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Abstract
This article identifies a novel double dividend that countries would reap in the air travel sector from

replacing ticket taxes with carbon taxes. I do so by showing that taxing vacant rather than occupied seats
generates welfare gains through fuller planes, thereby calling into question previous Walrasian analysis
that suggests a role for ticket taxes at the optimal tax system alongside carbon taxes. These result
are obtained by revisiting the model from Gallego and van Ryzin (1994), in which a monopolistic airline
chooses its dynamic pricing policy to sell tickets to randomly arriving consumers over a finite time horizon
until the plane departs. In general, the profit maximizing policy differs from the welfare maximizing policy.
However, for a certain class of demand functions that includes constant elasticity and exponential demand
functions, a simple policy instrument, namely a tax on vacant seats, is sufficient to perfectly align profit
maximization incentives with welfare maximization. Calibrating the model to predict a load factor of
80% (the current global average), the welfare maximizing tax on vacant seats leads to load factors of 97%
for the constant elasticity demand function and 98% for the exponential demand function. These results
suggest that club mechanisms for financing global public good institutions via aviation taxes will create
stronger participation incentives if they do not constrain countries to use ticket taxes but instead allow
them to use emission taxes and even taxes on vacant seats.

1 Introduction
In 2019, 19% of available seat kilometers on passenger flights remained vacant in the world. This figure rose
to 45% in 2020 due to the coronavirus and stayed high at 32% in 2021. If the vacant seats were taxed, then
airlines would adjust their dynamic pricing policies so as to fill more seats. Using a second instrument such
as a tax/subsidy on occupied seats, one could achieve that the available seat kilometers would be unchanged
but the planes would be filled with more passengers.1 Would such a reform increase welfare?

This article studies this question in the monopolistic dynamic pricing model introduced by Gallego and
van Ryzin (1994). In the model, an airline sells tickets for a single flight over a finite time horizon to consumers
that arrive according to a Poisson point process. At each point in time, the airline posts a price given how
much time and how many vacant seats remain. When a consumer appears, her valuation for the flight is
randomly drawn from a time-invariant distribution D, independently of the other consumers. If her valuation
exceeds the price posted by the airline, she purchases the ticket. Otherwise, she does not purchase it and
disappears.

∗Potsdam Institute for Climate Impact Research, e-mail: lennart.stern@pik-potsdam.de
For helpful suggestions and discussions, I thank Adrien Fabre, Thomas Douenne, Pierre Fleckinger, David Martimort, Jean-
Christophe Mourrat, Jean-Christophe Poudou, Jérôme Pouyet, Tobias Rachidi and participants at the EEP Public Economics
conference, the ITEA conference and the IIPF conference.

1To see that this claim is plausible, consider the following algorithm: Suppose the status quo load factor (i.e. proportion
of occupied seats) is Z and we aim to raise the load factor to Z∗ whilst leaving the passenger kilometers unchanged. Start by
introducing a small tax on vacant seats. This will increase the average load factor. It might also change the number of passenger
kilometers. Now adjust the tax/subsidy on all seats so as to achieve that the passenger kilometers is like under the status quo.
This adjustment might also affect the average load factor. However, presumably the load factor will still be higher than under
the status quo.
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In this model, the airline’s problem is to maximize its expected profit. Its optimal pricing policy is
Markovian in the sense that it conditions the posted price only on the number of remaining seats and the
time remaining until departure.

The airline’s optimal Markovian pricing policy depends on the tax and subsidy policy chosen by the
governmnet. In most of this paper I focus on the welfare implications of a particularly simple tax policy,
namely a tax on vacant seats.

An increase in the tax on vacant seats causes the profit maximizing airline to lower its Markovian pricing
policy everywhere (shown in proposition 7): In other words: For each remaining time and remaining number
of vacant seats, the airline will set a lower price. For welfare, this has two effects: On the one hand, it will
lead to additional passengers being taken on board, which yields welfare gains, as long as ticket prices are
strictly positive. On the other hand, if it turns out that many consumers with high valuations appear later,
some of them will end up not taking the flight. This constitutes foregone welfare.

In proposition 5 I show that for certain thick-tailed distributions of valuations the second effect dominates
the first. However, for the distributions of valuations that are most commonly used in the literature, which
correspond to constant elasticity and exponential demand functions, the first effect always dominates the
second. In fact, for a class of demand functions that includes constant elasticity and exponential demand
functions, I show with proposition 3 that a tax on vacant seats with a certain strictly positive rate achieves
that the incentives of the profit maximizing airline will be perfectly aligned with the objective of social welfare
maximization. In particular, under this optimal tax on vacant seats the profit-maximizing airline will choose
the welfare maximizing pricing policy.

These results rationalize the UK’s attempt in 2010 to replace its passenger duty with a per-plane tax.
The UK government seems to have been convinced that a per-plane-tax could increase social welfare by
increasing load factors (see Dresner (2010)). However, the UK abandoned the reform, recognizing that only
distance-based air passenger taxes like their passenger duty are unambiguously legal under international law
(see Larsson et al. (2019)).

In particular, the legality of pricing the carbon emissions of international flights remains contested. The
EU included international aviation in its emissions trading scheme in 2012. However, other countries strongly
opposed this measure which they considered to be illegal under international law. In the face a looming risk
of retaliatory measures, the EU exempted international flights to and from non-EU states from November
2012 onward.

By default, the EU will again include international flights in its emissions trading scheme from 2024
onward (Larsson et al 2019). This could again lead to tensions as in 2012. To reduce the risk of opposition by
other countries, the EU countries could use distance-based air passenger taxes2, since these are legal under
international law (Larsson et al 2019). However, an alternative approach could be for the EU to initiate a
club mechanism that would require participating countries to tax aviation emission on all outgoing flights
and also on all flights coming in from countries that do not participate in the club. The membership rules
in the club would require countries to allocate a certain fraction of the tax revenue thus raised to Global
Public Good Institutions (GPGIs) (see Stern (2019) for a comparative analysis of this and two alternative
such proposals). The larger the proportion of the tax revenue that would be raised for GPGIs, the more
beneficial the mechanisms would be for those who do not participate. If a sufficiently large proportion of the
tax revenue was raised for GPGIs, then other countries would be unlikely to oppose the mechanism.

The results obtained in the current study weigh in favor of the use of emissions taxes instead of distance
based air passenger duties for such a club mechanism. In fact, replacing a distance based air passenger duty
with an emissions tax resembles the removal of a subsidy on vacant seats. Proposition 3 suggests that this
would, under the assumptions identified in the proposition, increase social welfare for the countries to whose
flights the measure is applied3. In fact, by further adding a tax on vacant seats such as a tax that is both
proportional to emissions and to the proportion of seat kilometers left vacant, further welfare gains would be
realized according to proposition 3. Thus a club mechanism allowing countries to use emissions taxes and
even such taxes on vacant seats would increase the incentives for countries to participate.

2Taxes at the European level require unanimity, whilst for emissions trading scheme a simple majority suffices. Thus it would
be more likely that the enthusiastic EU countries would individually set these taxes instead of hoping for consensus at the EU
level.

3Proposition 3 shows that an appropriately chosen positive tax on vacant seats aligns profit maximization incentives with
welfare maximization. I conjecture that social welfare is a single-peaked function in the tax on vacant seats.
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The paper is organized as follows. Section 2 reviews the literature that this paper builds on. Section
3 defines the model and reproduces a standard heuristic derivation of the Bellman equation. Section 4
derives the main result about how a tax on vacant seats can for a certain family of demand functions
perfectly align profit maximization incentives with welfare maximization. Section 5 gives the results from
the numerical calibration. Section 6 explains a result that highlights that complementary regulations are
potentially required to ensure that the introduction of a tax on vacant seats robustly increases social welfare.
Section 7 discusses the implications of the results for the optimal design of international agreements. Section
8 concludes. Most proofs are relegated to the appendix.

2 Related Literature
Keen and Strand (2007,2012,2013). use Walrasian equilibrium analysis to study taxes on aviation fuel, sales
taxes on tickets and trip taxes (i.e. passenger charges that depend on distance but not the ticket price). The
Walrasian model abstracts away from dynamic pricing and endogenous load factors. As a result, ticket taxes
have a role to play at the optimal tax system: In a Ramsey model, ticket taxes are useful for helping to raise
revenue (Sandmo (1975)). In a model à la Atkinson & Stiglitz (1974), ticket taxes should be set at rates
equal to the tax rates on other final goods. In either case, emission or, similarly, fuel taxes should be set to
equal the external cost.

The results of the current paper call these results about the role of ticket taxes into question. This is
because replacing ticket taxes by emission taxes will raise load factors and this, according to the model
presented here, will increase social surplus, even in the absence of any externalities.

The current paper therefore aims to complement the Walrasian analyses by explicitly taking into account
that the choice of taxes will affect load factors. To focus on this load factor dimension, I assume in the
model that there is a single flight with an exogenous aircraft size. I focus particularly on the welfare effects
of the introduction of a tax on vacant seats, or, equivalently in the model, the replacement of ticket taxes by
emission taxes.

In the long term, such tax reforms will of course affect other dimensions chosen by the airlines such as
the aircraft size. However, other tax instruments can be used to achieve any desired outcome under other
dimensions. For example, a per-plane tax (subsidy) can be used to incentivize the use of larger (smaller)
planes. Larger planes have lower costs per seat but, at given seat kilometers, decrease the flight frequency,
thereby lowering convenience for travelers. Endogenizing the choice of aircraft size in a model with dynamic
pricing like the one presented in the current paper seems computationally very difficult. Existing literature
on the question such as Brueckner & Zhang (2010) and Zhou & Hansen (2012) study simpler models.

The task of finding the optimal tax system for aviation can roughly be decomposed into at least three
dimensions: Firstly, using taxes to influence the type of aircraft that is used. Secondly, using taxes to
influence the set of flights that are supplied. Thirdly, using taxes to influence for a given set of flights how
the tickets are sold and in particular how many of them are sold. The Walrasian equilibrium analysis as done
by Keen and Strand (2007,2012,2013). can inform the second dimension based on an estimate of the social
cost of carbon. It is on the third dimension that I focus the attention in this paper.

