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Shock Transmissions in Different Inflation Regimes*

Sarah Arndt! Zeno Enders?t

February 2023

Abstract

We show that the effect of shocks to producer prices and monetary policy on
consumer prices is regime-dependent by estimating impulse responses via state-
dependent local projections. We determine two inflation regimes with a Markov-
switching autoregressive model and find that the regimes are characterized by differ-
ent inflation volatilities. We identify upstream supply shocks with an instrumental
variable based on data outliers of the producer price series. Such shocks have a
stronger and more persistent effect on downstream prices in a regime of elevated
inflation volatility (state 2) than in periods of more stable consumer price growth
(state 1). At the same time, monetary policy shocks induce more inflation volatil-
ity in state 2, reinforcing the conclusion that transitions to this state should be

prevented from the onset.

*We thank Matthias Meier and workshop participants for helpful discussions at the third HeiTiiHo
Workshop 2022.
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1 Introduction

Policy makers have, in particular during times of rising inflation, voiced the suspicion
that the inflation process is not stable over time, but depends on the level or volatility
of inflation itself.! These changing dynamics would be particularly important for central
banking, as they would impact inflation forecasts and the expected effects of monetary
policy actions. Specifically, current inflation projections crucially depend on the assump-
tions regarding how quickly and to which degree changes in producer prices are passed on
to consumer prices. These considerations become apparent in situations in which central
banks aim to contain price pressures generated by supply shocks. Similarly, the optimal
timing of interest-changes designed to achieve the goal of price stability relies on estimates
about lags in the transmission of monetary policy.

We take up this issue by empirically investigating whether and when inflation dynam-
ics change. Specifically, using US data, we uncover two different regimes by estimating a
Markov-Switching process based on inflation dynamics. Crucially, we do not restrict the
regimes to be dependent on some exogenous inflation threshold but let them endogenously
be determined by the inflation process itself. It turns out that inflation volatility (the
presence of quick changes in inflation rates) seems to be more important in the determi-
nation of the regimes than its level. Specifically, if annualized monthly inflation changes
by more than 5.5 pp. (as in April, May, and July 2022), the economy is likely to be in
the high volatility state. In a second step, we estimate state-dependent dynamic casual
effects of a shock to producer prices—provided by the PPI stage-of-processing system of
the Bureau of Labor Statistics—on downstream price growth. That is, we estimate how
supply shocks to the crude material PPI affect intermediate and finished goods PPIs, as
well as the CPI in a dynamic way. We also investigate shocks to the intermediate stages.
We identify supply shocks by using exceptional movements in the respective PPI series

as instruments for the shocks. In doing so, we control for the endogenous reactions of up-

!Philip Lane, Member of the Executive Board of the ECB, writes on November 25, 2022: ”Our
corporate contacts started [towards the end of 2021] expressing more concern about the persistence
of input cost pressures, raising their price expectations for 2022 (also in view of rising energy prices).
[...] Since the beginning of this year, many contacts also told us that prices would be increased more
frequently.” (Lane, 2022)



stream to downstream prices, such that our shock series does not capture demand shocks
working their way up to previous stages of processing.

Our results show that in periods of high inflation volatility, downstream prices react
much stronger in the initial and a number of following months. That is, in this regime,
downstream prices are arguably more flexible and hence react quicker. This finding is in
line with the anecdotal evidence regarding automatic adjustments discussed below. For
shocks to the crude material PPI, we also find a higher long-run effect on the CPI. This
confirms to the notion that in times of low inflation volatility firms allow margins to vary
over time instead of passing changing costs quickly to customers, while in times of high
inflation volatility the latter is preferred.

Lastly, we also investigate the effects of monetary policy shocks in the two inflation
regimes. Again, CPI reacts much quicker to such shocks in the high-volatility state.
However, a part of the initial reaction in the high-volatility regime is reversed later on.
Hence, the medium-run effect is similar across regimes while monetary policy shocks
seem to add to the inflation volatility if it is already high. This makes it more difficult
to exit such a regime. Since cost changes are passed on more quickly and more strongly
into consumer prices, monetary policy should prevent a transition to such a regime by
counteracting phases of large price changes decisively and swiftly.

Our findings may be grounded in a different—faster and more decisive—price-setting
behavior of firms when facing swiftly changing costs and/or observing larger price volatil-
ity in their sales markets. This line of explanation is supported by anecdotal evidence from
the latest rise in inflation. Figure 1 depicts google searches for the term ‘Price escalation
clause’, together with the change in the inflation rate. If agreed upon in contracts between
seller and buyer, these clauses let sales prices rise automatically if the input costs of the
seller rise (and vice versa for falling costs)?. That is, a widespread use of these clauses
implies a much faster reaction of prices to upstream cost changes. As a result, inflation
dynamics can change considerably with important implications for inflation projections
and, potentially, for the way how monetary policy can stop the surge in inflation. As

visible in the figure, interest in this kind of clauses seems to be linked to the change in the

2The use of price escalation clauses is not just a recent phenomenon in the US. There are articles
dating back to the 1940s mentioning these clauses, such as Mack (1946) who describes different variations
of them and provides advice for buyers facing escal%ion clauses.
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Figure 1: Index for google-searches for the term ‘Price escalation clause’ (left axis) and
month-on-month change in annualized seasonally-adjusted CPI inflation rate in percentage
points (right scale).
inflation rate, with an unseen peak in the spring of 2021. At this time, global input prices
rose quickly due to several reasons, among them strained global supply chains. Similarly,
34% of sampled German Firms in the Bundesbank Online Panel reported that they use
price escalation clauses from 2021 onward, compared to only 17% before 2021.

