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Abstract

This paper analyses the effects of altruism on the formation of climate coali-

tions in the standard two-stage game of self-enforcing international environmental

agreements. Altruism implies that each country values, to some extent, every other

country’s welfare when deciding on its coalition membership and emissions pol-

icy. In the Nash [Stackelberg] game, the fringe [coalition] countries exploit the

altruism of the coalition [fringe] countries so that altruism decreases [increases] the

coalition size. In any case, global emissions and global welfare are close to the non-

cooperative values. However, altruism narrows the gap between the individually

optimal emissions and the socially optimal emissions, so altruism increases global

welfare. Our model suggests that altruism is a substitute rather than a complement

for large climate coalitions.
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1 Introduction

The Paris Agreement, negotiated by 196 parties at the 2015 United Nations Climate

Change Conference, aims to limit global warming to well below 2 degrees Celsius com-

pared to pre-industrial levels (UN, 2015). Although there is thus broad consensus on

the international goal of climate policy, a continuation of current policies would result in

global warming of about 3 degrees Celsius above pre-industrial levels (UN, 2022). Conse-

quently, the Paris Agreement with its nationally determined contributions does not reflect

an international environmental agreement with globally optimal contributions. On the

other hand, some world regions have introduced rather high carbon prices despite facing

negative social costs of carbon (see Table 1). Although these carbon prices are still well

below the global social cost of carbon (418$/tCO2 from Ricke et al., 2018), this behaviour

can hardly be explained with perfect selfishness. Instead, it may reflect the important ef-

fects of altruistic values on environmental behaviour found in the psychological literature

(see, e.g., Dietz et al., 2005; Steg, 2016; Lades et al., 2021).

Table 1: Largest carbon pricing schemes representing 22% of global CO2 emissions.

$/tCO2 EU GBR CAN USA KOR ZAF CHN ARG MEX JPN KAZ UKR

Price 73 58 38 28 19 10 10 5 4 2 1 1
SCC −4 −4 −8 48 −1 3 24 3 12 6 −1 −1

Note: Price: The World Bank (2023), SCC: Ricke et al. (2018).

This paper analyses the formation of climate coalitions with altruistic preferences. In

particular, each country values, to some extent, every other country’s welfare when de-

ciding on its coalition membership and emissions policy. In order to be able to compare

our results with the standard literature (Carraro and Siniscalco, 1991; Barrett, 1994),

we apply the canonical model of self-enforcing international environmental agreements

with concave utility from own emissions and convex costs from global emissions. With-

out altruistic preferences, this model predicts that climate coalitions are either small or

ineffective.1

1For the linear-quadratic Nash game, Finus (2001, p. 232) finds that climate coalitions consist of no
more than three countries. For the linear-quadratic Stackelberg game, Finus (2001, p. 232) finds that
climate coalitions are either small or ineffective, and Diamantoudi and Sartzetakis (2006, p. 254) find
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We distinguish between the coalition countries taking the fringe countries’ emissions as

given (Nash game) and taking the reaction of the fringe countries’ emissions into account

(Stackelberg game) when choosing their own emissions. In both cases, altruism reduces

each fringe country’s emissions and raises global material welfare, i.e. global welfare in

the absence of altruistic preferences. Furthermore, we get the typical results that global

emissions decrease and each fringe country’s emissions and material welfare increase with

the coalition size. By contrast, the effect of altruism on the equilibrium coalition size

depends crucially on the game structure.

In the linear-quadratic Nash game, altruism weakly reduces the coalition size, and

climate coalitions consist of no more than two countries. The direct effect of altruism,

namely smaller global emissions and larger global material welfare for a larger coalition

size, makes it worthwhile for all other countries if some country joins the coalition. How-

ever, the indirect effect of altruism, namely smaller global emissions and larger global

material welfare for a given coalition size, makes it less costly for all other countries if

some country does not join the coalition. This indirect effect outweighs the direct effect

for small coalition sizes and explains the small climate coalition in equilibrium.

