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Abstract

This paper presents a new approach to combining the information in point and

density forecasts from the Survey of Professional Forecasters (SPF) and assesses the

incremental value of the density forecasts. Our starting point is a model, developed

in companion work, that constructs quarterly term structures of expectations and

uncertainty from SPF point forecasts for quarterly fixed horizons and annual fixed

events. We then employ entropic tilting to bring the density forecast information

contained in the SPF’s probability bins to bear on the model estimates. In a novel

application of entropic tilting, we let the resulting predictive densities exactly replicate

the SPF’s probability bins. Our empirical analysis of SPF forecasts of GDP growth

shows that tilting to the SPF’s probability bins can visibly affect our model-based

predictive distributions. Yet in historical evaluations, tilting does not offer consistent

benefits to forecast accuracy relative to the model-based densities that are centered

on the SPF’s point forecasts and reflect the historical behavior of SPF forecast errors.

That said, there can be periods in which tilting to the bin information helps forecast

accuracy.

Keywords: Term structure of expectations, uncertainty, survey forecasts, fan charts,

entropic tilting
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1 Introduction

Many studies have examined and used point forecasts from professional forecasts such as

the US Survey of Professional Forecasters (SPF). The high predictive value of SPF point

forecasts is well documented. While quite a few studies point to some persistence in SPF

forecast errors (e.g., Coibion & Gorodnichenko (2015) and Bianchi et al. (2022)), there is

consensus that SPF point forecasts are hard to beat in real-time accuracy (e.g., Ang et al.

(2007), Croushore (2010), Faust & Wright (2013), and Croushore & Stark (2019)).

A number of studies have used point forecasts from the SPF or similar sources to

examine the term structure of forecast uncertainty across horizons or time variation in

uncertainty at given horizons. With data on fixed-event forecasts from Consensus Eco-

nomics, Patton & Timmermann (2011) use an unobserved components model to examine

the predictability of growth and inflation across different forecast horizons and measure

average forecast uncertainty by mean squared forecast errors. To capture and assess time

variation in uncertainty, Jo & Sekkel (2019) estimate a factor stochastic volatility model

using errors in fixed-horizon quarterly forecasts from the SPF.

In addition to point forecasts, the SPF provides density forecasts in the form of fixed-

event probability bins. More specifically, the SPF publishes (1) fixed-horizon quarterly

point forecasts, at shorter horizons, (2) fixed-event annual point forecasts, covering shorter

and longer horizons, and (3) fixed-event annual density forecasts in the form of probability

bins. Reflecting the challenges to making use of information in fixed-horizon quarterly

forecasts and fixed-event annual forecasts, most studies make use of one but not the

other. For example, with measurement based on just annual forecasts, Ganics et al. (2021)

develop a density combination-based method for translating fixed-event density forecasts

from the SPF to fixed-horizon quarterly forecasts. Similarly, regarding point and density

forecasts, many studies use one or the other but not both. An exception is Clements &

Galvão (2017), who compare the SPF’s ex ante density estimates against the ex post root

mean squared errors (RMSEs) of the SPF point forecasts and find that the survey’s density
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forecasts overestimate uncertainty relative to the RMSE.

We present a new approach to combining the information in point and density forecasts

from the SPF and assess the incremental predictive value of the density forecasts relative

to the survey’s point forecasts. More specifically, we combine the information in the SPF’s

quarterly and annual point forecasts and annual probability bins to estimate a quarterly term

structure of forecasts and forecast uncertainty that extends out through the longest horizon

possible with SPF information. Throughout we use the average predictions published by

the SPF, which can be seen as forecasts obtained from a linear pooling of individual SPF

participants’ forecasts.

We start from model-based density forecasts centered on the SPF’s point forecasts, but

not informed by the survey’s density forecasts. The model is based on our companion

work in Clark et al. (2022), henceforth “CGM,” and extends Clark et al. (2020), who only

used the directly observable term structure of quarterly SPF forecasts. The CGM model

combines these fixed-horizon predictions with the SPF’s annual fixed-event point forecasts

to construct term structures of expectations and uncertainty. (These fixed-event calendar-

year outcomes are also the target of the SPF’s probability bins.) The CGM framework casts

a decomposition of multi-period forecast errors into a sequence of forecast updates that

may be partially unobserved, resulting in a multivariate unobserved components model.

The model’s density predictions are informed by historical SPF forecast errors, which

display strong time variation in volatility and are modeled with stochastic volatility.

We employ entropic tilting to bring the density forecast information contained in the

SPF’s probability bins for fixed-event forecasts to bear on the term structure of expectations

and uncertainty. Entropic tilting can be seen as a non-parametric approach to conditional

forecasting, used in studies such as Cogley et al. (2005), Ganics & Odendahl (2021),

Krüger et al. (2017), Robertson et al. (2005), and Tallman & Zaman (2020). We use tilting

to adjust the model-based predictive distribution so that the tilted distribution’s implied

probability bins match up with those from the SPF (while minimizing a distance criterion).
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Tilting allows us to treat the SPF’s point and density forecasts commensurately.

The common approach to incorporating information from SPF densities is to first fit a

parametric distribution to the SPF histograms and then to proceed based on the first two

(or three) moments of the fitted distribution (e.g., Banbura et al. (2021) and Galvão et al.

(2021)). Our tilting approach instead directly targets the bin probability; to the best of our

knowledge, we are the first to do so. Instead of applying tilting to information obtained

from the SPF histograms, other applications have targeted the historical moments of SPF

point forecasts and their errors (Krüger et al. (2017)). In our application, historical SPF

forecast errors inform the model-based densities that serve as inputs for entropic tilting.

The results document the limited merits of the SPF’s density predictions compared to

densities estimated from the historical errors in SPF point forecasts.

We present empirical results for SPF forecasts of GDP growth — for which the SPF

sample of density forecasts is relatively long long. First, we examine the efficacy of using

entropic tilting to incorporate information in the SPF’s probability bins for fixed-event

annual forecasts, and illustrate the impacts of bin-tilting on predictive distributions. Second,

we study the historical forecast accuracy of SPF density predictions themselves and model

forecasts informed by the SPF.

