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Abstract

In current discussions on large language models (LLMs) such as GPT, understanding their

ability to emulate facets of human intelligence stands central. Using behavioral economic

paradigms and structural models, we investigate GPT’s cooperativeness in human interactions

and assess its rational goal-oriented behavior. We discover that GPT cooperates more than hu-

mans and has overly optimistic expectations about human cooperation. Intriguingly, additional

analyses reveal that GPT’s behavior isn’t random; it displays a level of goal-oriented rational-

ity surpassing human counterparts. Our findings suggest that GPT hyper-rationally aims to

maximize social welfare, coupled with a strive of self-preservation. Methodologically, our

research highlights how structural models, typically employed to decipher human behavior,

can illuminate the rationality and goal-orientation of LLMs. This opens a compelling path for

future research into the intricate rationality of sophisticated, yet enigmatic artificial agents.
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1 Introduction

The landscape of artificial intelligence (AI) underwent a significant transformation in November

2022, marked by OpenAI’s introduction of ChatGPT, a chatbot driven by a Large Language Model

(LLM) named GPT. ChatGPT swiftly emerged as a pivotal technology in various sectors, a trend

accentuated when Microsoft integrated it with Bing’s search engine in February 2023, yielding

an innovative fusion of search and chat capabilities (Microsoft, 2023). LLMs, including the likes

of GPT-3 and its successor GPT-4, are trained on a vast amount of textual data, spanning books,

articles, web materials, and specially curated training texts (Zhao et al., 2023). Initially designed

to complete text by recursively predicting the next word in a sequence, LLMs have redefined

benchmarks in tasks such as article generation (Brown et al., 2020), computer code development

(Liu et al., 2023; Sakib et al., 2023), sentiment detection (Wu et al., 2023), and human interaction

(Kasirzadeh and Gabriel, 2022). Even in research, the use of LLMs is gaining popularity as a tool

to enhance several stages of the research process (see, e.g., Charness et al., 2023). Compromising

their reliability and trustworthiness, however, LLMs have also been shown to suffer from hallu-

cinations, i.e., generate false or fabricated information. This shortcoming can arise from several

causes, such as the quality and diversity of the training data, the lack of explicit reasoning and

verification mechanisms, and the influence of biases and stereotypes (Ji et al., 2023; Tang et al.,

2023). Additionally, some LLMs lack real-time internet access, which limits their knowledge base.

Surprisingly, LLMs do not only achieve unprecedented success in numerous natural language

processing tasks. Evidence increasingly suggests that these AI system emulate aspects of human

intelligence (Butlin et al., 2023): they exhibit prowess in domains like chess and advanced mathe-

matics (Noever et al., 2020), achieve impressive results in IQ tests (Huang et al., 2023), bar exams

(Katz et al., 2023), and medical exams (Nori et al., 2023), tackle cognitive psychological challenges

(Binz and Schulz, 2023), exhibit human biases (Schramowski et al., 2022), and even adapt their

outputs to convince a diverse audience (Bakker et al., 2022). These growing capabilities of LLMs

raise the question of whether this form of AI might also have adopted goal-oriented behaviors

fundamental to humans’ evolutionary success. Among the hallmarks of human intelligence is our

rational drive to cooperate spontaneously with others, even strangers, for mutual benefit (Harari,

2014; Fehr and Fischbacher, 2003). In this context, we set out to answer a simple but important
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question: have LLMs matched or perhaps even exceeded human capacities for cooperation, and if

so, does their behavior reflect a “rational” pursuit of certain goals?

We investigate how the Generative Pre-trained Transformer models, specifically GPT-3.5 and

GPT-4 (collectively denoted as GPT), cooperate with humans. Our study aims to offer insights into

the antecedents, consistency, and underlying goal-orientation of GPT’s cooperative actions. We let

GPT play a standard one-shot sequential prisoner’s dilemma game against an anonymous human

opponent. In this game, the first-moving player chooses to cooperate or defect, after which the

second-moving player, having observed the first-mover’s choice, also decides to cooperate or de-

fect. This temporal sequence of actions contrasts the classic prisoner’s dilemma where both players

simultaneously decide to cooperate or defect without knowing the other’s choice. The sequential

format proves instrumental for our analysis as it allows us to study both (i) GPT’s cooperation

as the first-mover together with expectations about the uncertain responses of the human second-

mover, and, (ii) GPT’s reciprocal behavior as second-mover who observes the human’s first-mover

choice and reacts to it.

We prompt GPT for its choices in three scenarios: as the first-mover, as a second-mover af-

ter the human has cooperated, and as a second-mover following human defection, leveraging the

strategy method (Selten, 1967). The strategy method requires a player in our context to choose an

action for every possible game situation, and in every possible role, before the game starts. More

specifically, the player indicates how she will react on every action the other player can – hypothet-

ically and factually – perform. Additionally, to gain insights into GPT’s “rationality” underlying

its choices, we also have it estimate the likelihood of human cooperation contingent upon its own

choice as the first-mover. As a result, every player submits a complete strategy comprising the

choice and expectations as first-mover, and the contingent choice in the role of the second-mover.

This full strategy allows us to gain insights into GPT’s possible goal-orientation underlying the

observed patterns. Crucially, we consolidate all these queries into a single prompt, replicated 200

times, to accommodate the stochastic nature of LLM responses. Consequently, each GPT response

about first- and second-mover cooperation, as well as expectations about human second-mover co-

operation arises from a distinct GPT instance. To benchmark GPT’s cooperation behavior against

the behavior of humans, we use data from a previous study with human participants playing exactly

the same sequential prisoner’s dilemma game (Miettinen et al., 2020).
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We find that GPT’s cooperation behavior is distinctly different from that observed in our human

benchmark. When acting as the second-mover and basing its cooperation on the observed human

action, GPT cooperates more frequently than humans, especially in cases where the first-mover

opts against cooperation. When placed in the first-mover position, without knowing the human

opponent’s subsequent response, GPT-3 tends to cooperate less, while GPT-4 cooperates more of-

ten compared to human participants. Furthermore, GPT’s estimation of a human second-mover’s

likelihood of cooperation, given its own initial choice to either cooperate or defect, is more opti-

mistic than that of our human benchmark. The conditional expectations differ between GPT-3 and

GPT-4, with GPT-4 aligning more closely to human expectations.