For this, I use the model from Gallego and van Ryzin (1994), where a monopolistic airline sells tickets
over a finite time horizon to consumers that arrive following a Poisson process. The airline chooses an
entire Markovian pricing policy, specifying the price to set conditional on the number of remaining seats
and time until departure. Taxes can influence the entire Markovian pricing policy. McAfee and te Velde
(2006) apply this model to conduct welfare analysis for the case of an exponential distribution of consumer
valuations. They do so by comparing the Bellman equation for the profit maximization problem and the
welfare maximization problems. They find: “Thus the efficient solution is the solution a monopoly whose
costs are reduced by the static monopoly profit would choose.” From this it follows immediately in the model
that a tax on vacant seats is a sufficient policy instrument for inducing the profit maximizing airline to
choose the welfare maximizing pricing policy. Proposition 3 generalizes this result to a large class of demand
functions that includes the exponential functions and the constant elasticity functions.

McAfee and te Velde (2008) consider the case of the model where the consumers’ random valuations
are distributed according to a constant elasticity function. Their paper studies exclusively the case without
any taxes. They compute closed form solutions for the profit maximizing pricing policy and for the welfare
maximizing policy and find that the two coincide.
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However, I show (see proposition 5) that their version of the model, which assumes that the marginal cost
of filling a seat is 0, predicts that the vacancy rate will be 0% with probability 1. This makes it intuitive
that McAfee and te Velde (2008) find the same result as Stiglitz (1976) who established under constant price
elasticity of demand that a profit-maximizing monopolist extracting a finite resource over time chooses a
welfare maximizing extraction, or equivalently, pricing path.

However, once one allows for a strictly positive marginal cost of filling a seat, the analogy with the
resource extraction problem with deterministic demand breaks down: At the optimal pricing policy, the
expected vacancy rate is strictly positive.

I calibrate the model so as to reproduce in the absence of any taxes both an observed vacancy rate of
19% (the global average in 2019) and the observed marginal cost of filling a seat. I find that a tax on vacant
seats that lowers the vacancy rate to 3% is required to achieve maximal social welfare (see section 5.2).

3 The model
The model that I use was introduced by Gallego and van Ryzin (1994). An airline considers a given flight
with N seats in isolation and sells tickets over a sales horizon [0, T ] for a flight. For each small time interval
of duration dt there is a probability λdt that a potential passenger will appear and consider buying a ticket.
The passenger’s valuation v is defined to be the maximal price that she is willing to pay for the ticket.

Consumers arrive according to a homogeneous Poisson process. Each time a consumer arrives, the person’s
valuation v is randomly determined. The probability that the person has a valuation of at least y is denoted
by D (y). If a person’s valuation is at least as high as the ticket price p, then she buys the ticket. Otherwise
she does not buy it and disappears. Hence the probability that a potential passenger buys a ticket if faced
with the price p is given by D (p). Given this, I will call D the “demand function”. The cost caused by
the sale of an additional ticket is given by a constant c. This cost consists partly of the increase in fuel
consumption due to an additional person on board, which turns out to be around 10 percent of the fixed fuel
cost per seat (Borenstein and Rose (2014)).

As a government policy instrument I consider a subsidy of ϕ (p) that is given to the airline if a ticket is
sold at the price p. A case of special interest will be where ϕ (p) does not depend on p. By the following
Lemma, in the model this creates the same incentives for the airline as a tax on vacant seats with the same
rate.
Lemma 1. Given the assumption of a fixed set of flights (a single one in our model), a tax on vacant seats
induces the (profit maximizing) airline to choose the same dynamic pricing policy as a constant subsidy (of
the same rate) for tickets sold.
Proof. Consider a constant subsidy for tickets sold, i.e. a ϕ(p) = s, where s is a constant. Since we are
assuming away any time discounting over the sales horizon, the airline does not care about when exactly it
receives subsidy payments. Hence paying the airline s each time that it sells a ticket is equivalent to just
waiting until the end of the sales horizon, i.e. until time T , and then paying the airline s(N − n(T )), where
n(T ) denotes the number of seats remaining empty at the end of the sales horizon.

But since we are assuming that the aircraft size is exogenous, the airline’s policy does not affect N . Hence
paying the airline s(N − n(T )) creates the same incentives as paying it −s n(T ), i.e. charging it a tax of s
for each seat that remains empty.

The airline maximizes profits, without discounting the revenue it receives4. The airline’s profit maximiza-
tion problem reduces to setting a pricing policy p(n, t), which specifies the price posted at time t if n tickets
remain at that time.

Let vn (t) be the expected net revenue from ticket sales (that is the money paid by passengers plus the
subsidy minus the cost due to additional passengers) from time t until the end of the sales horizon at time T ,
given that n tickets are left at time t and that the optimal pricing policy is pursued from that time onward.

The probability that a passenger arrives in a small time interval of length dt is given by λdt5. If the price
is set at p then this person will with probability D (p) buy a ticket. In that case the net revenue from that

4Neglecting discounting is justified since the sales horizon is less than a year in practice
5Here I am assuming that the Poisson arrival rate is constant over time. In the more general case, one can define the “effective

time” as a function of the real time such that the arrival rate with respect to this new time is constant. Thereby, one can reduce
the model to the case with a constant Poisson arrival date that I am studying here.
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sale is given by p − c + ϕ (p) , because the airline receives the subsidy ϕ (p) for the ticket and the cost c is
incurred for every additional passenger on board. Moreover, in this case there are n − 1 tickets left to be
sold from time t+ dt onward. With probability (1−D (p)) the person does not buy a ticket and in that case
there are n tickets left at time t+ dt . Hence we have:

vn (t) = λdt (maxpD (p) (p− c+ ϕ (p) + vn−1 (t+ dt)) + (1−D (p)) vn (t+ dt)) + (1− λdt) vn (t+ dt)

Rearranging gives:

vn (t)− vn (t+ dt) = λdt maxpD (p) (p− c+ ϕ (p)− (vn (t+ dt)− vn−1 (t+ dt)))

Dividing by dt yields:

vn (t)− vn (t+ dt)

dt
= λmaxpD (p) (p− c+ ϕ (p)− (vn (t+ dt)− vn−1 (t+ dt)))

Taking the limit as dt goes to 0 yields:

−v
′

n (t) = λmaxpD (p) (p− c+ ϕ (p)− (vn (t)− vn−1 (t)))

This equation shows the trade-off that the airline faces at each point in time: Selling a ticket generates
net revenue of p − c + ϕ (p). On the other hand, there is a loss in the option value, vn (t) − vn−1 (t), that
comes from having one less available seat thereafter.

4 Welfare analysis
Now consider the problem of choosing the prices p over time so as to maximize expected welfare. We obtain
the welfare as the sum over all the people taking the flight of their valuation minus the marginal cost c that
arises due to each additional person that is taken on board. Let wn(t) be the expected welfare accruing from
time t until the end of the sales period at time T from the sale of tickets during that time interval [t, T ] .
Given that the price is p, the expected amount by which the valuation of a passenger who will buy a ticket
at that price exceeds the price is given by:

1
D(p)

∫∞
s=p

D (s) ds

Similarly to the profit maximization problem we obtain:

wn (t) = dtλ maxpD(p)

(
p− c+

1

D (p)

∫ ∞

s=p

D (s) ds+ wn−1 (t+ dt)

)
+ (1− dtλ)wn (t+ dt)

Rearranging yields:

wn (t)− wn (t+ dt) = dtλ maxpD(p)

(
p− c+

1

D (p)

∫ ∞

s=p

D (s) ds+ wn−1 (t+ dt)− wn (t+ dt)

)
Dividing by dt and letting dt go to 0 yields:

−w′
n (t) = maxpD(p)

(
p− c+

1

D (p)

∫ ∞

s=p

D (s) ds+ wn−1 (t)− wn (t)

)
The boundary conditions are identical to those in the profit maximization problem:

wn (T ) = 0

w0 (t) = 0

We write the two Bellman equations to see the analogy:
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−v
′

n (t) = maxpD (p) (p− c+ ϕ (p)− (vn (t)− vn−1 (t)))

−w′
n (t) = maxpD(p)

(
p− c+

1

D (p)

∫ ∞

s=p

D (s) ds– (wn (t)− wn−1 (t))

)
We observe that if ϕ = 1

D(p)

∫∞
s=p

D (s) ds then the two Bellman equations are identical. We also note
that the value function arising from welfare maximization satisfies the same boundary condition as the value
function of the profit maximization problem, namely wn (T ) = 0∀n and w0 (t) = 0 . From this we can deduce
that if ϕ = 1

D(p)

∫∞
s=p

D (s) ds then the value function arising from welfare maximization is the same as the
value function arising from profit maximization and also that the set of pricing policies (typically a singleton)
that maximize profit is equal to the set of pricing policies that maximize welfare. In other words: the social
optimum can be achieved by setting ϕ(p) equal to the expected consumer surplus of a consumer conditional
on the event that her valuation exceeds the price p and then letting the airline pursue profit maximization.
The consumer surplus is always positive. Hence this subsidy is positive for all prices.

I have assumed that the distribution of the valuations of the passengers considering at time t to buy
a ticket does not change with the time t. Interestingly, if D(p, t) is a function of time, then by setting
ϕ (p, t) = 1

D(p,t)

∫∞
s=p

D (p, t) ds, the profit maximizing policy is again welfare-maximizing. Let us write these
general observations as a proposition:

Proposition 1. Let D (p, t) be the probability that a customer appearing at time t has a valuation of at least
p. If a subsidy of ϕ (p, t) = 1

D(p,t)

∫∞
s=p

D (s, t) ds is given to the airline for each ticket that it sells at time t

for the price p then this perfectly aligns the airline’s profit maximization with welfare maximization.

Consider the price-dependent subsidy ϕ (p, t) = 1
D(p,t)

∫∞
s=p

D (s, t) ds that according to proposition 1 can
achieve that the profit maximising airline will end up maximizing expected social surplus. 1

D(p,t)

∫∞
s=p

D (s, t) ds

is the expected consumer surplus of a customer, conditional on his valuation exceeding the price p. In par-
ticular, it is always positive. Now consider the following 3 questions:

1) Can a constant subsidy for occupied seats only ever increase the expected number of seats filled?
2) Can any positive price-dependent subsidy only ever increase the expected number of seats that it fills?
3) Can the optimal price-dependent subsidy only ever increase the expected number of seats that it fills?
The answers turn out to be: yes for 1), no for 2), and no for 3). Consider first question 1. This result

is true in a much broader class of models than the one considered in this paper. To see why, denote by ρ
the airline’s pricing policy. In the setting of this paper, ρ is a Markovian pricing policy. Nor let us denote
by π(ρ) the airline’s expected profit in the absence of any taxes or subsidies. Let G(ρ) denote the expected
number of occupied seats on the flight, i.e. the expected number of seats for which a ticket has been sold
by the end of the sales horizon. In the presence of a constant subsidy of s per occupied seat, the airline’s
after-subsidy profit is π(ρ) + sG(ρ).

