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Incentives for Collective Innovation®

Gregorio Curellof

December 13, 2022

Abstract

Identical agents exert hidden effort to produce randomly-sized improve-
ments in a shared technology. Payoffs grow as the technology develops, but
so does the opportunity cost of effort, due to an ‘exploration-exploitation’
trade-off. There exists a unique strongly symmetric equilibrium. Moreover,
small innovations may hurt all agents in this equilibrium, as they severely
reduce effort. Allowing agents to discard innovations increases equilibrium
effort and welfare. If agents can conceal innovations, improvements are re-
fined in secret until they are sufficiently large in equilibrium, and progress
stops after a single disclosure. Under natural conditions, this equilibrium

improves on all equilibria with forced disclosure.

Keywords: dynamic games, imperfect monitoring, public goods, private in-

formation.

1 Introduction

Innovation often has the features of a collective-action problem. Innovators grad-
ually improve a ‘technology’ that they share, while simultaneously using it. For

example, firms collaborate to refine their products,' nonprofit organisations draw

*I thank Péter EsG, John Quah, Sven Rady, Meg Meyer, Martin Cripps, Francesc Dilmé,
George Georgiadis, Philippe Jehiel, Ludvig Sinander, Matteo Escudé, Mathijs Jannsen, Clau-
dia Herresthal, and the seminar participants at Oxford, Bonn, Aalto, PSE, Venice, Essex and
Warwick for helpful comments.

tInstitute for Microeconomics, University of Bonn. E-mail: gcurello@uni-bonn.de.

1. Knowledge exchange occurs within R&D partnerships but also among firms in the same
‘network’ (Pénin (2007)). The latter can generate a ‘collective’ kind of innovation, in which no
single firm is the main driver of progress or its major beneficiary (Powell and Giannella (2010)).
This occurred for biotechnologies (Powell, Koput, and Smith-Doerr (1996)), semiconductors
(Chesbrough (2003) and Lim (2009)), and in the steel industry (von Hippel (1987)). See Bessen
and Nuvolari (2016) for historical examples. ‘User’ innovation is collective in nature as well
(Harhoff and Lakhani (2016)).
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from a pool of shared knowledge to improve their programmes,? and workers in a
team learn from each other how to perform their tasks better.?

However, innovation differs from traditional games of public-good provision in
at least two respects. First, research effort is often unobserved and its returns are
uncertain.* As a consequence, it is difficult to monitor the effort exerted by one’s
partners. Second, innovators face a resource trade-off between using and improving
the shared technology. For example, firm that collaborate towards a technological
improvement allocate funds between its achievement and private activities that use
the technology being developed.® Nonprofits split resources between developping
new ideas and managing existing programmes,® and employees allocate their time
and effort between ‘being creative’ and routine behaviour.” Thus, as the shared
‘technology’ develops and using it becomes more profitable, the opportunity cost
of improving it rises.®

In this paper, I analyse a parsimonious game of public-good provision with
these two key features. Long-lived identical agents exert hidden effort to induce
randomly-sized increments in the stock of a good (their frequency being increasing
with effort). Agents’ flow payoffs are a general function of their effort and of the
current stock, and the marginal cost of effort increases (weakly) with the stock.
The ‘stock’ is the quality of the technology that the agents share, and ‘effort’
measures the quantity of resources that each agent invests in the advancement of
the technology, the rest being devoted to its use.

[ characterise the social-welfare benchmark (Proposition 1) and show that the

game admits a unique strongly symmetric equilibrium (Theorem 1). As monitoring

2. Performance monitoring, which facilitates the identification and imitation of effective pro-
grammes, has recently become prominent in the social sector (Kroeger and Weber (2014)).
Moreover, innovation is known to play a critical role for nonprofits (Dover and Lawrence (2012)).

3. Research on workplace innovation has grown substantially in the recent years (Anderson,
Potoc¢nik, and Zhou (2014)), and knowledge exchange within teams is a known predictor (van
Knippenberg (2017)). Knoweldge transfer among different units within a firm is also a key driver
of innovation (Van Wijk, Jansen, and Lyles (2008)).

4. Geroski (1995) notes that ‘R&D ventures may be unable to overcome moral hazard problems
that lead participants to invest less than promised in the joint venture, divert the energies of
people nominally assigned to [it, and] assign less talented researchers to [it...]’

5. The trade-off is due to financial constraints, a known barrier to innovation for firms (Hot-
tenrott and Peters (2012)).

6. Balancing this ‘exploration-exploitation’ trade-off is a major challenge for nonprofits. See
Dover and Lawrence (2012) and references therein.

7. This is Ford (1996)’s influential model of employee innovation. Unsworth and Clegg (2010)
find confirming evidence for this model; they show that employees choose ‘creative action’ based
on whether they judge it ‘worthwhile’, and argue that time pressure is pivotal to the decision.

8. In the example involving firms, ‘using’ the technology may also include running ‘private’
R&D which does not benefit the other firms. Meyer (2003) highlights this incentive effect: “With
the establishment of a profitable industry, technological uncertainty is reduced and the collective
invention process evaporates. Surviving firms run private R&D.” Similarly, Powell and Giannella
(2010) note that ‘as technological uncertainty recedes, firms develop private R&D and focus on
their own specific applications. Reliance on collective invention accordingly wanes.’



is imperfect, equilibrium effort is pinned down by the current stock; that is to say,
no form of punishment is sustainable. Moreover, effort in any equilibrium ceases
whenever it would cease in the single-agent setting (Proposition 2), and the Folk
Theorem need not hold.

Continuation payoffs in the strongly symmetric equilibrium may fall after a
small innovation (i.e. an increment in the stock), as all agents severly reduce their
effort, delaying further increments. Thus mediocre advances in a technology can
hinder its owverall progress, and decrease its expected profitability.” This phe-
nomenon hinges on agents facing a trade-off between using and improving the
technology, and on innovations (being ‘lumpy’ and) having random size (Proposi-
tion 3). I obtain a necessary and sufficient condition for the risk of such ‘detrimen-
tal” innovations to persist as long as effort is exerted in equilibrium (Proposition 4),
and characterise its occurrence when payoffs are linear (Corollary 2).

Because innovations have adverse effects on incentives, agents who obtain them
may wish to delay their disclosure and adoption. To explore this idea, I first
enrich the model by allowing agents to discard innovations, after observing their
size. While this is a strong assumption, it leads to sharp results.! Namely, the
ensuing game admits a unique strongly symmetric equilibrium in which, after any
history, both effort and continuation payoffs are higher than in the equilibrium
of the baseline game (Theorem 2). Moreover, if innovations are beneficial with
certainty when disclosure is compulsory, disposal does not occur even if allowed,
and the equilibria coincide. Otherwise, the ex-ante payoffs in the equilibrium with
disposal are strictly higher. Thus, in spite of the fact that discarding innovations
is clearly inefficient, allowing the agents to do so enhances equilibrium welfare.

In reality, an agent who does not wish to disclose an innovation is more likely
to conceal it than to discard it, and may disclose a refined version at a more prof-
itable time. To check the robustness of the social benefits of selective disclosure,
I enrich the baseline game by allowing agents who obtain innovations to conceal
them from their partners, forgoing the larger payoff low. At any later time, pos-
sibly after having obtained and concealed further innovations, each agent may
disclose any portion of the total increment, increasing her payoffs and the public
stock. Moreover, undisclosed increments obtained by different agents are ‘perfect
substitutes’, so that concealment leads to redundant innovations.

If payoffs are linear, no strongly symmetric equilibrium with full disclosure

exists in this environment (Lemma 1). Instead, I construct a symmetric perfect

9. Dover and Lawrence (2012) note that, among nonprofits, ‘successful past innovation can act
as brakes on new ideas. Past success [...] has been shown to lead to complacency [...], structural
barriers to innovation |[...], and a lack of questioning the status quo [...]".

10. Nothing would change if agents could instead conceal innovations, provided they cannot
covertly refine the improvements that they hide. See the discussion at the end of Section 7.2.



Bayesian equilibrium in which a single innovation is disclosed (the first to exceed
a common, time-varying cutoff) and, after this occurs, no effort is exerted (The-
orem 3). If the number of agents is sufficiently large and the size of innovations
sufficiently heavy-tailed,'! payoffs exceed those of any equilibrium with forced
disclosure (Proposition 5). Thus, even though concealing innovations is clearly
inefficient, doing so is incentive-compatible and can improve equilibrium welfare.

The rest of the paper is organised as follows. I summarise the relevant liter-
ature in Section 2. I describe the model in Section 3, present the social-welfare
benchmark in Section 4, and analyse the equilibria in Section 5. In Section 6, I
examine when innovations are detrimental in the symmetric equilibrium. I analyse

the game with disposal in Section 7, and the game with concealment in Section 8.

2 Literature review

This paper contributes to understanding the extent to which free-riding can be
overcome in partnership games with frequent actions. Strongly Symmetric Equi-
libria (SSE) are known to sustain higher payoffs than symmetric Markov equilibria
in dynamic games with perfect monitoring of the aggregate contribution, some-
times achieving efficiency.'? In repeated games with imperfect (public) monitor-
ing, only ‘bad news’ Poisson signals are helpful in SSE: there exist efficient SSE if
perfectly-revealing bad news are available, but no SSE improves on the stage-game
equilibrium payoffs if bad news are completely absent.'® As noted by Georgiadis
(2015), the impossibility of cooperation under Brownian noise extends to dynamic
(non-repeated) games: no SSE induces higher payoffs than the symmetric Markov
equilibrium.** Moreover, the Folk Theorem typically holds in partnership games
with perfect monitoring, and a Folk Theorem for public prefect equilibria (PPE)
applies in stochastic games with imperfect monitoring that satisfy irreducibility

and identifiability conditions.'” However, Guéron (2015) shows that, in a partner-

11. See Azevedo et al. (2020) and the references therein for the importance of large and rare
innovations.

12. Marx and Matthews (2000) analyse a dynamic game of private provision of a public good,
and show that efficient SSE exist if payoffs jump upon reaching an exogenous goal, or if payoffs
are ‘kinked’ at the goal and agents are sufficiently patient. Hoérner, Klein, and Rady (2022)
compute the payoffs attainable in SSE of games of experimentation, and show that efficiency is
reached if payoffs have a diffusion component. See also Lockwood and Thomas (2002).

13. See Proposition 5 of Abreu, Milgrom, and Pearce (1991) for the former result and Sannikov
and Skrzypacz (2010) for the latter. Other major contributions to the literature on repeated
games with imperfect monitoring include Green and Porter (1984), Fudenberg, Levine, and
Maskin (1994), Abreu, Pearce, and Stacchetti (1986), and Radner, Myerson, and Maskin (1986).

14. Cetemen, Hwang, and Kaya (2020) and Cetemen (2021) feature Brownian noise as well.

15. The Folk Theorem holds in the games of Marx and Matthews (2000), Lockwood and
Thomas (2002), and Horner, Klein, and Rady (2022), which feature perfect monitoring. Dutta
(1995) derived a Folk Theorem for general stochastic games with perfect monitoring. Analogues



ship game with irreversible investments and monitoring subject to ‘smooth’ noise,
there exists no PPE sustaining investments beyond the individually-rational level.
In the model I analyse, free-riding cannot be overcome in SSE: the unique SSE is
a symmetric Markov equilibrium. As I note in Section 5, the result is not driven
by the lack of ‘bad news’ signals, or the ‘smoothness’ of noise. Moreover, the Folk
Theorem need not hold (the aforementioned irreducibility condition fails).

The baseline model is closely related to the dynamic contribution games of
Fershtman and Nitzan (1991), Marx and Matthews (2000), Lockwood and Thomas
(2002), and Battaglini, Nunnari, and Palfrey (2014), as agents gradually add to
the stock of a public good, and the incentives to produce drop as the stock grows. I
contribute to this strand of the literature in two ways. First, I allow the production
cost to depend on the current stock and show that, although a higher initial stock
is beneficial absent its incentive effects, it may lead to lower equilibrium payoffs.
Second, by allowing the stock to make discrete, randomly-sized jumps, I show that
agents may have an incentive to discard or conceal increments in the stock, and I
analyse the impact of allowing the agents to do so.

Games of strategic experimentation model social learning about the value of
a given technology or project.'® Flow payoffs and incentives to produce (infor-
mation) move jointly in these games: ‘good news’ simultaneously makes agents
better off and experimentation more attractive. This implies that good news al-
ways increases continuation payoffs in equilibrium, and agents have no incentive
to conceal it.!"

In dynamic contribution games with a fixed goal, the incentive to contribute
rises as the aggregate contribution grows.!® While this is not the case in the
baseline model that I analyse, a similar structure arises in equilibrium if agents
are allowed to conceal the innovations that they obtain (Section 8). However,
in contrast to the literature, increments obtained by different agents are perfect

substitutes.'?

for games with imperfect monitoring were obtained by Fudenberg and Yamamoto (2011), Horner
et al. (2011), and Peski and Wiseman (2015).

16. Important contributions to this literature include Bolton and Harris (1999), Keller, Rady,
and Cripps (2005), Keller and Rady (2010), Klein and Rady (2011), Bonatti and Hérner (2011),
Heidhues, Rady, and Strack (2015), and Keller and Rady (2015, 2020).

17. In the model I analyse, innovations decrease the incentive to exert effort. In a richer variant
where agents learn about the productivity of their effort, the effect of innovations on incentives
would be ambiguous, as they would raise the opportunity cost of effort but alter its (conjectured)
productivity. However, it is reasonable to assume that sufficiently small innovations would
decrease productivity, thus exhacerbating their effect on incentives. Therefore some innovations
are likely to remain harmful in equilibrium.

18. See e.g. Admati and Perry (1991), Strausz (1999), and Georgiadis (2017).

19. In Campbell, Ederer, and Spinnewijn (2014), agents obtain ‘successes’ at random times,
and may conceal them in order to preserve their partners’ incentive to exert effort. Concealing
innovations in my model is beneficial for the same reason. However, successes obtained by
different agents in their model are perfect complements, whether or not they are concealed. If



This paper is also related to the large theoretical literature on innovation.

Reinganum (1983) argued that industry leaders are likely to be overtaken by new
entrants in the innovation race. Even though agents do not compete in my model,
overtaking occurs as well. However, it is more severe in that the ‘leader’ may be
ex-ante worse off than the ‘follower’.?’ Cetemen, Urgun, and Yariv (Forthcom-
ing) analyse a model of collective search where discoveries accumulate over time,
building on past ones. At any point in time, agents may quit unilaterally and
irreversibly, and exploit the best discovery to date. Just as in the model I analyse,
(search) effort yields stochastic rewards and its marginal cost rises as progress is
made. Yet continuation payoffs are guaranteed to increase with progress in equi-
librium, as discoveries are arbitrarily small.?? In the endogenous-growth models
of Lucas and Moll (2014) and Perla and Tonetti (2014), agents face a resource
trade-off between using an existing technology and improving it, exactly as in
my model. However, innovations are always beneficial, as aggregate technological

progress is deterministic.

3 Model

In this section, I describe the baseline model and discuss its main assumptions.

Time is continuous, indexed by ¢ € R, and discounted at rate r > 0. There
are n > 2 identical agents, indexed by i € {1,...,n}, and a public good. Its time-t
stock is denoted x;. At any time ¢ > 0, agent i exerts effort a} € [0, 1] and receives
a flow payoff ru(a}, x;), where u : [0,1] x R, — R. Agents’ effort is hidden.

The stock x; takes some initial value xq > 0 and, for ¢ > 0, is determined as
follows. Agent 7 produces an increment in z; at rate Aa}, where A\ > 0. Each incre-
ment has (possibly) random size z, drawn from a CDF F' with mean p < co and

such that F'(0) = 0. The production and the size of increments are independent

innovations have a fixed value in my model (as successes do in theirs), agents do not conceal
them in equilibrium, as concealed increments are perfect substitutes. See Online Appendix L.1.

20. Important contributions include Brander and Spencer (1983), Spence (1984), Katz (1986),
d’Aspremont and Jacquemin (1988), Kamien, Muller, and Zang (1992), Suzumura (1992), and
Leahy and Neary (1997).

21. In detail, consider two groups of agents (e.g. two distinct R&D partnerships) playing the
equilibrium of the baseline game (Theorem 1). If the first innovation obtained across groups
makes the group who obtained it (the ‘leaders’) worse off, the group of ‘followers’ (which therefore
has a lower stock at the time of the innovation) is likely to have a higher stock in the near future.
This is because the continuation payoffs of the followers are higher, even though their flow payoffs
are lower as long as their stock lies below that of the leaders.