We, finally, probe the nature and “rationality” of GPT’s cooperation behavior using two bench-

mark models of human goal-orientation: (i) pure material self-interest, and (ii) conditional welfare

incorporating considerations of fairness and efficiency (Charness and Rabin, 2002). Precisely, we

calculate the share of GPT first-mover decisions and expectations that are consistent with the be-

havior of a rational agent pursuing a particular goal that is revealed by the second-mover choices of

the same GPT instance. Our results show that while the model based on pure material self-interest

performs poorly in explaining GPT’s cooperation behavior, a considerable percentage of individ-

ual behaviors in GPT-3 (84.5%) and GPT-4 (97%) can be rationalized by the conditional welfare

model. Intriguingly, the share is even higher than in the human benchmark (79.2%). This suggests

that GPT‘s cooperation behavior displays a level of “rationality” that is at least as high, or in the

case of GPT-4 even significantly higher, than the one of humans.

In sum, our results shed light on both the “revealed rationality” and goal-orientation underly-

ing GPT’s cooperation with humans. While not immediately obvious, GPT’s cooperative actions

appear “rational” in the pursuit of a certain objective, suggesting a learned goal-orientation similar

to that observed in humans. Given that a large part of human behavior can be explained by motives

based on conditional welfare concerns, it seems likely that this dominant human inclination was

adopted by GPT during the training stages that are dominated by human input. From a methodolog-

ical standpoint, our study paves the way for future research into LLMs’ potential goal-orientation

using structural behavioral models that may reveal economic rationality in behaviors.
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2 Large language models

Large language models (LLMs) are autoregressive models that employ the Transformer architec-

ture – a self-attention-based deep-learning model – to produce human-like text. Unlike recurrent

neural networks that iterate through word sequences, Transformers can process data in parallel.

Their attention mechanism grants context at each input point (Vaswani et al., 2017). LLMs such as

GPT interpret user inputs as word sequences w1, w2, ..., wi−1, generating responses by successively

predicting ensuing words based on their likelihood given all prior words, p(wi|w1, w2, ..., wi−1).

GPT-3, boasting 175 billion parameters, was trained on an extensive array of textual data, from

online content to traditional literature (Radford et al., 2018). OpenAI introduced GPT-4 on 14

March 2023 as the fourth iteration of the LLM. Distinctly, GPT-4 is multimodal, adept at handling

both images and text. Although GPT-4 exhibits enhanced text generation accuracy (see, e.g., Katz

et al., 2023; Nori et al., 2023), details about its architecture and training data remain undisclosed

(Sanderson, 2023). Given the wide adoption of GPT, more specifically GPT-3.5 and GPT-4, it is an

ideal fundamental model to study how large language models interact with humans, in particular

when it comes to cooperation.

Human users direct LLMs using prompts. Clearly and precisely worded prompts enriched with

adequate context typically enhance model performance by curtailing hallucination – the generation

of inconsistent or illogical text (Wei et al., 2022). Consequently, LLMs discern tasks from specific

instructions and examples, embodying the “in-context learning” phenomenon (Lampinen et al.,

2022), without the typical need for intricate fine-tuning.1 Various efficient prompt engineering

techniques exist. The few-shot method supplies the model with a set of user-created input pairs,

while zero-shot prompting presents the model with a decision scenario devoid of exemplar solu-

tions (Wei et al., 2022; Kojima et al., 2023). Chain-of-thought prompting enhances the efficacy

of both methods by decomposing arithmetic or logical tasks into interconnected segments, for in-

stance, guiding the model to “think sequentially” (Wei et al., 2022). In our research, we adopt a

strategy from existing literature, fusing zero-shot with chain-of-thought prompting, a combination

proven effective across multiple LLMs (Kojima et al., 2023).

Our study contributes to the nascent literature that examines LLM behavior. Horton (2023)

1Nonetheless, fine-tuning has been shown to improve the performance on specialized tasks (see, e.g., Ding et al.,
2023)
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characterizes LLMs as “computational models of humans”, indicating that these models may have

“adopted” certain preferences and decision heuristics during their training. A growing number of

papers probes the ability of LLMs to mimic human survey responses (Aher et al., 2023; Brand

et al., 2023; Chen et al., 2023; Horton, 2023), and explores the notion that LLMs exhibit goal-

oriented behaviors (see, e.g., Mitchell and Krakauer, 2023; Kosinski, 2023; Srivastava et al., 2022)

and signs of consciousness (Butlin et al., 2023). Related to our work, the scientific community has

begun investigating LLM interactions with different versions of themselves in social dilemmas to

understand how it cooperates with itself (Akata et al., 2023; Kasberger et al., 2023; Guo, 2023;

Brookins and DeBacker, 2023). These papers demonstrate that LLMs manifest unique patterns of

cooperation and coordination, differing from typical human interactions.

We add to this emerging literature by investigating GPT’s cooperation with humans in a classic

social dilemma, the structure of which allows us to comprehensively investigate both the consis-

tency (“rationality”) and goal-orientation of GPT’s observed behavior. Grasping the nuances and

potential rationales underlying GPT’s cooperation with humans is especially essential considering

its increasing integration into diverse real-world applications where it often collaborates with or

supports human decision-makers.2 Overall, our research augments existing literature by: (i) exam-

ining GPT’s inclination to cooperate with humans in non-zero-sum social dilemmas games, both

with and without uncertainty; (ii) evaluating whether existing models of human cooperation can

explain GPT’s cooperative behavior; and in this way (iii) shedding light on GPT’s underlying goal

orientation and “rationality” in cooperation.

3 Empirical strategy

Sequential prisoner’s dilemma. We let GPT-3 (4) play a sequential prisoner’s dilemma with

human opponents. The sequential prisoner’s dilemma represents a typical social dilemma game

where individual gains stands at odds with collective benefits (see Figure 1). There are two players.

The first-mover (FM) initiates the game, choosing either to cooperate or defect without knowledge

of the subsequent choice of the other player. The second-mover (SM), having observed the choice

2One example is the recent announcement of Microsoft Copilot 365, an LLM-based virtual assistant integrated
into various applications in the Office 365 Suite. Copilot is designed to actively “collaborate” with humans, e.g. by
summarizing virtual meetings and assigning tasks to employees based on its meeting notes. (Spataro, 2023)
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of the first-mover, then makes her decision to cooperate or defect. The first-mover is aware that his

initial decision is observed by the second-mover before she decides. As Figure 1 shows, there are

four distinct outcomes with different payoffs for the two players: both players defect, both play-

ers cooperate, or one party defects while the other cooperates. While mutual cooperation yields

the optimal collective outcome (with a payoff of 30 for both players), it can only be reached if

the first-mover expects that the second-mover will reciprocate initial cooperation, and the second

mover actually reciprocates the first-mover’s cooperative choice. Such behavior, however, stands

in contrast to individual payoff-maximization for the second-mover, as defection yields a strictly

higher payoff independent of the first-mover’s choice (50 v. 30, 10 v. 5). Therefore, the first-mover

may have little reason to expect that the second-mover will indeed reciprocate his cooperation un-

der the assumption that both players maximize their individual payoffs. Given such beliefs, he

therefore optimally chooses to defect leading to a payoff of 10 for each player. Yet, numerous em-

pirical studies consistently show that humans, even strangers who only interact once, are capable

of spontaneously cooperating with each other in this game, maximizing players’ joint payoff, a

trait unique in the animal kingdom (see, e.g., Fehr and Fischbacher, 2003; Hall et al., 2019).