On the theoretical side, it is well known that such quicker price reactions alter inflation
dynamics even in the most basic New-Keynesian model. Figure 2 shows the reactions of
inflation (right column) to an increase in costs due to a reduction of technology (upper
row) and to a contractionary monetary policy shock (bottom row). The blue solid line
depicts the situation when prices are, on average, changed every five quarters, while the red
dashed line shows a scenario with more flexible prices that are changed every 2.5 quarters.
As can been seen in the graph, the inflation response is much larger in absolute value in
both cases.® That is, the most basic building block of New-Keynesian models predicts
profound changes in inflation dynamics and shock transmission for different speeds of
price adjustments.

Given the important implications, surprisingly little research has been done on the

pass through of shocks to consumer prices in different inflation regimes. Due to the policy

3As standard in these models, the strong negative inflation response reduces the reaction of the
nominal interest rate to the contractionary monetary policy shock, as the low inflation rate exerts a
negative pressure on the interest rate via the Taylor rule.
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Figure 2: Theoretical reaction of inflation (right column) to an increase in production costs
due to a reduction in technology (upper row), and to a contractionary monetary policy shock
(lower row). The model is a standard three-equation New-Keynesian model with log utility,
a discount factor of 0.99, a Frisch elasticity of unity, and a Taylor rule with an inflation
coefficient of 1.5 and an output coefficient of 0.5. The Calvo parameter takes the value of
0.8 for the solid blue lines and 0.6 in case of the red dashed lines. The technology process
was modeled to mimic the latest costs increases in a stylized way, i.e., a longer-lasting cost
increase with a slow recovery afterwards.

relevance of this question, most existing research was conducted in policy institutions. By
using Granger-Causality tests, Weinhagen (2002, 2016) shows that price changes at each
stage of production in the BLS PPI data are explained by upstream changes in prices,
while downstream price changes do not Granger-cause price changes. Bobeica et al.
(2020, 2021) focus on the pass-through of labor costs into output prices. In their analysis
they consider two regimes, depending on whether the mean and volatility of inflation are
above or below its historical mean. Using a Cholesky-decomposition to identify labor-
cost shocks, they find that the mentioned pass-through is quicker and larger in the high-
inflation regime. Similarly, the BIS (2022) investigates the pass-through of relative price
changes, oil-price shocks, and exchange-rate movements into consumer prices and finds
them to be dampened in periods of inflation below 5%.

Our approach differs from the above studies in that we study the effects of well-
identified supply shocks on the prices in later stages of production. Importantly, when
identifying different inflation regimes, we do not impose an ad-hoc threshold of inflation or
its volatility but let the regimes be determined by the inflation process itself. In addition,

we also analyze the effects of monetary policy shocks in the different regimes.



2 The model

2.1 State-dependent local projections

We follow the local projection instrumental variable (LP-IV) approach of Stock and Wat-
son (2018) to construct the impulse responses. This method consists of a first-stage
regression (1) in which the endogenous variable z; is regressed on the instrument Z;, and
a second stage (2) that regresses the response variable y; on the fitted values of the first

stage, Z, and a set of (lagged) control variables W.

Ty = pps + BrsZ; + Z 5§S,ZWH + ¢ (1)
=1
Yirn = Hosh + Brpiviade + Z 52TS71WH + Uy (2)

=1

The coefficients B rprv,, then represent the impulse responses at each projection horizon h.
iirs and fiss denote the intercepts, and ¢; and u; the error terms. In this setting, Stock
and Watson (2018) state three conditions on the instrument in order to uncover a causal
effect: 1) Z; must be relevant, i.e., the shock of interest 7;, must be correlated with the
instrument: E[n;+Z;] # 0, ii) Z; must be contemporaneously exogenous to all other shocks
n—;: En_;j+Z;] = 0 and iii), Z; must be exogenous to all shocks at all leads and lags:
EneyiZ:) = 0,Yi # 0.

Adding to this baseline model, we interact the fitted values z; and the controls W,
with a state-indicator H; taking the value 1 in state 1 and 0 in state 2. Modifying the
local projection equation (2) in this way allows us to estimate state-dependent impulse

response functions (IRF):

Yirn =tasn + Hi(BLprypde + Z 03501 We-1)
®)

+ (1 — Hy)(Biprvate + Z 035.1.2Wiet) + Ursn.
=1

The coefficients 5} pry, and B2 pyy, form the impulse responses at horizon & in states 1
and 2 respectively. Estimation of equation (3) is done via ordinary least squares regression

for each projection horizon h separately.



