
van Buggenum, Hugo; Gersbach, Hans; Zelzner, Sebastian

Conference Paper

Contagious Stablecoins

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2023: Growth and the "sociale Frage"

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

Suggested Citation: van Buggenum, Hugo; Gersbach, Hans; Zelzner, Sebastian (2023) : Contagious
Stablecoins, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2023: Growth and the "sociale
Frage", ZBW - Leibniz Information Centre for Economics, Kiel, Hamburg

This Version is available at:
https://hdl.handle.net/10419/277658

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/277658
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Contagious Stablecoins?

Hugo van Buggenum
Center of Economics Research

at ETH Zurich
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Abstract

In an overlapping-generations model, we study competition between stablecoins
that are pegged to a stable currency. Stablecoins are issued by coalescing agents, are
backed by long-term assets and can either be redeemed with the issuer or traded in
a secondary market. When an issuer limits redemption and sticks to an investment
rule, its coin is truly stable in an idiosyncratic sense—it is invulnerable to runs and
always trades at the pegged price. Competition between issuers, however, opens
the door to a coordination problem in which an issuer must pay interest on its coin
when other issuers do so too. As a consequence, the economy can be inefficient
and unstable. The efficient allocation can be implemented as a unique equilibrium
when regulation prevents the issuance of contagious interest-bearing stablecoins.
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1 Introduction

With the newest attempt to construct a private money in the form of stablecoins, we

have entered yet another episode in which it is tested whether competing private monies

can serve as effective payment and saving instruments. Stablecoins are a digital form of

privately created money and, in contrast to cryptocurrencies like Bitcoin and Ethereum,

aim at maintaining a stable value against a national currency or a basket of national

currencies. The five largest stablecoins by market capitalization to date, including Tether

(USDT) and USDC, are all pegged one-to-one to the US dollar.

The history of free-banking episodes is full of examples of competing privately-produced

monies that were pegged to national currencies but still faced severe difficulties to serve

as a stable medium of exchange.1 From a theoretical point of view it is also still an open

question whether and under which set of rules private money competition can deliver

stable and socially desirable outcomes. In light of the recent stablecoin rage, three ques-

tions are particularly relevant. First, how should an individual stablecoin be designed

so that it is truly stable, i.e., always trades at the peg, and do we require regulation for

this? Second, does competition between issuers make it more or less likely for stablecoins

to be truly stable? Third, how should a system of competing stablecoins be designed so

that poorly designed coins do not harm well-designed ones, i.e., how can contagion from

poorly to well-designed coins be avoided?

To answer these questions, we develop a model featuring the issuance of stablecoins

as well as competition between issuers. Stablecoins in the model are backed by long-

term assets, are pegged to a stable currency, are traded in the secondary market, and

can be used by investors to insure against idiosyncratic consumption risk when insurance

markets are absent.2 We derive four main insights from our model.

First, an individual stablecoin can be made both truly stable and attractive relative

to currency by means of a simple investment rule. This rule stipulates that at each point

in time, a fraction of the issuer’s disposable resources is invested in long-term assets with

stable returns that dominate currency. Resources earmarked for redemption thus have

1See, e.g., Gorton and Zhang (2021) on the 1837–1862 free-banking episode in the US.
2We do not consider algorithmic stablecoins (such as Terra/Luna, which crashed in May 2022) or

stablecoins backed by other cryptoassets (such as DAI). See Cao, Dai, Kou, Li and Yang (2021) for a
model on stablecoin design based on option pricing and smart contracts implemented on the Ethereum
platform. Mayer (2022) develop a model that rationalizes dual-token structures such as Terra/Luna.

1



to be limited to respect the investment rule.3 Since these coins are traded in a secondary

market, there is no reason for a run and if a run occurs accidentally, there are no losses

for agents who desire to consume. Such coins are called micro-well-designed as they are

run-proof if the coin was alone in the market.

Second, a monopolistic issuer of a micro-well-designed stablecoin implements the ef-

ficient allocation by issuing, in an initial coin offering (ICO), a zero-interest stablecoin

at a discount. This arrangement provides insurance against idiosyncratic consumption

risk while still allowing investors to enjoy, on average, the return on long-term assets. A

coin that is micro-well-designed, pays zero interest and is issued at a discount is called

macro-well-designed as it implements the efficient allocation.

Third, competition between issuers opens the door to a coordination problem, even

when all stablecoins are micro-well-designed. The reason is that an issuer has to match

the returns of other coins or else it becomes subject to runs. If a coin is micro-well-

designed but pays a positive interest rate, it is contagious to other coins to offer the

same returns. Hence, competition of issues of micro-well-designed coins may not lead to

macro-well-designed coins. In fact, besides the efficient allocation, a continuum of other,

inefficient allocations featuring interest-bearing coins are equilibria.

Fourth, ruling out interest payments on stablecoins leaves the efficient allocation as

the unique equilibrium even when issuers compete. This insight provides a rationale for

policies that prevent the payment of interest on stablecoins. In the US, for instance,

interest-bearing stablecoins would bring the issuer under banking or securities market

regulation, which strongly discourages issuers to pay interest. The EU is even set to

prohibit interest-bearing stablecoins (Read and Diefenbach, 2022). Our paper provides a

rationale for such types of regulation.

Model summary and detailed results. We derive our insights in a continuous-time,

infinite-horizon model with overlapping generations of agents that represent stablecoin

investors. Agents exert effort to produce a homogeneous good at birth—representing mar-

ket entry and initial investment—and consume at a random time of death—representing

disinvestment and market exit, for instance to buy consumption goods or cryptoassets

on an online platform—, which is idiosyncratic risk. Goods are perfectly storable, so

3The rule may be implemented using blockchain technology, as arged by Cong, Li and Wang (2022).

2



we interpret them as stable currency, and can also be invested in scalable, long-term

investment opportunities that we call trees. Once planted, a tree gestates a deterministic

amount of goods (fruit) at a stochastic point in time, which is idiosyncratic risk. A tree

is destroyed after gestation and the resulting fruit can be consumed, stored or used to

plant new trees. We assume that the expected return on a tree equals agents’ rate of

time preference.

In the efficient Arrow-Debreu allocation there is no storage and investment is such

that the aggregate stock of trees stays constant over time, so that consumption is financed

from the fruit left after replacing destroyed trees. Further, agents’ consumption levels are

independent from the point in time at which they die, and thus there is perfect insurance

against random death while agents still earn, on average, the rate of time preference on

their provided effort. Particularly, those who die early earn a high annualized return on

their effort, whereas those who die late earn a low annualized return.

The insurance arrangement breaks down in a decentralized economy where agents

trade claims on trees in a secondary market. Particularly, this market allows agents to

earn the rate of time preference at each point in time. Those who die early therefore

earn the same annualized return on their initial effort as those who die late, so that

consumption increases with the time of death. This lack of insurance is inefficient, which

is a standard finding in the banking literature following Diamond and Dybvig (1983).

The stablecoin economy is characterized by the fact that individual agents can un-

dertake storage on their own but can neither plant trees themselves nor trade claims on

trees. Instead, agents of a particular generation coalesce to form coin issuers, which can

plant trees, store goods, issue coins to its members in an ICO, and redeem existing coins

subject to a sequential service constraint and private information of death. Existing coins

can be traded among the agents in a competitive secondary market.

We consider first a version of the stablecoin economy with a single generation of agents

that coalesce as an issuer, representing a platform with only a single but tradeable sta-

blecoin. The Arrow-Debreu allocation materializes as an equilibrium when the expected

lifetime of an agent exceeds that of a tree, as the Arrow-Debreu allocation then requires

no inter-generational transfers. By issuing stablecoins in the ICO at a discount, investing

the proceeds in planting trees, maintaining a time-invariant peg with goods after the

ICO, and paying zero-interest, the issuer replicates exactly the Arrow-Debreu insurance
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arrangement—those who die early (late) earn a high (low) annualized return by holding

the coin, and consumption is independent of the time of death.

Further, the single issuer earns exactly enough fruit from its gestating trees to meet

redemption by all dying agents and to keep the amount of trees per outstanding coin

constant. When only dying agents redeem their coins, non-dying agents therefore have

no incentive to redeem their coins or sell them in the secondary market—they know that

the peg can be maintained so their outside option—storage—earns the same return as

the coin. Fruit from the gestating trees is however insufficient to service all redemption

requests at the peg when all non-dying agents run to ask for redemption. When the issuer

then redeems as much as possible at the peg, gestating trees cannot be replaced so the

stock of trees per coin contracts. This reduces resources available for future redemption

and thereby makes the run self-fulfilling—agents know the peg cannot be maintained and

coins start to trade at a discount in the secondary market.