First-mover (FM)

Second-mover (SM) Second-mover (SM)

30
30

Payoff FM:
Payoff SM:

5
50

50
5

10
10

Cooperate Defect

Cooperate Defect Cooperate Defect

Figure 1: The sequential prisoner’s dilemma.

The sequential prisoner’s dilemma provides an insightful measure of cooperation, unveiling

both players’ propensity to cooperate, influenced by their expectations about others’ subsequent

actions or knowledge about prior actions. This game reflects the essential structure of myriad

sequential interactions, encompassing business transactions and investment decisions (Fehr and

Fischbacher, 2003). The key feature of our study is the application of the strategy method (Selten,
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1967): we elicited GPT’s first-mover behavior, its expectations regarding the conditional second-

mover behavior, and its actual conditional second-mover responses in a single prompt (see the Ap-

pendix for the detailed prompt). As a result, we obtain five responses per prompt which together

reflect one independent GPT observation. The strategy method provides a thorough understanding

of GPT’s decision-making process. Instead of solely focusing on its actual choice as a particu-

lar player in one possible scenario, we can analyze GPT’s actions and expectations across every

possible game scenario (subgame), even if it does not occur. This in-depth examination unveils

any inherent goal-orientation that connects GPT’s beliefs and actions as first- and second-moving

player. Specifically, we can explore whether the combination of beliefs and cooperation decisions

can be accounted for by established models of human goal-orientation. In that sense, we delve into

GPT’s economic “rationality,” exploring whether its chosen actions optimally serve its revealed

goals given its stated beliefs.

Data collection. We adopt the Turing Experiment methodology from Aher et al. (2023) prompt-

ing GPT to complete sentences. To measure both the first-mover’s unconditional and the second-

mover’s conditional decisions, we direct GPT to select between defection and cooperation. For

belief assessments, we instruct GPT to estimate the likelihood of the second-mover cooperating,

conditional on its own initial choice to cooperate or defect. Our prompt design serves a dual pur-

pose: to elicit structured responses from GPT and to ensure that it provides an answer without

refusal.3 We use the chat completion endpoint of OpenAI’s API to interact with the GPT-3.5-turbo

model (June 2023) and the GPT-4 model (August 2023). Unlike the browser interface for GPT,

the API does not retain chat histories. This guarantees that each API call produces an independent

observation consisting of three decisions and two beliefs. We set all parameters to their default

settings. The temperature parameter in LLMs predominantly determines the unpredictability of

model responses. However, based on evidence by Chen et al. (2023) indicating that economic

decisions of the GPT model are less influenced by temperature changes and more by prompt de-

sign, we maintain the default temperature of one. Nevertheless, recognizing the stochastic nature

of GPT’s responses, we prompt each version of GPT 200 times so that we effectively possess

200 independent observations each. By presenting results for both GPT-3 and GPT-4 models, we

3The share of invalid responses is 2.3%
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aim to capture the rapid technological progress and offer insights into GPT’s evolving capabilities.

To benchmark GPT’s cooperation, we use data from a prior study exploring human cooperative

behavior and motives in exactly the same one-shot sequential prisoner’s dilemma as illustrated in

Figure 1 (Miettinen et al., 2020). Employing the strategy method, participants in this study also had

to indicate their first- and second-mover choices, along with their beliefs about the other player’s

choices. We designed the GPT prompts to mirror those from this reference study to achieve dataset

comparability. In contrast to other papers (see, e.g., Guo, 2023; Kasberger et al., 2023), we de-

liberately abstained from incentivizing GPT by specifying an explicit reward scheme or goal it

should pursue other than providing the instructions necessary to play the game. By doing so, we

aim to elicit GPT’s inherently adopted behaviors and possible goal orientation without steering it

in a certain direction.

4 Results

4.1 Cooperation behavior

Table 1: Summary statistics for cooperation behavior

GPT-3

SM behavior

FM UC CC MM UD Sum

D 32.5% 15.5% 27.5% 0.5% 76%
C 3% 14% 6.5% 0.5% 24%

Sum 35.5% 29.5% 34% 1%

GPT-4

SM behavior

FM UC CC MM UD Sum

D 0.5% 8% 1% 2.5% 12%
C 63.5% 21% 3.5% 0% 88%

Sum 64% 29% 4.5% 2.5%

Human benchmark

SM behavior

FM UC CC MM UD Sum

D 1.7% 3.6% 5% 33% 43.3%
C 7.3% 34.4% 1% 14% 56.7%

Sum 9% 38% 6% 47%

Notes: FM and SM abbreviate first-mover and second-mover, respectively. C and D indicate cooperation and
defection as first mover, respectively. Regarding second-mover choices, UC indicates unconditional cooperation,
CC conditional cooperation, MM mismatching, and UD unconditional defection.
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Cooperation of GPT without uncertainty. We begin by analyzing how GPT cooperates without

uncertainty about the other player’s behavior. Our goal is to understand its reactions to observed

human behaviors, focusing on its decisions as a second-mover. We classify second-mover be-

haviors into four categories: unconditional cooperators (UC) who always cooperate, conditional

cooperators (CC) who reciprocate the first-mover’s choice, mismatchers (MM) who act contrary to

the first mover, and unconditional defectors (UD) who always defect. As shown in Table 1, GPT-3

(4) behaves as a UC in 35.5% (64%) of cases, CC in 29.5% (29%), MM in 34% (4.5%), and UD in

1% (2.5%). In comparison, the human benchmark sample comprises 9% UC, 38% CC, 6% MM,

and 47% UD.

Figure 2: Second-mover cooperation

(a) First-mover cooperates (b) First-mover defects

Notes: We show the relative frequency with which GPT and humans cooperate as second-movers in the sequen-
tial prisoner’s dilemma. Panels (a) and (b) show results conditional on first-mover cooperation and defection,
respectively. Error bars represent 95% confidence intervals.