2.2 Data

The sample we use to estimate our baseline model (3) for the United States is in monthly
frequency and spans from October 1948 to December 2021. For the response y; we use
log differences of US CPI. We set x; to be one of the three producer price indices of the
Bureau of Labor Statistics’ stage-of-processing (SOP) system: Crude materials (referred
to as Crude PPI), intermediate materials, supplies, and components (Intermediate PPI),
and finished goods (Finished PPI). We transform all price indices to log differences to
achieve stationarity. The set of controls W; includes n = 8 lags of the response v, the
instrument Z;, US industrial production growth (AIP;), CPI growth (ACPI;), if not
equal to y;, and the PPI growth of the subsequent stage of the SOP system. More details

on the data set can be found in Appendix A.

2.3 A Markov-switching model to detect inflation regimes

We detect hidden inflation regimes by employing a Markov-switching autoregressive model
(MS-AR) based on log differences of CPI data. This type of model was introduced by
Hamilton (1989). The basic modelling idea is that there are different states s; of the
AR model impressed by regime-specific model coefficients and error terms. A discrete
first-order Markov process governs the transition between these states. In our setting, we
restrict the model to have two states. The Markov process can then be described by the

following transition matrix:

P = (p11 p12) ,  where p;; = Pr(sia = jls; = 1),
P21 P22

Equation (4) describes our set up in more detail:

v+ AlleCPIt_l + -+ A174A0PL§_4 + €1t if St = 1
ACPI, = (4)
Vo + AQJACPIt,l + -4 A274ACP[t,4 + €2t if St = 2.

ACPI; (CPI data in monthly log differences) is explained by an intercept v,,, autoregres-
sive terms of four lags? and a residual term e,,;, which all switch between m = {1,2}

states. We choose a rather small number of regimes and lags in order to keep the model as

4We also estimated a MS-AR including four lags and additionally the 12t" lag and did not observe
significant differences in the timing of the resulting regimes.
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Figure 3: The top panel shows the filtered state probabilities estimated from model (4),
the middle panel plots monthly growth of CPI and the bottom panel inflation volatility
against the state-indicator Hy. Inflation volatility is calculated as the variance of monthly
CPI growth over a rolling window of 12 months.

parsimonious as possible, to reduce computational costs and thus to increase the reliability
of the estimates.

Estimation of the model parameters and the hidden Markov chain is performed with
the expectation maximization (EM) algorithm (for further explanation of the EM algo-
rithm see Hamilton (1990)). We then obtain the filtered state probabilities

Figure 3 shows the filtered state probabilities and the resulting state indicator in com-
parison with monthly growth rates of CPI and inflation volatility. We measure inflation
volatility as the variance of monthly CPI growth over a rolling window of 12 months. We
can see that the inflation regime is in state 2 whenever there are sudden swings in monthly

CPI growth and a generally increased volatility. Specifically, the correlation between the



state indicator and an volatility indicator variable—which takes the value 1 if the absolute
change in the CPI is above its average and zero otherwise—is 32% and significant.

We further demonstrate the regime dependence on inflation volatility by regressing
the Markov filtered state probabilities on the volatility indicator. The contemporaneous
indicator and the first four lags are significant at the 5% level. That is, observing a
higher-than-average absolute change in the CPI increases the likelihood to be in state
2, resulting from the Markov-switching model, by 17 pp. If, additionally, the last four
monthly absolute changes were also above average, the likelihood is 46 pp. higher. Al-
ternatively, we define the volatility indicator variable such that the R? of the mentioned
regression is maximized and find a cutoff value for the absolute value of the monthly
change in (seasonally adjusted) CPI growth of 0.45 pp., or 5.54 pp. in annualized terms.
This value corresponds to approximately the 90th percentile of our sample; it was reached
in, e.g., April 2022 (change in monthly inflation: -0.6 pp.), May 2022 (0.5 pp.), and July
2022 (-1.22 pp.). The optimized indicator variable takes the value of 1 if the absolute
change in monthly inflation is above this threshold and zero otherwise. Repeating the
above regressions results in a k2 of 0.67. The correlation between the Markov state prob-
abilities and the indicator is 0.63 and significant. If the current monthly absolute change
in CPI growth is above 0.45 pp., the likelihood of being in state 2 increases by 44 pp.
(significant at the 1% level). The first four lags are also significant at the 1% level with
decreasing coefficients: lag one has an impact of 30 pp., while the second lag still has a
coefficient of 18. To sum up, if annualized monthly inflation changes by more than 5.5
pp., the inflation regime is likely to switch to state 2. The longer inflation is volatile, the
higher is the likelihood to reach state 2.

