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Abstract 

This paper revisits the instrumental variable (IV) approach in Lipscomb et al. (2013, 2021, 

LMB) to study the impacts of electrification. We first make corrections to the construction 

of the dataset, including the modelled IV. Revised estimates on main outcomes and 

mechanisms are statistically insignificant, with substantially lower effect sizes. We second 

develop a framework that accounts for weak IVs and discourages specification screening. 

Applying it to LMB, we find that most theoretically justified specifications yield 

insignificant results. The proposed framework is transferable to other IV applications to 

reduce potential bias stemming from researcher’s or replicator’s discretion. 
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1. Introduction 

Causally identifying the effects of infrastructure access on economic development remains 

challenging, impeding evidence-based policy guidance in this investment-intensive field. In 

the electrification literature, several papers use geographic variation as instrumental variables 

(IVs), since randomization of power lines and other networks, as in Lee et al. (2020a), is 

practically impossible in most cases (see Lee et al. 2020b).  

This paper pursues two aims. First, we provide revised impact estimates from a computational 

replication of Lipscomb, Mobarak, and Szerman (2021, henceforth LMS 2021), a corrigendum 

of one of the most influential articles in this literature, Lipscomb, Mobarak, and Barham (2013, 

henceforth LMB 2013). The LMS (2021) corrigendum responds to a coding error in LMB (2013), 

diagnosed in our previous computational replication (see next section and Bensch et al. 2021, 

henceforth BPV 2021). We now show that errors related to the construction of outcome 

variables and the IV in LMB (2013) remain in LMS (2021); removing these errors leads to 

statistically insignificant effects in LMS’ (2021) main specification that are much smaller in size. 

We thereby augment the infrastructure and electrification literature by revisiting the findings 

from this seminal paper. 

Second, we argue that theoretically justified alternatives to LMS’ main specification exist and 

hence propose an IV sensitivity testing framework that reduces the room for selective 

researcher decisions in a structured, simple, and transparent manner. We apply this 

framework to the LMB/LMS data. The framework integrates recent contributions from the 

causal inference literature: We draw on specification curve analysis (Simonsohn et al. 2020), 

inference robust to weak IVs and screening on the first stage (Andrews et al. 2019; Lee et al. 

2022; Angrist and Kolesár 2022), reporting and publication bias in the IV-based literature 

(Andrews et al. 2019; Brodeur et al. 2020; Kranz and Pütz 2022), and more general concerns 

about sensitivity in IV settings (Young 2022).   

The framework comprises two steps, starting with a structured specification inventory that 

delineates the key researcher-decision domains, including the selection of control variables 

and the weighting of the regression. We find several choice options for six researcher-decision 

domains that have a theoretically similar justification as the choices made in the main 

specification in LMS (2021). The second step involves transparently reporting the range of 

results that emerges from combining the various choice options in different IV specifications. 
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For this transparent reporting, we adopt specification curve analyses following Simonsohn et 

al. (2020), including a simplified one-factor-at-a-time (OFAT) graph. This reveals that our 

revised main-specification estimates respond strongly to adjustments in the specification. 

LMS’ main specification stands out in terms of statistical and economic significance among a 

myriad of theoretically justified specifications. We conclude that this framework is 

transferable to other IV settings to prevent selective reporting and specification screening.  

In the case of LMS (2021), selective reporting originates from screening on first-stage strength, 

whereby researchers pretest theoretically justified specifications and keep specifications with 

stronger first stages (Andrews et al. 2019). The screening practice typically remains opaque in 

published articles. LMS (2021), though, make transparent that they pick a different 

specification than LMB to “retain first-stage power” (LMS 2021:1) in response to our previous 

replication in BPV (2021). Andrews et al. (2019) argue that this elimination of theoretically 

justified specifications not only opens scope for reporting and publication bias, but that it is 

also unnecessary, since inference robust to weak IV is possible.1 In our analysis, we therefore 

combine two recently developed approaches that are robust to weak IV and avoid this 

reporting bias.  

The first approach, from Angrist and Kolesár (2022), pretests on the first-stage sign and 

discards specifications with empirically wrong signs (a negative coefficient for the IV in the 

LMB/LMS case). This, according to Angrist and Kolesár (2022), narrows down bias 

considerably while not sharing the distorting effect on inference of screening on first-stage 

strength. The second approach, from Lee et al. (2022), implements what they call the tF-

adjustment as a “standard inference benchmark” that is robust to weak IVs and “not overly 

cautious” (Lee et al. 2022, p. 3279). This adjustment smoothly increases second-stage standard 

errors and hence widens confidence intervals as the first-stage F-statistic decreases. It thereby 

makes the common t-ratio inference approach robust to weak IVs without imposing further 

assumptions, in a similar way as Anderson-Rubin confidence intervals. To use the two 

approaches complementarily, we only flag but do not drop specifications with wrong signs, 

given that the tF-adjustment requires abstaining from screening out specifications based on 

 
1 Young (2022) furthermore cautions against screening on first-stage F-Statistics. As he argues, F-Statistics 

tend to be uninformative guides to the performance of conventional inference procedures in typical IV study 

setups. 
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pre-testing.2 As an additional robustness check we integrate the delete-one sensitivity test, 

which tests for the maximum change in estimates when deleting one cluster from the sample 

(see Young 2022). 

Our framework therefore provides structure for a comprehensive specification inventory  and 

presentation. While our focus is on the role of first-stage strength and potential screening for 

strong IVs, the framework likewise helps to reduce room for p-hacking, which, according to 

Brodeur et al. (2020), is particularly pervasive in IV applications. In practice, first-stage 

screening is likely intertwined with p-hacking in that researchers have incentives to jointly 

check first-stage F-statistics and second-stage p-values to ultimately pick specifications that 

deliver pleasant p-values at reasonable first-stage strength. In a similar vein, the framework 

also restricts selective behaviour from replicators (cf. Bryan et al. 2019). More generally, our 

framework may be useful when pre-registration and pre-analysis plans are difficult, as is the 

case in many setups where secondary data is used (Christensen and Miguel 2018; Burlig 2018; 

Ofosu and Posner 2021). In that context, the framework can be used in pre-analysis plans by 

pre-committing to a transparent post-hoc identification of researcher decision-domains. 

2. LMB (2013)’s instrumental variable, BPV (2021)’s replication and the LMS (2021) 

corrigendum 

LMB (2013) study the impact of electrification on two main development indicators, housing 

values and the Human Development Index (HDI), as well as on 17 additional mechanism 

indicators.3 Their identification strategy is to instrument actual electricity grid roll-out in Brazil 

from 1960 to 2000 by the hypothetical electricity grid coverage that would have emerged if no 

socio-economic but only geographic features had determined electricity infrastructure invest-

ments. Thereby, LMB (2013) aim to account for the likely endogeneity of infrastructure 

placement. 

