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Abstract. We analyze the distributional effects of the 2021 floods in Germany as an exem-
plary case of natural hazards intensified by anthropogenic global warming. To this end,
we link official geo-coded satellite data on flood-damaged buildings to neighborhood-
level information on socio-economic status. We then document the empirical relationship
between flood damages and household income while limiting identification to small lo-
cal areas around affected rivers and absorbing a rich set of regional fixed effects. Average
household income is around 1,500 euros lower in flood-damaged neighborhoods than in
non-affected neighborhoods nearby. Our study is the first to document this regressive
impact along the income distribution based on actual flood-damage data in Europe.
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1 Introduction

In recent years the detrimental effects of climate change became increasingly evident. Rising num-
bers of devastating wildfires, droughts, heat waves, storms, and floods were recorded in all parts
of the world. Natural hazards are only expected to further intensify throughout the next decades.
Yet, little is known about the distributional impact of such climate change consequences: Which
socio-economic groups suffer to what degree from the environmental hazards? Knowledge of these
distributional consequences is essential for local policymakers to design welfare-optimizing climate
protection and adaption policies. The exposure of different socio-economic groups to environmen-
tal damages is ultimately an empirical question since it depends on households’ location choices
and the local incidence of climate-change related hazards.

In this paper, we investigate the distributional consequences of global warming by studying the
impact of the 2021 floods in Germany along the income distribution. Multiple days of heavy rainfall
in July 2021 led to unprecedented water levels and floods across several rivers causing more than
180 deaths, damaging thousands of buildings, and affecting around 40,000 people in Germany
(Fekete and Sandholz, 2021). The monetary damage is estimated at around 33 billion euros (Munich
Re, 2022). These floods were the most damaging natural disaster in Germany in decades. Although
single weather events cannot be causally attributed to climate change, we consider the 2021 floods
to be a relevant case study since climate change worsens floods through two effects (Schäfer et al.,
2021). First, global warming leads to an increased abundance of water vapor in the atmosphere.
Second, climate change slows the polar jet stream causing weather systems to remain longer above
certain locations. Both effects severely increase the likelihood of heavy and long-lasting rainfall
events such as the 2021 floods (IPCC, 2021). Accordingly, the German Federal Minister for the
Environment at the time declared: “Climate change has arrived in Germany” (Schulze, 2021).

We descriptively analyze the distributional impact of the 2021 floods combining detailed satellite
and socio-economic data for the affected German regions. To this end, we link official geo-coded
satellite data on flood-affected buildings from the European Union’s Copernicus Emergency Man-
agement Service to neighborhood-level information on household’s socio-economic status collected
by the geo-marketing provider microm. We then regress various measures of economic well-being
on flood damage indicators to understand the empirical relationship between both variables. We
call the resulting estimate the income-flood-damage gradient.

A simple cross-sectional correlation between income and flood damages across neighborhoods is
likely to pick up a variety of underlying explanations. For instance, if floods had only occurred
in the high-income metropolitan areas along the Rhine, a comparison between affected neighbor-
hoods and national average incomes or neighborhoods from far distant regions would mainly be
informed by macro-level differences in economic, cultural, or political fundamentals. Instead, we
are interested in the distributional incidence within the same region. We argue that this local per-
spective is relevant for two reasons: First, it is more informative for state and local policymakers
concerned with inequality within the region. Second, from an academic perspective, we know little
about inequality within small-scale regions in Germany so far. We limit our analysis to a within-
region approach in two ways: First, we limit the comparison to neighborhoods in close proximity by
only comparing flooded and non-flooded neighborhoods within small buffer zones around affected
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rivers. Second, we include a rich set of spatially fine-grained fixed effects for different regional en-
tities to absorb mean differences across regions. In our baseline specification, we limit the analysis
to neighborhoods within three kilometers from affected rivers and within the same county to make
the comparison highly local. This modelling choice limits the influence of differences in economic
fundamentals or regional amenities and restricts identification to small-scale areas with comparable
economic, cultural, and political environments.

We find that the 2021 floods had a clearly regressive distributional impact: Neighborhoods af-
fected more heavily by the floods have lower average incomes. Affected neighborhoods display
a 1,516 euros lower average disposable household income than non-affected neighborhoods nearby.
We find similar results when using a continuous measure of flood damages. For each one per-
centage point increase in a neighbourhood’s share of flood-damaged buildings, average household
incomes decrease by 21 euros. These findings could be explained through various channels, such as
the anecdotal evidence that richer households tend to prefer the hillside and the periphery over his-
torical centers in the valley along the river because of better views and fewer building restrictions.
Nonetheless, with our descriptive analysis we cannot answer why the observed spatial sorting arose.
We confirm the estimated empirical relationship by looking at various alternative socio-economic
measures such as private and supplementary insurance take-up, the average default risk, and lo-
cal unemployment rates, which all suggest that income and socio-economic status were lower in
more damaged neighborhoods. Importantly, all of these differences are not caused by the floods
but observed in pre-flood data from 2019 as well as 2010. We also demonstrate the robustness of
these results by testing for potential confounders with even more fine-grained regional indicators,
and by using various alternative specifications. Moreover, we discuss how our findings relate to the
concept of vulnerability (see, e.g., UNEP, 2007, ch. 7).

Our paper speaks to the literature on the distributional effects of natural disasters. Several stud-
ies investigated the link between environmental damages and socio-economic inequality, mainly for
the U.S. and Asia. A survey by Fothergill and Peek (2004, p. 89) for the U.S. suggests that the poor
are “more vulnerable to natural disasters.” Masozera et al. (2007, p. 299) find that Hurricane Kat-
rina affected New Orleans neighborhoods “regardless of income.” Kahn and Smith (2017) conclude
similarly that high flood-risk areas in the U.S. are not selective with respect to income. In contrast,
Bui et al. (2014, p. 1751) conclude that natural disasters in Vietnam “worsen poverty and inequal-
ity.” Warr and Aung (2019) find that environmental damages reduced inequality between regions in
Myanmar while raising inequality within affected regions. Hsiang et al. (2019) also calls for a more
nuanced view and concludes that the poor are more exposed to some environmental damages but
not necessarily climate change.