This argument does not carry over to addressing question 2), since for general price-dependent subsidies,
the mere number of seats filled is no longer a sufficient stastic for the computation of the airline’s after-
subsidy profit. Consider for instance a price-dependent subsidy that is some fixed number s∗ for a ticket sold
at a price exceeding some value p∗ and 0 otherwise. Suppose p∗ is larger than this prices that the airline
ends up choosing in the absence of any subsidy. As long as D(p∗) > 0, then for sufficiently large values of
s∗, it will become optimal for the airline to always set p = s∗ or even higher. This gives an example of a
price-dependent subsidy that lowers the expected number of seats sold.

It turns out that this can happen even at the optimal price-dependent subsidy policy. This result follows
from the constructions provided in the proof of proposition 5 in appendix A.5. The proof provided there
treats the case where the government is (maybe for reasons of simplicity) restricted to only use constant
tax/subsidy on tickets sold. However, it can be readily adapted to the case without this restriction.

Thus if do not make any assumption on the distribution of valuations D(p), we cannot hope for any
general results about how the optimal tax policy will affect the number of occupied seats. However, we will
now study three classes of distributions where we can obtain clear results.

Example 1. Exponential demand function: D (p) = e−ap

6



This demand function is commonly used in the literature on dynamic pricing in the airline industry (see
e.g. McAfee and te Velde (2006)). Assuming this functional form, we compute:

1

D (p)

∫ ∞

s=p

D (s) ds =
1

a

We observe that 1
a is the static monopoly price, i.e. the price that maximizes pD (p) = pe−ap.

From our preceding discussion it follows that if a constant subsidy of 1
a for every ticket sold is given then

profit maximization is equivalent to welfare maximization. Such a fixed subsidy is equivalent to a tax on the
vacant seats at the rate 1

a . We now state this result:

Corollary 1. If the valuations are exponentially distributed with D (p) = e−ap then the socially optimal
dynamic pricing policy is profit maximizing if a tax on vacant seat kilometers is introduced at a rate that
equals the static monopoly price 1

a .

To prepare the analysis for constant elasticity demand functions, we now prove:

Lemma 2. Suppose κ > 0 . Consider any price-dependent subsidy ϕ (p). The profit-maximising pricing
policy under ϕ (p) is the same as under the price dependent subsidy (κ− 1) (p− c) + κϕ (p).

Proof. This Lemma is a direct consequence of the fact that multiplying the objective function by a constant
does not alter the optimal value of the choice variable. In our context, the choice variable is a (Markovian)
pricing policy.

The airline is faced with the problem

maxρE(
∑

i∈I(ρ)

pi(ρ)− c+ ϕ(pi(ρ)))

Where ρ is the pricing policy, I (ρ) is the set of seats sold and pi (ρ) is the price at which seat i is sold
(both are random variables). c is the marginal cost of filling a seat. Since any maximization problem is
preserved under multiplication by a positive constant κ , this maximization problem is equivalent to

maxρκE(
∑

i∈I(ρ)

pi(ρ)− c+ ϕ(pi(ρ)))

Which can be rewritten as

maxρE(
∑

i∈I(ρ)

pi(ρ)− c+ (κ− 1)(pi(ρ)− c) + κϕ(pi(ρ)))

Example 2. Constant demand elasticity: D(p) = p−ε

We compute the consumer surplus, conditional on a valuation exceeding p : 1
D(p)

∫∞
r=p

D (r) dr = p
ε−1

Proposition 2. Suppose that valuations are distributed so as to give rise to constant demand elasticity.
Then a constant tax on the vacant seats equal to 1

ε c achieves that welfare is maximized.

Proof. By proposition 1 we know that a price dependent subsidy of 1
D(p)

∫∞
r=p

D (r) dr = p
ε−1 will induce the

profit-maximising airline to maximize welfare. By Lemma 2, we know that for any κ > 0, the price dependent
subsidy κ p

ε−1 + (κ− 1) (p− c) will induce the airline to choose the same pricing policy as under the subsidy
p

ε−1 .
Now let us choose κ such that the p disappears, i.e. let us pick κ such that 0 = κ 1

ε−1 + (κ− 1), which
just means κ = ε−1

ε . For this value we obtain a subsidy on occupied seats of(
ε− 1

ε
− 1

)
(−c) =

(
1− ε− 1

ε

)
c =

1

ε
c

Equivalently, this is also achieved through a tax on the vacant seats at that same value 1
ε c.

7

https://s3.amazonaws.com/academia.edu.documents/40283826/DynamicPriceDiscrimination.pdf?response-content-disposition=inline%3B%20filename%3DDynamic_Price_Discrimination.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20191003%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20191003T093046Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=17e911da77afe9a896b24df5851512fe39671298765793167bdcc4d20c772471


In order for the constant demand elasticity model to be adequate, the elasticity ε has to be greater than
1, since otherwise expected profits could be increased without bounds by simply charging higher and higher
prices. Therefore, the preceding proposition 2 implies that the optimal tax rate on vacant seats is smaller
than the marginal cost for filling seats.

We can also deduce directly from the proposition 2 that if c = 0 then welfare is maximized without
any taxes or subsidies. This fact is also proved by McAfee and te Velde (2008). They do this by explicitly
finding the Markovian pricing policy for both the profit maximization problem and the welfare-maximization
problem and showing that the two policies are identical. In appendix A.3I extend their calculations. This
allows me to prove that under their assumption of 0 marginal costs the model predicts an expected vacancy
rate of 0. Thus clearly the model with c = 0 is not appropriate for assessing whether a tax on vacant seats
or other instruments affecting the vacancy rate can improve welfare. In the appendix A.3 I also calibrate the
model for this case of constant elasticity.

We have seen above that for both the constant elasticity and the exponential demand functions the tax
on vacant seats suffices as an instrument to achieve the equivalence of the profit maximization and the
welfare maximization problem. These two classes of demand functions happen to be the ones that are most
frequently used in the literature on dynamic pricing. The question arises as to whether there are any other
demand functions with this property. The next proposition shows that there are in fact further such demand
functions6:

Proposition 3. For the following demand functions the tax on vacant seats is a sufficient instrument to
achieve the perfect alignment between profit maximization and welfare maximization:

demand function optimal tax on vacant seats
(a+ p)

−b with a ≥ 0, b > 0 χ = a+c
b

e−gp, with g > 0 χ = 1
g

(max(a− p, 0))
b with a > c, b > 0 χ = a−c

b

Proof. see appendix A.1.

These demand functions cover a large class. Linear demand functions are contained as a special case of
the third class (max(a− p, 0))

b. For the numerical simulations, we will focus on the first two specifications,
since they are the ones used in the prior literature, the conclusions of which this paper purports to challenge.

To interpret the size of the optimal tax rates, it is helpful to compare them to the static monopoly price
in both cases. In the case of the first specification, D(p) = (a+ p)

−b, the static monopoly price is a+cb
b−1 , so

the ratio of the optimal tax rate on vacant seats to the static monopoly price is a+c
a+cb

(b−1)
b . Since b > 1, this

is always smaller than 1. It is close to 0 if b is close to 1 or if b is large.
In the case of the second specification, D(p) = exp (−ap), the static monopoly price is a, so the ratio of

the optimal tax rate on vacant seats to the static monopoly price is 1.
Thus the predictions about the optimal tax on vacant seats (relative to the static monopoly prices) is

sensitive to the choice of specification. However, it appears that conclusions about what the optimal vacancy
rate will be under the optimal tax on vacant seats are more robust. This is suggested by the calibrations I
will present in the next section.

5 Numerical calibrations
We have seen that for the class of demand functions identified in proposition 3 the tax on vacant seat is
a sufficient instrument to achieve that welfare is maximized. The two classes of demand functions that

6The result presented here is partially reminiscent of proposition 1 in Karp & Livernois (1992). They study a monopolistic
firm extracting a finite resource and a government that can choose a stock-dependent linear extraction subsidy. The government
can always induce the monopolist to maximize social welfare through a (one-dimensional family of) stock dependent subsidy
policies. However, these subsidy policies are time consistent if and only if they are stock-independent.

For the case of constant marginal extraction cost, they consider the optimal subsidy policies under full commitment and the
Markov Perfect subsidy policies (i.e. the subsidy policies that only condition the (linear) extraction subsidy on the stock and
that arise at a subgame perfect equilibrium in a game where the monopolist acts strategically). They show that these two sets
overlap if and only if the demand function belongs to the first of the three classes shown in the table of proposition 3 below.
Moreover, Karp & Livernois (1992) show that for this class of demand functions, the two sets of subsidy policies coincide.
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have been studied in the literature on the welfare economics of aviation taxation, exponential and constant
elasticity, are included in this class. It is for these functional forms that we now calibrate the model to
compute the optimal tax rate on vacant seats. For these calibrations we assume that at the status quo there
are no aviation taxes. Since in reality existing taxes are very low this assumption should not substantially
distort the results.7

5.1 Exponential distribution: D (p) = e−ap

In this case the following result shows that we can directly deduce the optimal load factor (i.e. proportion of
occupied seats) from the load factor that is observed in the absence of any tax:

Proposition 4. Suppose the demand function is exponential, D (p) = e−ap. As always, denote by N the
total number of seats on the plane. Let Z and Z∗ be the expected proportion of seats occupied on the flight
without any tax and with the optimal tax on vacant seats, respectively. Z∗ can be deduced from Z according

to the following formula Z∗ =
q(Z)e

∑N−1
k=0

(q(Z)e)k

k!∑N
k=0

(q(Z)e)k

k!

N , where q(z) is implicitly defined by Z =
q(Z)

∑N−1
k=0

q(Z)k

k!∑N
k=0

q(Z)k

k!

N .

Proof. see in appendix A.2.

Results from calibration: Suppose that in the absence of any taxes there is a vacancy rate of 20% (which
is approximately the global average according to IATA). Then we obtain the following results:

Figure 1: Optimal load factor if the load factor observed in the absence of taxes is 80%.