 
2 The two approaches differ in that Angrist and Kolesár (2022) assume that IV endogeneity does not exceed a 

certain threshold, which Lee et al. (2022) consider as too restrictive. Our approach to combining the two 

approaches avoids having to decide on such an assumption, which “ultimately does not follow from any 

econometric result; instead, it rests entirely on how comfortable one is with those additional a priori 

assumptions.” (Lee et al. 2022, p. 3279). 

3 LMB (2013) also show results for another indicator, life expectancy. We consider this indicator as redundant, 

since the set of indicators already includes the HDI sub-component longevity, which is a transformation of life 

expectancy (correlation coefficient of 0.97).   
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The authors use a sophisticated engineering-based predictive model to construct an IV that is 

exogenous to economic development and that determines a considerable part of electricity 

infrastructure investment costs. The model focuses on hydropower, the predominant 

electricity source in Brazil. It uses a probit regression with geographic covariates to predict a 

“suitability index”; the index determines for each of around 32,500 evenly spaced grid points 

the hypothetical sequence of hydropower placement – the more suitable a location technically 

is, the earlier the hydropower plant is built there. A separate algorithm uses area slope 

information to determine the cost-minimizing transmission line network linked to these 

hydropower plants, assuming two substations per plant. It is further assumed that all grid 

points within 50 kilometres of a predicted plant or substation are electrified. The resulting 

hypothetical electricity grid coverage rates at the county level are lagged by one decade to 

form the IV used in the two-stage least squares (2SLS) application, with four data points 

covering the 30 years between 1970 and 2000. Here, LMB (2013) additionally include an 

Amazon-decade interaction term to control for time-varying idiosyncrasies in this sizable 

region with prohibitively high costs of infrastructure development.  

In BPV (2021), we detect inconsistencies between the Amazon definitions used in the construc-

tion of the IV and the 2SLS estimation in LMB (2013). BPV (2021) furthermore document 

preliminary analyses using the data originally published on the website of the American 

Economic Journal: Applied Economics (AEJ:AE), suggesting that consistent Amazon definitions 

lead to statistically insignificant estimates and smaller effect sizes. The analyses were 

preliminary to the extent that the full data set was not provided on the AEJ:AE website. LMS 

(2021) provide an online corrigendum that removes the inconsistency, published after 

extensive exchanges between BPV and LMS and attempts to jointly publish a corrigendum. 

BPV (2021) summarize this process in a preamble. Lastly, after posting LMS (2021) online, the 

original authors shared with us, as an addition to the AEJ:AE dataset, the MATLAB® code to 

run the engineering model described above (Szerman et al. 2022a). 

In line with BPV (2021), LMS (2021) use a refined vegetation-based definition of the Amazon, 

for which they find a very low first-stage F-statistic of 2.1 in the main specification defined in 

LMB (2013). In response to this low F-statistic, LMS (2021) define a new main specification 

with a revised set of interaction terms included in the 2SLS estimation, maintaining the same 

IV. Instead of Amazon-decade interaction terms, decade dummies are interacted with the 
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quartic of the “suitability index”. This IV approach is also included as a robustness check in 

LMB (2013) and used by the authors as the main identification strategy in Szerman et al. 

(2022b), a follow-on paper examining the deforestation effect of agricultural productivity 

induced by electrification.  

3. LMB (2013) and LMS (2021) revisited  

In this section, we replicate the results for all outcomes and mechanisms in LMB (2013) and 

revised in LMS (2021). We reconstruct the outcome and control variables based on data we 

retrieved from the Instituto de Pesquisa Econômica Aplicada (IPEA).4 With the complete dataset 

at hand, including the code to run the engineering model (Szerman et al. 2022a), we detect two 

seemingly minor technical issues that remained in LMS (2021). Removing these issues and 

otherwise using the same main specification as LMS (2021), however, leads to statistically 

insignificant estimates and much smaller effect sizes, as we will show in Sections 3.2 to 3.4.  

3.1  Corrections to the data 

First, we remedy a few inconsistent variable adjustments and aggregations. For example, LMB 

(2013) define an adjustment for variables that changed definition in 1990. LMB (2013) and LMS 

(2021) apply this adjustment to affected variables – except for the outcome variable HDI, even 

though it changed definition in 1990, too. Furthermore, data was not always correctly aggre-

gated from municipality to the county level (see Appendix A for a comprehensive discussion).  

Second, LMS (2021) state that a ‘seed’ – a starting point of a random number generator – is 

required in the grid simulation algorithm as part of the IV construction to make exact 

replication possible. Yet, the results presented in LMS (2021) are not reproducible, since they 

do not correspond to the output of the replication code in Szerman et al. (2022a). Moreover, 

multiple runs of the grid simulation without setting a seed yield multiple IV outputs and, in 

turn, qualitatively and quantitatively different outcome estimates. This is due to the 

algorithm’s incapacity to identify the one cost-minimizing electricity grid required to yield 

 
4 Except for in-migration, all outcome variables could be retrieved from IPEA. While LMS (2021) disregard 

this indicator, we rely on the data originally published by LMB (2013) on the website of AEJ:AE, recognizing 

that it is unclear to us where this data came from. While the available data on the IV construction would have 

allowed us to amend the dataset by one decade, IPEA does not provide the necessary data for 2010 for any 

of the outcome variables.  
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stable results. The algorithm adopted by LMS (2021) compares 80,000 electricity grid outlines, 

which is insufficient in the given context where the number of potential electricity networks 

in the first of the four studied decades alone exceeds 10����, as we show in Appendix A. This 

also precludes us from solving the problem by increasing the number of iterations to a degree 

that is still computationally tractable. Thus, LMS (2021) also involves a convergence problem 

related to the IV construction.5 In Appendix A we also show that irrespective of whether a 

seed is set has no bearing upon our overall findings of vanishing statistical and economic 

significance for the LMS results. In the present section, we therefore decide to apply the seed 

included in Szerman et al. (2022a) as an imperfect, but for our purposes sufficient remedy that 

at least heals the reporting error and makes our results reproducible. This is the second reason 

why our results differ from those printed in LMS (2021).        

3.2  Main outcomes 

Figure 1 contrasts effect sizes for the two main outcomes of LMB (2013) and LMS (2021) with 

those from our replication, which corrects the two issues outlined above. The figure expresses 

effect sizes as percentage of sample means and shows 95% confidence intervals both based on 

conventional t-ratio critical values and based on the tF-adjustment procedure proposed by Lee 

et al. (2022). The latter were also used by LMS (2021) to check robustness.6  

Figure 1: Comparison of effect sizes for main electrification outcomes 

 

 
5 New simulation attempts may overcome the convergence problem, but stricter modelling assumptions seem 

to be required, which would probably make the IV more dependent on non-geographic factors and thereby 

counteract the motivation of the IV. 
6 Anderson-Rubin confidence intervals as the widely used weak-IV-robust alternative can be expected to be 

larger (Lee et al. 2022), which holds true for most of the estimations performed as part of this paper as well. 
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LMS (2021) find the effect size for HDI to almost double relative to LMB (2013)’s results, while 

the effect size for housing values decreases by about half. The revised HDI effect from the 

present replication, however, is zero, while the housing values effect size decreases by half 

compared to LMS (2021) to an estimate equivalent to 16.9% of the sample mean. While the 

latter would still be economically significant, the related p-value is 0.28 and both confidence 

intervals overlap with zero. 