Since the distributional impact depends on local (dis)amenities as well as households’ prefer-
ences, constraints, and location choices, which may all differ across regions and countries, we argue
it is also important to investigate this question in Europe. Poussard et al. (2021) study the popula-
tion living in floodplains in the province of Liege in Belgium and conclude that lower middle class
households have the highest flood risk exposure compared to other income groups. Osberghaus
(2021) and Tovar Reaños (2021) evaluate imputed flood risk indicators over the income distribu-
tion in Germany and show that expected absolute flood damage increases with income whereas it
declines strongly as a share of income; floods would thus be regressive.

3



Our analysis contributes to this literature in three ways. First, we provide detailed empirical
evidence from a large region in Germany which offers a setting that is more representative for
Europe than previous studies on the U.S. or Asia. Second, we investigate an actual natural disaster
using official data on damaged buildings rather than imputing flood risks and evaluating damage
forecasts. Third, the hazardous event under evaluation was the most severe flooding in Western
Europe since decades and therefore constitutes an exemplary case to study the consequences of
anthropogenic global warming.

The remainder of this paper is structured as follows. Section 2 introduces the data sets used. In
Section 3 we explain the empirical methodology we employ. We present the results of our analysis
in Section 4 and discuss the implications in Section 5. Section 6 concludes.

2 Data

The analysis combines two external data sources. We introduce the satellite data on flood damages
in Section 2.1. In Section 2.2, we provide details on the socio-economic data we employ to compare
socio-economic indicators at the neighborhood level. We then describe the sample selection for our
baseline analysis in Section 2.3.

2.1 The 2021 Floods and Damaged Buildings

The EU’s Copernicus Emergency Management Service provides publicly accessible geo-spatial data
for natural hazards and humanitarian catastrophes (CEMS, n.d.). The data sets are based on satellite
imagery, which is analysed and published by the CEMS (2022). For the floods in the summer
of 2021, the CEMS Rapid Mapping Service composed the data set EMSR517 Flood in Western Germany
consisting of multiple shapefiles each depicting one broad regional area of flood damage (area of
interest). The data set is considered “closed” by now, i.e., the content will not be altered anymore
(CEMS, 2021). For the purpose of our study, we combine the available shapefiles and plot all covered
rivers, streams, and tributaries in the two German states North Rhine-Westphalia and Rhineland-
Palatinate that caused flooding during the summer of 2021. The resulting data set includes nine
distinct areas of interest as depicted in Panel A of Figure 1.

Within these areas of interest the data set shows all buildings identified as affected by the 2021
floods (CEMS, 2022). The CEMS determined the damage to a house through visual inspection of
satellite images. Whereas this method can fairly reliably determine destruction, the CEMS also
reports damaged and possibly damaged buildings. In the latter case, the houses were reached by
the water levels during the flood, but it is unclear to what degree structural damage exists. In our
baseline analysis, we pool the three categories and treat all flood-exposed buildings as damaged. We
check the sensitivity of our results to this assumption in robustness analyses in Section 4.2 below and
show that effects are similar when focusing on either of the damage categories. Panel B of Figure 1
plots an example of the satellite data for Bad Neuenahr-Ahrweiler, one of the heavily affected areas.
To test the spatial accuracy of the geo-coded buildings, we compare the reported damage points
to OpenStreetMap cartography of the city, which reveals a high precision. Importantly, the CEMS
shapefiles distinguish accurately between exposed and non-exposed buildings instead of reporting
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all buildings in proximity to a flooded water body as being equally affected. This can be seen in
the bottom of Panel B, which shows that most buildings north of the river Ahr were damaged or
destroyed but only few buildings south of the river were affected.

2.2 Socio-Economic Data

For the analysis we combine this satellite information on damaged buildings with the data set RWI-
GEO-GRID administered by the Leibniz Institute for Economic Research RWI (2022). This data
set provides various socio-economic indicators on a 1 km-by-1 km grid structure (Breidenbach and
Eilers, 2018). In our baseline analysis, we make use of three variables in the data set: (i) the num-
ber of buildings, (ii) population figures, and (iii) the average annual disposable household income
in a given 1 km2 area. In supplementary analyses, we also use indicators for private and supple-
mentary insurance take-up, default risks, unemployment rates, and the demographic composition.
The underlying information has been collected by the geo-marketing provider microm and was sub-
sequently prepared for scientific use by the research data center at the RWI. To ensure privacy

Figure 1: The 2021 Floods and Damaged Buildings

Notes: This figure displays the Copernicus Emergency Management Service geo-referenced satellite data on flooded rivers and
damaged buildings. Panel A provides an overview of the affected rivers, streams, and tributaries (in blue) as well as the nine
surrounding areas of interest (in red). Panel B depicts an illustrative example of the precisely geo-coded data on damaged
buildings, namely for the city of Bad Neuenahr-Ahrweiler in the north of Rhineland-Palatinate.
Maps: © GeoBasis-DE / BKG 2022; © 2022 European Union, Copernicus Emergency Management Service, [EMSR517] Flood in
Western Germany, and Copernicus Sentinel-2 Data (2022); © 2022 OpenStreetMap contributors.
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Figure 2: Average Disposable Household Income Across Neighborhoods

Notes: This figure depicts the average disposable household income for 1 km2 neighborhoods focusing on a subset of selected
areas of interest, namely Bad Neuenahr-Ahrweiler, Erftstadt, Eschweiler, Euskirchen, and Schleiden. Lighter red areas indicate
lower average incomes, darker red shades represent higher average incomes. Appendix Table A.1 provides descriptive statistics
for all variables used.
Maps: © GeoBasis-DE / BKG 2022; © 2022 European Union, Copernicus Emergency Management Service, [EMSR517] Flood in
Western Germany, and Copernicus Sentinel-2 Data (2022).

protection, information on household incomes is not reported for the most sparsely populated of
these grid cells, i.e., those with less than five households per square kilometer. In the remainder of
the paper we refer to these 1 km2 grid cells as neighborhoods.

In our estimation data set, neighborhood-level average disposable household incomes vary be-
tween 29,700 euros and 72,800 euros per year (P1 and P99, respectively, population-weighted quan-
tiles are similar). In Figure 2 we plot these incomes for an illustrative subset of the analyzed areas
of interest. To ease the visual comparison between neighborhoods we zoom in on a map segment
located at the state border between North Rhine-Westphalia and Rhineland-Palatinate. Darker red
areas in the figure indicate higher average incomes, lighter colors represent lower household in-
comes at the neighborhood level. The figure shows variation in incomes across neighborhoods.
However, it also suggests some spatial clustering of high- and low-income neighborhoods across ar-
eas of interest, which is likely to reflect broader economic or cultural differences between far apart
neighborhoods. To account for such clustering in the empirical analysis, we limit the identification
to neighborhoods in close proximity by adding dummy variable indicators for areas of interest as
well as jurisdictions at different regional levels (county fixed effects in our preferred specification).
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2.3 Sample Selection

For our analysis, we combine both data sets based on their geocodes. We create three kilometer
buffer areas around the river sections covered by the CEMS data and select all grid cells from
the RWI-GEO-GRID data set that intersect with one of these nine buffer zones (see red bordered
areas in Figure 1, Panel A, and Figure 2). The covered areas of interest include 3,336 grid cells in
total. Slightly less than 1,000 of these cells are uninhabited, which leaves us with a final data set of
2,378 neighborhoods.