In the linear-quadratic Stackelberg game, altruism weakly raises the coalition size,

and climate coalitions can consist of up to six countries. In this case, the coalition

countries take advantage of the fringe countries’ altruism by becoming less ambitious in

the fight against climate change, expecting the fringe countries to react by reducing their

emissions more than they would without altruism. However, the coalition countries are

not much more ambitious in the Stackelberg equilibrium than in the business-as-usual

scenario without coalition formation.

These results suggest that altruism cannot stabilize large and effective climate coali-

tions. However, altruism narrows the gap between the individually optimal emissions

and the socially optimal emissions, so altruism increases global welfare. Altruism thus

appears to be more of a substitute than a complement for large climate coalitions.

The economic literature has developed and tested several theories for imperfect self-

that climate coalitions consist of no more than four countries when constraining the parameter space to
ensure non-negative emissions.
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ishness. In the case of altruistic preferences (Becker, 1974), one can distinguish between

pure altruism, i.e. utility from others’ utility values (Becker, 1981), paternalistic altruism,

i.e. utility from others’ consumption bundles (Pollak, 1988), and impure altruism, i.e.

utility or warm glow from giving others (Andreoni, 1990). Alger and Weibull (2010) show

that pure altruism used in this paper is evolutionary stable, and Andreoni et al. (2010)

summarize the significant evidence for altruism in economic experiments. Other theories

comprise reciprocal fairness (Rabin, 1993), inequality aversion (Fehr and Schmidt, 1999;

Bolton and Ockenfels, 2000) and Kantian behaviour (Alger and Weibull, 2013; Roemer,

2015).

These theories have also been applied in the literature on self-enforcing international

environmental agreements. Buchholz et al. (2018) and Nyborg (2018) analyse the effects

of reciprocal fairness when countries decide on their membership in the coalition and on

their emissions. They find that reciprocal fairness can stabilize the grand coalition, but

it can also stabilize an interior coalition that is either weakly larger (Nyborg, 2018) or

even weakly smaller (Buchholz et al., 2018) than the interior coalition without reciprocal

fairness. Lange and Vogt (2003) incorporate inequality aversion à la Bolton and Ockenfels

(2000) into the canonical model of self-enforcing international environmental agreements

and find that sufficiently large inequality aversion can stabilize the grand coalition. By

contrast, Vogt (2016) applies inequality aversion à la Fehr and Schmidt (1999) and finds

no stable coalition without transfers in his numerical model with heterogeneous countries.

Recently, Eichner and Pethig (2022) analysed the effects of Kantian or moral behaviour

when countries decide on their membership in the coalition and on their emissions. They

find that membership moralism expands the climate coalition, and emissions moralism

expands the climate coalition only in the presence of membership moralism.

Closest to our paper is van der Pol et al. (2012), who analyse the effects of altruism

affecting the membership decision but not the policy decision. They find that this kind

of partial altruism expands the climate coalition. We extend their model into different

directions. First, we consider altruism on both stages of the game. Second, we analyse

not only the Nash game but also the Stackelberg game. Third, while they solve their
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model numerically with heterogeneous countries, we solve our model analytically with

homogeneous countries. Finally, we replicate their results analytically to discuss the

differences from our results.2

The remainder of the paper is organized as follows: Section 2 introduces the model,

and characterizes the social optimum and the business-as-usual scenario. Section 3 anal-

yses the effects of altruism on the Nash game of coalition formation. This section also

includes a comparison with the model of van der Pol et al. (2012). Section 4 analyses

the effects of altruism on the Stackelberg game of coalition formation with the coalition

countries as Stackelberg leaders and the fringe countries as Stackelberg followers. Section

5 concludes.