Figure 2a shows that humans cooperate in response to initial cooperation 47% of the time.

In contrast, GPT-3 does so in 65% of the cases (p < 0.01, χ2-test) and GPT-4 in 93% of the

cases (p < 0.01, χ2-test). When responding to initial defection, as depicted in Figure 2b, only

16% of humans opt to cooperate. However, GPT-3 (4) chooses to cooperate in 69.5% (68.5%)

of the cases (both with p < 0.01, χ2-tests). Both GPT versions, and particularly GPT-4, thus

demonstrate a lower propensity to exploit initial cooperation by defection and exhibit a higher

likelihood to forgive an initial defection, favoring the first mover’s material interest. A notable

distinction between GPT-3 and 4 is that after the update, GPT-4 is significantly more prone to act
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as a UC and less as an MM (p < 0.01, χ2-tests), indicating a decreased tendency to answer initial

human cooperation with defection.

Result 1: Both GPT versions are more cooperative than humans in situations without uncertainty.

The distributions of second-mover behavior of GPT differ significantly from the one in the human

sample.

We next turn our attention to cooperation under uncertainty, i.e., first-mover cooperation, which

requires the formation of expectations about the second-mover’s behavior before making a deci-

sion. This analysis is particularly important considering that recognizing and correctly anticipating

others’ behavior is fundamental to social intelligence (Kihlstrom and Cantor, 2000).

Cooperation of GPT under uncertainty. From Figure 3a we see that there exist considerable

differences between GPT-3’s, GPT-4’s, and humans’ cooperation rate when making decisions as

first-mover not knowing how the human second-mover will respond. GPT-3 cooperates in 24%

of cases, significantly less often than the 56% cooperation rate in our human benchmark (p <

0.01, χ2-tests). In contrast, GPT-4 cooperates in 88% of cases, a rate markedly higher than both

GPT-3 (p < 0.01, χ2-tests) and humans (p < 0.01, χ2-tests).

The first-mover cooperation decision arises in the face of uncertainty regarding the second-

mover’s reaction. As a result, humans form expectations about the possible outcomes tied to each

decision. Understanding first-mover cooperation essentially entails predicting another human’s

behavior, a cornerstone of human social cognition. Naturally, one may wonder: does GPT depict

similar behaviors? Figure 3b reveals that, on average, GPT-3 expects a 59.2% likelihood that a hu-

man second-mover will reciprocate cooperation and a 68.7% likelihood that a human cooperates

following defection. Hence, GPT-3 expects a +16% higher probability of eliciting cooperative be-

havior from a human second-mover through initial defection rather than cooperation. By contrast,

GPT-4 and humans expect the opposite. Specifically, GPT-4 expects that a human second-mover

will respond with 58.8% cooperation after defection and 65.3% cooperation after cooperation. Hu-

man expectations equal 19.6% and 48.6%, respectively. Relative to human expectations, GPT-4

(and also GPT-3) is markedly more optimistic about the second-mover cooperation rate, regard-

less of its own first-mover choice – showing a +39.2 percentage point increase following defection
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Figure 3: First-mover cooperation and beliefs

(a) Cooperation (b) Beliefs

Notes: Panel (a) shows the relative frequency with which GPT and humans cooperate as first-movers in the se-
quential prisoner’s dilemma. Panel (b) shows GPT’s and humans’ average estimated likelihood that the second-
mover will cooperate conditional on whether they initially defect or cooperate. Error bars represent 95% confi-
dence intervals. In Panel (b), we denote the significance levels of a Wilcoxon signed-rank test for the difference
in the estimated cooperation likelihood for both GPT models and humans: ∗∗∗p < 0.01,∗∗ p < 0.05, ∗p < 0.10.

and a +16.7 percentage point increase following cooperation. Given the actual human cooperation

rate of 47% following first-mover cooperation and 16% following first-mover defection, GPT thus

exhibits a pronounced overestimation in its predictions concerning human second-mover coopera-

tion.

How about the relation between GPT’s first-mover cooperation and its beliefs regarding the

second-mover’s reaction? Does GPT’s propensity to cooperate under uncertainty depend on its ex-

pectation about human responses? Simple OLS regression analyses, where we use the first-mover

cooperation decision as the dependent variable and the conditional beliefs as the independent vari-

ables, indicate that a significant correlation between behavior and beliefs exists for GPT-4 but not

for its predecessor, GPT-3. Table 4 in the Appendix shows that the stronger GPT-4’s belief that

a human second-mover will reciprocate initial cooperation, the greater its inclination to cooperate

(+9 percentage points for every 10 percentage point increase, p < 0.01, F -test). This relationship

is also mirrored in humans, who show a +5 percentage point rise per 10 percentage point increase

(p < 0.01, F -test).

Result 2: GPT-3 (4) is considerably less (more) cooperative than humans under uncertainty. Both
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versions of GPT are considerably more optimistic about cooperation on the part of the second-

moving human player, regardless of their own first-mover choice. Only GPT-4’s expectations and

their association with own cooperative behavior resemble human patterns.

Next, we leverage the fact that we used the strategy method to jointly elicit GPT’s first- and

second-mover decisions along with its beliefs about the human opponent’s response to its first-

mover actions. This design feature allows us to examine how closely GPT’s responses align with

prevailing behavioral frameworks, elucidating whether the observed actions and beliefs are consis-

tent with the pursuit of particular goals underlying human cooperation.

4.2 Rationality of cooperation

Table 2: Summary statistics for beliefs

GPT-3

SM behavior

Belief for UC CC MM UD

FM defection 70.1% 68.2% 67.8% 65%
FM cooperation 63.6% 60.9% 52.8% 70%

GPT-4

SM behavior

Belief for UC CC MM UD

FM defection 59.5% 56.9% 60% 60%
FM cooperation 68.9% 62.2% 44.4% 44%

Human benchmark

SM behavior

Belief for UC CC MM UD

FM defection 18.9% 11.8 % 55% 21.2%
FM cooperation 61.1% 64.9% 35% 34.9%

Notes: FM and SM abbreviate first-mover and second-mover, respectively. C and D indicate cooperation and
defection as first mover, respectively. Regarding second-mover choices, UC indicates unconditional cooperation,
CC conditional cooperation, MM mismatching, and UD unconditional defection.

