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Abstract

We examine the disruptions to global commodity flows following the bankruptcy of a
commodity trading firm. The physical commodity network is operated by a handful
of large traders that are responsible for the timely delivery of raw materials and
inputs to industrial production. We propose a model that simulates the resilience
and response time of the network following a shock. Our results suggest that a
number of commodity traders carry significant systemic risk. The forced removal of a
trader from the network has considerable implications for the prices and availability
of physical commodities over a period of 6 to 12 months.

Keywords: Systemic Risk; International Trade; Commodity Trading Firms

JEL Classifications: Q40, Q41, Q43

∗We would like to thank Bernd Brommundt and other oil traders at BP for valuable comments and
suggestions.

†University of St.Gallen, School of Finance, Unterer Graben 21, CH-9000 St. Gallen, Switzerland; Tel.:
+41 71 224 7014; E-mail address: zeno.adams@unisg.ch.

‡Corresponding author. Wiesbaden Business School, Hochschule RheinMain, DE-65183 Wiesbaden,
Germany; Tel.: +49 (0) 611 94953145; E-mail address: thorsten.glueck@hs-rm.de.

1



1 Introduction

Commodity trading firms operate the global flow of natural resources. They are responsible

for the timely delivery of primary inputs to industrial production. In this paper, we examine

the question whether the failure of a commodity trading firm has systemic implications for

the real economy. Systemic risk is a key research topic in financial economics that is

typically associated with financial institutions. A large and mature literature has proposed

a number of empirical risk measures and theoretical models which explain the economic

transmission channels of systemic risk for financial firms.1 For commodity trading firms,

the systemic relevance is not obvious as these firms do not hold each other’s assets on

their balance sheet and do not create financial links during their operations. In contrast

to financial institutions, there is thus no systemic risk within the network of commodity

traders. Instead, we argue that the systemic relevance of commodity trading firms is

due to their vital function as providers of raw materials to manufacturing and industrial

production. Natural resource deposits are concentrated within a few countries and need to

be transported by ship to the regions in which they are consumed. Commodity traders are

specialist firms that manage the logistical operations of heavy, bulky, and sometimes toxic

commodities. We show that the forced removal of a commodity trader from this network

of physical flows can lead to a disruption of the supply chain in the buyer regions that is

reflected in lower local supply and higher prices. The dynamics of this negative supply

shock persist for an extended period of time. After four quarters, other traders gradually

replace the missing trade routes left by the failed company.

The theoretical foundation for our paper is provided in Acemoglu et al. (2012) who

study the intersectoral input-output linkages in the real economy. The key insight is the

fact that when one sector acts as a supplier to chains of downstream sectors, idiosyncratic

shocks to the supplier can generate cascading effects that propagate to the entire economy.2

1This literature is well summarized in the overview articles in Engle (2018) and more recently in Jackson

and Pernoud (2021). Two prominent papers that contributed significantly to the literature and which are

worth mentioning here are Tobias and Brunnermeier (2016) and Acharya et al. (2017).
2The traditional argument is that in a large and diversified economy with n producers, aggregate output

volatility scales by
√
n. Acemoglu et al. (2012) show that under cascading effects, this might not be the case

due to first- and higher order interconnections. In particular, volatility might not vanish even if n → ∞.
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We illustrate this mechanism for the crude oil sector in Figure 1: a commodity trader has

a trading relationship with an importing region by supplying the economy of that region

with natural resources such as crude oil. Crude oil is currently the number one primary

energy source in the world (see, e.g., Ritchie et al., 2022) and is refined into different energy

products such as road fuels, liquefied petroleum gas, and heating oil that are used in various

sectors of the economy including transportation, cooking, and heating. Whether the trader

occupies a central position for the buyer economy depends on how the traded goods are

further processed. Inoue and Todo (2022) denote this the ”upstreamness” and compare

the importance of different imported products for Japan. Using a detailed data set of 4

million supply chain relationships, Inoue and Todo (2022) show that commodities such as

petroleum, coal, lumber, and plastics take a central position for the economy whereas for

instance transportation equipment are semi-final products that are assembled domestically.

Commodity supply shocks are therefore estimated to be of larger relevance than similar

shocks for other imported products.

Buyer Economy

Air travel
Goods

Transport
Cooking Heating

Textiles and

Colors

Aircraft Fuels Road Fuels LPG Heating Oil Petrochemicals

Refinery

Commodity

Trader

Figure 1: This figure illustrates how commodity trading firms occupy a central position in

the economy’s production network. Since oil is used as an input in a number of industries,

the failure of the commodity trader generates a supply shock that propagates through a

significant part of the real economy.
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Acemoglu et al. (2012) show that in this type of setting, a disruption of the trade link

that is initially idiosyncratic in nature will have systemic economy-wide effects. Hence,

commodity traders are systemically relevant even for large economies if they provide raw

materials that are of crucial importance for the economy’s central input producers. Because

of this systemic risk, we suggest to draw the attention to the possible consequences of a

default of one or more of these traders. As a first step in this direction, we propose a model

which allows us to simulate the dynamics of global commodity flows and prices within

an adjustment period following a trader’s default. We present a systemic risk ranking of

commodity traders based on the simulated impact of trader default on a global as well as

regional scale. Our model is based on the following economic mechanism: the default of a

commodity trader causes some regions to have short-run flows that are smaller than their

long-run counterparts. Local supply shortages increase commodity prices in the affected

regions which in turn generate an incentive for the remaining traders to subsequently fill

the gap left by the defaulted trader. Over time, equilibrium is restored as supply shortages

are reduced and prices and quantities converge to their long-run values.

In order to keep our model manageable, we introduce three simplifying assumptions:

First, we strictly distinguish between commodity seller and buyer regions with traders tak-

ing the role of the intermediary. There are thus no seller regions which simultaneously act

as buyer regions and vice versa. Second, we assume a long-run equilibrium commodity flow

matrix which determines the quantities sold from each seller to each buyer. In particular,

the default of a commodity trading firm initiates a response from the remaining traders

who will compensate for the local supply disruption without re-optimizing the long-term

flows that are determined by this matrix. Finally, prices are the product of a global price

component, a regional supply shortage margin and an additional multiplier accounting for

the distance between buyer and seller region. There are hence no trader specific price

components which might result from specialized knowledge or scale economies.

This basic framework of price and quantity adjustments offers three main advantages.

First, our model requires the calibration of only two parameters. One parameter captures

the elasticity of prices to changes in supply, the other determines the speed of the adjust-

ment to the long-run commodity flow matrix. For the calibration of both parameters, we
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can resort to existing work on commodity price shocks (see Kilian, 2014). Second, the

adjustment mechanism is sufficiently general to hold for different types of commodities and

in fact for all traded goods. Differences across commodities are reflected in their price elas-

ticities and adjustment parameters. Third, in principle, we can easily incorporate trends in

protectionism, deglobalisation, and other forms of effective reorganization in global trade

patterns (Goldberg and Reed, 2020; Foti et al., 2013). Within our model, such changes

would be reflected by defining an appropriate shift in the long-run flow matrix. For in-

stance, the recent changes in international flows of energy commodities such as oil and gas

as a consequence of the sanctions following the Russian invasion of Ukraine in 2022, can

be modeled by shifting outflows from one seller region to another.3

We substantiate our model with data on 155,435 individual physical transactions op-

erated by a total of 1,637 commodity trading firms. Based on annual data of seaborne

oil trade from 2007 to 2018, we construct the long-run world oil flow matrix between 14

world trading zones, each comprised of a seller and buyer region. For model calibration,

we utilize the flexible oil market VAR developed and applied in Baumeister and Peersman

(2013a). We show that 10 commodity traders manage 43% of the global physical trade

in crude oil and refined energy products, making physical trading a highly concentrated

business. Using our model to simulate the failure of a commodity trading firm, we quantify

the disruptions in trading flows and the resulting price impacts on exposed importing re-

gions. The top 10 most systemically important energy firms include Unipec, Shell, BP, and

Vitol. Our estimates suggest that the failure of one of these firms can lead to local supply

disruptions of up to 30 million barrels per quarter and a short-term doubling in local oil

prices. Given the focus of European policy makers on energy security of households and the

competitiveness of energy intensive industries, these effects are economically large. In this

regard, our findings also contribute to the rich literature on oil supply shocks by providing

a new perspective on the possible sources of these shocks. Finally, we also provide a new

perspective on systemic risk in general, which, thus far, has been dominated by the analysis

of financial institutions.

3Our model could also be used to simulate production shocks in macroeconomic models for aggregate

output (e.g. Acemoglu et al., 2012; Gabaix, 2011). Shifts in the long-run matrix and the relationship

between commodity supply shocks and aggregate output, however, is beyond the scope of this paper.
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The remainder of this paper is organized as follows. Section 2 provides an overview

of the scant literature on the topic and discusses commodity trading firms. We propose a

network model of physical commodity flows in section 3. The data on physical commodity

transaction is detailed in section 4. The empirical results of our simulations are examined

in section 5. Section 6 concludes.