In Table 1, we report descriptive statistics of the two states of inflation. Comparing
the standard deviation of monthly inflation within each regime we find an average of
0.08 in state 1 and 0.18 in state 2, consistent with a higher inflation variance and model
variance of the error terms. Further, we estimate the regime-dependent autocorrelation of
monthly CPI growth of up to two lags by considering only those regime realizations that
consist of at least three consecutive periods. In regime 1, we estimate an autocorrelation

of 0.69 for the first lag and 0.62 for the second and in regime 2, 0.51 and 0.25 for lag



state 1 state 2
Std. dev. of monthly CPI growth in % | 0.08 0.18
Std. dev. of error terms in % 0.06 0.13
Autocorrelation lag 1 0.69 0.51
Autocorrelation lag 2 0.62 0.25
Probability to stay in regime 0.97 0.87
Mean of monthly CPI growth in % 0.30 0.23
Average state duration in months 33 7.7

Table 1: State-dependent characteristics of the two inflation regimes.

one and two respectively. These estimates show that in state 1 is more persistent than
state 2. Surprisingly, the overall mean of monthly CPI growth is 0.23% in state 2 and
0.3% in state 1. This highlights the fact that not the overall level of inflation but rather

its volatility and sudden changes characterize the different inflation regimes we estimate.

3 Identification strategy

To identify the causal effect of a producer price shock on consumer price inflation, we
instrument producer prices with a variable based on data outliers in the respective PPI
series. We introduce a new identification approach and argue that outliers in time series
data, which are often due to rare and unforeseen events, are correlated with an exogenous
shock in that time series®. Indeed, Kapetanios and Tzavalis (2010) show that well known
oil price shock events coincide with periods in which they find an outlier in their oil price
data.

Due to their unpredictability, we interpret rare data outliers as proxies for structural
shock events, which Stock and Watson (2018) define as ”a primitive, unanticipated eco-
nomic force, or driving impulse, that is unforecastable and uncorrelated with other shocks”.
Based on this definition, we assume that outliers in the PPI series are correlated with
structural producer price shocks and uncorrelated with other shocks. Hence, we assume
that the outlier-based instrument satisfies the LP-IV relevance and contemporaneous ex-
ogeneity condition of Stock and Watson (2018). In our set up below, we make sure that

demand shocks are not the ultimate cause of the observed outliers.

SLi et al. (2022) also follow a data driven approach for shock identification as they identify shocks of
Bitcoin and crude oil returns via the empirical quantiles of the two series.



CPI growth O outliers
Crude PPl growth

1 1 1 1
1950 1960 1970 1980 1990 2000

Intermediate PPI outliers

0.05 T T

oot

-~ CPI growth 2 outliers
Intermediate PPI growth
-0.05 &L L L i I L -l Lo
1950 1960 1970 1980 1990 2000 2010 2020

Finished PPI outliers

.42 CPI growth O outliers
Finished PPI growth .
0.04 L 1 1 1 1 | | |
1950 1960 1970 1980 1990 2000 2010 2020

Figure 4: Each panel shows the outliers in the monthly growth rates of the Crude, Inter-
mediate and Finished PPI series respectively (black) against monthly CPI growth (blue).
The dots mark the outliers generated with the iForest.

We construct the outlier-based instrument Z; in the following way:

1, outlier > 0
Zy =< —1, outlier <0

0, else.
Z,; takes the value of 1, when there is a positive outlier in the PPI series in period t, -1 when
it is a negative outlier and 0 if there is no anomaly detected in ¢. To ensure that Z; satisfies
the third LP-IV condition (exogeneity to all shocks at all leads and lags), we follow Stock
and Watson (2018) and include n = 8 lags of Z;, vy, industrial production growth (AIP;),
and the PPI growth of the next stage of the SOP system (i.e., for a shock in Crude PPI
we control for Intermediate PPI), summarized in W, = {Z,, ACPI;, AIP,,APPI,}, as

controls in regressions (1) and (3). We include lags of Z; as controls to correct for possible

10



correlation between the instrument and past values of the shock of interest, which would
fail the third LP-IV condition. By including lags of industrial production as a proxy
for GDP, we correct for any correlation between Z; and a shock in GDP. Controlling for
lags of AC'PI; and the next stage PPI rules out the possibility that the instrument Z; is
correlated with a shock in consumer prices or the following stage producer prices. This is
important because we want to ensure that the dynamic effect we measure is not driven by
a previous hike in demand leading to an increase in downstream prices first, followed by
increasing upstream prices thereafter. In Appendix C, we test alternative identification
restrictions that restrict movements in downstream prices preceding identified supply
shocks. That is, we identify those outliers as supply shocks that move upstream prices
more than a certain factor compared to downstream prices. As additional robustness
check, we test different specifications of the local projections in Appendix D. In particular,
we include contemporaneous values of industrial production and the exchange rate as
controls, demonstrating again that our results are not driven by demand shocks or by an
simultaneous effect of the exchange rate on prices of several stages of production. We also
conduct several sample splits.