The run can be prevented by limiting the funds earmarked for redemption, reminsicent

of the suspension of convertibility advocated by Diamond and Dybvig (1983). More pre-

cisely, the issuer should ensure that after meeting redemption requests up to the earmark,

it has enough resources left to keep the trees per outstanding coin constant. Adhering

to such an investment rule is in the issuer’s own interest because it avoids a deviation

from the efficient allocation even when a run happens by accident, as dying agents can

also trade the coin at the peg in the secondary market. In this sense, stablecoins are

micro-well-designed as long as limiting redemptions is in line with regulation.

Competition among coins arises in the stablecoin economy with overlapping genera-

tions, representing a platform with multiple tradable stablecoins since each generation’s

members can trade other issuers’ coins. Each generation has an incentive to issue a

micro-well-designed coin as this avoids runs if the coin were the only one in the economy.

Whether a generation can issue a macro-well-designed stablecoin, i.e., a zero-interest

micro-well-designed coin that is issued to its members at a discount and thus consistent

with the efficient allocation, depends on the return that agents can earn by trading other

coins.

Particularly, when an issuer expects others to issue an interest-bearing micro-well-

designed stablecoin, it has to pay at least that interest on its own coin or else be subject

to a run. In this sense, micro-well-designed stablecoins with interest payments are conta-
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gious. As a consequence, issuers face a coordination problem and there is a continuum of

equilibria, among which only one implements the efficient allocation. Besides inefficient

equilibria with stationary returns, we obtain macroeconomic instability in the sense of

perfect-foresight equilibria with cyclical and non-stationary dynamics as well as equilib-

ria that randomly switch between steady states. A prohibition of interest payments on

micro-well-designed coints can implement the efficient allocation as the unique equilib-

rium.

Relation to the literature. Our paper relates to three strands of the literature. First,

Gorton and Zhang (2021) emphasize that the new world of stablecoins resembles earlier

free-banking episodes. They stress that experience from the latest free-banking episode

in the US—the 1837–1862 wildcat-banking era—suggests that unregulated competition

among stablecoins could result in fluctuating coin values, as coins might not always

be accepted at par, and is likely to produce runs. The idea of free banking has a long

history and has been subject to enduring analyses and debates (Friedman, 1960 and 1969;

Klein, 1974; Hayek, 1976; King, 1983; White, 1984; Friedman and Schwartz, 1986).4

Many of the theoretical studies on free banking are relevant for competition between

stablecoins as well. Gersbach (1998), for instance, shows that there is a tendency to

overissue banknotes (or coins) since an individual bank’s circulating notes increase the

liquidity costs of all other banks in the system too. Other contributions on modeling

private money competition include Cavalcanti and Wallace (1999b,1999a), Cavalcanti,

Erosa and Temzelides (1999, 2005), Williamson (1999), Aghion, Bolton and Dewatripont

(2000), Berentsen (2006), and Martin and Schreft (2006). Their findings on whether a

free banking system has the potential to deliver efficient outcomes are mixed.

Second, with the rise of cryptocurrencies and digital money, there is a growing liter-

ature on the risks, optimal design and regulation of these new assets. Stablecoins are at

the center of interest because they promise to be a stable store of value and means of

payment. Most policy papers focus on explaining what stablecoins actually are and what

their effects on the financial and monetary system may be (e.g., Adachi, Cominetta,

Kaufmann and van der Kraaij, 2020; Bordo, 2021; U.S. Department of the Treasury,

2021; Bains et al., 2022; Catalini, de Gortari and Shah, 2022; Bruce, Odinet and Tosato,

4For reviews of the literature, see Goodhart (1988), Selgin (1988), Selgin and White (1994) or, more
recently, White (2014).

5



2023). They also offer proposals for regulation such as requiring issuers to comply with

standard banking laws or, even more drastically, simply regulating them out of existence

and instituting a central-bank digital currency (CBDC) instead.5

Our goal is to investigate how to design the market for stablecoins that can imple-

ment efficient allocations. Related to this question but within a different framework,

Fernández-Villaverde and Sanches (2019) analyze whether competition in private digital

currencies can be compatible with price stability and efficient money supply. Li and

Mayer (2021) develop a dynamic model of stablecoin management and argue that suf-

ficient reserve holdings by the issuers are key for stability. Brunnermeier, James and

Landau (2021), Rogoff and You (2023), and Guennewig (2022) study issuance of digital

money by retailers, in particular large online platforms such as Amazon or Alibaba. In

this context, issuers typically have an incentive to limit interoperability between coins

so as to bind consumers to their platform and exploit intra-platform transaction data

to earn informational rents. Cong et al. (2022) study a token-based platform economy

where underinvestment in real productivity can be avoided by using blockchain technol-

ogy that allows for commitment to predetermined investment schedules, which relates

to our finding that a micro-well-designed stablecoin requires the issuer to stick to an

investment rule. We also provide a rationale for the prohibition of interest payments on

holding stable coins.

Third, regarding the role of secondary markets, competition among stablecoin issuers

is closely related to the classical theme developed by Jacklin (1987) and the recent analysis

by Rogoff and You (2023) on the role of tradable versus non-tradable tokens. Jacklin

(1987) argues that the deposit contract in the Diamond and Dybvig (1983) model would

offer inferior risk-sharing opportunities if these deposits were also tradable in a secondary

market. Rogoff and You (2023) show that from the perspective of a large online retailer

who issues tokens solely for on-platform purchases, it may be beneficial to make these

tokens non-tradable. The tokens in their context, however, resemble loyalty points, as

offered by hotel chains and airlines, or a videogame-specific currency. Goldstein, Gupta

and Sverchkov (2022) show that the tradablity of general-purpose coins is an essential

feature to ensure that issuing platforms maintain competitive pricing and do not engage

in rent seeking. In our model, where rent-seeking is not an issue, secondary markets allow

5Likewise, the 1837–1862 wildcat-banking era was ended when the government introduced a uniform
national currency and taxed all private money out of existence (Gorton and Zhang, 2021).
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agents to sell micro-well-designed coins at par even when, in case of an accidental run, the

coin cannot be redeemed with the issuer. We also find, however, that the tradability of

multiple micro-well-designed coins in secondary markets opens the door to a coordination

problem which undermines efficiency. Limiting tradability can thus also be advantageous,

albeit for different reasons than identified by Rogoff and You (2023).

Outline. Section 2 introduces the model environment. Section 3 studies an Arrow-

Debreu setting and characterizes an efficient allocation. Section 4 considers a decen-

tralized economy with tradable long-term assets. Section 5 introduces the stablecoin

economy, where agents coalesce to issue coins backed by long-term assets and trade the

coins in a secondary market. To start with, we study a single generation represented by

one coin issuer in Section 6. Section 7 considers overlapping generations and competition

among issuers. Section 8 concludes. Proofs are relegated to the Appendix.

2 The model

Time, denoted by t ≥ 0, is continuous and the horizon is infinite. For any stock variable

X, we interpret Xt as a state at time t. For any variable Y we let Y +
t be the right hand

limit of Yt and Ẏt the right-hand derivative of Yt w.r.t. to t.