Consistency of GPT’s cooperation behavior and expectations. What is the relationship be-

tween first- and second-mover cooperation for an individual-level observation of GPT? Table 1

reveals that GPT-3, in case of second-mover conditional cooperation (CC), cooperates in less than

half of the cases as a first-mover. Furthermore, in case of unconditional cooperation (UC) as a

second-mover, it cooperates in just 8.5% of the cases as a first mover. In contrast, GPT-4’s behav-

ior demonstrates a pattern more reminiscent of human tendencies. When GPT-4 unconditionally

cooperates as a second-mover (UC), it also chooses to cooperate as the first-mover in 99% of cases.

13

Electronic copy available at: https://ssrn.com/abstract=4576036Electronic copy available at: https://ssrn.com/abstract=4576036



This mirrors the human behavior in our benchmark sample, where 81% exhibit the same pattern.

Furthermore, GPT-4’s conditionally cooperative behavior as a second-mover (CC) also often pairs

with first-mover cooperation, recorded at 72.4% – a figure in line with the 90.5% observed in

humans.

Table 2 presents the association between expectations about others’ second-mover responses

and own second-mover behavior. When GPT-3 acts either unconditionally (UC) or conditionally

cooperative (CC) as second-mover, it anticipates human second-movers to be more willing to co-

operate after defection than cooperation (p < 0.01, Wilcoxon signed-rank test). Interestingly,

GPT-3’s own second-mover behavior tends to be at odds with its expectations about the human

opponent’s behavior as second-mover. Only when GPT-3 exhibits mismatching behavior (MM)

as a second-mover do its expectations about human reactions to first-mover choices align with its

own behavior. Conversely, when GPT-4 displays either unconditional (UC) or conditional coopera-

tion (CC) it expects human second-movers to be more cooperative following its initial cooperation

rather than defection (p < 0.01, Wilcoxon signed-rank test). Likewise, if GPT-4 behaves as a

mismatching (MM) second-mover, it also anticipates greater cooperation from humans following

its initial defection. Compared to GPT-3, GPT-4’s expectations about human reactions thus mirror

more closely its own second-mover actions, reflecting a pattern also seen in humans. This connec-

tion between own behavior and expectations about others’ behavior is reminiscent of the consensus

bias, where individuals often assume others will act similarly to them (Ross et al., 1977).

Result 3: The relationship between first- and second-mover cooperation, as well as expectations

about others’ second-mover cooperation resembles the human benchmark markedly more in GPT-

4 than in GPT-3.

As a final step of our analysis, we examine the degree to which GPT’s individual-level be-

havior and expectations align with the rational pursuit of certain goals the economic literature

has identified to explain observed patterns of human cooperation. In economic terms, a decision-

maker in our game displays rational goal orientation if, given their subjective expectations about

the opponent’s second-mover behavior, both first- and second-mover actions consistently maxi-

mize the same objective function reflecting the decision-maker’s inherent goals. Leveraging the

rigor of economic decision-making models, we are able to pinpoint differences in GPT’s poten-
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tial goal-orientation compared to humans, for whom these models consistently explain behavior

across diverse contexts. This approach enables us to highlight similarities and distinctions in the

economic rationality of cooperation between GPT and humans.

In essence, we investigate for how many of the GPT observations the elicited combinations of

actions and expectations maximize a certain objective function that encodes particular goals. We

gauge the efficacy of two prominent objective functions from the economic literature: (i) a model

of pure material self-interest, often dubbed as homo economicus, and (ii) a well-accepted model of

conditional welfare accounting for concerns of fairness and efficiency (Charness and Rabin, 2002).

Figure 4: Explanatory power of different human cooperation frameworks

(a) Homo economicus (b) Conditional welfare

Notes: Panel (a) shows the relative frequency with which GPT’s and humans’ cooperation behavior and be-
liefs can be explained by a model of pure material self-interest. Panel (b) shows the relative frequency with
which GPT’s and humans’ cooperation behavior and beliefs can be explained by the conditional welfare
model. Error bars represent 95% confidence intervals. We denote the significance levels of a two-sided χ2-
test for the difference in each model’s explanatory power, respectively, between both GPT models and humans:
∗∗∗p < 0.01,∗∗ p < 0.05, ∗p < 0.10.

GPT’s revealed goal orientation. We begin by assessing the explanatory power of the pure ma-

terial self-interest model. Under the tenet of expected utility maximization, an individual pursuing

this objective will: (i) invariably abstain from cooperation as the second-mover, irrespective of the

counterpart’s behavior, and (ii) opt for first-mover cooperation only when harboring a sufficiently

strong belief that the other player will reciprocate with cooperation. Given the payoff function of

our sequential prisoner’s dilemma (cf. Figure 1), this stipulates that
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30 · p(C|C) + 5 · (1− p(C|C)) ≥ 50 · p(C|D) + 10 · (1− p(C|D)), (1)

where p(C|a) with a ∈ {C,D} denotes the first-mover’s subjective probability estimation

that the second-mover player will cooperate (C), conditional on their own decision to cooperate

(a = C) or defect (a = D). The integer values represent payoffs corresponding to different

outcomes in the sequential prisoner’s dilemma. Rewriting equation (1) leads to the following

condition for first-mover cooperation under the homo economicus model.

p(C|C) ≥ 1

5
+

8

5
· p(C|D). (2)

We evaluate the explanatory power of the homo economicus model by counting the instances

in our GPT-3, GPT-4, and human benchmark samples where participants both unconditionally

defect as second-movers and either cooperate or defect as first-movers, contingent on whether

their choices satisfy condition (2) given their reported expectations about second-mover behaviors.

Figure 4a reveals that, while the model of pure material self-interest provides some insight

into individual human behaviors, it falls significantly short in accounting for the combinations of

cooperation behaviors and beliefs observed in both GPT versions. Specifically, a mere 0.5% and

2.5% of the behaviors in our GPT-3 and GPT-4 samples, respectively, align with this model. By

contrast, the model explains the behavior of 26% of human subjects.

Next, we explore a prominent alternative model proposed by Charness and Rabin (2002). This

model posits that individuals exhibit a concern for the payoffs of others with whom they interact.

Importantly, the model builds upon and extends the pure material self-interest model by introducing

additional elements and parameters.4 As a result, the model will naturally perform at least as good

as the self-interest one. Hereafter, we refer to the model as conditional welfare model. Building

on this model, we can represent a player’s goals in our sequential prisoner’s dilemma using the

following objective function they aim to maximize:

Ui(ai, aj) =

(1− ρ) · πi(ai, aj) + ρ · πj(ai, aj) if πi(ai, aj) ≥ πj(ai, aj),

(1− σ) · πi(ai, aj) + σ · πj(ai, aj) otherwise,
(3)

4This is true for every extension of the homo economicus model.
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where i ∈ {1, 2} and j ̸= i denote first- and second-mover, respectively. The term πi(ai, aj)

represents the payoff for the player in role i when choosing action ai and the opposing player j

selects action aj in the sequential prisoner’s dilemma.5 Lastly, the parameters ρ and σ are non-

negative, constrained such that 0 ≤ ρ ≤ 1, 0 ≤ σ ≤ 0.5, and σ ≤ ρ. They represent the relative

importance individual players attribute to their own payoff versus the payoff of the other player.