For example, suppose the number of seats is N = 50. Then at the optimal tax policy the optimal vacancy
rate is 1.5%. In other words: According to the model with the exponential distribution of valuations the
government should introduce a tax on vacant seats at a level that reduces the vacancy rate to 1.5%. N = 50
is the lower end for commercial passenger planes. For larger planes the optimal vacancy rate is even lower.

Commercial airlines today have between 20 and 900 seats. The following graph is obtained by applying
proposition 4:

7It is clear that proposition 3 still holds if there are taxes on occupied seats in place: In the model, a ticket tax is equivalent
to a subsidy on vacant seats. In fact, proposition 3 also still holds in the presence of sales taxes. This is shown in appendix A.4.
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Figure 2: Optimal vacancy rate as a function of observed vacancy rate

Zooming into this graph gives:

Figure 3: Optimal vacancy rate as a function of observed vacancy rate

5.2 Constant elasticity distribution: D(p) = p−ε

I solved this version of the model numerically and calibrated it as explained in A.3.2.
Results from calibration: Suppose the parameters ε and c are chosen so as to produce the observed ratio

of marginal costs of filling a seat to average ticket price and the observed vacancy rate (20 percent as global
average) assuming the absence of taxes. Then for all realistic values of the number of seats per flight we
obtain that at the socially optimal tax policy the vacancy rate is around 3 percent. Social welfare increases
by 3.2 percent as a result of the introduction of the optimal tax on vacant seats.
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6 Robustness
We have seen that in the absence of specific tax/subsidy policies profit maximization will typically not lead
to welfare maximization. Moreover, in the cases where the distribution of valuations belongs to the family
identified in proposition 3, we have found that what is required to align profit maximization incentives with
the objective of welfare maximization is precisely a tax on vacant seats (or, equivalently in our model, a
subsidy on occupied seats or a constant subsidy on ticket sales).

For other distributions of valuations more complicated instruments would be needed, as shown in propo-
sition 1. However, the question arises as to what the optimal tax on vacant seats would be under different
distributions of valuations under the restriction of only using this simple instrument of a tax on vacant seats
(thus excluding the price dependent subsidy that would generally be required to achieve maximal welfare).
A natural question is then whether the optimal tax rate on vacant seats is always positive. It turns out
that it can be negative. In fact, we even have in proposition 5 a stronger result. It states that as long as
there is a strictly positive probability that all tickets are sold out, one can always rationalize a policy change
that consists of lowering the tax on vacant seats. In particular, this proposition implies that one can always
rationalize subsidizing vacant seats.

Proposition 5. Consider a continuously differentiable demand function D and a tax rate α for the tax on
the vacant seats. Suppose that under α and D there is a strictly positive probability that all tickets will be
sold. Then for any α′ < α there exists a demand function D# that satisfies the following conditions:

1) the model with D# implies that welfare will be strictly increased if α is lowered to α′

2) the model with D# generates the same predictions as D for both the tax rate α and the tax rate α’.
(i.e. the profit maximizing pricing policies are the same for D# and D under both α and α′).

Sketch of the proof:
Roughly speaking, in the proof of proposition 5 the demand function D# is obtained from D by thickening

the upper tail of the distribution of valuations without making it profitable for the airline to increase prices.
To illustrate this, consider a discrete one period version of the model with just one seat, where the demand
function D(p) now denotes the probability that there is a customer willing to buy the ticket, given that the
price is p. Let p̂ be an expected-profit maximizing price. The red curve in the following diagram shows the
equiprofit curve:

If the demand function was actually the equiprofit curve, q = D(p̂)(p̂−c)
p−c , then by definition p̂ would still

be expected-profit maximizing. However, the expected valuation for a consumer conditional on his valuation
exceeding p̂ would then be infinite, since it is given by 1

D(p̂)

∫∞
p=p̂

D(p̂)(p̂−c)
p−c = (p̂− c)[log(p− c)]∞p=p̂ = ∞.

Building on this observation, I show in in appendix A.5 that also in the full dynamic model that is
the object studied in this paper, one can thicken the upper tail further and further such that the expected
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valuation of a potential passenger goes to infinity, whilst the predictions of the model are unchanged for
given tax rates. It thus becomes an overwhelming priority to make sure that no person is ever refused the
possibility to buy a ticket. Subsidizing vacant seats is one way to induce the airline to make sure that such
refusals are less likely to happen.�

The proof of proposition 5 shows that it is possible for the introduction of a tax on vacant seats to reduce
social surplus if the distribution of valuations is sufficiently thick so that in expectation a lot of surplus is
lost when the flight runs out of tickets and people are refused the possibility to buy one. However, there are
other public policy instruments that could be used to reduce the probability of such refusals. For example,
a government could enable a secondary market for tickets (see Love (2019)). It could impose by regulation
that all airline tickets must be transferable8. If people with very high valuations appear, they would then be
able to buy tickets from other customers with lower valuations.

One can analyze such a regulation to make all tickets transferable in extensions of the model used above.
Consider the following sketch of a version of such an extension: Suppose that once a consumer has appeared
and has his valuation realized, this valuation does not change. Thus if given the chance to sell his ticket at a
price exceeding his valuation, he will want to do so. Suppose there is no friction in the resale market and all
mutually beneficial trades are realized. Typically, the unique socially optimal dynamic pricing policy for the
airline to use to sell its tickets would be to always sell tickets at their marginal cost. If and when the airline
runs out of tickets, the resale market would ensure that the consumers with the highest valuations would get
them.

In such a model the social optimum could be implemented by combining the obligation to make all
tickets transferable with a sufficiently high tax on vacant seats and a prohibition to sell tickets below their
marginal cost. If introduced without an accompanying tax on vacant seats, the obligation to make all tickets
transferable might increase the incentives for airlines to raise their dynamic pricing policy: If the airline sells
tickets at a low price then consumers with low valuations might later resell their tickets, thus undermining
the price that the airline can charge then. The results from sections 4 and 5 suggest that this could lower
welfare, as more seats will be left empty as a result. However, the introduction of sufficiently high tax on
vacant seats would counteract this effect. We have no guarantee that the introduction of the obligation to
make all tickets transferable will increase welfare (by the arguments just given) nor that the introduction of
a tax on vacant seats will increase welfare (by proposition 5). However, in the model just sketched, the joint
introduction of these two government policies (combined with a prohibition of sales below marginal cost)
allows for the social optimum to be implemented.

A proper analysis will have to take into account that people make decisions with lock-in when they
purchase flight tickets: They decide on when to take days off work, book accommodation etc., which are
decisions that are potentially costly to reverse. In a richer model taking into account such effects it will no
longer be straightforward to find socially optimal sales mechanisms, let alone government regulations that
could cause such socially optimal sales mechanisms to be implemented. However, the simplistic analysis just
given should at least prevent us from drawing too pessimistic conclusions from proposition 5: This proposition
should not lead us to conclude that taxes on vacant seats are not promising instruments for increasing welfare.
Instead, proposition 5 should motivate us to pursue the following research question: How can we best design
regulations (such as an obligation to make tickets transferable) as complements to a tax on vacant seats in
such a way that more seats will be filled whilst still ensuring that people with high valuations will always get
a ticket?

7 Implications for the design of mechanisms to fund Global Public
Good Institutions via taxes on international aviation

In 2016, the member states of the International Civil Aviation Organization (ICAO) adopted the Carbon
Offsetting and Reduction Scheme for International Aviation (CORSIA). 81 States, representing 77% of in-
ternational aviation activity, intend to voluntarily participate in CORSIA from its outset. Starting in 2021,
the participating countries have obliged airlines to offset a part of their emissions by buying certificates from
projects in developing countries that have been certified to have reduced emissions.

8Currently, only a small fraction of tickets is transferable. $7 billion worth of tickets remain unused per year.
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However, since the depth of this agreement is expected to end up being quite shallow (the carbon price
that airlines will face might correspond to only about 0.3% of ticket prices (see Stern (2019) for a discussion
based on Warnecke et al. (2019)), the EU is considering taking further unilateral action to achieve higher
carbon pricing. In 2016 the EU held a ’consultation on market-based measures to reduce the climate change
impact from international aviation’. A common suggestion was to tax all international flights to and from
countries that do not have equivalent taxes in place. Moreover, many submissions suggested to allocate a
part of the tax revenue to a Global Public Good Institution (GPGI)9 for climate change mitigation such
as the Green Climate Fund. Based on these suggestions, one can define the following proposal for a club
mechanism that the EU could initiate10. The name MGF Mechansim stands for “Multiple GPGI Funding
Mechanism”:

Definition 1. The Basic MGF Mechanism
The Basic MGF Mechanism for a given set of recognized Global Public Good Institutions (GPGIs) defines

a club through the following two obligations that participating countries have to comply with:
the taxation obligation (version 1): Each participating country is required to levy an emissions tax at

a fixed rate τ on all outgoing international flights and also on incoming international flights arriving from
countries that do not participate.

the allocation obligation: Each participating country must allocate all the tax revenue collected to GPGIs.

The set of recognized GPGIs would be determined and updated regularly through some voting mechanism
in which all countries could participate.

Alternatively, the taxation obligation could restrict countries to use ticket taxes:

Definition 2. the taxation obligation (version 2): Each participating country is required to levy a distance-
based ticket tax at a fixed rate τ per kilometre on all outgoing international flights and also on incoming
international flights arriving from countries that do not participate.

To assess which of these two versions of the Basic MGF Mechanism countries should best initiate, there are
several considerations to be taken into account. Firstly, the version with ticket taxes instead of carbon taxes
is less likely to cause opposition by other countries, given that ticket taxes are unambiguously legal under
international law. On the other hand, the results from sections 4 and 5 suggest that countries’ incentives to
participate in the Basic MGF Mechanism would be stronger in versions of this mechanism where countries
would be allowed to use carbon taxes, due to the welfare gains through fuller planes. In fact, by this logic,
participation incentives could be further improved if countries were allowed to use taxes on vacant seats to
fulfil the taxation obligation.

I will now argue that it is of critical importance that countries abstain from unilaterally taxing emissions
from international aviation if they keep the revenue for themselves. Doing so could undermine the current
norm against such policies and lead to a stable state where the opportunity to establish the Basic MGF
Mechanism is lost. In fact, I will argue that it would be beneficial to extend the norm against taxation of
international flights with revenue retention to include all kinds of taxes, including the ticket taxes that are
currently exempt. One reason for this is given by the results from sections 4 and 5: Switching away from
ticket taxes to carbon taxes yields welfare gains through fuller planes, in addition to more efficient emission
reductions. A second reason is that such an extended norm could help lock in the Basic MGF Mechanism
as a substantial continuous source of funding for GPGIs. For the rest of this section, I will argue in favor of
this claim.