We detect outliers in the producer price indices using the isolation forest algorithm
(iForest) proposed by Liu et al. (2012), which has been implemented in the Scikit-learn
Python package by Pedregosa et al. (2011). Instead of first defining normal instances
in the data, the iForest directly detects anomalies in the data through two quantitative
properties: i) anomalies are the minority, and ii) they have attribute-values different from
those of normal instances. For further explications see Liu et al. (2012). When setting
the proportion of outliers in the PPI series (transformed to log differences) to 0.06, the
iForest algorithm detects 54 outliers.® Figure 4 shows the three PPI series and detected
outliers over time. The outliers actually coincide with periods when there were prominent
events in history that lead to volatile and elevated inflation, like the oil price crisis in the
1970s, turmoil during the financial crisis, or price falls due to a relaxation of supply-chain

pressures after the COVID-19 lockdowns in 2020.

6We choose 0.06 as lower values result in too few shocks and consequently weak instruments. Higher
values might classify price movements not connected to supply shocks as such. We therefore prefer this
rather conservative value.

11



4 Results

4.1 Effects of producer price shocks on consumer prices

Figure 5 shows the state-dependent responses of monthly CPI growth to a unit shock in
monthly growth rates of Crude, Intermediate or Finished PPI over a horizon of 8 months.
On impact, the responses of all stages of processing PPIs in state 1 and 2 are significantly
different from each other. The impact response of state two, the one which is associated
with higher volatility in monthly CPI growth, always lays above the one of state 1. The
effect of a shock in Crude dies out more slowly in state 2 than in state 1. When comparing
the difference between state 1 and 2 across the three PPIs, we can see that for Crude PPI,
the cumulative responses in state 1 and 2 are significantly different from each other over
almost the whole horizon considered, while for Intermediate PPI and Finished PPI they
start to overlap from period 1 and 2 onward. The size of the effect of a producer price
shock are larger, the closer the respective stage of processing is to the CPI, i.e., for more
downstream prices.

The dashed lines in Figure 5 represent 68% confidence bands. We construct them
with Eicker-Huber-White (EHW) heteroskedasticity-robust standard errors as suggested
by Montiel Olea and Plagborg-Mgller (2021). Montiel Olea & Plagborg-Mgller show that
when augmenting the local projection with lags of the response variable, EHW standard
errors produce favorable results without the need to further correct for serial correlation
in the regression residuals. In line with this argument we include 8 lags of y; in the local
projection regressions.

The instrumental variable we use consists only of a few data points unequal to zero
and can thus be characterized as a sparse instrument. Giacomini et al. (2022) argue
that these sparse instruments, often constructed from narrative restrictions, are likely
to be weak instruments. We test the relevance of our IV applying the robust test for
weak instruments with multiple endogenous regressors proposed by Lewis and Mertens
(2022). We interact the instrument and PPI; (our endogenous regressor) with the state
indicator H; and use 8 lags of CPI, IP and the IV as controls. Following Lewis and

Mertens (2022), the test rejects weak instruments if the difference of the test statistic and

12
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Figure 5: Impulse responses in regime 1 and 2 of a shock to Crude, Intermediate, or
Finished PPIs on monthly CPI growth. Left side displays IRFs in levels, right side the
cumulative IRfs. Dashed lines represent 68% confidence intervals.

the critical value is positive. For our specification, this is the case at all horizons and for

all three stages of processing PPIs, as can be seen in Figure 6. Hence, we reject the weak
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Test Results across Horizons
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Figure 6: Results of the Lewis and Mertens (2022) test for weak instruments as the
difference of the test statistic and the critical value. For all horizons and for all of the three
PPI measures, this difference is positive and hence the weak instrument hypothesis can be
rejected.

instrument hypothesis for the instruments based on Crude, Intermediate and Finished

goods PPI respectively.

4.2 Effects between stages of processing

In a second step we analyze the effect of a producer price shock on its downstream price
index in the stages of processing system, namely the effect of a shock in Crude PPI on
Intermediate and Finished PPI and the effect of Intermediate on Finished PPI. Therefore,
we set the response variable y; in (3) equal to Intermediate (first row in Figure 7) or
Finished PPI (last two rows) and z; is then either Crude (first two rows) or Intermediate
PPI (last row). We leave the rest of model (3) unchanged, also the instruments follow the
same rule as in the analysis for Figure 5.

In all three cases we can see a significantly differing response between state 1 and 2 on
impact. This difference is most pronounced and most persistent for a shock in Crude on
Intermediate PPI. The effect of a shock in Crude PPI dies out more slowly in state 2 than
in state 1. The response of downstream PPIs in state 2 in response to a shock in Crude
PPI lays most of the time above those in state 1. In Figure 7, we show 68% confidence

bands produced with EHW standard errors. Again, the weak instrument test by Lewis
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Figure 7: Impulse responses in regime 1 and 2 of a shock to Crude on Intermediate and
Finished PPIs and of a shock in Intermediate on Finished PPI. Left side displays the IRF's
in levels, right side the cumulative IRfs. Dashed lines represent 68% confidence intervals.