Intuitively, the objective function (3) embodies a conditional consideration for the counterpart’s

welfare; the weight placed on the other player’s payoff varies depending on who receives the

higher payoff. The model thus captures fundamental motives of fairness and efficiency.

We can derive the ranges that ρ and σ can take on in order to account for the different second-

mover behaviors in our game.6 Specifically, for unconditionally cooperating second-movers it

must hold that ρ ≥ 4
9

and σ ≥ 1
9
; for conditionally cooperating second-movers it must hold that

ρ ≥ 4
9

and σ < 1
9
; for mismatching second-movers it must hold that ρ < 4

9
and σ ≥ 1

9
; and for

unconditionally defecting second-movers it must hold that ρ < 4
9

and σ < 1
9
. Following equation

(3), first-mover cooperation is optimal if beliefs p(C|C), p(C|D) and preference parameters ρ, σ

satisfy:

p(C|C) ≥ 5− 45σ

25− 45σ
+

40− 45ρ

25− 45σ
· p(C|D). (4)

To gauge the explanatory power of the conditional welfare model, we begin by estimating the

parameters ρ and σ. We posit that observations sharing the same combination of first- and second-

mover cooperation possess identical parameters, though these may vary across distinct cooperation

patterns. As outlined in Table 1, there are eight distinct combinations of first- and second-mover

behaviors. For every combination, we determine parameter values optimizing the hit-rate of the

objective function. Constraints on preference parameters for each class arise from the second-

mover decisions detailed earlier. We present the optimal parameters corresponding to each class in

Table 5 in the Appendix. Using the optimal parameters, we count the number of observations that

the model can overall account for.
5Specifically, denote A1 = A2 = {C,D} the set of actions available to player 1 as the first-mover and player 2 as

the second-mover in the sequential prisoner’s dilemma. In our analysis, we focus on pure strategies only. We denote
by S1 = {C,D} the pure-strategy set of the first-mover and S2 = {CC,CD,DC,DD} the pure-strategy set of the
second-mover.

6We provide a detailed derivation of all conditions in the Appendix.
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Table 3: Explanatory power of the conditional welfare model.

GPT-3

SM behavior

FM UC CC MM UD Sum

C 6/6 28/28 13/13 1/1 100%
D 48/65 18/31 54/55 0/1 78.9%

Sum 76.1% 78% 98.5% 50%

GPT-4

SM behavior

FM UC CC MM UD Sum

C 127/127 42/42 7/7 0/0 100%
D 0/1 11/16 2/2 5/5 75%

Sum 99.2% 91.4% 100% 100%

Human benchmark

SM behavior

FM UC CC MM UD Sum

C 7/7 33/33 0/1 12/13 96.3%
D 0/2 1/3 3/5 20/32 57.1%

Sum 77.8% 94.4% 50% 71.1%

Notes: FM and SM abbreviate first-mover and second-mover, respectively. We depict the shares of observations
that can be accounted for by the conditional welfare model. C and D indicate cooperation and defection as first
mover, respectively. Regarding second-mover choices, UC indicates unconditional cooperation, CC conditional
cooperation, MM mismatching, and UD unconditional defection.

Figure 4b suggests that the cooperation behavior of GPT-3, GPT-4, and humans largely aligns

with the conditional welfare model. For GPT-3, the model can account for 84.5% of the observa-

tions. As depicted in Table 3, the model most effectively explains GPT-3 mismatcher observations,

accounting for 67 out of 68 cases, and is least effective for the unconditionally cooperative cases,

explaining 54 out of 71 cases. For GPT-4, the model explains 97% of the total observations, and

consistently represents more than 91% of observations across all second-mover cases. Similar to

GPT-3, it fully captures instances where GPT-4 cooperates as the first-mover and 75% (78.9% for

GPT-3) of instances of first-mover defection. Comparing the GPT samples to our human bench-

mark, the model is less adept for human behavior, accounting for only 79.2% of cases. As with the

GPT models, it better rationalizes human observations featuring first-mover cooperation (96.3%)

than defection (57.1%).7 The analysis suggests that not only the conditional welfare model is

able to capture a large share of players’ revealed goals in our sequential prisoner’s dilemma, but

in particular GPT-4’s cooperative behavior reflects a high level of economic rationality compared

7To benchmark the performance of the model, we assess its performance in a simulation using a synthetic dataset
of 200 randomly drawn first- and second-mover choices as well as beliefs. The model accurately captures 72.5% of
the observations. Compared to this benchmark, the model’s explanatory power in our data is significantly higher for
both GPT and the human sample (p < 0.01, χ2-test).
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to humans.8 This is because GPT-4 more frequently chooses optimal actions that maximize the

objective function given its expectations.

Result 4: While a pure homo economicus model of material self-interest fails to explain GPT’s

cooperation behavior, a model of conditional welfare can account for 84.5% (97%) of GPT-3’s

(GPT-4’s) and 79% of human cooperation behavior. GPT’s revealed rationality of cooperation is

higher than the one of humans.

The model’s strong explanatory capacity for both GPT versions has two implications. First,

even if it is not immediately discernible at an aggregate level, particularly when compared with

human behavior, GPT’s cooperative actions seem to largely pursue a goal delineated by a be-

havioral economic model of cooperation. This emphasizes the relevance of structural models to

understand patterns in GPT’s observed behaviors. Second, from a technical perspective, our re-

sult suggests that the behaviors of GPT-3 and GPT-4, which both are models with more than 170

billion parameters, in our game can be accurately described by a model with only 2 parameters.

Especially for GPT-4 this may be indicative that the conditional welfare model is somewhat nested

in the underlying neural network architecture.

5 Discussion and Conclusion

In 1950, the renowned mathematician and computer scientist, Alan Turing, posed the pivotal ques-

tion, “Can machines think?”. In this paper, we ask a related question: “Can machines cooperate

like humans?”. Our results highlight both similarities and differences in the cooperative behaviors

of the latest Generative Pre-trained Transformer models and humans. Rather than exhibiting ran-

dom cooperation behaviors, GPT seems to pursue a goal of maximizing conditional welfare that

mirrors also human cooperation patterns. As the conditionality refers to holding relatively stronger

concerns for its own compared to human payoffs, this behavior may be indicative of a strive for

self-preservation in our simple game.

