The idea is to maximize the gains from trade for all buyers and sellers. This
problem can be solved analytically and numerically. We focus on the latter.

STEP Proceed to the CSandPS sheet.

This sheet combines the surpluses enjoyed by producers and consumers into
a single chart, shown in Figure 17.8.

Understanding this chart is fundamental. We proceed slowly. The vertical
dashed line represents the quantity, which OOSP controls and will choose so
that CS + PS is maximized.

There are two prices on the chart, one for the firm and the other for the
consumer. The idea is that OOSP uses the quantity to determine the prices
needed for firms to be willing to produce the output level and for consumers
to want to buy that amount of output.
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Figure 17.8: CS and PS at Q=95.
Source: CSPS.xls!CSandPS.

This is not an equilibrium model of supply and demand. OOSP cares only
about choosing the optimal output. Price for consumers and firms is used
only to compute surplus.

In Figure 17.8 (and on your computer screen), producers receive a price of
$84.40 for each of the 95 units, yet consumers pay $160.00 per unit. Re-
member that OOSP, our benevolent dictator, has magical powers so she can
charge one price to consumers and give a different price to producers. By
adding the values in cells E18 and B21, we get the value in cell J20. It is
highlighted in yellow and maximizing it is the goal.

STEP Click on the slider control (over cell C12), to increase output in
increments of five units.

As output increases, CS and PS both rise.

STEP Continue clicking on the slider control so that output rises above
125 units.

Now the sum of CS and PS is falling. That is confusing because the two
triangles are getting bigger. But once the price to consumers falls below the
price to the firms, we have to pay the difference. This is explained below in
more detail. For now, let’s work finding optimal Q.

STEP Launch Solver and use it to find Q*.
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With an empty Solver dialog box, you have to provide the objective (J20)
and changing cell (B12). We find that CS + PS is maximized at Q* = 125
units.

In other words, OOSP should order the manufacture of 125 units of this
product, allocating the inputs needed from society’s scarce resource endow-
ment. This level of output maximizes the sum of CS and PS.

We have seen this number before. In the previous section, we found that
the equilibrium solution was Qe = 125 units. This means that the market’s
solution is the optimal solution. This is a remarkable result.

No one intended this. No one chose this. No one directed this. Supply and
demand established an equilibrium output which answered the question of
how much to produce and we now see that it is the same solution we would
have chosen if our goal was to maximize consumers’ and producer’s surplus.
This is truly amazing.

Deadweight Loss

If OOSP chooses an output level below 125 and charges a price to consumers
based on the inverse demand curve and pays producers a price based on the
inverse supply curve, it will generate a smaller value of CS + PS.

How much smaller? The amount of surplus not captured is given by the
trapezoid between the consumers’ and producers’ surpluses. This area is
called deadweight loss, DWL. It is a fundamental concept in economics and
merits careful attention.

STEP Enter 95 in cell B12, then click the Show DWL button.

Not only do data appear below the button, but the chart has been modified
to include a red trapezoid. The area of the trapezoid is displayed in cell D30.

STEP Click on cell D26.

The formula is simply the solution of the intersection of the supply and
demand curves. We know this quantity is the solution to the problem of
maximizing CS and PS.
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STEP Click on cell D28.

This seemingly complicated formula is not really that hard. It displays the
maximum possible total surplus. Two things are being added, CS and PS.
The first part of the formula is PS : 0.5*(((s0 + s1 *D26) − s0 )*D26). It
is half the height of the PS triangle times the length (or quantity produced).
The second part of the formula uses the same area of the triangle formula to
compute the CS : 0.5*((d0 - (d0 − d1 *D26))*D26).

STEP Click on cell D30.

The formula, = D28 − J20, makes crystal clear that deadweight loss is max-
imum total surplus minus the sum of CS and PS at any value of output.
In other words, deadweight loss is a measure of the inefficiency of producing
the wrong level of output in a particular market. Deadweight loss vaporizes
surplus so that it disappears into thin air. Deadweight loss is pure waste.

STEP Click on the slider control (over cell C12) to increase output in
increments of five units.

As you increase output, note that the deadweight loss falls as the output ap-
proaches the optimal quantity. There is no deadweight loss when the output
is at 125 because this is the optimal level of output.

Another way to expressing the efficiency in the allocation of resources of the
equilibrium solution is to say it has no deadweight loss. That is, no ineffi-
ciency in allocating resources.

As Q approaches Q* we reach the maximum possible CS + PS and DWL
goes to zero. As Q keeps rising, past Q > Q*, we get less total CS + PS
and deadweight loss rises. We get deadweight loss on either side of Q*. The
explanation for deadweight loss when Q > Q* is more complicated. Let’s
look at some concrete numbers.

STEP Set output above the optimal level, for example, Q = 150.

Your screen should look like Figure 17.9. It is true that CS and PS triangles
are large, but with a higher price to firms than consumers, society has to pay
for the difference. Once we account for this, the total gain is less than that
at Q = 125 and we suffer deadweight loss, as shown by the red triangle.
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Figure 17.9: DWL at Q=150.
Source: CSPS.xls!CSandPS.

Figure 17.9 shows that it is possible to have sellers receive $113 per unit
sold yet have buyers pay only $50 per unit sold, but someone is going to
have to make up that $63 per unit difference. The total value of the subsidy,
$63/unit times 150 units is $9,340. This amount (rectangle ABCD in Figure
17.9) must be subtracted from the sum of CS and PS.

When we add everything up, we get a total surplus of $18,900 at Q = 150,
which is lower than the maximum total surplus. Cell J20 uses an IF state-
ment to get the calculation right. The deadweight loss from producing 150
units is $787.50 (cell D30).

The deadweight loss at Q = 150 is given by the area of the red triangle in
Figure 17.9. The geometry is easy. We must subtract a rectangle with height
63 and length 150 from the sum of the pink CS and green PS triangles. This
leaves the red triangle as the DWL caused by producing too much output.

There is one optimal output and at that value, deadweight loss is zero. Out-
puts above and below Q* produce inefficiency in the allocation of resources
because we fail to maximize CS + PS. This is called deadweight loss.

Price Controls

Price controls are legally mandated limits on prices. A price ceiling sets the
highest price at which the good can be legally sold. A price floor does the
opposite: The good cannot be sold any lower than the given amount.
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To be effective, a price ceiling has to be set below and a price floor has to be
set above the equilibrium price.

Most introductory economics students are taught that price ceilings gen-
erate shortages and price floors lead to surpluses. For most students, the
take-home message is that market forces cannot push the price above the
ceiling or below the floor so the market cannot clear and this is why price
controls are undesirable.

It turns out that this is not exactly right. Although it is true that ceilings lead
to persistent excess demand and floors prevent the market from eliminating
excess supply, the real reason behind the unpopularity (among economists)
of price controls is the fact that they cause a misallocation of resources.

STEP Proceed to the PriceCeiling sheet.

Suppose there is a price ceiling on this good at $84.40. At this price, there is
a shortage of the good because quantity demanded at $84.40 is 132.8 units
(cell B13) while quantity supplied is only 95 (cell B12).

The price cannot be bid up because $84.40 is the highest price at which the
good can be legally sold. Thus, with this price ceiling, the output level is
95. We know this is an inefficient result because we know Q* = 125. This is
the real reason why this price ceiling is a poor policy, not because it causes
a shortage. The price ceiling fails to maximize total surplus.

To be clear, with this price ceiling, too few resources are allocated to the pro-
duction of this good or service. There will be only 95 units of it produced,
not the optimal 125 units. The fact that there is a shortage is true, but it is
the misallocation of resources that is the problem.

While the misallocation of resources is easy to see since the quantity is wrong,
deadweight loss is more complicated. It depends on the story about the price
control and how agents react.

Suppose, for example, that market players are all honest so there is no illegal
selling of the good above the maximum price. In other words, producers do
not violate the law. Suppose further that the good is allocated via lottery
so there are no lines of buyers or resources spent waiting. This means that
consumers’ surplus is now a trapezoid instead of a triangle.
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STEP Click the Show DWL button.

As shown in Figure 17.10 (and on your screen), a rectangle has been removed
from deadweight loss so it is now just the red triangle.

Figure 17.10: DWL with no illegal market.
Source: CSPS.xls!PriceCeiling.

In addition to the usual CS triangle in Figure 17.10, consumers enjoy the
area of the rectangle computed by multiplying a price of $160 (which is the
price consumers are willing to pay for 95 units of the good) minus $84.40
(the price consumers actually pay) times 95 units.

The good news behind this price ceiling with no cheating story is that the
deadweight loss is much smaller than in the CSandPS sheet with Q = 95
because the lucky consumers who can purchase the good do not have to pay
$160/unit. The bad news is that there is still a deadweight loss of $1,134.
This is a measure of the inefficiency of the price ceiling with no illegal market.

Suppose instead that there are unlawful sales of the product at the illegal
market price, $160/unit (this is the most buyers are willing to pay for 95
units). Suppose, in addition, that somehow there are no wasted resources
associated with this illegal market. No police investigations, court cases, or
any other resources are spent on stopping criminal sales. Then the producers
get the rectangle. With this idealized illegal market, the rectangle is trans-
ferred from consumers to producers, but the deadweight loss stays the same.
The Q&A sheet asks you to demonstrate this.
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If, as is almost surely true, illegal selling results in more resources being
spent, then the deadweight loss is larger than the red triangle. Illegal activ-
ity often leads to violence (think of illegal drugs, which are a market with a
price ceiling of zero) and we would subtract that from CS+PC and thereby
increase DWL.

Consider two other stories about the price ceiling. A limited set of buyers
are given coupons to buy the product. To buy the good (at the legal price),
you must have a coupon. If a rationing coupon scheme is used, the sellers of
the coupons get the rectangle. The deadweight loss remains the same.

Suppose, finally, that a price ceiling is set and the good is allocated on a
first-come-first-serve basis. In other words, buyers have to wait in line. With
this story, the time, effort, and other resources buyers waste standing in line
(or paying others to stand in line for them) must be subtracted from the
total surplus. The deadweight loss rises. If the entire rectangle is lost, then
the deadweight loss is the same as that in the CSandPS sheet when 95 units
of output are produced.

Price controls are a popular way to modify market results. Unfortunately,
from a resource allocation standpoint, price controls suffer from the fact that
they fail to maximize total surplus. It is this property and not that they
produce shortages that earn price ceilings criticism. We want the allocation
mechanism to give optimal Q.

It is confusing that correctly measuring deadweight loss depends on the story,
but do not be distracted by the many ways buyers and sellers can respond to
price controls. The take-home message is that any deviation from Q* means
that the allocation scheme has failed. Deadweight loss, which gives a measure
of the inefficiency in monetary units, depends on the specific implementation
of the price control, but the fact that it is not zero is evidence that it has
failed.

Caveat Emptor

“Let the buyer beware” is the meaning of the Latin phrase, caveat emptor .
This idea from contract law is a warning to the buyer that they are respon-
sible for what they are buying. The consumer needs to be careful so they
aren’t tricked or end up with a poor quality, unsuitable product.

https://www.google.com/search?q=caveat+emptor
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Caveat emptor applies to deadweight loss. On the one hand, deadweight
loss is a common way that economists measure inefficiency. It is based on
the idea that the maximum total surplus is not attained from a particu-
lar output level. But users need to know what they are getting themselves
into—deadweight loss has two glaring weaknesses.

The first has to do with our calculation of consumers’ surplus. For technical
reasons, restrictive assumptions about the utility function must be imposed.
For example, a Cobb-Douglas utility function for individual consumers will
not work because it has an income effect. A quasilinear utility function will
work (no income effect), but it is unlikely that all consumers have quasilinear
utility.

Consumers’ surplus violates the rule that we should not make interpersonal
utility comparisons. We are using the demand curve to add up dollar mea-
sures of the extra satisfaction that different people get from consuming a
product. That is unsound and breaks a basic tenet of modern utility theory.

The second weakness stems from the use of partial equilibrium analysis. We
are calculating deadweight loss based on the impact in a single market of
a deviation in output from its optimal level. The focus on one market is
too limited. If we apply too many or too few resources to the production
of one good, we will cause deviations from optimal output for other goods
and services. So, the deadweight loss computation based on one market is
a lower bound. To get it exactly right, we would have to analyze effects on
other markets and do a general equilibrium analysis.

Regarding deadweight loss, it is caveat emptor. Remember that deadweight
loss measures inefficiency and it is commonly used in applied work, but it is
not exactly right. The best way to think of deadweight loss is as an approx-
imation.

Some economists are appalled at the thought of using deadweight loss. These
most strident critics are usually more theoretically oriented. Economists who
do empirical work are more likely to argue that deadweight loss is imperfect,
but practically speaking, it is a useful way of measuring inefficiency.
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Optimal Allocation of Resources

This is an important section. It introduced producers’ and consumers’ sur-
pluses, which are key elements in the omnipotent, omniscient social planner’s
objective function.

The idea that there is an optimal level of output for each good and service
is fundamental. From this idea we get the procedure for evaluating any allo-
cation scheme or government policy: We compare an observed result to the
optimal answer.

It is obvious that quantities below the intersection of supply and demand
cannot be optimal because both CS and PS rise as Q increases. The sit-
uation with quantity above the intersection of supply and demand is more
subtle. To get the calculation right, whenever quantity is above the intersec-
tion point, we must subtract from the sum of CS and PS a rectangle that is
the difference between prices multiplied by quantity.

The most important and remarkable result from this section is that Qe = Q*.
This says that in a properly functioning market, the equilibrium quantity
(which is the market system’s answer to society’s resource allocation prob-
lem) yields the socially optimal level of output.

Price controls lead to inefficient allocation of resources. The output gener-
ated does not match the optimal output. The deadweight loss associated
with a price control depends on the story of how the particular implemen-
tation of the price control is enforced and responded to by buyers and sellers.

There is no question that deadweight loss is a linchpin of policy analysis.
Countless estimates of deadweight loss and cost–benefit studies have been
conducted. It is, however, flawed. Measuring consumers’ surplus in value of
money terms from a market demand curve in a partial equilibrium setting
leaves us on very thin ice. Applications and estimates of deadweight loss
should be seen as an approximation to the exact measure of the loss from
the misallocation of resources (if such a measure exists).

While deadweight loss is flawed, the notion of a misallocation of resources
is not. The idea that there is an optimal solution to society’s resource allo-
cation problem is perfectly valid. So is defining an allocation that deviates
from optimal as a misallocation of resources. These are bedrock ideas in
microeconomic theory.
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This should mark the end of this section, but because there is so much con-
fusion about equilibrium and optimal resource allocation, what follows is an
attempt to provide some clarity.

Take a moment, before you begin reading the next section, to think about
what supply and demand is really all about. What is the point? What are
we trying to explain? Read the next section, maybe even repeatedly, to make
sure you can answer these fundamental questions.

Equilibrium and Optimal Resource Allocation

The material below is being repeated for emphasis. The Theory of Con-
sumer Behavior and Theory of the Firm are stepping stones to the Qe = Q*
result. Let’s put things in perspective and explain why this is so fundamental.

In the 1700s, it is absolutely true that philosophers and deep thinkers of the
day were baffled by the market system. There was active debate about how
and why Europe and, especially, England was getting so rich. How could
the unplanned, individual decisions of many buyers and sellers produce a
pattern, much less a good result? It seemed obvious that a leaderless, frag-
mented system would produce chaos.

In the previous section, we saw that the equilibrium quantity, Qe, generated
by a properly functioning market is located at the intersection of supply and
demand. The market uses a good’s price to send signals to buyers and sellers.
Prices above equilibrium are pushed down, whereas prices below equilibrium
are pushed up. At the equilibrium solution, the price has no tendency to
change and output is also at rest. The equilibrium level of output is the
market’s answer to how much of society’s resources will be devoted to pro-
ducing this particular good.

Our work in this section on consumers’ and producers’ surplus takes a much
different perspective on the resource allocation problem. Instead of exam-
ining how the market works, we have created a thought experiment, giving
an imaginary social planner incredible powers. Given the goal of maximizing
total surplus, OOSP would choose an optimal quantity, Q*, that should be
produced. If we produce less or more than this socially optimal amount,
society would forego surpluses that would make producers and consumers
better off. Producing the wrong Q yields deadweight loss.
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If we compare the market’s equilibrium quantity to the socially optimal quan-
tity, we are struck by an amazing result: Qe = Q*. This critical equivalence
means that we do not need a dictator, benevolent or otherwise, to optimally
allocate resources. The market, using prices, can settle down to a position
of rest where all gains from trade are completely exploited and the sum of
producers’ and consumers’ surplus is maximized.

There is no guarantee, however, that Qe = Q*—there are conditions under
which the invisible hand does not lead the market to optimality. We will see
examples where the equality does not hold and the market is said to fail.

As you work on this section and this part of the book, do not lose sight of
the main point: The market’s ability to generate an equilibrium quantity
that is socially optimal is nothing short of amazing and unbelievable. It is
equivalent to geese flying in a V. A pattern is generated by the interactions
of individuals with no awareness or intent to make the pattern.

Consider this hypothetical: we learn that broccoli cures cancer. Would we
need a president, prime minister, or king to tell farmers to grow more broc-
coli? Of course not. Broccoli would fly of the shelves, its price would rocket,
and farmers would automatically plant and produce more broccoli. They
would not try to figure out what would be best for society, but simply re-
spond to the market signal. That is what the supply and demand model is
really all about.

Analogies from biology are many, but this one might be so shocking and
different from anything you have seen before that it will convey why supply
and demand is so fascinating to economists.

STEP Visit http://tiny.cc/siphonophore to learn about this creature and
see it in action.

Exercises

1. From the CSandPS sheet, click the Reset button, then set d0 = 375
and use Solver to find the optimal quantity. Take a picture of the cells
that contain your answer and paste it in a Word doc.

2. Click the Show DWL button. Suppose there was a price ceiling of
$84.40. What is the story about price ceilings assumed by the chart
and DWL computations on the sheet?

https://www.wired.com/2014/08/absurd-creature-of-the-week-siphonophore/
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3. Suppose the government implemented a price support scheme (this is
a type of price floor that is used frequently for agricultural products)
where they only allowed 95 units to be produced. Cell E16 shows that
the market price would be $185. Compute the deadweight loss and
explain it.
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Harberger triangles, now common
fare, were once rare delicacies.
...While the theory of deadweight
loss measurement was
well-established by the 1950s,
economists very rarely estimated
deadweight losses prior to the
appearance of Harberger’s work.

James R. Hines, Jr.

17.3 Tax Incidence and Deadweight Loss

Many goods and services are taxed. Sales taxes (also called value added or
ad valorem taxes) are a percentage of the monetary amount spent; quantity
taxes are levied per unit bought. Quantity taxes are applied, for example,
to gasoline, alcohol, and cigarettes.

In chapter 3.4, we examined cigarette taxes. It was shown that, for a par-
ticular consumer, lump sum (fixed amount) taxes are better than quantity
taxes. In this section, we turn from an analysis of taxes on the individual to
their effect on society and the resource allocation problem.

We will use supply and demand in a partial equilibrium setting to evaluate
the effects of taxes on goods and services allocated by the market. We work
with quantity taxes because our linear supply and demand curves will shift
vertically as the tax is applied. Sales taxes are harder to analyze, but the
qualitative results we derive for quantity taxes carry over to sales taxes.

There are two basic issues:

1. Tax incidence: determining the tax split between buyer and seller.

2. Deadweight loss : evaluating the inefficiency generated by the tax.

Our work will show a counterintuitive proposition: It does not matter whether
consumers or producers pay the tax. In the end, neither the tax burden nor
the deadweight loss depends on who sends tax payments to the government.

Our approach to the second—and more important—issue relies on comparing
the output after the tax is imposed to the socially optimal output (based on
maximizing consumers’ and producers’ surplus). Deviations from optimality
are said to be inefficient solutions to society’s resource allocation problem.
We will use deadweight loss to measure the inefficiency. This is known as
welfare analysis, where welfare means the well-being of a person or group.

579
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It Does Not Matter Who Sends the Tax Payment

Suppose you are renting an apartment for $700 a month. Suppose further
that property taxes rise $100. If your landlord raises the rent to $800 a
month and you agree, it is easy to see that you are paying for the entire tax
increase. The landlord pays the property tax to the government, but you are
bearing the burden of the tax.

But what if you refuse to pay the $100 increase and move out. The landlord
cannot find anyone to rent the apartment for $800 and, eventually, agrees to
rent the apartment for $725 a month to a new tenant. The computation of
the tax burden is easy. The new tenant is bearing the burden of $25 or 25%
of the tax increase, while the landlord’s burden is $75 or 75%.

No matter what the rent ends up being, the landlord sends the tax payment
to the government, but that does not answer the question of who is really
responsible for the tax. The landlord may be able to shift some of the tax
onto the renter.

It turns out that the elasticities of demand and supply determine who bears
the burden. The more inelastic, or price insensitive, the higher the burden.

Tax incidence is the analysis of who bears the burden of a tax. In a moment,
we will be working with complicated supply and demand graphs, but the
analysis is basically the same as the story of the tenant and the landlord.

Supplier Pays

For most products, the supplier or firm is responsible for collecting the tax
when the good is purchased and for sending in the tax payments to the gov-
ernment. This is what is meant by “supplier pays.” Of course, we know that
who collects and pays the tax is different from the tax incidence because
anywhere from 0 to 100% of the tax may be shifted to the consumer.

The elasticities of supply and demand determine how the tax is split between
consumer and firm.

STEP Open the Excel workbook Taxes.xls, read the Intro sheet, then go
to the SupplierPays sheet.
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The sheet has parameters for linear demand and supply curves. Initially,
there is no tax so the equilibrium price is $100/unit and the equilibrium
quantity is 125 units. Cell B17 shows that the government collects no revenue
and cell E17 shows that there is no deadweight loss (because the market’s
equilibrium quantity equals the socially optimal quantity).

The price elasticities at the initial equilibrium solution are εD = −0.4 and
εS = 1.54, for demand and supply. The sum of the absolute values is 1.94.

STEP Click on the scroll bar next to cell B14 five times to impose a tax.

A red line appears on the chart and it shifts with each click. Five clicks will
set the tax at $50 and the spreadsheet will look like Figure 17.11.

Figure 17.11: Supplier pays a $50 quantity tax.
Source: Taxes.xls!SupplierPays.

The inverse supply curve has shifted up by $50/unit because in order for the
suppliers to offer a given quantity, they have to receive $50/unit more than
the original supply curve (without the tax). They will not get to keep the
extra $50 per unit—they have to send it to the government.

For example, to offer 125 units at the initial equilibrium solution, firms
needed a price of $100, but now they will need $150/unit. The value of
P is $150 for Q = 125 with the red line in Figure 17.11. Every quantity has
the same $50 increase in price on the red line.

The spreadsheet displays the information we need to compute the tax inci-
dence. We can see that the consumer is bearing the majority of the tax by
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looking at the new equilibrium price. The dashed line (and cell B15) shows
the new Pe = 139.68. We can compute the fraction of the tax borne by the
consumer: 39.68

50
≈ 79.4%. The supplier has managed to pass along all but

about one-fifth of the tax to the consumer.

We can also use the absolute values of the pre-tax (initial) price elasticities
to get the relative burdens for consumer and firm:

1− 0.4

1.94
≈ 79.4% and 1− 1.54

1.94
≈ 20.6%

The Tax Incidence Formula to determine the share of the tax burden using
demand and supply price elasticities is:

1− εi
εD + εS

for i = D,S

Notice that the formula drops the minus sign for the price elasticity of de-
mand and for the rest of this section, we will mean the absolute value when
we refer to the price elasticity of demand.

The elasticity values from the spreadsheet and the Tax Incidence Formula
make clear that the lower the price elasticity, the higher the tax incidence.
As εi → 0 (for either D or S ), the burden (for D or S ) goes to 100%. The
consumer is paying four-fifths of tax in Figure 17.11 because demand is much
more inelastic than supply at the initial equilibrium price.

We will discuss tax incidence in more detail below, but we turn now to the
second, more important issue, the welfare implications of per unit taxes.

With a $50 quantity tax, the SupplierPays sheet shows a deadweight loss
of $496 in cell E17. The deadweight loss can be calculated by finding the
difference of the maximum possible surplus minus the surpluses enjoyed by
the consumers, producers, and government. This is equivalent to the (red)
triangle on the chart, which is also known as a Harberger triangle.

We proceed carefully. Consumers’ surplus (CS) and producers’ surplus (PS )
after the tax is imposed have both been reduced by the trapezoidal shapes
in Figure 17.12. Clearly, CS has fallen by much more than PS. More im-
portantly, however, is the fact that the deadweight loss (DWL) is not the
sum of lost CS and PS because we have introduced a third player—the gov-
ernment. They will get most of CS and PS lost in the form of tax revenue.
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The total tax payments of $5,258 is the area of the rectangle with height
$139.68− $89.68 = $50 and length 105.16 units of output.

Figure 17.12: Lost CS and PS from the $50/unit tax.
Source: Taxes.xls!SupplierPays!AN.

Once we recognize that the tax has lowered CS and PS, but that part of the
surplus is captured by the government, we can see that the deadweight loss
is the Harberger (red) triangle in Figure 17.13, with area displayed in cell
E17. The surplus in the Harberger triangle vaporizes into thin air, captured
by no one.

Figure 17.13: CS, PS, and GovRev from the $50/unit tax.
Source: Taxes.xls!SupplierPays!AN.

The height of the Harberger triangle is the price the consumer pays minus
the price received by the firm, which is called the tax wedge. This distance is
the amount of the tax. When you clicked five times to impose the tax, you
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could see the wedge expanding, creating a space between what the consumer
pays and the firm receives.

The tax wedge takes surplus from consumers and producers, but this is not a
problem. Presumably, the government is building schools, roads, and provid-
ing services. As long as someone gets the surplus, partial equilibrium surplus
analysis counts it as a successful outcome.

Figure 17.13 shows, however, that the Harberger triangle goes to no one.
This is a problem. Deadweight loss is surplus that simply vanishes. It is a
loss of surplus that is not recouped by anyone.

The width of the DWL triangle is the distance from the new equilibrium
quantity after the tax to the original equilibrium quantity. The bigger this
distance, the greater is the distortion of the tax in terms of resource alloca-
tion.

STEP Click on cell E17 to see its formula. It simply computes the area
of the red Harberger triangle.

We summarize and repeat a few key ideas. Deadweight loss is a dollar mea-
sure of the distortion caused by the tax—the “market with a tax” scheme
is no longer producing the optimal quantity. This is a misallocation of re-
sources. Deadweight loss represents gains from trades that are not being
exploited. There is $496 in value that no one is getting. It is simply vapor-
ized and disappears into thin air.

The rectangle formed by the tax times the equilibrium quantity (after the tax
is imposed) is a transfer from consumers and producers to the government.
This does not count as deadweight loss because someone (the government)
is getting it. The key to understanding deadweight loss is that it accrues to
no one—it is unclaimed surplus and, therefore, pure waste.

Demander Pays

Suppose that instead of the firm it is the consumer who is responsible for
collecting the quantity tax when the good is purchased and for sending in
the tax payments to the government. This may seem a little strange at first,
but there are cases where this occurs.
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For example, if you buy online and the seller does not charge you state and
local taxes, you should pay those taxes. At the dawn of the internet, this
gave online retailers a big advantage over brick and mortar stores that added
sales and other taxes to the total. Few people pay taxes when they are not
collected by the seller. Today, almost all online retailers include taxes.

For the purposes of comparing what happens when the buyer or seller pays
the tax, forget about administrative costs or the fact that firms are much
better tax collectors than consumers. We assume that consumers and firms
will both comply and send the correct tax payment to the government even
though that is obviously not true.

STEP Go to the DemanderPays sheet and impose a $50 tax. Pay atten-
tion to the screen as you click. You can watch the tax wedge emerge.

Figure 17.14 shows the result, with the DWL triangle displayed.

Figure 17.14: Demander pays a $50 quantity tax.
Source: Taxes.xls!DemanderPays.

This time, it is the demand curve that is shifting. Instead of the firm, it is
the buyer who must compute the tax and send in the payments. A $50/unit
tax will shift the inverse demand curve down (not up) by $50 because each
consumer is willing to buy any given quantity for $50 less than before since
she will have to pay an additional $50 to the government per unit purchased.