It follows directly from the definition of the Basic MGF Mechanism that if countries act individually and
all countries participate then no country can gain from withdrawing from the mechanism: The tax burden
would be unchanged, given that by the allocation obligation, the other countries would switch to taxing all
flights to and from the country that withdraws. Moreover, by participating the country would be able to
decide on how to allocate the tax revenue that it collects to GPGIs. Thus the country would strictly gain
from participating. Hence there would be a Nash equilibrium with full participation.

9A GPGI is defined to be any international institution that uses its available budget to contribute to a particular global
public good. See Stern (2020) for a more precise definition and for a list of all existing GPGIs.

10Stern (2023) proposes two alternative versions of MGF Mechanisms. Simulation results reported there suggest that these
alternative mechanisms would greatly outperform the Basic MGF Mechanism that I discuss below. I discuss the Basic MGF
Mechanism here for ease of exposition. However, the discussion applies analogously to the alternative MGF Mechanisms from
Stern (2019).
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This suggests that the following scenario is a plausible possibility:
Scenario 1:
The Basic MGF Mechanism gets initiated by a subset of countries. Some countries oppose it on the

grounds that carbon pricing of international flights is not legal under international law. Other countries point
out that contrary to past instances like the EU’s 2012 carbon pricing of international flights, the participants
in the Basic MGF Mechanism do not retain any of the carbon pricing revenue for themselves. Instead, all
the carbon pricing revenue is used to fund GPGIs which in the aggregate benefits all countries. Eventually,
all countries join the Basic MGF Mechanism.

The norm against taxing international flights and retaining the revenue gets strengthened: The current
exemption for ticket taxes gets abandoned. Thus all taxes on international flights become illegal unless all the
revenue is allocated to GPGIs. All countries with existing ticket taxes on international flights replace them
with carbon taxes that they allocated to GPGIs.

Another plausible scenario is the following:
Scenario 2:
The EU reintroduces carbon pricing for all international flights (by extending its emissions trading scheme

to include all flights) as it did in 2012. As in 2012, it retains all the carbon pricing revenue for itself and
many countries oppose it. Instead of yielding to this opposition as it did in 2012, the EU maintains the
policy. After some time, other countries adopt analogous policies to the EU’s policies. Like the EU, they
exempt flights arriving from countries having imposed at least an equivalent carbon price on these flights (EU
directive 2008/101/EC). All countries retain the carbon pricing revenue for themselves. As more and more
countries adopt such policies, the incentives for the remaining countries to do so as well increase. Eventually,
even the countries that initially opposed the EU adopt analogous policies. The norm against taxing emissions
from international aviation gets eroded. This further increases the incentives for countries to continue taxing
international flights and retaining the tax revenue.

Scenarios 1 and 2 sketched above are ways in which the world could transition to states 1 and 2, respec-
tively, as described here:

status quo as of 2022

International practice:
carbon pricing in place only for intra-EU 

flights
ticket taxes are common

some ticket taxes are earmarked to Global 
Health GPGIs (e.g. by France)

International norm: 
ticket taxes are allowed but no other taxes 

on international flights are

Scenario 1

state 1

International practice: 
all countries participate in the Basic MGF 
Mechanism, taxing only emissions from 
interntional flights and allocating the tax 

revenue to GPGIs of their choice

International norm: 
Taxing international flights is only allowed if 

all tax revenue is allocated to GPGIs

state 2

International practice: 
many countries tax emissions from 

international flights and each retains all the 
revenue for itself

International norm: 
there are no restrictions on taxing 

international flights

Scenario 2

States 1 and 2 would likely be stable and could persist for many decades. Our current status quo (as
of 2022), on the other hand, seems unstable. The EU and the UK have revealed through their unilateral
initiatives that they would prefer to switch away from the ticket taxes and to use carbon pricing and per
plane taxes instead. The results presented in the preceding sections 4 and 5 can help rationalise these policy
preferences as being grounded in the welfare gains from fuller planes that these countries would reap, in
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addition to the climate change mitigation benefits.
A major force that has prevented countries from switching away from ticket taxes to emission taxes or

other taxes is the current international norm according to which only ticket taxes are permitted to be levied
unilaterally on international flights. This exemption of ticket taxes is historically contingent and lacks any
rationale. In fact, according to the results presented in sections 4 and 5, it runs counter to economic efficiency,
even without taking into account climate change externalities.

As countries’ concern for reducing emissions increases, it seems likely that the world will move away from
the status quo to some other state such as state 1 or 2 shown in the above diagram. How do states 1 and
2 compare in terms of global welfare? Scenario 1 has the advantage of generating a stable flow of funding
for Global Public Good Instituions (GPGIs). This benefit will be much greater than the benefit from the
emission reductions induced by the aviation taxes (Stern (2023)). The main opportunity for furthering global
welfare therefore seems to lie in moving probability mass away from scenarios where the world ends up in
state 2 (like the specific scenario 2 sketched above) and towards scenarios where the world ends up in state
1 (like the specific scenario 1 sketched above).

The observation that the main opportunity for furthering global welfare lies in mobilising tax revenue
for GPGIs implies the claim, asserted above, that it would be beneficial to extend the current norm against
taxes on international flights with revenue retention to include all taxes, including the ticket taxes that are
currently exempted. This is the case for two reasons.

Firstly, such an extended norm would likely be more stable than the current norm that arbitrarily distin-
guishes between ticket taxes on the one hand and all other taxes on the other hand.

Secondly, given the convexity of the cost from taxation, countries’ incentives to join the Basic MGF
Mechanism would be stronger if they do not have ticket taxes in place. Therefore, the Basic MGF Mechanism
could involve a higher tax rate whilst still generating sufficient participation incentives.

Overall, an extended norm that would only allow countries to tax international flights if they allocate the
money to GPGIs11 would therefore both increase the expected time during which money gets mobilized for
GPGIs and increase the expected size of the flow of this money.

8 Conclusion
For a class of demand functions that includes the constant elasticity and the exponential functions this study
has shown in a monopolistic dynamic pricing model that a tax on vacant seats is required to achieve maximal
social surplus. The illustrative calibrations suggest that at the optimal tax on vacant seats the load factor
might be substantially higher than it is today.

Further work could explore how to use complementary government policies to soften the trade-off men-
tioned above. In other words: what government policies could ensure that people with high valuations will
always be able to get a ticket even in the presence of a large tax on vacant seats? Proposition 5 shows
that this is potentially very important. One candidate government policy for ensuring that people with high
valuations can always get a ticket could be to oblige all airlines to make their tickets transferable (Love
(2019)). This could enable the emergence of a resale market in which people with low valuations or more
flexibility would be able to sell tickets to people with high valuations. To adequately analyze such regulations,
one would have to model the fact that people make decisions when they plan a trip such as taking days off
work and booking accommodation. These decisions are costly to reverse. An interesting mechanisms design
question arises from this: What sales mechanism would be socially optimally given that purchase timing
will be endogenous? Moreover, which government policies would induce airlines to use socially optimal sales
mechanisms?

A useful next step could be to extend the analysis for to oligopolistic models with multiple competing
airlines. A natural solution concept for such models could be Markov Perfect Equilibrium, since airlines can
estimate competitors remaining vacant seats in real time from seat maps (see e.g. Williams (2018)). An

11This simple norm would be appropriate in the presence of the Basic MGF Mechanism. In the presence of alternative MGF
Mechanisms like the ones discussed in Stern (2023), a slightly different norm would be appropriate. In fact, in these mechanisms
participating countries would be allowed to retain a certain fraction (e.g. 40%) of their tax revenue in which case the remaining
fraction would match the other countries’ allocations to GPGIs, thereby increasing increasing the latters’ effective influence
over the overall allocation. In the presence of such mechanisms, the appropriate norm would be to only allow countries to tax
international flights if this is done in accordance to the rules of such mechanisms but not outside of that.
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important trade-off that is captured in the monopolistic model of this study would again be present in the
oligopolistic models: For social welfare, it is valuable if additional people take flights. On the other hand,
leaving more seats empty reduces the expected number of people who will not be able to take the flights even
though they have high valuations. The present study suggests that monopolistic airlines will leave too many
seats empty. This effect could be called the “load factor distortion”. Importantly, this distortion is distinct
from the usual “output level distortion” that occurs as monopolists restrict output below the socially optimal
level. In particular, whilst increasing the number of firms will mitigate the standard output distortion, the
arguments demonstrating this result do not establish that the “load factor distortion” will disappear with
sufficiently many firms. Further modeling work is required to find out how the “load factor distortion” is
affected by the number of competing airlines.
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A Appendix
A.1 Proof of proposition 3 for the sufficiency of the tax on vacant seats
In order for profit maximization to be equivalent to welfare maximization under the tax on vacant seats with
rate χ it is sufficient that there exists some µ > 0 such that D (p) satisfies on the domain [0, sup{p : D (p) >
0}):

µ (p− c+ χ) = Et (v|v ≥ p)− c

This is because maximizing a function is equivalent to maximizing a positive multiple of that function.
Rearranging this condition yields:

Et (v − p|v ≥ p) = (1− µ) c+ (µ− 1) p+ µχ

We have

Et (v − p|v ≥ p) =

∫∞
x=p

D (x) dx

D (p)

Plugging this in yields: ∫∞
x=p

D (x) dx

D (p)
= (1− µ) c+ (µ− 1) p+ µχ

Multiplying through by D (p) and then differentiating yields:

−D (p) = ((1− µ) c+ µχ+ (µ− 1) p)D′ (p) + (µ− 1)D (p)

Again rearranging:

− ((1− µ) c+ µχ+ (µ− 1) p)D′ (p) = µD (p)

Using separation of variables yields:

dD

D
= − µ

((1− µ) c+ µχ+ (µ− 1) p)
dp

Now we can distinguish the possible cases:
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Case 1: µ = 1
In this case we get:

dD

D
= − 1

χ
dp

D = Bexp

(
− 1

χ
p

)
where B is a positive constant. This is the exponential demand function.
Case 2: µ > 1

dD

D
= − µ

((1− µ) c+ µχ+ (µ− 1) p)
dp

log (D) = − µ

(µ− 1)
log ((1− µ) c+ µχ+ (µ− 1) p) + const

D = B ((1− µ) c+ µχ+ (µ− 1) p)
− µ

(µ−1)

where B > 0 is a constant. Denoting B̂ := B (1− µ)
− µ

(µ−1) > 0, we can write this as:

D = B̂

(
−c+

µ

(µ− 1)
χ+ p

)− µ
(µ−1)

The set of pairs (µ, χ) such that −c+ µ
(µ−1)χ = 0 corresponds to the constant elasticity demand functions.