22. In detail, agents in Cetemen, Urgun, and Yariv (Forthcoming) exert costly effort to increase
the variance of a Brownian motion, and may quit irreversibly at any time, to enjoy its highest
realised value. Given a realised path (X;);>o and times s < ¢, continuation payoffs (net of
past exerted effort) are higher at time ¢ than at time s if either (i) maxy 4 X = maxp X and
Xy < Xy, or (i) maxp, g X < maxjg X = X;.



across agents, time, and from each other. The arrival of increments, their size, as
well as the identity of the agents inducing them, are public. Suppose without loss
of generality that » = 1 (this is equivalent to rescaling A and payoffs by 1/7).
Assume that u(a, z) is twice continuously differentiable, and (weakly) increas-
ing and (weakly) concave in z. That is, keeping the effort fixed, the payoff increases

as the stock grows, but at a decreasing rate. Note that
u(a,z) = b(x) — c(a, x)

where b(z) := u(0,z) are gross benefits, and c(a,z) = u(0,z) — u(a,z) is the
opportunity cost of effort. Suppose that c¢(a, ) is increasing and convex in a, and
strictly increasing in a if x > 0. Suppose also that the first and second partial
derivatives of ¢ with respect to a (denoted ¢; and c¢;1, respectively) are increasing
in x; that is, the cost of effort becomes steeper and more convex as the stock

grows. Assume also that

lim Apnb'(x) — ¢1(a,2) <0 forall 0 <a < 1. (1)

T—r00

This means that any fixed amount of positive effort is inefficiently large if the stock
is large enough. (Note that Aund’(x) approximates the marginal social benefit of
effort when the stock z is large, whereas ¢;(a, z) is its marginal cost.)

For some of the results,?® we shall further assume that payoffs take the following

linear multiplicative form:
bx) =2 & cla,x)=axz, (2)

and that
F(z) >0 forall z>0. (3)

This means that the size of increments is random, and that arbitrarily small (but
strictly positive) sizes are possible. (To analyse the game with concealment in
Section 8, we shall instead assume that F is Lipschitz.)

In the main interpretation of the model, the stock x; denotes the (quality of
a shared) technology, and increments in x; are innovations. These terms are used
throughout the discussion. Given this interpretation, linear multiplicative payofts
may be understood as follows. In each period, (risk-neutral) agents face a binary

decision between using and improving the technology. Improving the technology

23. In detail, I impose (2) to derive closed-form expressions for the equilibrium I study (Corol-
lary 1), as well as in the game with concealment (Section 8); I assume (3) for some results
regarding detrimental innovations (in Section 6) and to characterise the incentive to conceal
progress in equilibrium (Lemma 1).



(ai = 1) yields no payoff, and using it (ai = 0) yields a payoff equal to its current
quality, z;. (We may interpret 0 < a! < 1 as improving the technology with
probability a! and using it with probability 1 — a’.)

We shall illustrate the results using linear multiplicative payoffs and the dis-

tribution
F(Z) = p]IZEC + (1 - p)(l - eif)a (4)

where p € [0,1) and ¢ > € > 0. Thus, with probability p, the innovation is
‘substantial’ and it has size (; otherwise, it is a small improvement, with size
drawn from the exponential distribution with mean e.

Below is a brief description of histories, strategies and continuation payoffs.
Formal definitions are in Online Appendix H.1. Note that (almost surely) only
finitely many innovations are produced within any bounded period of time. Since

effort is hidden, a (public) history is a finite sequence

hm = (-,1307(15172172‘1)7"'7(tm’zm7im)) (5)

such that agent iy obtains an innovation of size z; at time t;, agent i, one of size

zy at time ¢ > t1, and so on. In particular, the stock after the mth innovation is

X(hm) =Ty + Zzl.

Agents simultaneously reach a new history whenever an innovation is produced.
Since past exerted effort has no direct payoff relevance, we may without loss of gen-
erality restrict attention to public strategies (i.e., strategies that can be expressed
as functions of public histories). Moreover, for any mixed perfect Bayesian equi-
librium (in public strategies), there exists a public perfect equilibrium in pure
strategies inducing the same distribution over terminal public histories, and the
same ex-ante payoffs (Lemma & in Online Appendix H.1). Thus, we may without
loss restrict attention to pure strategies.

A (public, pure) strategy o' specifies, for each history h,, (including hg := xy),
an effort schedule o'(h,,) : (tm,00) — [0,1] (where ty := 0). Agent i exerts
effort [o%(h,,)](t) at any time ¢ > ¢, such that no innovation was produced within
the time interval [t,,,t). If agents play a strategy profile o := (o%),, agent 4’s

continuation payoff at a history h,, (is well-defined and) may be expressed as

i) = E(ﬁ; [ e ) ()0 X(al))}dt> ©)

where m € {m,m + 1,...,00} is the total number of innovations produced, hy is



[™ innovation (at time #;), hy, := Ay, tm := t, and,

the history reached upon the
if M < 00, tmiq 1= 00.
Discussion of the assumptions. The map from effort to increments in the stock
is stationary and ensures that (i) the stock is increasing and (ii) its trajectory does
not perfectly reveal the trajectory of aggregate effort. If effort were binary, these
properties would uniquely pin down the map. Alternatively, effort could influence
the distribution F; this would complicate the analysis but is likely to yield similar
insights, provided higher effort not only increases the size of increments on average,
but also its dispersion.

In the literature on dynamic public-good games, payoffs are typically assumed
to be separable (formally, ¢ is a function of a alone). The assumptions I impose
on ¢ are weaker and ensure that the efficient level of effort decreases as the stock
grows, a central feature in the contribution games without a fixed goal. Morover,
(1) weakens the standard assumption of vanishing returns to production (i.e.,
lim, o0 b'(z) = 0).

4 Social-welfare benchmark

In this section, I describe how non-strategic agents should behave in order to
maximise aggregate payoffs. The main features of this benchmark are common in
dynamic public-good games. In particular, any innovation is beneficial.

A strategy is Markov if effort is pinned down by the current stock. Formally,
a Markov strategy (for agent i) is a Borel measurable map a : R, — [0, 1] such
that a! = «a(z;) for all ¢ > 0. If agents play a Markov profile o := (o), the
time-¢ continuation payoff of each agent i is a function v’ (z;) of the current stock

x;. Moreover, for all z > 0,
vi(x) = b(z) — c(a’(z),x) + X Z o () {Ep[vi(z+2)] —vi(z)}.  (7)

That is to say, agent ¢’s continuation payoff is the sum of the current payoff flow
b(z) — c(a’(z),x), and the net expected future benefit. This is given by the rate
A Z?Zl o’ (x) at which innovations occur, multiplied by their expected social value;
that is, the difference between the continuation payoff v’ (x+z) after an innovation
of size z, and the current payoff v’ (z), weighted by the distribution F of z.
Welfare is the average of ex-ante payoffs across agents. Since agents are iden-
tical and the cost of effort ¢(a,x) is convex in a € [0,1], and the rate of arrival
of innovations Aa is linear in effort, it is efficient for all agents to exert the same

amount of effort. Then, from (7), the Bellman equation for the maximal welfare



achievable in the game is

v(x) = m[%>1<] {b(z) — c(a,z) + arxn{Eplv(z + 2)] — v(z)}}. (8)

ac|0,
Standard dynamic-programming arguments imply that, if (8) admits a (well-
behaved) solution v, then, for any initial stock xy > 0, v.(xy) is the maximal
achievable welfare, across all (Markov and non-Markov) strategy profiles.?* More-

over, any Markov strategy « solving

a(x) € arg m[%}f] {ad{Ep[v.(z + 2)] — v.(z)} — c(a, )} (9)
ac|0,
for all x > 0, induces welfare v, ().
The following result shows that, in order to maximise welfare, agents should
exert less effort as the stock grows. Moreover, any increment in z; makes agents
better off.

t,25 if played by all agents,

Proposition 1. There exists a Markov strateqy o, tha
mazximises welfare for all initial stocks o > 0. Effort c.(zy) is decreasing in the
stock zy, and o, (Zy) — 0 a.s. as t — 0o. Mazimal welfare v.(zo) is increasing in

xo, and v.(xg) — b(zo) is decreasing and vanishes as o — 0.

I prove Proposition 1 in Online Appendix [. There, I also characterise the
long-run value of the stock x; when «, is played (Corollary 1).

The fact that effort a, is decreasing is standard in dynamic public-good games
without a fixed goal, and is generally due to concave payoffs. In this model,
not only are payoffs concave in x;, but the cost of effort becomes steeper and
more convex as x; grows (formally, ¢;(a, z) and ¢11(a, z) are increasing in ). The
latter force adds to the former and does not alter the qualitative features of the
benchmark.

Maximal welfare v, is increasing in the initial stock xy because higher xq yields a
larger payoff flow (b(z)—c(a, ) is increasing in x) without altering the productivity
of effort (the frequency and size of innovations does not depend on z). Moreover,
since each agent’s time-t continuation payoff when « is played equals v,(x;), any
increment in the stock (that is, any innovation) is beneficial. We shall see that,
despite this, welfare need not increase with xq in equilibrium, so that innovations

may be detrimental.

24. See e.g. Theorem 3.1.2 of Piunovskiy and Zhang (2020). It is sufficient that (8) admits a
Borel solution v : R; — R such that b(z) < v(z) < b(z) + nA[b(u) — b(0)] for all > 0.

25. Unless c is strictly convex, (9) may admit more than one solution . «, is the pointwise
smallest.

10



o (xy)

Figure 1: Effort (left) and welfare (right) in the social-welfare benchmark, as functions of the
stock x;. Parameter values are b(x) = =, c(a,z) = az, F(2) = pl,>¢+(1—p)(1—e /), A = 10,
p=€=0.01,and ( =n =>5.

5 Equilibrium

In this section, I show that the game admits a unique strongly symmetric equi-
librium (Theorem 1), and derive it in closed-form for linear and multiplicative
payoffs (Corollary 1). T also show that effort in any public perfect equilibrium
ceases when it would stop in the single agent problem (Proposition 2).

Given a history h featuring m € {0,1,...} innovations, write h o (¢, z,) for
the history that features m + 1 innovations and extends h, and in which the last
innovation is produced by agent i at time ¢, and has size z. Recall that, if agents
play a strategy profile o := (¢*)™_,, v’ (h) is the payoff to agent i in the subgame
after history h. Given h leading to some time t, > 0, for all t > t;, let v, (t)
be agent i’s payoff at time ¢, given that no innovation was produced within the
interval [ty,t) (and define v}, (tn) := v} (h)). Then, v}, : [ty,00) — R is Lipschitz
and, labelling x the stock that h leads to, for almost all ¢ > 5,2

%

i) = 2R 1)+ b(w) — ([0 ()] 1))

+A Z [0 (W] (O{Er [v;(h o (t,2,7))] — von(t)}- (10)

Compared to (7), effort depends on the current time (as the strategy profile played
need not be Markov). As a consequence, agent i’s payoff evolves at rate dv;h /dt
even in the absence of innovations.

Let ©¢ (h) be the largest payoff that agent i can achieve, across all strategies,

in the subgame after history h. Assuming h leads to time t;, > 0, for all ¢t > t,,

26. See Online Appendix .1 for details on how to derive (10), (11), (12), (13) and (14).
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let f)fj’h(t) be the largest payoff achievable by agent ¢ at time ¢, given that no
innovation was produced within the interval [t,,t) (and define 0. ,,(t4) := 95 (h)).

Then, the map ©° on * [th,00) = R is Lipschitz and, for almost all ¢ > #,

@f,’h(t) — d;t () + b(x) —i—;g{ég}li] {aA{EF[ (hol(tz z))] — f)f,h(t)} — c(a,:c)}
A [P OFER i (o (,2,)] - it (0} (11)

J#i

The strategy o' is a best response for agent i at all histories only if, given any

history h leading to any time ¢, for almost all ¢ > t,,

[0'(R)](t) € argarélgul( {aMEp[o}(ho (t,Z,4)] — 0., (t)} — cla,z)}. (12)

The profile o is a public perfect equilibrium (PPE) if, for each i, o' is a best

response for agent 7 at all histories. If moreover, o' = ¢7 for all i and j, then o is
a strongly symmetric equilibrium (SSE).

Recall the definition of Markov strategies from Section 4. If the opponents of

a given agent play a Markov strategy «, the largest continuation payoff that she

can achieve, across all strategies, is a (value) function v, of the current stock xy,

symmetric across agents. From (7), 0, is the unique (well-behaved) solution to

(@) = max {b(z) = e(a.2) + Mo+ (n = Dal@) {Erlo(e + 2)] —v(@)}}.
ac
Then, « is a best response, after any history, against opponents playing the same

strategy if and only if

ax) € arg m[zéulc] {aMEp[ia(z + 2)] — 9a(2)} — cla, 2)} (14)
ac
for all z > xg.
The following result characterises the unique strongly symmetric equilibrium

of the game. The proof is in Appendix A.

Theorem 1. There exists a unique SSE, and it is induced by a Markov strategy
ay. Effort ag(z) is continuous and decreasing in the stock x;, and lies below the
benchmark o (x;). Moreover, ve(x,) —b(x:) is decreasing in x;, where v(x,) is the

equilibrium continuation payoff given x;.

Provided (3) holds, the equilibrium o is inefficient unless no effort is optimal
(Corollary 2 in Online Appendix J). This is caused by ‘intertemporal free riding’

(Marx and Matthews (2000)): since o is decreasing, agents are reluctant to exert
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effort as this causes their opponents to exert less effort in the future.

The analyses of Marx and Matthews (2000), Lockwood and Thomas (2002),
and Horner, Klein, and Rady (2022) suggests that the uniqueness of the SSE relies
on the fact that monitoring is imperfect. If either aggregate effort were observable,
or could be perfectly inferred from the trajectory of the stock, there would exist
multiple SSE and some would induce higher payoffs than the (unique) symmetric
Markov equilibrium. Note however that, although monitoring is imperfect in this
model, it may be arbitrarily precise: if the distribution F' of the size of innovations
equals z — Fy(A\z) for some fixed CDF Fj, and their arrival rate A is large,
effort essentially induces a deterministic and continuous drift in the stock (with
approximate growth rate po» ., ai, where o is the mean of Fp), so that the
past trajectory of the stock is an arbitrarily precise signal of past aggregate effort.
Thus, an aribtrarily small amount of noise in the monitoring technology can make
the SSE unique. Uniqueness follows from a ‘backward-induction’ logic, as effort
can be adjusted flexibly and must vanish in the long run by assumption, and
information is revealed only whenever the stock grows. The same logic would
apply even if past exerted effort were perfectly revealed after each increment in
the stock, so that Theorem 1 would continue to hold.?”

This game admits many asymmetric equilibria, some of which yield efficiency
gains over the strongly symmetric one, due to the agents’ ability to coordinate.
However, as the next result establishes, effort ceases in any equilibrium no later
than it would stop in the single-agent problem. In the latter setting, effort can be

sustained at any stock x such that
MEr[b(z + 2)] = b(x)} = c1(0, 2), (15)
but not beyond it. (Note that the left-hand side is decreasing in = and the right-

hand side is increasing in z).

Proposition 2. In any PPE, no effort is exerted after any history leading to a
stock x such that (15) fails.?®

Proposition 2 is proved in Appendix B. The logic behind it is similar to that
explaining the analogous result for the Markov equilibria with ‘finite switching’

of Keller, Rady, and Cripps (2005). Specifically, effort cannot be sustained after

27. It is interesting to see that this logic fails in a repeated game: in a repeated prisoners’
dilemma where actions played are revealed at a fixed rate as long as at least one player cooperates,
there exists an SSE that is approximately efficient as the period length vanishes. See Proposition
5 of Abreu, Milgrom, and Pearce (1991).

28. Proposition 2 is similar to the main result of Guéron (2015), but holds for different reasons.
In particular, it would continue to hold (with the same proof), if past exerted effort were perfectly
revealed after each increment in the stock, even though this monitoring technology would not
satisfy the ‘smoothness’ assumption that Guéron’s result hinges on (Assumption 6).
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the stock exceeds some cutoff z. If the stock is below but close to z, with high
probability, no effort is exerted after an innovation. Then, the incentive to exert
effort is essentially no higher than in the single-agent setting.

Proposition 2 implies that, unless (15) holds for any =z, welfare among all
equilibria is bounded as the number of agents grows large. However, as we shall see
in Section 7, welfare in the unique SSE of the game with disposal may diverge as the
number of agents grows. Therefore, the ability to selectively discard innovations
yields larger gains (in large populations) than the ability to coordinate.

Proposition 2 also implies that, in the limit as agents become arbitrarily pa-
tient, the largest achievable welfare across all equilibria need not approximate that
of the welfare benchmark. That is, the ‘Folk Theorem’ need not hold. To see why,
recall from Section 3 that payoffs are linear and multiplicative if b(x) = x and
c(a,z) = az. In this case, (8) and (9) imply that welfare is maximised by the
profile o, (z) = L <xun. Moreover, A\u is the unique solution to (15) and, using
the appropriate analogues of (8) and (9), it is easy to show that among all strat-
egy profiles such that no effort is exerted at stock levels exceeding Au, welfare is
maximised if all agents exert maximal effort until the stock exceeds Ay, and no
effort thereafter. Moreover, one can show that the welfare v(xy) induced by this
strategy profile satisfies lim sup,_, . 0(zo)/v«(z0) < 1 for all g > 0.2

In the SSE oy, effort is exerted at any stock z such that (15) holds strictly,
but not beyond it. Thus, if payoffs are linear and multiplicative and xy < Ap,
effort in the SSE ceases whenever the stock reaches A\u and the expected number

of innovations produced in equilibrium is

min{m eN:zg +Z£l > )\p}]

=1

M(zo) :=E

where 21, 25, ... are i.i.d. draws from F. Note that there is a unique y; € (0, A\u)
such that \
® M
wn-1= [ 3. (16)
Ys
The next result describes effort and payoffs in the SSE under the hypothesis that

the payoff function is linear and multiplicative. The proof is in Online Appendix J.