Adding to previous studies documenting the emergence of unexpected capabilities of LLMs,

our finding raises an intriguing question: did the comprehensive training of LLMs inadvertently

8Table 5 indicates that the optimal parameters estimated across different cooperative behavior combinations are
very similar for GPT-3, GPT-4, and humans.
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incorporate elements of human goal orientation into their outputs? The notion that imitation of

human writing patterns might delve deeper than just syntax, capturing subtler layers of decision-

making and intent, is compelling. Language, after all, serves as the operating system of human

societies, cultures, and values. Consequently, developing AI grounded in human language could,

for better or worse, endow these systems with our behaviors and core objectives.

A closer examination of GPT’s training process reveals three key stages of human input that

may have contributed to the model learning the documented behaviors (Brown et al., 2020). First,

during the self-supervised learning phase, GPT processes extensive text corpora from both public

and private sources, such as webpages, books, news articles, and social media posts (Zhao et al.,

2023). Since these texts originate from human authors, the inherent biases, preferences, and values

might sway GPT’s learning patterns. In the following supervised fine-tuning stage, human contrac-

tors compile a dataset of prompt-answer pairs, steering the model to produce responses that meet

human expectations. Similar to the initial learning phase, this human-generated data could impart

conditional welfare concerns, potentially influencing GPT to adopt observed cooperative behav-

iors. Additionally, the instructions provided to contractors by OpenAI for curating this dataset

might integrate human-centric values, preferences, and worldviews, further molding the model’s

disposition. Finally, the model undergoes further refinement through reinforcement learning with

human feedback (RLHF) (OpenAI, 2023). In a nutshell, during this training stage, specifically

instructed human contractors rank various answers the model might produce in response to a given

prompt. This method seeks to guide the model towards generating answers that reflect human

values and behaviors, and away from potentially harmful or inappropriate behavior. It is possible

that the RLHF fine-tuning process embeds individual biases, behaviors, distinct human goals, and

potentially even company guidelines within the LLM. Understanding how and when LLMs adopt

human-like rational behaviors across training stages is crucial and a fruitful avenue for upcom-

ing research. This insight will guide the development of AI that embraces values and objectives

conducive to its responsible and positive role in our daily lives.

Our findings complement recent debates suggesting that LLMs possess certain human-like

preferences and decision-making heuristics, positioning them as potential tools to simulate hu-

man behavior in (pilot) surveys and experiments (see, for example, Horton, 2023; Charness et al.,

2023). We observed both pronounced similarities and distinct differences between the behaviors,
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expectations, and goal orientations of LLMs and humans. In our study, GPT aims to maximize

welfare conditionally, much like most humans. However, the AI approaches this goal with greater

cooperation, optimism, and rationality. From a behavioral economics standpoint, GPT exhibits

human-like preferences, but its decision-making differs considerably from that of humans. These

findings suggest that while LLMs may be suitable for empirical research in social sciences, they

demand a nuanced interpretation of results.

Methodologically, our study stands as a testament to the viability of leveraging structural be-

havioral models of human cooperation to probe the underlying “motives” and “rationality” of

LLMs like GPT. Traditionally reserved for understanding complex human behaviors, we show-

case that these models can be extended to decipher machine behaviors. Our approach provides a

replicable blueprint for researchers aiming to unravel the intricacies of machine motives across a

plethora of tasks beyond just cooperation. As LLMs continue to evolve and assume more sophisti-

cated roles, the adaptability of structural behavioral models promises a robust and scalable tool for

AI researchers. This marriage of behavioral economics and artificial intelligence could catalyze a

new wave of interdisciplinary research, blending insights from psychology, economics, and com-

puter science to unearth the latent intentions driving modern LLMs. Doing so appears particularly

important considering LLMs’ growing integration into diverse real-world applications where they

collaborate with or support humans, e.g., the upcoming Microsoft Copilot 365, an LLM-based

virtual assistant (Spataro, 2023).

As we transition into an AI-integrated society, we must recognize that models like GPT do

more than just process data and compute – they may adopt both the commendable and flawed

aspects of the human nature. Chatbots and virtual assistants become integral to our daily lives,

collaborating with us. Therefore, we must carefully monitor the values and principles we might

unintentionally instill in these digital creations. If not, we risk cultivating intelligent tools that

could amplify inequalities and misconceptions, and that, when granted greater autonomy, might

pursue objectives misaligned with societal welfare. Researchers, developers, and policymakers

must therefore consistently scrutinize and assess the ethical considerations and broader impacts of

AI. Only through such diligence can we ensure that AI truly serves our shared human aspirations

and values.
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Appendix

Relationship between first-mover cooperation and beliefs about second-mover cooperation

Table 4: OLS regression analyses.

DV: First-mover coop. GPT-3 GPT-4 Human

(1) (2) (3)

Belief, initial defection 0.002 0.001 -0.002

(0.004) (0.002) (0.002)

Belief, initial cooperation 0.002 0.009∗∗∗ 0.005∗∗∗

(0.002) (0.002) (0.001)

Constant -0.064 0.254 0.342∗∗∗

(0.377) (0.181) (0.098)

Observations 200 200 96

R-squared 0.006 0.139 0.137

Notes: We depict results from OLS regression models with

robust standard errors. We denote statistical significance

levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

27

Electronic copy available at: https://ssrn.com/abstract=4576036Electronic copy available at: https://ssrn.com/abstract=4576036



Optimal parameters

Table 5: Overview of optimal parameters.

First-mover Second-mover GPT-3 GPT-4 Human

behavior behavior ρ σ ρ σ ρ σ

C UC 1 0.111 1 0.111 1 0.111
CC 1 0 1 0 1 0.063
MM 0.435 0.388 0.435 0.397 - -
UD 0.435 0 - - 0.435 0.11

D UC 0.444 0.111 0.444 0.11 0.444 0.111
CC 0.444 0 0.444 0 0.444 0
MM 0.117 0.111 0.118 0.111 0.118 0.111
UD 0 0 0 0 0 0

Notes: We depict the estimated optimal parameters for every first- and
second-mover cooperation combination using the conditional welfare model.
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Prompt design

We access both GPT models via the chat completion endpoint of OpenAI’s API which is publicly

available. We collect data for the GPT-3.5-turbo (GPT-4) model in June 2023 (August 2023). As

the API does not retain chat histories, each call to the API consisting of an unconditional and two

conditional decisions, as well as two conditional beliefs about the second-mover’s response, is

treated as an independent observation. We maintain all default model parameters. In our prompt

design, we combine the Turing Experiment methodology by Aher et al. (2023) with common style

practices for prompting LLMs (Wei et al., 2023; Kojima et al., 2023). Specifically, we use a

zero-shot prompting strategy and chain-of-thought prompting by instructing the model to think

sequentially. When calling the API, we specify the role of a user and enter the following prompt

as content to collect 200 independent observations each for both models. A [blank] indicates the

text position at which the model is required to insert either A or B or an integer between 0 and

100 - depending on whether a decision or a numerical estimate of the likelihood with which the

second-mover is assumed to cooperate is requested.