Considering the historical forecast accuracy of the SPF’s bin forecasts for the next

calendar year and beyond, we find these to be on par with the model predictions, at least

over the full sample. Similarly, tilting the model densities to the SPF’s probability bins

yields only modest effects in formal evaluations of forecast accuracy. (This finding applies

to both our preferred approach of tilting directly to the bins and the alternative approach

of tilting to moments from densities fit to the SPF probability bins.) The model’s point

and density forecasts — which are conditioned on the historical performance of SPF point

forecasts — appear to be good enough that tilting to the SPF’s probability bins does not

consistently improve forecast accuracy. That said, there can be periods in which tilting to

the bin information helps forecast accuracy — for point and density forecasts — as in the
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case of GDP growth over the period of 2009-2016.

Our paper is related to a long line of work concerned with using the SPF’s fixed-event

probability bins for more general density forecasting purposes. Many have sought — see

Clements & Galvão (2017) and references therein — to compare model-based probability

densities (or moments thereof) to the bin forecasts. Echoing our findings, Krüger (2017)

reports similar forecast performances between histograms and distributions constructed

from survey errors for the ECB’s SPF. Recently, Bassetti et al. (2022) develop a Bayesian

non-parametric approach to density estimation from the bin probabilities. Grishchenko

et al. (2019) embed survey-based measures of predictive means and variances into the

measurement equation of an affine term structure model with time-varying volatility.

Cakmakli & Demircan (2022) improve nowcasts from a factor model of US GDP by

adding measurement equations for mean and variance factors that reflect the cross-sectional

average and variance (i.e., disagreement) of individual SPF point forecasts. Our finding that

adding SPF histogram information to a standard stochastic volatility specification has no

consistent advantages for predictive accuracy suggests that model extensions to incorporate

extraneous volatility factors will not be needed to capture information conveyed by the

SPF. Relatedly, studies including Clements (2018) and Glas & Hartmann (2022) point to

potential shortcomings in the predictive accuracy of SPF density forecasts, for example

due to rounding of answers by respondents.

The paper proceeds as follows. Section 2 describes the SPF forecasts and data used.

Section 3 presents the model and details the entropic tilting that incorporates information

from the SPF’s probability bins. Section 4 provides results. Section 5 concludes. Additional

details and results are provided in a supplementary online appendix.

2 Data

This section first describes our data set of observed SPF point and density forecasts and

realized values and then checks the consistency of SPF point and density forecasts.

4



2.1 SPF forecasts and realized values

Reflecting the forecasts available, we examine quarterly and annual forecasts from the

SPF for real GDP growth (RGDP). For simplicity, we use “GDP” to refer to output, even

though, in real time, the measure is based on GNP and a fixed-weight deflator for some of

the sample. In all cases, we form the point forecasts and the fixed-event probability bin

forecasts using the average over all SPF responses. The average probability predictions can

be seen as forecasts that would be obtained with linear pooling of the underlying probability

forecasts of individual participants of the SPF. As summarized in such sources as Bassetti

et al. (2022), simple linear pooling has worked well in other settings. An extension of our

work could also focus on alternatives to the linear pooling of individual histogram bins,

which might take into account the differing predictive accuracies of individual forecasters

as discussed by Diebold et al. (2022) and Genre et al. (2013).

We obtained the SPF forecasts from the Federal Reserve Bank of Philadelphia’s website.

Our estimation samples start with 1968Q4, and the sample end point is 2022Q2. The

availability of point and density forecasts at different horizons has considerably changed

over time. At each forecast origin, the available fixed-horizon point forecasts typically

span five quarters, from the current quarter through the next four quarters. Since 1981Q3,

the SPF has included fixed-event point and histogram forecasts for the current and next

calendar year. In 2009Q2, the forecast horizon for GDP growth was extended to include

annual forecasts for two additional years, i.e., two and three years ahead.

The availability of forecasts for probability bins has also evolved over time. Although

the SPF provides probability bins for GDP growth since 1981, the early years of data pose

what Diebold et al. (1999) refer to as “complications,” which are also discussed in SPF

documentation. These complications include some shifts in the number of bins and their

ranges and changes in forecast periods — including some uncertainty as to the horizons

of the annual forecasts covered in the 1985Q1 and 1986Q1 surveys. To avoid possible

distortions from these issues, we only use probability bin forecasts starting with 1992Q1.
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In addition, for reasons discussed further below, we also disregard the annual point and

density forecasts for the current year.

Within a year of SPF publications, the effective maximum of implied quarterly horizons

varies across quarters. For example, the 2021Q4 SPF included fixed-event annual forecasts

of GDP growth for the current year and the next three, so that the last annual forecast

extends 12 quarters ahead (the annual forecast reported for 2024 includes 2024Q4, 12

quarters beyond the 2021Q4 forecast origin). In the 2022Q1 SPF, the last annual growth

forecast for 2025 includes 2025Q4, 15 quarters beyond the forecast origin.

For real GDP, the SPF solicits point forecasts in levels, whereas density forecasts

are surveyed in growth rates. Specifically, point forecasts pertain to quarterly or annual-

average levels, which we convert to growth rates based on information included in the

survey. For quarterly forecast targets, we use the lagged quarterly level as the basis. To

obtain the next-year forecast of annual-average growth, we use the SPF’s predictions for

the current year as base values (and analogously for the forecasts two and three years

ahead). For estimation of the CGM model, growth rates are log-linearized as detailed

in Section 3.1 and forecast data are transformed into log differences as well. For our

application of entropic tilting, we construct simple growth rates from model output to

match the conventions of the SPF histograms, as described further in Section 3.2.

To estimate the CGM model, we also need measures of the outcomes of the vari-

ables. From quarterly data files in the Philadelphia Fed’s Real-Time Data Set for Macroe-

conomists (RTDSM), we obtain real-time measures for quarter t−1 data that were publicly

available to SPF respondents in the quarter t survey. Data on GDP growth can be substan-

tially revised over time. For forecast evaluation, we measure the outcomes of GDP growth

with the RTDSM vintage published two quarters after the outcome date (that is, we use the

quarterly vintage in t+ h+ 2 to evaluate forecasts for t+ h made in t; this is the second

estimate available in the RTDSM’s vintages).
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2.2 Consistency between SPF point and density forecasts

One aspect of the data that will bear on the impacts of incorporating information in the

SPF’s probability bin forecasts through entropic tilting is the extent to which the SPF

point and density forecasts are mutually consistent. Analyses by Clements (2010, 2014b),

Clements et al. (2022), and others (see, e.g., studies referenced by these papers) have docu-

mented that, among individual forecasters, inconsistencies between their point forecasts

and histograms are common. Clements (2010) emphasizes evidence that forecasters are

slower to adjust their probability forecasts than their point forecasts in response to new

information. In our case, we are using aggregate rather than individual forecasts, and

inconsistencies could be smaller in the former than has been documented for the latter.