3.3  Mechanisms  

LMB (2013) corroborate their findings on main outcomes by additionally demonstrating effects 

on mechanisms, which underpin the plausibility of their findings. Robust effects on those 

mechanisms would suggest that parts of the LMB (2013) causal chain hold, even if we do not 

detect an effect on the final outcome measure. In their effort to unpack underlying 

mechanisms, LMB (2013) originally found that “[…] development gains are concentrated in 

the income and education sectors, and not in health” and that “[…] improvement in labor 

productivity […] rather than general equilibrium re-sorting appears to be the likely 

mechanism by which these development gains are realized” (LMB 2013, p.224, 200).  

Revised results in Figure 2 using the seed proposed by LMS, however, show that little remains 

that can be confidently said about mechanisms. Except for the health-related infant mortality 

rate and the in-migration rate, none of the estimates are statistically significant at the 5% level. 

Figure 2: Comparison of effect sizes for outcomes to test mechanisms 

                          Panel A: Education        Panel B: Health 
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    Panel C: Income                 Panel D: Population 

              
 

 
 

Note:  ± represents indicators such as the poverty ratio, for which a decrease is considered positive, and vice versa. 

3.4  Summary on effect sizes and p-values    

The considerable loss in statistical significance that became apparent in Figure 1 and Figure 2 

is further visualized in the dumbbell plot in Figure 3, which summarizes p-value differences 

for the outcomes in those figures between LMB (2013) and the present paper. While LMS (2021) 

found fewer statistically significant results than LMB (2013), they generally conclude that “the 

second stage results […] are similar to those originally reported” (LMS 2021: 1). Figure 3 

emphasizes that this conclusion is not supported by the results emerging from our corrections 

to the code. Notably, the numbers below the figure indicate that none of the 14 outcomes that 

LMB (2013) identified as statistically significant remain significant in this replication when 

applying conventional p-values. The picture is very similar when applying the stricter 

definition of statistical significance at the 5% level using tF-adjusted standard errors.  

Turning to the size of the effects paints a similar picture in that the economic significance of 

the effects decrease considerably. When we express differences in effect sizes between LMB 

(2013) and this replication in percentage points of the respective sample mean, the mean and 

median of these differences across the two main and 17 mechanism outcomes are 79 and 51 

percentage points, respectively (not shown in the figure). 

 

 

-200

-100

0

100

200
C

o
e

ff
ic

ie
n
t 

(a
s 

%
 o

f 
sa

m
p

le
 m

e
a

n
)

HDI:
Income

Gross income
per capita

Poverty
ratio

±
Economically

active (%)
Formal

employment (%)
Urban

employment (%)
Rural

employment (%)

Outcome

-500

0

500

1000

1500

In-migration
rate

Population density Urban share
of population



10 

 

Figure 3: Changes in statistical significance for main outcomes and outcomes to test mechanisms 

 

Note: *** / ** indicates statistical significance at the 1, and 5 percent level, respectively. 

 

4. Sensitivity testing framework  

Section 3 presented revised main-specification results, where we adopted the main 

specification selected by LMS (2021). We now examine the sensitivity of results when other 

theoretically justified specifications are used. This sensitivity testing framework begins with a 

structured specification inventory to identify researcher-decision domains.  

4.1 Step one: Structured specification inventory 

We first go through each of the components of the following generic 2SLS estimation 

command to identify researcher-decision domains for the LMB/LMS case:  

�����	
 � �
���
���_��
��	
�_�������
 � ���  ������_�������
�  ��_�������  ��
��ℎ� .  

The main objective is to identify researcher-decision domains that provide alternative 

theoretically justified specifications for specification curve analyses. Since the decision on 

these domains is inherently subjective and researcher-dependent, the very idea of this 
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framework is to make the underlying considerations as explicit as possible. For the case of 

LMB/LMS, we identify the following six domains:  

o the choice of the endogenous_treatment_variable  

o control_variables for the Amazon and other topographic factors  

o control_variables for other infrastructure  

o the choice regarding the inclusion of the Amazon region (if_condition)  

o the definition of the Amazon region (affecting the IV, control_variables, and the 

if_condition) 

o the weight used in the regressions.  

Table 1 summarizes the rationale and challenge related to each of these six researcher-decision 

domains with alternative options to the choices underlying the specification adopted in LMS 

(2021). We extend discussions and sensitivity analyses that were partly already conducted in 

either LMB (2013), LMS (2021), or the follow-on paper by the original authors, Szerman et al. 

(2022a). In the same way as for the domains, the decision on alternative choice options within 

each domain is inherently subjective, and the framework is supposed to facilitate the 

transparent reporting on the theoretical relevance and substantive plausibility of these 

alternative choice options.  

Table 1: Researcher-decision domains in LMB (2013) and LMS (2021) 
     

Decision domain 

and rationale 

LMB and LMS choices as basis 

of revised main specification  

 Alternative choice options and OFAT selection 

 #‡ Description 

Endogenous treatment 

variable  

 

Reflect electricity grid 

connections 

Lagged electricity infrastructure  

LMB/LMS define this variable as the 

share of a county within 50km of a 

transmission substation, lagged by 

one decade in the same way as the 

IV to reflect the time lag between 

grid availability and grid connection.  

 1 Share electrified  

The share electrified among houses in a county is an 

alternative that is “[…] likely measured with less 

error, and […] a direct measure of household-level 

connectivity” (LMB 2013, p.220). 

Controls for 

topography 

 

Account for potentially 

remaining time-varying 

differences 

Quartic of Suitability Index x decade  

After LMB used Amazon x decade 

interaction terms, LMS replace 

these by interactions of the quartic 

of Suitability Index x decade. 

 16 Multiple options 

LMS discuss 14 alternative options. We further 

checked interactions of decade dummies with the 

square and cubic of the suitability index. 

OFAT selections are the one originally used in LMB 

(2013) – Amazon x decade – and another randomly 

selected one, water flow x budget, where the latter 

refers to the lagged 10-year national budget 

available for hydroelectric dams. 
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Decision domain 

and rationale 

LMB and LMS choices as basis 

of revised main specification  

 Alternative choice options and OFAT selection 

 #‡ Description 

Controls for other 

infrastructure 

 

Account for the possi-

bility “that electricity 

proxies for a broader 

package of infrastruc-

ture investments” (LMB 

2013, 219) 

No controls for other infrastructure 

LMB/LMS do not control for other 

infrastructure in the main 

specification.  