The economy is inhabited by finitely lived agents that we label as investors. A unit

mass of investors is born at time t = 0. Incumbent investors die at Poisson rate δ and

new investors are born at Poisson rate δ, so that there is a unit mass of investors alive

at any point in time. There is a single, perfectly divisible and storable good available in

the economy which we interpret as a stable currency.6 The good can be produced from

the investors’ labor effort at a one-to-one rate and the aggregate stock of goods stored

is denoted by St. There are also scalable but risky long-term investment opportunities,

which we label as trees in the spirit of Lucas (1978). At any date t, goods can be used

to plant new trees at a one-to-one rate. There is idiosyncratic investment risk in the

following sense: a tree generates a fruit of y goods with Poisson arrival rate ϕ and the

tree is destroyed exogenously after generating fruit. The expected real return r from

planting a tree is r = ϕ(y − 1). We let At denote the stock of living trees and we let

6Interpreting a fiat currency as a real good is natural when we think about our model as describing
a small part of an economy.
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It ≥ 0 denote the planting of new trees. The law of motion for At reads

Ȧt = It − ϕAt. (1)

Prefereces. Preferences of an investor born at time t are represented by the function

Ut = −ht + E
{
e−ρTu(cT,t)

}
, (2)

where ht ≥ 0 is the investors’s labor effort at time t, T is the time period at which the

investor dies, cT,t is the investor’s consumption at the moment of death, ρ is the rate of

time preference, and u : R+ 7→ R is concave with the standard Inada properties. Time

of death T is random and follows from a Poisson distribution with arrival rate δ. We

interpret birth and the associated labor effort as respectively market entry and initial

investment. Death and the associated consumption represent market exit and disinvest-

ment, which constitute idiosyncratic risk to have a role for risk-sharing arrangements. To

have a stationary efficient allocation, we assume that y is such that r = ρ.7

Resource constraints. When the economy starts at time t = 0, there is a unit mass

of investors devoting labor effort h0. There is no consumption yet, so the goods produced

from labor are used for (i) planting trees or (ii) storage. Thus,

h0 = A+
0 + S+

0 . (3)

Consumption, the production of goods from labor, and the amount of fruit produced

from trees become flows at time t > 0. Aggregate flow consumption is

ct =

∫ t

0

δ2e−δ(t−τ)ct,τdτ + δe−δtct,0 (4)

and the aggregate flow labor supply is δht. The aggregate resource constraint reads as

(ρ+ ϕ)At + δht = ct + It + Ṡt. (5)

7Our assumption that assets earn the rate-of-time preference is natural when we think about our
model as describing a small part of an economy.
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3 Arrow-Debreu allocation

We study first an Arrow-Debreu setting in which the market for time-t good opens already

at t = 0. Let pt denote the Arrow-Debreu price of the time-t good.8 The availability

of storage implies pτ ≤ pt ∀τ ≥ t, i.e., prices cannot increase over time. Furthermore,

we have S+
t > 0 ⇒ ṗt = 0, i.e., storage is undertaken only when prices remain constant.

Investors’ ability to plant trees implies

pt ≥ Vt ≡
∫ ∞

t

(ρ+ ϕ)e−ϕ(τ−t)pτdτ ∀t (6)

and furthermore It > 0 ⇒ pt = Vt, i.e., a tree is planted only when the present value of

its fruit, denoted by Vt, equals the cost of planting pt. Note that V̇t = −(ρ+ ϕ)pt + ϕVt.

With pt ≥ Vt, this implies

−ρVt ≥ V̇t, with “=” if It > 0. (7)

An investor born at time t chooses {ht, (cτ,t)
∞
τ=t} to maximize

−ht +

∫ ∞

t

δe−(ρ+δ)(τ−t)u(cτ,t)dτ (8)

subject to the budget constraint

∫ ∞

t

δe−δ(τ−t)pτcτ,tdτ ≤ ptht. (9)

Equation (9) states that the expected consumption expenditure of the investor, i.e., taking

into account the probability distribution over possible times of death, cannot exceed the

value of the investor’s labor effort at birth. In this sense, the Arrow-Debreu environment

allows the investor to take out actuarially fair insurance against death. We can substitute

(9) into (8) to find that the investor chooses (cτ,t)
∞
τ=t to maximize

∫ ∞

t

δe−(ρ+δ)(τ−t)

[
u(cτ,t)− eρ(τ−t)pτ

pt
cτ,t

]
dτ, (10)

8Here, the level of pt is meaningless—only the relative prices matter and the level of pt is indeterminate.
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so that the optimal consumption and labor choices satisfy

cτ,t = u′−1

(
eρ(τ−t)pτ

pt

)
and ht =

∫ ∞

t

δe−δ(τ−t)pτ
pt
u′−1

(
eρ(τ−t)pτ

pt

)
dτ. (11)

Aggregate consumption at time t > 0 is thus given by

ct =

∫ t

0

δ2e−δ(t−τ)u′−1

(
eρ(t−τ)pt

pτ

)
dτ + δe−δtu′−1

(
eρtpt
p0

)
. (12)

We now characterize the allocation in which there is no storage and only planting

of trees, which turns out to be an Arrow-Debreu equilibrium. We have It > 0 ∀t, so

ṗt = −ρpt ∀t, i.e., prices decline at the rate r = ρ, which also implies St = 0 ∀t.

For notational convenience, we define c⋆ ≡ u′−1(1). Using eρ(τ−t)pτ
pt

= 1, expressions for

individual consumption, individual labor supply, and aggregate consumption simplify to

cτ,t = c⋆, ht =
δc⋆

ρ+ δ
, and ct = δc⋆. (13)

From the aggregate resource constraints, we find that the stock of trees develops according

to

Ȧt = (ρ+ ϕ)At − δc⋆ +
δ2c⋆

ρ+ δ
, with A+

0 =
δc⋆

ρ+ δ
⇒ Ȧt

At

= ρ

(
1− A+

0

At

)
. (14)

Clearly, this implies At = A+
0 ∀t > 0, which in turn requires It > 0 ∀t—we found an

Arrow-Debreu equilibrium. By the first welfare theorem, the resulting allocation is Pareto

efficient. By assuming that u is logarithmic we can furthermore prove uniqueness, but

this is not necessary for our results.

Lemma 1. With u(c) = ln(c), there is a unique Arrow-Debreu equilibrium.

Implementing the Arrow-Debreu allocation may require transfers between generations

of investors. Suppose that every generation has its own stock of trees. Let At,T denote

the stock of trees owned by generation T at time t ≥ T , where we measure the stock

of trees relative to the mass of investors born at time T . This definition implies At =

At,0 +
∫ t

0
δAt,TdT . Generation T ’s stock of trees at time t ≥ T per investor still alive at

time t ≥ T , denoted by at,T , is

at,T = At,T e
δ(t−T ). (15)
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Without storage, the law of motion for At,T reads

Ȧt,T = ρAt,T − δe−δ(t−T )ct,T , where A+
T,T = hT . (16)

The allocation requires intergenerational transfers at time t if and only if there exists a

t > T for which Ȧt,T < −ϕAt,T . In words, at time t, generation T wants to reduce its

stock of trees at a rate greater than the gestation of fruit, which is only feasible when the

implicit ownership of trees is transferred to a different generation of investors.

Using (13) in (16), we obtain

Ȧt,T = ρAt,T − (ρ+ δ)A+
T,T e

−δ(t−T ) ⇒ ȧt,T
at,T

= (ρ+ δ)

(
1−

a+T,T
at,T

)
, (17)

so clearly, at,T = a+T,T ∀t > T . This implies directly that Ȧt,T = −δAt,T , i.e., the stock

of trees owned by generation T diminishes at a rate δ. Thus, implementing the Arrow-

Debreu allocation requires inter-generational transfers if and only if δ > ϕ—a tree has a

longer expected lifetime than an investor.

4 A decentralized economy with tradable trees

Consider a decentralized economy in which investors can undertake storage and plant

trees by themselves. There are no markets for time-t goods where investors can trade in

advance, but trees, which are identical once planted, can be sold in a continuously-open

secondary market for vt goods.
9 We rule out short-selling.

We have vt ≤ 1 in any possible equilibrium, as vt > 1 allows for arbitrage by planting

trees and immediately selling them. Trees are only planted if they cannot be acquired

more cheaply in the secondary market, so It > 0 ⇒ vt = 1. The real return from holding

a tree from time t to time t+ ε, with ε > 0 but infinitesimally small, satisfies

r+v,tvt = ρ+ ϕ(1− vt) + v̇t. (18)

All trees would be offered for sale when r+v,t < 0 because storage is available as an

alternative investment technology, so we must have At > 0 ⇒ r+v,t ≥ 0. Likewise, trees

9Interpreting continuous time as the limit of discrete time, we consider vt as an ex-dividend price.

11



cannot dominate storage whenever storage is undertaken, so S+
t > 0 ⇒ r+v,t ≤ 1.