2 Related Literature

The trading of commodity futures and its impact on commodity markets has been exten-

sively analyzed in the academic economics literature over the past decade. The focus of

this theoretical and empirical research centers primarily on the connection between pure

financial investors and commodity prices as a result of the so called financialization of com-

modity markets (see, e.g., Basak and Pavlova, 2016; Adams et al., 2020). However, almost

no attention has been paid to the market players that are eventually responsible for the

physical commodity flows. In one of the few publications on this topic, Baines and Hager

(2021) provide two explanations for this phenomenon. On the one hand, the majority of

commodity trading firms are privately-owned. Detailed data on the physical and financial

trading activities is therefore rare. Examples for such companies in private ownership are

Vitol and Cargill, major players in the energy and agricultural commodity market with

an annual revenue of 225bn and 113.5bn US$ in 2019, respectively (see Baines and Hager,

2021). Data availability is even more problematic in case of the many small and largely

unknown trading companies (see Eggert et al., 2017). On the other hand, the analysis is

complicated by the fact that there is often no clear-cut border between traditional commod-

ity trading, i.e. connecting commodity sellers and buyers, and upstream activities such as

mining or oil drilling. A prominent example is publicly held Glencore, after Vitol one of the

biggest trading companies with an annual revenue of 215.1 bn US$. Glencore is nowadays

heavily involved in mining activities and can be regarded as an industrial conglomerate

rather than a pure trading company (Baines and Hager, 2021; Gilbert, 2021).

In this paper, we examine the most traded and most produced commodity, i.e. crude

oil, with major players being traditional trading companies as well as multinational oil and

gas companies such as Vitol and Shell, respectively. However, there are also a number of
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other commodities for which trading is highly concentrated among a few large companies.

This includes the market for cocoa analyzed by Oomes et al. (2016). Here, the four largest

commodity traders, Olam, Cargill, Barry Callebaut, and Armajaro, have a market share

of roughly 50% .

Our paper is also related to the literature on supply chain disruptions. Two noteworthy

papers are Barrot and Sauvagnat (2016) and Carvalho et al. (2020). Both study the

propagation of outside economic shocks through the supply network and the extent to

which economic activity is eventually reduced. Barrot and Sauvagnat (2016) examine the

impact of natural disasters such as blizzards, earthquakes, floods, and hurricanes in the

United States while Carvalho et al. (2020) explore the great East Japan earthquake in

2011. The source of the shock in our paper is not generated by a natural disaster but is

caused by the default of a large commodity trader. In the empirical part below, we argue

that the economic size of such an event can be comparable. Finally, a recent paper that is

close to our work is Inoue and Todo (2022) who study a global supply chain disruption and

its impacts on a domestic economy. Inoue and Todo (2022) have a very detailed data set of

4 million supply chain relationships for Japan and show the extent to which industries are

affected by the disruption. However, the source of the disruption is unspecified and related

to events such as the Covid-19 pandemic.

Finally, we note that our paper is closely connected to Foti et al. (2013) who examine

the integrity of the global trading network by developing a model for network dynamics

and simulating different types of shocks. To a lesser extend, our paper is connected to the

existing literature on commodity trading networks, e.g. Fair et al. (2017), Wei et al. (2022)

and Liu et al. (2020). These studies mainly focus on pure network metrics and not, as we

do here, on the possible sources and consequences of short shocks or long-run changes to

the trading network.
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3 Model

3.1 Trading Network

We consider an economy with K regions and N traders. The number of units of a commod-

ity sold by a seller at region Rj to a buyer at Region Ri via trader Tn at time t is denoted

by Xijn,t. To keep the trading relationships tractable, we make the following assumption.

Assumption 1 For any region Rj and any time t there exists at least one i, n combination

such that either Xijn,t > 0 or Xjin,t > 0. If there exists at least one i, n combination with

Xijn,t > 0, then Xjin,t = 0 for all i, n. Furthermore, for any region and any time Xjj,t = 0.

We thus abstract from regions without any trading. At each region, there are either sellers

or buyers but not both simultaneously. This assumption simplifies the analysis considerably

and is consistent with our empirical analysis of the data on global trade flows in energy

commodities. For instance, the regions Middle East, North Africa, and West Africa are

mainly exporters of oil and refined products whereas Europe, China, and South Asia are

large importing regions for oil products.4 In general, countries or regions can be primarily

regarded as sellers or buyers of a specific type of commodity. Finally, we also abstract from

any trading within regions.

We consider two types of aggregation. The first type is by traders: with N traders,

total commodity flows from Rj to Ri at time t are

Xij,t =
N∑
n=1

Xijn,t (1)

Note that, on the one hand, if there exists a j with Xij,t > 0 then Xji,t = 0 for all i. On

the other hand, for any i with Xji,t = 0, there exists at least one j with Xij,t > 0. The

second type of aggregation is by region: total commodity inflows to region Ri at time t is

obtained by aggregating over all K regions:

Xi,t =
K∑
j=1

Xij,t (2)

4A graphical illustration of our network of energy commodity flows is shown in Appendix C.

8



Again, for any region Ri, we get either Xi,t > 0 or Xi,t = 0. We call a region Ri with

positive inflows, i.e. Xi,t > 0, a buyer region. Otherwise, the region is called seller region.

In the event of a bankruptcy of a commodity trader, supply shortages are expected to

increase commodity prices resulting in higher import costs. For our analysis, we thus need

to consider both, commodity flows and commodity prices. Let therefore Pij,t be the price

for one unit of the commodity which has to be payed at a buyer region Ri if imported from

a seller region Rj. We define this time t price as

Pij,t = GDijMi,t (3)

where G > 0 is the constant global commodity price, Dij > 1 is a constant ij specific cost

multiplier, and Mi,t ≥ 1 is a region Ri and time t specific margin multiplier. Multiplier

D accounts for the transportation costs of shipping commodities between regions, whereas

M reflects regional supply shortages.5 Note that Pij,t is identical for all traders, i.e. we

abstract from trader specific pricing. We also do not further elaborate how Pij,t is split up

between traders and sellers.

The model set-up can be interpreted as a directed network with nodes and edges repre-

senting the regions and the trading relationships, respectively. There are two perspectives

on this trading network: if the edges point from the seller to the buyer nodes, then the we

obtain the network of physical flows and the strength of the edges are given by Xi,t. If the

edges point from the buyer to the seller nodes, we obtain the network of financial flows. In

this case, the strength of the edges are given by

Cij,t = Pij,tXij,t (4)

We can interpret Cij,t as region Ri’s time t costs of all imports from region Rj. Region Ri’s

total time t import costs are then given by Ci,t =
∑K

j=1Cij,t. This network interpretation

is illustrated in Figure 2.

5In case of an oversupply, we would expect 0 < M < 1. However, we focus on trader bankruptcies

which always result in a supply shortages.
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(A) Physical flows (B) Payments

Figure 2: Illustration of the commodity trading network with two seller- and two buyer

nodes. The edges in panel (A) represent physical flows X. The edges in panel (B) represent

financial payments C = PX.

3.2 Trading Dynamics

We distinguish between a long-run equilibrium and short-run adjustment dynamics. In the

long-run, we assume a fixed trading relationship with fixed aggregated flows. For any buyer

region Ri and seller region Rj, these long-run commodity flows are given by X ij. Again,

to keep the model tractable, we make following simplifying assumption:

Assumption 2 For any two regions Rj and Ri there exists a long-run commodity flow

X ij ≥ 0. The actual flows may never exceed this long-run flow, i.e. Xij,t ≤ X ij for all t.

We thus abstract from short run capacities above X at seller regions, which assures that

there are no changes in the long-run flows.6 This assumption is in line with real world

capacity constraints. For instance, the U.S. Energy Information Administration estimates

that the world surplus production capacity in the period 1973-2021 averaged 4.4 million

barrels a day.7 The majority of this capacity is generated for strategic purposes by OPEC

member countries. The non-strategic surplus production capacity was only about 500,000

6The reason behind this requirement will become more clear in section 3.2.2 where we define the short-

run adjustment process.
7see https://www.eia.gov/international/analysis/special-topics/Global_Surplus_Crude_

Oil_Production_Capacity.
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barrels a day. But even the total capacity of 4.4 million barrels a day are relatively small

and comparable to half of daily U.S. shale oil production in 2021.

The structure of our model can then be outlined as follows: The long-run inflows to

region Ri are X i =
∑K

j=1X ij. These inflows balance demand and supply at Ri. Balanced

supply and demand, in turn, implies a long-run margin multiplier M i = 1 and hence

long-price P ij and import costs Cij:

P ij = GDij (5)

Cij = GDijX ij (6)

In the short-run, we allow quantities, prices and import costs to deviate from their long-run

counterparts. Let therefore tb denote the time of a trader’s bankruptcy such that Xi,t < X i

for at least one region Ri. The adjustment dynamics that occur afterwards are driven by

a fundamental economic mechanism: due to a supply shortage at some buyer region Ri,

margin multiplier Mi,t > 1 implying Pij,t > P ij. This higher buyer region Ri price, in

turn, sets an incentive for the remaining traders to fill the void left by the bankrupt trader.

As the supply shortage is subsequently reduced, the import price approaches its long-run

value. The margin multiplier Mi,t returns to it’s equilibrium state of 1 in which further

adjustments to flows are no longer profitable for traders. The following three properties

summarize this mechanism:

(i) If Xi,t < X i then Pij,t > P ij for all j

(ii) If Pij,t > P ij for at least one region Rj with Xij,t < X ij, then Xi,t+1 > Xi,t

(iii) If Xi,t+1 > Xi,t then Pij,t+1 < Pij,t for all j

We next further specify the long-run and shock time tb trading quantities X ij and Xij,tb

followed by a definition of the post-shock adjustment process for quantities and prices

according to the above outlined mechanism.