Our sample consists of a total population of almost 1.9 million people. The median neighborhood
in our sample has 140 inhabitants, the average population across grid cells is 799. We measure the
flood exposure of a neighborhood by the share of buildings reported as being affected. Approxi-
mately 8.5 percent of the neighborhoods in our sample were (partially) damaged by the floods, i.e.,
the grid cell includes at least one flood-affected house. Conditional on being affected, on average
roughly one third of all buildings in a neighborhood were either destroyed, damaged, or possibly
damaged by the floods. Table A.1 in the Appendix provides summary statistics for all variables
used in our analysis.

3 Methodology

This section outlines our methodological approach to assess the distributional impact of the
2021 floods. We first introduce the empirical specification and explain the measurement of the
treatment variable. Next, we discuss the underlying identifying assumptions, and, finally, explain
the robustness checks we perform to assess the sensitivity of our results to modeling choices.

Empirical Specification. Our analysis rests on cross-sectional comparisons at the neighborhood
level, regressing average disposable household income in neighborhood i (denoted by Incomei) on
a treatment variable, Flood Damagei, while absorbing regional fixed effects:

Incomei = β · Flood Damagei + δa(i) + µc(i) + ε i, (1)

with δa(i) and µc(i) referring to sets of indicator variables for areas of interest and counties, respec-
tively. The error term is denoted by ε i. We measure the exposure to the 2021 floods in two alternative
ways: In a first set of regressions, we dichotomize treatment by coding flood damage equal to one
if any building in neighborhood i was affected, and equal to zero otherwise. Second, in alterna-
tive specifications using a continuous treatment, we recode flood damage as the share of flooded
buildings in neighborhood i.1 In our baseline specification, we calculate heteroskedasticity-robust
standard errors.

Threats to Identification. The interpretation of β̂ as an unbiased estimate of the income-flood-
damage gradient rests on the absence of omitted variables in the cross-sectional regression, which

1 For 31 neighborhoods, the CEMS data reports more damaged buildings than the number of houses reported in the
RWI-GEO-GRID data. This discrepancy might be explained, e.g., by campsites or new construction during the past
years. We winsorize these data points for the continuous treatment measure and treat neighborhoods as being com-
pletely damaged. Results are robust to omitting these neighborhoods from the estimation sample.
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is arguably a strong assumption. To illustrate this, consider the raw correlation between income
and flood damage without accounting for regional fixed effects or restricting the sample to specific
areas. Such a regression comparing neighborhoods from far distant regions would pick up broad
economic and cultural differences across space instead of informing us about the spatial sorting
of households within small local areas. Prime examples for such unobserved factors would be
differences in economic, cultural, or political fundamentals. Imagine we compared neighborhoods
all across Germany but the floods occurred only in the high-income metropolitan areas along the
Rhine. The resulting estimate would largely be informed by regional differences in productivity
or amenities, which should capitalize in earnings (see the literature on local labor markets and
Moretti, 2011, for an overview). Since neighborhoods close to the Rhine would also be more likely
to be affected by the floods, this would move our estimate β̂ away from the true correlation between
flood damages and income.2 Such macro-level differences yield little insight for state and local
policymakers, which is why we are more interested in the distributional incidence within the same
region and thus highly local spatial sorting.

Research Design. To mitigate the impact of such differences in fundamentals, we restrict our
analysis to a highly local, within-region comparison of flood-damaged neighborhoods with close-
by, non-flooded areas. Our approach involves three steps to improve on the raw correlation across
space. First, we only include grid cells within three-kilometer buffers around the affected river
sections in our sample. Figure 2 shows an example. The distance of 3 km ensures close proximity
between damaged and non-damaged neighborhoods while still providing a sufficiently large sample
size (we also test the robustness of our results by using even narrower bands).

Second, we add fixed effects for areas of interest (see the term δa(i) in Equation (1)). Comparing
only proximate flooded and non-flooded neighborhoods within the same area of interest limits the
potential for unobserved confounders. Economic fundamentals like productive or consumption
amenities as well as cultural determinants should be largely similar within these narrow bands
around the same river. Moreover, areas of interest are economically highly integrated because of
low commuting, transport, and transaction costs. Neighborhoods would thus be quite comparable
except for the fact that some are closer to the river and thus more prone to flooding.

Third, we further tighten the identification by absorbing mean differences across economic re-
gions and administrative jurisdictions. Most of the broader regional differences are already omitted
from the analysis via the use of fixed effects for areas of interest. However, some of the affected areas
of interest span across multiple commuting zones or even states. Comparing neighborhoods within
these areas would thus also pick up differences across different labor markets or legislative entities.
In our baseline specification, we include an additional set of county fixed effects (µc(i) in Equa-
tion (1); Kreise und kreisfreie Städte) to further limit the influence of different economic circumstances
or policy regimes across space.

To cross-check our results, we also employ various alternative indicators for socio-economic status
instead of looking at household income. We therefore use measures of private and supplementary
insurance take-up, the average household default-risk rating, the local unemployment rate, and a

2 If the Rhine area was more productive, incomes would be higher and the estimate would be biased upwards. The
opposite applies to consumption amenities and the local quality of life, which should capitalize in lower earnings.
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set of demographic variables as outcomes in Equation (1).

Robustness Analyses. To assess the importance of potential regional confounders unrelated to lo-
cal sorting, we build up the presentation of our baseline results in Section 4.1 consecutively. We
start with a simple cross-sectional comparison without fixed effects and add more restrictive re-
gional dummy indicators step-by-step. More precisely, we estimate models with and without fixed
effects for areas of interest, and gradually add sets of more fine-grained regional indicators for
(i) metropolitan statistical areas (Raumordnungsregionen), (ii) commuting zones (Arbeitsmarktregio-
nen), and (iii) counties. In further robustness checks presented in Section 4.2 we also test the sensi-
tivity of our results when using fixed effects for municipal associations (Verbandsgemeinden) or mu-
nicipalities (Gemeinden).3 Since the different specifications account for various potential unobserv-
ables at different regional levels, this procedure provides first evidence regarding the importance of
confounding regional differences other than local sorting within highly similar neighborhoods.