However, we now also see another class of demand functions. Denoting a = −c+ µ
(µ−1)χ and b = µ

(µ−1) ,
we have:

D = B̂ (a+ p)
−b

To find the optimal tax rate on the vacant seats in this case we solve:

a = −c+ bχ

To obtain:

χ =
a+ c

b

If a > 0 then D (p) = B̂ (a+ p)
−b defines a continuous decreasing function on the entire domain p ≥ 0 .

We note that in this case χ > 0.
If, on the other hand, a = −c + µ

(µ−1)χ were negative, then the expression D = B (a+ p)
− µ

(µ−1) would
have a vertical asymptote at p = −a . This means in particular that such a function defined by the expression
D (p) = B (a+ p)

− µ
(µ−1) on the domain where p > −a cannot be continuously extended to the domain defined

by p ≥ 0.
Case 3: µ < 1

dD

D
= − µ

((1− µ) c+ µχ+ (µ− 1) p)
dp

dD

D
= −

µ
(1−µ)(

c+ µ
(1−µ)χ− p

)dp
Let us define g = µ

(1−µ)

dD

D
= − g

(c+ gχ− p)
dp

log (D) = glog (c+ gχ− p) + const
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D = B (c+ gχ− p)
g

Where B > 0 is a constant. We see that if c+ gχ > 0 then we obtain a demand function that is defined
by D (p) = B (c+ gχ− p)

g on the domain [0, c+ gχ] and D (p) = 0 for p > c + gχ . Denoting a = c + gχ
implies χ = a−c

g .
This means that for B > 0, a > 0 the function that is defined by D (p) = B (a− p)

g on the domain [0, a]
and D (p) = 0 for p > a is a demand function such that with the tax on the vacant seats with tax rate of
χ = a−c

g the profit maximization problem is transformed into the welfare maximization problem. If a < c
then the airline could only sell tickets at a loss. Thus a ≥ c is the only relevant case. In that case the optimal
tax rate on the vacant seats, χ = a−c

g , is always positive. �

A.2 Analytical solution for the case of an exponential distribution of valuations
Now let us consider the special case with exponential distribution of valuations:

D (p) = e−ap

As I showed in proposition 1, the constant tax rate of ϕ (p) = 1
a achieves that profit maximization is

equivalent to welfare maximization.
We need to solve the model for the two cases: Firstly, we need to solve it without any tax, i.e. with

ϕ (p) = 0, so that we can calibrate it to predict the current vacancy rate and the current ratio of the marginal
cost of taking an additional passenger on board to the average ticket price. Secondly, we need to solve for
the case of the tax rate on vacant seats that achieves that profit maximization leads to welfare maximization,
ϕ (p) = 1

a . Let us denote by c∗ = c − ϕ (p) for the two cases, which is hence always a constant. In other
words, c∗ = c in the case without any tax and c∗ = c − 1

a in the case where the optimal tax rate has been
implemented, but we will use the notation c∗ to do the computations for the two cases at once.

The general equation

−v
′

n (t) = maxpD (p) (p− c∗ − (vn (t)− vn−1 (t)))

Now becomes

−v
′

n (t) = maxpλe
−ap (p− c∗ − (vn (t)− vn−1 (t)))

Gallego and van Ryzin (1994) provide the solution to this system of differential equations, which I list
below. It is straightforward to verify that the functions provided below do indeed solve the system of
differential equations. An inductive derivation of these solutions is available upon request.

Let us denote β := λexp (−1− ac∗).

Lemma 3. (Gallego and van Ryzin (1994)) vn = 1
a log(

∑n
k=0

βk(T−t)k

k! )

Let us define Bn (t) :=
∑n

k=0
βk(T−t)k

k!

Corollary 2. (Gallego and van Ryzin (1994))p∗n (t) = 1
a log

(
λBn(t)

βBn−1(t)

)
Let g(t) denote the expected number of seats sold at time t.

Corollary 3. (McAfee and te Velde (2006))g(t) = βtBN−1(0)
BN (0)

In section 5 I already stated the following result:

Proposition. 4 As always, denote by N the total number of seats on the plane. Let Z and Z∗ be the expected
proportion of seats occupied on the flight without any tax and with the optimal tax, respectively. Z∗ can be

deduced from Z according to the following formula Z∗ =
q(Z)e

∑N−1
k=0

(q(Z)e)k

k!∑N
k=0

(q(Z)e)k

k!

N , where q(z) is implicitly defined

by Z =
q(Z)

∑N−1
k=0

q(Z)k

k!∑N
k=0

q(Z)k

k!

N
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proof of proposition 4:
Using corollary 3, we obtain:

Z =
βT BN−1(0)

BN (0)

N

Now using that Bn (0) :=
∑n

k=0
βkTk

k! we obtain:

Z =

βT
∑N−1

k=0
βkTk

k!∑N
k=0

βkTk

k!

N

Let β∗ = λexp (−1− ac∗) denote β under the optimal tax on vacant seats. We have:

Z∗ =

β∗T
∑N−1

k=0
β∗kTk

k!∑N
k=0

β∗kTk

k!

N

By Lemma 7 we know that there is a unique welfare maximizing dynamic pricing policy. We also know
by Lemma 9 that the load factor at the welfare maximizing pricing policy, z∗, must strictly increase in T .
Moreover limT→0z

∗ = 0 and limT→∞z∗ = 1. In particular, this holds for the expected load factor, Z∗. We

have thereby established the following algebraic fact: The function q 7→
q

∑N−1
k=0

qk

k!∑N
k=0

qk

k!

N defined on the domain
[0,∞) is strictly increasing and has as its image [0, 1).

This algebraic fact, applied to the analogous expression Z =
βT

∑N−1
k=0

βkTk

k!∑N
k=0

βkTk

k!

N implies that the function q(z)

is well-defined on [0, 1) via the condition Z =
q(Z)

∑N−1
k=0

q(Z)k

k!∑N
k=0

q(Z)k

k!

N . Thus for any load factor from [0, 1) there is a
unique value for βT such that the model predicts that load factor.

We have:

β = λexp (−1− ac)

Now since by corollary 1 the optimal tax rate on vacant seats is 1
a , we get:

β∗ = λexp

(
−1− a

(
c− 1

a

))
= βe

This implies that Z∗ =
q(Z)e

∑N−1
k=0

(q(Z)e)k

k!∑N
k=0

(q(Z)e)k

k!

N . �

A.3 Appendix 2: The case of constant elasticity distributions of valuations
A.3.1 Proofs

In the case of constant elasticity with

D (p) = p−ε

The general equation

−v
′

n (t) = maxpλD (p) (p− c∗ − (vn (t)− vn−1 (t)))

now becomes:

−v
′

n (t) = maxpλp
−ε (p− c∗ − (vn (t)− vn−1 (t)))
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Proposition 6. (McAfee and te Velde (2006))Suppose c = 0. Then the value function is given by vn (t) =
βn (T − t)

x where β0 = 0 and βn is given inductively by

βn (βn − βn−1)
ε−1

= λ
εε+1

(ε− 1)
ε−1

Moreover, the profit maximizing pricing policy is given by pn(t) = β
− 1

ε−1
n (λ(T − t))

1
ε .

Corollary 4. Let ηm(t) denote the probability that there are m vacant seats at time t given that there were

N vacant seats at time t. We have ηm(t) =
(
T−t
T

)β ε
ε−1
N , where βN is determined as in proposition 6.

Proof. Now let us find the time evolution of the vacancy rate. We have for m ≤ N − 1 :

d

dt
ηm = −ηmλD (pm (t) , t) + ηm+1λD (pm+1 (t) , t)

And for m = N :

d

dt
ηN = −ηNλD (pN (t) , t)

Using the solution from proposition 6, we obtain:

d

dt
ηN = −ηNλ

(
β
− 1

ε−1

N (λ(T − t))
1
ε

)−ε

d

dt
ηN + ηNβ

− ε
ε−1

N (T − t)
−1

= 0

We compute the integrating factor:∫
β

ε
ε−1
n (T − t)

−1
dt = −β

ε
ε−1
n log (T − t)

exp

(∫
β

ε
ε−1
n (T − t)

−1
dt

)
= (T − t)

−β
ε

ε−1
n

so we get:

d

dt

(
ηN (T − t)

−β
ε

ε−1
n

)
= 0

ηN (T − t)
−β

ε
ε−1
n = b

Where b is some constant. But we have the initial condition ηN (0) = 1 , so we have:

ηN =

(
T − t

T

)β
ε

ε−1
N

We note in particular that ηN (T ) = 0 which is the key observation allowing us to prove:

Corollary 5. With constant demand elasticity and 0 marginal cost per occupied seat the flight sells out
completely with probability 1.
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Proof. Let f(t) be the random variable that is the number of free seats at time t. Let t̃ be the time of the
first ticket sale. Since ηN (T ) = 0 by corollary 4, we know that t̃ ∈ [0, T ] with probability 1.

The proposition is equivalent to the statement that the expected number of vacant seats is 0 at time T.
We use the law of iterated expectations:

E(f(T )|f(0) = N) = Et̃(E(f(T )|f(0) = N and t̃))
But since we are dealing with a Poisson process we know that
E(f(T )|f(0) = N and t̃ = t) = E(f(T )|f(t) = N − 1)
Denote h(t, n) := E(f(T )|f(t) = n). With this notation, we obtain:
h(0, N) = Et̃(h(t̃, N − 1))
But by definition we have h(t, 0) = 0∀t ∈ [0, T ]. Hence we deduce that h(0, n) = 0∀n.

A.3.2 Numerical calibration

Without loss of generality we can normalize T = 1. There are three parameters in the model, namely the
marginal cost per occupied seat c , the elasticity ε and the intensity λ of the Poisson arrival process. It seems
a natural approach to try to calibrate the model using the observed vacancy rate and the relative marginal
cost, i.e. the ratio between the additional cost incurred through an additional seat being occupied to the
average ticket price paid by passengers. It turns out that for the constant elasticity case it is actually possible
to calibrate the model solely with these two numbers, despite the fact that there are three parameters.