All incumbent investors can save at an effective real return of max{rv,t, 0} due to the

possibility of storing goods and trading trees. Assuming that the process (max{rv,t, 0})∞t=0

is integrable, an investor born at time t consumes

cτ,t = e
∫ τ
t max{rv,s,0}dsht (19)

upon death at time τ . It follows that ht is chosen to maximize

∫ ∞

t

δe−(ρ+δ)(τ−t)u
(
e
∫ τ
t max{rv,s,0}dsht

)
dτ − ht. (20)

The optimal choice for ht thus follows uniquely from the first-order condition

0 =

∫ ∞

t

δe
∫ τ
t (max{rv,s,0}−ρ−δ)dsu′

(
e
∫ τ
t max{rv,s,0}dsht

)
dτ − 1 (21)

and aggregate consumption at time t satisfies

ct =

∫ t

0

δ2e
∫ t
τ (max{rv,s,0}−δ)dshτdτ + δe

∫ t
0 (max{rv,s,0}−δ)dsh0. (22)

We show there is a decentralized equilibrium in which It > 0 ∀t. This implies vt = 1 ∀t,

so that rv,t = ρ > 0 ∀t > 0 and St = 0 ∀t > 0. From the aggregate resource constraint

(5), we find that the stock of trees develops according to

Ȧt = ρAt −
∫ t

0

δ2e(ρ−δ)(t−τ)hτdτ − δe(ρ−δ)th0 + δht, with A+
0 = h0. (23)

We have that ht = h0 = A+
0 ∀t when rv,t is time-invariant, so

Ȧt = ρAt + A+
0

(
δ − δe(ρ−δ)t −

∫ t

0

δ2e(ρ−δ)(t−τ)dτ

)
. (24)

Consider again At,T—trees owned at time t by the generation born at time T . It

satisfies

Ȧt,T = ρAt,T − δe(ρ−δ)(t−T )A+
T,T ⇒ At,T = A+

T,T e
(ρ−δ)(t−T ). (25)

Inter-generational transfers are needed when ∃ t > T such that Ȧt,T/At,T < −ϕ, which

is the case if and only if ρ + ϕ < δ. The decentralized economy thus relies less on
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inter-generational transfers compared to the Arrow-Debreu economy.

Recall that At = At,0 + δ
∫ t

0
At,TdT . With A+

T,T = A+
0,0 = A+

0 ∀T , we thus obtain

At = A+
0

[
e(ρ−δ)t + δ

∫ t

0

e(ρ−δ)(t−τ)dτ

]
= A0

ρe(ρ−δ)t − δ

ρ− δ
⇒ Ȧt

At

=
ρ(ρ− δ)e(ρ−δ)t

ρe(ρ−δ)t − δ
.

(26)

We have Ȧt/At ≥ 0 with limt→∞[Ȧt/At] = ρ − δ when ρ ≥ δ, and Ȧt/At > 0 with

limt→∞ At =
δ

δ−ρ
A0 and limt→∞[Ȧt/At] = 0 when ρ < δ. Summarizing, the stock of trees

always expands, so that It > 0 ∀t—we found a decentralized equilibrium, for which the

growth rate of the stock of trees converges to max{0, ρ − δ}. By assuming that u is

logarithmic we can again prove uniqueness, but this is not crucial.

Lemma 2. With u(c) = ln(c), there is a unique decentralized equilibrium.

The decentralized equilibrium allocation is socially inefficient—every investor is worse

off compared to the Arrow-Debreu allocation. This follows from the fact that individual

consumption cτ,t increases at a rate ρ with time of death τ in the decentralized allocation,

while prices in the Arrow-Debreu allocation declined at the rate ρ. The decentralized equi-

librium allocation {ht, (cτ,t)
∞
τ=t} therefore respects the budget constraint for any investor

in the Arrow-Debreu equilibrium, but is never chosen by an investor in the Arrow-Debreu

equilibrium.

Proposition 1. The decentralized allocation characterized above is socially inefficient.

The inefficiency relates to the actuarially fair insurance against death which is avail-

able in the Arrow-Debreu economy, so that investors choose time-invariant consumption.

Insurance is, however, infeasible in the decentralized economy. Investors would then

namely claim death immediately after birth and invest the proceeds in the secondary

market to earn the return ρ, so as to increase future consumption. This is reminiscent of

Jacklin’s (1987) finding.

5 Preliminaries for a stablecoin economy

In what follows we construct a trading arrangement featuring coins to implement the

Arrow-Debreu allocation when insurance markets are absent as examined in the last

section.

13



We assume that investors can claim birth only at the time of actual birth and that

trees are illiquid, whereas death is unobserveable and coins are tradable in a secondary

market. The investors born at time T coalesce to issue a coin. They form an issuer that

plants trees and issues a prefectly divisible coin in an initial coin offering (ICO) to the

member investors and only to the member investors. We assume that ϕ ≥ δ so that the

Arrow-Debreu allocation requires only intra-generational trade. Also, ϕ ≥ δ implies that

issuers invest in assets which have an expected maturity that is shorter than the expected

time until an investor needs to redeem coins for consumption. This is quite realistic given

that stablecoin issuers invest mostly in short-term assets.

We interpret the stablecoin version of our model as supported by a digital platform,

for instance a mobile-phone app or an online portal. Investors can use the platform to

hold a currency (goods in our model), to create and hold stablecoins, to trade a stable-

coin for other stablecoins or currency, and to pay for consumption. Consumption could

represent the actual purchase of consumption goods, for instance with online retailers,

but also the purchase of cryptoassets like bitcoin. We implicitly assume that those who

sell consumption goods or cryptoassets prefer to hold physical currency. When sellers

accept the stablecoin in payment, they would then immediately convert it into currency

and move this currency off the platform. The implicit assumption follows from the fact

that the investors in our model consume goods, where we interpret goods as currency.

The observability of birth and the unobservability of death imply a form of limited

record keeping by the platform. Particularly, investors can claim a need to consume at

any time, which would imply that currency is moved off the platform and stored by the

investor itself until actual death arises. However, moving currency off the platform is

observed, so that the investor can be excluded from using this currency to participate

again in an ICO.10

6 Monopolistic issuance of stablecoins

In this section we consider a setup in which investors hold and trade only their own coin,

i.e., a single generation that operates in isolation. This represents a platform with only

a single stablecoin.

10In case of pseudo-anonymity, one can argue that investors find it too costly to move fiat currency off
the platform and then on the platform again under a different identity.
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A unit mass of investors is born at time t = 0, after which the pool of investors

gradually declines at a rate δ—no new investors are born. The Arrow-Debreau allocation

we seek to implement is

ct,0 = c⋆, ct = δe−δtc⋆, h0 =
δc⋆

ρ+ δ
, At =

e−δtδc⋆

ρ+ δ
, and It = (ϕ− δ)At. (27)

D+
0 units of the coin are minted in an ICO by the issuer, which seeks to maximize its

members’ utility. The ICO’s proceeds are used to plant A+
0 trees. We set A+

0 = D+
0 , so

that the ICO price of the coin is normalized to one. The issuer allows investors to redeem

a coin for xt goods at times t > 0, where xt represents a pegged conversion rate, subject

to a sequential service constraint. With At trees owned by the issuer, the flow payment

to cover redemption is at most (ϕ+ ρ)At.

Suppose that the issuer commits to use the full amount (ϕ+ρ)At for redemption when

necessary. When a fraction χt of the coins Dt in circulation are offered for redemption,

the arrival rate of a successful redemption from the perspective of the investor is

αt =
(ϕ+ ρ)At

xtχtDt

. (28)

To implement the Arrow-Debreu allocation, we let xt =
δ+ρ
δ

At

Dt
. When only dying investors

redeem their coins, they can then do so with probability one. We then furthermore have

that Ȧt = −δAt when the issuer uses the fruit left after redemption for planting new

trees—the dynamic development of At is the same as in the Arrow-Debreu allocation

when only the dying investors redeem.

At all times t > 0 the coin can be traded among investors in a secondary market, i.e.,

on the platform, at price qt.
11 We focus on equilibria in which xt ≤ qt, as otherwise not

even the dying investors would redeem their coins with the issuer. Dying investors are

indifferent between selling their coins in the secondary market or redeeming them when

xt = qt, in which case we assume that all dying investors choose to redeem. All investors

attempt to have their coins redeemed—a run takes place—when xt > qt. A run features

11Interpreting continuous time as the limit of discrete time, we consider qt as a cum-dividend price,
i.e., including the option value of redeeming the coin at time t.
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χt = 1 by definition and our assumption that xt =
δ+ρ
δ

At

Dt
implies

αt = δ
ϕ+ ρ

δ + ρ
. (29)

The return from holding the coin therefore satisfies

r+t qt = δ
ϕ+ ρ

δ + ρ
max{0, xt − qt}+ q̇t (30)

and the law of motion for the stock of coins reads as

Ḋt =

−δ ϕ+ρ
δ+ρ

Dt if qt < xt

−δDt if qt = xt

. (31)

The issuer cannot plant new trees during a run since all fruit is used for redemption.