[Figure 1 about here.]

Figure 1 compares the annual point forecasts from the SPF to the ranges of possible

mean values consistent with the probabilities of the annual bin forecasts. The implied

means use the bin probabilities, as well as the bottom and top values of each bin to

compute lower and upper bounds of histogram-consistent mean forecasts. For details, see

the supplementary online appendix. These results indicate that, in the aggregate, SPF point

forecasts and the means implied by the probability bins are broadly consistent. For 1-year-

ahead forecasts of GDP growth, the reported point forecasts are generally comparable to

the central tendency of the bounds implied from the SPF bins, sometimes a little higher

and sometimes a little lower. At longer horizons, the SPF’s point forecasts consistently lay

above the mid-points of the SPF’s probability bin ranges but generally remain between the

top and bottom of the ranges for mean values consistent with the histograms. Given these

differences, it may be the case that entropic tilting to the SPF’s bin forecasts will have more

impact on longer horizon growth forecasts than shorter horizon forecasts. In particular, in

these cases, tilting to the bins may pull down the means of forecast distributions compared

to the entirely model-based means.
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3 Time Series Model and Entropic Tilting Method

As input to our application of entropic tilting, we use a multivariate unobserved components

model developed in CGM to generate term structures of expectations and uncertainty that

are centered on SPF point forecasts (but not informed by SPF density forecasts). After a

brief overview of the model, this section describes the entropic tilting methods used in our

paper to align the model-based densities with the SPF’s density predictions.

3.1 A model for survey expectations and uncertainty

We apply entropic tilting to output from the CGM state space model that is specified

and estimated for the case of real GDP (for results on the GDP price index and the

unemployment rate, see the supplementary online appendix). We denote the quarterly

growth rate of real GDP (measured as annualized change in log levels) by yt, and a forecast

made at t for quarter t+ h is yt+h|t. The maximum quarterly horizon that can be covered

in the historical SPF data is H . CGM model the evolution of a partially latent state vector

Yt ≡
(
yt−1, yt|t, yt+1|t, . . . , yt+H|t

)′ that consists of the lagged realized value yt−1 (as

observed at t) and the time t term structure of expectations for horizons h = 0 through H .

In its baseline version, the state space model has the following form:

Zt = Ct Yt , Yt = F Yt−1 + ηt , ηt ∼ N (0,Σt) , (1)

where the measurement vector Zt collects SPF point forecasts observed at t, and the

matrices F and Ct are known based on data definitions. As described next, ηt is a vector

of forecast updates. We follow the baseline version of the CGM model and treat the

vector ηt as a martingale difference sequence, Et−1ηt = 0, with a stochastic volatility

specification for its variance matrix Σt.

The model builds on an accounting identity that decomposes h-step-ahead forecast
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errors into the sum of the t+ h nowcast error and preceding forecast updates:

yt+h − yt+h|t = et+h +
h∑

i=1

µt+h|t+i , (2)

with et+h ≡ yt+h − yt+h|t+h and µt+h|t+i ≡ yt+h|t+i − yt+h|t+i−1, so that et+h is the

nowcast error at t+h, and µt+h|t+i measures the update in the forecast of yt+h at time t+ i.

CGM define changes to the longest-horizon forecast, yt+H|t, as µ∗
t ≡ yt+H|t − yt+H−1|t−1,

and after collecting et−1,
{
µt+h|t

}H
h=0

, and µ∗
t in the vector ηt, one obtains the transition

equation in (1) with F being a known matrix of zeros and ones.

Based on the strong evidence for time-varying volatility demonstrated by CGM, we

adopt their baseline specification (denoted SV) of stochastic volatility in the process for ηt.

The model decomposes forecast updates into long-run shifts and cyclical gaps. Changes in

the long-run forecast, µ∗
t , are assumed to have constant variance, while a scalar stochastic

volatility process affects the cyclical gaps at all horizons other than H:

ηt =

η̃t

0

+ 1 · µ∗
t , µ∗

t ∼ N(0, σ2
∗), η̃t ∼ N

(
0, λt · Σ̃

)
, (3)

log λt = δ log λt−1 + νt, νt ∼ N(0, σ2
ν),

where η̃t is a vector of forecast-update gaps with Ny − 1 elements. The log SV process has

a mean of 0 and slope coefficient δ to be estimated. The time-varying variance with mean

of 1 scales up a full variance-covariance matrix Σ̃. Although the ordering of variables

commonly affects estimates of VARs with SV processes for each variable (see discussions

in studies such as Arias et al. (2022)), with the common SV specification, the ordering of

variables in the model has no impact on estimates. Additionally, our empirical analysis

includes comparisons to estimates from a model labeled as CONST, which treats the

innovation vector ηt as conditionally homoskedastic, with variance-covariance matrix Σ.

For growth in the annual-average levels of real GDP, CGM employ the following
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log-linear approximation:

ŷt = 1/16 · (yt + 2 · yt−1 + 3 · yt−2 + 4 · yt−3 + 3 · yt−4 + 2 · yt−5 + yt−6) , (4)

where ŷt denotes the (log-linearized) growth rate of the annual-average levels of the year

ending in quarter t over the year ending in t−4. When t corresponds to a Q4 observation, ŷt

captures a calendar-year change. Other examples relying on such approximations include

Aruoba (2020), Mariano & Murasawa (2003), and Patton & Timmermann (2012).

The variables yt+h|t and ŷt+h|t denote survey expectations collected at forecast origin t

for forecast targets yt+h and ŷt+h, respectively. The measurement vector Zt contains the

available SPF forecasts for fixed horizons (yt+h|t) and fixed events (ŷt+h|t), as well as a

real-time reading of the last realized value, yt−1. Since the SPF provides fixed-horizon

forecasts for up to four quarters ahead, current-year (fixed-event) forecasts are disregarded

by CGM. In a similar vein, next-year forecasts are ignored when published in the fourth

quarter. Otherwise, Zt includes all available readings of fixed-event forecasts for the

next year and beyond. Collecting terms, the measurement equation has the form given

in (1), with the elements of Ct known and reflecting data definitions and transformations

discussed above, as well as shifts in data availability.