Definition 3. Let us denote by f the correspondence that assigns to the quadruple (c, ε, λ, s) of marginal
cost per occupied seat c, elasticity ε , intensity λ of the Poisson arrival process and subsidy for sold tickets s
the pairs (V,C) of vacancy rates V and relative marginal costs C (defined as the ratio between the marginal
cost per occupied seat and the average ticket price).

Lemma 4. f (γc, ε, γελ, γs) = f (c, ε, λ, s)

Proof. We first note that for any given Markovian pricing policy if we multiply it by some factor γ , multiply
the marginal cost c and the subsidy s by that same factor γ and multiply λ by the factor γε then the resulting
demand processes are isomorphic and, the resulting profit is multiplied by the factor γ . Hence multiplying c
and s by any positive factor γ and multiplying λ by the factor γε results in analogous optimal pricing policies,
simply scaled by γ, yielding identical flows of ticket sales. Hence in particular the resulting vacancy rates are
identical. Moreover, since both c and the average ticket price are multiplied by the factor γ , their ratio, i.e.
the relative marginal cost, is also unaffected.

A solution to the ‘calibration problem’ should be defined to be a map m such that the inner rectangular
diagram below commutes for all (c, ε, λ) ∈ (0,∞)× (1,∞)× (0,∞) .
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Lemma 5. The inner rectangular part of the diagram commutes iff the outer part commutes.

Proof. The inner diagram commutes iff

f◦g = m◦f

By Lemma 4 we have that f = f1
◦h so this is equivalent to

f◦
1h

◦g = m◦f◦
1h

But algebraically we can see that g◦1h = h◦g so this is equivalent to

f◦
1 g

◦
1h = m◦f◦

1h

Hence we see that if the outer diagram commutes (i.e. if f◦
1 g1 = m◦f1 ), then the inner diagram commutes

(i.e. f◦
1 g

◦
1h = m◦f◦

1h ).
Conversely, if the inner diagram commutes then the outer diagram must commute, since it is a restriction

of the inner diagram to the set of parameter values such that λ = 1. (In category language, we could draw
another diagram where h is replaced by an inclusion map going into the opposite direction and then we can
deduce the result as above through identities of maps.)

Lemma 5 implies that the calibration is equivalent to finding a map m such that the outer diagram
commutes.

Conjecture 1. f1 is injective.

If conjecture 11 is true then the calibration problem simply amounts to inverting f1 because once we
have found such a function k that satisfies k◦f1 = identity then we can define m := f◦

1 g
◦
1k . This task is

carried out by a Matlab program downloadable here, which computes m assuming conjecture 11. It is done
by approximating the continuous time problem by the discrete time analogue, which we describe there.

In order to carry out the calibration we need an estimate for the relative marginal cost. To get this, we
first note that from Gillen et al. (1990) we have to very good approximation:

total cost = fixed cost + number of people on board × c

Where c is the marginal cost. Taking the expectation of this equation yields:

average total cost = fixed cost + average number of people on board × c

Borenstein and Rose (2014)makes the rough estimate that “80% of costs are assumed to be invariant to
changes in the load factor” . This means

fixed cost
average number of people on board × c

=
0.8

0.2
= 4

fixed cost = 4× average number of people on board × c

So that we get:

average total cost = 5× average number of people on board × c

Let us assume that profits are zero so that average total cost = average revenue . Using this assumption
we obtain:

average total cost = average revenue = average number of people on board × average price

Putting these two equations together yields:

5× average number of people on board × c = average number of people on board × average price
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5× c = average price

relative marginal cost := c

average price = 0.2

Globally, the average vacancy rate is around 20% (see IATA). Using this number together with the relative
marginal cost estimate of 0.2 we compute the optimal vacancy rate for planes with 50 seats using a backward
induction algorithm. It turns out to be 0.0295.

To summarize: Under the assumption of constant elasticity for the distribution of valuations a tax on
vacant seats can perfectly align profit maximization with welfare maximization. If the observed vacancy rate
in the absence of the tax is 20% then the optimal tax rate on vacant seats will lower the vacancy rate to
about 3% .

A.4 Optimal tax rates on vacant seats in the presence of a sales tax
Now we consider the case where there is a sales tax in place12 that is a fixed proportion of ticket prices.

Lemma 6. For the monopolistic profit maximization problem the tax policy pair (η, χ), meaning a sales tax
rate of η and a tax on vacant seats of χ, is equivalent to the tax policy pair

(
0, χ− η

(1−η)c+
η

(1−η)χ
)

.

Proof. Consider the case where there is a sales tax at rate η and a fixed subsidy of χ per occupied seat. The
net revenue generated for the airline through a sale of a ticket at price p is given by

p (1− η)− c+ χ

We can rewrite this as follows:

p (1− η)− c+ χ = (1− η)

(
p− c+ χ− η

(1− η)
c+

η

(1− η)
χ

)
But since an optimization problem is not changed under multiplication by a positive constant, this creates

the same incentive for the airlines as when the net revenue generated through a sale of a ticket at price p is

p− c+ χ− η

(1− η)
c+

η

(1− η)
χ

This is case when there is no sales tax and a subsidy on occupied seats (or equivalently, a tax on vacant
seats) of χ− η

(1−η)c+
η

(1−η)χ.

Lemma 6 implies that Lemma 3 still holds in the presence of a sales tax.
We see from Lemma 6 that the effect of a change in the sales tax rate on the vacancy rate depends on

the rate of the tax on the vacant seats that we are at. When χ > c, i.e. when the tax on the vacant seats
exceeds the marginal cost, then the sales tax increases the incentives for decreasing the vacancy rate.

Corollary 6. Let χ∗ (η) denote the optimal tax rate on vacant seats, given that the sales tax rate is η . Then
we have

χ∗ (η) = χ (0) + η (c− χ (0))

Proof. Lemma 6 establishes the equivalence of (η, χ) and
(
0, χ− η

(1−η)c+
η

(1−η)χ
)

, so in particular we have

χ (0) = χ∗ (η)− η

(1− η)
c+

η

(1− η)
χ∗ (η) = − η

(1− η)
c+

1

(1− η)
χ∗ (η)

which implies

χ∗ (η) = χ (0) + η (c− χ (0))

12This is the case for flights between the US, Mexico and in Canada.
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Corollary 7. For the case of constant demand elasticity we have

χ∗ (η) =
1

ε
c+ η

ε− 1

ε
c

Proof. This follows directly from 2 and 6since

χ∗ (η) =
1

ε
c+ η

(
c− 1

ε
c

)
=

1

ε
c+ η

ε− 1

ε
c

Corollary 8. For the case of exponential demand we have

χ∗ (η) =
1

a
+ η

(
c− 1

a

)
Proof. This follows directly from 1 and 6

We see that the optimal tax rate on vacant seats is a linear function of the sales tax rate. However,
whereas in the constant elasticity case the optimal tax rate on the vacant seats is an increasing function of
the sales tax rate, this relationship holds in the exponential case only if a < 1 . If a > 1 , on the other hand,
then the optimal tax rate on vacant seats is a decreasing function of the sales tax rate.

A.5 Proof of proposition 5
To prepare the proof of proposition 5, we will here prove some results that are also of some interest in
themselves.

Lemma 7. Suppose that the demand function D is differentiable and D′(p) > 0∀p. Then there exists a
unique pricing policy that maximizes welfare.

Proof. Consider the Bellman equation:

−w′
n (t) = maxpD(p)

(
p− c+

1

D (p)

∫ ∞

s=p

D (s) ds– (wn (t)− wn−1 (t))

)
The first order condition for the optimality of p is:
D′(p) (p− c+ (wn (t)− wn−1 (t))) +D(p)−D(p) = 0
As long as D′(p) > 0∀p, this has the unique solution given by:
p = c− (wn (t)− wn−1 (t))
We also have wn(T ) = 0∀n. Thus by the continuous analogue of backward induction a unique welfare

maximizing pricing policy is determined.

Assumption 1. Given any tax policy, there exists a unique profit maximizing dynamic pricing policy.

Justification:
This assumption holds for “regular” demand functions, as defined and discussed in Gallego and van Ryzin

(1994). It simplifies the exposition of the results and proofs leading up to proposition 5. From the proof
provided below it will become clear that an appropriately reformulated version of proposition 5 still holds if
assumption 1 is relaxed. 

Definition 4. A complete history h is specified by the arrivals over time of passengers characterized by their
valuation for the flight. For example, one history is specified by saying that a first consumer arrived at time
t1 and had valuation v1, a second arrived at time t2 and had a valuation of v2 and so on.

Definition 5. Let f (t, n, ρ, h) be the number of seats that will remain empty at departure if at the time t
the airline has n seats left and given that the airline chooses from then onwards the pricing policy ρ.
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Since we are assuming that the probability measure on the set of histories is such that it gives rise to a
Poisson arrival process of potential passengers we can throughout assume that the airline chooses a Markovian
pricing policy. We have:

Lemma 8. Let h be any complete history from time t onward and let ρ be a Markovian pricing policy. Then
f (t, n, ρ, h) is increasing in n .

Proof. Let m(n, ρ, s, h) be number of remaining seats at time s, given that at time t there were n remaining
seats.

Let t∗ := sup{s : m(n + 1, ρ, s, h) > m(n, ρ, s, h)}. If t∗ = T then f (t, n+ 1, ρ, h) = m(n + 1, ρ, T, h) >
m(n, ρ, T, h) = f (t, n, ρ, h). If t∗ < T then we have: m(n + 1, ρ, s, h) = m(n, ρ, s, h) ∀t∗ ∈ [s, T ], so
f (t, n+ 1, ρ, h) = m(n+ 1, ρ, T, h) = m(n, ρ, T, h) = f (t, n, ρ, h)

Corollary 9. Suppose that the demand function D is differentiable and D′(p) > 0∀p. Let z∗ denote the load
factor (i.e. the proportion of occupied seats) at the unique (by Lemma 7) welfare maximizing dynamic pricing
policy. Then z∗ is a strictly increasing function in T with limT→0z

∗ = 0 and limT→∞z∗ = 1.