2 Model

Consider a model with n ≥ 3 identical countries. Each county i ∈ N derives consumption

benefits B(ei) from its emissions ei, where B
′ > 0 and B′′ < 0, and faces climate damages

D(e) from global emissions e :=
∑

i∈N ei, where D
′ > 0 and D′′ > 0. Then, each country’s

material welfare function is Wi = B(ei) −D(e). Furthermore, each country is altruistic

such that it values its own material welfare by 1 and every other country’s material welfare

by α ∈ [0, 1].3 Thus, the altruism parameter α = 0 implies perfectly selfish countries,

while α = 1 implies perfectly altruistic countries. Then, each country’s moral welfare

function is

Vi = Wi + α
∑
j∈N\i

Wj = (1− α)Wi + αW, (1)

2Daube (2019) and Goussebäıle et al. (2023) analyse the effects of altruism on climate policy with
multiple countries. Daube (2019) shows that altruistic preferences lead to a partial internalization
of the climate externality in the non-cooperative solution, and to a full internalization of the climate
externality in the cooperative solution if and only if the altruistic preferences for all countries coincide.
Goussebäıle et al. (2023) analyse the effects of altruistic foreign aid on climate change mitigation and
find that paying transfers before abating emissions incentivises developing countries to choose efficient
climate change mitigation and leads to the social optimum if altruistic preferences are sufficiently large.
However, both papers abstract from coalition formation.

3Instead, if each country values its own material welfare by 1 and every other country’s moral welfare
by β ∈ [0, 1/n], then each country’s moral welfare function is Vi = Wi+β

∑
j∈N\i Vj = W̃i+α̃

∑
j∈N\i W̃j

with W̃i = Wi/(1 + β) and α̃ = β/[1− β(n− 1)] ∈ [0, 1], and our results do not change.
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where W :=
∑

i∈N Wi is global material welfare, and the global moral welfare function is

V =
∑
i∈N

Wi + α
∑
j∈N\i

Wj

 = [1 + α(n− 1)]W, (2)

where V :=
∑

i∈N Vi is global moral welfare. Consequently, the socially optimal emissions

(SO) are independent of the altruism parameter α, while the individually optimal emis-

sions, i.e. the business-as-usual emissions (BAU), are not (Daube, 2019, Results 4 and

5). In particular, the socially optimal values and the individually optimal values coincide

for α = 1. In Appendix A.1, we prove that global emissions decrease and global material

welfare increases with the altruism parameter in the individually optimal solution. Con-

sequently, the relative global emissions eBAU/eSO decrease and the relative global material

and moral welfare W BAU/W SO = V BAU/V SO increase with the altruism parameter.

In the further course of the paper we analyse the two-stage game of self-enforcing

environmental agreements. At the first stage of the game, countries decide on their

membership in the coalition. Thereby, internal [external] stability implies that no country

will leave [join] the coalition if this reduces its moral welfare (D’Aspremont et al., 1983).

At the second stage of the game, there is a coalition of m countries, and countries decide

on their emissions. Thereby, each fringe country maximizes its moral welfare (1), and

each coalition country i ∈M maximizes the sum of the coalition countries’ moral welfare

∑
i∈M

Vi =
∑
i∈M

Wi + α
∑
j∈N\i

Wj

 = (1− α)
∑
i∈M

Wi + αmW. (3)

Comparing (1) and (3), each fringe country’s policy weights its own material welfare by

1− α and global material welfare by α, while each coalition country’s policy weights the

coalition’s material welfare by 1−α and global material welfare by αm. In the following

we distinguish between two game concepts. In Section 3, we analyse the Nash game, and

in Section 4, we analyse the Stackelberg game with the coalition countries as Stackelberg

leaders and the fringe countries as Stackelberg followers. The respective game is then

solved by backward induction.
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3 Nash game

At the second stage of the Nash game, each fringe country i = f maximizes its moral

welfare (1) over its emissions ef , taking the other countries’ emissions as given, which

yields

B′(ef ) = [1 + α(n− 1)]D′(e). (4)

Each fringe country equates marginal emissions benefits to its own marginal emissions

damages D′(e), plus all other countries’ marginal emissions damages weighted by the

altruism parameter α(n− 1)D′(e).