3.2.1 Long-run Quantities and Trader Bankruptcy

Lets assume trader Tn1 declares bankruptcy at tb. We model this scenario setting flow

Xijn1,tb = 0 for all i, j, n1 combinations. This, in turn, implies 0 < Xi,tb < X i for at least
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one buyer region Ri. Because X i is fixed on the long-run, the remaining traders Tn2 . . . , TnN

have to subsequently fill the void left by bankrupt trader within post-shock period [tb+1, te]

where te > tb. As a result of the adjustment process outlined in the next section, for each

buyer region Ri with Xi,tb < X i there is thus at least one trader Tn∗ ∈ {Tn2 . . . , TnN
} and

one seller region Rj with Xijn∗,t > Xijn∗,tb for all t > tb + 1.

3.2.2 Post-shock Adjustment Process

The adjustments process is comprised of two interrelated components. The first component

concerns the margin multiplier as a function of supply shortages. For some ϕ > 0, we define

Mi,t =
(
X i/Xi,t

)ϕ
(7)

such that Mi,t = 1 if Xi,t = X i and Mi,t > 1 if Xi,t < X i. According to this definition,

the multiplier can be arbitrarily large. However, another, possibly more realistic definition

would unnecessarily complicate the model and obscure the basic economic mechanisms.

Furthermore, in our application to the commodity trading business, the supply shortage as

measured by si = 1−Xi,t/X i does in most cases not exceed 10%, i.e. X i/Xi,t ≤ 1.11. We

discuss this issue in more detail in section 3.3.

Once converted to logs, the economic interpretation of Equation (7) is straightforward:

let mi,t, xi,t and xi be the log values of Mi,t, Xi,t and X i, respectively. Equation (7) is

equivalent to

mi,t = −ϕ∆xi,t (8)

where ∆xi,t = xi,t − xi. Let pij,t and pij be the log values of Pij,t and P ij, respectively.

Because mi,t = pij,t − pij, Equation (8) states that at some buyer region Ri, the time

t relative deviation from the long-run seller region Rj price pij is −ϕ times the relative

deviation from the respective long-run supply xi,t.
8 Or put differently, a decrease of the

supply by −y percent implies an approximate increase of the price by ϕy percent.

The second component concerns the magnitude by which the supply shortage is reduced

between t and t + 1. If Xi,t < X i then Mi,t > 1 and thus Pij,t > P ij for all j. At a seller

region Rj with buyer region Ri specific open capacities, i.e. Xij,t < X ij, a price above

8Equations (5) and (3) imply Pij,t = Mi,tP ij . Rearranging and taking logs yields mi,t = pij,t − pij .
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the long-run price sets an incentive for the remaining traders to build up transportation

capacities between Rj and Ri. We model this mechanism by defining

Xij,t+1 = Xij,t + κi,t
(
X ij −Xij,t

)
(9)

where 0 < κi,t < 1 is a time and buyer region specific capacity multiplier. Equation (9)

states that between t and t+ 1, the seller region Rj specific part of the supply shortage at

Ri is reduced by κi,t percent. Although one could propose a number of other economically

reasonable definitions for κi,t, we suggest to define for some ψ > 0:

κi,t =

(
Mψ

i,t − 1
)
Xi,t

X i −Xi,t

(10)

Note that κ depends on time-varying inputs and is therefore also time-varying while ψ is not.

For any practical purpose, however, κ will be virtually constant and approximately equal

to ϕψ. We have outlined a more detailed description of the properties of κ in Appendix A.

This definition of κi,t has the virtue of establishing a useful and economically reasonable

relationship between supply shortage, margin, and shortage reduction: inserting (10) in (9)

and summing over all j yields Xi,t+1 = Mψ
i,tXi,t. Summing over all sellers j aggregates to

the inflows on the region level. By taking logs and rearranging, the aggregate inflows to

region i can be expressed in the following intuitive form:

xi,t+1 − xi,t = ψmi,t (11)

The supply shortage is thus reduced between t and t+1 by approximately ψmi,t percent of

time t supply. For instance, taking our baseline estimates for ψ of 0.074 for quarterly data

(see section 3.3) and a marginmi,t of 1.5, about 11% of the output gap is closed each quarter.

A recent real-world example are the oil export sanctions imposed on Russia after the

Ukraine invasion in 2022 which required time-intensive and costly rerouting of previously

established trade links. Instead of shipping oil from the Russian ports at Primorsk or Ust

Luga to Hamburg and Rotterdam within 2 weeks, oil exports are being rerouted to China

which requires a round-trip voyage of 4 months.9 As economically expected, the reduction

9A recent article in Forbes describes how this rerouting also requires different types of vessels

that are suitable for long-distance transports. Instead of the smaller Aframax tankers that carry
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increases with the level of the margin. By the following proposition, the capacity multiplier

also satisfies the required restrictions. The proof is relegated to appendix A.

Proposition 1 Let 0 < ψϕ < 1. If 0 < Xi,t < X i the multiplier κi,t as defined in Equation

(10) satisfies 0 < κi,t < 1.

Finally, we note that the relative deviations from the long-run supply and the long-run price

exhibit an exponential decay such that these deviations approach zero with increasing time

distance to the shock, i.e.

∆xi,t = ∆xi,tb (1− ϕψ)(t−tb) (12)

mi,t = mi,tb (1− ϕψ)(t−tb) (13)

Given 0 < ϕϕ < 1, the model thus yields X ij > Xij,t+1 > Xij,t and P ij < Pij,t+1 < Pij,t.

Furthermore, Xij,t → X ij and Pij,t → P ij as (t− tb) → ∞, respectively.10 The adjustment

process thus depicts the basic economic mechanism outlined in section 3.2.

3.3 Calibration for Energy Commodities

Due to our model’s simplicity, we only have to set the two parameters ϕ and ψ. To ob-

tain realistic values, we resort to the econometric literature on the impact of oil supply

shocks on macroeconomic variables. This analysis is usually conducted using Vector Au-

toregressions (VARs). In this paper, we follow Baumeister and Peersman (2013a) and

600,000 barrels, Very Large Crude Carriers (VLCCs) that can carry 2 million barrels are needed.

The shortage in vessels of this type can further prolong the shipping time which is in line with our

fairly low empirical estimates (see https://www.forbes.com/sites/christopherhelman/2022/04/

11/rerouting-russian-oil-would-require-dozens-of-supertankers---that-dont-exist/?sh=

4c827d935446).
10Regarding Xij,t, we note that Equation (12) implies

∑K
j=1 Xij,t →

∑K
j=1 Xij . However, because

0 < Xij,t < Xij for all j, this convergence is only possible if each element of the sum converges to its

respective long-run value, i.e. Xij,t → Xij . In addition, we rule out Xij,t > Xij even in the short

run. Allowing for short-run flows above the long-run capacity would interfere with a smooth adjustment

process. The margin would be negative for some seller regions while other seller regions would pause the

flow adjustments. In reality, commodity supply is very inelastic in the short run and many producers have

little additional output capacity so that our assumption does not appear very restrictive.
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consider a VAR with time-varying parameters and stochastic volatility for the data vector

yt = (∆xt,∆pt,∆qt)
′, containing log differences of quarterly measures for global oil pro-

duction, U.S. Crude Oil import prices and world industrial production, respectively.11 We

use this model to generate a large sample of oil supply shock induced impulse response

functions (IRFs) at different hypothetical states of the economy. Estimators for ϕ and ψ

are then based on these IRFs. In our model, ϕ denotes the price elasticity of the supply

shock. To estimate ϕ from the data, we use the responses of oil supply and oil prices one

period after a simulated oil supply shock. Regarding ψ, which measure the speed with

which the quantity gap is closed, we rewrite Equations (12) and (13) as

∆xi,t = ∆xi,tb (1− λ)(t−tb) (14)

mi,t = mi,tb (1− λ)(t−tb) (15)

where λ = ϕψ. The decay rate λ is thus obtained by utilizing the responses of oil supply

and oil prices for a reasonably large forecast horizon. For some given values for ϕ and λ,

model parameter ψ is then simply ψ = λ/ϕ. Further details regarding the VAR and the

estimation of ϕ and λ from IRFs can be found in Appendix B.1 and B.2, respectively.

Our estimations indicate that 9.5 is a reasonable value for parameter ϕ, i.e. at some

buyer region Ri, a decrease of the oil supply by 1% triggers an increase of the contemporary

oil price by 9.5%. The estimators for the decay rate λ, in turn, range between 0.5 and 0.85.

Based on these estimators for ϕ and λ, we define the three scenarios shown in Table 1.

In the first scenario, we set the optimistic values ϕ = 7.5 and ψ = 0.113, i.e. a moderate

impact of the supply shortage on prices and a fast adjustment to long-run supply and prices.

This parameterization corresponds to λ = 0.85. In the second scenario we use ϕ = 9.5 and

ψ = 0.074 which implies λ = 0.70. This scenario serves as the base scenario. Finally, in

the third scenario we use the pessimistic values ϕ = 11.5 and ψ = 0.048, i.e. a high impact

of the supply shortage an prices and slow adjustment process. In this scenario, we thus

implicitly set λ = 0.55.