Corollary 1. Suppose that payoffs are linear and multiplicative. Then, equilibrium

29. Recall that, as we normalised the discount rate r to 1, decrasing r to 0 is equivalent to
letting A\ diverge. For example, if F'(2) =1 — e #* then, for z¢o < Ay,
20/ p—An 3 )\nu(l + )\) zg /=X
=\ 01+>\n d =~ ‘e iltxn
vy () une and o(x) Toom €

so that ©(xg)/v.(x0) — €'~/ /n < 1 as A — oo, where the inequality holds since n > 2.
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effort ay is mazimal over [0,y¢] and interior over (ys, Au). Moreover, for all

Yr <o < Ap,

Ap AL
- [ 5 ¢ ww=es [T

and vy is increasing globally if and only if it is increasing over [ys, M.

Corollary 1 implies that vy is convex over [ys, Au] and is increasing (is decreas-
ing) over this interval if M (y;) < A (if A < 1). Otherwise, assuming that (3) holds
and that F' is atomless, vy is minimised over [y, Au| at the unique = € (yz, An)
such that M(x) = A.

11
11
ay(z) vp(z1)
0.5 1
0 1 1 : 0 b= 1 1 1
0 0.2 04 0.6 0 0.2 04 0.6
Ty Tt

Figure 2: Effort (left) and payoffs (right) in the SSE, as functions of the stock x;. Parameter
values are b(z) = z, c(a,r) = az, F(z) = pl,>¢ + (1 — p)(1 —e™#/€), A = 10, p = ¢ = 0.01, and
(=n=>5.

6 Detrimental innovations

In this section, I argue that detrimental innovations (that is, increments that
cause continuation payoffs to drop in the symmetric equilibrium) occur only if
agents’ marginal cost increases with the stock, and if innovations have random
size (Proposition 3). I provide necessary and sufficient conditions for the risk of
detrimental innovations to persist as long as effort is exerted (Proposition 4), and
characteris its occurrence under linear payoffs (Corollary 1). We will see that the
detrimental effects of innovations are driven by the size of the team, and by the
dispersion of the distribution of innovation sizes.

Recall the SSE af (Theorem 1). Innovations are dentrimental whenever con-
tinuation payoffs in a; are not guaranteed to increase after each innovation. For-

mally:
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Definition 1. Innovations are detrimental if Pr(t — vs(Z;) is increasing) < 1,

where (Z;);~0 describes the evolution of the stock when ay is played.

The next result shows that the two distinguishing features of this model relative
to the literature on dynamic games of public-good provision are both necessary for
innovations to be detrimental. In particular, assuming that increasing the stock

has diminishing returns is insufficient.

Proposition 3. If either innovations have fized size, or the cost of effort does not

increase with the stock, then innovations are not detrimental.

Proposition 3 is proved in Appendix C, and the logic behind is simple: by
(14), if effort is exerted, then innovations must be beneficial when averaging across
their size. Thus, they cannot be detrimental if their size is fixed. The fact that
innovations are not detrimental if payoffs are separable follows from a fixed-point
argument: by Theorem 1, equilibrium effort ay(x) is decreasing in the stock z.
Then, assuming that Ep[vs(x+ Z)] is increasing in z, vg(x) must also be increasing
over the interval in which effort is interior, by (14). It is then easy to conclude that
vy is globally increasing, since innovations can be harmful only through their effect
on effort provision. In Online Appendix I, I argue that the fact that increments
in the stock are ‘lumpy’ is necessary for innovations to be detrimental (I consider
an alternative model in which the stock evolves according to a diffusion process,
and show that payoffs always grow with the stock).

The next result states a necessary and sufficient condition for the risk of detri-
mental innovations to persist as long as effort is exerted (provided it is not exerted

forever). Recall from Section 5 that effort in ay ceases eventually if and only if
MEgr[b(z + 2)] — b(z)} < (0, ) (17)

admits a solution and, if so, effort ceases as the stock reaches its lowest solution.

Proposition 4. Suppose that (3) holds and (17) admits a smallest solution x.

Then, innovations are detrimental for any initial stock xo < xy if (and only if)
V(xp)en(0,2r) + (n — Der(0, 2 {AERV (zy + 2)] — c12(0,25) } < (<) 0. (18)

Proposition 4 is proved in Appendix C. Condition (3) ensures that innovations
are detrimental if (and only if) vy is not increasing on [z, 00). Condition (18)
describes the impact of a small-sized increment when the stock is close to, but
below the cutoff ;. Roughly speaking, the innovation increases the current payoff
flow (first term), as well as future gross payoffs (first term inside braces), but

increases the marginal cost of effort (second term inside braces). If the last force
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dominates, the drop in effort following the innovation is large enough to counter
the aforementioned payoff increase. In short, even though innovations increase
the payoff flow, they reduce its growth rate as further increments are delayed, and
may be harmful overall.

From the perspective of Proposition 4, increasing the number of agents exac-
erbates the risk of detrimental innovations. Formally, if (17) holds (strictly), it
continues to hold (strictly) after an increase in n, as z; does not depend on n.

Under natural regularity conditions, detrimental innovations will persist in the
long run, provided innovations are sufficiently large and rare, and the population
is large. Specifically, suppose that b is unbounded above and '(x) vanishes as x
diverges, and that ¢;(0,0) = 0 and ¢;9 is strictly positive. Then, 0 < 2y < oo and,
for any A < X\ and n’ > n, there is an FOSD-shift F” of F' such that replacing A,
F and n by X, F’ and n’, respectively, leaves x; unchanged. Moreover, given suf-
ficiently small X and large n’, for any such F’, (18) holds after the substitution.®

The next result characterises detrimental innovations for linear multiplicative
payoffs. It is a simple consequence of Corollary 1, and is proved in Online Ap-
pendix K. Recall the definitions of M and y; from Section 5, and denote by ‘V’

the ‘max’ operator.

Corollary 2. Suppose that (3) holds and that payoffs are linear and multiplicative.
Then, innovations are detrimental if and only if vo < Ay and M(xoV yr) > A. In
particular, payoffs drop with innovations raising the stock from any x > y; to any
T € (x,\p) such that M(z) > A.

Corollary 2 implies that, if innovations are sufficiently rare (that is, if A < 1)
and, given xy € (0, Au), the population is sufficiently large so that y; < x,
all but the last innovation produced in equilibrium are harmful. It also implies
that innovations are detrimental if, given any frequency A of innovations and any
distribution F' of their size, the initial technology is sufficiently unproductive (i.e.
7o is small enough), and the population is large enough.?!

The expected share of innovations produced in equilibrium that are harmful
may be arbitrarily large even if the number of agents is fixed and small increments
are arbitrarily frequent, provided large ones are rare. This occurs in the illustrative

example introduced in Section 3 (see Online Appendix KX for details).

30. In detail, since b is unbounded above, given X € (0, \), there exists an FOSD shift F’ of
F such that NEp/[b(xf + 2)] = AEp[b(zy + Z)]. This guarantees that z; is unchanged by the
substitution. For the last part, note that ¢12(0,z7) > 0 and ¢1(0,25) > 0 since ¢12 is strictly
positive, and Ep[V/(x s + £)] > 0 since b is unbounded above. Take X < ¢12(0,z5)/{2Ep[V/(xf +
Z)]}and n’ > 142V (xf)c11(0,25)/[c1(0,25)c12(0, 2 5)]. Note that Ep[b'(zs+2)] < Ep[b' (zs+2)]
for any FOSD-shift F” of F, since b is concave. Then, (18) holds with A =X, F = F/ andn =/,
since both terms in the left-hand side are lower than ¢i2(0,z)/2.

31. Indeed, in this case, M(zq V ys) = M(0) > X, as lim,, o yr = 0.
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7 Disposal

In this section, I extend the model by allowing each agent to freely dispose of the
innovations that she produces, after observing their size. This raises effort and

payoffs in the strongly symmetric equilibrium relative to the baseline setting.

7.1 Model

Enrich the model as follows. Whenever agent i obtains an innovation of size z > 0
at time ¢t > 0, she (immediately) decides whether or not to reduce z to 0, after
observing z. That is to say, agent i may either disclose the innovation (which
results in its immediate adoption by all agents), or discard it. Assume that the
arrival and size of innovations is private information, and that the disposal of
innovations is unobserved. In particular, if an agent obtains and discards an
innovation at some time ¢, her opponents will not be able to distinguish this event
from the event that the agent does not obtain an innovation at time t. However,
agents are immediately informed of any innovation that is disclosed, including
its size and the identity of the agent disclosing it. As before, effort is hidden. I
constrain agents to play pure strategies and, for simplicity, I rule out strategies
that condition on innovations discarded in the past.’?

We recover the baseline model (Section 3) by restricting the agents’ strategies
so that all innovations produced are disclosed. I refer to the baseline model as
the game with forced disclosure, and to this model as the game with disposal. As
I argue at the end of Section 7.2, the analysis of strongly symmetric equilibria is
unchanged if agents may conceal innovations instead of discarding them, but may
not secretly refine the improvements that they hide.

Below is a brief description of histories, strategies and continuation payoffs.
Formal definitions are in Online Appendix H.2. Each agent reaches a new private
history whenever she either produces or discards an innovation, or any agent
discloses. Thus (almost surely), agents reach finitely many private histories within
any bounded interval of time. Public histories are formally unchanged (see (5) in
Section 3), but they now only record disclosed innovations. A strategy &' :=
(0%, x") specifies, for each public history h,,, an effort schedule o*(h,,) : (t;, 00) —
0,1] and a disclosure policy x*(hm) : (tm,00) X (0,00) — {0,1}. As before, agent
i exerts effort [0"(h,,)](t) at any time ¢ > ¢, such that no innovation was disclosed
within the time interval [¢,,,?). Moreover, if agent i produces an innovation of size

z at such a time ¢, she discloses it if [x(hn)|(t,2) = 1, and discards it otherwise.

32. Admitting the latter strategies would complicate the definition of the game without affect-
ing the results. In particular, the unique strongly symmetric equilibrium (in which, by definition,
strategies cannot condition on discarded innovations), would continue to exist.
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Note that it is not necessary to keep track of discarded innovations, due to the
restriction to public strategies. If agents play a strategy profile ¢ := (o, X)L,
the continuation payoff vé(h ) to agent ¢ at a public history h,, may be expressed
as the right-hand side of (6), with the random path (h;)
different distribution.

" . obviously having a

7.2 Analysis

The social-welfare benchmark (characterised in Proposition 1) is unaffected by the
introduction of disposal. This is because, in the non-strategic setting, the effects
of disposal on incentives can be ignored. Moreover, disposal of innovations hinders
the growth of the payoff flow, since b(z) — ¢(a, x) is increasing in x.

Given a public history h featuring m € {0, 1,...} (disclosed) innovations, write
h o (t,z,1i) for the public history that features m + 1 innovations and extends h,
and in which the last innovation is disclosed by agent ¢ at time ¢, and has size
z. Given a profile § := (0%, x")iL,, let 0(h) be the largest payoff that agent i
can achieve, across all strategies, in the subgame after public history A, given
that her opponents behave according to £. Given h leading to time t, > 0,
for all ¢t > t,, let ﬁéh(t) be the largest payoff achievable by agent ¢ at time ¢,
assuming that no innovation was disclosed within the interval [t,t), and that
agent i does not produce an innovation at time ¢ (and define o, (tn) := 0f(h)).
Then, U& u ¢ [th, 00) — R is Lipschitz and, labelling = the stock that h leads to, for

almost all t > t;,3

(1) = ddﬁth( t) + b(z) + mmax {aA]EF [(8i(h o (t,2,4)) — 0} ,(1)) VO] — cla, )}

+ /\Z 03 X a(t, z)(vf(ho (t,2,7)) — @gh(t))} (19)

The strategy &' is a best response for agent i at every private history only if, given
any public history h leading to any time t;, both of the following conditions hold:

for almost all ¢ > ¢y,

[crl(h)}( ) € arg max {a)\EF[(@g(h o(t,z,i)) — ﬁéh(t)) Vv O} — c(a,x)} (20)

a€[0,1]

and, furthermore, for all ¢ > ¢, and z > 0,

[X'(h)](t, 2) € arg drer}?l(}{d(vg (ho(t,z4) — ¢ ,(t)) }- (21)

33. See the end of Online Appendix H.2 for details on how to derive (19), (20), (22), (23) and
(24). ‘V’ denotes the ‘max’ operator.
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Condition (21) states that agent ¢ optimally adopts or discards an innovation of
size z obtained at time ¢ following history h. A strategy £ := (o, x) induces a
strongly symmetric equilibrium (SSE) if, given that all opponents play &, ¢ is a
best response at every private history.

A Markov strategy is a pair 7 := («, d) of (Borel measurable) maps o : R, —
[0,1] and 6 : Ry x (0,00) — {0, 1} such that a! = a(z;) for all ¢ > 0 and, if agent
i obtains an innovation of size z > 0 at time ¢, she discloses it if d(z, z) = 1 and
discards it otherwise. If the opponents of any given agent play a Markov strategy
7 := (a, ), the largest continuation payoff that this agent can achieve, across all

strategies, is a (value) function 0, of the current stock x;, solving

d(z) = b(z) + max {aAEp[(d(z + 2) — d(z)) V 0] — c(a,z)}

a€l0,1]

A — Da(@)Ep[(z, 2)(0(x + 2) — 8(2))]. (22)

for all x > 0.3* Then, 7 is a best response, after any private history, against

opponents playing 7 if and only if, for all x > 0, both of the following hold:

a(x) € arg arg[%i(} {aXEp[(0x(z + Z) — 0x(2)) VO] — c(a,z) }, (23)
d(z, 2) € arg dg%?f} {d(0:(z + 2) — 0x(x))} forall 2> 0. (24)

The following result characterises the unique SSE of the game. The proof is in
Appendix D. Recall from Section 5 the SSE oy of the game with forced disclosure,

and the notion of detrimental innovations.

Theorem 2. The game with disposal admits an (essentially) unique SSE, and it is
induced by a Markov strateqy (o, 6q4). In the absence of innovations at time t, and
for any stock x;, effort aqg(xy) and continuation payoffs ve(z:) are no lower than
their analogues of(xy) and ve(xy) in the equilibrium with forced disclosure. More-
over, ez-ante payoffs va(xo) strictly exceed v(xg) if innovations are detrimental

in ag. Otherwise, no disposal occurs in (agq,dq) and the equilibria coincide.

Although there may exist multiple equilibria, ay and vy are uniquely pinned
down. Multiplicity arises if agents are indifferent about the disposal of some
innovations (i.e, if the objective in (24) admits multiple maximisers), and any way
of breaking the indifferences yields an equilibrium. Moreover, the properties of
ay and vy described in Theorem 1 are inherited by a4 and vy. (I establish this in
Appendix D).

34. This expression is valid if neither the agent nor one of her opponents produced an innovation
at time t. If the agent obtains an innovation of size z at time ¢, the expression becomes 0, (z +
2) V O (z) (where 9, is pinned down by (22)). Assuming an opponent obtains the innovation
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Figure 3: Effort (left) and payoffs (right) in the SSE of the game with disposal, as functions of
the stock ;. The dotted lines are effort oy (left) and payoffs vy (right) in the equilibrium of the
game with forced disclosure. By (24), d4 need not be a ‘cutoft’ strategy, since vy is not quasi-
concave. Parameter values are b(z) = z, c(a,x) = ax, n =5, F(2) = pl,>¢ + (1 — p)(1 —e~*/¢),
(=5, A2=0.1/p, and e = p/(1 — p), where p > 0 is arbitrarily small.

Allowing agents to discard innovations increases equilibrium payoffs, and strictly
so unless all innovations are guaranteed to be beneficial in the SSE with forced
disclosure. This is because individual and social incentives for the disposal of in-
novations are aligned, since the equilibrium is symmetric. That is to say, whenever
an agent discloses or discards an innovation in equilibrium, her opponents benefit
from it. Moreover, the fact that future detrimental innovations will be discarded
increases continuation payoffs at all stock values exceeding the current one and,
therefore, the current incentive to exert effort. As a result, equilibrium effort is
higher in the game with disposal. This strengthens the positive externality arising
from the public nature of the good, increasing payoffs further.

As Figure 3 suggests, the equilibrium with disposal can improve substantially
over the equilibrium with forced disclosure, both in terms of effort and of welfare.
In fact, provided effort is costless if the stock is zero, and arbitrarily large innova-
tions are possible, and gross benefits are unbounded, equilibrium payoffs at o = 0
diverge as the number of agents grows.*® This is because agents exert maximal
effort prior to the first innovation and, if their number is large, they discard any
innovation that would cause a meaningful reduction in effort, unless it is of con-
siderable size. (As an illustration note that, given the parameters of Figure 3 and
xo = 0, prior to the first innovation, each innovation is adopted if and only if its

size lies either roughly below 0.36, or above 1.75.) Under these assumptions, the

instead, the expression is valid if §(z, 2z) = 0, and becomes 0, (z + 2) if §(z,2) = 1.