In addition, we test the robustness of our results to various other modeling assumptions. We
continue by analyzing alternative buffer zones around the covered rivers. Aside from the three kilo-
meter distance in our baseline regression, we also examine the results for two and one kilometer
buffer areas, which on the one hand further increases the comparability between neighborhoods but
on the other hand severely reduces the sample size.

Next, we focus on different measures for the flood damage. Whereas we pool all affected build-
ings as treatment group in our baseline analysis, the CEMS data allows a more fine-grained analysis
by distinguishing between (i) destroyed, (ii) damaged, and (iii) possibly damaged buildings. We run
two additional checks to test the stability of our estimates to this modelling assumption. First, we
discard the third group of possibly damaged buildings and only count buildings reported as being
destroyed or damaged for our measure of flood damages. Second, we restrict our treatment mea-
sure to destroyed buildings only. We also run a robustness check excluding neighborhoods with
implausibly high shares of damaged buildings (which we winsorize in the baseline specification).

Moreover, we investigate the relative difference in incomes regressing log-transformed average
incomes on our treatment measure instead of using the absolute income in levels as outcome.
Although the RWI-GEO-GRID data is from 2019 and thus predates the floods, we further check
whether estimated differences are persistent over time. To this end, we estimate our baseline speci-
fication using income data from 2010.

Finally, we re-estimate our baseline equation using population weights instead of equal weights
for all neighborhoods. This sensitivity check helps to assess the potential impact of outliers in terms
of population density in our data. Since neighborhoods differ clearly in the number of inhabitants,
this specification tests whether the results are driven by the high number of rural and thus sparsely
populated grid cells.

4 Results

In the following, we present our empirical findings. Section 4.1 presents our baseline results as
well as several auxiliary analyses. In Section 4.2, we provide a range of tests to demonstrate the

3 These regional entities are nested within each other and within states. Areas of interest span across various entities.
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robustness of our findings.

4.1 The Distributional Impact of the 2021 Floods

This section presents the empirical results of our analysis based on Equation (1). Table 1 shows
our baseline estimation results for the dichotomous (in Panel A) as well as the continuous measure
of flood damage (in Panel B). After presenting the results on the relationship between income and
flood damage, we turn to alternative socio-economic indicators.

Dichotomous Flood Damage Indicator. As a first analysis we carry out a raw cross-sectional com-
parison between neighborhoods with at least one damaged building and neighborhoods without
any reported flood damage. We find that affected neighborhoods have on average 1,297 euros lower
disposable annual household incomes (see Panel A, Column (1) of Table 1). Thus, neighborhoods
affected by the 2021 floods are on average poorer than unaffected areas.

As discussed before, the estimated gap in household income may partly be due to other factors
such as the degree of urbanization, local economic fundamentals, or cultural differences. Depend-
ing on the relative importance of these channels, the raw cross-sectional relationship may over-
or underestimate the true income-flood-damage gradient at the local level. We consecutively add
regional fixed effects to limit the identification to neighborhoods from the same region instead of
comparing far distant grid cells. In Column (2), we include indicators for the nine areas of inter-
est, which widens the estimated gap to 1,678 euros lower incomes in neighborhoods affected by the
floods. As areas of interest partly span across labor markets as well as states, we additionally absorb
mean differences between six metropolitan statistical areas and 13 commuting zones in Columns (3)
and (4), respectively. In our preferred specification in Column (5), we add county fixed effects to
account for economic, cultural, and political differences between the 18 affected counties. Estimates
remain similar. The estimates show that average disposable income of households in neighborhoods
affected by the 2021 floods is 1,516 euros lower than in non-affected neighborhoods from the same
area. This gap is statistically significant at conventional levels (p < 0.01) and translates to a three
percent income difference relative to the sample mean of 46,165 euros.

Continuous Flood Damage Measure. The estimated differences in Panel A of Table 1 depict mean-
differences between unaffected and (partly) affected neighborhoods but do not offer much insight
into the underlying empirical relationship between the two measures, the degree of flood damages
and average incomes. To investigate this relationship, we group neighborhoods according to in-
come percentiles and calculate the share of neighborhoods affected by the floods for each group
of neighborhoods, i.e., each percentile. Figure 3 presents the resulting binned scatter plot with in-
come along the horizontal axis and the average flood exposure along the vertical axis.4 Blue dots
correspond to a group of neighborhoods in the same income percentile. The red line indicates
the linear fit. As can be expected from the regression results, the figure shows a negative gradient.

4 Note that some bins appear to have negative shares of affected neighborhoods. This is a statistical artefact since we
residualize variables and absorb mean differences across areas of interest and counties for the graph as in our preferred
specification (Table 1, Column (5)). Unresidualized values are bounded between zero and one (Appendix Table A.1).
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Table 1: The Distributional Impact of the 2021 Floods

No Fixed Area of Inter. MSA Fixed CZ Fixed County
Effects Fixed Effects Effects Effects Fixed Effects

(1) (2) (3) (4) (5)

Panel A – Dichotomous Flood Damage Measure

Indicator: Any Damaged Buildings? −1, 296.77∗∗ −1, 677.81∗∗∗ −1, 641.62∗∗∗ −1, 532.28∗∗∗ −1, 515.78∗∗∗

(584.47) (559.15) (560.10) (558.47) (551.91)

Number of Observations 1,786 1,786 1,781 1,780 1,780
Adjusted R-squared 0.002 0.208 0.213 0.229 0.287
Area of Interest Fixed Effects Yes Yes Yes Yes
Absorbed Regional Dummies 9 15 22 27

Panel B – Continuous Flood Damage Measure

Share of Damaged Buildings (in %) −27.56∗∗∗ −22.46∗∗∗ −23.67∗∗∗ −21.94∗∗∗ −21.48∗∗∗

(8.15) (7.85) (7.82) (7.96) (7.98)

Number of Observations 1,786 1,786 1,781 1,780 1,780
Adjusted R-squared 0.002 0.206 0.212 0.227 0.285
Area of Interest Fixed Effects Yes Yes Yes Yes
Absorbed Regional Dummies 9 15 22 27

Notes: This table shows the estimated flood-damage-income gradient based on Equation (1). Flood damage is equal to one if
at least one building in the neighborhood was damaged and otherwise set to zero (Panel A), or measured as percentage share
of damaged buildings in a given neighborhood (Panel B), respectively. Column (1) is estimated omitting any type of regional
fixed effects. Columns (2)–(5) account for fixed effects across areas of interest. Columns (3)–(5) further include additional sets
of regional dummies (see column titles). Heteroskedasticity-robust standard errors are displayed in parentheses. Significance
levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Lower-income neighborhoods were more likely to be affected by the 2021 floods than higher-income
neighborhoods.