Furthermore, each coalition country i = c maximizes the sum of the coalition coun-

tries’ moral welfare (3) over its emissions ec, taking the other countries’ emissions as

given, which yields4

B′(ec) =
1 + α(n− 1)

1 + α(m− 1)
mD′(e) ≤ nD′(e). (5)

For α = 0, each coalition country equates marginal emissions benefits to the coalition

countries’ marginal emissions damages mD′(e). For α > 0, altruism implies that each

coalition country accounts for all other countries’ marginal emissions damages via 1 +

α(n − 1), but it also implies that all other coalition countries account for each coalition

country’s marginal emissions benefits via 1 + α(m − 1). Note that B′(ef ) = B′(ec) =

nD′(e) for α = 1, so the Nash equilibrium and the social optimum then coincide. In the

following we focus on α ∈ [0, 1).

From (4) and (5), we infer

B′(ec)

B′(ef )
=

m

1 + α(m− 1)
∈ (1,m]. (6)

Consequently, each fringe country’s emissions are greater than each coalition country’s

4The second-order conditions are fulfilled.
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emissions. In Appendix A.2.1, we prove5

Proposition 1 (Comparison of Nash equilibrium and BAU).

• ec < eBAU
i < ef and e < eBAU,

• Vf > Vc,

• Wf > Wc,W
BAU
i .

(6) implies that the coalition countries are ceteris paribus more ambitious in the fight

against climate change than at BAU. This results in smaller coalition country’s emissions

and global emissions, which raises the free-rider incentives and leads to greater fringe

country’s emissions. Each fringe country’s emissions being greater than each coalition

country’s emissions implies Vf > Vc andWf > Wc. Finally, global emissions being smaller

and each fringe country’s emissions being greater than at BAU implies Wf > W BAU
i and,

thus, Vf > V BAU
i if Wc ≥ W BAU

i or if α is sufficiently small.

To prepare the analysis of the first stage of the Nash game, we prove in Appendix

A.2.2

Lemma 1 (Effects of coalition size and altruism on emissions and welfare).

• def
dm

> 0, de
dm

< 0 and
dWf

dm
> 0,

• def
dα

< 0, de
dα
< 0 and dW

dα
> 0.

From the first bullet of the lemma, we get the typical results that each fringe country’s

emissions increase but global emissions decrease with the coalition size, so free-rider

incentives tend to increase as the coalition gets larger. The resulting higher consumption

benefits and lower climate damages imply that each fringe country’s material welfare

increases with the coalition size and, thus, that Vf increases with the coalition size if Wc

increases with the coalition size or if α is sufficiently small.

The second bullet of the lemma reveals that each fringe country’s emissions and global

emissions decrease with the altruism parameter and that global material welfare increases

with the altruism parameter. Consequently, the relative global emissions e/eSO decrease

5Furthermore, we there prove that global emissions are larger at the Nash equilibrium than at the
social optimum.
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and the relative global material and moral welfare W/W SO = V/V SO increase with the

altruism parameter.

Now we turn to the first stage of the Nash game. First note that Vf (m) > Vc(m) from

Proposition 1 implies that if a coalition is externally unstable, i.e. Vc(m+1) ≥ Vf (m), then

the corresponding expansion of the coalition is accompanied by a Pareto improvement,

i.e. Vf (m+ 1) > Vc(m+ 1) ≥ Vf (m) > Vc(m). For the detailed stability analysis, we use

the following linear-quadratic specification

B(ei) = aei −
b

2
e2i , D(e) =

d

2
e2. (7)

We constrain the parameter space to ensure non-negative emissions for m ∈ [2, n], which

gives an upper bound for d/b. In Appendix A.2.3, we then prove

Proposition 2 (Stability of coalitions with policy altruism).

Consider the linear-quadratic specification (7) and suppose altruism affects the member-

ship decision and the policy decision.

• Either the coalition m = 2 is stable or no coalition is stable.

• The coalition m = 2 is stable for α = 0 and n ≥ 12 (sufficient).

• The coalition size weakly decreases with α.

We use a numerical example to demonstrate that there are economies in which m = 2

is not stable for α > 0 and n ≥ 12. Figure 1 depicts each coalition country’s minimal

emissions6 (left-hand side figure) and the internal stability condition for m = 2 (right-

hand side figure) dependent on α. In the numerical example, each coalition country’s

emissions are positive for all m ∈ [2, n]. Furthermore, m = 2 becomes unstable for

α ≥ 0.334. Thus, there are economies in which m = 2 is not stable for α > 0 and n ≥ 12.