35. In detail, if ¢(1,0) = 0 then v4(0) = {b(0) + MEr[va(z) V v4(0)]}/(1 + An), as aq(0) = 1.
Then, if Ep[vg(z) V v4(0)] remained bounded as n grows, v4(0) = Ep[vg(z) V v4(0)] for large n,
which is not possible if F' has unbounded support and lim,_,, b(z) = oo, since vg > b. Hence
Er[va(z) V v4(0)] diverges with n and, therefore, so does v4(0), as vqg — b is decreasing.
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welfare improvement relative to any PPE of the game with forced disclosure is
arbitrarily large provided (15) fails for some z, since this guarantees that payoffs
in the latter equilibria remain bounded as the number of agents grows.

Theorem 2 remains valid if agents can conceal innovations instead of merely
discarding them, provided they cannot covertly refine the improvements that they
hide. Formally, the result extends to the following setting: each agent possesses a
(time-varying) set of concealed increments X C [0, c0), initially empty. Whenever
agent ¢ obtains an innovation of size z at time ¢, the value z; + 2z is added to
X} (and the stock z; does not grow). Moreover, each agent i picks a disclosure
di € {x € X} : x > x;} U{z;} whenever she obtains an innovation,*® and at any
time t € T, where T C [0, 00) is exogenous and 7 N[0, T is finite for all T' > 0. If
a (non-empty) set of agents I C {1,...,n} pick disclosures (di);c; at time ¢, the
public stock x; rises (weakly) to max{d: : i € I'}. Say that agent i discloses at time
tif di > ; and conceals if dj = x;. Assume that the arrival and size of innovations
as well as the sets X} are private information, and the concealment of innovations
is unobserved. However, agents are immediately informed of any innovation that is
disclosed, including its size and the identity of the agent disclosing it. We recover
the game with disposal if we constrain agents to choose di € {x;, z; + 2} whenever
producing an innovation of size z at time ¢, and d! = x; at any other time ¢t € T.

Theorem 2 carries over to this setting since strongly symmetric equilibria are
necessarily public. Indeed, this rules out disclosing any innovation that was pre-
viously concealed, so that (ay,d4) is the only candidate equilibrium; moreover,
(cvg, 04) is an equilibrium since it is stationary, so that no agent has an incentive
to delay disclosure.

This richer environment admits other symmetric perfect Bayesian equilibria
that are not public, and that are closer in spirit to the equilibrium analysed in the

next section.

8 Concealment

In this section, I extend the baseline model by allowing agents to conceal the
innovations that they obtain for a period of time, after observing their size; more-
over, agents may covertly refine the improvements that they hide. I show that
the resulting game admits a relatively simple equilibrium which, under reason-
able conditions, improves on all equilibria with forced disclosure. Throughout, I

restrict attention to linear multiplicative payoffs, introduced in Section 3.

36. If agent i obtains an innovation of size z at time ¢ then she can choose di = x; + z.
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8.1 Model

As before, z; denotes the (public) stock of the good and, at any time ¢ > 0, agent
i exerts hidden effort af € [0, 1] and receives a flow payoff r(1 — af),.

Each agent i possesses a private stock k! of the good, initially equal to .
Agent ¢ produces increments in k! (instead of z;) at rate Aai. The distribution
F of the size of increments (i.e., of innovations) inherits the properties described
in Section 3 and, for simplicity, is assumed to be Lipschitz continuous. Moreover,
each agent i picks a disclosure di € [z, ki] whenever (i) she obtains an innovation,”
and (ii) at any time ¢ such that &} > x; and either 7, = zy or ¢t € T, where
T C [0,00) is exogenous and 7 N[0, 7] is finite for all T > 0. If a (non-empty)
set of agents I C {1,...,n} pick disclosures (di);c; at time ¢, the public stock z;
rises (weakly) to max{d: : i € I'}, and the private stocks k] that laid below this
value rise to it, while the rest are unchanged. In particular, neither x; nor any
k:g increase if di = x, for all i € I. Whenever agent ¢ picks di at time ¢, say that
she conceals if di = z;, discloses fully if di = k! > x;, and discloses partially if
v < di < K5

Assume that agents’ effort, private stocks, as well as the production and size
of innovations are private information, and that the concealment of innovations
is not observed. In particular, if agent 7 produces an innovation at time t and
conceals it, her opponents will not be able to distinguish this event from the event
that agent ¢ does not produce an increment at time ¢. If instead agent ¢ chooses
di > x;, the opponents of agent i are immediately informed of her identity and
of the value of di. However, as they do not observe k!, they cannot distinguish
partial from full disclosures.

I restrict attention to pure strategies. We recover the game with forced dis-
closure (Section 3) by constraining agents to always disclose fully. I refer to this
model as the game with concealment.

Below is a brief description of histories, strategies, and continuation payoffs,
which are defined in Online Appendix H.3. Each agent i reaches a new information
set whenever one of the following events occurs: agent ¢ produces an innovation, or
one or more agents (including 7) disclose, either partially or fully. The constraint

on disclosures ensures that agents reach only finitely many information sets within

37. If agent i obtains an innovation at time ¢, k{ denotes her private stock after the innovation.

38. In any period t at which agent ¢ does not obtain an increment, and such that x; > xg
and t ¢ T, agent i does not pick di. Thus, each agent can disclose at any point in time as
long as no disclosure occurred but, after a disclosure occurs, she can only disclose at times in
T, or immediately after producing an innovation. This restriction guarantees that the game is
well-defined. T impose no constraint on the first disclosure to simplify the construction of the
equilibrium (Theorem 3).
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any bounded period of time. A private history for agent 7 is a finite sequence

h:= (.T(), (th 61)7 cee (tma em))

where 0 < t; < --- < t;, and each ¢; describes one of the two aforementioned
events, occurring at time ¢;. Private histories pin down the current time ¢,, = T'(h),
the public stock x,, = X(h), as well as agent ¢’s private stock k; = K'(h). A
strategy &' = (o', x') specifies, for each h, an effort schedule o'(h) : (T'(h),00) —
[0,1] and a disclosure policy x*(h) : [T'(h),00) x [0,00) — [0,1]. Agent 7 exerts
effort [0%(h)](t) at any time ¢ > T'(h) such that she produced no innovation within
[T'(h),t), and no agent disclosed within this interval. Moreover, whenever agent
i picks a disclosure d at any time ¢ > T'(h) with the aforementioned property,
di = X(h) + [K'(h) + 2z — X(R)][x"(t)](t, 2) if agent i produced an innovation of
size z > 0 at time ¢, and di = X (h) + [K*(h) — X (h)][x"(¢)](¢,0) otherwise. An
information set for agent i is a pair (h,b), where h is a private history and b
is a belief; that is, a distribution over the most recent private histories (h?);4
reached by the opponents of agent i. If agents play a profile £ := (0%, x*)™_,, the

continuation payoff vé(h, b) to agent i at information set (h,b) may be expressed

as
. T () . N
i) =B > [ 01— [of ()] 0) X ()
m=0 T(hm)
where m € {0,1,...,00} is the total number of information sets reached by agent

i after time T'(h), hy is the private history associated with the (th information set,
ho := h and, if i < oo, then T(hy11) = co.

8.2 Discussion of the assumptions

Recall that, in the game with disposal (Section 7), agents may either discard
or disclose the innovations that they produce. Concealing innovations is more
profitable than discarding them, as it enables agents to refine the innovations
that they hide. For instance, in the game with disposal, if an agent obtains an
innovation of size z at time ¢ and another of size 2’ at time ¢’ > ¢, and discards
the former while adopting the latter, the stock rises by 2z’ at time t’. However, in
the game with concealment, if the agent conceals at time ¢ and discloses fully at
time t', the stock rises by z + 2’ at time #'.3°

Concealing innovations leads to a stark form of redundancy. To see why, sup-
pose that agent ¢ obtains an innovation of size z at time ¢, and conceals it, while

agent j obtains an innovation of size 2z’ > z at time ¢’ > ¢, and discloses fully.

39. Yet, the conditions described in Proposition 3, which are sufficient to prevent disposal in
equilibrium, also suffice to prevent concealment. See Online Appendix .1 for details.
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Then, agent i’s private stock rises to 2’ at time ¢/, but no further: the innovations
are perfect substitutes and, since agent j’s innovation is superior, agent ¢’s inno-
vation is discarded at time t'. A more realistic model would feature some degree
of complementarity between innovations. In this example, agent j’s disclosure at
time ¢’ would raise i’s stock to a value above z’. Despite this extreme form of
redundancy, concealment may be beneficial (Proposition 5).

Concealed innovations cannot be used. Formally, the flow payoff of agent ¢
depends on z; instead of on k!. This assumption is reasonable if (i) agents are
firms developing a technology, and the technology is sold as part of the firms’
products, or (ii) agents are non-profit organisations, since detailed information
about the interventions they carry out is usually publicly available, or (iii) agents
are workers who can observe and imitate each others’ behaviour. A detailed study
of the model in which concealed innovations can be used is beyond the scope of
this paper, but I argue at the end of Section 8.4 that an analogue of Proposition 5
holds in this environment.

A simpler model would constrain the agents to either fully disclose or con-
ceal their innovations. Formally, it would require that di € {z;, k!}. With this
restriction, agents may have an incentive to disclose fully as evidence to their
opponents that they are not concealing more substantial innovations. Doing so
would be beneficial, as it would raise the opponents’ incentives to exert effort.
Hence, this is likely to play an important role in equilibrium. I do not anal-
yse this setting as it seems economically less relevant. Requiring instead that
di € {ki : 0 < s <t} N[xy,o0) would not affect the analysis.

8.3 Equilibrium

The social-welfare benchmark (Theorem 1) is unaffected by the introduction of
concealment. This is because, in the non-strategic setting, the effects of delayed
disclosure on incentives can be ignored. Moreover, concealing innovations hinders
the growth of the payoff flow, and may lead to redundancy. In this section, I
construct a symmetric perfect Bayesian equilibrium of the game with concealment.

A perfect Bayesian equilibrium (PBE) is composed of a profile of strategies
¢ and a profile of beliefs 8 (see Online Appendix H.3 for the formal definition).
The equilibrium «af with forced disclosure (Theorem 1), coupled with the ‘full-
disclosure’ policy, is a natural candidate equilibrium in the game with concealment.
[ begin by showing that it is a PBE (for some belief profile) if and only if the initial
stock is so large that no effort is exerted. Since effort ay(z;) is decreasing in the
current stock z;, no effort is exerted in equilibrium if and only if af(zy) = 0, which

is equivalent to xg > Au, where p is the average size of innovations.
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Lemma 1. Suppose that (3) holds. Then, the effort schedule oy, coupled with the
‘full-disclosure’ policy, forms a symmetric PBE of the game with concealment (for

some profile of beliefs) if and only if xo > Ap.

Lemma 1 is proved in Appendix E. A comparison with Corollary 2 shows
that agents may have an incentive to conceal innovations even if they are not
detrimental in equilibrium (in the sense defined in Section 5). This is because
innovations are detrimental if and only if agents have an incentive to discard them
(see Section T7), and concealment is more profitable than disposal as it allows
agents to covertly refine the innovations that they hide.

The next result describes a symmetric PBE of the game with concealment.

The proof is in Appendix F.

Theorem 3. There exists a symmetric PBE (&, 5.) such that, in any period t
prior to which no disclosure occurred, agent i exerts effort 045(/{2) and conceals
(resp. discloses fully) if ki < (>) q(t), where af(k) is increasing in k and A <
q(t) < Aun. Moreover, agent i’s continuation payoff in any such period t may be
expressed as vE(ki), where v¢(k) is increasing in k. On the equilibrium path, no

effort is exerted after a disclosure occurs.

The equilibrium (&, f.) is chosen so that no effort is exerted if 2o > Ap. The
rest of the discussion focuses on the case o < Ap. In this case, agents conceal
innovations as long as their respective stocks k! lie below the common, time-
varying cutoff ¢(¢). As soon as k! reaches q(t) for some i, agent i discloses fully.
Moreover, at the time of the disclosure, k! > ¢(t) > k! for all j # i, so that each
kI rises to k. That is to say, the first innovation disclosed is the best available at
the time of disclosure. No effort is exerted past this time. From Lemma 1, this is
incentive-compatible since the disclosure raises the public stock above Au.

At any time t before the disclosure, agents believe that the private stocks
of their opponents are i.i.d. with the same distribution (call it G;). As time
passes without a disclosure, agents need not become more optimistic about their
opponents’ progress. Formally, G; need not grow in the FOSD-sense over time
and, therefore, the cutoff ¢(¢) need not be increasing in t. Hence, the disclosure
may be due to a drop in ¢(t) as well as to an innovation.

Equilibrium effort of (k{) is increasing in k;. This is because effort is beneficial
ex-post if and only if it leads to a disclosure. The smaller the distance between k!
and the cutoff ¢(t), the larger the impact of effort on the time to a disclosure, and
thus, the higher the benefit of exerting effort. Moreover, the cost of effort does not
grow as k! grows, since it is determined by the public stock z;, which is constant

at xo until the disclosure.
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The payoft vy (kz) is increasing in the private stock k! since a higher k! brings
agent ¢ closer to a disclosure, but does not weaken her opponents’ incentives for
effort, as they do not observe ki. Hence, when the disclosure occurs, all agents are
better off. Indeed, if agent ¢ discloses at time ¢, then she discloses ki > ¢(t), so
that the payoff to any opponent j rises from v§(k]) to ki = vi(ki), as k] < q(t).

The equilibrium (&, 5.) involves ‘punishments’ for any agent ¢ disclosing a
value di < q(t) at any time ¢ before which no disclosure occurred. If agent i does
so, her opponents believe her private stock to be large and, as a consequence, exert

no effort and never disclose after time ¢, no matter how agent ¢ behaves.

8.4 The benefits of concealment

In this section, I derive a sufficient condition for the ex-ante payoffs in the equilib-
rium (&, B.) of the game with concealment to exceed those of all equilibria of the
game with forced disclosure. This is the case if there are sufficiently many agents,
and the size of innovations is sufficiently ‘dispersed’.

Recall that, if o > Au, no effort is exerted in either (&, f.) or any equilibrium
of the baseline game. If g < Ay, the impact of concealment on equilibrium payoffs
is less obvious than that of disposal, analysed in Theorem 2. This is because private
and social incentives for the disposal of innovations are aligned in equilibrium
(i.e. agents discard innovations whenever this benefits their opponents), whereas
incentives for their concealment are misaligned. Indeed, in (&, 5.), an agent with
private stock k! < q(t) prefers to conceal than to disclose fully, even though full
disclosure would benefit any opponent with a given stock ki < q(t), provided ki

Al Despite the misaligned incentives, concealment is

is sufficiently close to ¢(t)
beneficial under general conditions, as the following result shows. Recall that ex-
ante payoffs in (&, 8.) are v(zo), whereas agent i’s ex-ante payoff in a PPE o of

the baseline game is v’ (). Since no effort is exerted in o after the stock exceeds

40. To see why this punishment is sustainable, note that the opponents of agent i expect her
to disclose fully as soon as she obtains an innovation and, in some cases, no later than some
given time ¢' € T. If agent i discloses a value lower than expected (at any time after ¢), or does
not disclose at time #’, her opponents will detect another deviation, and continue to believe her
private stock to be large. This equilibrium does not satisfy the Intuitive Criterion (Cho and
Kreps (1987)) as, if k! were indeed large, agent i would be strictly better off if she disclosed k! at
time ¢ than a value di < ¢(t). An equilibrium that satisfies the Intuitive Criterion and features
the ‘cutoff’ disclosure pattern of (., 5.) is unlikely to exist, as no sustainable punishments could
discourage agent i from disclosing at time ¢ if ¢(t) is large and k! > ¢ is small compared to q(t).

41. Since full disclosure makes the payoff of each agent j jump from vf(ki) to ki, it suffices
to show that k < v{(k) < ¢(t) for any k < ¢(t). The first inequality holds as ¢ is lower semi-
continuous (Proposition 7 in Appendix F). For the second, note that v§(k) < vf(q(t)) = q(t)
where the first inequality holds since v§(k) is increasing in k and, clearly, non-constant over
[k,q(t)], and the second follows from Proposition 7 and Lemma 3 (Appendix F).
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A (Proposition 2), v¢ (zg) < ¢ + V, where

m
§ 2l )
=1

21, 29, ... are Li.d. draws from F, and m = min{m € N:zo + > ", % > Au}.

V=E

Proposition 5. Suppose that o < A and

Then, if the number of agents n is sufficiently large, v§(zo) > v: (o) for any PBE
(&, Be) satisfying the conditions of Theorem 3, any agent i, and any PPE o of the

baseline game with forced disclosure.

Proposition 5 is proved in Appendix G. Condition (25) holds if F(V) < 1
and x is sufficiently small, or if the size of innovations is sufficiently ‘dispersed’.
For instance, in the example introduced in Section 3, (25) holds if substantial
innovations are arbitrarily rare, but drive progress in expectation (that is, if p and
¢ are small, keeping u fixed).??

Condition (25) ensures that v§(zg) > x¢+ V provided interior effort is exerted
at the outset in (&, ;). If instead effort is maximal at the outset in (&, f.), then
vi(xg) > xo+V for sufficiently large n. Combining these steps yields Proposition 5.