and Mertens (2022) leads to a rejection of the weak instrument hypothesis in all three

cases (see Figure 11 in Appendix B).
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4.3 Effects of a monetary policy shock

In the third part of the analysis, we estimate the state-dependent effect of a monetary
policy shock on monthly CPI growth. Departing from the IV approach, we directly regress
monthly CPI growth (y;) on the monetary policy shock series (shock;) that Jarociniski and

Karadi (2020) construct combining high-frequency information and sign restrictions:

Yern = pn + Hy (ﬁ,llshockt + Z (5{1th> + (1 — Hy) (ﬁishockt + Z (5;‘72th> + Uy

=1 =1 )
The set of controls W; now contains 8 lags of y;, AIP;, and the log differences of monthly
West Texas Intermediate (WTI) crude oil price provided by the World Bank’s commodity
price database. Coefficients B L and Bﬁ denote the impulse responses at horizon h in states 1
and 2 respectively. The sample length for model (5) spans from 1990M2 to 2019M6 since
Jarocinski and Karadi (2020)’s monetary policy shock series is only available in this time
span.

Figure 8 shows the resulting IRFs of model (5). As we can see in the left panel, the
effect of a monetary policy shock on monthly CPI growth differs across state 1 and 2. On
impact, the effect in state 1 is negative and increases slowly in the subsequent periods.
In state 2, the effect is negative until two months after impact, but then we can see

a reversion of the effect and CPI growth gets significantly positive. Due to this initial

Effect of a monetary policy shock on monthly CPI inflation
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Figure 8: Impulse responses of monthly CPI growth in regime 1 and 2 to monetary policy
shocks by Jarociniski and Karadi (2020). Left side displays IRF's in levels, right side the
cumulative IRfs. Dashed lines represent 68% confidence intervals produced with EHW
standard errors.
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‘overshooting’, the cumulative responses are significantly different from each other until

two month after impact but are similar some time after.
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Figure 9: Resulting IRFs of a positive and negative shock in Crude, Intermediate, or
Finished PPI on monthly CPI growth. Left hand side displays IRFs in levels, right side
cumulative IRfs. Dashed lines represent 68% confidence intervals.
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diate, or Finished PPI on monthly CPI growth. Left side displays IRF's in levels, right side
cumulative IRfs. Dashed lines represent 68% confidence intervals.



4.4 Positive vs. negative shocks

Lastly, we analyze potential regime-dependent asymmetries between positive and negative
shocks. We first create an instrument containing only the positive outliers and then a
second one with only negative outliers. We estimate both directions of the shock at the
same time to avoid potential biases by truncated variables (Garzon and Hierro, 2021):
n
Yirn =pos,n + Hy <5£P1v,h,—§3t, + ﬁiPIV,h,—k‘%t# + Z 52Ts,z71th>

=1

. (6)
+ (1 — Hy) (5%P1V,h,—ft,— + 5%P1V,h,+£t7+ + Z 52Ts,l,2Wt—l) + Usih-

=1

In model (6), B}; prvh+ and Bi prv.,— denote the positive and negative impulse responses
in state 1, and B%Plv,h,+ and BA%PIV,h’f those of state 2 respectively. ; ; and &, _ are the
fitted values from a regression of the dependent variable x; on the positive or negative
instrument and lagged controls W;, which are the same as employed in model (3).

Figure 9 reports the resulting IRFs in levels and Figure 10 shows the cumulative
responses. We distinguish two sorts of interaction effects here: The state-dependency
between the two inflation regimes and an asymmetric effect of positive vs. negative shocks.
For Crude PPI in state 2, the impact effect of a negative shock is stronger than its pendant
of a positive shock. The same holds true for Intermediate PPI. The response of CPI growth
to a negative shock in Finished PPI reaches the zero line the first time in the second month
after impact, while this effect lasts longer for a positive shock. The reverse holds true
for a shock in Crude PPI. Here, a negative shock seems to have a longer lasting effect.
In the cumulative responses we can see that the state-dependency lasts longer when the

economy is hit by a negative shock in producer prices.

5 Discussion of results and policy implications

The main picture that can be drawn from the results is that if the inflation regime is one
of increased volatility, the transmission of producer price shocks on consumer prices is
stronger and quicker than in a tranquil inflation regime. This state-dependency is largest

and most persistent for shocks in Crude PPI and decreases downstream in the stages
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of processing. This result underpins the role of Crude PPI in driving the difference in
regimes, supported by the observation of smaller regime differences in the transmission
of a shock in Intermediate on Finished PPI growth. The larger state-dependency can be
explained by a cumulation over the subsequent stages of production: if each stage reacts
more strongly to cost changes in regime 2, these differences across regimes add up on their
way downstream. The longer-lasting responses are likely due to lagging price changes at
downstream production stages. This is visible in the effect of shocks to Crude PPI on
Intermediate PPI in Figure 7.