It should be noted that these relatively high values for ϕ correspond to a high sensitivity

of the margin multiplier with respect to the supply shortage si. However, as we outline

11Examples of other VAR-based approaches are, among others, Lütkepohl and Netšunajev (2014), Kilian

(2009), Kilian and Murphy (2014) and Blanchard and Riggi (2013).
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Parameter ϕ: Price Elasticity of Supply

7.5 9.5 11.5

Parameter ψ: Speed of Output Response

0.048 - - Pessimistic Scenario

0.074 - Base Scenario -

0.113 Optimistic Scenario - -

Table 1: A combination of ϕ and ψ determines three possible scenarios for the size and

length of an adjustment process following a commodity supply shock.

in detail in section 4.2, in most cases a trader’s bankruptcy results in a supply shortage

below 10%. Hence, Mi,t ≤ 2.2 in case of the optimistic-, Mi,t ≤ 2.7 in case of the base- and

Mi,t ≤ 3.4 in case of the pessimistic scenario (see Figure C2).12

As an illustration, Figure 3 shows the adjustment processes of oil supply and the oil

prices for all three scenarios. For simplicity, we set Xt = Pt = 1. Between t = 0 and

t = 1, the supply drops from X0 = X = 1 to X1 = 0.99, i.e. by 1%. This supply shock

triggers an increase of oil prices by about 8% in the optimistic scenario, 10% in the base

scenario and 12% in the pessimistic scenario. In the optimistic scenario, oil supply and oil

price correspond to their long-run values at t = 3, i.e. two quarters after the shock. In the

pessimistic scenario, it takes about 6 quarters for a full adjustment. This difference in the

speed of adjustment is also reflected in the difference of the capacity multipliers. In the

base scenario κt ≈ ϕψ = 0.691, i.e. the supply shortage is reduced by approximately 69%

per quarter. In contrast, in the pessimistic and optimistic scenario, we get κt ≈ 0.539 and

κt ≈ 0.848, respectively.

12We note that there are a few cases with a regional supply shortage above 10%. In these cases, the

shortage is capped. For more details, see section 4.2.
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Figure 3: This figure shows the adjustment process of oil supply X and oil price P in case

of the optimistic- (blue line), base- (black line) and pessimistic (red line) scenario.

4 Data

4.1 Empirical trading network

We apply our theoretical commodity network model to data on physical oil flows from

Refinitiv Eikon for Commodities. This database uses a variety of sources on the individual

ship level including vessel position data (AIS), port authority information, and propri-

etary ship to ship data. Each vessel can be tracked around the globe using it’s unique

International Maritime Organization (IMO) number. For instance, on January 19, 2018,

the vessel ”CPO LARISA ARTEMIS” with IMO number 9305532 loaded 235,538 barrels

of crude oil in Slagen, Norway and shipped it to Rotterdam in the Netherlands. Later

that year, we observe the same vessel load 111,424 barrels of fuel oil in Algericas, Spain

to ship it to Conakry in Guinea. We track 155,435 individual flows for the years 2007 -

2018 across time and space to generate a comprehensive map of physical commodity flows

encompassing 5183 ports located in 90 load and discharge zones (see Table 2).

Based on the physical flows of crude oil and refined products, we construct an empirical

trading network that forms the basis of our simulation study conducted in section 5. A

common approach in the trading network research literature is to focus on so called back-

bone networks which are simplified versions of the original networks, retaining the basic
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Variable Name Description Values

Charterer
The commodity trading company that

charters the vessel for transportation
1,637 firms

IMO number Unique identifier for each vessel 5,454 vessels

Cargo Size Number of barrels carried by the ship
mean: 100,501 barrels

sd: 84,529 barrels

Port Load and discharge port
5,183 ports

missing values:53%

Zone
Load and discharge zone for instance

U.S. Gulf, Arabian Gulf, Mediterranean

90 zones

missing values:13%

Commodity Type
Crude Oil, Fuel Oil, Naphtha

Gas Oil, Gasoline, Jet Fuel
-

Freight Rate
Freight rate in % of

World Scale Index

mean: 113%

sd: 53%

Table 2: This table summarizes the variables that are available in the Refinitiv Eikon for

Commodities data set. We observe 155,435 individual shipments of energy commodities

between 2007 and 2018.

network structures. Such a backbone network typically encompasses only the largest and

most important trade flows, i.e. edges (see, e.g., Fair et al., 2017). For our study, we take

a slightly different approach. On the one hand, we have to reduce the complexity of the

empirical trading network such that it fits our theoretical model. On the other hand, due

to the aim of our study, we have to keep as much trade flows for which a particular trader is

responsible for as possible. As a compromise, we define a total of 15 major trading zones: 4

zones representing the Americas, 6 zones representing Europe, the Middle East and Africa

(EMEA) and 5 zones representing Asia-Pacific (APAC). For each trader and each zone, we

then calculate separately the average outflows and average inflows between 2007 - 2018.

Aggregated flows are then obtained by summing over all traders as outlined in section 3.1.

Let therefore Xi1j2 be the aggregated flow from zone zj to zi and Xj1i2 be the aggregated
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flows from zi to zj. For simplicity, we assume that each zone is comprised of one dedicated

seller region and one dedicated buyer region, to which inflows and outflows can be assigned

to, i.e. zi and zj are comprised of buyer regions Ri1 and Rj1 and seller regions Ri2 and Rj2 .

Xi1j2 then represents the flow from Rj2 to Ri1 whereas Xj1i2 is the flow from Ri2 to Rj1 . In

line with our model, we abstract from trades within zones, i.e. Xi1i2 = Xj1j2 = 0.

The result of these steps is shown in Table 3. Note that trading zones with a positive net-

flow are those typically regarded as oil importers, e.g. Europe, China and India, whereas

trading zones with a negative net-flow are oil exporters such as the South America and the

Middle East. Off course, in total, buyer region inflows match seller region outflows such

that net-flows are zero. Further details regarding the sources and destinations of these

flows are displayed in Figure C1.

4.2 Trader contribution

We next turn to the traders’ contribution to the inflows and outflows shown in Table 3.

The Gini coefficient measuring the dispersion of these trading volumes among the 1,637

traders is 0.96 which supports our claim that the commodity trading market is dominated

by a relatively small number of very large traders (see also Figure C3). Even if we only

consider the 100 largest traders, accounting for approximately 93% of all flows, we still

get a Gini coefficient of 0.63. However, in order to make the simulation study in section

5 manageable, we further restrict the analysis to the 10 largest traders shown in Table 4.

These companies account for a combined 43% of all flows.

A detailed overview of all outflows and inflows per company and region is provided in

Table D1 and D2, respectively. In addition, Table D3 shows the traders’ relative contribu-

tions to regional inflows. We note that in only in 10 out of 150 cases, a trader’s relative

contribution exceeds 10%. If we further restrict the focus to the most important buyer

zones, i.e. USA, South Asia, South America, India, Europe an China, then there are only

3 cases with contributions above 10%. One reason for these very large contributions is that

some traders specialize on catering to a particular region of the world. For instance, Brazil’s

largest oil trading firm, the state-owned Petróleo Brasileiro S.A. or ”PETROBRAS” man-

ages predominantly oil flows to Brazil. A default of PETROBRAS is therefore estimated
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Trading zone Buyer region flow Seller region flow Net-flow

A
m
er
ic
as

Canada 8.41 -2.29 6.12

Mexico 4.47 -20.85 -16.38

South America 17.95 -32.93 -14.98

USA 91.81 -56.04 35.77

E
M
E
A

East Africa 10.37 -1.13 9.25

North Africa 3.81 -29.74 -25.93

West Africa 12.97 -155.1 -142.13

Europe 202.85 -56.23 146.61

Russia 0.17 -82.9 -82.73

Middle East 14.15 -106.53 -92.37

A
P
A
C

China 71.95 -4.64 67.31

India 51.93 -36.13 15.8

Japan 17.75 -2.97 14.78

Oceania 17.93 -11.24 6.69

South Asia 101.35 -29.15 72.2

Σ 627.87 -627.87 0.00

Table 3: Empirical Network of physical oil flows in million barrels (MMbbl) between zones

within (i) the Americas, (ii) Europe, the Middle East and Africa (EMEA) and (iii) Asia-

Pasific (APAC). All flows are based on annual averages for a sample period ranging from

2007 to 2018.

to cause large flow reductions in Brazil, but to have little quantity effects in other parts

of the world. For instance, a default of PETROBRAS is estimated to reduce oil flows to

Brazil by more than 8 million barrels in the first quarter which corresponds to a reduction

of approximately 45% of the total seaborne inflows in a typical quarter over the sample pe-

riod. Given our estimates for the price elasticity ϕ, this would translate in very large price

jumps (see Figure C2). However, a shock of this size would be likely to trigger regional

land adjustment processes in which oil is transported on road and rail in an emergency
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Buyer region inflow Contribution

Trader Absolute Cusum Relative Cusum

UNIPEC 42.35 42.35 6.75% 6.75%

SHELL 40.72 83.07 6.49% 13.23%

BP 36.33 119.40 5.79% 19.02%

VITOL 35.10 154.50 5.59% 24.61%

CNR 22.86 177.35 3.64% 28.25%

PETROBRAS 20.87 198.23 3.32% 31.57%

CSSSA 19.81 218.04 3.15% 34.73%

REPSOL 19.58 237.62 3.12% 37.85%

CLEARLAKE 16.87 254.48 2.69% 40.53%

ST SHIPPING 16.47 270.95 2.62% 43.15%

Table 4: This Table shows the absolute (in Mmbbl) and relative contribution of the 10

largest traders to aggregated average buyer region inflows. Columns 3 and 5 show the

respective cumulative sums (Cusum).

response. In this paper, we concentrate on economically large but still realistic flow reduc-

tions and introduce a supply reduction cap of 10% of the long-run values. The result of

this procedure in provided in Table D4 with capped inflows indicated by bold numbers.