Figure 3 also suggests that a linear fit is a reasonable approximation of the empirical relationship.
We thus turn to our second, continuous measure of flood damage, namely the share of affected
buildings in a neighborhood instead of the dummy variable coding. We re-estimate the five specifi-
cations discussed before now using the share of affected buildings as explanatory variable. Panel B
of Table 1 reports the resulting estimates. We find that neighborhood-level average household in-
come decreases by around 21–28 euros for each percentage point increase in the share of damaged
buildings. The results are statistically significant at conventional levels and are in line with the find-
ings from the previous analyses based on a dichotomous measure of flood damage. Point estimates
differ somewhat depending on the inclusion or exclusion of regional indicators. In our preferred
specification, which absorbs fixed effects for areas of interest as well as counties, we find that a
one percentage point increase in the share of affected buildings reduces average household income
by 21 euros. These results also imply that the negative slope in Figure 3 is statistically significant
despite the somewhat noisy scatter plot (p < 0.01).

Other Socio-Economic Measures. Having documented the negative link between flood damages
and household income, we continue by investigating other socio-economic measures as outcomes in
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Figure 3: The Distributional Impact of the 2021 Floods
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Notes: This graph shows the empirical relationship between flood damages and average household income
based on our preferred specification in Column (5) of Table 1 (Panel A). For the exposition, we bin neigh-
borhoods to percentiles of household income such that each blue dot represents 17–18 neighborhoods. We
then plot the average annual disposable household income (horizontal axis) and the average flood damage
indicator (vertical axis) for each group of neighborhoods. Both variables have been residualized by absorbing
mean differences between areas of interest as well as counties; this procedure also leads to some negative val-
ues along the vertical axis. The red dashed line indicates the best linear fit. The gray shaded area represents
95% confidence bounds for the predicted average flood damage across income percentiles.

Equation (1) using the dichotomous dummy variable indicator for flood exposure. We first employ
data on private insurance take-up as an alternative measure of households’ financial well-being.
The vast majority of the German population is subject to the public social insurance system when
it comes to pension, health, or disability insurance. Using private health care insurances or buying
additional insurance offered by private pension funds and disability insurance providers is typi-
cally concentrated among richer households (see, e.g., Seibold et al., 2022). The RWI-GEO-GRID
data set reports indices for households’ take-up of various private insurances at the neighborhood
level. These indices run from one to nine with higher values indicating higher usage. We calculate
local averages and employ these measures as outcomes; Panel A of Table 2 shows the results. In
Column (1), we regress private pension insurance usage—the most common form of private insur-
ance payments in our sample—on the flood damage indicator. We find that households in flood
damaged neighborhoods have a significantly lower propensity to sign private pension plans. The
0.38 point gap between exposed and non-exposed neighborhoods translates into seven percent rel-
ative to the mean and 25 percent of a standard deviation. Similarly, we find that households in
affected neighborhoods are also significantly less likely to have private life insurance. We also check
for differences in the take-up of private health insurance, occupational disability insurance, or addi-
tional health insurance on top of the basic services offered in the mandatory system. Point estimates
for all three outcomes are also negative and thus indicative of lower socio-economic status but co-
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Table 2: Other Socio-Economic Measures

Panel A – Private Insurance Usage

Private Life Private Additional Occupational
Pension Insurance Health Health Disability

(1) (2) (3) (4) (5)

Indicator: Any Damaged Buildings? −0.38∗∗∗ −0.32∗∗∗ −0.15 −0.08 −0.10
(0.10) (0.10) (0.11) (0.10) (0.10)

Number of Observations 2,358 2,358 2,358 2,358 2,358
Adjusted R-squared 0.095 0.095 0.300 0.370 0.349

Panel B – Further Socio-Economic Measures

Default Unemploy- Share of Share of Share of
Risk ment Rate Children Elderly Foreign
(6) (7) (8) (9) (10)

Indicator: Any Damaged Buildings? 0.27∗∗∗ 0.15 −0.62∗∗∗ 1.08∗∗ 1.15∗∗∗

(0.10) (0.17) (0.20) (0.50) (0.33)

Number of Observations 2,358 2,358 2,358 2,358 2,358
Adjusted R-squared 0.173 0.291 0.088 0.069 0.217

Notes: This table shows the estimates from regressing various alternative socio-economic outcome variables
on the flood damage indicator based on Equation (1). Flood damage is equal to one if at least one building
in the neighborhood was damaged and otherwise set to zero. We use measures of private insurance usage
as outcomes in Panel A and several additional economic and demographic variables in Panel B. All specifi-
cations include fixed effects for areas of interest and counties. Heteroskedasticity-robust standard errors are
displayed in parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

efficients are not significant at conventional levels (p-values are 0.14, 0.31, and 0.44, respectively).
Overall, the results for private insurance take-up are in line with our finding that flood damages
are concentrated more in lower-income neighborhoods than in neighborhoods with high financial
well-being.

In Panel B of Table 2, we test for two additional measures of economic status. In Column (6), we
use an indicator for households’ default risk that is based on data from the German debt collection
Agency Creditreform. The index runs from one to nine with higher values representing higher default
risk for households within a neighborhood. Using default risk as an outcome in Equation (1), we
estimate a positive and statistically significant relationship of 0.27 point higher default risk in flood-
affected grid cells. This estimate corresponds to six percent relative to the mean and around a fifth
of a standard deviation. In Column (7), we regress local unemployment rates on the flood damage
indicator, finding a positive but non-significant estimate of 0.15 with equal-sized standard error.