Proof. Suppose T̃ > T . Let ρ̃ denote the welfare maximizing pricing policy when the time horizon is T̃ and
let ρ denote the welfare maximizing pricing policy when the time horizon is T . From time t = T̃ −T , ρ̃ must
be equivalent to ρ applied to the time horizon remaining then. Hence the result follows by Lemma 8.

Definition 6. Let F (t, n, ρ) denote the expected number of seats that will remain empty, given that at time
t there are n remaining tickets and given that the airline chooses the complete pricing policyρ from time t
onward.

Lemma 9. Suppose that D(p) is bounded above. Then F (t, n, ρ) is a strictly increasing function in n for
any ρ.

Proof. From Lemma 8 we deduce that F (t, n, ρ) is increasing. We also know that there is a strictly positive
probability of at least exp(−suppD(p)T ) that no ticket is ever sold, which implies that F (t, n, ρ) is strictly
increasing in n.

Definition 7. Let p (t, n, α) denote the price that the (profit maximizing) airline sets for time t, given that
the rate of the tax on vacant seats is α and given that n seats are vacant at the time t.

Proposition 7. 13

Suppose D(p) is continuously differentiable with D′(p) < 0∀p. Then p (t, n, α) is strictly decreasing in α
for all n and t.

Proof. In section 4, we assumed that the subsidy on tickets sold are paid to the airline immediately at the
time of sale. In the model, a constant subsidy on tickets sold is equivalent to a tax on vacant seats that is
paid at time T . It is this latter perspective that will turn out to be the most convenient for the purposes of
this proof.

Let R (t,m, ρ) be the expected sales revenue net of marginal costs that the airline will make from period
i+ 1 until departure if it employs the complete pricing strategy ρ, given that there are m tickets left at the
beginning of period i+1. Let V (t,m, ρ, α) be the expected net revenue that the airline will make from time
t until departure, given that it employs the pricing strategy ρ and given that there is a tax on vacant seats
with rate α. It follows from the definitions that

V (t,m, ρ, α) = R (t,m, ρ)− αF (t,m, ρ)

13This result parallels proposition 3 from Gershkov and Moldovanu (2009), which establishes that under the assumption

that−F
′
(y)

F (y)
is increasing, we have: for any time t and any number n of remaining tickets, the welfare maximizing price policy

is lower than the profit maximizing price policy. In a sense, “the changes in the pricing policy induced by the tax on vacant

seats point in the right direction”. This suggest the conjecture that the optimal tax on vacant seats is always positive if −F
′
(y)

F (y)

is increasing. Proposition 5 does not refute this conjecture, since the demand functions constructed violate the condition that

−F
′
(y)

F (y)
be increasing.

26

http://www.cs.cmu.edu/~sandholm/www/cs15-892F15/dynamic%20revenue%20maximization%20with%20heterogeneous%20objects.pdf


Let vn (t, α) the airline’s value function at time t, given that n seats remain then and given that there is
a tax on vacant seats with rate α. By definition, we have:

vn (t, α) = supρV (t,m, ρ, α)
Let ρ(α) denote the profit maximizing pricing policy, given the tax rate α on the vacant seats. By the

envelope theorem, we have:
d
dα (vn (t, α)) =

d
dαV (t,m, ρ(α), α) = −F (t,m, ρ(α))

As in section 3 we can derive the Bellman equation: 14:

−v
′

n (t) = λmaxpD (p) (p− c− (vn (t, α)− vn−1 (t, α)))

Let us denote: π(p, α) := D (p) (p− c− (vn (t, α)− vn−1 (t, α))) and p∗ (α) = argmaxpπ(p, α).
∂
∂α (

∂π
∂p ) =

∂
∂α (D

′ (p) (p− c− (vn (t, α)− vn−1 (t, α))) +D (p))

= D′ (p) (F (t, n, ρ(α))− F (t, n− 1, ρ(α)))
where ρ(α) denotes the optimal pricing policy, given the tax on vacant seats with rate α. By Lemma 9,

we can deduce that ∂
∂α (

∂π
∂p ) < 0. Now the result follows from the strict monotonicity theorem 1 from Edlin

and Shannon (1998) .

Lemma 10. Consider the probability distribution H (α, t) over the number of seats remaining empty at
time t , given that the tax rate on vacant seats is α and given that the airline chooses the expected profit
maximizing dynamic pricing policy. Then if α′

> α then H
(
α

′
, t
)

can be obtained from H (α, t) by shifting
probability weight downward from higher numbers of seats remaining empty to lower ones. Moreover, if
D(p) is continuously differentiable with D′(p) > 0∀p then the probability weight shifted downwards is strictly
positive.

Proof. We proceed by a sample path argument. Given a history h , we can compare what happens in the
case with α

′ to that with α . We start in both cases with N available seats at time 0 . By proposition 7 we
know that the price charged at time 0 cannot be higher under the policy α′ . Now there are two possibilities:
Either in both cases the same sales occur or at some point there is a divergence in the sense that a sale that
does not occur under α does occur under α′ . From this point onward there exists the possibility that a sale
that occurs under α does not occur under α′ , since by theorem 1 from Gallego and van Ryzin (1994) the
price under α′ might be higher. The probability of there ever being more tickets sold under α at any point
in time is 0. Hence all that could happen is that we revert back to the case where under both policies the
same number of tickets have been sold, so we are back to the case discussed before. This establishes the fact
that for each sample path an increase in the tax on vacant seat kilometers decreases the number of seats
remaining empty at any point in time. In particular, the probability distribution H (α) over the number
of seats remaining empty at time t is obtained from H (α, t) by shifting probability weight downward from
higher numbers of seats remaining empty to lower ones.

Lemma 11. The expected number of tickets sold converges to 0 as α → −∞ .

Proof. From Lemma 10 it follows that the expected number of tickets sold increases in α. Thus as α → −∞,
the expected number of tickets sold has to decrease. Suppose it does not converge to 0. Then there is some
number f > 0 such that the expected number of tickets sold exceeds f for arbitrarily negative values for α.
But the revenue that can be extracted from consumers is finite, so this would mean that the airline would
for some values α make negative profits at its optimal policy, in contradiction to the fact that not selling any
tickets and making 0 profit is an option.

Definition 8. Let z (α) be the expected number of potential passengers arriving during the period [0, T ]
that face a plane that is not entirely filled.

Lemma 12. limα−>−∞z (α) = λT and limα−>∞z (α) = λT . Moreover, z (α) is increasing on [sup{α :
z(α) > 0}, inf{α : z(α) < λT}] and if D(p) is continuously differentiable with D′(p) > 0∀p then z (α) is
strictly increasing on [sup{α : z(α) > 0}, inf{α : z(α) < λT}] .

14Note that vn (t, α) here includes the fact that at time T the tax on vacant seats will have to be paid. In other words, there
is a negative scrap value for the airline. This timing is different in section 3, where the subsidy is paid to the airline when the
sales are made rather than at the end of the sales horizon.
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Proof. By definition z (α) =
∫ T

r=0
λProbability (someseats left at time r) dr

It follows from Lemma 10 that Probability (some seats left at time r) is increasing in α for every r and
strictly increasing if D(p) is continuously differentiable with D′(p) > 0∀p.

The fact that limα−>−∞z (α, 0) = 0 follows from Lemma 11

Now we are finally ready for:
Proof of proposition 5:
Suppose that there is a tax on vacant seats with tax rate α. Suppose that under α and D there is a

strictly positive probability that all tickets will be sold. Now consider any α′ < α. By 12, there will be
strictly fewer refusals, i.e. z(α′) > z(α)

Consider the situation under α′: Let us denote by pn,t the airline’s optimal price at time t given that
there are n tickets left to be sold. Let as before Vn (t) denote the value function for the airline and ∆n,tV :=
Vn (t)− Vn−1 (t). From theorem 1 from Gallego and van Ryzin (1994) we know that ∆n,tV is decreasing in
n. Also, it is clear that ∆n,tV is decreasing in t: It can only be valuable to have more time to sell tickets.
Thus in particular we have ∆1,0V ≥ ∆n,tV ∀n, t. Also from theorem 1 from Gallego and van Ryzin (1994)
we know that pn,t is decreasing in n and t. In particular, we have p1,0 ≥ pn,t∀n, t.

Fix a small δ > 0. Fix a p̄ > p1,0 and consider the demand function D# defined by D# (p) = D (p) for
p ≤ p1,0 and D# (p) :=

D(p1,0)(p1,0−c+s)
(p(1+δ)−δp1,0−c+s) for p ∈ (p1,0, p̄] and D# (p) = 0 for p ∈ (p̄,∞). Then we have:

D# (p) (p− c+ s−∆n,tV ) =
D (p1,0) (p1,0 − c+ s)

(p(1 + δ)− δp1,0 − c+ s)
(p− c+ s−∆n,tV )

Hence for p ≥ p1,0we have:

D# (p) (p− c+ s−∆n,tV ) < D (p1,0) (p1,0 − c+ s−∆n,tV )

which implies that no price p ≥ p1,0 can ever be chosen at a profit maximizing pricing policy. Hence the
profit maximizing pricing policy is unchanged by the modification.

Now let us compute the expected value of the valuation of a consumer:

ED# [v] =

∫ ∞

v=0

D# (v) dv =

∫ p1,0

v=0

D (v) dv +

∫ ∞

v=p1,0

D# (v) dv

=
∫ p1,0

v=0
D (v) dv +

∫ p̄

v=p1,0

D(p1,0)(p1,0−c+s)
(v(1+δ)−δp1,0−c+s)dv

=
∫ p1,0

v=0
D (v) dv +D (p1,0)

p1,0−c+s
1+δ log

(
p̄(1+δ)−δp1,0−c+s

p1,0−c−s

)
We see that this converges to infinity as p̄ → ∞.
Now consider the welfare consequences. Let w

(
D#, α′) denote the welfare given that the demand function

is D# and given that the pricing policy is chosen so as to maximize profits under α′. Since D# is constructed
so as to lead to the same profit maximizing pricing policy under α′ as D, we have:

w
(
D#, α′) = w (D,α′) + z (α′) (ED# [v]− ED[v])

w
(
D#, α′)−w

(
D#, α

)
= w (D,α′)+z (α′) (ED# [v]−ED[v])−w (D,α)−z (α) (ED# [v]−ED[v]) = w (D,α′)−

w (D,α) + (z (α′)− z (α))(ED# [v]− ED[v])
Since z (α′) > z (α) we conclude that w

(
D#, α′) > w

(
D#, α

)
as long as p̄ is sufficiently large. �
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