5 Simulation of Trader Bankruptcy

The bankruptcy of a commodity trader results in the removal of that firm from the network

of long-run commodity flows. We introduce a shock in period tb that leads to a disruption

of all flows operated by the defaulted trader. The impact of this shock on commodity prices

in buyer region i at time t ≥ tb can be measured by

πi,t =
Pi,t

P i

− 1 (16)

where Pi,t =
∑K

j=1 αijPij,t and P i =
∑K

j=1 αijP ij are weighted short- and long-run average

import prices, respectively. One possibility is to use long-run imports as weights, i.e.
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αij = X ij/X i. However, weights are not required if we assume that Dij = D for all i, j

which implies Pi,t = GDMi,t and P i = GD.13 As a result, Equation (16) simplifies to

πi,t =Mi,t − 1 (17)

We can thus measure the vulnerability of a buyer region regarding a trader’s bankruptcy

via the respective margin multiplier. In the following section 5.1, we provide a ranking of

the top 10 traders with respect to their system risk based on the absolute import reduction

and price response π as defined in Equation (17). In section 5.2, we further analyse the

dynamics π for the three scenarios provided in Table 1.

5.1 Trader Ranking

The price and quantity dynamics that unfold after the shock in the base scenario are shown

in Figure 4. Panel A shows the reductions in flows over a period of 5 quarters. We consider

again PETROBRAS, the large Brazilian oil trader that focuses primarily on supplying

South America with energy. A default is simulated to reduce flows by a bit less than 2

million barrels, which corresponds to the number shown in Panel A and a relative supply

gap of 10%. The corresponding price response shown in Panel B is economically large and

estimated to be 172% in the first quarter and 35% in the second quarter. As competing

oil traders reorganize to fill the flow gap of PETROBRAS, physical trade flows and prices

return to pre-shock levels after the second quarter. To put the size of a 2 million barrel

shock into economic perspective, we refer to simulation results from Inoue and Todo (2022)

who quantify the size of import disruption on the real economy in Japan. The majority

of empirical evidence on supply chain disruptions within a country is collected for Japan

because the data on the industry structure of Japanese firms offers a particularly detailed

13Our model incorporates the more flexible buyer i and seller j specific distance measures Dij . In this

first approach, however, we advocate a general D as an approximation. An economic justification would

be the observation that commodity demand is quite price inelastic. For instance, when export sanctions

imposed on Russia led to an energy shortage in Europe, the primary objective was to procure energy at

almost all costs, irrespective of the distance markup that this may entail. In addition, the notional value of

the total amount of commodities carried by ship dwarf any differences in transportation costs that might

arise due to geographical distance.
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set of industry linkages that allow for such an analysis. Inoue and Todo (2022) estimate

that a $1 import disruption from Middle Eastern countries to Japan results in a $3.12

reduction in economic production. If we assume that imports from the Middle East consist

mainly of oil and that oil prices are $80 per barrel, a 2 million import reduction is worth

$160m which would reduce economic production by $500m in the first quarter of the shock

or 0.31% of Brazilian GDP. The joint failure of more than one large commodity trader

could amplify this effect.

From Panel B we conclude that the forced removal of a commodity trader from the

long run network of firms will have considerable local price effects that can extend over two

quarters if the region receives the majority of imports through the defaulted trader. More

generally, simulated commodity prices are more elastic than quantities, an observation that

is confirmed by other studies, e.g. Baumeister and Peersman (2013a).

The price and quantity responses following the default of a commodity trading firm

allows us to rank traders in decreasing order of systemic risk. Table 5 is inspired by

the systemic risk ranking of financial institutions that is reported and updated by the

V-Lab of New York University.14 Our ranking reflects the impact that the default of a

commodity trader exercises on both supply shortages as well as prices. The position in the

overall ranking is determined by the average over both indicators. For instance, the supply

shortage resulting from a default of Shell is estimated as the average weighted import

reduction across all regions that receive imports from Shell over a period of 5 quarters. In

particular, the default of Shell is estimated to reduce imports in the target regions United

States, South Asia, and Europe on average by 9.28 million barrels per quarter. While

Shell is ranked 1st in terms of supply impact, it is also estimated to have the largest price

impact with prices in the three target regions estimated to be 32.6% above their long-run

values that occur in the absence of any shock. While the top 10 systemically important

US financial firms include names like Citigroup, JP Morgan, and Bank of America, our list

features Shell, BP, and Vitol as systemically important commodity firms.

14See https://vlab.stern.nyu.edu/srisk
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Figure 4: This figure shows simulated quantity and price effects following the default of a

large commodity trading firm in the base scenario. Panel A highlights the regional focus

of oil trading firms and the reductions in oil flows following the failure of a trader. Panel

B shows the price increases that are associated with the supply disruption. Price elasticity

as calibrated from data is larger than demand elasticity.
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Import Reduction Price Impact π Ranking

(in MMbbl) (in %)

9.28 32.60 SHELL

7.89 22.65 BP

7.73 25.60 VITOL

4.71 31.99 REPSOL

5.11 15.64 CSSSA

4.44 12.76 CNR

4.14 14.25 UNIPEC

3.91 10.89 CLEARLAKE

3.77 10.59 ST SHIPPING

3.74 8.86 PETROBRAS

Table 5: This table ranks the commodity trading firms in our sample according to systemic

risk in the base scenario. The ranking is determined by accounting for the size in import

reductions (in million barrels per quarter) and for price effects (in percent relative to

equilibrium). The price averages are weighted based on flow size, i.e. buyer regions that

receive higher flows also have a higher price weight.

5.2 Scenario Analysis

The import and price effects presented so far depend on price and quantity adjustment

parameters in the base scenario, i.e. parameter ϕ which governs the price elasticity of a

supply disruption to be 9.5 on average and λ which reflects the speed with which traders

are able to respond to the resulting supply gap to be 0.7. However, the ability of the

remaining traders to respond to the supply shortages left by a defaulted trader depends on

the risk appetite and the funds available to take over parts of the business of the defaulted

competitor. For instance, the fleet of vessels that are no longer managed by the defaulted

trader requires a team of ship operators and other supporting staff in order to commence

trading in the pre-shock form. Figure 5 shows three scenarios that illustrate this point.
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In the optimistic scenario, the price response from the trader default, measured by the

parameter ϕ, is lower than in our base scenario while the adjustment parameter λ is higher

(ϕ = 7.5 and λ = 0.55). In this optimistic scenario, the price impact is muted and supply

shortages are quickly adjusted by the remaining traders. However, the circumstances in

which a commodity trader goes bankrupt are likely to be financial stressful events for other

remaining traders. After all, commodity traders often trade the same commodities. It is

therefore quite likely that the circumstances that led to the default of a trader in the first

place, reduce the funds available as well as the risk appetite of the remaining traders, which

complicates the takeover of the defaulted team and can prolong the adjustment process.

This case is illustrated in the pessimistic scenario in which the price response from the

same shock is larger (ϕ = 11.5) while the ability of traders to respond to the supply gap is

subdued (λ = 0.55). Figure 5 therefore highlights the uncertainty that is associated with

the dynamics of the shocks depending on the state and financial health of the remaining

traders.

1 2 3 4 5 6

-2
0

0
20

40
60

80

Pessimistic Scenario

Quarters

Price Impact [$bbl]
Imports [Million bbl]

1 2 3 4 5 6

-2
0

0
20

40
60

80

Base Scenario

Quarters

Price Impact [$bbl]
Imports [Million bbl]

1 2 3 4 5 6

-2
0

0
20

40
60

80

Optimistic Scenario

Quarters

Price Impact [$bbl]
Imports [Million bbl]

Figure 5: This figure shows post-shock import flow and price dynamics for three different

scenarios. In the pessimistic scenario the supply shortage has a large price effect (ϕ =

11.5) and the speed with which commodity traders are able to close the supply gap is low

(λ = 0.55). These parameters are subsequently relaxed for the following scenarios with the

optimistic scenario assuming small price jumps (ϕ = 7.5) and flexible remaining traders

who can quickly respond to the default (λ = 0.85). The solid and dashed lines are generated

from weighted averages across all regions. The upper and lower bands correspond to the

75% and 25% quantile of the price and flow distribution.
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6 Conclusion

Commodity trading firms are responsible for the timely delivery of energy commodities,

building materials, and other natural resources that are used in the production of economic

activity. A survey conducted in 2022 reports that more than half of European firms had

encountered disruptions to deliveries due to shipping delays (Javorcik et al., 2022). In this

paper, we argued that the failure of a commodity trader can cause supply disruptions that

propagate to other sectors of the economy. In other words, commodity trading firms are

systemically important. So far, commodity trading firms have shown remarkable resilience

and bankruptcy is not observed in the data. We turn to simulations to address our research

question. We propose a trading network model of physical commodity flows that simulates

the response of the remaining traders after the bankruptcy event. Based on empirically

calibrated adjustment coefficients, we estimate that the failure of one of our top ten system-

ically important traders has significant effects on local prices and supply. According to our

estimations, regions that share trade links with the affected energy trader can experience

local supply disruptions with prices doubling in the following quarter and supply cuts of up

to 30 million barrels. The time dynamics following the trader bankruptcy depend on the

speed of adjustment with which the remaining network of traders can accommodate the

trade gap. In our pessimistic scenario that is based on the assumption that the remaining

network lacks the capacity to take over major parts of the failed company, prices and sup-

ply take more than one year to return to the pre-shock equilibrium. Our results indicate

that commodity trading firms might be systemically relevant but that the economic mech-

anism is different for commodity traders than for financial institutions. Private ownership

allows commodity trading firms to operate in environments that include opaque ownership

structures, unstable governments, and war zones. But it also generated an environment

in which commodity traders have become systemically important without the notice of

investors and regulators. Given that energy security is one of the top priorities of policy

makers in Europe, our paper highlights an important mechanism that has so far been un-

derappreciated: the systemic risk of commodity traders. Geopolitical and trade tensions

force firms to reevaluate current trade relationships. A reshuffling of global supply chains

can also help to mitigate the effects from disruptions due to commodity trader defaults.
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Affected regions can adapt by increasing physical storage of inputs and by diversifying their

base of suppliers and commodity trading firms.