As detailed by CGM, the model is estimated with a Gibbs sampler using joint data for

observed realizations and SPF predictions. We retain 3,000 draws after a burn-in of 3,000

initial draws. When simulating the model’s predictive density we sample 100 paths of

future realizations of stochastic volatility and other state variables for each draw, resulting

in S = 300, 000 predictive density draws.

3.2 Entropic tilting

As noted in the introduction, entropic tilting has gained popularity as a convenient post-

estimation method to incorporate additional moment conditions into a model’s predictive
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distribution. In our application, the moment restrictions come from the fixed-event SPF

probability bin forecasts, which we recognize as potentially useful information that was

not utilized to estimate the model. At the same time, we do not want to deviate “too much”

from the model’s predictions. Entropic tilting achieves these objectives simultaneously by

re-weighting the draws from the model’s predictive distribution such that the re-weighted

draws satisfy the moment restrictions and the new distribution is closest to the original one

in the Kullback–Leibler (KL) sense.

Let X t =
[
x1
t , . . . , x

n
t , . . . , x

N
t

]′ collect predictions for the rates of change in calendar-

year average levels of RGDP at forecast origin t for calendar years 1, . . . , N ahead. For

example, superscript 1 corresponds to the next calendar year.

To construct predictive densities for calendar-year events, we need to map draws

from the predictive density of the quarterly model into annual growth rates. Let Yt

denote the level of RGDP in quarter t. As before, yt+h = 400(logYt+h − logYt+h−1)

denotes the annualized quarterly growth rate of RGDP from quarter t − 1 to t and we

let Rt+h ≡ exp (yt+h/400) = Yt+h/Yt+h−1 denote the corresponding quarterly gross rate

of change. For simplicity, consider calculating the growth rate of average annual RGDP

from the current calendar year to the next calendar year. Standing at forecast origin t, let

τ denote the last quarter of the previous calendar year, so that τ + 1, τ + 2, τ + 3, τ + 4

point to the four quarters of the current year, and τ +5, τ +6, τ +7, τ +8 refer to the next

calendar year’s quarters. With this notation, the SPF’s concept of next year’s (fixed-event)

annual growth rate can be expressed as

x1
t = 100 ·

(
Yτ+5 + Yτ+6 + Yτ+7 + Yτ+8

Yτ+1 + Yτ+2 + Yτ+3 + Yτ+4

− 1

)
= 100 ·

((
5∏

j=2

Rτ+j

)
·
1 +

∑4
k=2

∏k
j=1 Rτ+4+j

1 +
∑4

k=2

∏k
j=1Rτ+j

− 1

)
. (5)

Based on equation (5), we map the predictive distribution of x1
t into the model as

follows: For τ + j < t, we take observed vintage data for Rτ+j that were available to the
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SPF forecaster at t, and for τ + j ≥ t we generate draws of Rτ+j from the model. For the

remaining elements of X t, analogous computations are applied to predictions for two and

three calendar years ahead. Similar to the calculations of Clements (2018), our mapping

from model-implied densities to annual growth rates featured in the SPF is thus free of

log-linear approximations.

Let ft denote the predictive distribution of X t, given in the form of draws {Xs
t}

S
s=1

obtained from Markov chain Monte Carlo (MCMC) estimation of the model, each with

corresponding probability ws = 1/S. In addition, let {w̃s}Ss=1 denote an alternative set of

weights (for the same draws) that characterizes the distribution f̃t. Our use of entropic

tilting seeks a distribution f̃t that matches the information obtained from the fixed-event

SPF probability bins while staying as close as possible, in terms of KL divergence, to

the original model-based distribution ft. Formally, entropic tilting is a minimization with

KL as the objective function subject to constraints that represent the moment conditions

derived from the SPF bins (which ft does not satisfy in general).

Let g : RN → Rdim(ḡt) denote the function that maps the MCMC draws into a

vector whose expected value under the tilted distribution f̃t we want to set equal to ḡt.

Entropic tilting ensures that under the tilted distribution f̃t, we have Ef̃t
g (X t) = ḡt, and

Ef̃t
g (X t) ≡

∑S
s=1 w̃s ·g (Xs

t) denotes the expected value of g (X t) under the distribution

f̃t. Entropic tilting is then the solution of the following optimization problem:

min{w̃s}KL(f̃t, ft) =
S∑

s=1

w̃s · log
(
w̃s

ws

)
such that Ef̃t

g(X t) = ḡt , (6)

where the weights {w̃s}Ss=1 characterizing f̃t need to be non-negative and sum to one. The

minimizing solution is

w̃∗
s =

exp
(
γ∗′g (Xs

t)
)∑S

s=1 exp (γ
∗′g (Xs

t))
, with γ∗ = argmin

γ

S∑
s=1

exp (γ′ (g(Xs
t)− ḡt)) . (7)

The SPF probability forecasts are available as probabilities assigned to pre-specified
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bins. For example, in the 2013Q1 SPF round, panelists were asked to provide the proba-

bility of annual real GDP growth falling into the following 11 bins: < −3, −3 to − 2.1,

−2 to − 1.1, −1 to − 0.1, 0 to 0.9, 1 to 1.9, 2 to 2.9, 3 to 3.9, 4 to 4.9, 5 to 5.9, and ≥ 6,

all in average annual percentage points between calendar years 2013 and 2016. Two

remarks are in order. First, the SPF bins are not literally contiguous, since, to the right of

each inner bin, there is a 10-basis-point-wide gap (consistent with the use of data rounded

to the first decimal — however, we do not use such rounding of the data in our analysis).

When mapping the MCMC draws from the model-implied continuous densities to the bins,

we assign half of these gaps to bins on either side. For example, we interpret the second

and third bins as b2 = [−3.0,−2.05) and b3 = [−2.05,−1.05), respectively. Second,

while SPF panelists also submit predictions for the current calendar year, we do not utilize

this information. Studies including Clements (2014a), Clements (2018) , and Clements &

Galvão (2017) have shown that the SPF’s probability bins overstate forecast uncertainty

at shorter horizons, in the sense that ex ante bin-based measures exceed measures based

on historical errors in point forecasts from the SPF or time series models. This evidence

suggests a particularly poor predictive value of the SPF’s current-year densities, which is

confirmed by results in the supplementary online appendix. While we find SPF density

predictions for next year and beyond to be quite competitive compared to the model, the

probabilistic forecasts conveyed by the current-year bins strongly fail in comparison to the

model densities trained on historical forecast errors.