If the conditions of Proposition 5 are not met, agents may in principle be
worse off in the equilibrium with concealment than in some equilibrium of the
game with forced disclosure (including a¢). Among other things, this is because
agents cannot build on each others’ innovations in (&, 5.). Agents may be able
to do so in other PBE that feature a richer disclosure pattern. Some (but not
necessarily all) of these equilibria may induce higher payoffs than (&, 5.).

If agents are able to use the innovations that they conceal, so that agent i’s
payoff flow is (1 — a})k{, there exists a symmetric PBE (¢, 8.) inducing higher
ex-ante payoffs than any equilibrium of the game with forced disclosure, provided
arbitrarily large innovations are possible, and the number of agent is sufficiently
large. In this equilibrium, all agents disclose (fully) at some exogenous time 7' > 0,
and at no other times. Moreover, T is sufficiently large that each agent is willing
to exert effort early on, as long as she does not obtain any innovation, no matter
the expected increase in the stock at time 7T'. If F' has umbounded support and n

is large, then the expected increase in the stock at time 7" will be large, so that

42. To see why note that, in the limit as p vanishes and ¢ diverges while p := p¢ 4+ (1 — p)e
remains fixed, V' is bounded and thus p({—V") converges to p—e. Since Ep[(2—=V)V0] > p(¢=V),
(25) holds for p sufficiently small, provided € < p — g/ .
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ex-ante payoffs will be large as well.*?

References

Abreu, D., P. Milgrom, and D. Pearce. 1991. “Information and timing in repeated
partnerships.” Econometrica 59 (6): 1713-1733.

Abreu, D., D. Pearce, and E. Stacchetti. 1986. “Optimal cartel equilibria with
imperfect monitoring.” Journal of Economic Theory 39 (1): 251-269.

Admati, A., and M. Perry. 1991. “Joint projects without commitment.” The Review
of Economic Studies 58 (2): 259-276.

Anderson, N., K. Poto¢nik, and J. Zhou. 2014. “Innovation and creativity in orga-
nizations: A state-of-the-science review, prospective commentary, and guiding
framework.” Journal of management 40 (5): 1297-1333.

Azevedo, E. M., A. Deng, J. L. Montiel Olea, J. Rao, and E. G. Weyl. 2020. “A /b
testing with fat tails.” Journal of Political Economy 128 (12): 4614-4672.
Battaglini, M., S. Nunnari, and T. R. Palfrey. 2014. “Dynamic free riding with

irreversible investments.” American Economic Review 104 (9): 2858-2871.

Bessen, J., and A. Nuvolari. 2016. “Knowledge sharing among inventors: some
historical perspectives.” Chap. 7 in Revolutionizing Innovation: Users, Com-
munities and Open Innovation, 135-157. MIT Press.

Bolton, P., and C. Harris. 1999. “Strategic experimentation.” Econometrica 67 (2):
349-374.

Bonatti, A., and J. Horner. 2011. “Collaborating.” American Economic Review
101 (2): 632-63.

Brander, J. A., and B. J. Spencer. 1983. “Strategic commitment with R&D: the
symmetric case.” The Bell Journal of Economics 14 (1): 225-235.

Campbell, A., F. Ederer, and J. Spinnewijn. 2014. “Delay and deadlines: Freeriding
and information revelation in partnerships.” American Economic Journal:
Microeconomics 6 (2): 163-204.

Cetemen, D. 2021. Efficiency in Repeated Partnerships. Working Paper.

43. The equilibrium (&, /) may be constructed as follows. Given T' > 0, let Ry be the set of
strategies involving full disclosure at time T if no one disclosed in the past, and (full) concealment
at all other histories. Clearly, if the opponents of an agent all play some £ € Ry, the agent has
a best response £’ € Ry. Then, we may costruct a symmetric PBE (&., 8.) involving a strategy
¢! € Ry, by a fixed-point argument. Moreover, given zg < Au, we may choose T' sufficiently large
so that any best response £ € Rp to all opponents playing any given £ € Ry involves full effort
until either time 1 is reached, or a private increment obtains. In partcular, given the chosen T,
¢/ has this feature. Moroever, ex-ante payoffs in (£., B.) are at least xg + e~ "7 (e — x¢), where
e is the expected value of max{k{ : i = 2,...,n}. Assuming that F has unbounded support, e
diverges as n does, no matter the choice of (£, 3). Therefore, ex-ante payoffs in (£, 8.) exceed
o + V for n sufficiently large.

29



Cetemen, D., I. Hwang, and A. Kaya. 2020. “Uncertainty-driven cooperation.”
Theoretical Economics 15 (3): 1023-1058.

Cetemen, D.; C. Urgun, and L. Yariv. Forthcoming. “Collective Progress: Dynam-
ics of Exit Waves.” Journal of Political Economy.

Chesbrough, H. W. 2003. Open innovation: The new imperative for creating and
profiting from technology. Harvard Business Press.

Cho, [.-K., and D. M. Kreps. 1987. “Signaling games and stable equilibria.” The
Quarterly Journal of Economics 102 (2): 179-221.

d’Aspremont, C., and A. Jacquemin. 1988. “Cooperative and noncooperative R&D
in duopoly with spillovers.” The American Economic Review 78 (5): 1133—
1137.

Dover, G., and T. B. Lawrence. 2012. “The role of power in nonprofit innovation.”
Nonprofit and Voluntary Sector Quarterly 41 (6): 991-1013.

Dutta, P. K. 1995. “A folk theorem for stochastic games.” Journal of Economic
Theory 66 (1): 1-32.

Fershtman, C., and S. Nitzan. 1991. “Dynamic voluntary provision of public goods.”
European Economic Review 35 (5): 1057-1067.

Ford, C. M. 1996. “A theory of individual creative action in multiple social do-
mains.” Academy of Management review 21 (4): 1112-1142.

Fudenberg, D., D. Levine, and E. Maskin. 1994. “The Folk Theorem with Imperfect
Public Information.” Econometrica 62 (5): 997-1039.

Fudenberg, D., and Y. Yamamoto. 2011. “The folk theorem for irreducible stochas-
tic games with imperfect public monitoring.” Journal of Economic Theory 146
(4): 1664-1683.

Georgiadis, G. 2017. “Deadlines and infrequent monitoring in the dynamic provi-

sion of public goods.” Journal of Public Economics 152:1-12.

. 2015. “Projects and team dynamics.” The Review of Economic Studies 82
(1): 187-218.

Geroski, P. 1995. “Markets for technology: knowledge, innovation and appropri-
ability.” Chap. 4 in Handbook of the Economics Innovation and Technological
Change, 90-131. Blackwell.

Green, E. J., and R. H. Porter. 1984. “Noncooperative collusion under imperfect
price information.” Econometrica 52 (1): 87-100.

Guéron, Y. 2015. “Failure of gradualism under imperfect monitoring.” Journal of
Economic Theory 157:128-145.

Harhoff, D., and K. R. Lakhani. 2016. Revolutionizing innovation: Users, commu-
nities, and open innovation. MIT Press.

Heidhues, P., S. Rady, and P. Strack. 2015. “Strategic experimentation with private
payoffs.” Journal of Economic Theory 159 (1): 531-551.

30



Horner, J., N. Klein, and S. Rady. 2022. “Overcoming Free-Riding in Bandit
Games.” Review of Economic Studies 89 (4): 1948—1992.

Horner, J., T. Sugaya, S. Takahashi, and N. Vieille. 2011. “Recursive methods in
discounted stochastic games: An algorithm for §— 1 and a folk theorem.”
Econometrica 79 (4): 1277-1318.

Hottenrott, H., and B. Peters. 2012. “Innovative capability and financing con-
straints for innovation: more money, more innovation?” Review of Economics
and Statistics 94 (4): 1126-1142.

Kamien, M. 1., E. Muller, and I. Zang. 1992. “Research joint ventures and R&D
cartels.” The American Economic Review 82 (5): 1293-1306.

Katz, M. L. 1986. “An analysis of cooperative research and development.” The
RAND Journal of Economics 17 (4): 527-543.

Keller, G., and S. Rady. 2015. “Breakdowns.” Theoretical Economics 10 (1): 175~
202.

. 2010. “Strategic experimentation with Poisson bandits.” Theoretical Eco-

nomics 5 (2): 275-311.

. 2020. “Undiscounted bandit games.” Games and Economic Behavior 124
(1): 43-61.

Keller, G., S. Rady, and M. Cripps. 2005. “Strategic experimentation with expo-
nential bandits.” Econometrica 73 (1): 39-68.

Klein, N.; and S. Rady. 2011. “Negatively correlated bandits.” The Review of
Economic Studies 78 (2): 693-732.

Kroeger, A., and C. Weber. 2014. “Developing a conceptual framework for com-

paring social value creation.” Academy of Management Review 39 (4): 513—
540.

Leahy, D., and J. P. Neary. 1997. “Public policy towards R&D in oligopolistic
industries.” The American Economic Review 87 (4): 642-662.

Lim, K. 2009. “The many faces of absorptive capacity: spillovers of copper intercon-
nect technology for semiconductor chips.” Industrial and Corporate Change
18 (6): 1249-1284.

Lockwood, B., and J. P. Thomas. 2002. “Gradualism and irreversibility.” The
Review of Economic Studies 69 (2): 339-356.

Lucas, R. E., and B. Moll. 2014. “Knowledge growth and the allocation of time.”
Journal of Political Economy 122 (1): 1-51.

Marx, L., and S. Matthews. 2000. “Dynamic voluntary contribution to a public
project.” The Review of Economic Studies 67 (2): 327-358.

Meyer, P. B. 2003. Episodes of collective invention. Working Paper 368. U.S. Bu-

reau of Labour Statistics.

31



Pénin, J. 2007. “Open knowledge disclosure: An overview of the evidence and
economic motivations.” Journal of Economic Surveys 21 (2): 326-347.

Perla, J., and C. Tonetti. 2014. “Equilibrium imitation and growth.” Journal of
Political Economy 122 (1): 52-76.

Peski, M., and T. Wiseman. 2015. “A folk theorem for stochastic games with
infrequent state changes.” Theoretical Economics 10 (1): 131-173.

Piunovskiy, A., and Y. Zhang. 2020. Continuous-Time Markov Decision Processes.
Springer.

Powell, W. W., and E. Giannella. 2010. “Collective invention and inventor net-
works.” Chap. 13 in Handbook of the Economics of Innovation, 1:575-605.
North Holland.

Powell, W. W., K. W. Koput, and L. Smith-Doerr. 1996. “Interorganizational col-
laboration and the locus of innovation: Networks of learning in biotechnology.”
Administrative science quarterly 41 (1): 116-145.

Radner, R., R. Myerson, and E. Maskin. 1986. “An example of a repeated part-
nership game with discounting and with uniformly inefficient equilibria.” The
Review of Economic Studies 53 (1): 59-69.

Reinganum, J. F. 1983. “Uncertain innovation and the persistence of monopoly.”
The American Economic Review 73 (4): 741-748.

Sannikov, Y., and A. Skrzypacz. 2010. “The role of information in repeated games
with frequent actions.” Econometrica 78 (3): 847-882.

Spence, M. 1984. “Cost reduction, competition, and industry performance.” Fcono-
metrica 52 (1): 101-121.

Strausz, R. 1999. “Efficiency in sequential partnerships.” Journal of Economic
Theory 85 (1): 140-156.

Suzumura, K. 1992. “Cooperative and Noncooperative R&D in an Oligopoly with
Spillovers.” The American Economic Review 82 (5): 1307-1320.

Unsworth, K. L., and C. W. Clegg. 2010. “Why do employees undertake creative
action?” Journal of occupational and organizational psychology 83 (1): 77-99.

Van Knippenberg, D. 2017. “Team innovation.” Annual Review of Organizational
Psychology and Organizational Behavior 4:211-233.

Van Wijk, R., J. J. P. Jansen, and M. A. Lyles. 2008. “Inter-and intra-organizational
knowledge transfer: a meta-analytic review and assessment of its antecedents
and consequences.” Journal of management studies 45 (4): 830-853.

Von Hippel, E. 1987. “Cooperation between rivals: Informal know-how trading.”
Research Policy 16 (6): 291-302.

32



Appendices

A Proof of Theorem 1

The proof of Theorem 1 is based on two results (Theorem 4 and Proposition 6
below), proved at the end of this section. Given maps v,w : R, — R, write
‘v <w’ for ‘v(z) < w(x) for all z > 0’. Given a Borel v : Ry — R bounded below,
define the maps Lv, Lgv : R — R U {oo} by

Liyv(z) =Epjv(z+2)] & Lg(z):=Epv(z)Vo(z+2). (26)

Given a map w : Ry — R bounded below by b(0), let B, be the set of Borel
v : Ry — R bounded below by b(0), such that v < w. Recall the definition of
v, from Section 4. Let Vj (V) be the set of pairs (o, v), where a is a Markov
strategy of the game with forced disclosure and v € B,,, such that (13) holds and
(14) holds with 0, = v (such that (22) holds for some ¢ satisfying (24) with 0, = v
and (23) holds with v, = v), for all z > 0.

Theorem 4. Given k € {f,d}, Vi = {(au,vx)}. Moreover, oy, is continuous and

decreasing, and lies below o ; vy and Lyvy are continuous, and vy, —b is decreasing.

Proposition 6. No strategy of the game with forced disclosure other than o
induces a SSE. Moreover, a strategy £ := (0, X) of the game with disposal induces
a SSE only if 0 = ag and

x(h)](t, 2) € arg dg}{égﬁ(}{d[vd(m +2) —vg(2)|} forallt >0 and z>0. (27)

Proof of Theorem 1. Immediate from Theorem 4 and Proposition 6. n
The following two claims are used in the proofs of Theorem 4 and Proposition 6.

Their easy proofs can be found in Online Appendix .J.

Claim 1. Let v : Ry — R be Borel, bounded below, and such that v — b is
decreasing. Then Lyv — b is decreasing for k € {f,d}.

Claim 2. Let v,v : R, — R be Borel, bounded below, and such that ¥ > v and

lim, . 0(x) —v(xz) = 0. Then v = v if one of the following holds:

1]

e U —v < Lsv— Lyv, or

° v < Lgv — Lyv and lim,, v(x,,) — v(z,;,) = 0 for any bounded sequence

/17 —
(Tm)men C Ry such that lim,, Prp(o(z,, + 2) < 0(z,)) = 1.
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Define I' : [0,1] x R, x R — R by

b(z) — c(a,z) + na)\l'

Lle,2,1) = 1+ naX

Proof of Theorem /. Step 1. There are (ay,vy), (g, Ux) € Vi such that ay < ay
and, for all (a,v) € Vi, o, < oo < ay, < e and v, < v < U Note that, for any
x> (>)0and !> (>) b(z), there is a unique p(z,l) € [0, 1] such that

l A
pla,l) € arg max aA—— = @)

— c(a, ). (28)

Indeed, the objective is continuously differentiable and concave in a, and its deriva-

tive has the same sign as v(p(x,!), x,l) where

v(a,z,l) :==1—[b(x) — c(a,z)] — (% + na) ci(a, ) (29)

is decreasing in a, as ¢(a, =) is convex in a. Moreover, p is continuous (when viewed
as a map ({0} x (b(0),00)) U {(z,l) € (0,00) xR : 1 > b(z)} — [0,1]). Given
v € B,,, let Pyv: Ry — R be given by

Po(z) :=T(p(x, Lyv(z)), z, Lyv(z)).

Claim 3. T'(a, x, Lyv(z)) < Py(x) forallz > 0,v € B,,,and 0 < a < p(z, Lyv(z)).
Claim 3 is proved in Online Appendix J. I prove that P, maps B,, to itself.

Note that
Lyv < Lyv, = Lyv, forallv € B, (30)

where the inequality holds since v < wv,, and the equality since v, is increasing
(Proposition 1). Fix v € B,,. Note that Lyv, p and, therefore, P,v are Borel. Fix
x > 0. Since p(x, Lyv(x)) > 0, from Claim 3, Pyv(z) > I'(0,z, Lyv(x)) = b(z).
Moreover,
Peo(a) < T(p(e. Luo(@)). . Lo (0) < m Dla o, Lyva(a)) = 0.0
ac|0,

where the first inequality follows from (30) since I'(a, ,1) is increasing in [. Since
x > 0 is arbitrary, Pyv € B, as desired.

I show that Py is increasing (in the pointwise order). Fix v, w € B,, with w < v,
and x > 0. Then Lyw(x) < Lyv(z). Then Pow(z) < T'(p(x, Lyw(z)), x, Lyv(x)) as

['(a,x,1) is increasing in [, and p(x, Lyw(x)) < p(z, Liv(x)) as p(zx,1) is increasing

34



in [ (since y(a,x,!) is). Together with Claim 3, the latter implies that
L(p(x, Lyw(x)), z, Lyv(x)) < Pyo(z).

Hence, Pyw(z) < Pyu(x) and, since x > 0 is arbitrary, Py is increasing.