Proposition 2 and Figure 1 show that altruism does not stabilize larger coalitions,

but even destabilizes small coalitions. This is in stark contrast to the numerical analysis

of van der Pol et al. (2012), who find that the coalition size increases with the altruism

parameter and that the grand coalition becomes stable for α ≥ 0.401 (with a uniform

6Using ec(m(α), α) with m(α) = argmin ec(m,α).
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Figure 1: Each coalition country’s minimal emissions (left-hand side figure) and the
internal stability condition for m = 2 (right-hand side figure) dependent on α with
n = 100, a = 100, b = 1 and d = 1/10000.

altruism parameter and without transfers). The major difference between their model

and our model is that we assume altruistic preferences at both stages of the game, while

they assume altruistic preferences only at the first stage of the game. At the second

stage of the game, they assume that each fringe country maximizes its material welfare,

while each coalition country maximizes the sum of the coalition countries’ material wel-

fare.7 This does not alter the qualitative results at the second stage of the game, i.e.

Proposition 1 and the first bullet of Lemma 1 also hold for α = 0. However, it alters the

qualitative effects of altruism on the internal stability condition. In both models, this

internal stability condition reads

Vc(m)− Vf (m− 1) = (1− α)Wc(m) + αW (m)

−
[
(1− α)Wf (m− 1) + αW (m− 1)

]
≥ 0. (8)

7van der Pol et al. (2012) argue that “agents may hold different preferences when acting in different
social situations, for example as consumers or as citizens.” They then distinguish between the economic
policy decision and the political membership decision. In our view, there is no qualitative difference
between the social situations at the two stages of the game, and both decisions are made by citizens
rather than by consumers, i.e. by a homo politicus with “subjective social welfare functions” rather than
by a homo economicus with “personal well-being functions” (Nyborg, 2000). However, different payoff
functions at different stages of the game may be justified by strategic delegation between the membership
decision and the policy decision (Spycher and Winkler, 2022).
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In van der Pol et al. (2012), where the policy is independent of α, altruism stabilizes

coalitions if and only if

∂[Vc(m)−Vf (m−1)]
∂α

=
[
(m− 1)Wc(m) + (n−m)Wf (m)

]
−

[
(m− 1)Wc(m− 1) + (n−m)Wf (m− 1)

]
> 0. (9)

This direct effect of altruism is positive if and only if the total material welfare of the

other countries decreases when a country leaves the coalition. Then, altruism can induce

a country to stay in the coalition even though its own material welfare would increase

if it left the coalition. In Appendix A.2.4, we prove that the direct effect is positive for

m = 2 (and for m ∈ [2, n] with our linear-quadratic specification), regardless of whether

or not altruistic preferences are assumed at the second stage of the game. However, the

magnitude of the direct effect differs between the models. Furthermore, in our model,

where the policy depends on α, altruism stabilizes coalitions if and only if

d[Vc(m)−Vf (m−1)]
dα

=
∂[Vc(m)−Vf (m−1)]

∂α

+ (1− α)dWc(m)
dα

+ αdW (m)
dα

−
[
(1− α)

dWf (m−1)

dα
+ αdW (m−1)

dα

]
> 0.

(10)

The second line of (10) represents the indirect effect of altruism. It is positive if and only

if the policy effect of altruism on a country’s moral welfare is greater inside than outside

the coalition. In Appendix A.2.4, we prove that the policy effect inside the coalition is

positive, i.e. (1−α)dWc(m)
dα

+αdW (m)
dα

> 0, but that the policy effect outside the coalition

is also positive for m = 2 (and for m ∈ [2, n− 2] with our linear-quadratic specification),

i.e. (1 − α)
dWf (m−1)

dα
+ αdW (m−1)

dα
> 0. Proposition 2 reveals that the latter effect is so

strong that altruism raises the free-rider incentives. In other words, the policy effect of

altruism is more important for small coalitions than for large coalitions, and so important

that the negative indirect effect of altruism outweighs the positive direct effect.