Finally, we turn to three demographic measures, i.e., the share of children within the neighbor-
hood, the share of elderly (aged 65 or above), and the share of foreigners. We find that neigh-
borhoods with buildings damaged by the 2021 floods have significantly fewer children and more
elderly people compared to close-by but unaffected neighborhoods. Our results also reveal that
affected neighborhoods have significantly more households with migration background. However,
the latter finding has to be treated with caution since the data is not based on administrative statis-
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tics but predicted by the data provider based on the names of the household heads.

4.2 Robustness Checks

In order to check the robustness of the described findings, we next provide the results from the
sensitivity checks outlined in Section 3. To this end, we estimate various alternative specifications
of Equation (1) assessing the importance of specific modeling assumptions. Table 3 summarizes the
results using both the flood damage indicator variable (Panel A) as well as the continuous flood
damage measure (Panel B). Column (1) replicates the estimates from our preferred specification for
better comparability across specifications.

First, we investigate the importance of the buffer zones we create around affected rivers. In our
baseline, we use a three kilometer buffer to either side around affected river sections and tribu-
taries. Although this already limits the comparison to neighborhoods in proximity to the rivers,
it may still be too broad to exclude all potential confounders. Thus, we create two alternative
samples in which we further restrict the control group of neighborhoods. In Column (2), we only
include neighborhoods within two kilometers from the rivers. In Column (3), we then cut the sam-
ple to neighborhoods within one kilometer distance to affected rivers. The point estimates remain
qualitatively similar and the results remain statistically significant. The only exception is the 1 km
specification when using the continuous flood damage measure (p = 0.18). This lack of precision
can be explained by the fact that around 300 neighborhoods are lost in each step going from Col-
umn (1) to (3), resulting in a sample of only 1,102 neighborhoods within one kilometer from the
affected river sections.

Second, we test the robustness by making use of the more specific damage categories reported
by the CEMS. In the data set, each affected building is coded as either (i) destroyed, (ii) damaged,
or (iii) possibly damaged. In our baseline, we pool all three categories when measuring flood
damages. This procedure may however overstate the number of households damaged by the floods.
Therefore, we narrow the definition of flood damaged buildings by, first, excluding the possibly
damaged buildings, and, second, restricting the treatment to destroyed houses only. Columns (4)
and (5) of Table 3 provide the corresponding results. We find that results are largely unchanged
compared to our preferred specification.

Third, in Column (6), we further test the coding of flood damages by excluding the set of neigh-
borhoods from our sample for which the CEMS reports more damages than buildings covered in
the RWI-GEO-GRID data set. In our baseline analysis we winsorize these data points to a damage
ratio of 100 percent. The results in Column (6) are reasonably similar, confirming that our preferred
estimates are not driven by this modeling choice.

Fourth, we deviate from the outcome specification in levels and use the logarithm of average
neighborhood level income as dependent variable in Equation (1).5 In line with the approximation
in Section 4.1, we find that neighborhoods affected by the floods have on average three percent lower
average incomes. Results again remain statistically significant. Furthermore, we also test whether
the estimated difference is peculiar to the data year 2019 by using incomes from 2010 as outcome

5 We rescale the continuous flood damage measure for this specification in Panel B, Column (7) of Table 3 to run
from zero to one instead of the percent representation to ease the comparison of the estimated coefficients in the table.
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Table 3: Robustness Checks

Panel A – Dichotomous Flood Damage Measure

Baseline 2 km 1 km Damaged/ Only Without
Estimate Buffer Buffer Destroyed Destroyed Outliers

(1) (2) (3) (4) (5) (6)

Any Building Reported? −1, 515.78∗∗∗ −1, 467.83∗∗∗ −1, 224.06∗∗ −1, 470.04∗ −1, 881.45∗∗ −1, 397.36∗∗

(551.91) (568.77) (610.13) (817.01) (810.55) (593.64)

Number of Observations 1,780 1,415 1,102 1,780 1,780 1,755
Adjusted R-squared 0.287 0.279 0.258 0.285 0.285 0.285

Log HH Income Mun. Ass. Municip. Population Regional
Income in 2010 Fix. Eff. Fix. Eff. Weighted Cluster

(7) (8) (9) (10) (11) (12)

Any Building Reported? −0.03∗∗∗ −1, 207.75∗∗ −943.02∗ −995.30∗ −1, 347.04∗∗ −1, 515.78∗∗

(0.01) (537.46) (513.81) (591.86) (680.85) (640.92)

Number of Observations 1,780 1,753 1,776 1,720 1,780 1,780
Adjusted R-squared 0.276 0.360 0.499 0.549 0.247 0.287

Panel B – Continuous Flood Damage Measure

Baseline 2 km 1 km Damaged/ Only Without
Estimate Buffer Buffer Destroyed Destroyed Outliers

(1) (2) (3) (4) (5) (6)

Share Reported Buildings (in %) −21.48∗∗∗ −18.34∗∗ −12.29 −23.54∗∗ −36.73∗∗ −20.37∗

(7.98) (8.39) (9.04) (9.36) (17.12) (11.97)

Number of Observations 1,780 1,415 1,102 1,780 1,780 1,755
Adjusted R-squared 0.285 0.277 0.256 0.285 0.284 0.283

Log HH Income Mun. Ass. Municip. Population Regional
Income in 2010 Fix. Eff. Fix. Eff. Weighted Cluster

(7) (8) (9) (10) (11) (12)

Share Reported Buildings (in %) −0.04∗∗ −15.51∗∗ −9.90 −15.10∗ −20.95∗∗ −21.48∗∗∗

(0.02) (7.58) (7.13) (8.90) (9.68) (7.56)

Number of Observations 1,780 1,753 1,776 1,720 1,780 1,780
Adjusted R-squared 0.274 0.359 0.498 0.548 0.245 0.285

Notes: This table shows the results of various robustness checks. Flood damage is equal to one if at least one building
in the neighborhood was damaged and otherwise set to zero (Panel A), or measured as percentage share of damaged
buildings in a given neighborhood (Panel B), respectively. Column (1) replicates our preferred specification from Column (5)
of Table 1. All other estimates are based on this specification with 3 km buffer around the river and fixed effects for areas
of interest and counties if not stated otherwise (heteroskedasticity-robust standard errors in parentheses). We restrict the
sample to neighborhoods in 2 km and 1 km distance to the river in Columns (2) and (3), respectively. In Column (4) we
adjust our measures of flood damage and exclude “possibly damaged” buildings when assigning treatment. In Column (5),
we treat only “destroyed” buildings as damaged and ignore “damaged” and “possibly damaged” buildings for treatment.
In Column (6), we exclude neighborhoods for which the CEMS reports more damaged buildings than the total number of
buildings according to the RWI-GEO-GRID data. We regress the logarithm of average household income on our flood damage
measures in Column (7) (while rescaling the share of damaged buildings to run from zero to one for better readability). We
use 2010 income (in 2019 prices) as outcome in Column (8). Specifications in Columns (9) and (10) include fixed effects for
municipal associations and municipalities, respectively, instead of of using county fixed effects. We present estimates from
regressions with population weights in Column (11). Column (12) replicates the baseline specification but allows for clustered
standard errors at the level of counties-by-areas of interest. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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(in 2019 prices; again in levels). Column (8) shows the results, which are significantly negative and
statistically in line with our preferred estimates.