As before, a deadweight loss triangle appears when you impose the $50 tax.
The tax drives a wedge between the total price the consumer pays and the
amount the firm receives. This is the height of the triangle.
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The deadweight loss triangle’s width is the difference between the initial and
new Qe. The equilibrium quantity is driven down by the tax and, therefore,
it no longer equals the socially optimal quantity. The tax causes an ineffi-
cient allocation of resources. The deadweight loss of $496 is a measure of the
inefficiency caused by the tax.

The tax incidence can be found by computing the share of the tax paid by
the consumer versus the firm. The sellers receive a price of $89.68 so they
bear roughly $10 of the $50 tax. The consumer pays the firm $89.68 and the
government $50 for each unit for a total price of $139.68. The buyer’s share
of the tax is about 80%.

The government’s revenue is the $50 tax on each unit sold times the new
equilibrium quantity, 105.16. This yields $5,258 and can be represented as a
rectangle in the supply and demand graph.

It is obvious that these numbers are the same as the suppliers pays scenario,
but a fun and memorable way to show that it does not matter who pays the
government is to toggle back and forth between the two sheets.

STEP Click the SupplierPays sheet tab, then click the DemanderPays
sheet tab. Repeat this several times while keeping your eye on the screen.
What do you notice?

The chart is different, of course, and the d0 and s0 parameters are different
because the demand and supply intercepts do change based on who collects
the tax for the government. But the price paid by the consumer, the price
received by the firm, government revenue, and, most importantly, equilib-
rium quantity and deadweight loss are all exactly the same.

There is no doubt about it—tax incidence and deadweight loss do not depend
at all on who physically collects and sends tax payments to the government
(compliance being equal). If it does not matter if the buyer or seller pays
the tax, then what do tax incidence and deadweight loss depend on?

Elasticities Drive Tax Incidence and Deadweight Loss

The relative price elasticities of demand and supply determine both the tax
incidence (the distribution of the tax burden) and the deadweight loss (the
measure of inefficiency in the allocation of society’s resources).
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Nothing else matters—certainly not who collects the tax, but also nothing
else either. Price elasticities of demand and supply are all you need.

The more inelastic is demand at the initial equilibrium price, given supply,
the more the consumer will bear the burden of the tax and the lower the
deadweight loss. Likewise, the more inelastic is supply at the initial equilib-
rium price, given demand, the more the supplier bears the burden of the tax
and the lower the deadweight loss.

We return to the apartment rent example to see how supply and demand
analysis would work in an extreme case. If you agree to a $100 increase in
rent, your demand for apartments is perfectly inelastic in this price range.
The price increase from $700 to $800 has no effect on the quantity demanded.
In this case, you bear the entire burden of the tax and there is no deadweight
loss. The situation is depicted in Figure 17.15.

Figure 17.15: Tax effects with perfectly inelastic demand.

If you had to pay the property tax, you would be unable to shift it onto the
landlord. In Figure 17.15, D would shift down, but it is a vertical line so it
would shift on top of itself. The landlord would get $700 from you (the initial
equilibrium price) and you would pay an additional $100 to the government.

Our Tax Incidence Formula yields the same result. With perfectly inelastic
demand, εD = 0. Thus, we have:

1− εD
εD + εS

= 1− 0

0 + εS
= 100%

This says the buyer bears the burden of the entire tax. Notice the formula
does not have an input for who is writing the check to the government—that
does not affect the outcome at all.



588 CHAPTER 17. PARTIAL EQUILIBRIUM

The formula also tells us that εS does not matter at all in the extreme case of
perfectly inelastic demand. Any price elasticity of supply greater than zero
leaves the buyer bearing the full burden of the tax.

The situation is reversed, of course, for the tax incidence if supply is perfectly
inelastic. We would have a vertical S line that shifts up onto itself when the
supplier pays the government. This leaves equilibrium price and quantity
unchanged so the consumer pays the same amount as before and bears none
of the tax burden. Once again, deadweight loss is zero.

Once again, the Tax Incidence Formula gives the same result. With εS = 0,
the εD in the numerator and denominator cancel and we get zero. This means
the consumer bears no burden from a tax on a perfectly inelastically supplied
good.

Of course, the main result that relative price elasticities determine tax inci-
dence and deadweight loss applies in general and not just to these extreme
cases. We can demonstrate this with the Excel workbook.

STEP To enable comparison, copy the SupplierPays sheet by right-clicking
the sheet tab and selecting Move or Copy.) Select SupplierPays so the sheet
is inserted before the SupplierPays sheet and check the Create a Copy box.

Excel inserts a new sheet in the workbook, named SupplierPays (2). We
will apply the same $50 tax with a more elastic demand curve at the initial
equilibrium price to see the effect on tax incidence and deadweight loss.

STEP Click the Reset button, then click the More Elastic Demand
button in your new sheet.

A new, red inverse demand curve appears that is flatter, yet it goes through
the initial equilibrium solution. The button simply sets the intercept and
slope to 225 and 1, respectively. The price elasticity of demand at the initial
equilibrium solution has risen (in absolute value) to −0.8 (as shown in cell
E11).

It is important to not confuse slope and elasticity. The new, red inverse
demand curve is more price elastic at P = 100 because it is flatter at that
point. It is incorrect to say, however, that flatter lines are more elastic as
a whole than steeper lines—both the initial and new inverse demand curves
have varying elasticity all along the line. Thus, it does not make sense to say
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that flatter lines are more elastic. Elasticity refers to a percentage change
response at a point. Only at P = 100 do we know that elasticity is higher
for the flatter, red inverse demand curve.

STEP Click the tax scroll bar five times to impose a $50 per unit tax.

Figure 17.16 shows that the consumer bears less of the tax burden than
before (but still more than the seller) and deadweight loss has risen.

Figure 17.16: Tax effects with a more elastic D.
Source: Taxes.xls!SupplierPays.

With εD = 0.8 instead of 0.4, ceteris paribus, the tax incidence on the con-
sumer has fallen because the price has risen only to $132.89 as opposed to
$139.68 on the SupplierPays sheet. So, the consumer bears $32.89 of the $50
tax or 32.89

50
≈ 65.8% of the tax. Notice that firms will now only net $82.89

per unit instead of $89.68 when εD = 0.4. Suppliers tax burden rises to 34.2%.

The Tax Incidence Formula corroborates this result.

1− εD
εD + εS

at εD = 0.4 = 1− 0.4

0.4 + 1.54
≈ 79.4%

1− εD
εD + εS

at εD = 0.8 = 1− 0.8

0.8 + 1.54
≈ 65.8%

More importantly, deadweight loss has risen after the increase in the price of
elasticity of demand from 0.4 to 0.8. Toggle back and forth from the original
and new SupplierPays sheets to see that deadweight loss increases from $496
to $822.25.
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While the height of the Harberger triangle has remained the same (the
$50/unit tax), the length has increased because the new equilibrium quantity
is farther from the initial Qe = 125.

If you toggle back and forth a few times, you can see how the more elastic
demand curve is creating a DWL triangle that is longer, but with the same
$50 height. If you keep flattening the inverse demand curve (making sure
that it passes through the initial equilibrium solution), the triangle keeps
lengthening, but the height stays the same. A perfectly elastic (horizontal)
D curve would produce the greatest deadweight loss possible.

STEP After thinking about it a bit, you can verify the claim above by
using the control just to the right of the chart. Try all five scenarios.

With Equal Burden selected the demand and supply elasticities at P = 100
are the same so the $50 tax is split evenly. The consumer pays $125/unit
and the firm receives $75/unit.

The bigger drop in equilibrium output with more elastic demand is also re-
sponsible for the fall in government revenues. Instead of collecting $5,258 in
tax revenues, the government only gets $4,605.50. It gets $50/unit in both
scenarios, but equilibrium quantity has fallen to 92.11 units with εD = 0.8.

But neither the incidence of a tax nor the effect on government revenues is
the highest priority issue. The top concern is the misallocation of society’s
scarce resources caused by taxation. It is this that leads to a theory of opti-
mal taxation.

Optimal Taxation

Figure 17.15 shows why it makes sense to tax inelastically demanded goods.
If we could find perfectly inelastically demanded or supplied goods, we would
tax them because then we would not distort the allocation of resources.

Our goal is to raise government revenue for needed projects by causing the
smallest misallocation of resources. Thus, the optimal tax is the one that
has the least deviation of equilibrium output from optimal output, which is
equivalent to minimizing deadweight loss.
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Clearly, it is better, ceteris paribus, to tax goods with low price elasticities
of demand or supply. In the introduction to this section, gasoline, cigarettes,
and alcohol were mentioned as goods that carry quantity taxes. It is no sur-
prise that these goods are quite price inelastic at their usual sales prices.

Granted, there may be other reasons to tax these products (and we will see
one of them in the section on externalities), but to the extent that govern-
ment seeks revenue from taxing individual products, it should tax those that
will not lead to large deadweight losses.

There is no quantity tax on Milky Ways , a scrumptious chocolate candy.
Obviously, the government could never generate the same tax revenue from
Milky Ways as gasoline, but even if it could, with so many substitutes, Milky
Ways must be very price elastic. A tax on Milky Ways would lead to a
great fall in equilibrium output. Government revenue would be quite low
and deadweight loss very high.

Elasticity Rules

Public Finance (also known as Public Economics) is a subdiscipline of eco-
nomics that includes the study of government tax policy. The theory of
optimal taxation focuses on the best way to tax. The analysis in this section
says that quantity taxes should not be applied to goods that are relatively
price elastic because the deadweight loss will be high. Instead, by taxing
goods with inelastic demand or supply curves, government can raise needed
revenue with a minimum of distortion in the allocation of society’s resources.

This section also focused on the issue of tax incidence, who really bears the
burden of a tax. This is a secondary issue compared to that of the optimal
allocation of resources, but there is a surprising key result: It does not matter
who collects the tax for the government (ignoring administrative costs and
assuming equal compliance) because that party may be able to shift the tax
onto someone else. Like deadweight loss, the tax incidence depends only on
the elasticities of demand and supply. The more inelastic one of the curves
is versus the other, the more that party will bear the burden of the tax. The
Tax Incidence Formula sums this up conveniently:

1− εi
εD + εS

for i = D,S

https://www.google.com/search?q=milky+ways&tbm=isch
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Unfortunately, it is easy to confuse elasticity and slope. Do not fall into the
trap of thinking that flat demand and supply curves are elastic and steep
ones inelastic. If linear, slope is constant, but elasticity varies—for a linear,
inverse demand curve, it rises as you go up and get closer to the vertical axis.
Although you should not describe an entire curve as elastic or inelastic, you
can correctly infer that where two lines cross, the flatter one is more elastic.

The French economist Frederic Bastiat (1801 - 1850) had a clever way of
explaining what economists do. In his final essay, titled “What is Seen and
Unseen,” Bastiat argues we need to be aware of invisible costs and effects.

Taxes are a good example. It is easy to think that property taxes are paid
by property owners, but this is simply not necessarily true. What is seen, a
tax payment, is not the whole story. It is amazing, but true, that who pays
the tax bill is irrelevant. It is also amazing that price elasticities, which are
unseen, completely determine tax incidence and deadweight loss.

Exercises

1. Do we get the same result if we have consumers or firms pay the tax
to the government with a perfectly inelastic supply curve? To support
your answer, use Word’s Drawing Tools to draw graphs. Explain the
graphs and the result.

2. Use Word’s Drawing Tools to draw a graph where supply is more in-
elastic than demand at the initial equilibrium price. Apply a quantity
tax. Comment on the tax incidence and deadweight loss.

3. In 1937, when Congress set up the Social Security system, it was de-
cided that firms and workers each pay half of the total tax so the tax
burden is equally shared. Today, workers and employers each pay 6.2%
of wages up to maximum that changes each year. Do you think that
by each party paying the same tax the burden is equally shared? Why
or why not?

4. Suppose the demand for labor is more elastic than the supply of labor
at the equilibrium wage. Use Use Word’s Drawing Tools to draw a
graph that shows the tax incidence of the Social Security tax.

Hint: You have to shift both demand and supply by the same amount,
and then find the new equilibrium point.

https://www.google.com/search?q=frederic+bastiat
https://www.google.com/search?q=%22What+is+Seen+and+What+is+Unseen%22
https://www.google.com/search?q=%22What+is+Seen+and+What+is+Unseen%22
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Marginal cost pricing as a policy is largely
without merit. How then can one explain
the widespread support that it has enjoyed
in the economics profession? I believe it is
the result of economists using an approach
which I have termed “blackboard
economics.”

Ronald Coase

17.4 Inefficiency of Monopoly

Partial equilibrium analysis is based on the idea that each good and ser-
vice with resources allocated via the market system has supply and demand
curves. Prices signal quantities demanded and supplied and are pushed to-
ward equilibrium by market forces. The equilibrium quantity is the market’s
answer to society’s resource allocation problem.

If an omniscient, omnipotent social planner, OOSP, were to maximize the
consumers’ and producers’ surplus of an individual good or service, she would
explicitly order the production of the socially optimal amount of each good
and service.

A critical result from this analysis is that a properly functioning market’s
equilibrium quantity equals the socially optimal quantity. This is what we
mean when we say that a properly functioning market correctly solves soci-
ety’s resource allocation problem. There is no deadweight loss because the
correct output is produced.

This section focuses on the following question: What happens if one of the
goods is produced by a single seller (instead of the many individual firms
that define perfect competition)?

In other words, we explore the welfare effects of monopoly. Our analysis is
based on partial equilibrium and uses the tools of consumers’ and producers’
surplus. We evaluate monopoly by figuring out what a monopolist would pro-
duce, and then compare the monopoly output to the socially optimal output.

STEP Open the Excel workbook MonopolyDWL.xls, read the Intro sheet;
then go to the PC sheet.

The linear demand and supply curves have the same parameter values used
in previous examples. The equilibrium price is $100, which yields an equilib-

595
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rium output of 125 units. Because the socially optimal level of production is
also 125 units, the market yields an efficient allocation of resources.

Notice that at the socially optimal and competitive market solution, since
supply is the sum of firm’s marginal costs, we know that aggregate marginal
cost equals demand. This is called marginal cost pricing and is indicative of
a socially optimal solution. We will see in a moment that monopoly does not
share this property.

The Monopoly Solution

Suppose all of the firms that produce a product in a perfectly competitive
market were to merge into a giant, single firm. We assume that the cost
structure stays exactly the same. In other words, the supply curve, which
was the sum of the individual marginal cost curves, now becomes the mo-
nopolist’s marginal cost curve.

Assuming that the costs of many firms would be the same costs faced by a
single firm is a stretch. After all, the monopolist needs only one CEO and one
customer service hotline. In other words, there are likely to be economies of
scale in administration, distribution, and other areas. We assume this away
in our comparison of perfect competition and monopoly. The idea is that the
only difference is in the impact on the observed output when we have many
firms in competition versus a single firm.

The monopolist will behave differently than the many firms did because there
is no competition. Unlike the competitive result, where price is determined
by the interaction of many buyers and sellers, the monopolist will choose the
profit-maximizing price and quantity.

Chapter 15 explained monopoly profit maximization. What is different in
this section is that, after determining the output chosen by the monopolist,
we want to evaluate it using the tools of partial equilibrium analysis.

Our path is straightforward: we will solve the monopolist’s problem with
analytical and numerical methods, then we judge the monopoly outcome.

We know the monopolist will maximize profit by finding that quantity where
MR = MC. The former is given by the demand curve, but what about MC ?
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The MC function is given by the supply curve parameters in the PC sheet.
Once a monopoly takes over, it does not have a supply curve, but it does
have a marginal cost function, which is the same as the supply curve (because
of our assumption that there is no difference in costs between a competitive
industry and a monopoly).

Thus MC = 35 + 0.52Q and we can derive demand from the demand curve,
as we have done before:

TR = P (Q)Q = (350− 2Q)Q = 350Q− 2Q2

MR =
dTR

dQ
= 350− 4Q

As expected, we see that MR has twice the slope of the demand curve.

To find the monopolist’s optimal Q, we set MR = MC and solve for Q*:

350− 4Q* = 35 + 0.52Q*

4.52Q* = 315

Q* ≈ 69.69

To find P*, we use the demand curve to compute the highest price obtainable
for that quantity.

P = 350− 2Q = 350− 2[69.69] ≈ $210.62

STEP Proceed to the Monopoly sheet to use numerical methods.

The graph has been augmented with the MR curve and the supply curve is
now labeled MC. The MR curve was always there, but perfectly competitive
firms cannot exploit it.

The sheet shows the monopoly price and output in cells B15 and B16 based
on the analytical solution. Before we examine the deadweight loss and sur-
plus information, we confirm that numerical methods agree.

When you run Solver, notice that the Solver dialog box is set up to choose
that quantity that sets cell B20 to zero. The initial output of 50 units is too
low. The fact that MR −MC is $89 means that the 50th unit of output
adds $89 more in profits and, therefore, more should be produced.



598 CHAPTER 17. PARTIAL EQUILIBRIUM

STEP Run Solver to find the Q that sets MR−MC equal to zero.

After running Solver, you should see that cell B20 equals zero and that the
Solver solution agrees (not exactly, but practically speaking) with the ana-
lytical method. This is not a surprise.

We now arrive at the key moment. How to judge the monopoly solution?

Evaluating Monopoly

We know the monopolized market will have an optimal output of 69.69 units
and a price of $210.62/unit. The evaluation of this outcome is based on com-
puting the consumers’ surplus, CS, and producers’ surplus, PS, generated by
the monopoly, and then comparing it to the socially optimal result.

The socially optimal result, at Q = 125 units, yields $19,688 of total surplus.

STEP Cell F19 displays $15,625 of consumers’ surplus. Click on the cell
to see its formula: = 0.5*(d0 − P)*Q. P and Q are named cells for the
perfectly competitive solution of 100 and 125, respectively.

Cell F20 has producers’ surplus at Q = 125. Cell F21 adds CS and PS. The
total surplus of $19,688 is the maximum surplus possible and it is obtained
when 125 units are produced.

Now, consider what happens under monopoly.

STEP Cell I19 shows a dramatic drop in CS. Click on the cell to see its
formula: =0.5*(d0 -Pm)*Qm. Pm and Qm are named cells for the monopoly
price and output.

The monopolist has lowered output and raised the price, relative to the com-
petitive solution. This has greatly reduced consumer’s surplus.

Cell I20 shows producers’ surplus. It has more than doubled from what it
was when the market was competitive. Its formula is: =(Pm-I18)*Qm +
0.5*(I18-s0 )*Qm. The first part of the formula is a rectangle. The height
is the monopoly price minus the MR (or MC given that they are equal).
The width is the monopoly output. A large part of this rectangle—from
the monopoly price to the perfectly competitive equilibrium price—used to
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belong to the consumers. It has been taken by the monopolist and helps
explain why CS and PS have changed so dramatically.

So, CS has fallen and PS has risen, what is the overall outcome? Cell I21
adds CS and PS under monopoly. The total surplus of $15,833 is lower than
the maximum possible surplus of $19,688. The difference, $3,855 (in cell I23),
is the lost surplus due to monopoly. This is also known as the deadweight or
welfare loss.

STEP Click the Show DWL in Chart button to see a visual presenta-
tion in the graph of the deadweight loss of monopoly. It is a Harberger
triangle.

Figure 17.17 is a canonical graph in microeconomics. It shows that the
monopoly output is too low (so too few resources are allocated to this mar-
ket) and the deadweight loss or Harberger triangle is used to indicate the
inefficiency generated by monopoly.

Figure 17.17: The deadweight loss from monopoly.
Source: MonopolyDWL.xls!Monopoly.

Because the monopoly solution does not equal the socially optimal output,
we say there is a market failure. It is a failure in the sense that resources are
not optimally allocated from society’s point of view.

Inframarginal thinking can be applied to Figure 17.17. The basic idea is that
all of the output in the range from the monopoly solution, roughly 70 units,
up to the socially optimal output level of 125 units, exhibits unrealized gains
from trade. For example, the marginal cost of producing the 100th unit is
35+0.52×100, which equals $87. The demand curve tells us that consumers
are willing to pay up to $150 for the 100th unit. Clearly, the 100th unit should
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be produced because the additional satisfaction (as measured by willingness
to pay) is greater than the additional costs of production.

The monopolist refuses to produce and sell the 100th unit, however, because
of an implicit restriction. Monopoly power allows the firm to set the price,
but all units must be sold at the same price. Selling the 100th unit at a
price of $150/unit means that all units must be sold at this price. Doing this
would lower monopoly profit.

But the partial equilibrium welfare analysis critique of monopoly does not
ride on the fact that monopoly forces consumers to pay higher prices than
under a competitive market. The real problem with monopoly is that it pro-
duces too little output—it produces less than the socially optimal level. This
causes too few resources to be allocated to the production of the monopo-
lized good or service. We measure the amount of this inefficiency in resource
allocation by the deadweight loss.

Yet another way to frame the inefficiency of monopoly is to focus on the
fact that the monopolist produces where MR = MC and this differs from
P = MC because MR diverges from the demand curve. A competitive mar-
ket yields a socially optimal output because output is produced up to the
point at which marginal cost equals the price (i.e., marginal cost pricing).

Figure 17.17 makes clear that the monopolist does not conform to marginal
cost pricing. MR = MC yields the output that maximizes profits, but
P = MC (where demand intersects supply or the aggregate marginal cost
curve) is the socially optimal output. The monopolist is not interested in
social optimality and, therefore, does not obey marginal cost pricing.

Elasticity Rules Again

In the previous section, we saw that the deadweight loss from a quantity tax
depended on the price elasticities of supply and demand. The same holds
true for monopoly.

STEP In the Monopoly sheet, display the red DWL triangle (if needed),

and click the D More Elastic button .

Demand is flatter, while going through the same competitive equilibrium
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point, Q = 125, P = 100. Thus, demand is more elastic at this point.

The button is actually a toggle. By clicking it repeatedly, you can switch back
and forth from the original, more inelastic demand (price elasticity of −0.4
at P = 100) to the more elastic demand (price elasticity of −0.8 at P = 100).

STEP Click the D more and less elastic button a few times to convince
yourself that the deadweight loss from monopoly is in fact larger when de-
mand is more inelastic at P = 100.

While cell E17 shows that DWL is higher when demand is more inelastic at
P = 100, we can make a graph that clearly shows this.

STEP Copy the Monopoly sheet and make the elasticity on the new sheet
different than on the original sheet. Copy the chart in one sheet and paste
it on top of the chart in the other sheet.

There is no fill in the chart so it is transparent. Your chart should look like
Figure 17.18.

Figure 17.18: Comparing deadweight loss with different price elasticities of
demand.

In Figure 17.18, the larger red triangle is the deadweight loss of $3,855 in
the initial case, with a price elasticity of demand of −0.4 at P = 100. The
smaller red triangle is DWL with more elastic demand of −0.8. The DWL is
lower, falling to $1,870, when demand is more elastic.

Deadweight loss falls when demand is more elastic because the output does
not deviate as much from the socially optimal result and the monopoly price
is much lower. Hence, the Harberger triangle is both shorter and thinner.
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Intuitively, the more inelastic is demand at given price, the greater is the
monopoly power. A monopolist who enjoys demand that responds little to
price is able to charge very high prices and the gap from marginal cost to
demand for the inframarginal units will be large. This increases the dead-
weight loss from monopoly.

This example shows why economists use deadweight loss to measure ineffi-
ciency instead of simply the deviation in output from its optimal value. The
monopolist does not change output by much when demand is more inelastic
(−0.4), but the fact that consumers are willing to pay a lot more for the
inframarginal units drives the large increase in deadweight loss.

Notice that the effect of elasticity on DWL is different than what we ob-
tained for quantity taxes. In that case, more inelastic demand led to lower
deadweight loss. The effect is reversed with monopoly, but the principle that
elasticity rules remains true.

Monopoly and Price Discrimination

Although we usually assume a monopolist must charge the same price for all
units sold, sometimes a seller can charge different prices for the same prod-
uct. This is known as price discrimination and it enables profits to be even
greater than when a single price is charged to all customers.

Charging different prices to see a movie in the afternoon versus the evening,
different prices for coach versus first-class on a plane or train, and different
net tuition to students (in the form of differing amounts of financial aid) are
all examples of price discrimination. In each case, the firm is able to increase
its profits by separating consumers into different groups and charging them
different prices for the same good or service.

Sometimes firms try to slightly change the product so it isn’t so obvious that
the exact same thing is being sold at different prices. Offering first-class
passengers pre-boarding and free drinks on a plane is an example of this. As
is the bigger portions of a dinner versus lunch version of a dish at a restau-
rant. The difference in prices for the first-class and dinner versions of these
products is not grounded in higher costs.

What is really going on here is coming entirely from the demand side. Some
consumers are willing to pay more and firms are taking advantage of this.
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People can get really upset at price discrimination. Dry cleaners can get in
hot water when they charge different prices for cleaning men’s versus women’s
clothing that is almost identical. It can be a fun game to spot examples of
price discrimination.

There are three requirements for price discrimination to work:

1. Some degree of monopoly power (facing a downward sloping demand
curve).

2. The firm must be able to segregate customers into groups (splitting the
overall demand curve into subgroup demands).

3. There must be a way to seal the markets to prevent resale from the
low-price to the high-price market, which is called arbitrage.

Assuming these requirements are met, we can construct a simple example
that illustrates the essential logic of price discrimination. To increase profits,
the idea is to separate price sensitive from insensitive consumers and then
charge insensitive ones more.

STEP From the Monopoly sheet, click the Reset button and change
cell E8 to 0 (zero).

This makes MC constant at $35/unit and makes it easy to find the optimal
solution and deadweight loss.

STEP With MC constant at $35/unit, run Solver to find the monopo-
list’s optimal solution.

Your screen shows that the monopolist will produce 78.75 units of output and
charge a price of $192.50. CS under monopoly is $6,202 and PS is $12,403.

STEP Click the Show DWL in chart button to display the Harberger
triangle. Its area of $6,202 is the DWL.

The fact that CS equals the DWL is not a coincidence. This is a property
of linear demand and constant MC.

Now, suppose that this monopolist can separate the overall market demand,
given by the inverse demand function of P = 350 − 2Q, into two separate
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markets with two subdemands. For example, the two subdemands could be
given by

Market 1: P = 450− 6Q

Market 2: P = 300− 3Q

The coefficients in the two separate markets must be consistent with the
coefficients in the overall market inverse demand curve. The intercept and
slope are not randomly drawn. If the price is zero, quantity demanded in
Market 1 is 75 (= 450/6), while Market 2’s quantity demanded would be 100
(= 300/3). The sum of the two is 175, which equals the quantity demanded
at P = 0 using the overall inverse demand curve. At P = 300, Market 1’s
quantity demanded is 25 and Market 2’s is zero, and this sum equals the
quantity demanded using the overall demand curve.

How can a monopolist take advantage of the ability to separate the overall
market into two sealed, separate subdemands?

The intuitive answer is simple: Instead of charging the same price, $192.50,
to all customers, increase the price in the market with demand less sensitive
to price and reduce it in the other market. The customers in Market 1 can
be charged a higher price than those in Market 2. This will lead to greater
profits.

We can see a concrete demonstration of this and figure out exactly what
prices we should charge in our example.

STEP Proceed to the TwoPriceDisc sheet to see this plan in action.

Unlike the Monopoly sheet, there is no need to run Solver. The analytical
solution has been entered and all cells and charts will instantly respond to
changes in parameter values.

The top of the sheet shows how a perfectly competitive market would behave
if there were two separate markets. Marginal cost pricing would result from
competition so both markets would have the same price of $35/unit (cells
B11 and B15). Market 2 would produce slightly more (B16) than Market 1
(B12), but the sum of the two (B20) would equal the perfectly competitive
output of perfect competition for a single market. Thus, the ability to price
discriminate, separating a single market demand into two separate, sealed
subdemands, has no effect under perfect competition.
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The outcome is different for monopoly. We begin by pointing out that the
price elasticity of demand, while quite inelastic in both submarkets, is higher
in Market 2 at the perfectly competitive price of $35/unit.

The chart in the sheet is reproduced in Figure 17.19 and helps explain what
is going on. This clever display shows the conventional monopoly graph
for Market 1 on the right and uses the left side as a mirror for Market 2.
Although the x axis shows output as negative on the left side, that is just a
consequence of using Excel to draw the chart. Read the output as a positive
number.

Figure 17.19: Price discrimination.
Source: MonopolyDWL.xls!TwoPriceDisc.