Comparing the scale of the IRF's in Figure 5, we can see that a unit shock in Crude PPI
induces the smallest response in CPI compared to shocks in Intermediate and Finished
PPI. This can be explained by a) a mechanical effect, since more cost components are
added at each stage, and b) the larger variability we observe in monthly Crude PPI growth
compared to CPI and the other PPIs (see Figure 4). A 1 pp increase in Crude PPI growth
then induces a smaller reaction in CPI than a 1pp increase in Intermediate and Finished
PPI growth would do since firms prefer volatile margins over frequent price adjustments.
At times when CPI inflation becomes more volatile, this preference shifts towards more
frequent price adjustments. We can observe the same pattern in the effects between stages
of processing in Figure 7 with the same reasoning behind.

In recent work, Gongalves et al. (2022) derive conditions for which the state-dependent
local projection (LP) estimands B%/Plv,h and B%PIWL recover the population impulse re-
sponses. According to Gongalves et al. (2022), the state-indicator { H;} must be indepen-
dent of the structural error of interest 7;, which holds when {H;} is a function of variables
not contained in {y;, xs, W;} that are exogenous to the shock of interest. The idea is that
if a shock occurs which affects the response variable y;, this might alter the state-indicator
H,, if it is depending on ¥, and thus affect the state-dependent LP estimands, generating
a bias in the impulse response. The independence of H; and 7;; might not be clearly given
in our case as the MS-AR we use to estimate the filtered state probabilities consists of
monthly CPI growth. Nonetheless, we assume that a one-time unit shock will not induce
an alternation of the states as the regimes we estimate exhibit relatively high persistence,

albeit a potential bias cannot be excluded.
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In case of a monetary policy shock, we again observe state-dependency in the im-
pulse responses of monthly CPI growth. In state 2, a positive surprise in the 3-month
Fed funds rate leads to an immediate decrease of CPI inflation which lasts for only one
month after the impact period. The decrease is then followed by a significant increase
of monthly inflation leading to several periods of positive growth after which the effect
finally vanishes. This observation suggests that in times of high inflation volatility and
therefore more flexible prices, initial price adjustments tend to ‘overshoot’; either because
of misperceptions or because actual demand picks up after the early price reductions. In
contrast, in state 1, after negative growth on impact, the reversion to positive growth in
the medium term is less pronounced and of shorter duration than in state 2. As a result,
an increase in the policy rates in state 2 is not more effective in bringing down inflation
in the medium run than in state 1. In contrast, monetary policy shocks seem to add
volatility to the inflation process in state 2.

The main policy implication we draw from our result is that central banks should
pay close attention to the current and potential future inflation regime when assessing
the impact of a producer price shock. If emerging large price increases are not been
prevented, the economy may transition to a different regime in which cost shocks are
passed on to consumer prices more quickly and more strongly. This can render CPI
inflation persistently more volatile. Given that active monetary policy does not seem to
be more effective in preventing inflation in the medium term in such a regime but rather
adds to the inflation volatility, a transition to such a regime should be prevented at the

onset. It may be difficult to escape this regime once it has come into existence.

6 Conclusion

In this paper we estimate regime-dependent IRFs of producer price shocks on consumer
price inflation in the US. We identify a high volatility inflation regime with a Markov-
switching model and use the filtered state probabilities to construct a regime indicator
H,;. We interact a local projections model with the state indicator and estimate responses
with Stock and Watson (2018)’s LP-IV approach. As instruments we use data outliers in
the Crude, Intermediate and Finished PPI series respectively.
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We find that the impulse responses in CPI following a producer price shock are indeed
regime-dependent. If a producer price shock occurs during the high volatility regime, the
increase in consumer prices on impact is stronger than in times of stable and low inflation,
and it takes longer to decay. Also monetary policy shocks have a regime dependent effect
on monthly CPI growth. Central banks should therefore closely monitor the current
inflation regime and be aware of the different impact a producer shock might have in the

respective regime.
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Appendix A: Data description

Data on CPI and the three producer price indices were obtained from the US Bureau of
Labor Statistics (BLS) and are seasonally adjusted. Until 2014, the BLS used the stage-
of-processing (SOP) aggregation system to report producer prices. After then, the BLS
switched to the Final Demand-Intermediate Demand (FD-ID) system. Table 2 reports
the SOP code and the corresponding FD-ID code and variable titles respectively.

The BLS defines crude materials as unprocessed goods and intermediate materials
as processed goods which businesses purchase as inputs for their production. Products
included in the Crude PPI enter the market for the first time and will undergo processing
when purchased. Intermediate materials are already processed for some degree but need
further processing before becoming a finished good. Finished goods comprise commodi-
ties consumed as personal consumption or which businesses use as capital investment.

Government purchases or exports are excuded from the SOP system.