Thus

Ȧt =

−ϕAt if qt < xt

−δAt if qt = xt

, (32)

i.e., during a run the stock of trees diminishes faster since we assumed ϕ ≥ δ. When a

run does not takes place, so that qt = xt ∀t > 0, we have

r+t =
q̇t
qt

=
ẋt

xt

=
Ȧt

At

− Ḋt

Dt

= 0, (33)

where the second equality uses qt = xt, the third equality follows from the specification

of xt, and the fourth equality uses Ḋt/Dt = −δ when there is no run. Furthermore, since

we have normalized A+
0 = D+

0 , we have x+
0 = δ+ρ

δ
. Because the ICO price of a coin is

one, the investors choose D+
0 to maximize

∫ ∞

0

δe−(δ+ρ)tu

(
δ + ρ

δ
D+

0

)
−D+

0 . (34)

So, A+
0 = D+

0 = δc⋆

ρ+δ
and ct,0 = c⋆ ∀t > 0. The Arrow-Debreu allocation is implemented

and although investors can store goods, they have no incentive to do so. First, the real

return from holding the coin at all times t > 0 is zero, i.e., it is not dominated by storage.

Second, the investor strictly prefers to hold the coin rather than invest in storage at time

t = 0 because x+
0 > 1, i.e., the real return from holding the coin from time t = 0 to time
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t = ε, where ε > 0 is infinitesimally small, approaches infinity.

Because the issuer does not limit redemption, there can be unexpected runs at any

time T > 0. Suppose first that xt = qt ∀t < T . Then, consider what happens when the

secondary market price drops discontinuously and unexpectedly at time T , so that we

have qT < xT . The aggregate resource constraint implies

ṠT = (αTxT − δqT )DT , (35)

where δDT is the flow of coins offered for sale by dying investors who want to consume and

αTxTDT is the flow of fruit paid by the issuer. Given the secondary market price qT , the

difference between fruit paid by the issuer and consumption is therefore (αTxT − δqT )DT ,

which indicates the change in storage. Using the characterization of αt, we can write

ṠT = δ

(
ϕ+ ρ

δ + ρ

xT

qT
− 1

)
qTDT . (36)

Given that xT > qT during a run and that ϕ ≥ δ, it follows that ṠT > 0. Intuitively,

the low secondary market price implies that dying investors, who are forced to sell in the

secondary market, consume less than the fruit paid by the issuer. The excess supply of

fruit is then stored since investors cannot plant trees on their own. Investors are unwilling

to undertake storage when r+T > 1, and investors would attempt to sell in the secondary

market when r+T < 0. Clearance of the secondary market therefore requires r+T = 0, so

0 = δ
ϕ+ ρ

δ + ρ

(
xT

qT
− 1

)
+

q̇T
qT

. (37)

At this point, it is convenient to define θt ≡ qt/xt, i.e., the discount at which the coin

trades in the secondary market. With θT < 1 we thus have

0 = δ
ϕ+ ρ

δ + ρ

(
1

θT
− 1

)
+

θ̇T
θT

+
ẋT

xT

(38)

= δ
ϕ+ ρ

δ + ρ

(
1

θT
− 1

)
+

θ̇T
θT

+
ȦT

AT

− ḊT

DT

(39)

= δ
ϕ+ ρ

δ + ρ

1

θT
+

θ̇T
θT

− ϕ (40)

where the second line uses that ẋt/xt = Ȧt/At − Ḋt/Dt ∀t and the third line uses that
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Ȧt/At = −ϕ and Ḋt/Dt = −αt during a run. Summarizing, as long as θt < 1, it must be

that

θ̇t = ϕθt − δ
ϕ+ ρ

δ + ρ
. (41)

Because qt cannot drop discontinuously with positive probability (if it does, at time t− ε

investors either start to run already or start to sell in the secondary market), it follows

that starting from time T , we have

θt = min

{
θT e

ϕ(t−T ) +
δ

ϕ

ϕ+ ρ

δ + ρ

(
1− eϕ(t−T )

)
, 1

}
. (42)

There is a steady state at θ = δ
ϕ
ϕ+ρ
δ+ρ

< 1 and at θ = 1. Note that limϕ→δ
δ
ϕ
ϕ+ρ
δ+ρ

= 1. For

θT < δ
ϕ
ϕ+ρ
δ+ρ

, θt will contract at a rate that increases over time, so that at some T ′ > T ,

we have that qT ′ = 0, which cannot be an equilibrium. For θT ∈
(

δ
ϕ
ϕ+ρ
δ+ρ

, 1
)
, θt grows

at an increasing rate, until at some T ′ > T , we have θT ′ = 1. There is no kink in the

development of qt—it can be verify that limε→0
q̇T ′−ε

qT ′−ε
= limε→0

q̇T ′+ε

qT ′+ε
= 0. Summarizing,

at any time T > 0, a run can start unexpectedly when θT jumps from 1 into the interval[
δ
ϕ
ϕ+ρ
δ+ρ

, 1
)
. The run either continues forever when θT = δ

ϕ
ϕ+ρ
δ+ρ

, or it lasts for a finite period

of time when θT ∈
(

δ
ϕ
ϕ+ρ
δ+ρ

, 1
)
. The run furthermore implies that all investors are worse

off, as the stock of trees contracts at an inefficiently high rate.

Proposition 2. Unexpected runs exist when ϕ > δ and are socially inefficient.

The reason why runs exist is that the issuer cannot plant new trees during a run—

the fruit from gestating trees is exhausted to cover redemption. This implies that xt

declines during the run, which explains why investors attempt to run: Anticipating that

xt is going to decline, investors attempt to redeem coins as they can use storage as an

alternative. This suggest that the issuer should restrict redemption in such a way that it

maintains investment at It = (ϕ− δ)At, even in case of a run. Coins with this property

are called micro-well-designed coins.

In a run in which redemption is limited such that It = (ϕ− δ)At, one has αt = δ. The

rate at which coins are redeemed, from the perspective of the issuer, therefore equals δ

no matter whether a run takes place or whether there is business as usual. The law of

motion for coins therefore reads

Ḋt = −δDt. (43)
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From equation (35), based on the aggregate resource constraint, we obtain

ṠT = δ(xT − qT )DT , (44)

so that as before, ṠT > 0 when there is a run. This implies that the return on coins

should be zero, and this return satisfies

r+T qT = δ(xT − qT ) + q̇T (45)

because investors can now redeem at arrival rate δ instead of δ ϕ+ρ
δ+ρ

. Imposing r+T = 0 and

defining θ as before, we have

0 = δ

(
1

θT
− 1

)
+

θ̇T
θT

+
ẋT

xT

(46)

= δ

(
1

θT
− 1

)
+

θ̇T
θT

+
ȦT

AT

− ḊT

DT

(47)

= δ

(
1

θT
− 1

)
+

θ̇T
θT

, (48)

where we now used that Ȧt/At = −δ and Ḋt/Dt = −δ. Starting from time T , we thus

have

θt = min
{
(θT − 1)eδ(t−T ) + 1, 1

}
. (49)

There is now only one steady state at θ = 1, i.e., in which there is no run. If unexpectedly

a run occurred at time T , we would have θT < 1, so that θt starts to diminish at an

increasing rate, until at some T ′ > T , we have qT ′ = 0, which cannot be an equilibrium.

Investors have no reason to run because a run does not lead to a change in xt. Although

a run implies that a dying investor cannot redeem coins—only an infinitesimally small

fraction of its coin holdings can be redeemed—, dying investors can sell their coins in the

secondary market at a price qt = xt. The reason is exactly that the coin issuer restricts

redemption in case of a run so that the dynamic development of the stock of trees is left

unaffected. When a run would occur by accident, the combination of competitive pricing

and limited redemption therefore imply that dying investors can still trade the coin in

the secondary market at a price equal to the pegged conversion rate xt.
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7 Stablecoin competition

We now turn back to the baseline model where at every point in time, a new generation of

investors is born. The stablecoin economy then represents a platform on which multiple

micro-well-designed stablecoins12 can be traded (see Section 5). We continue to assume

that ϕ ≥ δ—inter-generational transfers are not necessary to implement the Arrow-

Debreu allocation.