Figure 17.19 shows that the price discriminating monopolist will choose out-
put where MR = MC in each market, then charge the highest price obtain-
able for that output in each market. The price in each market is indicated
by the dashed line and it is clear that price is higher in Market 1. This
makes sense because consumers in Market 1 are less price sensitive so the
monopolist takes advantage of this to generate higher profits.

STEP To easily compare the results of the single-price monopolist in the
Monopoly sheet to the price discriminator in the TwoPriceDisc sheet, click

the Show Single Price Monopoly button and notice that Market 1 is more

price inelastic at the single-market monopoly price.
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The price discriminator has the same total output, but it splits the sin-
gle price into two prices. Cell B34 in the TwoPriceDisc sheet computes a
weighted average of the two prices and it is higher than the single price of
$192.50 charged by the conventional monopolist. This enables the two-price
monopolist to make greater profits, as shown by the increase in PS from
$12,403 to $13,028.

The monopolist will always be able to increase profits if it can split a market
and keep the submarkets sealed off from each other, as long as the submarkets
have different price elasticities. If so, a monopoly will charge the relatively
more inelastic market a higher price and this is the source of the increase in
profits.

Profits will continue to rise as markets are ever more finely subdivided. Ama-
zon and other online retailers use your previous buying history, click behavior,
and other information to serve up a personal price, just for you. Search for
amazon+pricing+algorithm to learn more.

If you never heard about this before and think this is eye-opening or maybe
even unfair, think about what colleges and universities do. They require
their customers to provide detailed financial information about their ability
to pay. They will, naturally, explain this as a benign effort to help the dis-
advantaged, but you should be glad your grocery store does not do this to
you when you walk in the door.

The welfare consequences of price discrimination are not as clear. Compar-
ing cells L38 and H34 shows that DWL has increased from $6,202 to $6,514
when the monopolist separated the markets and charged different prices. Of
course, the monopolist does not care about deadweight loss; she is focused
on maximizing profits. We, however, use DWL to evaluate outcomes and
we would rather have the single market than the two submarkets exactly
because deadweight loss is higher with price discrimination.

Unfortunately, these results do not generalize so we cannot say this will al-
ways happen. Higher DWL with price discrimination is guaranteed only for
linear demand functions. In general, with nonlinear demands, we cannot
state with certainty the effects on output and welfare. In other words, it is
possible for output to rise and DWL to fall with a two-price discriminating
monopolist. The effect on output and DWL depends on the shapes of the
individual market demand curves.

https://www.google.com/search?q=amazon+pricing+algorithm
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For a concrete scenario of price discrimination improving welfare, consider
the following from Scherer, (1970, p. 259):

It is possible, for instance, that no physician would be attracted
to a small town if he were required to charge the same fee to
rich patients as to poor. Since profits can be increased by dis-
criminating, the added revenue attainable through discrimination
may be sufficient to make the difference between having a service
provided and not having it.

Returning to the idea of subdividing the market more finely, there is a spe-
cial case of price discriminating monopoly power that is a bit mystifying, but
does yield a definitive result. The perfectly price discriminating monopolist
has the ability to charge different prices for different output levels down to
each individual consumer. This remarkable power enables the monopolist to
sell every unit of output at the highest price the market will bear.

In the Monopoly sheet, the first unit goes for $348, the 100th for $150, and the
125th is priced at $100. The perfectly price discriminating monopolist takes
every bit of consumers’ surplus, making the greatest profit possible, but does
produce the socially optimal level of output. Thus, she has no deadweight
loss!

Pondering the idea of perfect price discrimination and the fact that we would
judge it as a socially optimal outcome cements the idea of surplus and dead-
weight loss. As long as someone, anyone, even if it is a single monopolist,
gets the surplus, we count it as a successful outcome. Deadweight loss is
tragic precisely because no one gets it. Deadweight loss vaporizes surplus
and it disappears into thin air.

Monopoly Results in Market Failure

Monopoly leads to market failure because, to maximize profits, it restricts
output and, therefore, this produces a misallocation of resources. The canon-
ical monopoly graph (see Figure 17.17) has MR splitting off of D so that
MR = MC is less than the optimal output where P = MC.

While most people do not like monopoly because it charges higher prices
than a competitive market, this is not why economists dislike the monopoly
outcome. Partial equilibrium supply and demand analysis is based on max-
imizing consumers’ and producer’s surplus. The logic of deadweight loss
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rides on the idea of waste. The monopolist does not take advantage of infra-
marginal sales that would lower its profit, but increase society’s total surplus.
Any mechanism that generates deadweight loss is said to fail in the sense of
not generating an optimal solution.

Another difference in outlook is that economists do not believe monopolists
are inherently bad folks. The monopolist, like the perfectly competitive firm
and consumer, is optimizing. Monopolies are in a position to improve their
individual outcome and they take advantage. According to the economists,
put anyone of us in the same position and we do the same thing. Do not
blame the monopolist; blame the market structure for the deadweight loss.

We conclude with some advanced and heretical thinking. There is another,
radically different view of monopoly that is based on the work of Joseph
Schumpeter (1883 - 1950). He argued monopoly was actually a good thing
because he had an evolutionary, dynamic view of capitalism. Striving for
monopoly drives capitalism and monopolies are toppled by new firms in a
process he named creative destruction. This oxymoron conveys Schumpeter’s
vision of capitalism, with entrepreneurs engaged in an epic battle of rising
firms slaying established leaders.

Schumpeter’s perspective is not that of solving society’s resource allocation
problem. He considered this static optimization problem to be uninteresting
because it did not apply to the real world and it had been solved already.
He did not believe that price competition was the real driver of capitalism’s
success. For Schumpeter, the serious open problem was how and why mar-
kets generated so much innovation and growth.

One important difference between mainstream economics and Schumpeter
revolves around the government’s role. Partial equilibrium analysis says
monopolies should be broken up because they generate a misallocation of
resources. Schumpeterians reject the need for government to intervene, ar-
guing that dynamic competition will erode monopoly positions through en-
trepreneurial innovation.

Take an Industrial Organization course, an upper-level elective taught in
most economics departments around the world, to learn more about monopoly,
price discrimination, and Schumpeter’s ideas.

https://www.google.com/search?q=Joseph+Schumpeter
https://www.google.com/search?q=Joseph+Schumpeter
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Exercises

1. To punish a monopolist, your friend suggests applying a quantity tax on
the monopoly’s commodity. Is this a good idea? Explain why or why
not, using the initial values of the parameters for supply and demand
in the Monopoly sheet for a concrete example.

2. Another friend suggests a quantity subsidy to eliminate the deadweight
loss caused by monopoly. The idea would be to shift down MC via the
subsidy until output equaled the socially optimal output. Does this
make sense?

3. Consider a monopoly that sells its output in two completely separated
and sealed markets. Marginal cost is constant at $35 per unit.

Inverse demand in the two markets is given by

P1 = 200− 2Q1

P2 = 300− 3Q2

(a) Solve this problem via analytical methods. Report optimal quan-
tity and price in each market. Use Word’s Equation Editor as
needed.

(b) Solve this problem with the TwoPriceDisc sheet. Enter the ap-
propriate coefficients on the sheet. Take a picture of the results
and paste it in a Word doc.

(c) Which market has a higher price?

(d) How does the price elasticity of demand in each market affect the
price in each market?

(e) Which market has greater deadweight loss?

(f) How does the price elasticity of demand affect the deadweight
loss?

(g) The overall market demand is given by P = 240−1.2Q. How does
price discrimination affect welfare loss in this case?

4. Suppose that, in the long run, average cost is decreasing throughout
and marginal cost is below average cost, as shown in Figure 17.20. This
is called a natural monopoly . The profit-maximizing level of output for
the monopolist is where MR = MC. The socially optimal result is
where P = MC.

https://www.google.com/search?q=natural+monopoly
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Figure 17.20: Natural monopoly.

(a) What is the problem with using competitive markets to achieve
the socially optimal result in this situation?

(b) What government policy could be used to help the market reach
the social optimum?
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We apply nonparametric regression models to
estimation of demand curves of the type most often
used in applied research. From the demand curve
estimators we derive estimates of exact consumers’
surplus and deadweight loss, which are the most
widely used welfare and economic efficiency measures
in areas of economics such as public finance.

Jerry A. Hausman and Whitney K. Newey

17.5 Sugar Quota

This section applies the tools of partial equilibrium analysis and deadweight
loss to analyze import restrictions on sugar in the United States. Supply and
demand analysis is shown to be a flexible, powerful tool.

Before analyzing the US sugar quota through the lens of surplus and dead-
weight loss, we take a crash course on sugar—production, pricing, and how
import quotas on sugar are implemented.

Facts about Sugar

Everyone knows you can buy sugar in any grocery store and pour it into
your coffee or use it to bake cookies. But there are many other kinds of
white granulated sugars (like confectioners’ sugar) and also brown and liquid
sugars.

No matter the final form, “All sugar is made by first extracting sugar juice
from sugar beet or sugar cane plants” (www.sugar.org/sugar/types/). Cane
sugar is grown in warmer areas, whereas beets come from cooler climates.
Once refined, you cannot easily tell the difference. Unless you are an expert,
sugars from beet versus cane are perfect substitutes.

Some sugars are used only by industrial food manufacturers and not avail-
able in the grocery store. Home and commercial users can choose from many
other sweeteners, such as high fructose corn syrup, and a long list of artificial
sweetener options.

In addition to eating it, sugar can be made into ethanol and used to power
a car. Most cars in Brazil are flex-fuel and growing huge quantities of cane
has enabled Brazil to greatly reduce oil imports.
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https://www.sugar.org/sugar/types/
https://www.google.com/search?q=brazil+flex+fuel+cars


614 CHAPTER 17. PARTIAL EQUILIBRIUM

Many countries produce sugar. The United States grows both beet and cane
sugar, but domestic production does not meet total demand so the United
States imports sugar. Figure 17.21 is a subsection of a bigger table that
shows sources of US sugar.

Figure 17.21: US sugar sources.
Source: www.ers.usda.gov/webdocs/outlooks/98469/sss-m-381.pdf.

The numbers in the table come in units of short tons, raw value, STRV. A
short ton is 2,000 pounds. Raw value means the dry weight of raw sugar.
You get 1 ton of refined sugar (the white crystals you buy in the store) from
1.07 tons of raw sugar.

Beets are grown in many states so they are not all listed, but half of US
beet production comes from the Red River Valley in Minnesota and North
Dakota. The table shows the US domestic sugar industry is split roughly
evenly between beet and cane, producing about 4,000 thousand STRVs (or
4,000,000 STRVs) from each crop.

Figure 17.21 makes clear that the United States imports a great deal of
sugar, 3,070 thousand STRVs in 2018/19 and approaching 4,000 in 2019/20
(although this estimate was made before the covid 19 pandemic). So, roughly,
the United States grows 2/3 of its own sugar and imports the rest.

https://www.ers.usda.gov/webdocs/outlooks/98469/sss-m-381.pdf
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Figure 17.21 shows that sugar is imported under several categories, the
most important of which is the tariff-rate quota, TRQ. This is a compli-
cated scheme for controlling the amount of sugar imported from different
countries. The details are available at www.ers.usda.gov/topics/crops/sugar-
sweeteners/policy.aspx.

A TRQ is a type of import restriction where a split tariff (or tax on imported
goods) is employed. There is an extremely low tariff (zero or a nominal
charge) applied to imports under a given amount (called the in-quota tar-
iff) and a really high tariff applied to quantities imported beyond the given
amount (so little is imported after the in-quota tariff is exhausted).

The TRQ was created in 1990 after multilateral trade agreements forced elim-
ination of traditional quotas. In Europe, the EU Sugar Protocol is similar to
the US TRQ system. The U.S. Department of Agriculture (USDA) runs the
TRQ. The overall allotment is established by multilateral trade agreements
and the USDA decides on the country allocations.

We can look at reports issued by the USDA as Excel spreadsheets to under-
stand the TRQ.

STEP Open the Excel workbook SugarQuota.xls, read the Intro sheet,
then go to the TRQ sheet and scroll around.

The data are constantly updated, so the specific numbers are not our chief
concern. What matters is that column A has a list of countries and column
O has FY 2020 TRQ Original Allocations.

As an example, consider the Dominican Republic. As of May 18, 2020, it had
used 114,516 STRVs of its 185,335 TRQ allocation. The USDA has given
every country in column A an amount that they can import. Beyond the
TRQ amount, a hefty tax is applied so imports stop.

Outside of sugar producers and commercial food manufacturers that buy
sugar, very few people in the US know or care much about this. In many
countries, like the Dominican Republic, however, the US TRQ is a big news.
When it is announced, there is intense media coverage and discussion.

If you scroll up and down, you will see that the Dominican Republic has the
highest TRQ allocation, even bigger than Brazil, which is obviously a much
larger country. What is going on here? In addition to protecting domestic US

https://www.ers.usda.gov/topics/crops/sugar-sweeteners/policy.aspx
https://www.ers.usda.gov/topics/crops/sugar-sweeteners/policy.aspx
https://www.google.com/search?q=eu+sugar+protocol
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sugar producers, the United States uses the TRQ as a major foreign policy
lever, using allocations as punishments and rewards for foreign governments.

Now that we know a little about quantities of domestically produced sugar
and imports, we turn to the price of sugar.

STEP Proceed to the Price sheet to see US and world raw sugar prices.

Figure 17.22 shows that prices have fluctuated over time, but US prices are
always higher than world prices. The 1970s produced sharp spikes, followed
by a period of calm until another spike during the Great Recession.

Figure 17.22: Nominal raw sugar prices.
Source: SugarQuota.xls!Price.

Since the TRQ was implemented in 1990, US sugar prices are consistently
about 10 cents per pound higher than world prices. That might not sound
like much of a difference, but think of it this way: US sugar prices are roughly
double what others pay for sugar. If you make ice cream or candy or soft
drinks or any one of the many products that uses sugar, doubling costs for
this input is a really big deal.

STEP Review the price adjusted for inflation chart in the Price sheet.

The real price of sugar had been falling steadily, but it seems to have leveled
off more recently. We can expect technological change (especially genetic
engineering of cane and beet plants) to lower prices in the future.
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We have ended our whirlwind tour of sugar production, the US TRQ system,
and prices. Obviously, the sugar quota is causing higher prices for US con-
sumers (including commercial buyers of sugar) and it benefits US producers.
But we can say more and evaluate the US sugar quota by applying partial
equilibrium analysis.

Supply and Demand for US Sugar

To analyze the effects of the sugar quota, we need estimates of demand and
supply curves for sugar in the United States. Because we will work with
linear functions, we need intercept and slope parameters for the demand and
supply of sugar.

The USDA reports roughly 12,000 thousand STRVs of sugar are bought and
sold in the United States for about 25 cents per pound for raw sugar. We
assume the market is in equilibrium so we interpret these values as the equi-
librium quantity and price.

There is a vast literature on sugar with countless estimates of demand, supply,
and elasticities. Since this is an exercise in showing how partial equilibrium
analysis works, we will use hypothetical demand and supply functions that
are calibrated to the observed values in the US sugar market.

Our linear demand and supply curves are

QD = 15000− 120P

QS = 400P

At P = 25 cents per pound, quantity demanded is 12,000 thousand STRVs
(our equilibrium P and Q) and the price elasticity of demand is ∆QD

∆P
P
QD

=
1

−120
25

12000
= −0.25. That is quite inelastic and conforms with estimates of

sugar price elasticities of demand. Although there are substitutes, in many
recipes (especially for commercial products), precise amounts of sugar are
absolutely required. The price elasticity of supply in our simple model is +1.

The inverse demand and supply curves are

P = 125− 1

120
QD

P =
1

400
QS
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You probably did not do this, but computing the quantity supplied from the
supply curve with P = 25 gives Q = 10000. Something is wrong because the
quantity demanded does not equal the quantity supplied. For sugar, we need
to include imports.

Free Trade

We begin our partial equilibrium analysis of the US sugar quota in Fantasy-
land—we assume that there is no restriction of any kind on the importation
of sugar.

STEP Proceed to the FreeTrade sheet to see how the market would work
under a regime of no restrictions on imports.

Figure 17.23 reproduces the graph. The demand curve is straightforward,
but the supply curve merits special attention.

Figure 17.23: Supply and demand with hypothetical free trade.
Source: SugarQuota.xls!FreeTrade.

The first part of the supply curve (from the origin to the kink at Q = 4000)
is domestically produced US sugar. As long as the price is below the world
price of 10 cents per pound, the best, lowest cost US producers will supply
the market.

Beyond 4,000 units (measured in thousands of STRVs for consistency with
USDA TRQ units), world suppliers take over. It is assumed that the United
States has access to as much sugar as it wants at the world raw sugar price
of 10 cents per pound. Thus, the market would not continue to use US
produced sugar beyond 4,000 units. Instead, supply would come from the
perfectly elastic world supply curve.
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US consumers (home and industrial buyers) would enjoy a 10 cent per pound
price for raw sugar and the equilibrium quantity would be 13,800 thousands
STRVs. Over 2/3 of sugar consumed would be imported.

The sum of US consumers’ and producers’ surplus would be more than $16
billion. In this properly functioning market, this is the maximum possible
total surplus.

STEP Click on cells G33 and G34 to see the formulas used to compute
CS and PS.

Notice that many US producers would be driven out of the market because
they cannot make sugar at the low world price. Those US producers that
remain (selling the first 4,000 units) would earn $400 million in producers’
surplus under a free trade regime. As will be clear in a moment, this is an
important number to keep in mind.

Incorporating an Import Quota

The TRQ system is too complicated to exactly implement in Excel so we
model a simple quota that is easier to understand and acts similarly to the
TRQ scheme.

STEP Proceed to the ImportQuota sheet to see what happens with an
import quota on sugar.

As before, we focus on the supply curve. It is crucial to the analysis.

The ImportQuota sheet shows that the supply curve has an upward sloping
part, then a flat part, and then it starts sloping up again. The first part
is the US domestic supply curve. The lowest cost US firms will supply the
market when the price is below the 10 cents per pound world price.

The flat part is the amount of imported sugar allowed. Cell H6 shows this
amount is 2,000 units, so the flat segment is 2,000 units long.

The last, rising part of the supply curve is, once again, the domestic US
supply curve. Once the quota is filled and no more foreign sugar is allowed
into the United States, domestic producers that could not survive in a free
market supply sugar.
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Notice how the supply curve is pink, indicating it is domestic US sugar, at
low and high levels of output. Imports snap the US supply curve, inserting
a flat portion of length equal to amount of imports.

Cells I6 and J6 report equilibrium price and quantity (where S and D in-
tersect). Compared to the FreeTrade sheet, Pe has risen from 10 to 25 cents
per pound, while quantity has fallen from 13,800 to 12,000 thousand STRVs
(2,000 of which are imported). Remember, we chose parameter values for
the supply and demand curves to match real-world data from the US sugar
market.

STEP Move the import slider control left and right to see how the import
allotment affects the supply curve.

As you increase the amount of imports, you lengthen the flat segment and
push the pink part of the S curve to the right. Decreasing the import al-
lotment does the opposite. The beginning of the supply curve, below 4,000
units remains unchanged.

It is also easy to see how tightening the import allotment increases the equi-
librium price and lowers the equilibrium quantity. Relaxing the imports
allowed does the reverse.

STEP Enter 9800 in cell H6. This is the same as moving the import
slider control all the way to the right.

This mimics the FreeTrade sheet. The import allotment is set so high that
foreign sugar producers supply all of the US market after the first 4,000 units.
Equilibrium price falls back to its free trade level of 10 cents per pound and
quantity rises to 13,800 units.

Evaluating an Import Quota

We know import quotas raise prices and lower output, but this is just the
outcome of the mechanism. To evaluate import quotas, we use the concepts
of surplus and deadweight loss.

STEP Return the import quota to 2000 in cell H6 and then click the
Show CS checkbox (cell C7).



17.5. SUGAR QUOTA 621

Cells are displayed in columns A and B that are the source data for the blue
consumers’ surplus triangle that has been added to the chart. Under the
sugar quota, the CS no longer extends to the world price of 10 cents per
pound and quantity is smaller than the optimal quantity. Consumers lose
$3.87 billion in surplus compared to the optimal solution.

STEP Click the Show US PS checkbox.

This adds the producers’ surplus gained by sugar manufacturers in the United
States. Their total PS is composed of two separate parts. On the left is a
trapezoid and on the right is a triangle. What is in the middle?

STEP Click the Show Foreign PS checkbox.

The orange rectangle added to the chart is PS that goes to foreign producers.
Notice that this is not deadweight loss because someone gets it.

Clearly, producers’ surplus is much higher with the quota, rising from a mere
$400 million with free trade (which equals the optimal solution) to $2.5 bil-
lion for US producers and $3.1 billion for all producers.

The transfer of CS to PS under the quota system, however, is not without
waste. Consumers lost $3.87 billion of surplus and producers gained $2.7
billion. What happened to the rest?

STEP Click the Show DWL checkbox.

The red triangle has an area of $1.17 billion. This is the amount of CS that
was lost during the transfer of surplus from consumers to firms. Figure 17.24
shows the chart with all checkboxes checked.

A leaky bucket is an apt metaphor. While siphoning off billions of dollars
from consumers and delivering them to producers, $1.17 billion leaked and
was wasted, captured by no one. We can express the leakage as a percentage,
1.17
3.8
≈ 30%. That is a pretty big hole in the bucket.
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Figure 17.24: Partial equilibrium analysis of a sugar quota.
Source: SugarQuota.xls!ImportQuota.

Notice the geometry in this example. The DWL triangle in Figure 17.24 is
not the usual bow tie shape (as in the price ceiling, tax, and monopoly appli-
cations). In this case, the DWL is a triangle under supply and demand. But
the interpretation is the same—we are measuring surplus foregone and us-
ing this as an indicator of the damage done by the misallocation of resources.

You might wonder why consumers are not up in arms. In fact, commercial
sugar buyers do lobby Congress and when prices spike, the TRQ allotments
are relaxed. The vast majority of buyers in the supermarket, however, simply
have no idea that this is happening. A five pound bag of refined sugar that
costs $2 is just another item in the shopping cart.

This is a common problem surrounding import quotas: costs are diffused
widely while the benefits are concentrated on a few key players. Thus, al-
though the costs add up to a large number, $3.7 billion in this example, no one
individual is impacted enough to object. The handful of US sugar producers,
however, have strong incentives to maintain the system to keep their prof-
its. You will see what this means when you answer the last exercise question.

The transfer of surplus, no matter how unfair it may seem, is not the real
problem in the eyes of partial equilibrium analysis. The fact that surplus is
vaporized and vanishes into thin air so no one gets it—this is the real problem.

It is easy to be confused by the shapes on the graph and concerns that
prices are higher and producers are stealing surplus from consumers. None
of that really matters. Here is the takeaway: the import quota is causing
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a misallocation of resources. The United States is using land, labor, and
capital to make sugar when it would be better off buying foreign sugar and
using these inputs to make other goods and services.

Comparative Statics

We can explore the effects of changing demand and supply coefficients on
the equilibrium price and quantity of sugar, but the natural question to ask
is, what is the effect of the import allotment? We are chasing the import
elasticity of price and the import elasticity of quantity. We want to know
how responsive price and quantity are to shocking the import allotment.

We can also explore how the surplus and deadweight loss changes. These
variables are also endogenous in this model because they are generated by
the forces of supply and demand.

We have the initial position. With H6 = 2000, Pe = 25 and Qe = 12000.

STEP Set H6 to 3000.

The length of the orange rectangle expands and the rising part of the US
supply curve is pushed right. Equilibrium price falls to just over 23 cents per
pound and output rises to about 12,231 thousand STRVs. CS and foreign
PS rise. Deadweight loss falls. This is better for US consumers and foreign
sugar producers than the initial quota of 2,000 units.

United States PS, however, falls. Domestic sugar producers are not happy
with this. They prefer a lower import quota.

Elasticities give us more information than the qualitative statements (up or
down) made above. We can compute the percentage change in price, quan-
tity, surplus, and deadweight loss for the 50% increase in import (from 2,000
to 3,000 units).

The import elasticity of price ≈
23−25

25
3000−2000

2000

= −0.8
0.5

= −0.16. This tells us that

equilibrium price is quite unresponsive to the import allotment.

The import elasticity of quantity ≈
12231−12000

12000
3000−2000

2000

approx−0.02
0.5

= −0.04 is even

smaller. Equilibrium quantity is extremely unresponsive to the import allot-
ment.
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These elasticity estimates are for illustration. Our model relies on rudimen-
tary, linear demand and supply curves. The framework, however, is exactly
how an economist would model the sugar market and interpret the effects of
a sugar quota.

Do as I Say, not as I Do

Rich, developed countries talk a lot about free trade, especially to lesser de-
veloped countries, but it is clear that powerful special interests can and do
dominate individual markets in the rich countries of the world. The tools
of partial equilibrium analysis can be used to (approximately) evaluate the
results of protectionist policies.

In the case of the US sugar TRQ program, data provided by the USDA can
be used to estimate the size of the deadweight loss. With a total import level
of 2,000 thousand STRVs, assuming price elasticities of demand and supply
of −0.25 and +1.0, the deadweight loss is around one billion dollars. United
States consumers bear the brunt of the costs of the TRQ system, while US
and foreign producers enjoy much higher profits.

But remember caveat emptor. Partial equilibrium deadweight loss analysis is
a rough, back-of-the-envelope calculation. Although progress has been made
in estimating deadweight loss (see the references to this chapter), consumers’
surplus using demand curves makes interpersonal utility comparisons, vio-
lating one of the principles of modern utility theory.

Even more importantly, by focusing on a single market, we ignore the ramifi-
cations of the sugar quota on other goods and services. We are not counting
lost output of other goods by devoting resources to producing sugar in the
United States. We are also not counting health effects of sugar.

Now that you know about the US sugar quota, you can take a break and
watch comedian Stephen Colbert’s brief segment from 2009: tiny.cc/TRQ.
Recall from Figure 17.22 that sugar prices spiked to an all-time high back
then.

http://tiny.cc/TRQ
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Exercises

1. Use the ImportQuota sheet to figure out what happens if all imports
are banned. Explain your procedure and take screenshots as needed.
Would you support a ban of all imports? Explain.

2. The deadweight loss estimates in the text are sensitive to the demand
and supply curve parameters. Suppose that the inverse supply curve
had a slope of 1/100 instead of 1/400. Be sure to change this parameter
in both the FreeTrade and ImportQuota sheets to 1/100. What effect
would this have on the TRQ system? Explain your procedure and take
screenshots as needed.

3. Search the web for information about how much money US sugar pro-
ducers contribute to the political campaigns of members of the US
Congress. Copy and paste one sentence from a web site that you think
shows the influence US sugar producers have on the US Congress.
Please document your sentence with a URL and date visited citation.
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When the beekeeper’s bees fly into
the adjoining apple orchard and
pollinate the apple-grower’s apple
blossoms, they are conferring a
positive benefit on the
apple-grower that the beekeeper
cannot take advantage of directly
(i.e., a positive externality).

Eric S. Maskin

17.6 Externality

This section is devoted to explaining the concept of externality, why it causes
a market failure, and how the inefficiency in the allocation of resources can
be corrected.

The core idea is that externalities cause markets to fail—too much or too
little is produced. Society’s resources are inefficiently allocated. The reason
why markets fail in the presence of externalities is that decision makers (con-
sumers or firms) fail to incorporate the full costs or benefits of an action so
they make a poor decision (from society’s point of view).

There are three questions to answer:

1. What is an externality?

2. Why do externalities break the market?

3. How can we fix the market?

1. What is an Externality?

An externality is a cost or benefit not taken into account by the decision
maker. An agent takes an action that impacts others, but she does not
incorporate this “external impact” (hence the name externality) into her op-
timization problem. The decision maker considers only personal or private
cost and benefit, not the full or social cost and benefit.

Externalities can arise on the cost or benefit side of an optimization problem.
The private costs or benefits are the ones included in the agent’s calculations.
The external costs or benefits are ignored. The full or total costs or benefits
are called social costs or benefits.

627
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We can better understand externalities by looking at examples. The key is
always that the optimizing agent is not considering all of the costs and ben-
efits. Costs are imposed, but not felt by the agent or benefits are conferred
on others, but not captured by the agent. This leads to a privately optimal
solution that diverges from the socially optimal solution and produces a mis-
allocation of resources.