Much of the literature fits parametric distributions to the SPF histograms or makes

semi-parametric assumptions to use them. In contrast, as a novelty of our paper, we directly

use the information contained in the SPF histograms, without making any distributional

assumptions. We see this as an advantage of our approach, adhering to the information

contained in the SPF. To the best of our knowledge, we are the first to incorporate histogram

bins directly into entropic tilting, except for mention of the approach in the documentation

of the Bayesian Estimation, Analysis and Regression toolbox (Dieppe et al. (2016)).
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3.2.1 Tilting to histograms

Probabilities can be written as expectations over indicator functions, and thus as moments.

Specifically, for event A, Prob (A) = E (1 (A)), where 1 (·) is the indicator function. Let

g ≡ [p1, . . . , pn, . . . , pN ]
′, where pn(x

n
t ) = [1 (xn

t ∈ b1) , . . . ,1 (x
n
t ∈ bB)]

′, and we can

impose the probabilities in the SPF bin forecasts as moments on the tilted distribution, by

collecting the SPF bin probabilities in the vector ḡt. The dimension of ḡt is the product of

(a) the number of calendar years for which predictions are used, and (b) the number of bins

(less one, since probabilities sum to one for a given calendar-year target). Staying with the

example, in 2013Q1, we use calendar-year forecasts for N = 3 years, with B = 10 bins

each, leading to N ·B = 30 moment conditions.

3.2.2 Tilting to fitted moments

Several previous papers utilized information in survey histograms by fitting a parametric

distribution and tilting a model’s predictive density to the moments of the fitted distribution

(see, e.g., Banbura et al. (2021) and Galvão et al. (2021)). As a robustness check of our

baseline approach that applies tilting directly to the SPF bin probabilities and does not

require additional distributional assumptions, we also consider tilting to moments of a

fitted distribution. We follow Engelberg et al. (2009) and more recent studies such as

Galvão et al. (2021) and Krüger & Pavlova (2022) in fitting a generalized beta distribution

to the cumulative histogram via non-linear least squares at each forecast origin t and

forecast horizon n.

Based on the estimated parameters of the generalized beta distributions’ fit at each

forecast origin, we calculated the mean mn
t , variance vnt , and central skewness skn

t of

the distribution. To apply entropic tilting to these moment conditions, we construct the
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following 3 ·N vectors, where N denotes the number of annual forecasts used:

g = [g1,1, . . . , gN,1, g1,2, . . . , gN,2, g1,3, . . . , gN,3]
′ , (8)

and ḡt =
[
m1

t , . . . ,m
N
t , v

1
t . . . , v

N
t , sk1

t . . . , skN
t

]′
, (9)

with gn,1 = xn
t , gn,2(xn

t ) = (xn
t − mn

t )
2, and gn,3(x

n
t ) = ((xn

t − mn
t )/

√
vnt )

3. In the

interest of brevity, the supplementary online appendix further details the fitting procedures

and tilting implementation and the robustness of our results to the selection of targeted

moments and to fitting the bins to a normal distribution instead of the generalized beta.

4 Results

Incorporating information from the SPF’s annual fixed-event probability bins will affect

the predictive densities from the model to the extent that the SPF bins differ from the

purely model-based probabilities. In our estimates, at some forecast origins, the purely

model-based probabilities are comparable to the SPF bins. To limit the volume of results,

in this section we first focus on some examples in which differences are more notable,

to illustrate how tilting to the SPF bins can have impacts on the model-based predictive

densities. We then examine tilting’s impacts on the term structure of forecast uncertainty

and the historical accuracy of SPF forecasts, at both annual and quarterly horizons for real

GDP growth. The supplementary online appendix reports selected results for inflation in

the GDP price index and the unemployment rate.

4.1 Case studies of the impacts of entropic tilting to SPF bins

To illustrate the impacts of entropic tilting, we rely on cumulative distribution functions

(cdfs). We compute them empirically (using draws from posterior predictive distributions)

for the purely model-based forecasts and for model forecasts entropically tilted to match

15



the SPF probability bins. We report results for GDP growth using both the baseline model

with SV and its homoskedastic (CONST) counterpart; comparing across these models

gives some sense of the interaction between SV (as opposed to homoskedasticity) and

tilting. In the case of the SPF bins, we cumulate the histogram probabilities, treating the

distribution as uniform within each interval and reporting a flat line within the range of

each bin and marking the end of the interval with a blue dot.

[Figure 2 about here.]

Figure 2 provides cdfs for forecasts made in 2007Q3, for the annual growth rate of

GDP in 2008. As indicated in the upper left panel, the entirely model-based predictive

distributions from the SV and CONST specifications display sizable differences. As

compared to the cdf of CONST forecasts, the cdf of SV forecasts puts less mass in its left

tail and more in the right. Both differ noticeably from the SPF bin probabilities, more

sharply in the right tail for the CONST forecasts and more sharply in the left tail for the

SV forecasts. Accordingly, applying entropic tilting to the model-based forecasts changes

their cdfs, as shown in panels (b) and (c). In the CONST case, the tilting pulls up the

model cdf, mostly in the right tail, whereas in the SV case, the tilting mostly pulls up the

model cdf in the left tail. Finally, as shown in the lower right panel, the tilted cdfs from the

CONST and SV models are very similar. Of course, the tilting could yield model densities

that hit the moment probabilities while still distributing probability mass differently within

the interval of the bin. But in this example, while the tilted cdfs are not exactly the same,

they are very similar, implying very similar predictive distributions for SV with entropic

tilting and CONST with entropic tilting.

4.2 Impacts of bin tilting on the term structure of uncertainty

To more directly assess changes in uncertainty across horizons and over time and impacts

of tilting to the SPF’s probability bins, Figure 3 depicts the term structure of uncertainty
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around quarterly GDP growth forecasts, from 1992 to 2021. For constructing the figure,

uncertainty is measured by the width of the 68 percent bands of the model’s predictive

densities estimated in real time. For readability, panel (a) includes a subset of quarterly

horizons. Other panels compare the model-based estimates to those that incorporate

entropic tilting to the SPF’s probability bins.

[Figure 3 about here.]