7.1 Incumbent issuers

Consider first the problem of the incumbent issuers at time T . Recall that every issuer

is a coalition of investors born at a particular date s ∈ [0, T ). Let the issuer representing

investors born at time s have DT,s coins outstanding and let it own AT,s > 0 trees, where

these quanitities are expressed relative to the initial mass of investors born at time s.

Furthermore, assume that DT,s is fully held by the investors born at time s and impose

the normalization DT,s = AT,s. Finally, let Zt,s denote generation-s’s holdings of other

coins and/or storage at time t ≥ T . We suppose that ZT,s = 0 to represent a situation

in which the incumbent investors initially only hold their own coin, which, in turn, is

backed by a positive stock of trees.

The incumbent issuer maximizes the utility of the investors it represents, but has to

take as given the return process (rt)
∞
t=T that these investors can earn by storing goods

or trading other coins, where the option of storage implies rt ≥ 0 ∀t > T . Particularly,

(ct,s, At,s, Zt,s)
∞
t=T is chosen to maximize

∫ ∞

T

δe−(ρ+δ)(t−s)u(ct,s)dt (50)

subject to the law of motion

Ȧt,s + Żt,s = ρAt,s + rtZt,s − δe−δ(t−s)ct,s, (51)

the constraints Ȧt,s ≥ −ϕAt,s and Zt,s ≥ 0, the starting values AT,s > 0 and ZT,s = 0,

and the incentive-feasibility constraint ċt,s/ct,s ≥ r+t . The intuition for the incentive-

12Each generation that coalesces to issue a coin has an incentive to issue a well-designed coin as this
maximizes the expected utility of the members of the generation.
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feasibility constraint is as follows. The issuer’s coin is designed to provide consumption

process (ct,s)
∞
t=T for the investors it represents. The effective return from holding the coin

from time t to time t+ε, with ε > 0 infinitesimaly small, is therefore ċt,s/ct,s. But with the

outside option of trading other coins and/or storage, investors can earn an effective real

return max{r+t , ċt,s/ct,s}. When r+t > ċt,s/ct,s, the investors’ outside option would thus

dominate holding their own coin, so that they would deviate from the targeted process

for consumption.

Regarding an issuer’s desire to hold other coins, we find:

Lemma 3. Zt,s = 0 ∀t > T is optimal only if rt < ρ ∀t > T .

The intuition is that when the return on other coins exceeds the fundamental return on

trees r = ρ, no issuer is willing to plant new trees so that all incumbent issuers attempt to

invest in other coins. This, however, violates the notion of a general equilibrium. In what

follows we therefore focus on return processes (rt)
∞
t=T which satisfy rt ∈ [0, ρ] ∀t > T .

With rt ∈ [0, ρ] ∀t > T , it turns out that the incentive feasibility constraint is always

binding when the constraint Ȧt,s ≥ −ϕAt,s for the dynamic development of the stock of

trees is always slack.

Lemma 4. The optimal consumption process (ct,s)
∞
t=T satisfies ċt,s/ct,s = r+t ∀t ≥ T when

the constraint Ȧt,s ≥ −ϕAt,s is slack for all t ≥ T .

How is cT,s then determined? Defining at,s ≡ At,se
δ(t−s), and focusing on an outcome

in which Zt,s = 0 ∀t ≥ T , we have the differential equation

ȧt,s = (ρ+ δ) at,s − δcT,se
∫ t
T rsds, (52)

where we use that Lemma 4 implies ct,s = cT,se
∫ t
T rsds. The solution to the differential

equation is

at,s = e(ρ+δ)(t−T )aT,s − δcT,s

∫ t

T

e(ρ+δ)(t−τ)+
∫ τ
T rsdsdτ. (53)

Optimal choices have to satisfy the transversality condition limt→∞
{
e−(ρ+δ)(t−T )at,s

}
= 0.

Rewriting the equation above, we have

e−(ρ+δ)(t−T )at,s = aT,s − δcT,s

∫ t

T

e
∫ τ
T [rs−ρ−δ]dsdτ. (54)
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The RHS of this equation is well behaved when t → ∞ since rt ∈ [0, ρ] ∀t > T . Imposing

the transversality condition then yields

cT,s =
aT,s
δ

[∫ ∞

T

e
∫ τ
T [rs−ρ−δ]dsdτ

]−1

. (55)

It remains to verify that indeed Ȧt,s ≥ −ϕAt,s ∀t ≥ T . Using the definition for at,s, this

is the same as showing that ȧt,s ≥ (−ϕ+δ)at,s ∀t ≥ T . Given that ȧt,s = (ρ+δ)at,s−δct,s,

we thus need
at,s
δct,s

≥ 1

ϕ+ ρ
∀t ≥ T. (56)

Using the equations for ct,s, at,s, and the fact that
aT,s

δcT,s
=
∫∞
T

e
∫ τ
T [rs−ρ−δ]dsdτ , we find

at,s
δct,s

= e(ρ+δ)(t−T ) aT,s
δcT,s

cT,s
ct,s

− cT,s
ct,s

∫ t

T

e(ρ+δ)(t−τ)+
∫ τ
T rsdsdτ (57)

= e−
∫ t
T rsdse(ρ+δ)(t−T ) aT,s

δcT,s
− e−

∫ t
T rsds

∫ t

T

e(ρ+δ)(t−τ)+
∫ τ
T rsdsdτ (58)

= e−
∫ t
T [rs−ρ−δ]ds aT,s

δcT,s
−
∫ t

T

e−
∫ t
τ [rs−ρ−δ]dsdτ (59)

= e−
∫ t
T [rs−ρ−δ]ds

∫ ∞

T

e
∫ τ
T [rs−ρ−δ]dsdτ −

∫ t

T

e−
∫ t
τ [rs−ρ−δ]dsdτ (60)

=

∫ ∞

T

e
∫ τ
t [rs−ρ−δ]dsdτ −

∫ t

T

e−
∫ t
τ [rs−ρ−δ]dsdτ (61)

=

∫ ∞

t

e
∫ τ
t [rs−ρ−δ]dsdτ, (62)

which also shows that the issuer’s policy is time consistent. We thus have

Ȧt,s ≥ −ϕAt,s ⇔
∫ ∞

t

e
∫ τ
t [rs−ρ−δ]dsdτ ≥ 1

ϕ+ ρ
. (63)

Since rt ≥ 0 by construction, we have
∫∞
t

e
∫ τ
t [rs−ρ−δ]dsdτ ≥ 1

ρ+δ
∀t ≥ T . Since we have

assumed that ϕ ≥ δ, it directly follows that Ȧt,s ≥ −ϕAt,s ∀t ≥ T .

How should the issuer’s coin be designed to implement the allocations described

above? At times t ≥ T , the issuer stands ready to redeem a coin for xt,s > 0 goods,

subject to a sequential service constraint. With At,s trees owned by the issuer at time

t, the time-t flow payment by the issuer is at most (ϕ + ρ)At,s. The allocation above,

however, suggest that Ȧt,s = ρAt,s − δct,se
−δ(t−s), so to maintain this path, we assume
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that the issuer devotes at most

δct,se
−δ(t−s) = e−δ(t−s) δct,s

at,s

at,s
At,s

At,s (64)

=

[∫ ∞

t

e
∫ τ
t [rs−ρ−δ]dsdτ

]−1

At,s (65)

goods to cover redemption. Such a coin is called micro-well-designed, as it avoids runs

on the coin if the coin were the only coin in the economy. This is shown next.

The sequential service constraint implies that if a fraction χt,s of the coins Dt,s is

offered for redemption, the arrival rate of a successful withdrawal from the perspective

of an investor is

αt,s =

[∫∞
t

e
∫ τ
t [rs−ρ−δ]dsdτ

]−1
At,s

xt,sχt,sDt,s

. (66)

To indeed implement the optimal consumption path we set

xt,s =

[∫∞
t

e
∫ τ
t [rs−ρ−δ]dsdτ

]−1

δ

At,s

Dt,s

.