A classic example of an externality is industrial pollution. When the cost
of pollution is not taken into account by the firm, this is called a negative
production externality. A steel firm deciding how much steel to produce fac-
tors into its choice of output level the revenue from making steel and a whole
series of costs: labor, raw materials, and equipment. The costs that are
counted are private costs.

If the firm pollutes the air through a smokestack, but does not have to pay
for polluting the air, this is an external cost. Social costs include private
costs and external costs. It is a negative externality because costs are im-
posed on others that are not taken into account by the decision maker. It
is a production externality because the decision is made by a firm deciding
how much to produce.

A college education is another classic example of a situation where the de-
cision maker fails to consider the total picture. It is often used to explain a
positive consumption externality because there are benefits to education that
are not taken into account by the student.

The choice variable is how many years of schooling to acquire beyond high
school. The costs are huge—out-of-pocket costs of a 4-year college degree in-
clude tuition and books, but opportunity costs are even greater. The benefits
are also quite large, including access to better jobs, higher pay, and greater
quality of life. These private benefits are considered when high school stu-
dents decide whether or not to go to college so they are not part of the
externality.

But society benefits from education also. College-educated people have lower
unemployment rates, smoke less, and are more likely to vote. These social
benefits are ignored by individuals making a decision about whether or not
to acquire a college education. It is a positive externality because benefits
flow to others that are not taken into account by the decision maker. It is a
consumption externality because the decision is made by a consumer decid-
ing how much to purchase.
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Many studies attempt to estimate the gap between the social rate of return
and private rate of return to a college degree. Social rates of return to ed-
ucation are several percentage points higher than the private return. This
gap is an estimate of the external value generated by education.

Externalities are everywhere. Some are easy to spot, like the loud music
your next door neighbor plays (a negative consumption externality). To the
extent that you ignore the impact on others, your decision about which shirt
to wear contains an externality.

But externalities can be subtle also. Consider an army with soldiers that
were drafted into service. The externality is that the government does not
take into account the full cost of acquiring its soldiers. This externality dis-
appears with a volunteer army because the military has to pay enough to
entice people to join.

Externalities are all about impacts on others so it is easy to see why they are
also known as spillover effects. Remember, the private costs and benefits are
counted by the decision maker, but the external effects are not.

2. Why Do Externalities Break the Market?

Recall Figure 17.6, reproduced below as Figure 17.25 for your convenience.

Figure 17.25: An overall view of supply and demand.

This figure has three canonical graphs: the Theory of Consumer Behavior
on the left, the Theory of the Firm on the right, and supply and demand in
the middle. It says that the equilibrium solution is found at the intersection
of supply and demand, which come from the firm and consumer graphs.
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We can show that the equilibrium quantity equals the quantity that would
maximize consumers’ and producers’ surplus. Price controls (such as ceil-
ings or floors), taxes, and monopoly all generate market failures, defined as
quantities that do not maximize CS and PS.

We can add externalities to this list. Negative externalities are costs not
taken into account and they produce too much output, while positive exter-
nalities do the reverse.

Look carefully at Figure 17.25. For the market system to yield a socially de-
sirable outcome, supply and demand must reflect the full costs and benefits
of the product. But this is precisely what is not happening if an externality
is present. There are positive or negative spillover effects that result in a
market equilibrium that is sub-optimal.

Suppose we have a situation where producers do not take into account the
costs of pollution created as a by-product of manufacturing. Then the MC
curve in Figure 17.25 is not incorporating the full costs of production and
the supply (which is the sum of individual MC curves) is also too low.

There is a marginal social cost, MSC, curve that does include all costs and
it does yield the socially optimal solution. Figure 17.26 shows the canonical
graph of a negative externality in production. It is easy to see that the
marginal private cost, MPC, which firms use to decide how much to produce
to maximize profits, is too low. This produces an equilibrium output that is
too high.

Figure 17.26: A broken market with a negative production externality.
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Q* in Figure 17.26 shows the optimal output for society. The socially optimal
level of output is based on the full, social cost of production. Qe shows the
(broken) market’s output. The market’s equilibrium output is based only on
the private cost of production so it is too high.

To sum up, a negative production externality means that firms fail to include
all costs and, therefore, MPC < MSC, and, therefore, Qe < Q*. This is
why externalities cause market failure.

We can use Excel to create a simple spreadsheet that demonstrates the con-
cepts of externality and market failure.

STEP Open the Externality.xls workbook, read the Intro sheet, then
proceed to the Externalities sheet.

Let’s take a quick tour of the screen. On the left are the total and marginal
graphs for a single firm. We ignore the average cost curves (ATC and AVC )
because we are not interested in this firm’s profit position. All we care about
is how much it will produce. The cost function is a simple quadratic and the
market price is $40/unit so the revenue function is 40q.

On the right is the conventional supply and demand graph. Notice that the
y axes of the individual and market graphs are the same. The x axes, how-
ever, are different. There are 1,000 firms and, combined, they produce tens
of thousands of units of output.

Initially, this firm is producing 10 units of output. What would you advise
this firm to do? Why?

STEP Use the firm’s scroll bar control to adjust its output level.

To maximize profits, this firm will choose output where MR = MC. This
output level will generate the maximum difference between the total revenue
and total cost curves in the top graph.

The problem is easily solved via analytical methods.

max
q
π = 40q − (200 + q2)

dπ

dq
= 40− 2q = 0→ q* = 20
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Both analytically and with Excel, we can see that the firm will produce 20
units when equilibrium price in the market is $40/unit. When all 1,000 firms
do this we get a market equilibrium output of 20,000 units. This is the so-
cially optimal allocation of resources to this product.

STEP To implement the externality, slide the Set Externality control all
the way to the right (so the red lines and curve are above the black ones in
the three graphs).

The red objects are not labeled. What do they represent?

STEP Insert text boxes to label the red curve in the top graph, the red
line in the bottom graph, and the red line above the supply curve.

The correct labels must include the word social. The red line in the top graph
is the total social cost, TSC, and its marginal counterpart is the marginal so-
cial cost, MSC. The divergence between the red social cost and the black
private cost signals the presence of an externality. The distance between the
curves are costs not taken into account by the firm.

In the market graph, the red line is MSC, by which we mean the sum of
the indivdual marginal social costs. Like in the individual graph, divergence
between supply and MSC is a clear marker of the presence of an externality.

Note that neither the firm’s profit-maximizing output level nor the market’s
equilibrium solution changes in the presence of the externality. We have im-
posed an added cost, yet the firms and market do not respond because the
cost is ignored.

The dashed line from the intersection of MSC and demand is the socially
optimal level of output. An omniscient, omnipotent social planner, OOSP,
would incorporate the full costs of production in determining the optimal so-
lution to society’s resource allocation problem. OOSP would choose output
at the intersection of D and MSC.

We could measure the inefficiency caused by the externality by the dead-
weight loss. This would be the area of the triangle shown in Figure 17.27.
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Figure 17.27: Deadweight loss from a negative externality.
Source: Externality.xls!Externalities.

The market in the presence of a negative externality has produced too much
output. Units beyond 16,000 have greater marginal social cost than marginal
benefit (as given by the demand curve) and should not be produced. The
market produces an extra 4,000 units because it ignores the external costs of
production.

3. How Can We Fix the Market?

Externalities break the market because costs and benefits are not fully in-
corporated into the agent’s optimization problem. There are two possible
solutions: government regulation and more property rights.

There are several regulatory approaches the government can take to fix the
market failure caused by externality. They are united by the use of authority
to correct the equilibrium output level so that it equals the socially optimal
output.

Perhaps the most obvious regulatory fix is a strict limit on production, for
example, a quota on pollution. If firms are allowed to pollute only a certain
amount, they cannot produce as much as they want.

This is known as command and control, a term borrowed from the military,
where top down decision making is the norm.
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But this approach suffers from a serious drawback. It requires massive
amounts of information to set the total amount of pollution and output.

Furthermore, if everyone is forced to reduce pollution by, say 20%, this does
not take advantage of the fact that some firms can reduce pollution more
cheaply than others. In other words, the government not only has to deter-
mine the total amount of pollution and output, it has to tell each individual
firm exactly what and how to produce.

Command and control has long been used in environmental regulation. In
the case of pollution, the Environmental Protection Agency (EPA) still uses
effluent restrictions, but the EPA has moved toward other regulatory strate-
gies.

Another government focused approach to fixing a market failure brought on
by externality allows firms to decide how much to produce, but uses taxes
and subsidies to incentivize decision makers to choose the socially optimal
outcome.

This is based on the work of Arthur C. Pigou (rhymes with zoo, 1877 - 1959).
He was a student of Marshall’s and in 1908 he was appointed to Marshall’s
chair in economics at the University of Cambridge. Pigou argued that when-
ever private and social costs or benefits diverged, the government could offer
incentives to align individual optimal solutions with socially optimal levels
of output. Thus, today we call this solution a Pigovian tax or subsidy.

By imposing a Pigovian tax on polluting firms, producers are forced to con-
sider the full costs of production in a roundabout way—the tax takes the
place of the external cost.

The Pigovian tax shifts the supply curve up so that, if properly calibrated,
the amount of the tax reflects the external cost not taken into account. Figure
21.28 shows how a Pigovian tax fixes the market failure caused by externality.
Notice that the Supply + Tax curve equals the MSC. This enables the market
equilibrium solution to equal the socially optimal solution.
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Figure 17.28: Pigovian tax correcting the inefficiency from an externality.
Source: Externality.xls!Externalities.

The Excel workbook Externality.xls enables you to correct the externality
with a Pigovian tax.

STEP With an externality in place, click the Set Pigovian Tax/Subsidy

scroll bar to fix the inefficiency.

With every click, the market supply curve shifts up because you are imposing
additional tax. A Pigovian tax works like a regular tax—it shifts the supply
curve up. Obviously, you want to set the tax so that the black supply curve
is coincident with and covers the red MSC curve.

The Pigovian tax fixes the inefficiency caused by the negative externality
when the amount of the tax takes the place of the divergence between
marginal social and private cost. You know you have the right tax when
the market’s equilibrium output equals the socially optimal level of output
at 16,000 units.

Unlike regular taxes, which are applied to generate revenue for the govern-
ment and cause the equilibrium quantity to be less than the optimal quantity,
Pigovian taxes are actually applied to correct a market failure. They do gen-
erate revenue, but the primary purpose of a Pigovian tax is to change the
market’s equilibrium output to allocate resources optimally.
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Pigou’s approach dominated economics for many years. Then, in 1960,
Ronald Coase (1910 - 2013), who spent most of his long career at the Univer-
sity of Chicago, offered an ingenious alternative: Define property rights over
all resources (such as clean air) to internalize the externality. It took some
time, but Coase’s approach caught on and would win him the 1991 Nobel
award in economics.

In essence, Coase cures the “market failure” by creating more markets. Mar-
ket failure is in quotation marks because the argument is that it is not a
market failure since we do not have complete property rights over all re-
sources. A little intellectual history will help clear this up.

Frank Knight (at the University of Chicago) disagreed with Pigou in an arti-
cle way back in 1924. Pigou used too much traffic as an example of a market
failure in his influential book, The Economics of Welfare, in 1920. On page
194, Pigou explained that individual drivers would fail to take into account
the additional congestion they caused when deciding whether to take one
road versus another. Thus, the drivers would distribute themselves ineffi-
ciently. He pointed out that the government could impose a toll, a tax to
use the road, to fix this market failure (Pigou used the phrase laissez-faire
and it would not be until the 1950s that “market failure” was coined).

In his 1924 paper, Knight replied that, far from this being a market failure,
the problem created by the externality was that there was a missing market!
He said Pigou’s logic was error free. It is true that drivers following their
own self-interest would produce too much congestion. It is true that this de-
centralized system failed and a corrective tax would fix it. But, said Knight,
while decentralized, this is not a market system because nobody owns the
roads. Not all decentralized systems are automatically market systems.

Knight maintained that you cannot blame the market system for a lack of
property rights. In Knight’s view, a properly functioning market system
would force firms to pay for all of the resources used. A negative externality
meant that firms would treat some resources as free and it is no surprise that
they would overuse those resources.

Pigou removed the traffic congestion externality example from the next edi-
tion of his book. He left, however, the overall framework of corrective
taxes and subsidies intact and it became part of the paradigm of economics.
For decades, students learned that corrective taxes and subsidies could and
should be used to fix inefficient levels of equilibrium output.
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In 1960, Coase wrote his most famous article (and perhaps the most often
cited article in the history of economics), “The Problem of Social Cost.” He
explained how more property rights would enable markets to cure externali-
ties. For a negative spillover like pollution, instead of command and control
or a government tax, Coase advocated establishing property rights to clean
air and letting the market work its magic. Firms would no longer treat the
air as free if they had to pay to use it.

There is no Excel implementation of Coase’s solution. The idea is simply
that unpriced resources be priced. This happens when unowned resources
are assigned owners. This creates a market, buyers and sellers, for the re-
source. This directly internalizes the externality.

Coase has said that the property rights solution was influenced by Knight.
They were colleagues at the University of Chicago for many years. Knight
is known as the father of Chicago School economics and an impact on the
work of many social scientists at Chicago and around the world.

A theorem bears Coase’s name and a brief explanation of its content is in
order. The Coase Theorem arises out of the idea that more finely delineated
property rights enable the market to solve the problem of externality. The
word theorem is loosely used here and Coase never claimed to have found or
in any sense proved the Coase Theorem.

Coase showed that by settling property rights disputes, courts played a key
role in enabling markets to work. Before the court ruled, trade would be im-
possible because there was disagreement over ownership. These high trans-
actions costs would prevent negotiation.

Once the court ruled, there would be a clear potential buyer and seller.
Coase argued that it was not important who won the case because the re-
source would end up with whoever valued it more. By giving one party the
property right, the court established ownership and enabled the resource to
be traded. If the winner valued the resource more, the loser would be unwill-
ing to buy it. If the winner valued it less, the loser would buy the resource.
Either way, said Coase, once the judge ruled, the resource would end up at
its most highly valued use. This idea is now known as the Coase Theorem.

So, in the case of pollution, perhaps homeowners would sue the polluting
firm. The court would rule and, either way, once the property right was es-
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tablished, the market would begin to function. Assuming the polluting firm
values the property more, it will buy the right to pollute if it loses and will
not sell the right if it wins the court case. Either way, it incorporates the cost
of pollution because it has to purchase the right if it loses or it recognizes
the opportunity cost of having the asset if it wins.

Coase criticized Pigovian taxes and subsidies as a way to fix inefficiency in
the allocation of resources by a market system. Coase saw Pigou’s approach
as hopelessly idealistic and impossible to implement in the real world. It is
easy to draw Figure 17.27 and a snap to show that the correct tax or subsidy
enables the market to hit the socially optimal output as in Figure 17.28.

Unfortunately, this blackboard economics (as Coase derisively called it) is
easy to draw and teach, but almost impossible to implement. The gov-
ernment regulator will know neither the demand nor the supply functions,
and changes over time imply constant tweaking of optimal taxes or subsidies.

Economists think of Coase and Pigou as locking horns and often cast the
issue as free market versus regulation. It is clear, however, that Coase and
Pigou share some common ground. They both seek to maximize the value
of output; they want to optimally allocate resources.

Both offer solutions that work well in theory, but can prove difficult to im-
plement. Once we recognize that neither approach is perfect, we can begin
the difficult task of deciding which approach is better in a particular situation.

The EPA and Acid Rain

Although Pigovian taxes remain a staple of economics, in recent years, market-
based strategies relying on Coase’s logic have gained popularity.

For example, cap and trade works by creating a total amount of allowable
pollution and creating a market where firms can buy and sell rights to pol-
lute. This forces firms to take into account the full costs of their production
decisions. They must buy a permit in order to pollute and this forces them
to internalize the externality.

The EPA’s sulfur dioxide (SO2) cap and trade program is aimed at decreasing
pollutants that cause acid rain, www.epa.gov/airmarkets/allowance-markets.
Instead of command and control or taxes, the EPA sets a total emissions con-

https://www.epa.gov/airmarkets/allowance-markets
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straint, or bubble, then allows firms in the bubble to buy and sell pollution
permits. This scheme is equivalent to setting up a market for pollution.

There are many details to be worked out when setting up a market. For
example, the government can give each firm an initial allocation of permits
or they can auction off the permits.

Some environmentalists remain strongly opposed to market-based solutions
to pollution abatement. They see such programs as “licenses to pollute.” But
the market’s ability to price resources correctly and enable socially optimal
resource allocation is a powerful factor in favor of the market.

Other countries (including such different places as Europe, Costa Rica, and
China) have started emissions trading programs. The idea of creating a
market for pollution to correct the market failure caused by externality is
most definitely a real, practical solution that continues to grow in popularity.

Externalities, Market Failure, and Corrective Action

Externalities are costs or benefits not taken into account by the decision
maker. Externalities cause inefficiency because the equilibrium level of out-
put does not equal the socially optimal level of output. As usual, we can
measure the inefficiency in the allocation of resources caused by an external-
ity by computing the deadweight loss.

The inefficiency caused by externality can be corrected by command and con-
trol, but this approach requires micromanagement by government regulators.
Pigovian taxes and subsidies are a type of government regulation that allows
individual agents to decide what to do. A firm, for example, would decide
how much to pollute and produce, but they have to pay tax. The Pigovian
tax is optimized to push the market to the socially optimal output.

The Pigovian approach is definitely at play in the area of education. Truancy
laws and other absolute requirements concerning schooling are an example
of command and control. Government support of higher education through
student grant and loan programs are Pigovian subsidies. The idea is to help
students capture the full benefit of a college education and ensure that pri-
vate decision making is socially optimal.

Another repair relies on market-based solutions to the inefficiency created by
externality. Instead of taxing or subsidizing buyers or sellers, property rights
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for unowned and unpriced resources are established and then the market is
left to work its magic. Cap and trade is an example of this approach.

Coase is credited with the idea of fixing inefficient market outcomes with
property rights, but Knight definitely had an influence. Knight’s criticism of
Pigou’s toll road example is long forgotten, but it contained the seed of the
logical argument that a Pigovian market failure is no such thing because not
all decentralized systems are market systems.

Mechanism design is a new subfield in economics where we consciously de-
sign a game and then let agents play to reach a desired result. This is totally
different than the evolution of the market system. Adam Smith did not draw
up a blueprint for a market-based society. It happened organically. But now
that we know how it works, we are trying to design institutions that give
desirable results.

Exercises

1. Give an example of a positive externality in consumption.

2. Analyze the welfare effects of a positive externality in consumption.
Use Word’s Drawing Tools to support your answer with a demand and
supply graph.

3. In each case that follows, describe the regulatory strategy to correct
the market failure caused by a positive externality in consumption.

(a) Command and control

(b) Pigou

(c) Coase
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Lack of legal sanctions means that loyal
members of the cartel must exact penalties
against deviants in the market place. Unless
such disciplinary actions (mainly price cuts)
can be localized, every member of the cartel,
loyalist and defector alike, suffers. That is a
very severe (if little remarked) limitation on
the efficiency of cartels.

Oliver E. Williamson

17.7 Cartels and Deadweight Loss

We know that the equilibrium output of a competitive market equals the
output that maximizes consumers’ and producers’ surplus. We also know
that monopoly produces too little output and the resulting deadweight loss
is a measure of the inefficiency of monopoly. But competition and monopoly
mark opposite ends of a spectrum that includes a wide range of other market
structures.

A cartel is a type of market structure in which a group of firms cooperate to
control output and price. Perhaps the most famous international cartel is the
Organization of the Petroleum Exporting Countries, OPEC. Cartels are not
monopolies because there are several independent firms in the syndicate or
trust, but they hope to act like a monopolist, restricting output and raising
price, to earn monopoly profits. Cartels are inherently unstable because it is
in the interest of each member to cheat and sell more than the agreed amount.

This section explores the welfare properties of a specific type of cartel. The
application is based on the workings of the Norwegian cement cartel as ex-
plained by Röller and Steen (2006). Analyzing the cartel involves solving
a two-stage game and the cartel result is compared to monopoly and non-
cooperative, Cournot competition. This material is advanced and it is recom-
mended that the chapter on Game Theory be completed before proceeding.

A Brief History of Norwegian Cement

Cement output in Norway (and in other countries that use the metric sys-
tem) is measured in tonnes (pronounced tons). This is not simply a foreign
spelling for a ton. A ton is 2,000 pounds. A tonne, sometimes called a metric
ton, is 1,000 kilograms. Given there are roughly 2.2 kilos in a pound, a tonne
is about 2200 pounds. Thus, a tonne is bigger than a ton.

643
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Figure 17.29 shows that production rose dramatically during the second half
of the 1960s, greatly outpacing demand. This excess output was sold at a
loss in other countries. A balance between production and consumption was
restored by the early 1980s.

Figure 17.29: Norwegian cement production and consumption, 1955-1982.
Source: CartelDWL.xls!Data.

Production rocketed because of the sharing rule adopted by the Norwegian
cement industry. A sharing rule determines how the monopoly rent is to be
distributed among the firms in the cartel. Each firm’s share of the domestic
market was based on its fraction of total industry capacity. We will see that
this gives each firm an incentive to expand plant capacity and led to the
explosion in output shown in Figure 17.29.

In 1968, the three producers in the cement industry abandoned the cartel
market structure and merged to form a monopoly. By then, however, plant
capacity had been expanded and it took years to reduce output.

Röller and Steen explain that there are few empirical studies of cartels be-
cause they are illegal in many places (including the United States) so ob-
taining data is difficult. Such is not the case in Norway. “Given the legality
of the Norwegian cement cartel, we have a large amount of primary data
allowing us to do a complete welfare analysis.” (Röoller and Steen, 2006, p.
321.
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Monopoly Review

STEP Open the Excel workbook CartelDWL.xls, read the Intro sheet,
then go to the Monopoly sheet.

Given the linear inverse demand curve and constant marginal cost, finding
the monopolist’s profit-maximizing solution is easy.

STEP Use the scroll bar under the chart to find Q*. As you change the
quantity, you can see the corresponding price in the chart and in cell B11.
You can also see the producers’ surplus (also known as profits) change in cell
B19 as you set Q.

You can choose Q* by watching cell B19, but you could also find Q* by
choosing the intersection of MR and MC.

Excel’s Solver offers yet another alternative to finding the profit-maximizing
level of output.

STEP Run Solver and configure the Solver dialog box to solve the mo-
nopolist’s profit maximization problem.

Finally, click on cells B18, B19, and B21 to show the consumers’ surplus (CS ),
producers’ surplus (PS ), and deadweight loss (DWL) from the monopoly so-
lution in the chart.

Having found the monopoly solution, we turn to output (and price) under a
noncooperative, Cournot environment.

Cournot Review

STEP Proceed to the CournotFirm sheet.

Chapter 16 on game theory presented the material reviewed here, which as-
sumes a basic understanding of the Cournot model and Nash equilibrium.

Instead of a single firm, there are three firms making a homogeneous prod-
uct. They do not collude or combine forces. Instead, they compete. Unlike
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perfect competition, however, there are so few producers that they impact
each other’s decision making. If one firm decides to produce a lot, this will
lower the price for all three firms.

How will an individual firm decide how much output to make? The core
idea is that each firm will make profit-maximizing output decisions based on
conjectures about what the other firms will do. The output level at which
each firm’s decision is consistent with the output chosen by the other firms
is the solution, called a Nash equilibrium.

The CournotFirm sheet opens with cell B10 set equal to zero. This means
that Firm 1 is exploring what its best option is if the other firms produce
nothing.

STEP Use the scroll bar under the chart to find the profit-maximizing
output for the conjecture that the other firms produce nothing.

If the other firms decide to produce zero output, Firm 1 will produce 2.3
million units of output. But this is not an equilibrium solution because the
other firms would not choose to produce zero units of output when this firm
produced 2.3 million tonnes. How much would the other firms produce?

STEP Click the Set Exo Q button to copy Firm 1’s optimal solution

(in cell B15) to the conjectured output in cell B10.

Notice how the chart shows new red D and MR curves. These are the resid-
ual demand and residual marginal revenues curves for Firm 2, given that
Firm 1 produces 2.3 million and Firm 3 produces nothing.

STEP Use Excel’s Solver to find the profit-maximizing output for the
conjecture that the other firms produce 2.3 million units.

You should find that Firm 2 will produce 1,150,000 units when the other
two firms produce 2.3 million. We have stumbled upon the Nash equilibrium
solution! If each firm produces 1.15 million units, then none of them will
regret its output decision. In other words, each firm’s optimizing decision
(1.15 million) is consistent with the conjectured output (2.3 million).

Notice that the Nash equilibrium is not Firm 1 = 2.3 million, Firm 2 = 1.15
million, and Firm 3 = 0. Both Firms 1 and 2 would regret their decisions
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and would opt for different output choices. It should be clear, however, that
if each one makes 1.15 million, then none of the firms would regret or wish
to change its chosen output level.

The Cournot solution can be found via iteration (which was easy in this
example) or by analytical methods (see work starting in cell A28). The
reduced form for the industry’s Nash equilibrium output in this Cournot
model (linear demand and cost function and n firms) is:

Qe =
n

n+ 1

d0 −MC

d1

Price, of course, is simply read from the inverse demand curve.

STEP Proceed to the Cournot sheet to see the welfare implications of
the Cournot solution. Click on cell B14 to see that the formula for the Nash
equilibrium has been entered.

Notice that the Cournot output level is between the perfectly competitive
(D = MC) and monopoly (MR = MC) output levels.

STEP Click on cells B18, B19, and B21 to highlight CS, PS, and DWL
in the chart.

Once again, notice that the DWL for the Cournot solution is between the
monopoly (highest DWL) and perfect competition with many firms (no DWL)
extremes.

STEP Increase the number of firms in cell B10 to 5, 10, and 20.

As n rises, DWL falls because as n rises, we are approaching the ideal so-
lution of competition with many firms. Thus, perfect competition is simply
an n-firm Cournot model with an infinite number of firms. You can confirm
that at n = 1, the monopoly solution is found.

Having covered the monopoly and competitive Cournot models, you are ready
to tackle yet another market structure: the cartel.

Cartel Behavior

Suppose an industry, made up of several firms, organized into a cartel. In
other words, the firms would join forces and cooperate in making decisions.
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The cartel would decide the total domestic output and price for the product.
In addition, the cartel would have to determine how much each firm would
produce. This is called the sharing rule.

Different sharing rules yield different results. Suppose that the sharing rule
applied is that each firm’s output reflects its share of total industry capacity.
There are no limits on each firm’s capacity and any output not sold domes-
tically could be exported at the world price.

Although each firm chooses capacity first and then the cartel chooses total
output (and price), we solve the two-step optimization problem recursively.
This means we start at the second stage, then work backwards to the first
stage.

Stage 2: Choosing Total Domestic Output (and Price)

STEP Proceed to the CartelStage2 sheet.

The information is laid out as in the Monopoly sheet, but there are addi-
tional variables. The world price (below marginal cost) has been added in
cell F8 and to the chart. Individual firm parameters start in row 26. The
three firms have chosen their capacities (cells B30:B32), determining total
capacity (B28) and shares of domestic output (C30:C32).

STEP Use the scroll bar under the chart to explore different quantities
of domestic output. This is the cartel’s key choice variable. It can choose
anywhere from no output to the vertical, total capacity, line (which is deter-
mined by the firm’s capacity decisions in stage 1 and is now an exogenous
variable to the cartel).

STEP Click on cell B19, which is the PS and also the profit generated by
a given output level, to highlight the PS in the chart. The formula and the
chart reveal that PS has two parts: = (P − s0 )*Q − (s0 − R )*(B28 − Q).

The first part is a rectangle with height from MC to price and width from
zero to the chosen output. This would be PS under monopoly.

But the cartel has a second component to PS. This is the smaller rectangle
on the chart and it is subtracted from the bigger rectangle. This second
part is the excess output that is exported and sold at the world price. It
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is subtracted from profits because the world price is below MC. Thus, these
units are sold at a loss.

STEP Use the scroll bar to find the cartel’s Q*. Notice that you can
find the optimal output by keeping an eye on PS (in cell B19) or by setting
MR = R. You can also use Excel’s Solver to find the optimal output.

Cell B13 shows the optimal output and your cell B12 should equal this so-
lution. The cartel will produce 3,150,000 units and charge $1,725 per unit.
This is a higher output (and lower price) than the monopoly solution.

R is a key variable. It plays the role of MC in the cartel’s optimization
problem. What effect does changing R have on Q* and P*? What welfare
effect does changing R have? We can answer these questions with Excel.