Note that any countable set in B,, admits a supremum and an infimum (in the
pointwise order) in B,,. Moreover, Py (lim,, v,,) = lim,,, Px(v,,) for any monotone
sequence (Up,)men C B,,, since lim,, Lyv,, = Li(lim,, v,,) by monotone conver-
gence, and p and I', are continuous. Then, P, has smallest and largest fixed points
v, Uk € B,,. Define the Markov strategies o, and ay, by . (x) := p(z, Ly, (z))
and ay, := p(x, Lyvg(z)). Note that, for any Markov strategy o and any v € B,,,
(a,v) € Vj if and only if v = P and a(z) = p(z, Liv(x)) for all z > 0.4
Then (oy,v.), (ak, k) € Vi and, for any (o,v) € Vi, v, < v < 0 so that
Lyv, < Lyv < L0y and therefore o, < o < @, as p(x, () is increasing in [.

It remains to prove that ay(z) < au(z) for all x > 0. Fix > 0 and assume
without loss of generality that ay(z) > 0 and a.(z) < 1. Then, from Step 2
of the proof of Proposition 1 (in Online Appendix [), it suffices to show that
v*(ag(x), x) > 0 where v* : [0,1] x R, — R is given by

v (a,x) := Lyv.(x) — [b(z) — c(a,x)] — <% + a> c(a, x).

Note that v*(ag(z),z) > v(ax(z), z, Lyvg(z)) > 0, where the first inequality fol-
lows from (30) (as v, € B,,) and the fact that ¢;(ay(x),2) > 0 (as ag(x) > 0),
and the second holds since ay(x) > 0.

Step 2: V. is a singleton. From Step 1, it suffices to show that (a4,v,) =
(v, Ug). By definition of a4 and @y, it is enough to show that v, = v;. Note
that v, > o > v, > b since U, v, € B,,, so that lim, ,,, Ux(x) — v,(x) = 0 by
Proposition 1. Moreover, if k = d, lim,, 04(z,) — b(zy,) = 0 for any bounded
sequence (Z,)men C Ry such that lim,, Prp(v4(x,, + 2) < v4(zn)) = 1, by (22).
Then, in light of Claim 2, it suffices to show that

Uk(2) — vp(x) < Lik() — Liwg () (31)

for all x > 0. Fix x and consider three cases. Suppose first that a;(z) = 0. Then
a,(x) = 0 as ax > qy, so that vg(x) = b(z) = v,(x) and, therefore, (31) holds

since U > v,. Suppose now that o, (x) = 1. Then, ai(z) = 1 so that, from (13)

44. Indeed, for k = f, given (a,v) € Vy and > 0, (13) is equivalent to wv(x)
b(z) — c(a(z),z) + na(x)[Lyv(z) — v(z)], ie v(z) = INa(x),z,Liv(z)). Given v(x)
I(a(z),z, Lyv(x)), (14) with 0, = v is equivalent to ‘(28) with | = Lyv(x) and p(z,1) = a(x
which is equivalent to a(z) = p(z,Liyv(z)). Finally, given a(z) = p(z, Lyv(x)), v(zx)
I(a(z), z, Lyv(z)) is equivalent to v(z) = Pyv(z). The argument for k = d is similar.

~
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if k= f and (22) if k = d,

L4 () = (o) ~ L) — vy (o) = 22 5

and thus (31) holds. Finally, assuming that ay(z) > 0 and o, (z) < 1, by (14) if
k= fand (23) if k =d,

clar(@),7) o clay(z),7)

Lk@k(l’) — T)k(l‘) > \ \

> Livg(z) — v, (2)
where the first inequality holds since ag(x) > 0, the second since ag(z) > ay(z),
and the third since a;(z) < 1. Then, (31) holds.

Step 3: vy — b and ay are decreasing. Let V be the set of v € B,, such that
v — b is decreasing. From Steps 1 and 2, it suffices to show that p(z, Lyv(zx)) is
decreasing in x for any v € B,,_, and to find a fixed point v of P in V. For the
former, fixv € V. From Claim 1, Liv(xz)—b(z) is decreasing. Then, v(a, z, Lyv(x))
is decreasing in x, as ¢i(a, x) and ¢;1(a, x) are increasing in z. Hence p(z, Liv(x))
is decreasing in x.

To show that P, admits a fixed point in ‘A/, note that V is a complete lattice®
and, from Step 1, Py is increasing on V. Then, from Tarski’s fixed-point theorem,
it suffices to show that P, maps V to itself. To this end, fix v € V. From Step 1,
Pyv € B,,. Then, it suffices to show that Pyv(xs) — Pyv(xy) < b(xg) — b(xy) for
all 0 < z1 < xy. Fix 77 and x, and let p; = p(x;, Lyv;(x;)) for i = 1,2, so that
p1 > po from the previous paragraph. Then

Pyv(xg) — Pyv(xq) < T'(p2, x2, Lyv(xs)) — I'(p2, 21, Lyv(x1))
b(xe) — b(x1) + Anpo[Lixv(xe) — Lyv(zq)]
1+ Anps

< < b(we) — b(xq)
where the first inequality follows from Claim 3 since py < py, the second holds as
c(a,x) is increasing in x, and the third follows from Claim 1. Hence Pyv € V.

Step 5. vk, Lyv, and qy are continuous. Given a map ¢ : R, — R, define

0 ifr=0
d(xt) =limo(y) & ¢la7) = ¢( ) 1 x
" limyp, ¢(y) if 2 > 0.

Let v,u : Ry — R be given by 9(z) := v(2™) and v(z) := vi(z"), and note
that v and v are well-defined and lie in B, , since vy — b is decreasing and b is

concave. Since «y is decreasing, &, « : Ry — [0, 1] given by a(x) := ag(x~) and

45. The argument is similar to that of footnote 54 in Online Appendix [. Measurability follows
from the fact that, clearly, the variation of any map v : Ry — R such that b <v <wv, and v —10
is decreasing, is bounded by |v.(z) — b(0)] + 2|b(x) — b(0)| over [0, z] for any = > 0.
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a(z) := ag(z™) are well-defined Markov strategies.
Note that, for all z > 0, Lyvg(x~) = Lo(x) and Liyvg(z~) = Lv(z) by domi-

nated convergence. Then

& o(x) =T (a(z), z, Lyv(z)) = Ppo(x),
& v(z) =a(@),r, Lyy(z)) = Po(z),
since p and I" are continuous, so that (&, v), (a,v) € Vi by the argument in footnote

44. Then, (@, v) = (a,v) from Step 2, and thus vy, Liv, and oy are continuous. []

Proof of Proposition 6. Let ¥ (Z) be the set of strategies of the game with forced
disclosure (disposal). For any xy > 0, let H(xg) be the set of public histories with
initial stock xg > 0, and Z%(zg) (Zj(70)) be the set of o € ¥ (£ € =) inducing
SSE in the game with forced disclosure (disposal) and initial stock zy. Fix zq and
ke{f d}.

I claim that it suffices to show that v ), is constant with value vy (X (h)) for all
h € H(xy) and £ € Zj(xp). To see why note first that, given = > 0, Lyvg(z) >
vg(x) where the inequality is strict unless # > 0. Indeed, if Lyvg(z) < vg(z) then
vp(x) = b(x) by (13) if k = f and (22) if & = d, so that Lyvg(z) = b(x) and b
must be constant over [x,00) since it is increasing and vy > b, and thus =z > 0.
Now suppose that vgy is constant with value vg(X(h)) for all h € H(z() and
¢ € Zi(xg). Fix & := (0,x) € Ej(z0) and a history h € H(xy). Note that (27)
follows from (21) if k = d, so that it is enough to show that o(h) = ax(X(h)) a.e.
If Livg(X(h)) > vk (X (h)), then o(h) = ag(X(h)) a.e. by (13) and (11) for k = f,
and (22) and (19) for k = d. If instead Lyvg(X(h)) = ve(X(h)) then X (h) > 0,
and thus o(h) = 0 = ai(X(h)) by (28) and (12) for k = f, (23) and (20) for
k = d. Hence o(h) = ay(X(h)) a.e.

To prove that vey is constant with value v, (X(h)) for all h € H(zy) and
€ € Zi(xo), define vy, v, : Ry — R by

Up(x) == ir;(f)’sup{vg(y) (x—e)VO<y<z+e¢leXi(y)}

v () = sgginf{vg(y) (x—e)VO<y<z+eleXi(y}
Note that v > v, and vg, takes values in [v, (X (h)), v,(X (h))] for all € € Z;(x)
and h € H(xg). Then, it suffices to show that v, = v, = v,.
I show that v, = v, relying on Claim 2. A similar reasoning yields that
vp = v,. Note first that vy is upper-semicontinuous and, hence, Borel. Also, b <
vy < 7 < v, where the last inequality holds as v, is continuous and ve(z) < v, ()

for all x > 0 and £ € Z5(z), so that lim, . Uy — vx, = 0 by Proposition 1.
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I show that, if k = d, then lim,, v4(2™) — b(2™) = 0 for any bounded sequence
(™) men C Ry such that lim,, Prp(v4(z™ + 2) < 94(2™)) = 1. Fix (2")men C Ry
and note that lim,, Er[0 V (04(z™ + Z) — 04(2™))] = 0 and that, for all m € N,
y — Ep[0V (04(y + 2) — 04(zy))] is upper-semicontinuous at z,,, since Uy is
upper-semicontinuous. Then, it is clear that there exist sequences (Y, )men C Ry
and (" )men = (0™, X" )men € [Lnen Zi(ym) such that (ym)men is bounded and
b(y™) — b(x™), Va(x™) — vem(y™), and Er[0V (04(y™ + Z2) — vem (y™))] all vanish as
m — oo. Hence, it suffices to show that lim,, vem (y™) — b(y™) = 0. Since (Y )men
is bounded, (vem ym)men is uniformly I-Lipschitz for some [ > 0. Also, for all € > 0
and m € N, as vem ym is bounded, there is t,, > € such that vem ,m is increasing

over [0,t,, — €], and differentiable at ¢,, with derivative lower than e. Then

vem (y™) = vem ym (0) < vem ym (b — €) < e+ vgm ym ()
< (L4 De+b(y™) — (o™ (h)](tm), y™)

+ Alo™(h)] (tm) Z Er[0V (vem(y™ o (tm, 2,1))] — vem ym (tm))]
<UL+ An) + 1e+b(y™) + AnEp[0V (04(y™ + 2) — vem (y™))]

where the third inequality follows from (19), (20), and (21), and the last inequality

holds since vem (y™ o (tm,2,1)) < va(y™ + 2) for all i. Letting m — oo yields

lim,, vem (y™) — b(y™) < [I(1 + An) + 1], and result follows as € > 0 is arbitrary.
In light of Claim 2, it remains to show that v, — vy < L0, — Livg. Since vy, is

continuous, it is enough to show that, for all z > 0 and ¢ € Z;(z),
ve(x) — vg(2) < Lytg(z) — Livg(x). (32)

I show that Lvy > v;. Suppose that Lug(z) < 0x(2) for some & > 0 and seek
a contradiction. If so, then £ = f and, since L;v; is upper-semicontinuous (as
Uy is), there exists € > 0 such that L;0; < vy(2) over [ := [(Z —¢€) V 0,2 + €.
Then, there is z € I and o € Z}(x) such that vy(x) > Lfvs(x). Let t := sup{s >
0 : v, > Lyvg(x) over [0, s]} and note that ¢ > 0 since v,, is continuous and
V52(0) = v, (x). But then Ep[v,(x o (s, 2,1)) — v,.(s)] <0 for all i and s € [0,1),
since v, (z 0 (8, 2,1)) < Up(x + z) for all z > 0, and thus o(x) = 0 a.e. over (0,¢)
by (12). Hence v,(z) = b(z) if t = 0o and v,(z) = (1 — e ")b(x) + e v, (1) =
(1—e")b(x) + e "Lsvs(z) otherwise (as v, is continuous at t). This contradicts
the fact that v,(z) > Ls0s(x), since Lyvg(z) > Lsb(x) > b(x).

To prove (32), fix z and £ := (0, x) and assume without loss that ve(z) > vi(z).
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Let t :==sup{0} U{s > 0: o(z) < ai(x) a.e. on (0,s)} and define

5 Lyvg(z) — Lyvg(x) + vp(x)  if £ < 00 & 6 ve(t) it <oo
. 0 if t =00 ' 0 if t = o0.

I claim that ¢ < ¢.. Indeed, if t < oo then ai(z) < 1 and, for a.e. s > ¢ such that
lo(2)](s) > ag(x), and each i,

Lyog(2) = vew(s) = Ep{{x(2)](s, 2)(ve(x 0 (s, 2, 1)) — ve(s))}

where the first inequality holds since x(x) is constant with value 1 if k = f,
Livg () > 0(z) > vep(s) if k = d, and vg(x + 2) > ve(x o (s, 2,4)) for all z > 0,
the second follows from (12) if & = f, and from (20) and (21) if £ = d, since
[0(z)](s) > 0, the third holds since [o(x)](s) > ax(z), and the last follows from
(14) if k = f and from (23) if k = d, since oy (z) < 1. Then, since v, is continuous
at t, ¢ = ve () < Lpvg(x) — Lypvg(x) + vi(x) = s

Let A be the set of Borel a : (0,00) — [0,1]. Given a € A, let N(-,a) be the
CDF of the random time 7 of the first innovation, if agents exert effort according

to a (with 7 = oo if no innovation is produced). Let

SAL
®(a,v,w) = // b(x) — c(a' (1), z)dr + e *(T<;v + Lysw)N(ds, a),
0

for all v,w € R, and 0 := maxgea, P((a, ag(z)" 1), Lyx(), ¢«). Note that, writ-

ing a" := (a,...,a) € A} for any a € A,

?ZlEF[Ug(Q?O(S,g,Z')],QS) 1fk:f
i1 Er[vea(s) Vug(zo(s,2,4)],¢) if k=d, by (21)

where the first inequality holds since ve ,(s) < Ux(z) and ve(zo(s, z,1)) < vg(x+2)
for all s,z > 0 and 7, and ¢ < ¢., and the second since o(x) < ay(z) over [0,1),
Lyt (x) > b(x), and Lyv(x) > ¢. (as Lyvg > vg).

Therefore, it suffices to show that 0 — v (x) < Lty (x) — Lyvg(x). To this end,

let a € Ay achieve v, and note that

vp(2) = max ®((a, o (2)" ), Liv(z), vp(z)) > @ ((@, c(x)" "), Leve(x), vi(z))

a€A
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so that
0—wvg(z) < [Lpvg(z) — Lyvk(z)] /eSAtN(ds, (a, aw(2)")) < Litg(z) — Livg().

Thus (32) holds, and therefore v = v, by Claim 2. O

B Proof of Proposition 2

Fix & > 0 at which (15) fails. The map
Y:x— MEp[b(x + 2) —b(x)} — 1(0, )

is decreasing as b is concave and ¢ (0, x) is increasing. Then, there exist € > 0 and
Z > Z such that 1 (z) + 2Xe < 0 for all z > z. By Proposition 1, we may choose
sufficiently large so that v.(x) — b(z) < ¢/n for all z > 7.
Fix a PPE ¢ = (¢%)™,. Note that, for any ¢ and history h such that X (h) > z,
vy (h) < v.(X(h)) + ¢, for otherwise nv.(X(h)) > 377 vi(h) > v (X(h)) + € +
(n—1)b(X(h)), contradicting V(X (h)) < b(X(h))+€/n. Then, for any history h
such that X (h) > Z, any ¢ and s > T'(h),

MEr[vg (ho (s, 2,1))] = von(s)} < MEp[v.(X (h) + 2)] + € — b(X (h))}
< MEp[b (X (h) + 2)] + (1 + 1/n)e — b(X(h)} < (0, X (R))

where the first inequality holds since v, (s) > b(X (h)) and, by the previous step,
for all z > 0, v,(ho(s,2,i)) < v.(X(h)+ 2)+ €. Then no effort is exerted in o at
history h, by (12).

Assume without loss that o?(xy) > 0 is non-null, for some i (so that xy < ),
and define:

z, :=sup{z > zo : 0'(h) > 0 is non-null for some ¢ and h with X (h) > z}.

Then, it suffices to show that z, < z. From above, z, < ¥ < 0o. Fix € > 0 and a
history h such that z, — é < X (h) < z,, and 7 such that ¢*(h) is non-null. Then,
there exists ¢ > T'(h) such that [0°(h)](t) > 0 and (12) holds, and thus

c1(0, X (h)) < e1 ([0 ( (1))
< A{EF[ ( ( )] — Vo ()}
< MEp[Tscew(X (h) + 2) + Lsseb(X (R) + 2))] — b(X (h))}

where w(x) := b(x)+nA[b(u) —b(0)] is an upper bound on v, (as established in the
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proof of Proposition 1), the second inequality follows from (12) since [o%(h)](t) > 0,
and the last since v, ,(t) > b(X (h)) and, for all z > 0, v,(ho(t, z,1)) < w(X(h)+2),
and v, (ho (t,2z,4) = b(X(h) + z) for z > x, — X (h). Since (15) holds with ‘<’ for
x > &, letting € tend to 0 yields X (h) < z, so that z, < Z, as desired.

C Proofs of Propositions 3 and 4

In this appendix, I prove Propositions 3 and 4.

Claim 4. For any x > 0, Eplvs(z + 2)] > vs(2).

Proof. Fix x > 0. If ag(x) > 0, from (14),
MEr[os(z + 2)] = vp(2)} = er(ay(z), 2) > 0.