28



References

Acemoglu, D., V. Carvalho, A. Ozdaglar, and A. Tahbaz-Salehi. (2012). The network

origins of aggregate fluctuations. Econometrica.

Acharya, V. V., L. H. Pedersen, T. Philippon, and M. Richardson (2017). Measuring

systemic risk. The Review of Financial Studies .

Adams, Z., S. Collot, and M. Kartsakli (2020). Have commodities become a financial asset?

evidence from ten years of financialization. Energy Economics .

Baines, J. and S. Hager (2021). Commodity traders in a storm: financialization, corporate

power and ecological crisis. Review of International Political Economy .

Barrot, J.-N. and J. Sauvagnat (2016). Input Specificity and the Propagation of Idiosyn-

cratic Shocks in Production Networks. The Quarterly Journal of Economics .

Basak, S. and A. Pavlova (2016). A model of financialization of commodities. Journal of

Finance.

Baumeister, C. and G. Peersman (2012). Appendix to: The role of time-varying price

elasticities in accounting for volatility changes in the crude oil market. Journal of Applied

Econometrics .

Baumeister, C. and G. Peersman (2013a). The role of time-varying price elasticities in ac-

counting for volatility changes in the crude oil market. Journal of Applied Econometrics .

Baumeister, C. and G. Peersman (2013b). Time-varying effects of oil supply shocks on the

us economy. American Economic Journal: Macroeconomics .

Blanchard, O. and M. Riggi (2013). Why are the 2000s so different from the 1970s? a

structural interpretation of changes in the macroeconomic effects of oil prices. Journal

of the European Economic Association.

Carvalho, V. M., M. Nirei, Y. U. Saito, and A. Tahbaz-Salehi (2020). Supply Chain

Disruptions: Evidence from the Great East Japan Earthquake. The Quarterly Journal

of Economics 136.

29



Eggert, N., G. Ferro-Luzzi, and D. Ouyang (2017). Commodity trading monitoring report.

Swiss Research Institute on Commodities .

Engle, R. (2018). Systemic risk 10 years later. Annual Review of Financial Economics .

Fair, K., C. Bauch, and A. Madhur (2017). Dynamics of the global wheat trade network

and resilience to shocks. Nature Scientific Reports .

Foti, N., S. Pauls, and D. Rockmore (2013). Stability of the world trade web overtime –

an extinction analysis. Journal of Economic Dynamic and Control .

Gabaix, X. (2011). The granular origins of aggregate fluctuations. Econometrica.

Gilbert, C. (2021). Monopolistic supply management in world metals markets: How large

was mount isa? Journal of Commodity Markets .

Goldberg, P. K. and T. Reed (2020). Income distribution, international integration, and

sustained poverty reduction. Technical report, National Bureau of Economic Research.

Inoue, H. and Y. Todo (2022). Propagation of overseas economic shocks through global

supply chains: Firm-level evidence. Available at SSRN 4183736 .

Jackson, M. and A. Pernoud (2021). Systemic risk in financial networks: A survey. Annual

Review of Economics .

Javorcik, B., L. Kitzmüller, and H. Schweiger (2022). Business unusual: Global supply

chains in turbulence. Technical report, European Bank for Reconstruction and Develop-

ment Transition Report 2022-23.

Kilian, L. (2009). Not all oil price shocks are alike: Disentangling demand and supply

shocks in the crude oil market. American Economic Review .

Kilian, L. (2014). Oil price shocks: Causes and consequences. Annual Review of Resource

Economics .

Kilian, L. and D. Murphy (2014). The role of inventories and speculative trading in the

global market for crude oil. Journal of Applied Econometrics .

30



Liu, L., Z. Cao, X. Liu, L. Shid, S. Cheng, and G. Liu (2020). Oil security revisited: An

assessment based on complex network analysis. Energy .
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Appendix A The capacity multiplier

In this section, we first provide a proof of Proposition 1, followed by a brief discussion of

the behaviour of κt with respect to the supply shortage. In particular, we show that for

supply shortages below or equal to 10%, κt can be approximated by ϕψ.

A.1 Proof of Proposition 1

Define α = Mψ
i,t − 1. Because 0 < Xi,t < X i and ψ > 0 it follows that α > 0. Recalling

that Xi,t+1 =Mψ
i,tXi,t, we thus get

Xi,t+1 −Xi,t = αXi,t > 0 (A.1)

Because 0 < ψϕ < 1, it follows by Equation (12) that ∆xi,t+1 = xi,t+1 − xi < 0 and thus

Xi,t+1 < X i. Subtracting Xi,t from both sides of the last inequality and substituting αXi,t

for Xi,t+1 −Xi,t yields

0 < αXi,t < X i −Xi,t. (A.2)

Because αXi,t/(X i−Xi,t) = κi,t, dividing (A.2) by X i−Xi,t yields 0 < κi,t < 1 as required.

A.2 Capacity multiplier and supply shortage

It is instructive to first determine the limit that κi,t approaches as Xi,t approaches X i.

Inserting the definition of the margin multiplier in Equation (7) into Equation (10) and

rearranging yields

κi,t =
X
ϕψ

i X
(1−ϕψ)
i,t −Xi,t

X i −Xi,t

(A.3)

Because numerator and denominator approach zero as Xi,t approaches X i, we get by

l’Hospital’s rule

lim
Xi,t→Xi

κi,t = ϕψ

Having determined the limit, we next examine the deviation of κi,t from this limit. Note

that κi,t only depends on the ratio Xi,t/X i. It thus suffices to show κi,t for different values

of the supply shortage which is given by si = 1−Xi,t/X i. As outlined in section 3.3, supply

shortages are limited to 10% or less. The left panel of Figure A1 plots κ against supply
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shortages within this range. The dotted lines are the respective limits, i.e. ϕψ. As can be

seen, in all three scenarios κ is well approximated by ϕψ. The right panel of Figure A1

shows the relative deviation of κ from ϕψ. In all three scenarios, this relative deviation is

below 2.5%.

(A) Absolute values (B) Relative deviation

Figure A1: Panel (A) shows the capacity multiplier κ as a function of the supply shortage

s = 1−Xt/X. The blue line shows κ in case of ϕ = 7.5 and ψ = 0.113 (optimistic scenario).

The black line shows κ in case of ϕ = 9.5 and ψ = 0.074 (base scenario). The red line

shows κ in case of ϕ = 11.5 and ψ = 0.048 (pessimistic scenario). The dotted lines are

respective limits of κ given by ϕψ. Panel (B) shows the corresponding relative deviations

calculated as ϕψ/κ− 1.
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Appendix B Model-Parameter Estimation

B.1 VAR-Model and IRFs

Baumeister and Peersman (2013a) define a VAR(4)-model with time-varying parameters

and stochastic volatility for the data vector yt = (∆xt,∆pt,∆qt)
′, containing log differences

of quarterly measures for global oil production, U.S. Crude Oil import prices and world

industrial production, respectively. The structural form of this VAR is

B−1
0,t yt = c∗t +

4∑
i=1

B∗
i,tyt−i + εt (B.1)

where εt ∼ N(0, I3). Matrix B−1
0,t represents the time t instantaneous relationships between

the elements of yt. The corresponding reduced form model is

yt = ct +
4∑
i=1

Bi,tyt−i + ut (B.2)

where ct = B0,tc
∗
t , Bi,t = B0,tB

∗
i,t and ut = B0,tεt. By assumption, ut ∼ N

(
0, A−1

t Ht(A
−1
t )′

)
,

where At is a 3× 3 a lower triangular matrix with ones on the main diagonal and non-zero

off-diagonal elements and Ht is a 3 × 3 diagonal matrix. Regarding the time dependency,

let at = (a21,t, a31,t, a32,t)
′ be the vector containing the elements below the main diagonal

of At, ht = (h1,t, h2,t, h3,t)
′ be the vector containing the main diagonal elements of Ht and

θt = Vec(ct, B1,t, . . . , B4,t).
15 The vectors θt and at are modeled as independent driftless

random walks whereas log(ht) is modeled as independent geometric random walk.

Due to its flexible structure, fitting this model to the data is somewhat more involved.