Fifth, we further tighten identification by accounting for additional regional indicators compared
to county fixed effects in our baseline specification. In Section 4.1 we demonstrated that results
remain similar whether or not we include fixed effects at the level of areas of interest, metropolitan
statistical areas, commuting zones, or counties (see Table 1). While our baseline specification already
included 27 regional fixed effects, we continue along these lines and introduce fixed effects for
the 67 municipal associations (Verbandsgemeinden) or 179 municipalities (Gemeinden), respectively.
These specifications are highly restrictive given the relatively small sample of neighborhoods and
in particular the small-sized municipalities in the state of Rhineland-Palatinate. Nonetheless, we
overall find support for our baseline findings (see Columns (9) and (10) of Table 3). Estimates
are again statistically significant at conventional levels with the exception of the continuous flood
damage measure when accounting for municipal association fixed effects (p = 0.17 in Panel B,
Column (9) of Table 3).

Sixth, in Column (11) we introduce population weights to our analysis. Our baseline specifica-
tion relies on equal weights for all neighborhoods irrespective of large population differences (see
the summary statistics in Appendix Table A.1). Whereas the equal-weight assumption estimates
the effect for the average neighborhood, we can also study the income-flood-damage gradient for
the average inhabitant by reweighting neighborhoods by their population numbers. The weighted
estimates are very similar to the baseline results both for the dichotomous and the continuous flood
damage measure.

Finally, we also check for the sensitivity of our results when calculating standard errors (see
Column (12)). Whereas our preferred specification relies on heteroskedasticity-robust standard
errors, this may underestimate true standard errors due to clustering of the error terms at the local
level. To investigate the potential bias this introduces for our inference, we instead calculate cluster-
robust standard errors that allow for arbitrary clustering of standard errors across neighborhoods
from the same county and area of interest (29 distinct regions). Standard errors and thus t-statistics
are of similar size compared to our preferred specification. We abstain from calculating standard
errors based on even broader regional clusters because this specification already suffers from a
rather low number of independent clusters (NClusters < 40).

5 Discussion

The empirical results document that the 2021 floods disproportionally affected households with
relatively lower income. The observation that lower-income households were more likely to be
affected by the floods is supported by the fact that neighborhoods with more exposed households
display lower rates of private insurance take-up and have higher average default risks. We also find
that affected neighborhoods are inhabited by fewer children, more elderly, and more households
with migration background compared to unaffected places nearby. These empirical relationships
confirm the anecdotal evidence that richer households rather avoid the historical centers in the
valley along the river and move to the hillside or the periphery (see, e.g., local newsreports such
as in Die Rheinpfalz, 2015). In the following section, we compare our findings with the existing
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literature and discuss their implications on general flood vulnerability and the income distribution.

5.1 Comparison to Previous Literature

The overrepresentation of low income groups in the flood areas is in line with the previous literature
based on flood risk forecasts (Osberghaus, 2021, Tovar Reaños, 2021). To the best of our knowledge,
our study is the first analysis based on actual damage data that indicates a higher flood exposure for
poorer households in Europe. The observed disproportionate exposure of the elderly is in line with
international evidence as well as during the Elbe flood in 2002 in Saxony (Lieberman-Cribbin et al.,
2021, Kuhlicke et al., 2011). The results on the proportion of households with migration background
are also in line with the existing international literature on racial and ethnic minorities (Fielding,
2018, Tate et al., 2019). Our finding of a lower share of children in more affected neighborhoods
partly contradicts previous research: Tovar Reaños (2021) finds higher exposure of families based
on flood risk indicators. Reasons for the conflicting results could be differences in the variable
definition (“population below age 18” vs. “families”) or the regional composition of the samples.

5.2 Dimensions of Vulnerability

Our findings of a higher exposure of low-income groups also speak to the debate about the di-
mensions of vulnerability to environmental hazards (UNEP, 2007, ch. 7). The three dimensions are
related to (i) exposure, (ii) sensitivity, and (iii) ability to cope and recover. The estimated negative
income-flood-damage gradient shows that the first of these dimensions, i.e., the exposure effect, is
particularly strong for low-income households. To understand the total impact of the 2021 floods
on the population, it is necessary to assess how sensitive and able to recover the disproportionally
exposed groups are. We connect our findings on exposure to previous findings from the existing
literature, most of which assess natural hazards in the United States.

Sensitivity. Certain socio-economic characteristics increase the likelihood to experience negative
physical and mental health effects conditional on flood exposure. A large meta-study on the long-
term health impact of floods found that, among other characteristics, low income and old age
increase sensitivity (Zhong et al., 2018). Especially elderly people are often argued to be more
fragile, in need of assistance, and less mobile (Fekete, 2009). Therefore, it is commonly stated that
elderly people suffer from more health repercussions during and after a flood than younger age
groups (Lowe et al., 2013, Walker and Burningham, 2011).

Benevolenza and DeRigne (2019) find similar evidence investigating post-traumatic mental health
effects of hazardous events. Children, adolescents, and the elderly have the highest risk of suffering
from psychological distress in the aftermath of a flood (Zhong et al., 2018). Existing studies also
suggest that lower income groups are more likely to suffer from post-traumatic mental health effects
(see, e.g., Fothergill and Peek, 2004, Zhong et al., 2018, Benevolenza and DeRigne, 2019).

Ability to Cope and Recover. Similar to a higher sensitivity, lower income groups as well as the
elderly tend to recover less quickly from natural disasters. Even though retired individuals have
on average fewer financial means available, their main hindrance to rapidly cope and recover is
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their reduced physical capability (Fekete, 2009). The literature on sensitivity also shows that elderly
people often suffer from physical or mental health problems after a flood (see, e.g., Lowe et al.,
2013). This further lowers their capacity for organizing the reconstruction of damaged dwellings.