 

 2 Lagged other infrastructure & other infrastructure 

LMB control in a robustness check for Lagged other 

Infrastructure, namely water and sanitation access, 

as well as land slope and water trend as proxies for 

roads, all lagged by one decade. As an alternative, we 

propose a control set for other infrastructure that 

lags only the proxies for road, not the water and 

sanitation control variables, since the latter refer to 

effective access rates (as for houses electrified). 

Using this adjusted control variable set also increases 

the usable data points from the LMB dataset. 

Inclusion or (partial) 

exclusion of the 

Amazon  

 

Account for the 

prohibitive costs of 

electrification in the 

Amazon due to high 

material transport and 

low population density 

Inclusion of entire Amazon  

LMB/LMS include the entire 

Amazon in their analysis, which 

makes up more than half the area of 

Brazil. At the same time, there is not 

much variation in predicted 

treatment status in the Amazon. 

The IV changes in Amazon areas by 

only 0.1 percentage points over the 

entire observation period, 

compared to 12.4 p.p. in non-

Amazon areas. 

  

 

 1+ Exclusion of entire Amazon & Exclusion of 

(combinations of) individual Amazon states 

The most obvious alternative is to drop All Amazon 

States. Szerman et al.’s (2022b) follow-on paper to 

LMB (2013) applies this sensitivity test, plus they 

drop (combinations of) individual Amazon states. 

This makes the sample surface area decrease by up 

to 59%, but the number of county observations by at 

most 6%, which dispels concerns about loss in 

statistical power.  

Our two OFAT selections are the exclusion of all 

Amazon states as the obvious alternative and the 

exclusion of Pará, the second largest state in the 

Amazon, as a randomly picked subregion.  

Amazon definition 

 

Account for a region 

that is “fundamentally 

different […] compared 

to the rest of Brazil, 

and […] plays an 

important role in the 

forecasting model” 

(LMB 2013, p. 214) 

Amazon biome  

LMS use the vegetation-based 

Amazon biome definition following 

the Brazilian Institute for the 

Environment and Natural Resources 

(IBAMA). 

 2 Legal Amazon & extended Amazon  

LMS discuss two alternative options, one 

administrative definition of the Amazon, known as 

legal Amazon, and an extended Amazon definition 

originally used by LMB based on Brazil’s geo-political 

macro-regions.   

Weighting of 

regressions 

 

Adjust for factors that 

motivate weighting (or 

not) reviewed in Solon 

et al. (2015) 

County area weights 

LMB/LMS apply county area 

weights. They explain this with their 

IV being based on data at the level 

of the evenly spaced grid points and 

as “the number of grid points is not 

the same in each county” (LMB 

2013, p.212). 

 

 2 No weights & population weights  

No weights and population weights are two 

alternatives that have also been used by other IV-

based studies that assess infrastructure outcomes at 

a regional level of aggregation (Dinkelman 2011; 

Mettetal 2019). Opting for population weights is also 

justified in the present case since all outcome 

variables are population averages. No weights may 

be reasonable since the IV is already defined in 

relative terms – as the percentage of grid points 

within a county allocated with electricity – so that 

area weighting seems dispensable.  

Note: ‡ # = number of alternative choice options 

In many applications, not all researcher decisions can be included in a quantitative 

specification curve analysis, but some can be pondered qualitatively for a comprehensive 

appreciation of the quantitative results – what we call qualitative deliberation. We identify 
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two such decisions for the present setting, the IV construction and the definition of one of the 

outcomes adopted by LMB and LMS and discuss them further in Appendix B. While we 

encourage researchers to generally include these qualitative deliberations in the main body of 

their analyses, this is of subordinate importance to the main point of our paper, the spotlight 

on researcher decisions and specification screening.  

4.2 Step two: Results exposition using specification curve analyses 

4.2.1 Analytical approach 

As can be inferred from Table 1, a myriad of specifications can be derived by combining the 

different alternatives for the respective researcher domain. Different handlings of the Amazon 

alone, which has proven to entail severe robustness issues in BPV (2021), in combination with 

the choice options for other domains easily leads to thousands of specifications. To present 

these alternatives in a structured, concise and still manageable way, we use a procedure that 

can serve as a blueprint for similar cases. It combines a simplified graphical analysis with a 

full-fledged specification curve analysis of theoretically justified specifications, with the 

former being a sniff test for the latter. For the simplified graphical analysis, we generate a one-

factor-at-a-time (OFAT) sensitivity graph, where we take the main specification of LMS (2021) 

with our revised data as the point of departure to consecutively change one choice option from 

one researcher-decision domain. 

For each of the six researcher-decision domains we select two alternative choice options to the 

one applied in LMS (2021). For two domains, controls for topography and the inclusion of the 

Amazon, we identified multiple alternatives and hence pick two alternative options, an obvious 

one and an additional random pick; for one domain, endogenous treatment variable, we only 

avail of one alternative (see OFAT selections in Table 1). We thus yield a tractable and more 

comparable set of 5 × 2 + 1 × 1 � 11 alternative specifications. We refer to this as OFAT graph 

in the following, which is depicted in Figure 4, one for each of the two main outcomes. Yet 

since this is only a selection out of the multiverse of specifications, we conduct a full-fledged 

specification curve analysis in Appendix D. For this as well, we take the restricted set of choice 

options from the OFAT selection (note again that this does not exhaustively cover all possible 

combinations). We thus run 3& × 2� � 486 specifications, referring to our five researcher-

decision domains with three choice options and the sixth researcher-decision domain with two 

options, each including the choice option applied in LMS (2021). We abstain from 
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distinguishing different combinations by their substantive plausibility but note that, in some 

contexts, certain combinations may be clearly more justifiable than others.  

In the OFAT graphs, we show conventional and tF-adjusted confidence intervals and flag first-

stages with a wrong sign, in our case a negative sign. We do not discard them entirely as 

suggested by Angrist and Kolesár (2022), to make explicit that theoretically justified 

specifications yield the wrong sign. Moreover, this allows us to use the simultaneous 

application of the tF-adjustments, which require abstaining from any pre-testing. As an 

additional sensitivity tests beyond those related to researcher-decision domains we propose 

the delete-X sensitivity test applied by Young (2022) in his analysis of IV applications in AEA 

publications. X refers to the number of clusters deleted. Here, we adopt the delete-one 

sensitivity to assess the change in estimates and p-values from deleting one cluster, that is one 

county, from the analysis sample. 

4.2.2 OFAT graphs and full-fledged specification curves 

The two panels of Figure 4 show the OFAT graphs for the two main outcomes, HDI and 

housing values. The choices taken in the main specification for the individual researcher-

decision domains presented in Table 1 are reproduced below the figure. Looking at the first- 

stage F-statistics in the OFAT graph, we find for all domains that theoretically valid 

specifications yield IVs that are considered weak according to the F<10 rule of thumb (Staiger 

and Stock 1997). All specifications in our OFAT graph have F-statistics below 104.7, the 

threshold identified by Lee et al. (2022) to guarantee a true 5 percent test.  