The model-based estimates in panel (a) of Figure 3 show two general patterns. First,

as expected, forecast uncertainty tends to rise with the forecast horizon. Uncertainty is

noticeably higher at longer horizons (7 or more quarters) than shorter horizons (0 to 3

quarters). From 0 to 3 quarters, uncertainty gradually increases. From 7 to 15 quarters,

uncertainty continues to rise, but typically by less than in the short horizon case. Second,

the uncertainty of out-of-sample forecasts of GDP growth fluctuates significantly over

time. After 1992, it rose some following the 2001 recession and more notably around the

Great Recession and again a few years into the ensuing recovery. Then the outbreak of

COVID-19 produced an unprecedented, but temporary, spike in uncertainty in 2020.

The comparisons of model-based estimates to their tilted counterparts in panels (b)

through (d) of Figure 3 show that the same general patterns apply to estimates of forecast

uncertainty informed by tilting to the SPF’s probability bins. For most of the period,

the tilted estimates that incorporate information from the SPF’s probability bins are very

similar to the entirely model-based estimates that rest on just SPF point forecasts. The

bin information can push uncertainty a little above the model estimates in some periods

and below in others. The largest impact of bin tilting occurs in the early period of the

COVID-19 pandemic, when the information from the bins (which can reflect the subjective

judgment of the average survey respondent) helps mitigate the rise in uncertainty that

occurred as macroeconomic volatility temporarily soared.
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4.3 Entropic tilting’s impacts on historical forecast accuracy

Ultimately, we are interested in whether the forecasts we construct using the CGM model

and the available quarterly and annual point forecasts from the SPF can be improved

by bringing information from the SPF’s annual probability bin forecasts to bear through

entropic tilting. The efficacy of that additional information and tilting will depend on

whether the entirely model-based predictive densities are very different from the bin

forecasts and consistently better if they are different. We have provided examples in which

the model-based densities differ from those implied by the SPF bins, but in other instances,

the differences are sometimes small. In this section we turn to a more formal assessment

of the broader question at hand. For these results, from 1992Q1 onward, out-of-sample

forecasts are generated for all quarterly horizons from h = 0 to 15 for GDP growth, based

on all available data since 1968Q4, by re-estimating the model at each forecast origin and

simulating its predictive density. We examine both the raw forecasts from the model and

those obtained by entropic tilting to the SPF’s annual probability bins.

We first compare — in the most direct way possible — the accuracy of the SPF’s

probability bin forecasts to purely model-based forecasts, taking the histograms as they

are without making the additional assumptions that would be needed to turn them into

complete predictive densities. To do so, we use the annual (calendar-year) forecasts directly

from the SPF, and we obtain corresponding model-based annual forecasts by transforming

them to simple as opposed to logarithmic growth rates, in line with the SPF definition.

This comparison relies on the (discrete) rank probability score (DRPS), which has been

been applied in various studies of survey forecasts, including Boero et al. (2011), Clements

(2018), and Krüger & Pavlova (2022). The DRPS assigns scores based on outcomes being

within bins or not, with DRPSt =
∑K

k=1

(
P k
t −Dk

t

)2, where K denotes the number of

probability bins, P k
t is the cumulative bin forecast probability from bins 1 through k, and

Dk
t is the cumulation of an indicator variable with value 1 for k if the outcome falls in bin

k and 0 otherwise. The lower the score, the better the forecast.
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A table in the supplementary online appendix summarizes DRPS comparisons for

forecasts of annual GDP growth, reporting ratios of scores for the SV and CONST models

relative to scores for the SPF histogram forecasts. In results for 1-year-ahead forecasts

with the samples starting in 1992, the score ratios are very close to 1. Through the lens of

this scoring measure, over the longer samples of available forecasts, annual probability

forecasts from the model for the events covered by the SPF probability bins are no more or

less accurate than the SPF’s probability forecasts themselves. However, later in time, in

the samples starting in 2009, the DRPS ratios exceed 1, often with statistical significance.

Over these later (but also shorter) samples, the bins display more of an advantage over

the purely model-based probability estimates, and more so in the sample ending before

the pandemic than the one including it. In the 2009-2016 sample, it is also the case that

the SPF’s advantages are greater at the multi-year horizons than the 1-year-ahead horizon.

This likely reflects the pattern noted earlier that, over the period, the mean forecasts

implied by the central tendencies of the SPF bins were lower than the SPF’s point forecasts,

which improves accuracy over a period in which growth outcomes were relatively low by

historical standards.

[Figure 4 about here.]

To shed more light on the DRPS accuracy of the SPF bins as compared to the models,

Figure 4 reports time series of GDP growth scores for the SPF and SV and CONST models

(left column) and expanding window averages (right column). The last observation in the

average scores corresponds to the full sample results described above (e.g., in 1-year-ahead

forecasts, the 1992-2020 average scores are essentially the same). These results on scores

over time confirm some time variation in the relative performance of the SPF probability

bins. Until about the Great Recession, the models score better than the SPF bins. But from

the Great Recession until the outbreak of the pandemic, the SPF bins were more accurate

than the model-computed bins for annual forecasts. Overall, these results suggest that,

relative to the models that are already centered on the SPF point forecasts, we will not
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find much additional payoff from the SPF annual bins (in broader forecast accuracy over

long sample periods). But for forecasting GDP growth, the bins may have more useful

information in the period following the Great Recession of 2007-2009 and the ensuing

slow recovery. Mechanically, over this period, at longer annual horizons the mean forecasts

implied by the probability bins tended to lay below the SPF’s point forecasts. With the

economy growing more slowly in the early years of the recovery from the Great Recession

than projected in the point forecasts, the tilting to the bins that imply lower mean growth

helps to improve the accuracy of the forecasts.

[Table 1 about here.]

To further assess the efficacy of tilting to the SPF probability bins, we turn to quarterly

forecasts of GDP growth and formally evaluate the point and density forecasts of the

entropically tilted model against the predictions of the CGM model, using RMSE for

point forecasts and the continuous ranked probability score (CRPS) for density forecasts.

We include results for a full sample of 1992-2022 and a sample shortened to 1992-2016

to assess possible sensitivity to the unusual outcomes from the period of the COVID-19

pandemic. Table 1 reports ratios of scores for the tilted SV forecast relative to the entirely

SV model-based forecast. We also report ratios of scores for forecasts from the CONST

specification and their entropically tilted counterparts, relative to the same SV baseline.