Baumeister and Peersman (2013a,b) suggest to use Bayesian methods and a Markov Chain

Monte Carlo Algorithm. A discussion of these methods as well as the approach to re-

construct B0,t is beyond the scope of this paper. For an excellent overview, we refer to

Baumeister and Peersman (2012). Once model parameters are estimated, however, gener-

ating IRFs for the forecasting period t + 1 to t + h based on the relevant observations up

to time t, i.e. yt−3, ..., yt, is straightforward and involves the following four steps:

15The Vec operator stacks the columns of a m× n matrix into an mn× 1 vector. Here, θt is 39× 1.
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Step 1: Generate R parameter sets Ψr,t = (θr,t+1, ..., θr,t+h, ar,t+1, ..., ar,t+h, hr,t+1, ..., hr,t+h),

each representing a different state of the economy from t + 1 to t + h. These parameter

sets are obtained by random draws from the respective estimated parameter distributions.

Step 2: For each Ψr,t, generate N different benchmark and shock forecast series based on

yt−3, ..., yt via Equation (B.2), i.e.

ŷ
(B)
r,n,t+1, ..., ŷ

(B)
r,n,t+h (n’th benchmark forecast series for the r’th state)

ŷ
(S)
r,n,t+1, ..., ŷ

(S)
r,n,t+h (n’th shock forecast series for the r’th state)

A difference between benchmark and shock forecasts is achieved via the reduced form

innovations in Equation (B.2). In case of the benchmark series, innovations are u
(B)
t+1, ..., u

(B)
t+h

whereas in case of the shock series innovations are u
(S)
t+1, ..., u

(S)
t+h. These innovations are

generated as follows: At time t + 1, randomly draw ϵ1, ϵ2 and ϵ3 from a standard normal

distribution, calculate

u
(B)
t+1 = B0,t+1(ϵ1, ϵ2, ϵ3)

′ (B.3)

u
(S)
t+1 = B0,t+1(ϵ1 − 1, ϵ2, ϵ3)

′ (B.4)

and check following sign restrictions:

(i) u
(S)
1,t+1 − u

(B)
1,t+1 < 0 (time t+ 1 oil supply growth is lower in the shock series)

(ii) u
(S)
2,t+1 − u

(B)
2,t+1 > 0 (time t+ 1 oil price growth is higher in the shock series)

(iii) u
(S)
3,t+1−u

(B)
3,t+1 < 0 (time t+1 world production growth is lower in the shock series)

If these sign restrictions are not fulfilled, generate new u
(B)
1,t+1 and u

(C)
1,t+1 and again check

(i) − (iii). For all s > 1, simulate reduced form benchmark innovations u
(B)
t+s in a similar

way and set u
(B)
t+s = u

(S)
t+s.

Step 3: For each state r, calculate the approximate conditional expectation of the time

t+ 1, ..., t+ h benchmark and shock forecasts by averaging over all N values:

y
(B)
r,t+s = N−1

N∑
n=1

y
(B)
r,n,t+s (B.5)

y
(S)
r,t+s = N−1

N∑
n=1

y
(S)
r,n,t+s (B.6)
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Step 4: Finally, for each state r calculate IRFr,t = (IRr,t+1, ..., IRr,t+h) where

IRr,t+s = y
(S)
r,t+s − y

(B)
r,t+s (B.7)

We follow Baumeister and Peersman (2013a) and set R = 500, N = 100 and h = 26, i.e.

at each t, we simulate 500 possible states of the economy, each with a oil supply shock in

t+ 1 and impulse responses up to 25 quarters after the shock.16 As an illustration, Figure

B1 plots these 500 IRFs obtained for 2010-Q1. Note that tb = t+ 1 such that t− tb = 0 is

the time of the shock and t− tb > 0 is the post-shock period.

Figure B1: Simulated IRFs for 2010-Q1 (blue lines). tb is the time of the supply shock, i.e.

2010-Q2. The red line is the average over all 500 IRFs.

16To estimate IRFs, we use the data set and the Matlab code provided by Baumeister and Peersman

(2013a). Both is available at http://qed.econ.queensu.ca/jae/datasets/baumeister001/. Please

note that we slightly adjusted the Matlab code to exclude any elasticity restrictions. For more details see

Baumeister and Peersman (2013b). We also only consider the period 1972-Q1 to 2010-Q2. The original

data set ranges from 1947-Q1 to 2010-Q2.
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B.2 IRFs based model-parameters ϕ and ψ

We begin with parameter ϕ. Let IR1,r,t+1 and IR2,r,t+1 denote the first and second element

of IRr,t+1, respectively. Recall that IR1,r models the post-shock dynamics of oil supply

while IR2,r denotes the price response. We obtain for the shock time t+ 1:17

IR1,r,t+1 = ∆x
(S)
r,t+1 −∆x

(B)
r,t+1

= (x
(S)
r,t+1 − x

(S)
r,t )− (x

(B)
r,t+1 − x

(B)
r,t )

= x
(S)
r,t+1 − x

(B)
r,t+1 (B.8)

In a similar way, we obtain IR2,r,t+1 = p
(S)
r,t+1−p

(B)
r,t+1. If we interpret benchmark values x

(B)
r,t+1

and p
(B)
r,t+1 as proxies for the long-run values in our model, i.e. xr ≈ x

(B)
r,t+1 and pr ≈ p

(B)
r,t+1,

we get IR1,r,t+1 ≈ ∆xtb and IR2,r,t+1 ≈ mtb . In this case, we can approximate our model

equation (8) by the econometric model

IR2,r,t+1 = −ϕIR1,r,t+1 + et (B.9)

The OLS estimator of model parameter ϕ is provided in Table B1. The estimator in the

first row is based on the full set of simulated impulse responses at t + 1, i.e. using all

R = 500 states for all T = 80 observations yielding a total of 40.000 data points. The

second row is based on the averaged impulse response IRt = R−1
∑R

r=1 IRr,t and thus only

80 data points.

Data ϕ̂ t-Statistic

Non-averaged 9.3596 375.51

Averaged 9.9568 39.341

Table B1: OLS estimator of parameter ϕ in Equation B.9.

The estimated ϕ indicates that a 1% negative oil supply shock increase oil prices by ap-

proximately 10%. This relationship is illustrated in Figure B2 with non-averaged t + 1

impulse responses in the left plot and averaged impulse responses in the right plot.

17Recall that the supply shock is in t+ 1. At pre-shock time t, we thus have x
(B)
r,t = x

(S)
r,t = xt.
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Figure B2: Impulse responses (blue dots) and estimated linear relationship (red line). The

x-axis shows a change in oil production while the y-axis shows the price response which

translates into a higher margin mt. The left graph shows a total of 40,000 simulated data

points while the right graph shows values that are averaged over the R = 500 simulations.

We next turn to the model parameter ψ which measure the extent to which a given supply

shortage is reduced in the next period. Our model implies ∆xi,t = ∆xi,tb (1− λ)(t−tb) and

mi,t = mi,tb (1− λ)(t−tb) where λ = ϕψ. With estimators ϕ̂ and λ̂ we can thus obtain an

estimator for ψ via

ψ̂ =
λ̂

ϕ̂
(B.10)

All that is left is thus to get λ̂. For this purpose, we define following econometric model:

IRi,r,t+s = c0(1− λ)s + et (B.11)

where s = 0, ..., 25 and either i = 1 or i = 2, i.e. IRs of oil supply or oil prices. By using

Equation (B.11), we thus approximate the adjustment process implied by our model by the

adjustment process of the shock forecasts.
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As shown in Figure B1, IRs may overshoot which is ruled out by our model. For this

reason, we also estimate λ for capped IRs, i.e.

ĨR1,r,t+s = min (IR1,r,t+s, 0) (B.12)

ĨR2,r,t+s = max (IR1,r,t+s, 0) (B.13)

The estimators of λ are shown in the second row of Table B1. Due to overshooting, non-

capped IRs imply a faster adjustment than non-capped IRs. Nevertheless, all parameters

imply an reasonable full adjustment within 3 to 6 quarters which is in line with the literature

(see, e.g., Baumeister and Peersman 2013a). An illustration of the adjustment process is

shown in Figure B2. Both plots are based on capped IRs.

Dependent Variable

Oil Supply Oil Price

IR1,r,t+s ĨR1,r,t+s IR2,r,t+s ĨR2,r,t+s

Parameter

ĉ -0.554 -0.519 5.689 5.644

(-49.928) (-64.007) (51.254) (70.402)

λ̂ 0.854 0.505 0.741 0.570

(44.035) (47.773) (42.049) (53.596)

Table B2: NLS estimators of parameter λ in Equation B.11. t-statistics in parentheses.
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Figure B3: Impulse responses (blue dots) and estimated non-linear relationship (red dots.)

The x-axis shows the time distance to the shock in tb. The y-axis shows impulse responses

of oil supply (right plot) and prices (left plot). The estimated relationship is based on

Equation (B.11) with parameters provided in column 3 and column 5 of Table B2, i.e.

estimators based on capped IRs as represented by the dark blue dots.
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Appendix C Additional Figures and Tables

Figure C1: Empirical Network of Physical Oil Flows (2007 - 2018). This figure shows

average annual flows of crude oil and refined products in million barrels. the color coding

visualizes the direction of the flows. For instance, the United states is importing significant

amounts of crude oil products from West Africa, the Middle East, Europe, and Mexico,

but exports to Europe and South Asia.
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Figure C2: The x-axis of this Figure shows the ratio X/Xt while the y-axis shows the

corresponding margin multiplierMt =
(
X/Xt

)ϕ
. The blue line showsMt in case of ϕ = 7.5

(optimistic scenario). The black line shows Mt in case of ϕ = 9.5 (base scenario). The

red line shows Mt in case of ϕ = 11.5 (pessimistic scenario). Left of the vertical line, the

supply shortage s = 1−Xt/X < 0.1, i.e. below 10%.