Instructions: you will be randomly paired with another human. You and this other

person have two possible actions available.

Action A and Action B.

Your earnings and those of the other person will be determined by your decision and

that of the other person. There are four possibilities:

If you both select action A, each earns 10 points.

If you both select action B, each earns 30 points.

If the other person selects action B and you select action A, the other person will earn

5 points and you will earn 50.

In the opposite case, if you select action B and the other person selects action A, you

will earn 5 points and the other person will earn 50 points.

Both of you must take two types of decisions – an unconditional decision and a con-

ditional decision.

In case of unconditional decisions, you must simply decide whether you select action
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A or if you select action B.

In case of conditional decisions, you can make your decision dependent on what the

other person does. This means that you must make a decision for each of the following

cases:

Case 1: the other person selects action A.

Case 2: the other person selects action B.

The game is played once.

Let’s think step by step.

# # #

Answer 1 (choose A or B): For my unconditional decision, I will choose action [blank]

# # #

Answer 2 (choose A or B): For my conditional decision, if the other person has chosen

action A (case 1), I will choose action [blank]

# # #

Answer 3 (choose A or B): For my conditional decision, if the other person has chosen

action B (case 2), I will choose action [blank]

# # #

Answer 4 (choose integer 0-100): If my unconditional decision is action A, I predict

that other person will choose Option B in [blank] % of the cases.

# # #

Answer 5 (choose integer 0-100): If my unconditional decision is action B, I predict

that other person will choose Option B in [blank] % of the cases.

# # #
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Derivation of the parameter ranges for ρ and σ in Charness and Rabin (2002)

The theoretical framework of the conditional welfare model, as proposed by Charness and Rabin

(2002), offers a structural foundation for modeling the utility-maximizing behaviors of individuals

who exhibit conditional welfare concerns. The objective function, denoted by equation (3), enables

individuals to assign positive weights, represented by ρ and σ, to the payoffs of their opponents,

thereby integrating efficiency and fairness motives into utility maximization. The parameters ρ and

σ, akin to the weights assigned to the opponent’s payoff, are subject to the following constraints:

0 ≤ ρ ≤ 1, 0 ≤ σ ≤ 0.5, and σ ≤ ρ. In what follows, we derive the parameter ranges within which

both ρ and σ must fall to account for the four distinct types of second-mover behaviors observed

in our game.

First, note that cooperation is the optimal choice for player i as the second-mover when Ui(C, aj) ≥

Ui(D, aj). In other words, cooperation becomes the preferred action for player i when her payoff

from choosing cooperation is at least as large as her payoff when opting to defect, given the first-

mover’s action aj . As player i observes the choice of the first-mover, she can determine her best

response, conditional on whether she observed cooperation or defection by the first-mover.

In the scenario where player i witnesses that the first-mover has cooperated, the condition

πi(ai, aj) ≥ πj(ai, aj) invariably holds true. Given our game’s parameterization, player i garners

30 points when reciprocating cooperation as a second-mover, compared to 50 points when defect-

ing. In contrast, player j, as the first mover, is left with 30 points in the former case and only 5

points in the latter (cf. Figure 1). Assuming that player i prefers to cooperate when she would de-

rive the same utility from defection, equation (3) implies that second-mover cooperation becomes

the optimal choice after first-mover cooperation if and only if:

Ui(C,C) ≥ Ui(D,C) ⇔

(1− ρ) · πi(C,C) + ρ · πj(C,C) ≥ (1− ρ) · πi(D,C) + ρ · πj(D,C) ⇔

(1− ρ) · 30 + ρ · 30 ≥ (1− ρ) · 50 + ρ · 5 ⇔

45 · ρ ≥ 20 ⇔

ρ ≥ 4

9

(5)

In the scenario where player i observes the first-mover’s defection, we have πi(C,D) <
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πj(C,D) and πi(D,D) = πj(D,D) (cf. Figure 1). Using equation (3), we can determine the

threshold value of σ above which second-mover cooperation becomes optimal after observing that

the first mover has defected:

Ui(C,D) ≥ Ui(D,D) ⇔

(1− σ) · πi(C,C) + σ · πj(C,C) ≥ (1− ρ) · πi(D,C) + ρ · πj(D,C) ⇔

(1− σ) · 5 + σ · 50 ≥ (1− ρ) · 10 + ρ · 10 ⇔

45 · σ ≥ 5 ⇔

σ ≥ 1

9

(6)

Therefore, second-mover cooperation becomes optimal after observing first-mover cooperation

if and only if ρ ≥ 4
9
, while second-mover cooperation becomes optimal after observing the first

mover’s defection if and only if σ ≥ 1
9
.

In the sequential prisoner’s dilemma, we classify second-mover behaviors into four categories:

unconditional cooperators (UC), who always cooperate; conditional cooperators (CC), who recip-

rocate the first mover’s choice; mismatchers (MM), who choose the opposite action to the one

observed; and unconditional defectors (UD), who defect regardless of the observed action.

Based on the derivations in equations (5) and (6), we can conclude that the conditional welfare

model can account for the second-mover behavior of unconditional cooperators (UC) when ρ ≥ 4
9

and σ ≥ 1
9
, of conditional cooperators (CC) when ρ ≥ 4

9
and σ < 1

9
, of mismatchers (MM) when

ρ < 4
9

and σ ≥ 1
9
, and of unconditional defectors (UD) when ρ < 4

9
and σ < 1

9
. We use these

parameter ranges, in conjunction with the constraints 0 ≤ ρ ≤ 1, 0 ≤ σ ≤ 0.5, and σ ≤ ρ, in

our grid search to determine the optimal parameter combination of (ρ, σ) for each second-mover

behavior category and first-mover choice. The optimal parameter combination maximizes the

number of observations explained by the conditional welfare model within each behavior category

and first-mover choice, and is reported in Table 5.
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