Low-income households have fewer financial resources available to rebuild housing and repair
damages (Fothergill and Peek, 2004). While it is straightforward that poorer households have less
money to pay for damages, insurances and governments usually compensate for some of the dam-
ages. Thus, whether lower-income households have overall fewer financial means to recover from
floods depends on the extent to which they receive funds from these sources.

5.3 Private and Public Flood Insurance

In Germany, flood insurance is offered via private insurance companies. Buying insurance is vol-
untary and only 44 percent of the residential houses were covered against flood damage in 2012–14
(Osberghaus, 2021). Premiums are risk-based and barely any subsidization between risk groups
takes place. Consequently, insurance premia in flood risk areas are high, which may explain why
low-income groups are subsequently less often insured against floods than wealthier households
(Osberghaus, 2021). With increasing flood risk due to climate change, premiums are expected to
rise further, likely leading to a decline in voluntary insurance coverage among low-income groups
(Qiang, 2019, Tesselaar et al., 2020).

In response to the 2021 floods, the federal German government created a 30 billion euros re-
construction fund to provide financial support for un(der)insured firms and households (German
Bundestag, 2021). Households can receive financial compensation for up to 80 percent of the dam-
age to their property (BMF, 2021). As all households can request compensation for 80 percent of
the damage regardless of the total amount, richer households with more valuable dwellings receive
higher absolute compensations. Moreover, research on post-disaster response policies showed that
lower income groups often experience greater difficulties to apply and receive financial aid (Grube
et al., 2018, Muñoz and Tate, 2016, Fothergill and Peek, 2004). Among other examples, research
has shown that after Hurricane Katrina significantly fewer public resources went to disadvantaged
groups (Islam and Winkel, 2017, Masozera et al., 2007). We thus expect that lower-income house-
holds have fewer personal funds for the recovery available and likely also receive less compensation
for damages from private insurances and the state. They are not only disproportionally exposed
and possibly more sensitive to floods, but their ability to cope and recover is comparatively low.

6 Conclusion

In this paper, we investigate the distributional impact of anthropogenic global warming and
ask which socio-economic groups suffer most from its consequences. We study the case of the
2021 floods in Germany, one of the most damaging natural disasters in Western Europe in recent
decades. Our analysis combines geo-coded post-disaster satellite data on actual flood damages
with highly disaggregated data on average incomes for 1 km2 areas. To identify the income-flood-
damage gradient and account for potential confounders due to broad economic or cultural differ-
ences across regions, we focus on neighborhoods in close proximity to affected rivers and include
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various regional fixed effects.
Our empirical analysis documents that neighborhoods with lower average disposable household

income were disproportionally exposed to the 2021 floods. Therefore, the floods have a regressive
impact on the income distribution. These findings are robust to a variety of alternative specifications
and robustness checks. In addition, the elderly and households with migration background were
more likely to suffer from the natural hazard. The existing literature suggests that these groups
are also more sensitive and less resilient to floods than other population groups. Therefore, we
conclude that the overall vulnerability of affected households was high during the 2021 floods.

Although the data used in our study allows to calculate flood damages and study income dif-
ferences for fine-grained regions in Germany, our study is still based on aggregated data from
a private data provider and the visual inspection of satellite data. Ideally, we would evaluate
the income-flood-damage gradient based on administrative household-level data. Besides bringing
more precision, such a data base would allow to study heterogeneous effects along socio-economic
and demographic characteristics in more detail. Another limitation of our study is that floods are
only one form of natural disaster caused by climate change. It would thus be valuable to investi-
gate the impact of other environmental disasters to better understand the distributional impact of
climate change. Future research could also investigate the sensitivity and the ability to cope and
recover in the European context.
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A Appendix: Descriptive Statistics

Table A.1: Summary Statistics

Panel A – Variables Based on CEMS Data Set

N Mean SD P1 P25 P50 P75 P90
(1) (2) (3) (4) (5) (6) (7) (8)

Indicator: Any Building Reported? 2,376 0 0 0 0 0 0 1
Only Damaged or Destroyed 2,376 0 0 0 0 0 0 1
Only Destroyed Buildings 2,376 0 0 0 0 0 0 1

Share of Reported Buildings (in %) 2,376 3 14 0 0 0 0 100
Only Damaged or Destroyed 2,376 1 11 0 0 0 0 81
Only Damaged or Destroyed 2,376 0 5 0 0 0 0 1

Panel B – Conditional on at Least One Damaged Building

N Mean SD P1 P25 P50 P75 P90
(1) (2) (3) (4) (5) (6) (7) (8)

Indicator: Any Building Reported? 201 1 0 1 1 1 1 1
Only Damaged or Destroyed 201 0 0 0 0 0 1 1
Only Destroyed Buildings 201 0 0 0 0 0 0 1

Share of Reported Buildings (in %) 201 33 38 0 2 13 61 100
Only Damaged or Destroyed 201 17 32 0 0 0 15 100
Only Damaged or Destroyed 201 4 17 0 0 0 0 100

Panel C – Variables from RWI-GEO-GRID Data Set

N Mean SD P1 P25 P50 P75 P90
(1) (2) (3) (4) (5) (6) (7) (8)

Number of Buildings 2,376 175 266 1 9 53 221 1,212
Number of Households 1,796 536 1,094 10 42 150 527 5,721
Number of Inhabitants 2,376 799 1,817 1 20 140 668 9,844
Household Income 2019 (in EUR) 1,786 46,165 8,434 29,669 40,723 45,004 50,520 72,793
Household Income 2010 (in 2019 EUR) 1,758 47,130 8,933 30,308 41,365 45,874 51,796 75,179
Average Default Risk Rating 2,366 4 2 1 3 4 5 8
Local Unemployment Rate (in %) 2,366 5 3 0 3 4 6 16
Households with Private Pension 2,366 6 1 2 5 6 7 9
Households with Life Insurance 2,366 5 2 2 4 5 6 9
Private Health Insurance 2,366 5 2 2 4 5 6 9
Additional Health Insurance 2,366 5 2 2 4 5 6 9
Occupational Disability Insurance 2,366 5 2 2 4 5 6 9
Share of Children (in %) 2,366 16 3 0 16 17 18 23
Share of Elderly (in %) 2,366 22 7 12 19 21 24 49
Share with Foreign Household Head (in %) 2,366 10 7 0 5 8 13 32

Notes: This table presents descriptive statistics for our estimation sample.
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