In order to check whether the different results of van der Pol et al. (2012) indeed stem

from the different assumption concerning altruistic preferences at the second stage of the
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game, and not from some other minor differences between the models, we analyse the

first stage of the game without altruistic preferences at the second stage of the game. In

Appendix A.2.5, we then prove

Proposition 3 (Stability of coalitions without policy altruism).

Consider the linear-quadratic specification (7) and suppose altruism affects the member-

ship decision but not the policy decision.

• Either some unique coalition m ≥ 2 is stable or no coalition is stable.

• The coalition m = 2 is stable for α = 0 and n ≥ 12 (sufficient).

• The coalition size weakly increases with α.

• The grand coalition is stable for α ≥ 4/7 (sufficient).

Proposition 3 confirms the numerical result of van der Pol et al. (2012) that considering

altruism only at the first stage of the game stabilizes coalitions. Furthermore, in Appendix

A.2.5 we prove that global material and moral welfare then increase with the coalition

size. While altruism affecting the membership decision only is beneficial for global welfare

and for the climate ( de
dm

< 0 from Lemma 1) because it expands the climate coalition,

altruism affecting the membership decision and the policy decision is beneficial for global

welfare and for the climate (dW
dα

> 0 and de
dα

< 0 from Lemma 1) because it tightens the

climate policy. If the same coalition is stable in both models, e.g. for α → 0 such that

m = 2, then global welfare is larger and global emissions are smaller with than without

altruistic preferences at the second stage of the game. By contrast, if the grand coalition

is stable without altruistic preferences at the second stage of the game, e.g. for α ≥ 4/7,

then global welfare is larger and global emissions are smaller without than with altruistic

preferences at the second stage of the game.

Figure 2 depicts these relationships for a numerical example.8 With [without] altruistic

preferences at the second stage of the game,m = 2 becomes unstable for α > 0.334 [m = n

becomes stable for α > 0.5]. Global emissions are smaller and global material welfare

is larger with than without altruistic preferences at the second stage of the game if and

8Approximating the coalition size by m = arg[Vc(m)− Vf (m− 1) = 0] without altruistic preferences
at the second stage of the game.
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Figure 2: Global emissions (left-hand side figure) and global material welfare (right-hand
side figure) with (solid curves) and without (dashed curves) altruistic preferences at the
second stage of the game dependent on α with n = 100, a = 100, b = 1 and d = 1/10000.

only if α < 0.089 and α < 0.135, respectively. Then, the tighter climate policy outweighs

the larger climate coalition, which then comprises no more than 30 and 40 out of 100

countries, respectively. Finally, the figure shows that the welfare difference is relatively

small (< 27000) compared to the welfare difference between social optimum (250000) and

BAU without altruistic preferences (9800).

4 Stackelberg game

At the second stage of the Stackelberg game, each fringe country i = f maximizes its

moral welfare (1) over its emissions ef , taking the other countries’ emissions as given,

which yields (4).

Furthermore, each coalition country i = c maximizes the sum of the coalition coun-

tries’ moral welfare (3) over its emissions ec, taking the other coalition countries’ emissions

as given, but taking (4) into account, which yields9

B′(ec) =
1 + α(n− 1)

1 + α(m− 1)
mD′(e)

[
1 + (1− α)

d(n−m)ef
dec

]
≤ nD′(e), (11)

9The second-order conditions are fulfilled if B′′′ ≥ 0 and D′′′ ≤ 0 (see Appendix A.3.1).
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where

d(n−m)ef
dec

= − (n−m)[1 + α(n− 1)]D′′(e)

(n−m)[1 + α(n− 1)]D′′(e)−B′′(ef )
∈ (−1, 0). (12)