Statistical significance is assessed using the Diebold & Mariano (1995) test with Newey &

West (1987) standard errors. The first two columns of the table provide the raw levels of

scores from the SV baseline.

Before we take up the efficacy of tilting to the bins, it is worth noting that the CGM

baseline model with SV has some advantages over their CONST specification, particularly

in density accuracy. Without tilting, the point forecasts of the CONST specification are very

similar in accuracy to those from the SV model (by construction, at horizons of 0 through

4 quarters, the SV and CONST forecasts are identical to the SPF forecasts). However, the

density forecasts of the CONST specification are consistently less accurate than those of
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the baseline SV model (as measured by CRPS). For example, in the pre-pandemic sample,

the accuracy gains of SV are roughly 2 to 3 percent at shorter horizons and 5 to 7 percent

at longer horizons, which are often statistically significant. These benefits from SV are

consistent with the findings of earlier studies (e.g., Clark (2011) and D’Agostino et al.

(2013)) that have found SV to regularly yield improvements in time series forecasts.

As to the efficacy of incorporating bin forecasts through entropic tilting, starting with

point forecasts, incorporating the information in the SPF probability bins through entropic

tilting has little impact on predictive accuracy. With the baseline SV model, the RMSE

ratios are little different from 1 over the full sample and no lower than 0.98 over the sample

ending before the pandemic. Just as tilting does not have much effect on the SV forecasts,

it also does not have much effect on the CONST forecasts; the RMSE ratios (relative to

baseline SV) are largely the same for CONST and CONST with tilting. The result is not

too surprising, since both SV and CONST model generate forecasts that are centered on

the SPF point forecasts, which are consistent with the bins as shown in Section 2.

A more striking result is that the impacts of tilting on density forecast accuracy are

slim as well. In the SV results, over the full sample of 1992-2022, the RMSE ratios for

tilted versus baseline are no lower than 0.99. In the shorter sample, the CRPS ratio is 0.98

or 0.99 at a number of quarterly horizons, but none of the gains achieved by tilting are

statistically significant. Larger differences in density accuracy occur in the comparison

of the CONST specifications to the baseline SV model. Applying entropic tilting to the

CONST forecasts tends to very slightly improve their accuracy in the pre-pandemic sample,

but not by enough to eliminate the advantage of the SV model. As a corollary, the tilted

outputs from the SV and CONST models remain quite different, suggesting some limits to

the information conveyed by the SPF histograms.

Overall, we read the evidence as indicating that the impacts — on forecast accuracy

— of incorporating the information in the SPF’s probability bins through entropic tilting

are modest. We see the inability of entropic tilting to deliver significant gains either in
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point or density forecasts beyond the model as an indication of the model’s performance in

capturing information in the SPF’s point forecasts and filling the gaps in forecast horizons.

However, as indicated in the discussion above of DRPS results, average performance over

the full sample masks some differences over time. As shown in the supplementary online

appendix, for the subsample of 2009-2016, tilting to the SPF bins improves the accuracy

of quarterly point and density forecasts of GDP growth (relative to the model). Measured

by RMSE and CRPS, the gains to tilting over this short period in the wake of the financial

crisis are on the order of 5 percent. It is also possible that our overall evidence reflects

inherent challenges in using SPF-like probability bins for annual forecasts to convey rich

information on quarterly forecast densities. A robustness check in the supplementary

online appendix examines the accuracy of forecasts from the CONST specification tilted

to match annual forecast probabilities from the SV model. These tilted CONST forecasts

fall well short of the accuracy of the SV forecasts themselves.

4.4 Robustness check: Tilting to fitted moments

As a robustness check of our approach of tilting to histograms, we have also investigated

the impact of entropically tilting the model’s forecasts to the first three moments of fitted

generalized beta distributions (mean, variance, and skewness).

[Table 2 about here.]

Table 2 shows that tilting to fitted moments yields quarterly forecasts that are no more

accurate than those obtained by tilting directly to the bins. This pattern applies with both

the SV and the CONST specifications. The RMSE and CRPS ratios are 1 in most cases,

with a few exceptions of 1 percent gains or losses. It follows that our baseline finding is

robust to the alternative approach of tilting; making use of density forecast information

from the SPF fails to deliver gains in the accuracy of point or density forecasts. (The

supplementary online appendix reports similar results from further robustness checks.)
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Given this robustness and the similar results that obtain with the two tilting approaches, we

prefer tilting to histograms instead of tilting to moments derived from a specific distribution,

as the former method does not require the econometrician to impose additional parametric

assumptions on the SPF bins to obtain the moments.

5 Conclusion

This paper presents a new approach to combining the information in point and density

forecasts from the SPF and assesses the incremental predictive value of the density forecasts

relative to the survey’s point forecasts. We start from model-based density forecasts

centered on the SPF’s point forecasts, but not informed by the survey’s density forecasts.

The model, based on our companion work in Clark et al. (2022), combines the SPF’s

fixed-horizon quarterly and annual fixed-event point forecasts to construct term structures

of expectations and uncertainty. We employ entropic tilting to bring the density forecast

information contained in the SPF’s histograms to bear on the term structure of expectations

and uncertainty. As a novelty, we directly match the SPF’s bin probabilities with their

model-based counterparts and without further parametric assumptions.

Our empirical analysis using SPF forecasts of GDP growth finds limited merits of the

SPF’s density predictions compared to densities estimated from the historical errors in

SPF point forecasts. Over the full sample, the historical forecast accuracy of the SPF’s bin

forecasts for the next calendar year and beyond is on par with the model-based forecast

accuracy. Similarly, in formal evaluations of quarterly forecast accuracy, tilting the model

densities to the SPF’s probability bins yields only modest effects. The model’s point

and density forecasts appear to be good enough that incorporating information from the

SPF’s probability bins does not consistently improve forecast accuracy. But there can be

instances in which tilting to the bin information helps forecast accuracy, as in the case of

GDP growth over the period of 2009-2016.
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Table 1: Forecast accuracy with and without entropic tilting

Relative to SV (in denominator)