If instead ays(z) = 0, ay(y) = 0 for all y > x, as a; is decreasing (Theorem 1).
Then
Eplvs(z + 2)] = Ep[b(z + 2)] > b(x) = vy(2)

where the inequality holds since b is increasing. O]

Proof of Proposition 3. The first part is immediate from Claim 4. For the second
part, suppose that c(a,z) = ¢(a). We shall show that vy is increasing. recall from
the proofs of Theorems 1 and 4 that v is the unique fixed point of Py in ‘A/, that Py
maps V to itself and is increasing, and that Visa complete lattice (with respect
to the pointwise order). Let V’ be the set of v € V that are increasing. It suffices
to show that Py admits a fixed point in V'. Note that V' is a complete lattice.
Then, since Py is increasing on ‘7, by Tarski’s fixed-point theorem, it suffices to
show that Py maps V' to itself. Fix v € V'. Note that Pyv € ‘7, so that it remains
to show that Pjv is increasing.

Since v is increasing and v — b is decreasing, v and, thus, Lsv are contin-
uous. Then, p(Lsv(z),z) and, therefore, Psv, are continuous. Moreover, from
Step 3 of the proof of Theorem 4, p(x, Lyv(x)) is decreasing in x. Let I, :=
{r >0:p(z,Liv(x)) =a}fora € {0,1} and [ := R \(LoUL). If p(x, Lyv(z)) =0
for some x > 0, then I is an interval, and Pyv = b over Iy, so that it is increasing
on Iy. If p(x, Lyv(x)) € (0, 1) for some x > 0, then [ is also an interval. Moreover,

for any x € I,

A[Lsv(z) — Ppo(x)] = /\Lfv(z) _1 [ji(;)%: (e, 7) = (a)

where a := p(z, Lyv(x)), the first equality follows by definition of Py, and the sec-

ond from (28). Then Pyv is then increasing on I, as v is increasing and p(x, Lyv(z))
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is decreasing in . Finally, if p(z, Lyv(x)) = 1 for some x > 0, then I; is an interval,

and
b(z) — c(1,z) + AnLsv(z)

1+ An

Ppo(z) =

over I. Then, Pv is increasing on I since b(x) — ¢(1,z) and v are increasing.
Therefore, Prv is decreasing since Iy, I; and I partition R, and Pyv is continuous.

]

The proof of Proposition 4 relies on the following intuitive result, proved in

Online Appendix K.

Lemma 2. Suppose that (3) holds. Then, innovations are detrimental if and only

if vy is not increasing on [zg, 00).

Proof of Proposition 4. We may assume without loss of generality that ¢, (0, z) >
0, for otherwise b'(zs) = 0 by (15), so that (18) holds with equality and there is
nothing to prove. By (15), af(z) = (>) 0 for all + > (<) z¢. Then vs(z) = x
for all # > zy, and so innovations are detrimental for any initial stock z¢ < xy
if and only if vy is non-monotone on (z,zy) for all < ¢, by Lemma 2. Hence,
it suffices to show that, for any » < z sufficiently large and any & € (z,zy),
ve(x) < (>) vp(z) if (18) holds with ‘<’ (with ‘>7).

Since ay is continuous (Theorem 1), y; := max{z > 0 : ay(z) = 1} < .

Then, as vy is also continuous, for any = € [yr, x|,
MEp[vp(z + 2)] = vp(2)} = er(ay(z), 2)
by (14). Hence, given y; > x > & > xy, writing Av := vs(x) — vy(2),
MAE—-Av) = ¢1(ap(z), x) —c1(ap(2),2) = Aci+cr(ap(z), 2) —er(ap(2), &) (33)

where AE := Ep[vf(xz + 2) — b(2 + 2)] and Acy = c1(ap(z),z) — cr1(ap(z), ).
Note that v¢(z) — b(z) + c(af(z), z) = nag(x)cr(af(x), z) for any = € [yg, z¢], by
(7). Then, given y; < x < & < zy such that c;(ayr(z),2) > c1(af(2), ), there are
a,a € [ap(2),ar(x)] such that c(as(x), ) — c(af(2), 2) = [af(x) — ap(2)]ci(a, Z)
and ¢ (af(2),2) — c1(af(2), 2) = [af(x) — ap(2)]e1(a, ). Hence, setting Ac :=

c(ay(z), z) = clag(x), ),

Av —b(x) + b(2) + Ac = nay(z)[c(ap(x), 2) — er(ap(2),2)]
+ [nei(ayp(2),2) — ai(a, 2)] o () — ay(2)]
AMAE — Av) — Ay

C11 (CAL7 i‘)

= na (2)MNAE — Av) + [nei(af(2),2) — e1(a, 2)]
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where the second equality follows by (33). Then Av has the sign of
{b(x) = b(z) — Ac+nay(z)AAE}eri(a, 2) + [ner (o (2), 2) — c1(a, ) [(AAE — Acy).

Note that, as z T zy,

(i A N A
ba) = b@) iy, B Ly LR (a43)] & 2
Tr — X Tr— X Tr — X r—X

— 012(0, {L‘f)

uniformly for all & € (x,xy), since ay(x) — 0. Thus, for = < z; sufficiently large,
ve(x) —vp(2) > (<) 0 if (18) holds with ‘<’ (*>7).

Finally, suppose that, for all x < =z, there exists £ € (x,x;) such that
ci(ap(x),z) = c1(ap(2),z). Then ¢11(0,2¢) = 0 and, by (33), for z < z; suf-
ficiently large and any & € (x,z) such that ¢;(ay(z),2) = c1(ap(2),2), v(z) >
(<) vy(2) if (18) holds with ‘<’ (with >7), as desired. O

D Proof of Theorem 2

For the first part note that, by Theorem 4 and Proposition 6 (Appendix A), SSE
are precisely the profiles induced by strategies (ag4, x) such that x solves (27), and
that oy and vy inherit the properties of ay and vy described in Theorem 1.

I show that vg > vy. From Steps 1 and 2 of the proof of Theorem 4, it suffices to
show that the map (Py, P;) admits a fixed point in the set V of pairs (v,w) € VxV
such that v < w. From Step 1, Vis a complete lattice and (Py, P;) is increasing
on V. Then, from Tarski’s fixed-point theorem, it suffices to show that (Py, Py)
maps V to itself.

Fix (v,w) € V. From Step 1, (Prv, Pyw) € V x V. Moreover, Lyv < Lyw since
v < w. Then, p(x, Lyv(x)) < p(x, Lyw(z)), since p(z,1) is increasing in | (Step 1
of the proof of Theorem 4). Hence, for all 2 > 0,

Pyo(z) = T(p(z, Lyo(z)), 7, Lyo(x)) < T(p(z, Lyo()), 2, Law(z))
< I'(p(z, Lqyw(x)), x, Lgw(x)) = Pyw(x) (34)

where the first inequality holds since I'(a, z,[) is increasing in [, and the second
follows from Claim 3, as p(z, Lyv(z)) < p(z, Law(z)). Then (Psv, Paw) € V.
To show that aq > ay, note that Lqug > Lsvs since vg > vy. Then, ag > af
as ag(x) = p(z, Lyvg(x)) for all 2 > 0 and k € {e,d}, and p(z,) is increasing in [.
For the last part, suppose first that innovations are not detrimental. Then,
it is clear that the game with disposal admits a SSE that coincides on path with

ay. Then, (ag4,04) coincides with oy since it is the unique SSE of the game.
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Suppose now that innovations are detrimental. Let Xo = {z > x¢ : ay(z) > 0
and Prp(v(z + 2) < vg(x)) > 0} and define (X,,)5°_; recursively by X, := {z >
xo : ap(zr) > 0 and Prp(z + 2 € X,,—1) > 0} for all m > 1. By hypothesis,
xo € X, for some m > 0. Then, it suffices to show that vy > v; over X,, for
all m > 0. I proceed by backward induction on m. For the base case m = 0, fix
x € Xy and note that Lgvg(x) > Lgvs(x) > Lyvs(x), where the first inequality
holds since vg > vy. Then, vy(z) > vy(x) by the argument used to derive (34), as
ag(xr) > 0. For the induction step, fix m > 0 and suppose that vy > vy over X,,.
Fix z € X,,+1 and note that Lsvg > Lyvg > Lyvs. Then, vg(z) > v(x) by the

argument used to derive (34), as ay(z) > 0.

E Proof of Lemma 1

The ‘if” part is immediate, since concealment has no value if opponents exert no
effort. For the ‘only if’” part, fix an initial stock x¢ < Ap. It remains to show that
a, coupled with the full-disclosure policy, does not form a PBE. Label this profile
&r. From (3), there exists z < Ay — g in supp(F).

Suppose that &; is played at initial stock Ay — 2z and the first innovation,
obtained by some agent i at some time ¢, has size z. Then, agent i discloses fully
at time ¢, and no agent exerts any effort thereafter. This raises the public stock to
A, so that the time-¢ continuation payoff (to each agent) is Au. Because Au solves
(15), after time ¢, agent ¢ would also earn Ay if she exerted maximal effort until she
obtained a further innovation, disclosed it fully, and exerted no effort thereafter.
Consider the time-t deviation for agent ¢ in which she does precisely this, but
conceals fully at time ¢. Conditional on the opponents of agent ¢ obtaining no
innovation after time ¢, agent ¢’s continuation payoff is again Au. This is because
exerting full effort yields no flow of payoff (i.e. u(1,2;) = 0), so the fact that the
public stock x; equals A — z instead of A\p after time t has no effect. Because
z > 0, Corollary 3 implies that as(Apu — z) > 0. Then, the above deviation is
profitable, as the opponents of agent ¢ will obtain an innovation before her with
strictly positive probability.

By continuity, there are open neighbourhoods X of Ay — 2z and Z of 2z such
that, if {; is played at zy, and an agent obtains an innovation of size within Z at
some time t such that x; € X, agent ¢ has a profitable deviation at time ¢. From

(3), this occurs with positive probability, so that ; does not form a PBE.
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F  Proof of Theorem 3

The proof of Theorem 3 has two parts. In this appendix, I show that there exist
an effort schedule of(k) that is increasing in &, and a disclosure cutoff ¢(t) taking
values in [Ap, Aun], such that a family of strategy profiles matching on path the one
described by Theorem 3 constitute Bayes-Nash equilibria. The formal statement of
this intermediary result is Proposition 7 below. I complete the proof of Theorem 3
in Online Appendix [..4, by choosing a particular profile from the aforementioned
family, and specifying off-path beliefs inducing a PBE.

The rest of the argument is structured as follows. I begin with several def-
initions, and state Proposition 7. I then state a dynamic-programming result
(Lemma 3 below), and show that Proposition 7 holds as long as a given Bell-
man equation admits a solution (Lemma 4 below). In Appendix F.1, I define a
discrete-time, finite-horizon approximation of this Bellman equation and construct
a solution for any time length and horizon (Lemma 6). I then prove Proposition 7
in Online Appendix [..2, relying on continuity and compactness arguments.

As noted in Section 8.3, Theorem 3 is immediate from Lemma 1 if xq > Ap, so
that we may assume without loss of generality that zy < Au. Let S be the quotient
space of Borel a : R2 — [0, 1] such that oy : Ry — [0, 1] is increasing for all ¢ > 0,
with respect to the equivalence relation ~g, defined by a ~s o' if and only if
5 as(k)ds = [, o/ (k)ds for each t,k > 0. Let Q be the set of ¢ : Ry — Ry such
that ¢(¢) < liminf,; ¢(s) for all t > 0, and Qg be the set of lower-semicontinuous
q € Q with image in [Au, Aun], such that ¢(0) = liminf; o ¢(¢). Recall from Online
Appendix H.3 the formal definition of the game with concealment. Given q € Q,
let H é be the set of private histories histories h € H* for agent i featuring at least
one disclosure and such that either (i) K*(h) = X (h) > Ay, or (ii) K*(h) < Aun,
agent ¢ did not disclose, and the first disclosure occurred at some time ¢ < T'(h)
and raised the stock to some value x < ¢(t). Given o € S, let =,, be the set
of symmetric strategy profiles ¢ such that, (i) in any period ¢ prior to which no
disclosure occurred, agent i exerts effort oy (k}), discloses fully if z;, < ki > ¢(t)
and conceals fully otherwise and (ii) agent i exerts no effort and does not disclose
after any history in H ;. Suppose that the opponents of agent ¢ play some £ € =, .
Note that, given ¢ > 0, if no disclosure occurs within [0,¢), agent i believes that
the private stocks (k]);.; of her opponents are i.i.d. with some CDF pinned down
by t, @ and ¢q. Label it Gy(«,q), and let Gy(«, ¢) be degenerate at zy. Recall the
definitions of beliefs 3, and information sets (h, 3,) from Online Appendix H.3.
Given t > 0, let B, (t) be the set of agent 4’s beliefs 8, := [[,; 8] such that, for
all j # i, the pushforward of 8] by K7 is Gy(«, q).

Proposition 7. If zy < A, there are « € § and q € Qqy such that, for any
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£ €Zny and any i, £ is a best response against £ at any information set (h, B)

such that X (h) = xo and B, € B, ,(T(h)).

Several definitions are needed to state the next result. For all x > 0, let
v(z) be the value of the single-agent game with initial stock z. Given ¢ > 0 and
k> x > A, let 9(x, k) be the time-t value of an agent i with k! = k, assuming
that she does not disclose at time ¢, that z; = = > x(, and that her opponents
do not disclose for the remainder of the game. Let V' be the space of 1-Lipschitz
continuous, increasing and convex maps v : R, — R, let V{j be the set of v € V
such that v = v on [Aun, 00) and v — v is decreasing, and let Vy be the set of maps
v : R, — Vj that are continuous in the supremum metric.

Let A¢ be the quotient space of Borel a : R, — [0, 1] by the equivalence relation
identifying a and & if and only if fot asds = fg asds for all t > 0. Given ¢ € [0, 0]
and a € A° let H(a,d) be the CDF of the random time 7 of the first increment
obtained by an agent who exerts effort a4 at any time s < ¢, and no effort after
d (with ‘m = o0’ if no increment arises). Given o € S and ¢ € Q, suppose
that the opponents of agent ¢ play some £ € =,,. Note that, if no disclosure
occurred by time ¢ > 0, assuming that agent ¢ does not disclose after time ¢, the
joint distribution of (7, k), where ¢t 4+ 7 is the time of the first disclosure by any
opponent of agent i after time ¢, and & is the value disclosed (with ‘7 = 0o’ and

xk = 0 if no opponent discloses), is pinned down by ¢, «, and ¢. Label it J(¢, a, q).
Lemma 3. Suppose that o < Au. Given o € S, q € Qq, and v € V,, TFAE:

(a) For any & € 2,4, 1, and information set (h, B,) for agent i such that X (h) =
zo and fa € B (T(h)), £ is a best response against = at (h,b) and yields

agent i continuation payoff vi(kl).

(b) For eacht >0 and k > x,

T
vy(k) ;== sup E xO/ e (1 —ay)ds
0

4€[0,00]
acA°

+ 67T<]l%=f@t+f(’%= kVE)+ ]lﬁzf“thrT(k +2) + ]lfzaﬂuf))} (35)

where (7~r, (%, r?a), 5) ~ H(a,d) x J(t,a,q) X F and T :=#A7AS. Moreover,
the objective in (35) is mazimised by 6 € [0,00] and a € A® given by

§:=min{s>0:k>q(t+s)}U{oo} & a:s am,k). (36)

I omit the proof of Lemma 3, as it is a standard dynamic-programming result.

The Bellman equation (35) may be understood as follows. At any time t prior
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to the first disclosure, an agent 7 with private stock k! = k picks a delay d after
which, if she obtained no increment and none of her opponents disclosed, she
discloses fully (where § = oo if agent i does not disclose in this situation), and
a schedule a describing her effort until either she obtains an increment, or an
opponent discloses, or time ¢ + ¢ is reached. Agent i’s value after she discloses
fully is v(k) as, following such a disclosure, her opponents do not disclose for the
remainder of the game. Moreover, given a realisation (7, k) of (7,&), agent i’s
value after an opponent discloses k at time ¢t + 7 is Oy, (K, k V K).

In light of Lemma 3, to prove Proposition 7, it suffices to exhibit a« € S, ¢ € Qy,
and v € Vy such that (b) holds. I end this section by deriving a strengthening of
(b) (Lemma 4), expressed in a language that allows us to formulate a discrete-time
approximation of (35) for any time length A > 0. Several definitions are necessary.
Given A > 0, for all a € [0, 1], define the CDF F2 with support within R, by

F2%(z2) = (1— e_“A)‘)F(z) +e N for all z > 0.
Let vy : Ry — R be the unique element of V' solving the Bellman equation

ua() = (lrg[%?lc} z(1—e?)(1—a)+e *Epaafvn(z + 2)], (37)

and v, := v.*® Let V be the set of Borel v : R — R such that v; € V for all ¢ > 0,
Y = [0,00] x A° & O =R% xSxQxV

with typical elements y := (0,a) and 6§ := (A, t, k, a, q,v), respectively. Let I :
Y’ x ©9 — R be given by

T _
I(y,0) = E{xo/o e (1 —ag)ds + e " [Laszzsv,, 7(k + 2)

+ (1= Lisres)ua (b +1,272) V1_gR)] }

where y := (d,a), 0 := (A, t,k,a,q,v), T :=TANT NG,

ATy /AT, Al7Tg/A if A>0
. ::{<~ /A Af70/A) £ 5> o5
(7o, 7o) if A =0,

and (7o, (70, &), 2) ~ H(a,0)xJ(t,a,q)xF. Given A > 0, let Tx := {0,A,2A, ...},

Th :=TaU{o0}, AL be the set of a € A that are constant over [(m — 1)A, mA)

46. We may view v, as a discrete-time approximation of the map v for time length A > 0. In
particular, vx — v uniformly as A — 0.
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for all m € N. Let Ty := R, Ty := [0, 00|, and A§ := A. Define I* : ;5 — R by

I"(0) .= sup I(-,0) forany 6 := (At k,a,q,v).