For α = 0, each coalition country equates marginal emissions benefits to the coalition

countries’ marginal emissions damagesmD′(e), corrected for the leakage rate to the fringe

countries
∣∣d(n−m)ef

dec

∣∣. For α > 0, altruism implies that each coalition country accounts for

all other countries’ marginal emissions damages via 1+α(n−1), but it also implies that all

other coalition countries account for each coalition country’s marginal emissions benefits

via 1 + α(m − 1). Furthermore, altruism implies that each coalition country accounts

for all fringe countries’ marginal emissions benefits, which reduces the influence of the

leakage rate to the fringe countries via 1 − α. Finally, altruism of the fringe countries

implies that these countries react more sensitive to other countries’ emissions changes,

such that the altruism parameter ceteris paribus increases the leakage rate to the fringe

countries. Note that B′(ef ) = B′(ec) = nD′(e) for α = 1, so the Stackelberg equilibrium

and the social optimum then coincide. In the following we focus on α ∈ [0, 1).

From (4) and (11), we infer

B′(ec)

B′(ef )
=

m

1 + α(m− 1)

[
1 + (1− α)

d(n−m)ef
dec

]
=: θ̃ ∈ (0,m). (13)

Consequently, each fringe country’s emissions are greater [smaller] than each coalition

country’s emissions for θ̃ > [<]1. Furthermore, θ̃ = 1 implies that the Stackelberg

equilibrium and the BAU coincide. In Appendix A.3.2, we prove10

Proposition 4 (Comparison of Stackelberg equilibrium and BAU).

• ec ⋛ eBAU
i ⋛ ef and e ⋛ eBAU for θ̃ ⋚ 1,

• Vc > V BAU
i > Vf and V < V BAU for θ̃ < 1,

Vc = V BAU
i = Vf and V = V BAU for θ̃ = 1,

Vf > Vc > V BAU
i and V > V BAU for θ̃ > 1,

10Furthermore, we there prove that global emissions are larger at the Stackelberg equilibrium than at
the social optimum.
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• Wc > W BAU
i > Wf and W < W BAU for θ̃ < 1,

Wc = W BAU
i = Wf and W = W BAU for θ̃ = 1,

Wf > Wc,W
BAU
i and W > W BAU for θ̃ > 1.

θ̃ > [<]1 implies that the coalition countries are ceteris paribus more [less] ambitious

in the fight against climate change than at BAU. This results in smaller [greater] coalition

country’s emissions and global emissions, which raises [reduces] the free-rider incentives

and leads to greater [smaller] fringe country’s emissions. The coalition could always

choose θ̃ = 1, such that θ̃ ̸= 1 implies Vc > V BAU
i . For θ̃ > [<]1 global emissions being

smaller [greater] and each fringe country’s emissions being greater [smaller] than at BAU

implies Vf ⋛ V BAU
i ⇐⇒ Wf ⋛ W BAU

i ⇐⇒ θ̃ ⋛ 1. Furthermore, for θ̃ > [<]1 global

emissions being smaller [greater] than at BAU implies V ⋛ V BAU ⇐⇒ W ⋛ W BAU ⇐⇒

θ̃ ⋛ 1. Finally, for θ̃ > [<]1 each fringe country’s emissions being greater [smaller] than

each coalition country’s emissions implies Vf ⋛ Vc ⇐⇒ Wf ⋛ Wc ⇐⇒ θ̃ ⋛ 1.

The partial derivative of θ̃ with respect to m is positive, so the coalition countries

tend to become more ambitious as the coalition gets larger. Then, the leakage rate to

the fringe countries ceteris paribus becomes smaller, which tends to increase θ̃, see (12).

Furthermore, the coalition countries’ marginal emissions damages then become greater,

which outweighs the greater coalition countries’ marginal emissions benefits and increases

θ̃, see (13). In Appendix A.3.3, we prove

Proposition 5 (Relation between coalition size and coalition’s ambition).

Suppose B′′′ ≥ 0 and D′′′ ≤ 0. Then, m ⋚ m̃⇐⇒ θ̃ ⋚ 1, where

m̃ :=
n[1 + α(n− 1)]D′′(eBAU)−B′′(eBAU

i )

[1 + α(n− 1)]D′′(eBAU)−B′′(eBAU
i )

∈ (1, n) (14)

and where dm̃
dα

> 0 for B′′′ = 0 (sufficient).