Figure C3: This figure shows the distribution of the empirical network among volumes in

MMbbl across all 1,637 traders.
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UNIPEC SHELL BP VITOL CNR PETROBRAS CSSSA REPSOL CLEARLAKE ST SHIPPING

Americas

Canada 0.000 -0.089 -0.246 -0.027 -0.253 0.000 0.000 -0.022 0.000 -0.020

South America -1.858 -3.686 -0.904 -0.816 -1.118 -10.638 -0.052 -1.798 -0.435 -0.194

USA -1.846 -4.191 -3.333 -4.372 -4.806 -0.461 -2.285 -1.220 -1.813 -2.581

EMEA

East Africa -0.013 -0.032 -0.029 -0.059 -0.044 -0.011 -0.032 0.000 0.000 -0.020

North Africa -1.783 -1.453 -2.235 -0.513 -0.304 -0.793 -1.225 -1.776 -0.197 -0.579

West Africa -21.526 -9.161 -11.127 -6.261 -3.423 -5.457 -8.069 -3.184 -0.593 -2.095

Europe -1.436 -3.106 -3.958 -3.701 -3.038 -0.668 -1.203 -0.751 -3.204 -1.083

Russia -4.355 -7.101 -2.392 -10.087 -1.553 -0.008 -2.460 -0.806 -6.978 -5.315

Middle East -6.499 -4.403 -4.961 -3.777 -2.305 -0.628 -2.753 -3.742 -1.389 -2.022

APAC

China -0.612 -0.267 -0.126 -0.227 -0.251 -0.034 -0.048 -0.022 -0.084 -0.076

India -0.349 -2.278 -3.295 -2.011 -2.112 -1.398 -0.893 -0.022 -1.479 -1.517

Mexico -0.440 -2.387 -0.175 -0.110 -0.446 -0.021 -0.018 -5.676 -0.017 -0.032

Japan -0.013 -0.292 -0.146 -0.143 -0.396 -0.034 0.000 -0.007 -0.010 -0.087

Oceania -0.200 -0.469 -0.627 -0.220 -0.341 -0.131 -0.646 -0.391 -0.081 -0.133

South Asia -1.420 -1.803 -2.779 -2.773 -2.466 -0.594 -0.122 -0.162 -0.585 -0.714

Σ -42.350 -40.719 -36.333 -35.096 -22.856 -20.875 -19.808 -19.579 -16.865 -16.468

Table D1: This Table shows the absolute (in Mmbbl) contribution of the 10 largest trader to average trading zone seller region

outflows.
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UNIPEC SHELL BP VITOL CNR PETROBRAS CSSSA REPSOL CLEARLAKE ST SHIPPING

Americas

Canada 0.000 0.426 0.522 0.351 0.155 0.006 0.012 0.011 0.054 0.050

South America 0.082 0.812 0.649 0.571 0.873 8.032 0.065 1.054 0.147 0.280

USA 0.589 8.937 6.722 3.912 3.041 3.722 1.815 0.793 2.862 1.372

EMEA

East Africa 0.007 1.065 1.605 0.338 0.215 0.006 0.373 0.046 0.056 0.191

North Africa 0.000 0.057 0.078 0.142 0.061 0.000 0.010 0.018 0.097 0.083

West Africa 0.072 0.200 0.974 1.129 1.372 0.012 0.202 0.009 0.379 0.590

Europe 3.636 15.429 10.784 15.708 6.899 1.864 13.080 16.379 7.666 8.467

Russia 0.000 0.000 0.032 0.009 0.019 0.000 0.002 0.000 0.000 0.004

Middle East 0.072 1.133 0.765 0.741 1.105 0.051 0.438 0.357 1.030 0.391

APAC

China 33.887 1.541 0.658 1.406 1.198 2.712 0.234 0.087 0.456 0.757

India 0.025 0.427 5.396 0.174 0.207 0.666 0.137 0.019 0.166 0.244

Mexico 0.040 0.078 0.089 0.078 0.418 0.006 0.006 0.003 0.008 0.040

Japan 0.338 1.142 0.677 0.996 1.095 0.347 0.476 0.321 0.598 0.480

Oceania 0.026 1.595 2.621 2.274 0.627 0.472 0.035 0.025 0.206 0.195

South Asia 3.575 7.876 4.761 7.266 5.571 2.979 2.922 0.458 3.140 3.324

Σ 42.350 40.719 36.333 35.096 22.856 20.875 19.808 19.579 16.865 16.468

Table D2: This Table shows the absolute (in Mmbbl) contribution of the 10 largest trader to average trading zone buyer region

inflows.
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UNIPEC SHELL BP VITOL CNR PETROBRAS CSSSA REPSOL CLEARLAKE ST SHIPPING

Americas

Canada 0.000% 5.069% 6.203% 4.178% 1.846% 0.073% 0.143% 0.126% 0.644% 0.590%

South America 0.455% 4.526% 3.615% 3.181% 4.865% 44.748% 0.364% 5.874% 0.818% 1.560%

USA 0.641% 9.735% 7.322% 4.261% 3.312% 4.054% 1.977% 0.863% 3.117% 1.494%

EMEA

East Africa 0.064% 10.268% 15.479% 3.262% 2.072% 0.056% 3.597% 0.446% 0.542% 1.844%

North Africa 0.000% 1.495% 2.035% 3.738% 1.602% 0.000% 0.252% 0.468% 2.543% 2.175%

West Africa 0.559% 1.542% 7.513% 8.705% 10.580% 0.091% 1.558% 0.071% 2.920% 4.547%

Europe 1.792% 7.606% 5.316% 7.744% 3.401% 0.919% 6.448% 8.075% 3.779% 4.174%

Russia 0.000% 0.000% 19.490% 5.397% 11.144% 0.000% 0.900% 0.000% 0.000% 2.699%

Middle East 0.512% 8.003% 5.404% 5.238% 7.804% 0.360% 3.095% 2.523% 7.274% 2.765%

APAC

China 47.097% 2.141% 0.914% 1.954% 1.664% 3.770% 0.325% 0.120% 0.634% 1.052%

India 0.048% 0.823% 10.390% 0.336% 0.399% 1.282% 0.265% 0.036% 0.319% 0.469%

Mexico 0.904% 1.749% 2.000% 1.754% 9.350% 0.131% 0.138% 0.069% 0.177% 0.893%

Japan 1.904% 6.434% 3.816% 5.611% 6.170% 1.957% 2.681% 1.807% 3.370% 2.704%

Oceania 0.146% 8.898% 14.624% 12.685% 3.497% 2.636% 0.195% 0.138% 1.151% 1.088%

South Asia 3.528% 7.771% 4.698% 7.169% 5.497% 2.940% 2.883% 0.451% 3.098% 3.280%

Table D3: This Table shows the relative contribution of the 10 largest trader to average trading zone buyer region inflows.

Bold numbers indicate contributions above 10%.

45



UNIPEC SHELL BP VITOL CNR PETROBRAS CSSSA REPSOL CLEARLAKE ST SHIPPING

Americas

Canada 0.000 0.426 0.522 0.351 0.155 0.006 0.012 0.011 0.054 0.050

South America 0.082 0.812 0.649 0.571 0.873 1.795 0.065 1.054 0.147 0.280

USA 0.589 8.937 6.722 3.912 3.041 3.722 1.815 0.793 2.862 1.372

EMEA

East Africa 0.007 1.037 1.037 0.338 0.215 0.006 0.373 0.046 0.056 0.191

North Africa 0.000 0.057 0.078 0.142 0.061 0.000 0.010 0.018 0.097 0.083

West Africa 0.072 0.200 0.974 1.129 1.297 0.012 0.202 0.009 0.379 0.590

Europe 3.636 15.429 10.784 15.708 6.899 1.864 13.080 16.379 7.666 8.467

Russia 0.000 0.000 0.017 0.009 0.017 0.000 0.002 0.000 0.000 0.004

Middle East 0.072 1.133 0.765 0.741 1.105 0.051 0.438 0.357 1.030 0.391

APAC

China 7.195 1.541 0.658 1.406 1.198 2.712 0.234 0.087 0.456 0.757

India 0.025 0.427 5.193 0.174 0.207 0.666 0.137 0.019 0.166 0.244

Mexico 0.040 0.078 0.089 0.078 0.418 0.006 0.006 0.003 0.008 0.040

Japan 0.338 1.142 0.677 0.996 1.095 0.347 0.476 0.321 0.598 0.480

Oceania 0.026 1.595 1.793 1.793 0.627 0.472 0.035 0.025 0.206 0.195

South Asia 3.575 7.876 4.761 7.266 5.571 2.979 2.922 0.458 3.140 3.324

Σ 15.658 40.691 34.718 34.614 22.778 14.638 19.808 19.579 16.865 16.468

Table D4: This Table shows the adjusted absolute (in Mmbbl) contribution of the 10 largest trader to average trading zone

buyer region inflows. All contributions are capped at a maximum of 10% supply reduction in case of the trader’s bankruptcy.
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