STEP Change R to 500 in cell F8. Solve the cartel’s optimization prob-
lem again.

You should see that optimal domestic quantity is lower and price is higher.

STEP With the new optimal solution for R = 500 in B12 (Q* = 2.8

million), click the Compare Surplus button. It displays the initial CS, PS,

and DWL values (for R = 150) and computes the difference between the new
and initial values.

As R rises, CS falls and PS rises. Total DWL is bigger by $136 million, with
both parts of DWL (the traditional triangle that represents domestic DWL
and the export loss) rising.

STEP Click the Reset button (or reset R to 150).

We conclude our analysis of the cartel’s first stage of the optimization prob-
lem by examining the effect on the individual firms. Cells D30:G32 show
how the sharing rule is applied to determine how much each firm produces,
given the cartel’s total domestic output decision. The blue text color means
these variables are endogenous—they are determined by the cartel’s domestic
output decision.

STEP Adjust Q via the scroll bar under the chart and keep your eye on
cells D30:G32. As Q changes, so do the individual firm variables in blue.
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Because the firms have equal capacities, each sells a third of the domestic
output and exports the rest. Domestic and export sales for each firm are
displayed.

STEP Enter 3,150,000 in cell B12 (the value of Q* at the initial values
of the exogenous variables) to see the PS earned by each firm at the cartel’s
optimal output.

From the cartel’s point of view, the individual firm capacities are given.
But would profit-maximizing firms choose these particular capacities? This
question is at the heart of the first stage of the cartel’s two-stage optimization
problem.

Stage 1: Choosing Capacity

Now that we know how the cartel is going to decide how much domestic
output to produce and the sharing rule, we can tackle the question facing
each firm: How much capacity?

At any point in time, firms have a given maximum total production, or ca-
pacity, determined by factory size. To increase capacity, firms must expand
factory size and this takes time.

Notice that the marginal cost of cement production is different from the
marginal cost of capacity. The former is assumed to be low and it does not
play a role in this analysis. In fact, it is assumed that firms always produce
up to capacity.

The capacities of each firm and hence total capacity are given to the cartel
but are chosen by each firm. Each firm would pick that capacity that would
maximize its profits.

The profit function has revenue from two sources: domestically sold output
at price P (chosen by the cartel) and the excess output that is exported
and sold at the world price, R. The cost of capacity function is linear, with
constant marginal cost.

STEP Proceed to the CartelStage1 sheet and click on cell B11 to see
that the formula reflects the firm’s profit function.
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Cells B19:B23 have the exogenous variables. Each firm chooses capacity (qi)
to maximize profits.

The sheet opens with the firm having a capacity level of 1,200,000 units, the
same as the other two firms, so the total industry capacity is 3,600,000 units.

STEP Click on the scroll bar (next to B27) to increase capacity.

Notice that the larger the chosen capacity, the greater the share of the do-
mestic sales (Q), which is chosen by the cartel, and thus domestic revenues
(B13) rise. As capacity increases, exports also rise (because only a share of
the firm’s output is sold domestically) and this hurts because the world price
is below marginal cost. Of course, increasing output is going to increase costs
because the firm has to build a bigger plant.

Given these trade-offs, what level of capacity should this firm select?

STEP Keep your eye on cells F27:H27 as you adjust the scroll bar to
select the profit-maximizing output.

As usual, you can equate MR to MC to find the optimal solution.

STEP Check your work by using Excel’s Solver.

The optimal capacity, 1,342,758 units, differs from the original 1.2 million
units. This means that the optimizing firm would choose to make 1,342,758
units when the other two firms make a total of 2.4 million.

STEP Copy the optimal capacity in cell B27 and paste it in cell K9 (or
enter 1,342,758 units in cell K9).

We are not done yet because if this firm wants to make 1,342,758 units, it
stands to reason that the other firms (with identical cost structures) will also
want to do this.

STEP Return to the CartelStage2 sheet, select cell B30, and paste (or
type in) 1,342,758.

Notice that cells B31 and B32 change to the value of cell B30. Cell B28,
Total Capacity, is now higher and, thus, the vertical line in the chart has
shifted right.
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We do not need to run Solver again because the cartel’s optimal output and
price combination in the domestic market is unaffected by the total indus-
try capacity. The extra output is simply exported and sold at the world price.

STEP Return to the CartelStage1 sheet and notice that MR no longer
equals MC. Click on cell B20 to see that it has a formula.

Cell B20, Other Capacity, has changed because the other two firms have se-
lected different capacities.

STEP Copy cell B20, select cell J10, and Paste Values, then run Solver.
Copy the new optimal Q (cell B27) and paste it in cell K10.

Notice that we still do not have an internally consistent solution between the
two optimization problems. The firm capacity optimal solution is different
from the total capacity used by the cartel. We must iterate.

STEP Do these three steps:

1. In the CartelStage2 sheet, select cell B30, and paste the value of optimal
capacity.

2. Return to the CartelStage1 sheet and copy cell B20, select cell J11,
and Paste Values.

3. Run Solver to find the new optimal solution. Copy the optimal Q (cell
B27) and paste it in cell K11.

We still do not have a situation in which the optimal capacity decision of
Firm 1 agrees with the total capacity parameter used by the cartel.

STEP Fill in the Stage 1 and Stage 2 Consistency table. You will need to
iterate, repeating the process of solving for Firm 1’s optimal capacity, past-
ing that result in the CartelStage1 sheet, then returning to the CartelStage2
sheet to see if the two solutions coincide (the three steps above).

STEP When you have finished completing the table, click the Show Data
button.

This reveals results in columns L, M, and N that are based on your iterations.
It also shows the Nash equilibrium solution for qi*. As with our work in the
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Cournot model earlier, there is an analytical solution to each firm’s optimal
and consistent capacity and we entered it in cell K19.

Figure 17.30 shows what your screen should look like. The total capacity, the
vertical line in the CartelStage2 chart, is driven to an equilibrium value of
3,891,176 units. The total capacity line bounces right and left until settling
down at a value that is consistent with the optimal solution to the individual
firm’s profit maximization problem. In equilibrium, each firm will have a
capacity of 1,297,059 units. This is consistent in the sense that each firm
would choose this capacity if it knew the sharing rule adopted by the cartel.

Figure 17.30: Nash Equilibrium capacity.
Source: CartelDWL.xls!CartelStage1.

Given the demand curve parameters, marginal cost, and the world price, we
know the cartel’s profit-maximizing domestic output and price. Because we
know the equilibrium solution to each firm’s capacity decision, we can com-
pute the total output produced and export loss. Thus, we can compute CS,
PS, and DWL.

STEP Copy cell K19 from the CartelStage1 sheet and Paste Values in
cell B30 of the CartelStage2 sheet.

STEP Click on cells B18, B19, and B21 to display the CS, PS,and DWL
generated by the cartel solution.
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Cartel Model Summary

Determining the cartel’s output is not easy. One has to solve a two-stage
game. The cartel’s sharing rule means that each profit-maximizing firm is
willing to trade off export losses in order to get a share of high-priced do-
mestic output.

The vertical total capacity line in the CartelStage2 chart is actually an equi-
librium solution to the first stage of the game. There is only one value of
total capacity that is internally consistent with individual firm capacity de-
cisions.

The cartel game-theoretic model also can be solved via analytical methods.
The mathematics is not easy, but if you are interested in seeing the solution,

click the Show Analytical button near cell M5 of the CartelStage1 sheet.

Having determined the output and price solutions to each of the three market
structures, we are ready for the welfare analysis.

Comparing Monopoly, Cournot, and Cartel Solutions

STEP Proceed to the Compare sheet.

Given the parameter values (in the shaded cells), the table displays the out-
put, price, CS, PS, and DWL associated with perfect competition, monopoly,
cartel (with the sharing rule), and Cournot market structures.

Cells B18:B21 are connected to the market structure currently displayed on
the chart. Initially, the perfectly competitive result is displayed. DWL will
be computed against this standard.

STEP Click the Monopoly option.

Cell range B18:B21 is updated and the chart displays the monopoly result.
Notice that the monopolist ignores the world price and does not export ce-
ment. She maximizes profits by choosing output where MR = MC.

Compared to perfect competition (in cells B10:B14), monopoly generates
much lower CS, higher PS, and a substantial DWL.
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STEP Click the Cartel option.

The chart displays the total capacity vertical line and the exports are high-
lighted. We can compare the cartel to the monopoly and PC results by
looking at the cells in columns B, C, and D, in rows 10 to 14.

Note that for the cartel option, cell D13 shows the value of profits for the
cartel. This is domestic PS less export loss. Cell B19, also labeled PS, shows
domestic producers’ surplus (and leaves out the export loss). This is confus-
ing, but it allows separation of the two sources of total DWL, domestic DWL,
given in B21, and export loss, shown in cell B22, and ensures that domestic
DWL plus total surplus will sum to total surplus in the perfect competition
case. Total DWL, the sum of domestic DWL and the export loss, is reported
in cell D14.

Compared to perfect competition, the cartel generates lower output and
higher prices, but it is better than monopoly. Cells G10:G14 show what
happens when you move from cartel to monopoly.

STEP Click on cells G10 to G14 to see their formulas.

If the Norwegian cement industry merged to monopoly from a cartel, we
would see the following: Output falls, price rises, CS falls, PS rises, and
DWL rises.

The increase in DWL would enable to us to judge such a move as a failure
in terms of resource allocation in the Norwegian economy.

STEP Click the Cournot option.

Comparing cartel and monopoly to perfect competition is not particularly
useful, because we are not going to get a perfectly competitive cement indus-
try. There are only three firms. If we had competition, it would be Cournot
competition. The three firms would not collude, but they would behave
strategically.

If the industry went from cartel to Cournot, cells F10:F14 show what would
happen. As with cells G10:G14, these cells report the difference from the
cartel to the Cournot market structure. Notice that output rises, price falls,
CS rises, PS rises, and DWL falls.
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Of these effects, PS rising is surprising, but remember that under Cournot,
the export losses are eliminated.

This completes the theoretical welfare analysis. The results are clear: To
maximize surplus, the Norwegians should have moved from a cartel to Cournot
competition. Of the three market structures, Cournot has the lowest DWL.

There is, however, one important issue left unresolved: These results apply
only to the parameter values on the sheet. We do not know the intercept or
slope of the Norwegian demand curve for cement, nor do we know R or MC.
We need to get these parameter values, and then do the analysis based on
these real-world parameter values.

Welfare Analysis for 1968

STEP In the Compare sheet, scroll to the right of the graph and click

the Show Actual button (over cell N1).

After clicking the button, a new sheet appears, populated with key parame-
ters for 1968, the last year of the cartel.

Figure 17.31 shows the results for the various market structures for the es-
timated demand curve for 1968. The conclusion is clear—Cournot is the
best of the three feasible market structures. It produces the highest output,
lowest price, highest CS, and lowest DWL.

Figure 17.31: Welfare analysis.
Source: CartelDWL.xls!CompareActual.

Figure 17.31 also makes clear why the industry went to monopoly instead
of Cournot after the cartel collapsed (under the weight of overproduction
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and export losses). PS would rise when moving from Cartel to monopoly
(by 47,891,000 kroner), but fall (by 61,745,000 kroner) if the industry had
adopted a noncooperative Cournot arrangement. Thus, it is clear that the
cement industry chose to maximize its own PS instead of CS + PS. This is
not surprising.

In fact, Röller and Steen build an even stronger case by exploring the welfare
effects over several years. Scroll to column AE and read the text box if you
are interested.

STEP Click the Monopoly option to display the monopoly solution in
the graph.

The monopolist would choose output where MR = MC and charge the high-
est price possible for that level of output. Monopoly profit in 1968 would
have been 439 million kroner. Consumer surplus would be much smaller than
under perfect competition and Norway would suffer a deadweight loss from
monopoly of 219 million kroner.

But the Norwegians did not have a monopoly before 1968, they had the ce-
ment cartel.

STEP Click the Cartel option.

The cartel chooses output where MR = R, allocates the domestic output to
the three firms based on capacity shares, and exports the excess output.

Notice, however, that Röller and Steen do not use the predicted capacity
based on the demand curve parameters. Instead, they use actual exports.
The story here is that capacity takes time to build. The cartel puts persistent
pressure on expansion, but the firms do not actually reach their goal of vast
capacity because the cartel collapses.

STEP You can check the theoretical cartel solution for the estimated pa-
rameters by simply copying the range A5:F8 from the CompareActual sheet
and pasting in the same range in the Compare sheet. Click Yes if prompted
to replace the destination cells. You may need to click the Cartel option to
refresh the screen.

Figure 17.32 shows the result. Capacity is huge and export losses are stag-
gering. This is the capacity that would have been installed in the long run
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under the cartel. Röller and Steen do not use this capacity value. Instead,
they use actual exports, based on the actual capacity in 1968.

Figure 17.32: Cartel results with capacity determined theoretically.
Source: CartelDWL.xls!Compare using estimated parameters for 1968.

STEP Return to the CompareActual sheet. Focus on columns F and G.

We know the firms merged to monopoly and the cartel to monopoly column
(G) shows the welfare implications of this move for just 1968. As expected,
output falls and price rises, CS falls and PS rises. The net welfare effect can
be computed as the sum of the changes in CS and PS, which is an 11 million
kroner increase (in cell G15).

Alternatively, the net welfare effect can be determined by looking at the re-
duction in DWL in cell G14. Because DWL falls as we move from cartel to
monopoly, this number is negative. But notice that the absolute values are
the same.

Our standard models tell us that merger to monopoly is the worst possible
outcome—monopoly generates the greatest DWL of any market structure.
However, because of the sharing rule, welfare actually increases when the
cartel merges to monopoly because monopoly does not suffer export loss.

STEP Compare the values in Table 3 for the cartel to monopoly in 1968
to the values in column G.
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The slight differences are due to rounding and precision differences.

Although monopoly beats the cartel, this is a poor argument for supporting
monopolization. After all, the cartel could have dissolved into a noncoopera-
tive, Cournot competition. We must examine the welfare effects of this move
and compare it to moving to monopoly to find the better option.

STEP Compare the red circled value of the change in PS when moving
from Cartel to Cournot in Table 3 to cell F13. These numbers should be the
same, but they are not.

Röller and Steen made a mistake in computing the net welfare effect for the
move from cartel to Cournot in Table 3. They report the change in domes-
tic PS in the table, not the change in total PS, which includes the export
loss. As a result, the net welfare effect for cartel to Cournot in Table 3 is
also incorrect. By failing to include the export loss in the reported PS, they
underestimated the welfare gain from adopting a Cournot noncooperative
market structure.

This error does not change Röller and Steen’s conclusion. In fact, if anything,
their results are strengthened once the export loss is accounted for. The loss
in PS that the cement industry undergoes in moving to Cournot competition
is not as bad as Table 3 suggests because of the elimination of the export
loss. The true net change in welfare is some 45 million kroner higher than
Table 3 estimates.

Consequences of Using Actual Versus Theoretical Total Capacity

Now that we understand how net welfare effects for 1968 are computed, we
turn to the issue of how the export loss is measured.

Cell D20, the export loss in 1968, is based on actual exports—the difference
between actual capacity (total production) and domestic output.

Figure 17.32 and your Compare sheet show that at the Nash equilibrium,
long run capacity is much higher than the actual capacity (based on actual
total production). How does this impact the analysis? This is an important
question with a surprising answer.
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STEP Compare the formulas in cells G16 and G17. Both display the
same number, but the formulas are different.

G16 computes the net welfare gain from going to Cournot instead of monopoly
(from the cartel, of course) by taking DWL from cartel to Cournot minus
the DWL from cartel to monopoly. Cournot beats monopoly by about 165
million kroner.

G17 computes the same net welfare gain, but does so by subtracting the net
welfare effect from going to monopoly from the net welfare effect from going
to Cournot. Once again, the move to Cournot beats the move to monopoly
by roughly 165 million kroner.

STEP Copy the two cells, G16:G17, and go to the Compare sheet, past-
ing these cells in the same range.

The result is surprising—the superiority of Cournot over the cartel remains
exactly the same, even though the Compare sheet is using theoretical, long
run total capacity and the export losses are huge.

If you compare the values in columns F and G in both sheets, you will find
that for both the move to monopoly and the move to Cournot, the change in
PS and the change in net welfare are much higher if the theoretical capacity
is used. This makes sense because the export loss is much greater.

However, the relative improvement in Cournot over monopoly remains the
same because both Cournot and monopoly avoid export losses. Thus, the
size of the export loss does not matter.

Had Röller and Steen used the theoretical, long run total capacity level based
on the estimated parameters in 1968, their qualitative and quantitative con-
clusion regarding the superiority of Cournot over monopoly would remain
completely unaffected.

Lessons from the Norwegian Cement Cartel

Röller and Steen (2006) evaluate the effectiveness of the (legal) cement cartel
in Norway over the period 1955 to 1968. They solve monopoly, Cournot, and
cartel models and compare the results. They find that because of the sharing
rule adopted by the cartel, consumers actually did better (in terms of con-
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sumer surplus) than they would have if the industry had been monopolized.
Producers, on the other hand, lose in the domestic market with the cartel
compared to a monopoly. Producers suffer an additional export loss under
the cartel and this leads to a key result: The merger to monopoly that oc-
curred in 1968 actually improved net welfare relative to the cartel outcome.
This is certainly a surprise, given that we expect monopoly to be the worst
market structure. The authors point out, however, that simply breaking up
the cartel and allowing Cournot competition would have improved welfare
even more.

The fact that Röller and Steen used actual exports instead of estimated ex-
ports makes no difference to their final conclusion that Cournot competition
would have been the first-best choice. The reason it does not matter is that
both monopoly and Cournot competition result in the elimination of the ex-
port loss, so in comparing a move to either Cournot competition or monopoly,
the actual size of the export loss is irrelevant.

Röller and Steen (2006) give an excellent example of how economists use
CS, PS, and DWL in policy analysis. It also enables deeper understanding
of game theory by examining the two-stage game played by members of the
cartel.

This section is certainly not typical of an Intermediate Micro course, but it
offers advanced students a chance to see a sophisticated application of welfare
analysis.

Exercises

Suppose the inverse demand curve is P = 1000− 0.5Q, marginal cost is con-
stant at $100 per unit, and the world price is $50. Enter these parameter
values in the Compare sheet and answer the questions below. Enter the de-
mand slope as a positive number, 0.5, and click one of the market structure
options to refresh the chart.

The math theory prep section showed two surprising results. First, con-
sumers’ and producers’ surplus under the cement cartel do not depend on
the marginal cost of capacity. Second, as the number of firms in the cartel
rises, the likelihood a merger to monopoly will be welfare enhancing rises.

To answer the questions that follow, taking pictures is helpful. You can select
cells (e.g., A1:M25) and copy as a picture, then paste.
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1. Increase MC from 100 to 200 and determine the impact on the cartel’s
Q, P, CS, PS, DWL, and export loss. What happens to each of these
variables as MC rises?

Be sure to click the Perfect Competition and then Cartel option button
to refresh the data below the buttons.

2. Which changes, if any, in the variables are surprising? Why?

3. At what value of MC will there be no exports? Take a picture of this
situation and paste it in your Word document.

4. Increase the number of firms from 3 to 5 (with MC at the no export
loss value). What effect does this have on the cartel’s Q, P, CS, PS,
DWL, and export loss?

5. What can you conclude about the effect of the number of firms on PS
from a merger to monopoly (from the cartel)?
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The presence of people in the
market who are willing to offer
inferior goods tends to drive the
market out of existence—as in the
case of our automobile “lemons.” It
is this possibility that represents
the major costs of dishonesty—for
dishonest dealings tend to drive
honest dealings out of the market.

George A. Akerlof

17.8 Signaling Theory

We all want to live in a world in which every buyer and seller is always com-
pletely honest, dependable, and trustworthy. In such a world, no one would
lie, cheat, or steal. No one would misrepresent a product or hide a defect
to make a sale, and the buyer would always alert the cashier when receiving
too much change. Even politicians and children would always tell the truth.

Plainly, we do not live in such a world. Cigarette manufacturers swear under
oath that their products are safe and that there is no proof that tobacco
causes lung cancer. Management lies to labor about the true profitability of
the firm and the size of the wage increase that the firm can really afford. It
seems that we live in the midst of lies and deceit. Few can be trusted and
few trust us.

This then is the problem: How can we make our world—the one full of
distrust and scams—more like the world we all agree is better—the one in
which individuals are sincere and open? How can we get people to tell the
truth?

Three Ways to Handle Dishonesty

We review utopian and authoritarian solutions to fighting dishonesty, and
then focus on a third way that most people rarely consider.

If somehow it were possible to create a perfectly honest person, we could at-
tain our goal of living in an honest world. People could be counted on, with
no doubt or reservation whatsoever, to be completely clear and forthright.
This is the utopian solution.

Karl Marx believed private property, money, and the capitalist system cre-
ated an all-encompassing greed that generated fraud, deception, and a variety
of other reprehensible individual behaviors. For Marx, the solution to the

663
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problem was quite simple: Replace vicious capitalism with its superior evo-
lutionary offspring, communism, and replace the money-hungry homo eco-
nomicus with the noble new socialist man.

Although seemingly hopelessly idealistic, in certain cases, reliance on peo-
ple’s good qualities is, in fact, possible. We all have close friends and family
whom we can trust to be sincere and truthful. In our daily lives, however, we
deal with countless strangers, and we cannot rely on personal relationships
to ensure honest behavior. In a modern society that incorporates the actions
and decisions of millions of individuals, it is simply impractical to expect
trustworthiness from everyone.

To protect against dishonesty, many people think immediately of monitoring.
This second approach can be called the authoritarian solution.

If a store owner thinks customers are going to steal, valuable merchandise
can be put under a glass counter, security cameras installed, and guards can
watch the customers. If the government knows that citizens will cheat on
their taxes, a sample of tax returns will be audited carefully to check for full
compliance and severe penalties will be imposed on those caught cheating.

In general, the authoritarian approach to solving the problem of dishonesty
requires a powerful judge who can check the truthfulness of statements and
punish those who are caught violating the rules. Monitoring and punishment
can work well when it is clear what constitutes a lie, and it is easy to observe
the dishonest behavior.

Unfortunately, in many cases, it is quite difficult to determine dishonest be-
havior because there are shades of deceitfulness, ambiguities in truthfulness,
and inherent uncertainty in the world. For example, if I sell you an expensive
product, promising that it is of high quality, and then it breaks, am I a liar?
It may very well be a high-quality good that just happened to break. Of
course, I may have known that it was really shoddy merchandise and I just
tricked you. How can you know which case is true?

In addition to that rather large subset of cases in which detecting dishonesty
is nearly impossible, every application of the authoritarian approach suffers
from a much larger drawback. To be effective, the powerful judge must be
able to monitor individuals, including investigating alleged wrongdoing, de-
termining guilt, and meting out punishment accordingly. This raises a serious
concern: Who watches the watcher?
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The inescapable paradox is that the stronger the authority, the more it will
be able to control the individual, but also the more dangerous it becomes to
the individual. Secret police, neighbors spying on friends, and severe control
of individual behavior via strict rules and regulations seem the destiny of
authoritarian schemes to coerce honesty from unwilling individuals.

There is little doubt that the authoritarian approach to the problem of dis-
honesty is the most common solution contemplated and applied. Faced with
severe cheating, our first instinct is to call the referee and demand that
force be applied to ensure truthfulness. There is, however, another alterna-
tive—one that does not suffer from the dangers inherent in the authoritarian
solution.

Transforming humans to remove the driving force of self-interest or imposing
authoritarian control to repress behavior driven by greed is like swimming
against a powerful tide. The third approach is completely different. It is
based on accepting self-interest and greed as immutable forces, but using
them to get desired behavior. We can harness the power of self-interest in
favor of our desired end. Individuals are free to decide to lie or not, but lying
leaves them worse off. If honesty is the best choice from a self-interested point
of view, then honesty is what we will get. This is the key idea underlying
signaling theory.

An Economic Model of Used Cars

Suppose that there are only two kinds of used cars: high-quality A cars and
low-quality B cars (called lemons in the United States). To keep things sim-
ple, suppose that there are equal numbers of each and that the high-quality
A car is worth $10,000 while the low-quality B car is worth only $5,000.

The seller knows whether his or her car is of low or high quality, but the
buyer does not. This is called asymmetric information because one party
has knowledge and the other does not. The general problem of honesty, in
this case, is reduced to figuring out a way to get sellers to tell the truth about
the quality of the cars they are selling.

It is important to emphasize that, as illustrated in Figure 17.33, the buyer
has no easy way to tell the cars apart. The underlying distribution of cars
is on the left, and is known to the seller, but what the buyer actually sees is
on the right.



666 CHAPTER 17. PARTIAL EQUILIBRIUM

Figure 17.33: The problem of asymmetric information.

In a world where buyers cannot tell the difference between low- and high-
quality cars and there are equal numbers of each type, buyers would expect
to get a car worth $7,500 on average. Half of the time they would get a
$10,000 car and the other half a $5,000 car. Thus, on average, a used car
would be worth $7,500 and this is the amount buyers would be willing to pay
for a used car.

Whereas sellers of low-quality cars would be quite happy getting $7,500 for
their low-quality cars, sellers of high-quality cars would be upset. After all,
owners of A cars have a product worth $10,000.

They might try to convince buyers to pay $10,000 by making claims about
the high quality of the car. Declarations about high quality, however, are
likely to be ignored because the buyer has no way of knowing if the seller is
telling the truth. After all, the seller might actually have a low-quality car
worth $5,000 and is lying to make more money. The buyer would worry that
the seller’s self-interest would dominate any desire to be honest.

The frustrated sellers of high-quality used cars simply leave the market. This
phenomenon is an example of Gresham’s Law, “bad money drives out good.”
It was first stated in the 16th century, when monarchs would debase coinage
(by adding filler) to get more coins out of a given amount of gold. People
would exchange the less valuable coins (bad money) and hoard the pure gold
ones (good money). With more bad money in circulation, prices would rise.

Applied to the used car market, the low-quality used cars can be seen as
driving out the high-quality cars. Left alone, we would not expect to see
high-quality used cars for sale. In fact, that is not what happens—high-
quality used cars are sold. How?
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Instead of fixing the problem of dishonesty (lying about the quality of the
car) by attempting to correct the unethical behavior of the sellers of low-
quality used cars (whose dishonesty is causing the trouble here) or imposing
authoritarian control over the used car sellers, an alternative scheme has
evolved that has certain appealing properties—not the least of which is that
car sellers truthfully reveal the qualities of their cars without any central,
controlling authority.

Before explaining signaling theory, it is worth pointing out that what is hap-
pening here is actually an externality problem. The low-quality sellers fail
to take into account the full cost of their lying and, therefore, they lie too
much. No individual seller is aware, or would care, that his or her lying is
contributing to the elimination of high-quality goods.

Another point that merits attention is that no one designed the system you
are about to see. It emerged out of the interaction of buyers and sellers.
Probably, some seller of a high-quality car got the idea and, when it worked,
it was imitated, but you are about to meet another example, like supply and
demand, of a decentralized system.

Signaling Theory

Developed by Spence (1973), the idea behind signaling theory is simple: when
we cannot directly observe quality, we use a substitute that is observable (a
signal) to enable the market to function. The signal is like a stoplight, green
means go and red means stop. The signal will sort the combined low- and
high-quality cars into separate markets.

Buyers cannot directly observe the quality of the car, but there are other
observable characteristics bundled with the car and seller. Indices are at-
tributes that cannot be changed, such as the age of the seller. Signals, on
the other hand, are observable markers that can be acquired.

The signal, however, must have some special properties to be effective. The
signal must be correlated with the underlying, unobservable characteristic.
It must be something the A car owner is willing to do, but the B car owner
is not, so that it is not immediately copied by unscrupulous sellers of low-
quality cars.
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In the case of used cars, a common signal is a warranty. Suppose that high-
quality cars will have low warranty costs to the seller because they are un-
likely to break, but the sellers of low-quality cars would face high warranty
costs for their cars that will probably require many repairs.

We have gone as far we can in abstract terms and we are ready to see an
Excel implementation of the signaling model.

STEP Open the Excel workbook SignalingTheory.xls, read the Intro sheet,
then go to the Optimizing sheet.

The cost of the warranty to the sellers of A and B cars is depicted in Figure
17.34. With no warranty at all (the car is sold “as is”), at a warranty level
of zero, a seller has no warranty costs—if something breaks after the car is
sold, it is the buyer’s problem.