Among the 11 alternative specifications in our OFAT graphs, one specification has a negative 

first stage (the one controlling for lagged other infrastructure, see Figure 4). In our full-fledged 

specification curve analysis, we find that 18% among the 486 specifications have a negative 

first stage, almost all (93%) of which include the lagged other infrastructure controls. We thus 

see a good share of specifications that would be discarded using the Angrist and Kolesár 

procedure, yet virtually all are induced by only one decision domain, other infrastructure, and 

here again by one specific way of controlling for it, namely lagged other infrastructure. This 

seems intuitively reasonable given that this specification is indeed most prone to endogeneity, 

as already acknowledged by the original authors who noted “[…] that the provision of other 

infrastructure may also be endogenous and we do not have exogenous instruments for their 

availability” (LMB 2013, p.219). 
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 Figure 4: OFAT graphs with effect sizes across changes in different decision domain choices 

                                              Panel A: Human Development Index  

 

 
 

                                                                     Panel B: Housing values 
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As for second-stage results, all the estimates presented in Figure 4 are statistically insignificant 

and exhibit large confidence intervals. The only exception is the unweighted regression on the 

HDI in Panel A, which is robust to whether traditional confidence intervals are used or weak-

IV robust ones. Young’s delete-one sensitivity test shown at the right of Figure 4 furthermore 

exhibits a high degree of sensitivity of second-stage results: merely deleting one of the 2,182 

Brazilian counties from the main-specification analysis causes the two outcomes to vary 

considerably; expressed in terms of variations in conventional p-values, the significance level 

of HDI estimates ranges between 0.27 and 0.99 and that of housing values between 0.05 and 

0.42. Such sensitivity occurs because individual counties of large size – and thus with large 

data weights – experience small over-time changes in the continuous IV combined with large 

over-time changes in the outcome, creating a large lever in the estimations. 

The findings from the OFAT graphs are confirmed by our full-fledged specification curve 

analysis in Appendix D, now including estimates for all potential, non-redundant combi-

nations of choice options considered. HDI delivers relatively more statistically significant 

estimates where the original and revised estimate have the same sign (20% at the tF-adjusted 

5% level), which almost all come from specifications where no weighting is applied in the 

regressions, a researcher decision that has not been considered in LMB (2013) and LMS (2021). 

Accordingly, only one option of one of our researcher-decision domains, the omission of 

weights, yields results that provide indications for a quantitatively discernible impact with the 

given identification strategy. While the plausibility of this decision is debatable, it is worth 

noting that these weight options have not been considered in LMB (2013) and LMS (2021). In 

short, we are hard-pressed to find evidence of a consistently positive effect of electrification 

on either the HDI or housing values based on the specification curve analyses.  

5. Conclusions  

This article has done two things. First, we have reanalysed LMS (2021) and identified errors in 

the construction of the dataset. Upon correcting these errors, we obtain statistically 

insignificant estimates with much smaller effect sizes for main-specification results on the 

impact of electrification. Second, we have applied a sensitivity testing framework to the 

LMB/LMS identification approach, finding little robustness in estimates and little evidence for 

electrification effects. The framework’s first step is a structured specification inventory that we 
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consider essential for any IV sensitivity testing. The second step includes specification curves 

and an OFAT graph that can be combined to summarize and present the sensitivity. This 

framework can be used in primary IV-based research to reduce leeway of researcher decisions 

(Breznau et al. 2022; Huntington-Klein et al. 2021), but also in similar replications like ours to 

reduce what Bryan et al. (2019) call “replicator’s degrees of freedom”.  

Our framework does not cover concerns related to the IV’s exclusion restriction, as they are 

discussed for a comparable case in Bensch et al. (2020). For LMB (2013), the exclusion 

restriction could be violated by water availability and land gradient spurring population 

growth and economic growth independently of electricity provision, for example via the 

suitability for coffee production. Coffee production is a key driver of economic development 

trajectories in Brazil (Peláez, 1972; Kruger, 2007). More generally, Lee et al. (2020b) note that 

“it is hard to rule out the possibility that the correlation between the instrument and the 

dependent variable runs through additional channels beyond electrification“, which “raises 

questions about the validity of any geographic cost-based instrument”. Such concerns have 

been increasingly voiced in the literature in recent years, also beyond electrification (see, for 

example, Lal et al. 2021, Mellon 2022, Gallen and Raymond 2023).  

Nevertheless, IVs are often proclaimed as a second-best solution for a policy-relevant research 

area in which randomization is hardly possible. We argue that especially under this pragmatic 

perspective, all available due diligence tests should be applied. Our study cautions against an 

excessive focus on the results of one single main specification, and instead suggests that 

sensitivity testing should be at the centre of IV-based papers. Recent replication debates, like 

that between Spamann (2022) and Hayes and Saberian (2022), confirm that views across teams 

of researchers may differ strongly about the preferred main specification, as is also 

emphasized in Simonsohn et al. (2020). Our framework can serve to guide such debates and 

enable a fruitful exchange between replicators and original authors – or help to carve out the 

specific points of disagreement.  

In terms of the overarching research question – what are the impacts of electrification on eco-

nomic development – our results do not necessarily question the positive effect of electricity. 

Yet, they raise concerns about what one can learn about this relationship based on the adopted 

identification approach. They also raise the meta-scientific question of how the overall picture 

in the literature would change if our framework was applied to all high-quality studies in the field. 
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Appendix A. Adjustments to LMB (2013) and LMS (2021) datasets 

A1. Variable adjustments and aggregations  

Some outcomes changed definition in the 1990’s. These are the HDI and its three 

subcomponents education, longevity, and income as well as the poverty ratio, illiteracy rate, the 

share of people with education less than four years, and the years of schooling. For these outcomes *, 

the dataset includes for the decade 1990, � � 9,  variables with both the old and new definition, 

i.e. *-./01-   and *-./234.  

As noted for HDI in online appendix 3 of LMB (2013), the data overlap in that decade can be 

used to adjust data for the year 2000 (� � 10� by multiplying it by the following ratio as an 

adjustment factor: 

*_�����5 �  *5,-./01-

*5,-./234 . 

Here, 	 refers to the unit of observation of the raw data, which is the municipality. This data 

is later aggregated at the level of a county, �. 

LMB (2013) and LMS (2021) made this adjustment for decade 10 to all outcomes listed above 

except for HDI. Furthermore, they used the new-definition variable of the HDI in decade 9 as 

well. In the revision as part of this replication, we therefore adjust the HDI for decade 9 and 10 

in the same fashion as all other variables with changing definition in the 1990’s. This is 

summarized in Table A1. 