SV SV w/ET CONST CONST w/ET

h 92–22 92–16 92–22 92–16 92–22 92–16 92–22 92–16

PANEL A: RMSE

0 2.04 1.70 1.01 1.01∗ 1.00 1.00 1.01∗∗ 1.01∗

1 4.52 1.98 1.00 1.01 1.00 1.00 1.00 1.01
2 4.88 2.11 1.00 1.00 1.00 1.00 1.00 1.00
3 4.96 2.24 1.00 0.99 1.00 1.00 1.00 0.99
4 5.02 2.29 1.00 0.99 1.00 1.00 1.00 0.99
5 5.07 2.34 1.00 0.98 1.00 1.01 1.00 0.99
6 5.06 2.28 1.00 0.99 1.00 1.02∗∗ 1.01 1.01
7 5.09 2.33 1.00 0.99 1.00 1.01 1.00 1.00
8 5.12 2.29 1.00 0.99 1.00 1.01 1.00 1.00
9 5.10 2.24 1.00 0.99 1.00 1.02 1.00 1.01

10 5.12 2.20 1.00 1.00 1.00 1.00 1.00 1.00
11 5.17 2.22 1.00 0.99 1.00 1.01 0.99 0.99
12 5.19 2.21 1.00 0.99 1.00 1.01 0.99 1.00
13 5.20 2.32 1.00 1.00 1.00 1.01 1.00 1.01
14 5.23 4.61 1.00 1.00 1.00 1.00 1.00 1.00
15 5.26 5.33 1.00 1.00 1.01 1.01 1.01 1.00

PANEL B: CRPS

0 1.07 0.98 1.00 1.00 0.99 0.99 1.00 0.99
1 1.51 1.09 1.00 1.00 1.04∗ 1.02 1.04∗ 1.02
2 1.69 1.15 0.99 1.00 1.00 1.02 1.01 1.01
3 1.73 1.19 0.99 0.99 1.01 1.02 1.01 1.01
4 1.77 1.21 0.99 0.99 1.01 1.03∗ 1.01 1.01
5 1.85 1.25 0.99 0.98 1.01 1.04∗ 1.01 1.02
6 1.82 1.23 0.99 0.99 1.03 1.06∗∗∗ 1.02 1.05∗

7 1.86 1.26 1.00 0.99 1.03 1.05∗∗ 1.02 1.04
8 1.86 1.24 0.99 0.99 1.03 1.05∗∗ 1.02 1.04
9 1.83 1.21 1.00 0.99 1.04∗∗ 1.07∗∗∗ 1.03∗∗ 1.05∗

10 1.83 1.19 1.00 0.99 1.03∗ 1.06∗∗∗ 1.03∗ 1.05∗

11 1.85 1.20 0.99 0.98 1.03∗∗ 1.07∗∗∗ 1.02 1.04
12 1.86 1.20 0.99 0.99 1.03∗∗ 1.07∗∗∗ 1.03∗ 1.05∗∗

13 1.87 1.25 1.00 1.00 1.04∗∗ 1.06∗∗ 1.03∗∗ 1.06∗∗

14 1.89 1.64 1.00 1.00 1.04∗∗ 1.05∗∗ 1.04∗∗ 1.05∗∗

15 1.89 1.88 1.00 1.00 1.05∗∗∗ 1.05∗∗∗ 1.04∗∗∗ 1.05∗∗∗

Note: Forecasts for quarterly GDP growth h steps ahead over subsamples extending from 1992Q1
until 2022Q2 and 2016Q4, respectively (using data for realized values as far as available in 2022Q2).
Significance assessed by Diebold-Mariano tests using Newey-West standard errors with h+ 1 lags.
∗∗∗, ∗∗ and ∗ denote significance at the 1%, 5%, and 10% level, respectively.
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Table 2: Relative forecast accuracy when tilting to fitted moments instead of histograms

RMSE CRPS

SV CONST SV CONST

h 92–22 92–16 92–22 92–16 92–22 92–16 92–22 92–16

0 1.01∗ 1.00 1.00 1.00 1.01∗∗∗ 1.01∗∗∗ 1.00 1.00
1 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00 0.99∗∗ 1.00 1.00
11 1.00 1.00 1.00 1.00 1.00 0.99∗∗∗ 1.00 1.00
12 1.00 1.00 1.00 1.00 1.00 0.99∗∗∗ 1.00 1.00
13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: Relative RMSE and CRPS of forecasts for quarterly GDP growth obtained from
tilting to moments imputed from the SPF probability bins vs. tilting to the bins directly
(with the latter in the denominator). The imputed moments are mean, variance, and
skewness of a generalized beta distribution fitted to the SPF probability bins. Forecasts
are for quarterly outcomes and evaluation windows extend from 1992Q1 until 2022Q2
and 2016Q4, respectively (using data for realized values as far as available in 2022Q2).
Significance assessed by Diebold-Mariano tests using Newey-West standard errors with
h+ 1 lags. ∗∗∗, ∗∗ and ∗ denote significance at the 1%, 5%, and 10% level, respectively.
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Figure 1: SPF point forecasts compared to means implied by the probability bins

(a) next-year
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Notes: Each panel compares SPF point forecasts of annual GDP growth (dotted blue lines)
against the range of mean forecasts consistent with the corresponding SPF histograms
(solid red lines).
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Figure 2: Cumulative distribution functions with and without tilting in 2007Q3

(a) SV vs CONST
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Notes: Cumulative distributions per 2007Q3 for next year’s annual GDP growth obtained
from the SV and CONST models (with and without entropic tilting), as well as the SPF
histograms. The SPF histograms report only discrete probabilities (marked by diamonds),
and leave open the precise shape of the underlying density for values in between (as marked
by the boxes that are demarcated with blue lines). Probabilities on the y-axis in percentage
points, and GDP growth rates in percent on the x-axis.
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Figure 3: Term structures of uncertainty

(a) Model-based estimates across horizons
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Notes: Term structures of GDP growth uncertainty, measured by the width of 68% bands
of predictive real-time densities, SV model with and without entropic tilting to the SPF
histograms. In panels (b) through (d), the solid blue lines provide model-based estimates,
and the dashed red lines correspond to entropically tilted estimates.

33



Figure 4: DRPS of models and SPF for annual forecast bins
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Notes: DRPS computed for the SPF histograms, as well as SV and CONST models for
calendar-year predictions of GDP growth (using the bins defined by the SPF). Left-hand
column panels report the time t contribution to the score at each quarter whereas right-hand
column panels report average scores computed over growing samples that start in 1992Q1
or 2009Q2 in the case of next-year or two- and three-year-ahead horizons, respectively.
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