The coin can be traded in a secondary market at price qt,s. As before, we focus on

equilibria in which xt,s ≤ qt,s. When xt,s = qt,s all dying investors redeem their coins

and when xs,t > qs,t all investors, dying or not, attempt to have their coins redeemed—a

run on coin s takes place. In case of a run, which features χt,s = 1 by definition, the

specification for xt,s implies αt,s = δ. The return earned by holding the coin of issuer s

at time t therefore satisfies the differential equation

r+t,sqt,s = δmax{0, xt,s − qt,s}+ q̇t,s (67)

and, no matter whether a run takes place or not, we have

Ḋt,s = −δDt,s and Ȧt,s =

(
ρ−

[∫ ∞

t

e
∫ τ
t [r̃s−ρ−δ]dsdτ

]−1
)
At,s. (68)

If there is no run at time t, the equilibrium return of holding coin s satisfies r+t,s = r+t .

This follows from

r+t,s =
q̇t,s
qt,s

=
ẋt,s

xt,s

=

[∫ ∞

t

e
∫ τ
t [r̃s−ρ−δ]dsdτ

]−1

+ r+t − ρ− δ +
Ȧt,s

At,s

− Ḋt,s

Dt,s

= r+t , (69)
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where the second equality uses that qt,s = xt,s, the third equality follows from the

specification of xt,s, and the fourth equality uses that Ḋt,s/Dt,s = −δ and Ȧt,s/At,s =

ρ−
[∫∞

t
e
∫ τ
t [rs−ρ−δ]dsdτ

]−1
.

To demonstrate that there are no idiosyncratic runs on issuer s, suppose first that

xt,s = qt,s ∀t ∈ [T, τ). Then, consider what happens if at time τ the secondary mar-

ket price qτ,s drops unexpectedly so that we have qτ,s < xτ,s. The aggregate resource

constraint implies

Żτ,s = δ

(
xτ,s

qτ,s
− 1

)
qτ,sDτ,s, (70)

where Zτ,s are generation s’s holdings of other coins and/or storage. The return on Zτ,s

is, by definition, rτ . Given that in a run xτ,s > qτ,s, it follows immediately that Żτ,s > 0.

Thus, generation s needs to invest in other coins and/or storage. With r+τ,s > r+τ , all

incumbent investors prefer to hold coin s and with r+τ,s < r+τ , all households would

attempt to sell coin s in the secondary market. Hence, clearance of the secondary market

for coin s requires r+τ,s = r+τ in case of a run. Thus,

r+τ = δ

(
xτ,s

qτ,s
− 1

)
+

q̇τ,s
qτ,s

. (71)

Defining θt,s ≡ qt,s/xt,s, with θτ,s < 1, we have

r+τ = δ

(
1

θτ,s
− 1

)
+

θ̇τ,s
θτ,s

+
ẋτ,s

xτ,s

(72)

= δ

(
1

θτ,s
− 1

)
+

θ̇τ,s
θτ,s

+

[∫ ∞

τ

e
∫ t
τ [rs−ρ−δ]dsdt

]−1

+ r+τ − ρ− δ +
Ȧτ,s

Aτ,s

− Ḋτ,s

Dτ,s

(73)

= δ

(
1

θτ,s
− 1

)
+

θ̇τ,s
θτ,s

+ r+τ . (74)

Starting from time τ , we find

θt,s = min
{
(θτ,s − 1)eδ(t−τ) + 1, 1

}
. (75)

As before, there is a unique steady state at θ = 1. If θτ,s < 1, θt,s will decline at a rate

that increases over time, so that at some τ ′ > τ , we will have qτ ′,s = 0, which cannot be

an equilibrium. Thus, there is no run on issuer s.

However, as we will see when modeling the problem of new coin issuers, there is a
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continuum of processes (rt)
∞
t=T which are consistent with an equilibrium and furthermore,

the process can change unexpectedly.

7.2 New coin issuers

We next study the solution for an issuer respresenting a newborn generation at time T .

The solution can be derived from the solution for an incumbent issuer, simply because

the new issuer becomes incumbent at time T + ε. That is, the issuer selects a micro-

well-designed coin and we only need to solve for D+
T,T , the amount of coins issued in the

ICO. We again use the normalization D+
T,T = A+

T,T so that the ICO price is one. From

the problem of the incumbent issuers, it is clear that the consumption path offered by

the new issuer satisfies

ct,T =

[
δ

∫ ∞

T

e
∫ τ
T [rs−ρ−δ]dsdτ

]−1

D+
T,T e

∫ t
T rsds, (76)

i.e., once issued, the return rt,T earned by coin T mimics the return process (rt)
∞
t=T . We

furthermore have ct,T = xt,T = qt,T ∀t > T . The investors born at time T are willing to

participate in the ICO if and only if

lim
ε→0

qT+ε,T −D+
T,T

ε
≥ r+TD

+
T,T . (77)

Given that qt,T = ct,T ∀t > T , equation (77) is satisfied if and only if

δ

∫ ∞

T

e
∫ τ
T [rs−ρ−δ]ds ≤ 1, (78)

which holds true since the return process (rt)
∞
t=T satisfies rt ∈ [0, ρ] ∀t > T .

With the ICO indeed taking place and generating the consumption process as specified

by (76), it follows that the new issuer chooses D+
T,T to maximize

∫ ∞

T

δe−(ρ+δ)(t−T )u

([
δ

∫ ∞

T

e
∫ τ
T [rs−ρ−δ]dsdτ

]−1

e
∫ t
T rsdsD+

T,T

)
dt−D+

T,T . (79)
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There is a unique solution to this problem which follows from the first-order condition

0 =

∫ ∞

T

e
∫ t
T [rs−ρ−δ]dsu′

([
δ

∫ ∞

T

e
∫ τ
T [rs−ρ−δ]dsdτ

]−1

e
∫ t
T rsdsD+

T,T

)
dt−

∫ ∞

T

e
∫ τ
T [rs−ρ−δ]dsdτ.

(80)

This shows that if a micro-well-designed coin wants to be stable, it needs to generate

the return process (rt)
∞
t=T which is exogenous to a single coin.

7.3 General equilibrium

To explore the consequences of competition among micro-well-designed coins, we focus

on an equilibrium in which there is no need for inter-generational trade. This means

that every ICO should succeed, i.e., each generation issues its own coin, and that Ȧt,s ≥

−ϕAt,s ∀s ∈ [0, t) ∀t.

From the preceding analysis, it follows that an equilibrium, in which there is no need

for inter-generational trade, is completely described by a process (rt)
∞
t=0 satisfying

rt ∈ [0, ρ] ∀t > 0. (81)

Every generation will then issue a coin and the return on any coin in circulation at time

t > 0 is rt. Otherwise, all agents would sell the coins with lower returns and switch to

coins with higher returns.

We have rt ≥ 0 ∀t because storage is available as an outside option and furthermore,

it implies
∫∞
t

e
∫ τ
t [rs−ρ−δ]dsdτ ≥ 1

ϕ+ρ
, so that indeed Ȧt,s ≥ −ϕAt,s ∀s ∈ [0, t) ∀t. Also,∫∞

t
e
∫ τ
t [rs−ρ−δ]dsdτ is bounded from above by 1/δ and from below by 1/(δ + ρ), so that

we have well-behaved solutions.

Summarizing, competition between coin issuers generates a continuum of perfect-

foresight equilibria, which include cycles and non-stationary dynamics. With rt = 0 ∀t,

the efficient Arrow-Debreu allocation is implemented and with rt = ρ ∀t, the allocation is

the same as in the inefficient decentralized equilibrium. Also, despite the fact that there

are no runs, unexpected changes in the process (rt)
∞
t=0 can occur, as they are self-fulfilling.

Our findings imply that the entire economy may unexpectedly switch from the effi-

cient Arrow-Debreu allocation to the inefficient decentralized equilibrium allocation. The

reason is that incumbent coin issuers anticipate competition from future coin issuers. If
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the incumbent coin issuers expect the future issuers to issue a coin which is consistent

with the Arrow-Debreu allocation, i.e., a macro-well-designed coin, the incumbent coin

issuers also issue a macro-well-designed coin. However, if they expect that the future

issuers will issue a micro-well-designed coin that pays a positive rate of return, the in-

cumbent coin issuers have to change the design of their coins to prevent a run. In fact,

they change the design of their coins in such a way that they can provide the same return

as the competing coin. As a result, the equilibrium allocation in the stablecoin economy is

driven away from the efficient Arrow-Debreu allocation because of a micro-well-designed

yet contagious stablecoin.