Table A1: HDI variable adjustment 
        

   
Variable definition applied 

 mean (sd) of ℎ��7,-,    

the HDI at county level  

Variable  LMB & LMS Revision  LMB & LMS Revision 

HDI in 

decade 9 

and 10  

ℎ��5,-./ 
 ℎ��5,-./234  ℎ��5,-./01-  

 0.626 

(0.098) 

0.567 

(0.145) 

ℎ��5,-.�� 
 ℎ��5,-.��234  ℎ��5,-.��234 × ℎ��_�����5 

 0.709 

(0.081) 

0.639 

(0.137) 

 

We further considered a minor correction necessary that was not made by LMB (2013) and 

LMS (2021). It again affects the variables listed above for which definition changed in the 

1990’s. Since the number of municipalities increased from about 4500 to about 5500 in that 

decade, no data from before the creation of the municipality was available for about 1000 

municipalities, mostly small municipalities with less than 20,000 inhabitants (Brandt 2010). 

Hence, no adjustment factor could be derived and the decade-10 variables for these 

municipalities were set to missing by LMB (2013) and LMS (2021). However, in aggregating 

the municipality data to the county level, LMB (2013) and LMS (2021) used the population of 
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all municipalities in deriving population-weighted averages. This obviously led to 

understating some indicators. We therefore only considered those municipalities in deriving 

population-weighted averages for which the respective indicator was non-missing. This is 

again summarized in tabular form in Table A2.    

The table also shows an alternative approach: instead of discarding the decade-10 data of so 

many municipalities because *_����� cannot be determined, one may approximate a 

municipality’s adjustment factor from other municipalities in the same county. A plausible 

approximation is the population-weighted average of municipality-level adjustment factors 

that are available in the same county. We tried this and found the resulting county data to 

differ only marginally. Correlation between variables for decade 10 defined according to the 

two approaches always exceeds 0.998. Accordingly, we abstain from showing the sensitivity 

to these different definitions and apply the first approach above, which is closer to how LMB 

(2013) and LMS (2021) handled this issue. 

Table A2: Aggregation of municipality data 
     

   Variable definition applied 

Variable  LMB & LMS Revision 

Aggregated 

municipality data 
*7,- 

 8 *5.0,- × 9�95.0,-
∑ 9�95.255

 8 *5.0,- × 9�95.0,-
∑ 9�95.055

 

     

Variables with 

changing definition, 

for which *_����� can 

not be determined 

*5.;,-.�� 

 

*5.;,-.��234  

*5.;,-.��234 × *_���<�==========5 , with 
 

*_���<�==========5 � 8 *_�����>5 × 9�9>5.0,-
∑ 9�9>5.05>5

 

Note: 	 � � refers to municipalities with unknown adjustment factor; 	 � � to municipalities, for which data is 

available for the respective outcome *; 	 �  represents municipalities with available population data and −	 other 

municipalities in the same county as municipality 	. 

For two variables – income as HDI sub-component and the share of electrified households – the 

adjustments caused the values from 2000 to exceed the maximum possible value of either 1.00 

or 100%, both in LMB (2013) and the revision. This happened in less than five percent of 

counties. We decided to top-code these cases to 1.00 and 100%, respectively.  

A2. IV construction  

Both LMB (2013) and LMS (2021) use simulations to construct the IV, that is the lagged 

hypothetical electricity grid coverage rates in individual counties, which may change from 

decade to decade. LMS (2021) note that setting a randomly selected seed as starting point in 

the grid simulation algorithm at the centre of the IV construction is required to make exact 

replication of their results possible. The replication code in Szerman et al. (2022a) includes such 
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a seed but using this seed does not replicate the results in LMS (2021). The IV values used in 

the analysis presented in LMS (2021) and those resulting from the setting of the seed included 

in the code of Szerman et al. (2022a) differ notably: depending on the decade, they differ in 17 

to 18 percent of counties, and in these cases, IV values measuring the extent of counties covered 

by the hypothetical grid differ by 63 to 64 percentage points, on average.  

Figure A1 underpins the consequentiality of setting a seed and the fact that running the IV 

construction multiple times without setting a seed yields different IVs. The figure reproduces 

the point estimates of the two main outcomes when using the seed included in Szerman et al. 

(2022a), which are also shown in the main text of this replication. In addition, violin plots show 

the distribution of estimates for 100 runs when not setting a seed. This distribution of estimates 

goes along with conventional p-values ranging from 0.05 to 0.99 and from 0.00 to 0.92 for HDI 

and housing values, respectively. The reason for this variability in IV outputs and estimates 

seems to lie where the algorithm searches for the least-cost electricity network. For the first 

decade, for example, 480 sub-stations have to be placed. On a grid with around 32,500 points, 

this makes  @32500
480 A or 7 × 10��CD potential combinations. LMS’ algorithm runs with 80,000 

iterations, which in light of the immensely high number of potential combinations seems 

insufficient to spot the single least-cost network configuration and thus to yield sufficiently 

consolidated results.  

Figure A1: Sensitivity due to non-convergence in IV modelling outputs 

 

 

 

 

 

 
 

Note: The figure presents 95% 

confidence levels both based 

on conventional t-ratio critical 

values and those based on the 

tF adjustment procedure 

proposed by Lee et al. (2022). 

 

For different reasons, which we outline below under alternative IV modelling, we do not see that 

the convergence problem can be solved in the given simulation framework. There, we also 

discuss alternative approaches including one, where we condense the information from the 

100 simulation runs undertaken as part of our analysis into what we refer to as the “most likely 
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IV”. This approach cannot overcome the convergence problem either, and does therefore not 

represent a viable alternative to the IV adopted by LMB/LMS.  

Meanwhile, the point estimates when applying this “most likely IV” shown in Figure A1 are 

quite close to the estimates using the seed proposed by Szerman et al. (2022a), thus lending 

support to the use of the LMS-seed simulation for the main-specification results. Similarly, at 

least the HDI estimate using the seed proposed by Szerman et al. (2022a) is very close to the 

median estimate of the estimates from the no-seed runs. 

Lastly, Figure A1 shows point estimates when only the adjustment and aggregation issues are 

corrected. Comparing these estimates to those from LMS (2021), it becomes clear that the 

setting of a seed affects both point estimates, whereas the adjustment and aggregation issues 

primarily play a role for HDI.    

A3. Miscellaneous minor corrections made by LMS (2021) to the LMB (2013) dataset   

The LMS (2021) dataset includes a few minor adjustments to the LMB (2013) dataset that we 

also incorporated in the dataset used for our analysis. First, the LMS (2021) dataset includes 

one county less, because data is missing for this county to construct the suitability index used 

in the new main specification. Second, LMS (2021) removed grid points that could not be 

linked to municipality data before running the probit regressions underlying the IV. In LMB 

(2013), this was only done at a later stage. Accordingly, the coefficients of the probit 

regressions are slightly different, as can be seen in Appendix C. Third, according to notes in 

the replication code of Szerman et al. (2022a), LMS (2021) rectified a few errors in the 

MATLAB® code used by LMB (2013) to model the IV, such as wrong budgets defining the 

number of plants to be built by decade.  