Figure 17.34: Seller’s cost of warranty for each type of car.
Source: SignalingTheory.xls!Optimizing.

As the amount of warranty coverage offered by the seller increases, however,
costs rise. The seller of the B car’s costs rise faster so the gap between the
two seller’s warranty costs expands.

At a warranty level of 40 (this might be repairs covered by the seller for the
first 12 months or 12,000 miles), in Figure 17.34, sellers of high-quality cars
expect to incur costs of about $3,000, whereas the sellers of low-quality cars
will pay around $8,000 for repairs.
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The warranty cost functions are determined by the slopes in cells C6 and C7.
It is easy to see that a seller’s warranty cost is simply the slope parameter
times the warranty level.

Now, suppose there was a warranty level, which is set at 40, initially. Buyers
are willing to believe anyone who claims that their cars are high quality and
pay the $10,000 price if and only if the car comes with a warranty level of
40.

So the warranty is the signal and any seller who acquires it will sell a car for
$10,000. It seems like everyone will offer the warranty, right? Not so fast.

STEP Click the Show Price button.

Excel adds a price function to the chart. It is simply two horizontal lines
with a break at a warranty level of 40. The hollow and solid dots mark the
discontinuity. The solid dot means the endpoint is included and the hollow
dot indicates it is not. Thus, any warranty level from zero up to the signal
level (the hollow dot) means the car sells for $5,000. As soon as the signal
level is reached, the price jumps to $10,000.

Anyone buying a car with a warranty level below 40 will be willing to pay, at
most, $5,000 because it is assumed that the car is of low quality. Even if the
car is actually a high-quality car, if it fails to come with the warranty level
for high-quality cars, no buyer will pay $10,000 for it because the claim that
the car is of high quality is unbelievable without the warranty. On the other
hand, a buyer would be willing to pay $10,000 for any car with a warranty
level of 40, even if it is actually a low-quality car.

It is now up to the sellers of used cars to make a decision of whether or not to
lie. Sellers of low-quality used cars can claim that their cars are high quality
and thereby receive the $10,000 high-quality price.

They will not misrepresent the quality of the car, however, because they
would end up worse off. Their individual self-interest will drive them to tell
the truth.

STEP Click the Show Net Gain button to see why low-quality sellers
will not lie.
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Figure 17.35 shows what is on your computer screen. We use data from the
graph to create a table below that explains how the two sellers will behave.

Figure 17.35: Understanding why sellers will not lie.
Source: SignalingTheory.xls!Optimizing.

All sellers seek to maximize the net gain, or profit, from the sale of their
goods and services. Sellers of used cars would not look simply at the fact
that they can make $10,000 by offering a warranty level of 40. This decision-
making strategy completely ignores the cost of the warranty. Instead, sellers
must compare the net gain, price minus cost of the warranty, to arrive at an
optimal decision concerning the warranty level.

The table below the graph contains each type of seller’s net gain from selling
a car with no warranty versus selling the same car with warranty level of 40.
Read the table horizontally—for each type of seller, compare the net gain
without and with the warranty, and choose the higher number.

It is clear that sellers of high-quality used cars will offer the warranty level
and make $7,000 in profit because that beats the $5,000 net gain if no war-
ranty is chosen. The sellers of low-quality used cars will choose to forgo the
warranty and walk away with $5,000 because that is superior to the $2,000
net gain from choosing to lie and offering the warranty.
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This is a rather remarkable result. To restate the outcome, the sellers of low-
quality used cars will voluntarily and honestly admit that their used cars are
of low quality and only worth $5,000. The sellers of low-quality used cars will
not lie to the buyers. Is this because they suddenly were overcome by their
conscience? No. They are the same fallible, less than perfectly honest people
before and after the warranty scheme. Are they telling the truth because
an authority figure is watching them, ready to punish liars? No. No one is
watching them.

The sellers of low-quality used cars can lie if they so wish. They will not
lie, however, because it is not in their self-interest. They end up worse off if
they lie in this situation. The warranty scheme has managed to successfully
separate or sort the two qualities of cars into their respective groups. This
result is called a separating equilibrium.

Figure 17.36 shows that the warranty acts as a screen, separating the true
car qualities into two distinct groups, Xs and Ys, from which it easy to tell
which cars are high quality and which are not.

Figure 17.36: Warranty as a screen.

In essence, two markets for cars are created, one for low- and the other for
high-quality cars, each with their own prices. Sellers of low-quality cars,
although they are able to do so, will not lie and enter the high-quality car
market because the price of admission is too high. Lying is not profit maxi-
mizing; therefore, sellers will not lie.

Let’s repeat a key idea: no individual or organization runs this scheme. No
one sets the warranty level and no one sets the price of the cars. The whole
system bubbles up from the interaction of the two kinds of sellers and the
buyers. Adam Smith would have called it an example of the invisible hand of
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the market; Friedrich Hayek would have described it as a spontaneous order ;
and modern day mathematicians would speak of self-organizing systems. It
is all the same thing—individual interaction generating a quite agreeable
systemwide result. To see how the equilibrating forces operate in this model,
we examine how the signaling scheme can break down.

Signaling Failures and Equilibrium

One way that a signal can fail is if it is set too high.

STEP Use the scroll bar to set a high warranty level like 80 or so.

In this case, as shown in Figure 17.37 and your computer screen, not even the
sellers of high-quality cars find it in their self-interest to offer the warranty
level that brings the $10,000 price. The signal has failed to separate the two
qualities of cars.

Figure 17.37: Signaling failure from a warranty level set too high.
Source: SignalingTheory.xls!Optimizing.

On the other hand, if the signal is set too low, sellers of B cars will find it in
their self-interest to lie and claim their cars are actually high quality. They
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will choose the warranty level that brings the $10,000 price.

STEP To see this, use the scroll bar to set a low warranty level, 20 or less.

Your screen should show that both sellers opt to acquire the signal. The
low-quality seller will lie and claim that the car is of high quality because
the net gain from lying (cell H27) is greater than the net gain from telling
the truth (cell G27). Once again, this signal has failed.

When the signal is too high, the holes in the screen are too small and no one
can get through. If the signal is too low, the holes are too large and every-
body passes through. In a separating equilibrium, the level of the signal is
such that the two types are sorted and grouped together so they are easily
identifiable.

The fact that signals can be observed as failing provides the key to under-
standing how the system can settle down to a result that effectively solves
the problem without central control. If the signal is too low, self-interested
sellers of high-quality cars will offer higher warranty levels in order to block
their lying brethren from diluting their market. The sellers of high-quality
cars want to distance themselves from low-quality sellers.

If the signal is too high, no one will take it and buyers will lose the means
by which to identify the two qualities of cars. The market will collapse so
pressure will push the level down.

The forces inherent in the system, self-interested behavior by the interacting
agents, will conspire to generate an equilibrium signal level that effectively
sorts the two qualities of cars. The process works just like supply and de-
mand—pressure in disequilibrium pushes the signal in one direction or an-
other until it equilibrates.

STEP Play around with the warranty level to reveal the range for which
it effectively separates the two qualities of cars.

You already know 80 is too high and 20 is too low. Look at the chart to help
you see what must be true for the signal to succeed. When you are ready to

check your answer, click the Range button.
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Other Applications of Signaling Theory

We have barely scratched the surface of signaling theory. There are many
situations in which one party to a transaction has available information that
the other party lacks and this asymmetric information puts honesty in peril.

Consider the job market (which was Spence’s original example). Faced with
many job applicants, all claiming to be high-productivity A workers, the firm
might insist on a signal, a college degree, to back the claims made by job
applicants.

Suppose that low-productivity workers are also likely to be weaker students,
and that it is more costly for them to acquire the educational signal. As in
the used car case, the successful screen will separate the two worker groups
into their respective low- and high-productivity categories. The signal will
elicit honest responses from low-productivity workers because lying requires
a college degree to be believed and this is not in their best interest.

Additional applications of signaling include insurance, legal bargaining, and
firm entry models. In both health and life insurance, asymmetric information
is critical. The insurance company does not know the health status of the ap-
plicant. If the price of the insurance depends on the applicant’s health, just
saying they are healthy is not enough for the insurance company to believe it.

In a lawsuit, where the plaintiff seeks damages from the defendant, asym-
metric information means neither party knows the other’s true intentions
and beliefs. They can signal the strength of their case by demanding a high
pre-trial settlement.

Firm entry models use signaling to convey the degree of confidence and
strength of incumbent firms to potential newcomers. Incumbents can sig-
nal or make reliable claims about their low costs and ability to compete by
charging low pre-entry prices.

In these cases, an incentive mechanism has developed that accepts self-
interest among buyers and sellers as a powerful, immutable, driving force.
Instead of fighting self-interest by removing or suppressing it, the incentive
mechanism uses self-interest to reach the desired end.
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The Economics of Honesty

Dishonesty exacts a large cost on society. For lesser developed countries,
corruption is a severe obstacle to economic growth. Getting people to be
truthful is a serious, critically important goal.

The primary solutions to the problem of dishonesty have centered on utopian
and authoritarian approaches. The former seeks to perfect human behavior;
the latter to directly control it. A third, somewhat counterintuitive, alterna-
tive exists that relies on self-interest to yield an agreeable systemwide result.

This third alternative is marked by individuals following their self-interest.
When geese fly in a V-shaped pattern over thousands of miles, they do so not
under the guidance of an authoritarian drill sergeant or master goose who
tells each bird where to fly, but because they obey a simple rule that says,
“If there are no birds around, fly; if a bird is in front, fly just off its wing
because it is easier.” This minimizes the effort for each bird and produces a
pattern which no bird intended.

Likewise, modern society is composed of millions of individual agents whose
interaction establishes a systemwide pattern. Unsatisfactory results can be
changed via transmuting the motivating forces of each agent, imposing de-
cisions on each agent, or changing the incentives faced by each agent. The
last option is rarely considered, but may be the most effective and best of
the three.

Signaling theory says that by making honesty the best policy—for the selfish,
greedy individual—we will get honesty. Sellers reveal the truth because lying
leaves them worse off than telling the truth. This is the economics of honesty.

To be sure, signaling requires rules and institutional support. If the seller
of low-quality used cars knows that he can renege on warranties or other
contracts because the court system is nonexistent or corrupt, then signaling
will be useless.

There is, however, a world of difference between an authoritarian approach
that relies on a central power to coerce honesty and the system that evolves
out of the interaction of the buyers and sellers given appropriately supporting
institutions. The decentralized system avoids the question of “Who watches
the watcher?” because there is no dominant, central power. And in the end,
this may be its most significant advantage.
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Exercises

1. Suppose a firm is trying to determine whether an applicant is of low
or high ability and it believes people with long fingernails have higher
ability. Would fingernail length be an effective signal? Draw a graph
to support your answer.

2. Draw a graph that shows how education as a signal could be used to
separate low- and high-ability job applicants. Explain how education
as a signal works.

3. Draw a graph in which education as a signal fails because the signal
level is set too high. Explain why the signal fails.

4. College education as a signal clashes with human capital theory, which
says that educated workers earn more because they were made more
productive by their education. What does signaling theory say about
the value of education? In other words, according to signaling, why are
educated workers paid more?

5. Why has it been difficult to determine with data whether human cap-
ital or signaling theory is right about college education?
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“[Irma Adelman] was an early proponent of
simulation models. In addition to work with
input-output and linear-programming models, she
was one of the pioneers in developing computable
general equilibrium (CGE) models and applying
them to developing countries, especially for analysis
of income distribution.”

Distinguished Fellow Citation for Irma Adelman

18.1 The Edgeworth Box

We have become quite familiar with society’s resource allocation problem.
We have used partial equilibrium analysis to focus on a single commodity,
exploring how supply and demand determine an equilibrium quantity that is
the market’s answer to the resource allocation question.

We know all about consumers’ and producers’ surplus, market failure, and
deadweight loss. We have repeatedly drawn supply and demand graphs and
emphasized comparison of equilibrium to socially optimal output.

But the focus on a single commodity is limiting. In fact, the market system
uses supply and demand for each good or service to answer the fundamental
production and distribution questions. In other words, there are many inter-
acting markets (one for each commodity) simultaneously in operation.

If we monopolize one commodity, we cause a misallocation of resources in
the monopolized market (too little is produced). Partial equilibrium analysis
stops there. But the low output and high price in the monopolized market
reverberates throughout the economy. After all, resources that would have
gone into that market are going to go somewhere else and the high price
in the monopolized commodity will shift demand curves for substitutes and
complements of that good.

General equilibrium analysis attempts to account for supply and demand in
all markets at once. As you can imagine, it is much more difficult than par-
tial equilibrium analysis, but it is also superior because the entire resource
allocation question is under consideration.

This book focuses on general equilibrium theory, but as the epigraph to this
chapter explains, computable general equilibrium models are used to esti-
mate the general equilibrium effects of tax policies, monopoly power, and
other events. Economists have always been aware of the limitations of par-
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tial equilibrium analysis, but it was not until the development of modern
computers that these complicated models could be solved and applied.

Before beginning our study of general equilibrium theory, two observations
are in order.

1. Society can decide which goods and services are handled by the market.
Society may decide that human organs or votes may not be legally
bought and sold. Different market-based societies may choose different
lists of commodities to be allocated by the market. We call a society
market based if individual resource owners make decisions about how
to allocate the inputs they manage, even if particular commodities are
regulated or entire sectors of the economy (such as education or health)
are not privately owned.

2. A complete general equilibrium analysis of the market system is beyond
our scope. There are three parts, of which this book covers only the
first one.

(a) Pure exchange: Assume each consumer has endowments of already
produced goods and allow trade to occur.

(b) Production: Allow goods to be produced from inputs.

(c) Combine pure exchange and production in a general equilibrium
analysis.

We focus solely on pure exchange and ignore the next two stages. This means
we will not complete a true general equilibrium analysis of the market sys-
tem. Emphasizing only the problem of pure exchange enables you to see the
core concepts of general equilibrium, including the Edgeworth Box graph,
without overwhelming complexity.

Even limiting ourselves to a situation where all products are already made
requires serious investment of intellectual capital. As we will see, the Edge-
worth Box is a clever graph, but it takes some practice to read it.

Our work on pure exchange will enable us to come full circle and return to
the beginning—consumers decide what to buy and sell based on the optimal
solution to an Endowment Model. As you work on the model and recall ideas
and terminology, you will further cement truly fundamental knowledge.
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Constructing the Edgeworth Box

The canonical graph used to depict a pure exchange economy is called the
Edgeworth Box. It is also commonly referred to as the Edgeworth-Bowley
Box. It turns out that both names are wrong. Blaug (1996, p. 523), dis-
cussing something called the Ricardo Effect, points out an interesting thing
about names:

Whether it really is in Ricardo is a nice question. The fact that
the Ricardo Effect is hard to find in Ricardo exemplifies a general
rule. According to R. K. Merton, ‘eponymy’ is the “the practice
of affixing the name of the scientist to all or part of what he has
found” but it is a striking fact that the outcome of eponymy is al-
most always to hang the right label on the wrong person. Thus,
Thomas Gresham never stated Gresham’s Law. Jean Baptiste
Say only stated Say’s Law after James Mill had stated it for him.
Robert Giffen never stated Giffen’s Paradox. Francis Edgeworth
never drew the Edgeworth Box. Ernst Engel never drew an En-
gel’s curve. Walras never stated Walras’ Law. Irving Fisher did
not invent the Ideal Index Number and actually pleaded (in vain)
that it should not be named after him. Arthur Bowley did not
enunciate Bowley’s Law. Arthur Pigou did not state the Pigou
Effect—and so on. Indeed S. M. Stigler has advanced “Stigler’s
Law of Eponymy: No scientific discovery is named after its orig-
inal discoverer,” a law which is confirmed as soon as it is stated
(see Transactions of the New York Academy of Sciences, Series
11, 39, 1980). Nevertheless, there are also counter-examples in
economics to Stigler’s Law, such as Pareto-optimality and the
Wicksell Effect.

If it was not Edgeworth, then who created the canonical graph of general
equilibrium analysis? According to Tarascio (1972), it was Vilfredo Pareto
(pronounced pa-ray-toe) who should be credited with inventing the graph
that we call the Edgeworth Box. Because no one has ever heard of the
Pareto Box, we will continue to call it the Edgeworth Box, but now you
know the truth behind the name.

The Edgeworth Box is a graph that is constructed by putting together the
consumer choice problem graphs from two consumers. It ends up looking like
a box; hence its name. While most books just draw a box, we can use Excel
to see exactly how you build an Edgeworth Box.



684 CHAPTER 18. GENERAL EQUILIBRIUM

STEP Open the Excel workbook EdgeworthBox.xls and read the Intro
sheet, then go to the A sheet to see consumer A’s optimization problem.

Take the time to look over the sheet. The goal is to maximize satisfaction,
given by a Cobb-Douglas utility function that faithfully reflects the con-
sumer’s preferences. The budget constraint’s slope is −p1

p2
and at the initial

endowment (35,10), the MRS is less than the price ratio.

You know you do not need to run Solver because at 25,162
3

(the actual values
on the sheet are Solver’s false precision) the equimarginal condition is met
and the consumer is reaching the highest attainable indifference curve.

At the given prices, the sheet shows that A will maximize utility, subject to
the budget constraint, by selling 10 units of x1 and buying 62

3
units of x2.

These are the net demands for x1 and x2.

STEP Proceed to the B sheet to see consumer B’s optimal solution.

Notice that B has a different initial endowment (5,30) than A, but the rest
of the optimization problem is the same. Given the same prices faced by
consumer A, consumer B optimizes by buying 20 units of x1 and selling 131

3

units of x2.

Figure 18.1 has Endowment Model graphs for the two consumers. We can
see that they make different decisions about what to buy and sell. A moves
up the constraint (selling x1 and buying x2), while B does the reverse.

Figure 18.1: Preparing to build the Edgeworth Box.
Source: EdgeworthBox.xls!A and B.
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Figure 18.1 shows the two consumers side by side and that helps us see what
they are both doing, but it does not show how their plans for buying and
selling match up. This is the key to the Edgeworth Box. We want to be able
to instantly see if the two consumer’s optimal decisions mesh.

The crucial step in understanding the Edgeworth Box is the next one: Flip
consumer B’s graph, as shown in Figure 18.2. Sheet B in Edgeworth-Box.xls
shows how to do this.

Figure 18.2: Flipping B’s graph.
Source: EdgeworthBox.xls!B.

STEP Follow the instructions in column F of sheet B to replicate Figure
18.2.

Actually flipping B’s graph will help you remember that B’s decisions about
buying and selling are always read from the perspective of the northeast (top
right) corner of the Edgeworth Box.

The last step in constructing the Edgeworth Box is to join A’s graph with
B’s flipped graph. The result of this operation is a graph that looks like a box.

STEP Proceed to the EdgeworthBox sheet for your first look at an Edge-
worth Box. You may need to scroll down a bit to see it.

How is this chart created? By following the instructions above and taking
advantage of Excel’s ability to make transparent objects.
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STEP Click on the graph to select it, and then drag the graph to the
right.

It comes apart! Clearly, the Edgeworth Box is simply two separate graphs
superimposed on top of each other. The top graph has no fill, so it is trans-
parent.

STEP Click the Make Box button to put the box back together. The
button simply lines up the two graphs precisely to make it easy to create the
box.

STEP Scroll back up to see the organization of the sheet.

Let’s take a tour of the sheet. The two consumers’ optimization problems
are represented in columns A and B and columns M and N. In the middle
(columns G and H), market information is displayed. Cells H16 and H17
contain the prices of the two goods.

The price of good x2, called the numeraire, has been set equal to 1 and p1

is expressed as p1
p2

. Instead of p1 = 2 and p2 = 3, we can focus on p1
p2

= 2
3

as the relative price. With many goods, a single one is chosen (think gold)
as the numeraire and everything is priced relative to that good. In the next
chapter, we will see how prices respond to supply and demand.

Properties of the Edgeworth Box

The Edgeworth Box has properties and conventions that will be helpful in
our future work. Here are a few of them.

1. The sides of the box give the total amounts of the two goods available.
Total x1 = 40 units and total x2 = 40 units so this box is a square.

2. If there is more total x1 than x2, then the box is wider than it is tall (if
the same axis scale is used for both goods). The first exercise question
asks what it means if the box is tall and skinny.

3. Since consumers face the same prices, one budget line is shared for both
consumers.



18.1. THE EDGEWORTH BOX 687

4. The slope of the budget line is the price ratio, p1
p2

, and that is what mat-
ters, not the individual prices themselves. By convention, we normalize
the problem and set p2 = 1, and call x2 the numeraire.

5. Net demands for x1 and x2 for both A and B can be read from the
box. This requires careful attention because it is easy to be tricked.
Remember to read B’s decisions about buying and selling from the top
right corner.

6. The Edgeworth Box has enough information to figure out how prices
will change and where the equilibrium solution lies. The next section
shows how.

Edgeworth Box Basics

This section introduced the canonical graph of general equilibrium theory. It
is unlikely that you have seen this graph before so we are proceeding slowly.
Figure 18.3 shows the chart the EdgeworthBox sheet.

Figure 18.3: An Edgeworth Box in disequilibrium.
Source: EdgeworthBox.xls!EdgeworthBox.

The Edgeworth Box simultaneously displays the optimization problems of
two consumers. A’s view is the usual x–y axis configuration with the ori-
gin in the lower left corner of the graph. B’s graph has been flipped so
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the origin is at the top right corner. Thus, x1 rises as you move to the left
on the top of the box and x2 rises as you move down the right side of the box.

If you drew an Edgeworth Box on a piece of paper or are reading this on a
laptop or tablet, you could literally rotate the paper or device so that B was
the usual configuration at the bottom left and A’s axes were at the top and
right. This would not change anything substantive.

In the next section, we will use the Edgeworth Box to see how both markets
equilibrate simultaneously. This is the hallmark of general equilibrium anal-
ysis. Figure 18.3 is not in equilibrium. There are forces that will make the
red budget line swing.

The Edgeworth Box will also be used to explain the concept of Pareto opti-
mality and the idea of economic efficiency in a general equilibrium setting.
Although it does not have the widespread recognition of supply and demand,
the Edgeworth Box is a truly foundational graph in general equilibrium the-
ory. It is important to grasp how it is constructed and read to be able to
understand future concepts that rely on the Edgeworth Box.

Exercises

1. Suppose an Edgeworth Box was very tall and very skinny. What would
that tell you?

2. Use Word’s Drawing Tools to draw an Edgeworth Box that is the same
as the EdgeworthBox sheet except B’s utility function is U = minx1, x2.
Draw three representative indifference curves for B.

Hint: Return to the Theory of Consumer Behavior to find out what
the indifference curves look like for this utility function.

3. Click the Reset button in the EdgeworthBox sheet and set cB in cell

M21 to 0.1. Click the Take a Picture button and paste the graph in
your Word document.

4. Explain B’s buy/sell decision for each good.

5. How does B’s buy/sell decision make sense given that B has so little of
x1 and so much of x2?



18.1. THE EDGEWORTH BOX 689

References

The epigraph is from “Irma Adelman: Distinguished Fellow 2003,” The
American Economic Review, Vol. 94, No. 3 (June, 2004), www.jstor.org/
stable/i369727. Advances in computers have enabled real-world, empirical
applications of general equilibrium analysis. Computable general equilibrium
models (CGEs) are used to find equilibrium solutions with many agents and
commodities. The effects of taxes and other shocks are simulated and eval-
uated.

The history of how computers have been used in ever more sophisticated eco-
nomic models is a story of determination and grit. See Irma Adelman, “The
Research for the Paper on the Dynamics of the Klein-Goldberger Model,”
Journal of Economic and Social Measurement, Vol.32 (2007), pp. 29–33,
content.iospress.com/articles/journal-of-economic-and-social-measurement/
jem00269, to learn how Adelman and her physicist husband, Frank Adel-
man, used an IBM 650 mainframe computer in 1958 to produce one of her
most famous articles, “The Dynamic Properties of the Klein-Goldberger
Model,” Econometrica, Vol. 27, No. 4 (October, 1959), pp. 596–625,
www.jstor.org/stable/1909353. This was the first attempt to solve an econo-
metric model with an electronic computer. Adelman (2007) also says that
the work was “I believe, a first application of Monte Carlo techniques in eco-
nomics.” (p. 32)

In an introduction to Adelman’s description of how the model was estimated,
Renfro describes the IBM 650 and how incredibly impressive it was that Adel-
man managed to use it to estimate the model. In addition to covering her
den with pieces of paper indicating the contents of each memory register
at each step in the computation and having to pay more than a month of
her salary for 1 hour of computing time, Renfro (p. 24) points out that
the work had to be done at night. “Throughout the entire mainframe era,
those who needed to get something done quickly worked through the night.
Computers in those days had multiple users; this was the time of day that
provided the best turnaround, when only the most serious were awake.” See
Charles G. Renfro, “Introduction,” Journal of Economic and Social Mea-
surement, Vol. 32 (2007), pp. 23–28, content.iospress.com/articles/journal-
of-economic-and-social-measurement/jem00271.

Agent-based computational economics (ACE) is related to CGE. To learn
more about “growing economies from the bottom up,” visit www2.econ.iastate.
edu/tesfatsi/ace.htm.

https://www.jstor.org/stable/i369727
https://www.jstor.org/stable/i369727
https://content.iospress.com/articles/journal-of-economic-and-social-measurement/jem00269
https://content.iospress.com/articles/journal-of-economic-and-social-measurement/jem00269
https://www.jstor.org/stable/ 1909353
https://content.iospress.com/articles/journal-of-economic-and-social-measurement/jem00271
https://content.iospress.com/articles/journal-of-economic-and-social-measurement/jem00271
http://www2.econ.iastate.edu/tesfatsi/ace.htm
http://www2.econ.iastate.edu/tesfatsi/ace.htm


690 CHAPTER 18. GENERAL EQUILIBRIUM

On the claim that it should be called the Pareto Box, see Vincent Tarascio, “A
Correction on the Geneology of the So-Called Edgeworth-Bowley Diagram,”
Economic Inquiry, Vol. 10 (1972), pp. 193–197, onlinelibrary.wiley.com/
doi/10.1111/j.1465-7295.1972.tb01599.x.

Economic Theory in Retrospect is a classic book on the history of economic
thought (the intellectual history of the discipline) is Mark Blaug (1962 orig-
inally published, 5th edition, 1996).

https://onlinelibrary.wiley.com/doi/10.1111/j.1465-7295.1972.tb01599.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1465-7295.1972.tb01599.x


Without Pareto, the Theory of General
Equilibrium, of which Walras was without
question the real founder, would never have
acquired the fame which it has now, nor
indeed would it have been possible to speak
of the Lausanne School.

Umberto Ricci

18.2 General Equilibrium Market Allocation

Partial equilibrium analysis relies on supply and demand for a particular com-
modity to explain how the market establishes an equilibrium output that is
society’s answer to the resource allocation question. The figure X traced out
by supply and demand lines is perhaps the most basic and well known picture
in economics.

Compared to the easy, familiar supply and demand graph, general equilib-
rium analysis labors and struggles with a new graph, the Edgeworth Box,
that is confusing when first encountered. It is busy, with many elements,
and requires the user to change persepective to read it. As you work on
mastering the Edgeworth Box, remember this: the equilibration process in
an Edgeworth Box is based on the same logic used in supply and demand
analysis.

We will leverage knowledge of supply and demand to explain how general
equilibrium works and to learn how to read the Edgeworth Box.

Tatonnement: The Equilibration Process

Introductory economics students know that shortages cause prices to rise and
surpluses push prices downward. In a supply and demand graph, the price is
displayed as a horizontal line that falls when it is above the intersection and
rises when it is below.

In the Edgeworth Box, there are two markets simultaneously equilibrating.
The prices of the two goods are displayed by a single line, which is the bud-
get constraint faced by the two consumers. The slope of the price line, also
known as the price vector, is −p1

p2
.

Just like supply and demand, shortages and surpluses push prices up and
down. In the Edgeworth Box, this translates to the price vector swinging.
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Remember that we are considering the special case of a pure exchange econ-
omy. All products have been produced and individuals are trading from their
initial endowments. Prices are determined competitively by the interaction
of all buyers and sellers—every consumer takes prices as given.