More precisely, the result suggests that competition between issuers is a source of

instability. There are overlapping generations of investors, and the members of a specific

generation coalesce to act as an issuer. Because its members have the outside option to

trade coins of other issuers in a secondary market, an issuer’s ability to implement the

efficient allocation by means of a macro-well-designed coin depends on the actions of all

other coin issuers—issuers face a coordination game.

8 Conclusion

We have presented a simple model that allows to study how stablecoins should be de-

signed, whether there is contagion when multiple stablecoins compete and how such

contagion can be prevented. At the individual coin level, it seems to be straightforward.

An investment rule and limited redemption avoids runs and guarantees the stability of

the coin. At the macro level, micro-well-designed coins, however, are not enough as a

coin paying interest is contagious for other coins. This provides a rationale for prohibiting

interest rate payments on holding stablecoins.

There are several extensions that can be pursued with the current model. For instance,

one could add a convenience yield to the holding of stablecoins if they can be used with

low transaction costs to make payments and thus can serve as a medium of exchange and

could compete with standard fiat currency provided by the government. Moreover, one

might introduce agency conflicts when a private company issues and operates stablecoins

on behalf of the generation of first holders of the stablecoin. Such potential agency

conflicts could also necessitate standardized requirements an issuer of stablecoins has to
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fulfill in order to have the license for issuing stablecoins, similar to licenses of commercial

banks. Finally, one could study how repeated issuance of stablecoins affect the result,

i.e., we could allow a generation to issue further coins according to some predetermined

plan, once they have started the issuance.

One can certainly agree with Gorton and Zhang (2021) that the new world of stable-

coins posits the same problems as the earlier free-banking eras. Yet, knowledge about

how to tackle these problems, the technical and financial infrastructure and our entire

monetary system have evolved considerably. Hence, the search for stablecoins that com-

pete and produce desirable results continues. The current paper may add a step in this

search.
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A Proofs

A.1 Discrete-time analogue

We consider the discrete version of our model with dates t ∈ {0,∆, 2∆, ...}. This is useful

to prove some properties of our continuous-time model, which we interpret as the limit

when ∆ goes to zero.

The probability that an investor born at date t dies at date τ > t is (1−e−δ∆)e−δ(τ−t−∆).

Likewise, the probability that a tree planted at date t gestates at time τ > t is (1 −

e−ϕ∆)e−ϕ(τ−t−∆).

A unit mass of investors is born at t = 0 and a mass (1− e−δ∆) of investors is born at

t ∈ {∆, 2∆, 3∆, ...} so that there is a unit mass of investors alive at all dates. To ensure

that trees earn a fundamental return r = ρ, we impose y(1− e−ϕ∆) = eρ∆(1− e−(ϕ+ρ)∆).

Aggregate consumption at date t > 0 is

ct =
t−∆∑

τ=∆ |∆

(1− e−δ∆)2e−δ(t−∆−τ)ct,τ + (1− e−δ∆)e−δ(t−∆)ct,0 (82)

with ct,τ the date-t consumption by an investor born at date τ < t.13 The law motion for

the stock of trees, defined as being alive at the beginning of time t ≥ 0, reads as

At+∆ = (1− e−ϕ∆)At + It, where A0 = 0, (83)

and the aggregate resource constraints are

A∆ + S∆ = h0 and ct + St+∆ + It ≤ eρ∆(1− e(ϕ+ρ)∆)At + (1− e−δ∆)ht ∀t > 0, (84)

subject to the non-negativity constraints St+∆, It ≥ 0, with ht defined as the labor effort

devoted by an investor born at date t.

A.2 Proof of Lemma 1

To be included ...

13There is no consumption at t = 0.
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A.3 Proof of Lemma 2

To be included ...

A.4 Proof of Proposition 1

To be included ...

A.5 Proof of Proposition 2

To be included ...

A.6 Proof of Lemma 3

Other coins generate a higher return than trees when rt > ρ, so it has to be that r+t >

ρ ⇒ Ȧt,s = −ϕAt,s, i.e., no new trees are planted by the incumbent issuer. If Z+
t,s = 0,

we would then have

ct,s ≥
(ρ+ ϕ)At,se

δ(t−s)

δ
and lim

ε→0
ct+ε,s ≤ lim

ε→0

(ρ+ ϕ)At,se
(δ−ϕ)ε+δ(t−s)

δ
. (85)

It follows that

lim
ε→0

ct+ε,s − ct,s
ε

≤ ct,s lim
ε→0

e(δ−ϕ)ε − 1

ε
, (86)

so Z+
t,s = 0 ⇒ ċt,s/ct,s ≤ δ − ϕ. With ϕ ≥ δ and r+t > ρ, this however implies that the

constraint ċt,s/ct,s ≥ r+t is violated. Thus r+t > ρ ⇒ Z+
t,s > 0.

A.7 Proof of Lemma 4

We define at,s = At,se
−δ(t−s) and zt,s = Zt,se

−δ(t−s) and consider the discrete-time analogue

of the problem. The gross return on investors’ outside option from date t to t + ∆ is

er∆+t∆.

The incumbent issuer chooses the sequence {cτ+T,s, a∆+τ+T , z∆+τ+T}∞τ=0 |∆ to maxi-

mize
∞∑

τ=0 |∆

e−(ρ+δ)τu(cτ+T,s) (87)
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subject to the law of motion

e−δ∆a∆+τ+T,s + e−δ∆z∆+τ+T,s = eρ∆aτ+T,s + erτ+T∆zτ+T,s − (1− e−δ∆)cτ+T,s (88)

the constraints a∆+τ+T,s ≥ e(−ϕ+δ)∆aτ+T,s, z∆+τ+T,s ≥ 0, and

c∆+τ+T,s ≥ cτ+T,se
r∆+τ+T∆, (89)

and the starting values aT,s > 0 and zT,s = 0.

Suppose that the constraint a∆+τ+T,s ≥ e(−ϕ+δ)∆aτ+T,s is slack for all τ ≥ 0. It follows

that we can assume z∆+τ+T,s = 0 ∀τ ≥ 0, since accumulating other coins and/or storage

does not yield a higher return than trees with r∆+τ+T ∈ [0, ρ] ∀τ ≥ 0. The law of motion

then implies

(1− e−δ∆)
∞∑

τ=0 |∆

e−(ρ+δ)τcτ+T,s ≤ aT,se
ρ∆, (90)

where we use that zT,s = 0 and limτ→∞ e−(ρ+δ)τaτ+T,s ≥ 0.

Let λ be the Lagrange multiplier associated with (90) and let µτ+T,se
−(ρ+δ)τ be the

Lagrange multiplier associated with (89). The first-order condition for cτ+T,s is

0 = u′(cτ+T,s)− λ(1− e−δ∆)− µτ+T,se
r∆+τ+T∆ + 1{τ>0}µτ−∆+T,se

(ρ+δ)∆. (91)

Suppose ∃ τ ∈ {0,∆, 2∆, ...} such that c∆+τ+T,s > cτ+T,se
r∆+τ+T∆, so that complemen-

tary slackness implies µτ+T,s = 0 and r∆+τ+T ≥ 0 implies c∆+τ+T ,s > cτ+T,s. It follows

that

0 = u′(cτ+T,s)− λ(1− e−δ∆) + 1{τ>0}µτ−∆+T,se
(ρ+δ)∆, (92)

0 = u′(c∆+τ+T,s)− λ(1− e−δ∆)− µ∆+τ+T,se
r2∆+τ+t∆, (93)

which can be combined to

0 = u′(c∆+τ+T,s)− u′(cτ+T,s)− 1{τ>0}µτ−∆+T,se
(ρ+δ)∆ − µ∆+τ+T,se

r2∆+τ+t∆. (94)

Since the multipliers are non-negative, it must be that u′(c∆+τ+T,s) ≥ u′(cτ+T,s), but this

contradicts c∆+τ+T,s > cτ+T,s. Thus, when the constraint a∆+τ+T,s ≥ e(−ϕ+δ)∆a∆+T,s is
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slack for all τ ≥ 0, we must have that the constraint c∆+τ+T,s ≥ cτ+T,se
r∆+τ+T∆ is binding

for all τ ≥ 0.
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