There is only one minor change by LMS (2021) to the LMB (2013) dataset, where we sticked to 

LMB’s (2013) choice: LMS (2021) deviate from using the IPEA data for the variable county area, 

which is used for the weighting of regressions and the calculation of the outcome population 

size, and instead use the county area determined based on GIS data from 2000 for all decades. 

 

 

Alternative IV modelling 

Our replication exposed that the setting of a seed (random starting point) in the IV 

construction is consequential. Abstaining from setting a seed, it follows that each run of the 

grid simulations at the centre of the IV construction yields different IV output and, in turn, 

different impact estimates for the outcome indicators. There are different reasons why we do 
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not see that the convergence problem can be solved in the given simulation framework. For 

example, it seems infeasible to substantively reduce the number of potential combinations (e.g. 

by considering only buffers of grid points around the sub-stations and thereby reducing the 

upper index in the binomial coefficient, the set of potential electricity grid locations linked to 

a sub-station). Alternative modelling assumptions related to non-geographic factors (such as 

population agglomerations) may be introduced as well, but these would work against the 

ambition to let only geographic and engineering parameters determine the electricity network.  

Recent work on electrification impacts applies simple algorithms borrowed from the 

transportation infrastructure (Faber 2014) to solve the least-cost grid optimization problem. 

However, these solutions are not transferable to the LMB/LMS case, because those works can 

take the terminal points of the grids as given, whereas LMB/LMS rightly consider them as 

endogenous choice parameters. For example, Kassem (2021) studies the effects along the 

electricity grids that interconnect existing and thus far disconnected colonial power plants in 

Indonesia, and Budjan (2022) studies a programme that densified the grid between existing 

sub-stations in Nigeria. 

Against this background, we consider another approach that seeks to condense the 

information from the multiple runs of the grid simulations into one IV instead of trying to fix 

the simulation in the first place. We thereby intend to arrive at the most likely IV, that is the 

most likely development of the hypothetical electricity grid. A straightforward representation 

of this is the IV in a simulation run that shows the smallest absolute difference to the IV values 

from all other simulation runs. Concretely, we first determine the pairwise absolute IV 

difference across simulation runs, ∆9��F,>F, aggregate them across all pairs to the absolute IV 

difference for a specific simulation run, ∆��F�−��, and drop the IV from the simulation run 

with the highest absolute IV difference (see also Table A3 below). We then follow the same 

procedure by recalculating ∆��F�−�̌� for the narrowed down set of other simulation runs, 

−�̌, and consecutively drop the IVs with highest ∆��F�−�� until only three simulation runs 

remain, from which we select the one with the lowest ∆��F�−��. 

Table A3: Components of the algorithm to determine the ”most likely IV”  

Variable   Formula 

Pairwise absolute IV difference 

across simulation runs r and -r 
∆9��F,>F 

 8 8 |��7,-F − ��7,->F|
-7

 

    

Absolute IV difference for 

simulation run r 
∆��F�−�� 

 8 ∆9��F,>F
>F

 

Note: � refers to counties as the unit of observation and � to the decade.  

We tried this approach using 100 runs of the IV modelling. Figure A2 shows estimates for the 

two main development outcomes according to the IV selected after a certain number of runs 

of the IV construction. We see that the estimates continue to change also after dozens of runs 
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and that they do not clearly converge. This approach is, hence, not clearly preferable, but 

estimates of the selected run at least fall well into the middle range of all estimates. Given the 

extent of the underlying convergence problem outlined under A.2 above, we generally do not 

see that this approach can be useful, even if thousands of runs would be performed.    

Figure A2: Estimates with ”most likely IV” depending on the total number of IV modelling runs  

              Panel A: Human Development Index       Panel B: Housing Values 
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Appendix B. Qualitative assessment of additional researcher decisions 

In the present case, much of the sensitivity analysis related to researcher-decision domains 

could be integrated in the quantitative sensitivity analyses, already yielding a clear and 

consistent picture of the study results. In other cases, qualitative deliberations may play a 

larger role in gauging the strength of the presented evidence. Here, we briefly touch on a 

researcher-decision domain that can be covered in the present case through qualitative 

deliberations only:  

o Outcome, to represent development results of electrification, 

o IV construction, to reflect the hypothetical electricity network determined by 

geographic factors alone to avoid endogeneity. 

As one of their two main development outcomes, LMB/LMS use a housing value variable 

provided by the public research institution IPEA. The sensitivity question on this outcome is 

less about alternative options, but about its added value in generating evidence on the 

underlying research question in the first place. This added value is debatable since the analysis 

in LMB (2013) merely extrapolates results from a cross-sectional analysis of sample data from 

the end of the study’s observation period over space and time. IPEA constructed the variable 

based on a hedonic model using data from rented houses in the 1999 National Household 

Sample Survey (PNAD). The hedonic model finds a statistically significant estimate of 0.24 for 

the electricity access attribute, which is then used to simulate the housing value variable over 

time and space (see Reiff and Reis 2016).  

Regarding the IV construction, LMB/LMS use a cost-minimizing algorithm to predict the 

hypothetical electricity network that, however, does not converge and yield a distribution of 

IV’s (see Section 2 and Appendix A). This issue does not present alternative choice options for 

an assessment of the researcher-decision domain IV construction in specification curve analyses 

in the main text. Nevertheless, we may go beyond the seed included in the code of Szerman et 

al. (2022a) underlying the specification curve analyses to capture the distribution of IV’s in a 

complementary sensitivity analysis. For that purpose, we further increase the considered 

multiverse of specifications by the results of the 100 no-seed runs of the grid simulation 

described under Alternative IV modelling in Appendix A. With these runs always using the 

biome definition of the Amazon, this provides 100 × 3I × 2� × 1� � 16,200 specifications in 

addition to the 486 specifications used for the full-fledged specification analysis in the main 

text.  

Figure B1 summarizes the information in what we refer to as a sensitivity dashboard, with the 

two main outcomes on the y-axis. The results can be interpreted as a more representative 

picture of the replicability of original results in that they are not conditioned on the seed from 

the code of Szerman et al. (2022a). For the housing values indicator, we find that 18% of 
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specifications yield statistically significant estimates at the 10% level, and 7% at the tF-adjusted 

5% level. Excluding specifications with negative first stages, which would have been dropped 

according to sign screening proposed by Angrist and Kolesár (2022), these shares would be 

12% and 4%, respectively, and thus close to what one would expect to occur by chance (not 

shown in the figure).    

Figure B1: Sensitivity dashboard for main outcomes with extended multiverse of specifications 

    

Note: Based on 16,686 specifications for each of the two outcomes. Δ = mean absolute deviation; J = estimate; se = 

standard error; low |J| (high se) refers to the share of specifications where the revised |J| (se) is sufficiently low (high) 

to turn the overall estimate insignificant. Macrons (upper bars) indicate mean values.  