A two-dimensional Edgeworth Box allows for only two consumers. A third
consumer would make it a cube and, beyond that, we run out of dimensions
and cannot draw the object (although it exists). Our two-consumer, toy
model version implements price-taking behavior by supposing that there is
an auctioneer who shouts out prices. Our consumers take these prices as
given and use them to make buy and sell decisions.

Although each commodity has a price, in general equilibrium analysis, only
relative prices matter. We can arbitrarily take one good and set its price to
1. This makes that good the numeraire.

Our two consumers hear the prices and make optimizing decisions based on
those prices. If the buy and sell decisions do not match, the prices are ad-
justed by the auctioneer. No trades are actually made until all markets are
in equilibrium.

As prices are called out by the auctioneer, the price vector rotates around the
initial endowment, swinging to and fro. It becomes more vertical as p1

p2
rises

and flatter if p1
p2

falls. We mean, of course, rising and falling in absolute value.

At any moment, the consumers can compute the optimal amounts of each
good to buy and sell. If the amounts each wants to buy and sell are not
mutually compatible, then the price vector swings toward the equilibrium
price vector.

The word tâtonnement (pronounced ta-tone-mon) was used by the French
economist Leon Walras (1834 - 1910) (pronounced Val-rasse) to describe the
equilibration process. Google translates it as groping. Walras visualized the
market groping, feeling, working its way through an iterative process that
converged to a position of rest. In the technical literature of general equi-
librium theory, the word tatonnement (without the circumflex) is accepted
without italics.

You may have noticed that the terminology of general equilibrium analysis
has a decidedly French-language flavor to it. Walras, the father of general

https://www.google.com/search?q=leon+walras
https://translate.google.com/#view=home&op=translate&sl=fr&tl=en&text=tatonnement
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equilibrium theory (and described by Schumpeter as “the greatest economist
ever”) was French. His successor at the School of Lausanne was Vilfredo
Pareto (1848 - 1923), a native Italian with a background in math and en-
gineering, who invented the concept of Pareto optimality (and is the actual
originator of the Edgeworth Box).

In the second half of the 19th century, continental European economists were
at the leading edge of general equilibrium theory and mathematical eco-
nomics. This strong mathematical tradition continues today. French-born
Gerard Debreu and Maurice Allais have won Nobel Prizes in Economics for
their work in general equilibrium theory.

We will use Excel to implement a concrete problem with actual prices, sur-
pluses, and shortages to see how the Walrasian model works.

STEP Open the Excel workbook EdgeworthBoxGE.xls, read the Intro
sheet, then go to the EdgeworthBox1 sheet.

We review the display, piece by piece. It is worth going slowly and being
careful. There is a lot going on and the details matter.

Consumer A’s optimization problem is in columns A and B. No need to
run Solver—cells B11 and B12 contain A’s optimal reduced-form expression.
With a price vector with slope −2

3
, consumer A would like to sell 10 units of

good 1 and buy 62
3

units of good 2.

Columns M and N display consumer B’s optimization problem. Like A, we
have entered the reduced-form formulas for B’s optimal consumption of the
two goods. At the initial prices, consumer B wants to buy 20 units of good
1 and sell 131

3
units of good 2.

This information is all we need to know that the p1 relative price in cell H16
is not an equilibrium, or market clearing, price. After all, A wants to sell
more x1 than B wants to buy and vice versa for x2.

Thus, no trades will be made at these prices and the Walrasian auctioneer
will call out new prices as the search for equilibrium goes on.

We can also use the Edgeworth Box to reach this same conclusion about the
plans not matching at the initial relative price of −0.67.

https://www.google.com/search?q=vilfredo+pareto
https://www.google.com/search?q=vilfredo+pareto
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STEP Scroll down to see the Edgeworth Box.

Figure 18.4 reproduces a portion of what is on your screen, augmented with
arrows and dashed lines to help explain what is going on.

Figure 18.4: An Edgeworth Box in disequilibrium.
Source: EdgeworthBoxGE.xls!EdgeworthBox1.

We begin with A, which is easier than B. In Figure 18.4, arrows along the
bottom and left sides of the box indicate what A wants to do: sell x1 and
buy x2. It is natural to read the dashed lines from A’s optimal solution and
see that left on the x axis means sell, while up on the y axis means buy.

Reading B is trickier. B also has arrows, but they run the reverse of the
usual because we read B’s graph from the northeast corner. B wants to buy
x1 and sell x2.

The direction of the arrow indicates buying or selling. Although one wants
to buy and the other sell, the length of the arrows in Figure 18.4 show that
the plans do not match. The length of the arrows indicate the amounts to
be bought and sold. If the lengths are not equal, we are not in equilibrium.
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We review the buy and sell decisions of B more carefully, to make sure there
is no confusion. B wants to buy 20 units of good 1. From her initial en-
dowment of 5 units, she wants to move left along the top axis, which means
acquiring more x1, until she ends up with 25 units. On the other hand, she
wants to sell 131

3
units of good 2, moving up the right axis —which means

she is reducing her desired amount of x2.

If you get in the habit of drawing dashed lines on an Edgeworth Box, either
on a piece of paper or by inserting dashed line shapes in Excel or Word, from
the optimal solution of A and B, you greatly increase your chances of reading
the graph correctly. Those dashed lines are a visual cue that remind you to
read A from the bottom left and B from the top right.

STEP Scroll down below the Edgeworth Box to see two supply and de-
mand graphs.

These are the partial equilibrium markets for the two goods. Good 1 shows
a shortage, with price below the intersection of supply and demand. Good
2 has demand and supply reversed from the usual display because the price
on the y axis is p1/p2. There is a surplus of x2 at p1/p2 = 2

3
.

Both markets adjust simultaneously. We know there is upward pressure on
p1 from the shortage and downward pressure on p2 from the surplus. This
will make the price ratio rise and the price vector will become steeper.

STEP Use the scroll bar (over cells G15 and H15) to see how price
changes affect the box. Set the price ratio to 1.5.

The spreadsheet does most of the hard work for you. A’s and B’s optimal
solutions are instantly calculated. The market position cells immediately re-
flect the position of markets for each good at the new prices (where good 1
is one and a half times as expensive as good 2).

The Edgeworth Box is a live graph that reflects the new price vector. It
shows that we have overshot the equilibrium price vector because we now
have a surplus of good 1 and a shortage of good 2.

STEP Practice reading the Edgeworth Box. With p1
p2

= 1.5, use the
graph to read the amounts that A and B want to buy and sell. Compute the
surplus and shortage of each good from the box alone.
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Verify (using the cells in the Market Position part of the sheet) that your
answers are correct. Look at the graphs below the Edgeworth Box to make
sure you understand that the Edgeworth Box conveys the same information
about the position of each market.

STEP Play with the price vector, adjusting the scroll bar to set different
price ratios and interpreting how the consumers will respond to each price
ratio by using the Edgeworth Box.

As you rotate the price vector, you are the Walrasian auctioneer. You are
calling out prices and the two consumers are reacting to them. The more
you practice reading the Edgeworth Box, the more comfortable you will get
with it.

As you adjust the price ratio, the price vector swings to and fro. It always
rotates around the initial endowment (which would change if and only if any
of the four initial endowment parameter values change). The tatonnement
process is how the market responds to shortages and surpluses by changing
prices in such a way that the surpluses and shortages are reduced, until they
are completely eliminated.

There is, of course, no auctioneer in the real world, but price pressure from
surpluses and shortages are quite real. Our model captures these pressures
by the fiction of the auctioneer changing prices in response to disquilibrium
in the two markets.

General Equilibrium

You have seen how shortages and surpluses push the price line to and fro,
swinging around the initial endowment point.

We know that equilibrium means no tendency to change. We apply this def-
inition of equilibrium to this particular model: when p1

p2
has no tendency to

change, we know we have settled to the equilibrium solution. The equilibrium
solution generated by the market tells us how much x1 and x2 each consumer
will end up with if the market is used and how much each consumer wants
to buy and sell of each good.

STEP Use the scroll bar to find the equilibrium price vector.
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The equilibrium solution in a General Equilibrium Pure Exchange Model is a
canonical economics graph that is reproduced as Figure 18.5. If your screen
does not look like this graph, set the price ratio to 1.

Figure 18.5: The canonical graph of general equilibrium.
Source: EdgeworthBoxGE.xls!EdgeworthBox1 with p1

p2
= 1.

As Figure 18.5 clearly shows, when the equilibrium position is reached, the
optimal solution of both consumers lies on the same point. This eliminates
all shortages and surpluses (as shown in the supply and demand graphs be-
low the Edgeworth Box) so the price ratio has no tendency to change.

The single point in the Edgeworth Box represents a mutually compatible
solution for both consumers and is the hallmark of a general equilibrium so-
lution. The single point is akin to the intersection of supply and demand in
a partial equilibrium analysis.

Our general equilibrium model shows how the market is an allocation mech-
anism. It will redistribute the initial endowments of the two consumers by
using prices until it settles down to a position where plans match and forces
in the model are in balance.

Notice, however, that the two consumers don’t get equal amounts of the two
goods. Why does A end up with more? Because A started out richer. At
the equilibrium price vector, the market values A’s endowment at $45 and
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B’s at $35. General equilibrium theory does not ask why A is richer. It takes
the initial endowment as given.

Walras’ Law

Leon Walras is the father of General Equilibrium Theory. The law that bears
his name states the following: The value of aggregate excess demand is iden-
tically zero.

Using Walras’ Law, we can deduce the following logical result: If n–1 markets
are in equilibrium, then the last market must be in equilibrium.

A concrete demonstration of Walras’ Law is the best way to understand what
it means.

STEP With p1 = 1 (at the equilibrium solution), change p2 (cell H17) to
2. Find the equilibrium p1.

The equilibrium p1 is now 2. This shows that, no matter the value of p2, the
equilibrium solution will be found when p1

p2
equals one.

Thus, it looks like there are two endogenous variables here, p1 and p2, but
there is really only one endogenous variable, p1

p2
. This is the idea behind Wal-

ras’ Law and why we can find equilibrium in both markets by varying only p1.

STEP Click the Reset button. Scroll right to cell V5 and click the

Show Walras’ Law button to reveal calculations that demonstrate Walras’
Law in action.

Although the two markets are not in equilibrium, the sum of the value of
aggregate net demands in cell Y11 is zero. Look at the cell formulas in row
11 to see how they are computed.

STEP Change p1 (via the scroll bar) and notice that no matter the price,
the sum of the value of aggregate net demand is always zero.

A direct implication of Walras’ Law is that in a general equilibrium system
with n goods, we do not have to find n prices. If n− 1 markets are in equi-
librium, the last one automatically has to be in equilibrium.
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This is why we actually have only a single endogenous variable, the price
ratio, in the two-good case. All that matters is the relative price, not the
two individual prices. With n goods, one good would be the numeraire (his-
torically, gold has played that role) and all other goods would be valued in
terms of the numeraire.

Comparative Statics with the Edgeworth Box

Having found the initial equilibrium solution, we could pursue a variety of
comparative statics experiments, shocking an exogenous variable and track-
ing how the equilibrium solution (of various endogenous variables) responds.

STEP Click the Reset button and then set cA (cell B21) to 2. What
happened to A’s indifference curves and optimal solution?

With steeper indifference curves (since A likes good 1 more than before), A’s
new tangency point is quite close to the initial endowment. This means A
wants to sell little x1. You can scroll down to see how the partial equilibrium
graphs have changed—the chart of x1 confirms we have a big shortage.

STEP Where is the new equilibrium solution? If you decide to use Solver
to answer this question, please make the target cell H15 because that is the
cell that the scroll bar is affecting. This way you will not destroy the formula
in cell H16.

You should find a new equilibrium solution at a relative price ratio of about
1.53. Approximately 7.3 units of good 1 will be traded and 11.8 units of good
2 will be exchanged.

Two Advanced Ideas

In a mathematical sense, General Equilibrium Theory is perhaps the most
abstract and sophisticated area of economics. Two questions that have been
studied intensively involve existence and uniqueness.

The question of the existence of an equilibrium solution was posed by Walras
himself. The issue, loosely stated, is that we cannot be sure that a general
equilibrium system with thousands or millions of individual goods has a place
where the entire system is at rest. In fact, from an intuitive point of view,
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given the huge number of products, consumers, and firms in a real-world
economy, we might doubt that an equilibrium solution exists at all.

Walras and other early theorists thought that if the number of endogenous
variables (unknowns) equaled the number of equations, then a solution was
guaranteed. This is not so. Existence proofs in the 1950s utilized fixed-point
theorems to prove rigorously the conditions under which an equilibrium so-
lution was guaranteed to exist. Brouwer and Kakutani fixed point theorems
are examples of this approach.

Closely tied to existence is the problem of the uniqueness of a general equilib-
rium solution. Even if an equilibrium solution is proved (in a rigorous math-
ematical sense) to exist, the worry is that there may be multiple equilibria
in a general equilibrium system. Research has focused on what assumptions
must be invoked to guarantee a single equilibrium solution.

Existence and uniqueness proofs are well beyond the scope of this book. They
rely on topology and advanced mathematical concepts. This is another way
of saying that our presentation of the Edgework Box and general equilibrium
in a pure exchange economy is introductory and rudimentary. General Equi-
librium Theory is a vast ocean and we are paddling near the shore.

Market Allocation in an Edgeworth Box

The canonical supply and demand graph is used in partial equilibrium analy-
sis to find the equilibrium solution. General equilibrium uses the Edgeworth
Box to do the same thing.

It appears cumbersome and tedious at first, but, in fact, it is an ingenious
graphical device. By representing two consumers simultaneously, while shar-
ing a common budget constraint (given that they face identical prices), the
box enables one to quickly see whether the two-good, pure exchange economy
is in equilibrium. It also reveals how prices must change as the system finds
its way to equilibrium via the tatonnement process.

Whether a pure exchange economy is in a general equilibrium can be de-
termined in an instant by seeing whether the optimal solutions of the two
consumers are compatible—that is, if there is a single point where the two
consumers want to be, given the existing price ratio.

https://www.google.com/search?q=fixed+point+theorems
https://www.google.com/search?q=fixed+point+theorems
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But what about the final, equilibrium allocation generated by the mar-
ket—what are its properties? This is a fundamental question that leads
to the famous Pareto optimality conditions and the First Fundamental The-
orem of Welfare Economics. It is explained in the next section.

Although we have used numerical methods (implementing the problem in
Excel) to analyze and find the general equilibrium solution, you should be
aware that there are analytical approaches also. We could write down de-
mands for goods by each consumer and impose the equilibrium condition
that QD = QS in each market. This would enable solution of the equilibrium
price vector with the aid of algebra (and, as soon as we left the simple world
of two or three goods, linear algebra).

Exercises

1. Use Word’s Drawing Tools to draw your own Edgeworth Box. Place
the initial endowment so that A has more x2 than x1.

2. Add a price vector to your box in the previous question that generates
a shortage of x1. Draw arrows along the bottom and top x1 axes to
show the amount of x1 each consumer wants to buy or sell.

3. Use Word’s Drawing Tools to draw a supply and demand graph for x1.
Include a horizontal line in the graph that shows the current price of
x1.

4. Add the equilibrium price vector to your Edgeworth Box graph in ques-
tion 1. Explain why this price vector is the equilibrium solution.

Hint: Add indifference curves to your graph to support your explana-
tion.
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Except during short intervals of time,
people are always governed by an elite. I use
the word elite (It. aristorocrazia) in its
etymological sense, meaning the strongest,
the most energetic, and most capable—for
good as well as evil. However, due to an
important physiological law, elites do not
last. Hence, the history of man is the history
of the continuous replacement of certain
elites: as one ascends, another declines.

Vilfredo Pareto

18.3 Pareto Optimality

Evaluating the welfare effects with general equilibrium is the same as with
partial equilibrium. First we determine the equilibrium solution, then we
find the optimal solution, and last we compare the equilibrium to the opti-
mal solution.

The previous section used an Edgeworth Box with a price vector to find the
initial equilibrium solution. We know that shortages and surpluses swing the
price line to and fro until it settles down where the plans of the two con-
sumers are mutually compatible.

In this chapter, we use the Edgeworth Box to display the optimal solution.
The price vector is removed because prices play no role in determining the
optimal solution. Just as with partial equilibrium, we logically separate the
equilibrium from the optimal solution. If the two agree, then we know we
have a good result.

Optimality

STEP Open the Excel workbook EdgeworthBoxParetoOpt.xls, read the
Intro sheet, then go to the EdgeworthBox sheet.

The workbook is quite similar to the EdgeworthBox sheet from the previous
section, except there is no price or market position information. We are not
interested in markets right now. We are focused on determining the optimal
solution.

An omniscient, omnipotent social planner, OOSP, is charged with determin-
ing the optimal allocation, given the initial endowment.

703
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With OOSP’s special powers, we can reallocate the initial endowment as we
see fit. Each point in the box is an allocation, distributing the total amounts
of the two goods to A and B. We can arbitrarily give and take from one
person to the other, choosing any point in the box. What should we do?

At first glance, it might seem that we would want to solve an optimization
problem like this:

In other words, we could give consumers A and B the amounts of goods 1
and 2 that maximize the sum of the individual utilities subject to the total
goods available.

This strategy suffers from a serious problem: We cannot make interpersonal
utility comparisons. This brings us full circle to work we did at the very
beginning of this book in the Theory of Consumer Behavior. Utility is ordi-
nal, not cardinal. Monotonic transformations (that keep rankings intact) of
utility are allowed. Utility has no meaning in terms of its units.

Thus, an optimization problem that aggregates individual utilities is invalid.
It makes no sense to say that the utility of A is added to the utility of B to
get a total utility. There are no common units with which to measure and
add utility. You might as well say that you added three cars and four pencils
and got seven carpencils.

There is, however, a way to judge and evaluate different allocations of goods
to A and B. This is Pareto’s great contribution to welfare economics.

Pareto developed logical rules that enable us to get around the limitations of
utility. His basic idea was that you can compare two allocations in terms of
better or worse so you can make statements about one allocation compared
with another. He invented a new vocabulary for his rules and today we use
his name when we work with these rules.

Pareto knew we cannot add utility, but we might be able to compare two
allocations and declare which one is better. We proceed by example, using
the Excel workbook and Figure 18.6.
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From the initial endowment point in Figure 18.6, suppose we consider the
point (30,15) for A and (10,25) for B.

Figure 18.6 reproduces what is on your screen. The two thicker indifference
curves going through the initial endowment are the starting point. They
represent the benchmark satisfaction to which we will compare other alloca-
tions.

Figure 18.6: Edgeworth Box for Pareto criteria.
Source: EdgeworthBoxParetoOpt.xls!EdgeworthBox1.

From the initial endowment point in Figure 18.6, suppose we consider the
combination of 30,15 for A and 10,25 for B.

STEP Click the (30,15) button. A red point appears at that coordinate

in the box along with a text box.

Is A better off at the new point compared with the initial endowment? How
about B?

As the text box explains, although the indifference curves for A and B are
not drawn through the red point, we know they exist because the indifference
map is dense—there is an indifference curve through every point in the box.
If we draw an indifference curve for A through that point and it lies above
the indifference curve that goes through the initial endowment, we know that
A prefers 30,15 to the initial endowment.
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In fact, indifference curves extend beyond the box in a northeast direction
for A and southwest for B. The box just shows the total amounts available
for exchange.

The same argument we made for A can be made for B. The only trick for B
is to remember that you interpret the box from the top, right corner and B’s
satisfaction increases as the indifference curves move farther away from the
northeast corner in a southwesterly direction.

Because both A and B are better off at 30,15 than the initial endowment, we
know that the 30,15 allocation is Pareto Superior to the initial endowment.
We can also flip the statement to say that the initial endowment is Pareto
Inferior to point 30,15.

Pareto Superior means that it is possible to make at least one person better
off without making anyone else worse off. We make no claims as to how
much better off. We do not use the units of utility at all. This is similar
to how we first discussed satisfaction in the Theory of Consumer Behavior.
We asked consumers to simply choose between one bundle and another. The
same logic is being used here.

Consider another point that is 30,10 for A and 10,30 for B.

STEP Click the (30,10) button.

As before, a red dot is placed on the chart and a text box appears. We want to
compare the red dot to the initial endowment. Is A better off? How about B?

Because the point 30,10 is better for B, but worse for A, then this allocation
is Pareto Noncomparable to the initial endowment because at least one per-
son is made worse off. As soon as at least one person is made worse off, it is
removed as a candidate for evaluation.

We certainly cannot evaluate these points by saying B’s utility goes up by
more than A’s falls because utility is only ordinal. According to Pareto, we
can never trade off a small decrease in satisfaction for one person for a large
gain in satisfaction for one or many people because you cannot add up utility.

Now that we understand Pareto Superior and Pareto Noncomparable points,
we can shade in all of the points that are Pareto Superior to the initial en-
dowment. This is called the lens for reasons that will be obvious in a moment.
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STEP Click the Show Lens button.

Every point in the space between and including the two indifference curves
going through the initial endowment is shaded red, representing the area of
Pareto Superior points. With usually shaped indifference curves, this is a
lens-shaped object.

We return to the first point, 30,15. It is, of course, inside the lens so it is
Pareto Superior to the initial endowment, but does it have any points that
are Pareto Superior to it?

STEP Click the Hide Lens button and then the 30,15 button.

The 30,15 point, like the initial endowment, has a whole set of points that
are Pareto Superior to it. These points also form a lens, albeit smaller that
the lens formed by the Pareto Superior points to the initial endowment, that
stretch from the point 30,15 to where the two indifference curves intersect
again.

Clearly, whenever indifference curves from A and B cross at a point, such
as the initial endowment or 30,15, we can find Pareto Superior points in a
lens from that starting point. What happens when the indifference curves
are tangent?

STEP Click the Hide Lens (if needed) and Show B Curve buttons.

A red dot is shown on an indifference curve for B that is tangent to A’s
highest displayed indifference curve. We will call this point of tangency be-
tween the indifference curves point PO1. This point PO1 is obviously Pareto
Superior to the initial endowment since it is inside the lens.

But there is something special about PO1. It has a property that contains
Pareto’s key idea: Does PO1 have any Pareto Superior points to it? No,
it does not. Movement in any direction from point PO1 lowers someone’s
satisfaction. There is no lens from point PO1.

Thus, we say that PO1 is a Pareto Optimal point—one that has no Pareto
Superior points to it. You cannot make someone better off without hurting
someone else. Pareto Optimal points are where we want to be!



708 CHAPTER 18. GENERAL EQUILIBRIUM

It is important to note that there are an infinite number of Pareto Optimal
points. Wherever the indifference curves are tangent, we are at a Pareto
Optimal point.

The set of all Pareto Optimal points is called the contract curve. A minimalist
version of a contract curve for an unknown (but well-behaved) pair of utility
functions is displayed in Figure 18.7. A few indifference curves are displayed,
but you should understand that every point on the contract curve is a point
of tangency between two indifference curves. The sides of the box are not
labeled, but you know how to read an Edgeworth Box.

Figure 18.7: The contract curve.

Pareto Optimal points are especially desirable because they ensure that there
is no way to improve the allocation without harming someone. In other
words, given the limitations of ordinal utility, we can say that we have wrung
out as much gain as possible if we are at a Pareto Optimal point. Thus, from
any given initial endowment, OOSP would want to reallocate the two goods
so that the allocation is on the contract curve.

One drawback of the Paretian framework is that there are many Pareto Op-
timal points when starting from an arbitrary, non-Pareto Optimal point.
There is no way to choose between Pareto Optimal points.

Mathematically, it should be clear that Pareto Optimal points occur only
when MRSA = MRSB. When this condition holds, the two indifference
curves are tangent. This means we have a Pareto Optimal point and we are
on the contract curve.
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Pareto Optimality with Solver

One way to find Pareto Optimal points is to solve an optimization problem.
It is not the silly, nonsensical “sum the utilities” objective function, however.

STEP From the EdgeworthBox sheet, open Solver.

Your Solver dialog box should look like Figure 18.8. Notice the UtilityB =
Initial UtilityB constraint. We are going to maximize A’s utility without
harming B. The constraint requires that B’s utility be the same as the initial
utility. Thus, B will be indifferent between the new allocation and the initial
endowment.

Figure 18.8: Solver parameters dialog box.

STEP Click Solve to find an optimal solution to this problem.

Scroll down (if needed) to see the Edgeworth Box. We are at the top most
(from A’s point of view) Pareto Optimal point. This point is on the contract
curve.

What if we ran the same analysis, but maximized B’s utility subject to main-
taining A’s utility constant? This is yet another Pareto Optimal point.

Some students want to make claims about points in the middle of the con-
tract curve in the lens as being somehow better than the two extreme points,
but the Pareto analysis does not allow for such distinctions.
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The Contract Curve with Excel

STEP Proceed to the ContractCurve sheet.

It is set up just like the EdgeworthBox sheet, except A’s Initial Endowment
cells (B18 and B19) have a formula, =ROUND(randomnv()*38+1,0).

This formula allows you to generate random initial endowments, then you
can use Excel’s Solver to find a point on the contract curve from that initial
endowment. You can use the “max A’s utility keeping B’s utility constant”
or “max B’s utility keeping A’s utility constant” strategies. In the former
case, you are finding the highest indifference curve of A that is tangent to B’s
indifference curve that goes through the initial endowment. You are doing
the reverse when you maximize B’s utility subject to A’s indifference curve
that goes through the initial endowment.

STEP Click the New Endowment button a few times to move the initial
endowment point around the box. When you find one you like (it does not
matter), find and record a point on the contract curve. Do this several times.

You are sampling points on the contract curve and this helps you learn how
Pareto optimality works. Can you discover the shape of the contract curve?

STEP Change A’s preferences by setting cA to 0.5. Sample points on
the contract curve (using the same method as in the previous step). What
effect does this have on the contract curve?

To see the answers to these two questions (but first try to answer them on

your own), click the Show CC with cA = 0.5 button.

The First Fundamental Theorem of Welfare Economics

It is no exaggeration to say that we have reached the summit of this book.
We are about to see the crowning achievement of economic theory—a demon-
stration of the welfare effects of the market system in a general equilibrium
framework.
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With the Pareto criteria in hand, we are ready to judge the market alloca-
tion. Recall that the market uses prices to establish an equilibrium solution.
Surpluses and shortages push the price vector to and fro until it settles down
to its equilibrium solution. What can we say about the market’s solution?

We can say that it is Pareto Optimal! In fact, we can say that starting from
any initial endowment, a market allocation mechanism yields a Pareto Opti-
mal solution. This is the First Fundamental Theorem of Welfare Economics :

If preferences are well-behaved, a properly functioning
market’s equilibrium solution is Pareto Optimal.

Figure 18.9 reproduces Figure 18.5 for your convenience. It is the canoni-
cal graph of general equilibrium analysis and shows the equilibrium solution
from the Edgeworth-BoxGE.xls workbook. We know we have the equilib-
rium solution because there is a single, common tangency point. Consumer
A maximizes by choosing that combination where he reaches the highest
indifference curve subject to the constraint. Consumer B does the same.

Figure 18.9: Evaluating the market allocation.
Source: EdgeworthBoxGE.xls!EdgeworthBox1 with p1

p2
= 1.

But it is immediately obvious, given our work in this section, that the market
allocation is Pareto Optimal. There are no Pareto Superior points to it.
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We can use the equimarginal principle to help explain this result. Each con-
sumer is finding a point of tangency that obeys the mathematical condition,
MRS = p1

p2
. From A’s perspective, we have MRSA = p1

p2
. Similarly, B

chooses that combination where MRSB = p1
p2

. Unbeknownst to them, they
are ending up at a point where MRSA = MRSB.

In other words, by paying attention to prices and optimizing, the equilibrium
generated by exchanging consumers is at the same time generating a Pareto
Optimal solution. There is an invisible hand aspect to this in the sense that
the consumers do not know and do not care about Pareto Optimality.

Geese fly in a V pattern over thousands of miles by drafting—wind resistance
is minimized by aligning one-self at angle to the goose ahead, instead of flying
directly behind or next to a fellow goose. The geese are completely unaware
that they are generating a V-shaped pattern. Consumers in a market are
just like geese—they are completely unaware that they are solving a much
bigger optimization problem.

Geese also synchronize their wing beats because they take advantage of up-
draft. If you watch a flock, it looks like they are coordinating their flapping.
This was discovered recently (see Portugal, et al., 2014) and provides an ex-
cellent example of how economists see the market system.

With each agent following a simple rule, the system produces a pattern. In
the case of the market, it is an incredible result that the market allocation is
Pareto Optimal.