SOP Code Title FD-ID Code  Title
SOP1000 Crude materials ID62 Unprocessed goods for
intermediate demand
SOP2000 Intermediate materials, || ID61 Processed goods for
supplies and components intermediate demand
SOP3000 Finished goods FD49207 Finished goods

Table 2: Variable description of Crude (SOP1000), Intermediate (SOP2000) and Finished
(SOP3000) PPI. More information available here: https://www.bls.gov/ppi/fd-id/pp
i-stage-of-processing-to-final-demand-intermediate-demand-aggregation-sys
tem-index-concordance-table.htm
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Appendix B: Weak instrument test results

Test Results across Horizons
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Figure 11: Results of the Lewis and Mertens (2022) test for weak instruments as the
difference of the test statistic and the critical value. For all horizons across all three specifi-
cations (a shock in Crude on Intermediate (blue) and Finished PPIs (orange), and a shock
in Intermediate on Finished PPI (black)), this difference is positive and hence the weak
instrument hypothesis can be rejected.

Appendix C: Alternative identification scheme

As an alternative identification strategy we impose additional restrictions. These restric-
tions are supposed to rule out that movements in the consumer prices were first triggered
by an increase in demand and hence in inflation. If there is an outlier in the respective
PPI in period t, then, in order to be counted as a supply shock, the following alternative

restrictions have to be fulfilled.

i) ACPI,_; divided by its sample standard deviation must be smaller than 50% of PPI,

divided by its sample standard deviation

ii) ACPI;_, divided by its regime-dependent sample standard deviation must be smaller

than 50% of PPI,; divided by its regime-dependent sample standard deviation
iii) ACPI;_5 must be smaller than the sample standard deviation of CPIL

Figures 12 to 14 show the resulting impulse response functions of restrictions i) and ii)

and Figure 15 shows the results of restriction iii). In all three cases, we can see a state-
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dependency in the impulse responses with a larger effect of a producer price shock in

state 2.

Figure 12:
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left column shows IRFs of a shock in Crude PPI on monthly CPI growth, on the right the

cumulative responses.
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Figure 13: Intermediate PPI
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Note: regime dependent & regime independent standardization, restrictions i) and ii). The
left column shows IRF's of a shock in Intermediate PPI on monthly CPI growth, on the right
the cumulative responses.
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Figure 14:
t — 1, regime-indep. standardization
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the cumulative responses.
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Figure 15: This figure shows the resulting IRFs of a shock in Crude, Intermediate or
Finished PPI on monthly CPI growth when applying restriction iii). The left column shows
the IRF's in levels and the right column displays the cumulative versions.



Appendix D: Alternative local projection specification

In the baseline specification of the local projections we only include lagged values of
the set of control variables. In the case of industrial production we also control for its
contemporaneous values. The resulting IRF's of this specification are shown in Figure 16
and do not differ very much from the baseline results.

Another possible concern is that the impulse responses we estimate are driven by ex-
change rate movements as the CPI also includes imports, while PPI is measured excluding
im- and exports. To address this concern we include the contemporaneous value and 8
lags of the US narrow real effective exchange rate index (EER) provided by the Bank
for International Settlements as control variable. EER data is only available starting
from 1964M1 which is why we have to estimate the local projections on a shorter sample
(1964M1 - 2021M12). We show the resulting IRFs in Figure 17. The results are, again,
very similar to the baseline specification.

In a third robustness check, we estimate the baseline local projections using different
sample splits. We consider the following sample lengths: 1948M10 - 2007M12 (Figure 18),
1987M1 - 2021M12 (Figure 19), and 2000M1 - 2021M12 (Figure 20). Despite some small
differences between the resulting IRFs, the overall picture we get is very similar to the

baseline where we use the whole sample length (1948M10 - 2021M12).
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Figure 16: Impulse responses in regime 1 and 2 of a shock to Crude, Intermediate, or
Finished PPIs on monthly CPI growth. Left side displays IRFs in levels, right side cumula-
tive IRfs. Dashed lines represent 68% confidence intervals. For these IRFs, we additionally
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Figure 17: Impulse responses in regime 1 and 2 of a shock to Crude, Intermediate, or
Finished PPIs on monthly CPI growth. Left side displays IRFs in levels, right side cumula-
tive IRfs. Dashed lines represent 68% confidence intervals. For these IRFs, we additionally
include contemporaneous values and 8 lags of I P, and the narrow real effective rate (EER)
for the US as controls.
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Figure 18: Impulse responses in regime 1 and 2 of a shock to Crude, Intermediate, or
Finished PPIs on monthly CPI growth. Left side displays IRFs in levels, right side cumula-
tive IRfs. Dashed lines represent 68% confidence intervals. We use a sample spanning from
1948M10 to 2007M12.
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Figure 19: Impulse responses in regime 1 and 2 of a shock to Crude, Intermediate, or
Finished PPIs on monthly CPI growth. Left side displays IRFs in levels, right side cumula-
tive IRfs. Dashed lines represent 68% confidence intervals. We use a sample spanning from
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Figure 20: Impulse responses in regime 1 and 2 of a shock to Crude, Intermediate, or
Finished PPIs on monthly CPI growth. Left side displays IRFs in levels, right side cumula-
tive IRfs. Dashed lines represent 68% confidence intervals. We use a sample spanning from
2000M1 to 2021M12.
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