TAXACA
Lemma 4. Let a € S, g € Qq, and v € Vy be such that, for allt > 0 and k > x,

v(k) =17(0) = 1((d,a),0) where 6 and a are given by (36), (39)

holds with 6 := (0,t,k,«,q,v). Then, any £ € =, is a Bayes-Nash equilibrium.

Proof. In light of Lemma 3, it suffices to show that (b) holds. Fix ¢ > 0 and
k > xo, let 6 := (0,t,k,, q,v), and label Ij(d,a) the objective on the right-hand
side of (35) for any ¢ € [0,00] and a € A°. Let §* and a* be the values of 0 and
a in (36). Then, it suffices to show that I(d,a) < I((6*,a*),8) for any § € [0, o]
and a € A°, where equality holds for (4,a) = (6*,a*). Fix § and a and suppose
without loss that § > 0. It suffices to show that, given (8,7) ~ J(t, a,q), a.s.,
U7 (R, kVE) <wv(kVE), and that equality holds if (§,a) = (6%, a*). For the former
note that, a.s., & > ¢(7) > A so that 0y, (R, kV R) < kVk =uv(kVE). For the
latter, note that & > k a.s. if 0 < § = 0%, so that v, (K, kV R) =k V k. O

F.1 Approximate Bellman equation

In this section, I define a discrete-time, finite-horizon approximation of the Bell-
man equation ‘v;(k) = I*(0)’ (Lemma 4), and show that it admits a solution with
the desired property (36) for any small enough time length A > 0 and any horizon
M € N (Lemma 6 below). As part of the analysis, I establish bounds for the
disclosure cutoff ¢ that is part of the solution, and show that they converge to the
desired values as the approximation becomes more accurate (Lemma 5 below).

I begin with several definitions. Recall from Appendix F the definitions of S,
Q,V,J, FA~%*and v,. Let S be the set of increasing o : R, — [0, 1], and

Y :={0,1} x[0,1] & O, =Ry xS" xR xV forallmeN,

with typical elements y := (d,a) and 6 := (k,a,q,v), respectively. Let Ia,, :
Y x 0,, — R be given by

Inm(y,0) = § 2(1 —e™2)(1 — a)
+ e BE[Licnva (B V (k4 2)) + Lspv(k+2)] ifd=1

where y = (8,a), 8 = (k,a,q,0), (2 (F.R) ~ F2¢ x J((m — 1)A,&,q), and
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& € S and ¢ € Q are such that & = oy and ¢ = ¢ for all [ € {1,...,m} and
te[(l—1)A,IA). Also let I} ,, : ©p — R be given by

IN . (0) = max Inm(-,0).

I define bounds g} and ¢ for the disclosure cutoff ¢ for each A > 0, and bound
their values as A vanishes (Lemma 5 below). Given A > 0, let g5 be the largest
x > 0 such that the objective in (37) is maximised by a = 1, and

gk = sup {k‘ eR, :arg m[ax] Inm((1,a), (k, o, q,v)) > k > max q for m € N,
ac|0,1

a€S™ qgeRY and v € V, such that v(l) = [ for all [ > k;}

Lemma 5. g, < gf < oo for all A > 0. Moreover, liminfa ,oqx > Ap and

lim supa_,0 A < nAp.

Lemma 5 is proved in Online Appendix [..3. Next, I restate (39) in a language
that allows to formulate a finite-horizon approximation for any given time length
A > 0 (Remark 1 below). Given A > 0, let Qa := [qg, qﬂ, and Va be the set of
v € V such that v — v, is decreasing and v(k) = va(k) for & > g{. Let Qa be
the set of ¢ € Q that have image in QA and are constant on [(m — 1)A, mA) for
all m € N. Similarly, let Sa (Va) be the set of & € S (v € V) such that, for all
k>0,t— aik) (t = v (k)) is constant over [(m — 1)A, mA) for all m € N.

Remark 1. Let A > 0 and (@, Gm, Um)men C S X Qa X Va be such that, for all
m € N and k > x,

O (k) = IZ,m(/’f’ Om) = Inm((Lk<gm, ¥m); Om) (40)
where 0,,, == (k, ()1, (@)%, Vm+1). Define (&, ¢,0) € Sa X Qa X Va by
(G, Gty 0¢) = (), G, V) for all m € Noand t € [(m — 1)A,; mA). (41)

Then (39) holds with v = ¢ and 0 := (A, t,k, &, q,0) for any ¢t € Ta and k > x.

Remark 1 is proved in Online Appendix [..3. T end this section by showing that
there are (well-behaved) sequences of arbitrary length in S x QA x Va that satisfy
(40) (Lemma 6 below). Recall the definition of G¢(«, ¢) from page 45. Note that
Gi(a,q) = Gi(&, q) for any & € S, and ¢ € Q such that « = & and ¢ = ¢ on [0, ).
Given A >0, m € N, a € ™, and ¢ € R, define

GA’m(oz, q) := Gual(&, q) (42)
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where @ € S and ¢ € Q are given by &; = oy and ¢ = ¢ for all [ € {1,...,m}
and t € [(I — 1)A,IA).

Lemma 6. There are Ay > 0 and ~ : (0,00) — (0,00) such that, for any A €
(0,A¢) and M € N, there are a € SM, ¢ € QX and v € V! such that, given
anym=1,..., M, (40) holds for all k > x¢ and, moreover,

sup|vm+1 - Um| \% |gm - gm—1| < W(MA)A, (43)

where g, = GA™ ()™, (@)™,) form =1,..., M, and gy is degenerate at xo.

Endow S with the topology of pointwise convergence. The proof of Lemma 6

relies on the following remark, Online Appendix L..3.

Remark 2. Given A > 0 and m € N,

(@) > (s maxarg s Tn(1,0), (5 .0)))
ac|0,

is a well-defined and continuous map S x QX x Va — S, and
(v, q,v) — (k — Iz,m(k, a, q,v))

is a well-defined and continuous map S™ X QR x Va — Va.
Proof of Lemma 6. From Lemma 5, we can choose Ay > 0 such that

Ao_l
q:= ¢ A X sup{qz A€ (O,Ao)} U{l, \u} < 0.
0

To define v, note that there exists € > A such that, for all m € N, A € (0,Ay),
a€l0,1], k<qgl,aeS™ qe QR and v € VA,

/ TG + g (gm0 (k) — Iam((1a), (kv q,0)| < A

qm

where, recall, gy is degenerate with value z, and g,,_1 := G>™ 1 ((a))"]", (@)7))
for m > 1. Moreover, as F' is Lipschitz, there is an increasing map vy : Ry —
[1,00) such that Gy(a, q) is vo(t)-Lipschitz on [xg,00) for all & € S, ¢ € Q, and
t > 0. Define 7 : (0,00) — (0,00) by

V() := 3engo(t).

Fix A € (0,Ap) and M € N. To construct a € S™, g € Q¥ and v € VI
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let w: SM x QM — VAT be given by wasy1(a, q) := v,, and

[wm (e, PI(K) = I (K, @™, 4™ wma (@, q))

for each m € {1,..., M}, where o™ = (o), and ¢ := (q);*,. Note that
wyry1 has image in Va, and it is constant. Then Remark 2, coupled with an

induction argument, implies that w is well-defined and continuous. Define the
map ¢ : SM x QN x VT — SM x QA x VMH! by

o(a,q,v) = ((k ~ maxarg max Inm((1,0), (@™, 4™ Wi (@, )))) o,

([, 0)) (@)oo w0, 0) )

Since w is continuous and V' is endowed with the topology of uniform convergence,
¢ is well-defined and continuous by Remark 2. Then ¢ admits a fixed point («a, ¢, v)
by Brower’s fixed-point theorem, as S is compact by Helly’s selection theorem, and
VA is compact by the Arzela-Ascoli theorem.

Fix m € {1,...,M}. To prove (40) note that, by definition of ¢, it suffices
to prove that v,,(k) < (>) va(k) for all £ > (<) ¢,,. This holds since v,,(¢) =
Gm < VA(qm), and v, — v, is positive and decreasing (as v, € Va).

It remains to prove (43). Let g* := g/},

Claim 5. 1 — g*(qm) < 2Aenyo(mA).

Proof. Assume without loss that g,,—1(gm) < 1. Note that g, is y((m — 1)A)-
Lipschitz and, therefore, vo(mA)-Lipschitz on [z, 00), as 7 is increasing. Then
g* is nyo(mA)-Lipschitz on [zg,00) so that ¢* conditioned on the event (g,,,o0)

FOSD-dominates the uniform distribution over [g,,, ¢ + 1/(nyo(mA))]. Hence

qm + ! < o, 9” < 1—9"(gm) <2n (mA)/OOl—qd*
m Zn%)(mA) = 1_9*(qm> g m) X fYO o m g .

Then, 1 — g*(¢m) < 2Aenyy(mA) since

/ | — gndg" < / I — ¢ndg™ + 9" (@) [Vm+1(@m) — @]

qm dm

< / 1dg* + 9" (@m)Vm+1(gm) — Iam((1; am), (@m, @™, ¢™, Vmy1)) < €A

qm

where the first inequality holds as vy, 11(¢m) > @m (8 Uy € Va), and the second

as gm = Um(Qm) - [Z,m(qma am’ qm, Um—i—l) Z [A,m((ly am)a (qm> am’ qm’ Um+1>)- 0

To prove that sup |vy,i1 — vm| < Y(MA)A, let ky := min{k > 0 : v,, =

va over [k,00)} and note that kg < gy,,. Since v,,11 —v, is positive and decreasing,

o1



Uma1 — U 18 positive and decreasing on [kg, o0). Hence, we may assume without

loss of generality that ko > 0 and restrict attention to k € [0, k), so that

[Umi1(k) — vm (k)| <

[ o) = a0 +

qm

/ 14" () + 97 (@) v (B)

qm

—Iam((1, am), (K, @™, q™, vmﬂ))‘ < 2enyy(MA)A X §+ €A < y(mA)A

where the second inequality follows from Claim 5 since |v,,41(k) — | < g for all
[ > gy, in the support of g%, as ¢*(7) = 1 and k < vy41(k) < vm11(7) = va(7) = G-

It remains to prove sup |gm — gm-1] < 7(mA)A. To this end note that, for
k > qm, gm(k) =1 so that

|9m(F) = gm-1(E)| <1 = g"(gm) < 2Aenyo(mA) < y(mA)A

where the second inequality follows from Claim 5. Fix k € [xg, ¢,,]. If agent i plays
£ for some £ € Za,g where & € § and ¢ € Q are such that &; = oy and ¢, = ¢; for

all t € [ —1)A,lA) and [ = 1,...,m, and her opponents never disclose,

Pr<kzm—1)A <& Tm-1a = 330) > PI“(HHA <l&Tpn = a:0>

> Pr (]%E'mfl)A <IN G & Tm—1)a = x0> e~
for any [ > xo. Suppose that g,,(k) > gn—1(k). Note that

9n(k) = Pr (K < k|Ea = 20)

Pr (’%_m < k& Tm-na = x()) oA gm——l(k)eA’\

<
PI‘ (kZm—l)A S qm &*%(m—l)A — xo) gm—l(Qm)

so that, since k < ¢,,,
gm (k) — gm_1(k) < M — Im—1(gm) < M -1+ 2Aenvyy(mA) < v(mA)A

where the second inequality follows from Claim 5. Finally, suppose that g,,(k) <
gm—1(k). Note that, since k < g,

Pr (l%fm_lm <ENGn&Tm-1)a = x0>

Pl"(:i’(m_l)A = xo)

gm(k) > e M = gmfl(k>eiA>\

so that gn_1(k) — gm(k) <1 —e 2 < AN < y(mA)A. O
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G Proof of Proposition 5

In this appendix, I prove Proposition 5. Given &. satisfying the conditions of
Theorem 3, let A(&.) be the set of t > 0 such that, given some T > t, a5(zg) = 1
for a.e. s € (¢,7).

Claim 6. If (25) holds, there exists w > x¢+V such that v{(x¢) > w for any n > 2

and any af and v¢ that satisfy the conditions of Theorem 3 for n agents, and any
t ¢ A(&).
Claim 6 is proved at the end of this appendix. Given &, satisfying the conditions

of Theorem 3, let 7{(&.) be the probability that, conditional on no disclosure having

occurred prior to time ¢ when &, is played, a disclosure occurs before time ¢ + €.

Remark 3. For all w > 0 and € > 0, there is N > 2 such that, for any n > N
and &, satisfying the conditions of Theorem 3 for n agents, and any ¢ > 0 with
(t,t+¢€) C A(&) and 75 (&,) < 1 —€, vi(xg) > w.

The logic behind Remark 3 is the following: if (¢, +¢€) C A(&.) and m (&) <
1 — ¢, and n is large, then infy, ) ¢ is large as well. Hence k — vf(k) is ap-
proximately flat over [z, w]| for any fixed w > ¢, and choosing @ > w yields

v§(z) > w.

Proof of Proposition 5. Fix xqg < Ap and let w satisfy the hypothesis of Claim 6.
Note that there exists 2 > 0 such that, for any n € N, any &. and ¢ satisfying the
conditions of Theorem 3 for n agents, and any ¢t > 0 and € > 0 such that ¢(t) < w
and ¢(t) < q(s) for all s € (t,t + €), conditional on the first disclosure occurring
within (¢, 4 €) when &, is played, its value is at least ¢(t) + 2. This is because F
is not degenerate and, if a disclosure occurs in this case, the agent who discloses
must have produced a private increment after time ¢. Since 2 > 0 and w > xo+V/,
we may choose € > 0 such that e (1 — €)? > [(xg + V) /w] V [w/(w + 2)].

Given these € and w, choose N € N such that Remark 3 holds. Fix n > N and
&, satisfying the conditions of Theorem 3 for n agents. Since v’ (xy) < xo+ V for
any ¢ and any PPE o of the game with forced disclosure, it suffices to show that
vi(xg) > xo+ V. To this end, let

"=sup{0}UA(E) & t"=sup{0fU{t>0:7()>1—¢€forallsel0,t]}

and 7' = t' At”. Note that T < oo and let £ minimise ¢ over [0, 7’| (the minimum is
achieved since ¢ is lower semi-continuous, by Proposition 7 in Appendix F). Note
that

q(t) = vi(q(t)) = e (1 = )[(q(t) + 2) A w] (44)
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as the rightmost expression is lower than the time-¢ continuation payoff to an agent
who never discloses given that her opponents play &., conditional on no disclosure
having occurred prior to time ¢. The latter claim holds since v§(xg) > w if
t+e>T, and since m§(§,) > 1 —eif t + e < T and ¢(t) > w; If instead t + € < T
and ¢(t) < w, then the claim holds since 7§(£.) > 1 — € and, conditional on an
opponent disclosing within (¢, t+¢), the expected value disclosed is at least q(t)+ 2.
Then ¢(t) > e (1 — €)w by definition of € and thus, since ¢(t) = minyg 7 g, by
the logic used to obtain (44), v§(zo) > e2(1 — €)>w > xg + V, where the last
inequality holds by definition of e. O

Proof of Claim 6. Since (25) holds and F' is atomless, there exists a lowest w > 0
such that

and, moreover, w > zog + V. Fix n > 2 and o and v°¢ satisfying the conditions of
Theorem 3 for n agents, and t ¢ A(£.). As s — vS(xo) is continuous, it suffices to
show that, for all € > 0, there is s € [t,t + €) such that vS(zg) > w. Fix e. Recall
from the proof of Theorem 3 that v{(z) satisfies (35), and that ¢ and o satisfy
(36). Then (35) is maximised by ¢ = oo, since xy < A < ¢. Then,
as(xg) € arg m[%x] {aMEF[vi(zo + 2)] — v(w0)} — axo} for almost all s > ¢.
a€|0,1

(This follows from Lemma 7 in Online Appendix H.1 with b(x) = z, ¢(a,x) = axz,
w(s) := Ep[vs(zo + 2)], w(s) := E[R|T — t = s, and G being the CDF of ¢t + 7,
where (7,%) ~ J(t,a% q).) Hence, for some s € [t,t + €),

zo > MEp[vg(ro + 2)] — v5(zo) }
> MEp[(0 + 2) V vg(20)] — v5(z0)} = AEF[(70 + Z — v5(20)) V 0]

where the second inequality holds since k +— v$(k) is increasing and v¢(k) > k for
all k > xy. Hence v¢(x¢) > w, by definition of w. O
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