For the second main outcome, HDI, we find somewhat higher shares of statistically significant 

estimates – 34% at the 10% level and 14% at the tF-adjusted 5% level – while none of these 

estimates is based on specifications with negative first stages. These significant estimates differ 

substantively from the original estimate in that their mean is 95% higher and their mean 

deviation from the original estimate amounts to 106% of the original estimate. Insignificant 

estimates for this outcome are far from statistical significance, with a mean deviation in the p-

values of 0.46, where the loss of significance is rather due to higher standard errors than to 

lower estimates.   

To conclude, additional ambiguities exist that affect the strength of the evidence presented in 

LMB (2013) and LMS (2021). This is in line with the key findings from the quantitative 

sensitivity analyses, where a broad array of specifications indicates that there is no result that 

is robust across equally plausible specifications in the present setup.  

71% 11% 18%

57% 9% 34%

LMB (2013)
β: 8.81
p: 0.00

LMB (2013)
β: 0.11
p: 0.01

Δ̅p: 0.52
low |β|:  58%
high se:  50%

Δ̅p: 0.46
low |β|:  42%
high se:  68%

p<0.05: 14% (tF: 7%)
β̅: +52% (Δ̅β: 84%)

p<0.05: 27% (tF: 14%)
β̅: +95% (Δ̅β: 106%)

HDI

Housing values

insignificant
(p≥0.1)

significant,
opposite sign

significant,
same sign

Replication results
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Appendix C. Comparison of probit regressions underlying the instrumental 

variable 

LMB (2013) use a probit regression with hydropower geographic cost parameters to construct 

the “suitability index” as basis of the subsequent grid simulations to construct the IV. Column 

(1) of Table C1 reproduces the estimation results from table 1 of LMB (2013). Columns (2) and 

(3) show results for the same specification with the LMS (2021) dataset, which corresponds to 

the data used for this paper. Results in Column (2) using also the same sample area of entire 

Brazil differ slightly from those in Column (1) because LMS (2021) already removed grid 

points that could not be linked to municipality data. In LMB (2013), this was only done at a 

later stage.  

Importantly, we find that estimates are very similar when excluding the Amazon as done in 

Column (3). Notwithstanding the importance of the Amazon at different parts of LMB’s 

analytical framework, this suggests that grid points located in the Amazon do not drive the 

probit estimates as basis of the modelled IV. Hence, the inclusion of the Amazon does not 

affect the predicted hydropower suitability of non-Amazon grid points, which represent the 

area where most of Brazil’s population is living. 

Table C1: Probit regression for hydropower geographic cost parameters 

     

Dataset LMB (2013)  LMS (2021) 

Coverage entire Brazil  entire Brazil non-Amazon Brazil 

 (1)  (2) (3) 

Log of maximum flow 

accumulation 

0.029** 

(0.014) 

 0.018 

(0.014) 

0.021 

(0.017) 

Average slope in the river 0.044 

(0.030) 

 0.036 

(0.030) 

0.037 

(0.031) 

Maximum slope in the 

river 

0.062*** 

(0.012) 

 0.061*** 

(0.012) 

0.057***   

(0.013) 

Amazon indicator -0.753*** 

(0.066) 

 -0.632*** 

(0.050) 

–  

Indicator for location has a 

river 

-0.030 

(0.063) 

 0.010 

(0.064) 

0.002 

(0.075) 

Number of Observations 33,342  32,608 13,541 

Pseudo R2 0.117  0.115 0.052 

Note: *** / ** indicates statistical significance at the 1, and 5 percent level, respectively. 
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Appendix D. Specification curve analysis 

Figure D1 and Figure D2 show specification curves for the two main outcomes HDI and 

housing values, each split into two panels according to the instrumented variable used. Each 

panel includes 243 estimates according to the following set of combinations:  

3 (Amazon definitions) x 3 (Interactions with controls for topography) x 3 (Controls for other 

infrastructure) x 3 (Exclusion of parts of the Amazon) x 3 (Weighting of regressions) = 35 = 243. 

We find the following: 

- Instrument strength and effect sizes: the stronger the first stage, the smaller the effect 

size; conversely, the larger the estimates are, the more variance they have, often having 

infinite confidence intervals for the more extreme estimates 

- Effect sizes with main vs. other valid specifications: estimates for the main specifica-

tions are located fairly in the middle of the specification curves when the instrumented 

Figure D1:  Specification curve for the outcome HDI  

Panel A: Lagged electricity infrastructure 

as instrumented variable 

Panel B: Percentage of houses electrified as 

instrumented variable

    

Note: Graphs generated using the Stata command speccurve prepared by Martin E. Andresen. To improve readability, 

the lowest and highest five estimates were removed from each panel figure, all of which have both high point estimates 

and confidence intervals (CIs). These graphs show raw coefficients of IV estimates instead of coefficients expressed as 

percentages of sample mean, as presented in the main text.  
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Figure D2:  Specification curve for the outcome Housing Values 

Panel A: Lagged electricity infrastructure 

as instrumented variable 

Panel B: Percentage of houses electrified as 

instrumented variable

    

Note: To improve readability, the lowest and highest ten estimates were removed from each panel figure, all of which 

have both high point estimates and confidence intervals (CIs). These graphs show raw coefficients of IV estimates instead 

of coefficients expressed as percentages of sample mean, as presented in the main text. 

variable is the lagged electricity infrastructure, implying that other valid specifications 

equally yield lower and higher estimates; conversely, when the instrumented variable is 

the percentage of houses electrified, estimate for the main specification is at the lower end 

of the curve for HDI as outcome and at the higher end for housing values as outcome. 

To get a better sense of potential patterns of factors or combination of factors in these 

specification curves, we zoom into those estimates that are found significant. Starting with the 

stricter definition of statistical significance at the tF-adjusted 5% level, we find that all 

statistically significant coefficients where the original and revised estimate have the same sign 

come from either   

- specifications where no weighting is applied in the regressions; these make up 20% [0%] 

of all specifications for the outcome HDI [housing values]; here, estimates turn out to be 

mostly positive  

- specifications that control for other infrastructure and where – like in a robustness check 

by LMB (2013) – all these other infrastructures are lagged by one decade; these make up 
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2% [3%] of all specifications for the outcome HDI [housing values]; first stages are 

virtually always negative when using these controls.  

Figure D3 and Figure D4 show specification curves with conventionally calculated 

confidence intervals. Another 28% [13%] of estimations are significant at the conventional 

10% level, most of them either with F-Statistics below 10 (18% [3%]), negative first stages 

(7% [6%]), or again without weighting (2% [1%]). 

Figure D3:  Specification curve for the outcome HDI, significant estimates only 

Panel A: Lagged electricity infrastructure 

as instrumented variable 

Panel B: Percentage of houses electrified 

as instrumented variable
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Figure D4:  Specification curve for the outcome Housing Values, significant estimates only 

Panel A: Lagged electricity infrastructure 

as instrumented variable 

Panel B: Percentage of houses electrified 

as instrumented variable
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