What can’t we say about the market allocation?

We certainly can’t say that it is fair. The market will grind to a Pareto Op-
timal point from any initial endowment. The Pareto logic takes the initial
endowment as given. What if A starts out with much more than B? What if
the market does not value B’s resources? The Pareto criteria have nothing to
say about this. Economists have tried to include fairness in welfare analysis,
but there is little consensus.

If there’s a First Theorem, there must be a Second Theorem, right?

If preferences are well behaved, a properly functioning
market can reach any Pareto Optimal point

if the appropriate initial endowment is provided.
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The Second Fundamental Theorem says that you can use the market to reach
any Pareto Optimal allocation—that is, any point on the contract curve. All
you have to do is set the initial endowment appropriately, then let the market
work its magic.

The last two problems in the Q&A sheet ask you to show that the Second
Fundamental Theorem works.

That Markets Generate Pareto Optimal Solutions Is a
Truly Fundamental Idea

This section marks the end of a long trek. We began with the Theory of Con-
sumer Behavior and learned that consumers maximize satisfaction subject to
a budget constraint. An important extension of this basic model utilizes an
initial endowment instead of cash income.

In a Pure Exchange Model, we combine two optimizing consumers in an
Edgeworth Box. Their interaction results in an equilibrium solution.

Using the Pareto criteria, we can compare allocations and determine which
ones are Pareto Optimal. These are allocations that have no Pareto Superior
points. The set of all Pareto Optimal points forms the contract curve.

Students struggle with the term Pareto optimality. Its definition, that there
is no way to make someone better off without hurting someone else, can be-
come a jumble of words with little real meaning. Here is the crucial idea:
Pareto Optimality means no waste. The allocation at a Pareto optimal point
cannot be improved upon (without harming someone). Thus, Pareto opti-
mality means we have an unbeatable allocation.

The First Fundamental Theorem of Welfare Economics makes a powerful
statement because it says that a properly functioning market yields a Pareto
Optimal allocation. This is a highly desirable result.

It is also shocking because individual consumers have no idea they are par-
ticipating in solving a resource allocation problem. Each consumer is simply
maximizing utility subject to a budget constraint. Like geese that fly in a V,
each consumer is responding to a signal (in the consumer’s case, prices) and
then the interaction is producing the coordination.
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Notice that the work here has said nothing about innovation or technolog-
ical change. In fact, the analysis assumes constant technology and no new
products. The analysis is completely static and based solely on the market’s
ability to reach a Pareto Optimal solution in terms of allocating already pro-
duced goods in a pure exchange economy.

You might be wondering if all equilibria in an Edgeworth Box are Pareto
Optimal? Absolutely not. The next section shows how the market can fail.

Exercises

1. Why do the Pareto criteria fail to provide a single point that is the best
allocation?

2. What must be true about the exponents in the Cobb-Douglas utility
functions for consumers A and B to generate a linear contract curve?
Describe your procedure and explain your answer.

3. Use Word’s Drawing Tools to draw an Edgeworth Box with well-behaved
preferences and a point Z, where the MRSA > MRSB. Explain why
point Z is not Pareto Optimal.

4. The contract curve (with cA = 0.5) can be transformed into a utility
possibilities frontier, as shown in Figure 18.10. Where would point Z
(from the previous question) be on this graph? Explain why.

Figure 18.10: A utility possibilities frontier.
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1) Let E be an economy such that, for every i,
(a) Xi is convex,
(b) if x1i and x2i are two points of Xi and if t
is a real number in ]0, 1[, then
x2i � x1i implies tx2i + (1− t)x1i � x1i .
An equilibrium ((x∗i ), (x∗j )) relative to a price system p, where
no x∗i is a satiation consumption, is an optimum.

Gerard Debreu

18.4 General Equilibrium Monopoly

Partial equilibrium analysis tells us that monopoly causes an inefficient al-
location of resources—too little output (compared with the socially optimal
level) is produced.

This section explores the welfare implications of monopoly in a general equi-
librium setting. The procedure is the same as the one used for judging
competitive markets: We determine the monopoly allocation and then test it
by comparing it to the set of Pareto Optimal points (i.e., the contract curve).

To reiterate, monopoly results in an inefficient allocation of resources. There
is no dispute about that. However, General Equilibrium Theory is the best
way to demonstrate this inefficiency.

Monopoly in an Edgeworth Box

Suppose we start with the usual Edgeworth Box. It has an initial endowment
that is the point of departure for trade between the two consumers.

Competitive markets are modeled in an Edgeworth Box by supposing that
prices are determined by the interaction of many buyers and sellers. To im-
plement price-taking behavior in a two-person Edgeworth Box, we use an
auctioneer who calls out prices. Each consumer determines optimal amounts
to buy and sell based on the given prices. The Edgeworth Box is used to
check whether the amounts that each consumer wants to buy and sell are
compatible. If not, prices adjust based on the shortages and surpluses gen-
erated by the plans of each consumer.

We model monopoly in a pure exchange Edgeworth Box by eliminating the
auctioneer. We give one of the consumers monopoly power. They can set
the price vector to have any slope.
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Suppose that A is a monopolist. What does this mean in the context of the
Edgeworth Box? A will quote prices to B and let B decide how much to buy
and sell. A will choose a price ratio and this determines the final allocation.

We can think of A as an auctioneer who first shouts out prices to see how B
will respond, then picks the best prices—from A’s point of view.

STEP Open the Excel workbook EdgeworthBoxMonopoly.xls, read the
Intro sheet, then go to the PriceOfferCurveB sheet.

Figure 18.11 (and your screen) shows B’s price offer curve, which tells A how
much x1 and x2 B wishes to hold given the price ratio, p1

p2
.

Figure 18.11: B’s offer curve.
Source: EdgeworthBoxMonopoly.xls!PriceOfferCurveB.

Initially, A has set p1 = 0.6667 (p2 is the numeraire). B maximizes utility,
given that price ratio, by choosing the combination 25,16.67. This is shown
by the black indifference curve that is tangent to the red price vector. B will
want to buy 20 units of good 1 and offer (hence the name offer curve) 13.33
units of good 2 for sale to A.

A can set any price for good 1 she wishes, but B gets to decide how much to
buy and sell at A’s chosen price. Also, we assume A will honor the deal and
buy the amount B wants to sell.
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STEP Click the scroll bar above the graph a few times to change the
price of good 1.

With each click, the red budget constraint line rotates about the initial en-
dowment and B chooses a new optimal bundle.

The locus of points that B chooses as p1 is varied, ceteris paribus, is the
price offer curve. For any given price, B finds the place at which the highest
indifference curve is tangent to the budget constraint—and this point is on
the price offer curve.

Having explained B’s price offer curve, we bring A into the picture. A knows
B’s price offer curve and has the monopoly power to set any price for x1.
Given p2 = 1, A has the power to set the slope of the price vector. The key
question is: Which price will A choose?

In one sense, the answer is obvious: Choose p1 that maximizes satisfaction
for A. But how can this problem be solved so we find the best price from A’s
point of view?

STEP Proceed to the EdgeworthBox sheet.

The display is the same as on the PriceOfferCurveB sheet, except that now
we have added A’s indifference curves. We also can easily see A’s utility in
cell C28.

Is the initial price of 0.6667 the best solution for A? No, because by increas-
ing p1, A gets greater satisfaction.

STEP Confirm that this is true by clicking on the scroll bar to increase
p1 and keeping your eye on A’s utility in cell C28.

You can also control the price with the scroll bar over cells A9 and B9. Notice
how the price has been moved under the heading of Endogenous Variables.
Because A chooses the price—this is what monopoly power means—price is
endogenous to the monopolist.

In the Wealth of Nations, Adam Smith says, “The price of monopoly is
upon every occasion the highest which can be got” (Book I, Chapter VII,
www.econlib.org/library/Smith/smWN.html?chapter num=10#book-reader).

https://www.econlib.org/library/Smith/smWN.html?chapter_num=10#book-reader
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But is this true? Would the monopolist literally charge the highest price pos-
sible?

STEP Drag the scroll box in the scroll bar all the way to the right.

The chart is hard to read, but we can see from the table next to the chart
that with p1 = 9 (the highest price we can set with the scroll bar), B wants
to end up with 4.17 units of x1 and 37.5 units of x2. This means p1 is so high
that B does not want to buy any of it and, in fact, wants to sell 0.83 units to A!

More importantly, a quick glance at cell C28 reveals that A’s utility is under
90. This means that, taken literally, a monopolist will not charge the highest
price possible.

Just like a monopoly in a partial equilibrium setting, A is operating under
a constraint. A monopolist takes the demand curve as given. Consumer A
takes B’s offer curve as given and B’s offer curve acts as constraint for A.

With this knowledge, can you solve A’s problem? What is A’s optimal p1?

STEP Use the scroll bar to manipulate p1. Keep an eye on A’s utility.
Can you find the value of p1 that maximizes A’s utility?

You cannot beat p1 = 2. This is the optimal solution. This is what A will
charge B for x1. At this price for good 1, B wants to have 10 and 20 units of
goods 1 and 2. B will buy 5 units of x1 (adding this to the initial endowment
of 5 units) financed from the sale 10 units of x2. A ends up with 30 and 20
units of goods 1 and 2. A sells 5 of her initial endowment of 35 units of x1

for $2/unit and buys 10 units of good 2. The plans match and we are at a
stable position.

You can also find this answer with Solver.

STEP Click the scroll bar so p1 is not equal to 2 and run Solver.

Notice that the changing cell is B9, which is the cell connected to the scroll
bar. Solver does not need a constraint because the sheet is set up so that B
optimizes based on p1 and then A’s x1 and x2 are the total units available
for each good minus B’s optimal decision. Thus, B’s offer curve has been
included in A’s optimization problem.
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In addition, you could use analytical methods, using A’s utility as the objec-
tive function and B’s offer curve as the constraint. All of these methods give
the same answer—A’s utility maximizing p1 is 2.

The monopoly solution is displayed in Figure 18.12. Notice that A’s indiffer-
ence curve is tangent to B’s offer curve. This is how a monopolist maximizes
utility.

Figure 18.12: Monopoly’s optimal solution.
Source: EdgeworthBoxMonopoly.xls!EdgeworthBox with p1 = 2.

Judging Monopoly

What can we say about the monopoly allocation? With Pareto’s criteria we
can instantly proclaim: Monopoly is not Pareto Optimal.

Figure 18.12 shows that the monopoly allocation is at a point (from A’s view
it is coordinate 30,20) where the MRSA 6= MRSB because the indifference
curves intersect. This means that there are Pareto Superior points to the
monopoly allocation. It also means that the monopoly allocation is not on
the contract curve.
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By moving northwest, into the lens created by the two indifference curves at
the monopoly solution, an omniscient, omnipotent social planner could make
both A and B better off.

Why doesn’t A do this? Because all A can do is set the price of good 1 and
with this monopoly power, she must charge the same price for all the units
sold. This leads to the allocation in Figure 18.12.

If A could perfectly price discriminate, charging different prices for different
units, we would get a different result. A could sell the first unit of x1 at a
high price and decrease the price as B purchased more units. As explained in
the chapter on monopoly in a partial equilibrium setting, this is called per-
fect price discrimination. The Q&A sheet asks you to work out the welfare
implications of this type of monopoly in a general equilibrium analysis. The
welfare results for perfect price discrimination in partial and general equilib-
rium are the same.

Unlike partial equilibrium, we report no deadweight loss measure in this pure
exchange, general equilibrium analysis. We simply note that the monopoly
allocation is not Pareto Optimal and this is enough to doom monopoly be-
cause we know there are Pareto Superior allocations to the monopoly result.

We cannot say how much damage the inefficiency of monopoly causes be-
cause utility can only be measured ordinally. We cannot express, in utils
or dollars, the wasted value from monopoly, but we know it is there. Once
we say that there are Pareto Superior points, we stamp monopoly as a poor
allocation mechanism.

Monopoly is not Pareto Optimal

We found, as we did with partial equilibrium analysis, that monopoly is in-
efficient. This time, however, we used a general equilibrium analysis that
adhered to the strict limitations imposed by ordinal utility. Thus, this anal-
ysis is theoretically sound.

In a pure exchange Edgeworth Box, if one agent is granted monopoly power,
he or she will choose a price to maximize his or her utility. This does not
generate a Pareto Optimal allocation. The monopolist is not interested in
Pareto optimality—she simply wants to maximize her own utility.
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Recall, however, that this is simply a pure exchange economy. A true general
equilibrium model must include production of goods and services and then
combine production and exchange. This is beyond the scope of this book.
The monopoly result stays the same; however, it still fails to yield a Pareto
Optimal allocation.

Exercises

1. Is the monopoly solution better than the initial endowment? Explain.

Hint: Use Figure 18.12 as a reference.

2. Suppose A really liked x1, so that cA (cell B21) was 2. How would
this change A’s utility maximizing price of x1? What is the monopoly
solution? Describe your procedure.

3. In the previous chapter, we used a supply and demand (partial equi-
librium) analysis to show that price ceilings in a competitive market
cause an inefficient allocation of resources. Use Word’s Drawing Tools
to create an Edgeworth Box with a price ceiling on x1. Explain why
price ceilings are undesirable in this general equilibrium setting.
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the interview, Weintraub explains how Debreu led a wave of mathematical
formalism into economics in the 1950s.

The general equilibrium ideas you have encountered in this book are a mathe-
matical step below the more formal, axiomatic exposition of General Equilib-
rium Theory developed in the 1950s and used in graduate economics courses.
Pick up Debreu’s Theory of Value or a modern, PhD-level Micro Theory text
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But when time and the means for achieving ends are
limited and capable of alternative application, and the
ends are capable of being distinguished in order of
importance, then behaviour necessarily assumes the form
of choice. Every act which involves time and scarce means
for the achievement of one end involves the relinquishment
of their use for the achievement of another. It has an
economic aspect . . . Here, then, is the unity of the
subject of Economic Science, the forms assumed by human
behaviour in disposing of scarce means.

Lionel Robbins

Conclusion

Throughout this book, Excel has been used to solve optimization problems
and equilibrium models. Repeated emphasis has been placed on comparative
statics and elasticity.

This conclusion has three parts:

1. Excel’s Solver: There is a review of basic Solver skills with emphasis
on the lesson that Solver is not perfect.

2. Overall view: A quick tour of the topics covered enables a clear state-
ment of the economic way of thinking.

3. An open problem: Markets in a static framework are well understood,
but the economic growth generated over time by capitalism is not.

1. Excel’s Solver

Consider a perfectly competitive (PC) firm with a total cost function given

by TC = 100q
1
2 . Dividing both sides by q gives us the average cost func-

tion, ATC = 100q−
1
2 . Taking the derivative of TC with respect to q yields

MC = 50q−
1
2 .

If this PC firm faced a market price of $5/unit, what is the profit-maximizing
level of output?

This book has solved optimization problems via numerical and analytical
methods. We will apply both methods to this problem. First, we will use
Solver.

But we will not use a prepared Excel workbook. Instead, you will create your
own implementation of this problem. There are, of course, helpful steps to
guide you.
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STEP Open a blank Excel workbook. In cell A1, type the word quantity.
Cell B1 will hold a number that represents the quantity. In cell A2, type the
word profits. In cell B2, enter the formula for profit.

The price is $5/unit and TC = 100q so the formula in cell B2 is: = 5*B1 −
100*SQRT(B1).

STEP Run Solver. The target cell is B2, the goal is obviously to maxi-
mize profits, and the changing cell is B1. There are no constraints because
the PC firm is free to produce as much output as it wants at the given price.

Excel gives a miserable result. Depending on your Solver defaults, it might
go negative and, since Excel cannot take the square root of a negative num-
ber, it gives up and announces its failure.

If so, make A1 zero and run Solver again, but this time, check the Make
Unconstrained Variables Non-negative option. Your Solver may be set up so
the Make Unconstrained Variables Non-negative option was already checked
so you might not see the first miserable result.

Starting from zero (or a blank cell) in A1, with the non-negativity constraint,
Solver says the answer is zero. This is worrisome. Could the optimal quan-
tity really be zero?

Maybe the issue is that we are starting from blank cell, which is zero. This is
poor practice. Excel interprets blanks as a zero and the formula in B1 eval-
uates to zero. Treating blanks as zero is one of the most dangerous things a
spreadsheet does (Google sheets behaves the same way). You should always
avoid this.

We can change where Solver starts from to see if that helps.

STEP Change cell B1 to 25. Cell B2 should display −375. Run Solver.

Solver appears convinced that the optimal solution is zero. We turn to ana-
lytical methods to see if we can confirm Solver’s result.

We know MC = 50q−
1
2 and since it is a PC firm MR = P so MR = 5. We

can set MR = MC and solve for optimal q.

5 = 50q−
1
2 → q

1
2 = 10→ q* = 100
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This is confusing. We now have two answers: q = 0 and q = 100. Which one
is correct?

Maybe a graph will help. We can draw the canonical graph of the firm’s
output profit maximization problem. Figure IV.1 shows the cost curves and
we can clearly see that MR = MC yields a negative profit rectangle.

Figure IV.1: The firm at q = 100 where MR = MC.

This graph helps explain what is going on here, but we need a better visual.
This book claimed that looking directly at the profit function made clear the
Shutdown Rule so let’s try that approach.

STEP Create a column from 0 to 500 by 10. This is the quantity. Use
the profit formula to create a column for profit based on the quantity. Create
a graph of the two columns.

If you get stuck, this 2-minute video at vimeo.com/425873093 shows how to
do it.

Figure IV.2 shows the graph made in the video. It makes clear that the
point where MR = MC is actually a point of minimum profit. Although the
first-order condition is met (we did find a flat spot on the profit function at
q = 100), this solution fails the second-order condition for a maximum.

Thus, the correct answer is to produce an infinity of output. Profits rise as
more is produced past 100 units of output. Higher output leading to greater
profit continues forever so the optimal solution is infinity.

https://vimeo.com/425873093
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Figure IV.2: The profit function shows that optimal q is infinity.

How can we explain Solver’s answer of zero? Why doesn’t it give us the cor-
rect answer? When Solver starts from below 100 (we started from zero and
25), it goes to zero (or negative output if you do not have a non-negativity
constraint). What happens if it starts from a number greater than 100?

STEP Enter 110 in cell A1 and run Solver.

Solver reports that “Objective cells do not converge.” Is this a miserable
result? No, actually, it is the correct answer! When Solver starts from more
than 100, it goes right on the x axis and profits rise and it keeps going and
going. As we know, this is the right answer.

It is worth remembering that Solver’s algorithm is naive. It evaluates the
function at the starting value, then moves left and right. The size of the
move depends on the numerical values in the problem. Starting from q = 25,
for example, Solver moves a little bit right, sees that profits fell, then goes
in the opposite direction and lowers output. You can see Solver’s steps by
checking the Show Iteration Results option after clicking the Options button
in the Solver dialog box.

You might be thinking that since we are in the long run, ATC = AV C and
it is clear that P < AV C at MR = MC, which means the firm should shut
down. That is not bad thinking, except the rule does not work at MR = MC
in this case because that is not the profit-maximizing output.

The takeaway of this final example is that you have to know what you are
doing with Solver. It is not perfect and you cannot blindly rely on its results.
This example shows that numerical methods are to be used with caution. Be
careful out there.



731

2. Overall View

This book covered modern-day, orthodox microeconomic theory at the college
undergraduate level. It used Excel to present difficult material and showed
how mathematics can be used to solve problems in economics.

The economic approach or economic way of thinking provided the framework
for analyzing observed behavior. The basic idea is to set up and solve an op-
timization problem or equilibrium model. Next, a single variable is changed,
ceteris paribus, and the new solution is compared to the initial solution. This
procedure is called comparative statics. Elasticity captures the logic of com-
parative statics in a single number.

When the economic approach is applied to consumers, it is called the Theory
of Consumer Behavior. The key comparative statics analysis is deriving the
demand curve. Figure IV.3 is a canonical graph of deriving demand.

Figure IV.3: Deriving the demand curve.

When the economic approach is applied to producers, it is called the Theory
of the Firm. The key comparative statics analysis is deriving the supply
curve. Figure IV.4 is a canonical graph of deriving supply.

Figure IV.4: Deriving the supply curve.
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The firm is more complicated than the consumer because firms hire inputs
to produce output. In fact, the firm is really a set of three interrelated op-
timization problems: input cost minimization, output profit maximization,
and input profit maximization.

The individual demand and supply curves derived from the consumer and
firm models can be added up to produce market demand and supply curves.
This enables a partial equilibrium analysis of how markets solve society’s
resource allocation question. Figure IV.5 shows supply and demand flanked
by its consumer and firm source graphs.

Figure IV.5: The market’s resource allocation solution for one good.

Price ceilings, taxes, monopoly, import quotas, and externalities are all ex-
amples of situations where we have a misallocation of resources in a single
market.

Partial equilibrium enables calculation of a measure of inefficiency called
deadweight loss (also known as the Harberger triangle), but this should be
interpreted as an approximation because consumers’ surplus requires that an
adjustment be made to the ordinary demand curve (compensated demand
must be used) and the effects on other markets are ignored. Partial equilib-
rium analysis is commonly used in empirical work. Think of deadweight loss
as a rough measure of inefficiency in the allocation of resources.

General equilibrium is a more rigorous and sophisticated analysis because it
looks at all markets as a total system. Pareto’s criteria show that a properly
functioning market yields an optimal allocation and monopoly is not Pareto
optimal. Figure IV.6 is the canonical graph of a market’s general equilib-
rium and it makes clear that the market’s allocation has no Pareto Superior
points.
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Figure IV.6: The market’s allocation in an Edgeworth Box.

General equilibrium does not suffer from the same problems as partial equi-
librium, but it is much harder to implement in the real world. In the epigraph
to the section introducing the Edgeworth Box, mention was made of com-
putable general equilibrium models. This shows that there is an empirical
side to general equilibrium analysis, but it is a relatively modern develop-
ment.

It is reasonable to view mainstream microeconomics as a theory of the price
mechanism. The market system uses prices as signals to allocate resources.
Optimizing agents react to price changes and their interactions as buyers
and sellers drive the system toward equilibrium. The Theories of Consumer
Behavior and the Firm are stepping stones that explain how the market an-
swers society’s resource allocation question. Figure IV.5 puts the Theory of
Consumer Behavior, Theory of the Firm, and partial equilibrium analysis to-
gether. These three graphs and how they fit together are worth remembering.

Another organization of microeconomics splits it into two parts—individual
agents (consumers and firms) that optimize and what happens when these
optimizing agents interact in a market. The former is about optimization
and the latter is about equilibrium. The order that is spontaneously gen-
erated by interacting, optimizing agents is a remarkable result. Economists
see supply and demand not as the simple intersection of two lines, but as
a pattern that is unwittingly generated by the agents themselves—just like
geese that fly in a V.

This book was designed to provide you with practice in applying the eco-
nomic approach. We tackled unconstrained and constrained optimization
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problems, computed many different elasticities, and solved several equilib-
rium models at the partial and general levels.

The many applications of the economic approach demonstrate its remarkable
flexibility. The Theory of Consumer Behavior, at first, seems ridiculously un-
realistic—a robot consumer chooses between two goods with prices, tastes,
and income given! But that is just the basic model. By changing the goods
to consumption in the present and the future, it becomes an intertemporal
choice model. We analyzed charitable giving, portfolio theory, and the ef-
fect of safety features in automobiles with the Theory of Consumer Behavior.

In every application, the economic way of thinking was prominent. We set up
and solved an optimization problem, then changed a variable, ceteris paribus,
to see how the optimal solution changed. There are countless applications of
the economic approach, but they share the same framework and logic.

In fact, the economic approach is what defines economics today. It may
be the only discipline that defines itself by a methodology instead of by
what it studies. Most people have a content-based definition of economics:
They think that the study of interest rates, unemployment, and money is
economics. But this is wrong. The proper definition of economics is the
application of the economic approach to explain observed behavior. Crime,
marriage, and war, if analyzed with the economic approach, fall under the
heading of economics.

From now on, when you hear the phrase “an economic analysis of,” you will
know that the economic approach is about to be applied, you will know what
to expect, and you will be comfortable as the speaker talks about constraints,
optimality, comparative statics, and elasticity.

3. An Open Problem

Neither this book nor modern, mainstream economics explains the dynamic
process of capitalism. A few hundred years of the market system make it ob-
vious that creativity, innovation, and technological change are endogenously
generated by market-based societies. No one really knows why.

The question has been with economics since the very beginning. Many peo-
ple know that Adam Smith wrote a book called the Wealth of Nations, but
only a few know that the actual title is, An Inquiry into the Nature of Causes
of the Wealth of Nations. But what was Smith’s inquiry, simply put?
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He wanted to know why England was so much richer than its neighbors. In
1776, Smith could see British wealth all around him. He could see the econ-
omy taking off and he wondered why some places develop and grow, while
others cannot seem to do so? This question remains unanswered and, in the
language of mathematics, it is the biggest open problem in economics.

Explaining the dynamism of the market system is a much different ques-
tion than the static optimization and equilibrium models that explain why
markets allocate resources efficiently. In the static world, there are no new
products, cost-saving innovations, or new firms. The static world is stable
and markets are in equilibrium.

This static model clashes violently with reality. Joseph Schumpeter’s por-
trayal of what he called plausible (i.e., real-world) capitalism, captured in
the oxymoron “creative destruction,” highlights the rise and fall of firms, ex-
plosive growth, and dislocation produced by markets. For Schumpeter, the
driving force is the entrepreneur, a hero whose desire to dominate the busi-
ness world results in economic success for society. But Schumpeter’s story
(best captured in Capitalism, Socialism and Democracy , originally published
in 1942), thrilling though it may be, is not part of mainstream economics to-
day.

It is plainly clear that markets do generate spectacular economic growth,
unparalleled by any other organizational form. Even the harshest critics of
capitalism concede this point:

The bourgeoisie, during its rule of scarce one hundred years, has
created more massive and more colossal productive forces than
have all preceding generations together. Subjection of Nature’s
forces to man, machinery, application of chemistry to industry
and agriculture, steam-navigation, railways, electric telegraphs,
clearing of whole continents for cultivation, canalisation of rivers,
whole populations con-jured out of the ground—what earlier cen-
tury had even a presentiment that such productive forces slum-
bered in the lap of social labour?

That was written by Karl Marx and Friedrich Engels in The Communist Man-
ifesto in 1848, available at www.marxists.org/archive/marx/works/download
/pdf/Manifesto.pdf.

https://www.google.com/search?q=schumpeter+Capitalism+Socialism+and+Democracy
https://www.marxists.org/archive/marx/works/download/pdf/Manifesto.pdf
https://www.marxists.org/archive/marx/works/download/pdf/Manifesto.pdf
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Marx and Engels argued capitalism will self-destruct, but not because it
failed to make goods and services. They thought it was the most productive
system ever devised. They were amazed by capitalism’s ability to generate
output.

Marx and Engels were not the first nor the last to be awed by the productive
power of the market system. Yet, even though we can easily see that pro-
ductive power, we simply do not know the answer to basic questions about
how markets generate growth. Beyond superficial generalities about the in-
stitutional environment, such as needing rule of law and established property
rights, we have no explanation for how the interaction of multitudes of agents
drives the system over time. We cannot even answer the most basic question,
posed by Adam Smith—why are some countries rich and others poor?

If we knew how and why markets caused technological change and output
per person to grow exponentially, we would know how to help those societies
mired in poverty. Nobel Prize winning economist Robert Lucas poses the
issue this way:

Is there some action a government of India could take that would
lead India’s economy to grow like Indonesia’s or Egypt’s? If so,
what, exactly? If not, what is it about ‘the nature of India’
that makes it so? The consequences for human welfare involved
in questions like these are simply staggering: Once one starts to
think about them, it is hard to think about anything else. (Lucas,
1988, p. 5)

The point is this: Markets can be analyzed from static and dynamic perspec-
tives. The former focuses on resource allocation at a single moment in time.
It freezes the movie and asks how markets work in this motionless environ-
ment. We know how markets work as a resource allocation mechanism.

The latter perspective is about the dynamic nature of markets, we want to
know how markets work over time. The movie runs—spurts of rapid growth
are followed by recessions, then more growth, but output per person trends
upward. Will this continue? We do not know. How do the institutions we
rely on (including property rights) emerge from the interaction of optimizing
agents? We do not know.

Explaining markets as a dynamic process remains the most important open
problem in economics. Perhaps you can work on it.
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