Thus, the coalition countries are less [more] ambitious than the fringe countries in

small [large] coalitions, in which the leakage effect outweighs [is outweighed by] the

marginal emissions damage effect. The partial derivative of m̃ with respect to α is posi-

tive, so the respective threshold coalition m̃ tends to get larger as countries become more
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altruistic. In other words, the coalition countries tend to become less ambitious in the

fight against climate change compared to the fringe countries. On the one hand, the al-

truism parameter ceteris paribus increases the importance of all other coalition countries’

marginal emissions benefits for the optimal policy, and it increases the leakage rate to

the fringe countries. On the other hand, it ceteris paribus increases the importance of all

fringe countries’ marginal emissions benefits for the optimal policy. Proposition 5 reveals

that the former effect outweighs the latter with linear-quadratic consumption benefits.

Since m ≥ m̃ will turn out to be the relevant coalition size and to prepare the analysis

of the first stage of the Stackelberg game, we prove in Appendix A.3.4

Lemma 2 (Effects of coalition size and altruism on emissions and welfare for m ≥ m̃).

Suppose B′′′ ≥ 0 and D′′′ ≤ 0.

• def
dm

> 0, de
dm

< 0 and dVc

dm
,
dVf

dm
,
dWf

dm
> 0,

• def
dα

< 0 and dW
dα

> 0.

From the first bullet of the lemma, we get the typical results that each fringe country’s

emissions increase but global emissions decrease with the coalition size, so free-rider

incentives tend to increase as the coalition gets larger as in the Nash game. Contrary

to the Nash game, the resulting lower climate damages ensure that not only each fringe

country’s moral welfare but also each coalition country’s moral welfare increases with the

coalition size. Finally, each fringe country’s material welfare increases with the coalition

size because its consumption benefits increase and the climate damages decrease with the

coalition size.

The second bullet of the lemma reveals that each fringe country’s emissions decrease

with the altruism parameter and that global material welfare increases with the altruism

parameter as in the Nash game. Consequently, the relative global material and moral

welfare W/W SO = V/V SO increase with the altruism parameter. Contrary to the Nash

game, global emissions need not decrease with the altruism parameter.

Now we turn to the first stage of the Stackelberg game. First note that Proposition 4

implies that all coalitions with θ̃ ≤ 1 are externally unstable because joining this coalition

then increases the respective country’s moral welfare from Vf ≤ V BAU
i to Vc > V BAU

i .
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Consequently, global emissions are smaller and each country’s moral welfare is greater

at the stable Stackelberg equilibrium than at BAU, and each fringe country’s welfare is

greater than each coalition country’s welfare. Together with Proposition 5, this gives11

Lemma 3 (Instability of small coalitions).

Suppose B′′′ ≥ 0 and D′′′ ≤ 0. Then, all coalitions m ≤ m̃ are externally unstable, and

the coalition m = ⌊m̃+ 1⌋ ≥ 2 is internally stable.

The coalition m = ⌊m̃+ 1⌋ ≥ 2 is internally stable because leaving the coalition

decreases the respective country’s moral welfare from Vc > V BAU
i to Vf ≤ V BAU

i . The

lemma indicates that the coalition size increases with the threshold coalition m̃, which

in turn tends to increase with the altruism parameter from Proposition 5. Via this

mechanism, altruism could stabilize larger coalitions.

For the detailed stability analysis, we use the linear-quadratic specification (7). We

constrain the parameter space to ensure non-negative emissions for m ∈ [2, n], which

gives an upper bound for d/b similar to the Nash game. In Appendix A.3.5, we then

prove

Proposition 6 (Stability of coalitions).

Consider the linear-quadratic specification (7) with n ≥ 7.

• Some unique coalition m ∈ (m̃, m̃+ 2) is stable.

• Some unique coalition m ∈ {2, 3} is stable for α = 0.

• The coalition size weakly increases with α.

• Some unique coalition m ∈ {2, 3, 4, 5, 6} is stable for α > 0.

Contrary to the Nash game, Proposition 6 reveals that altruism stabilizes larger coali-

tions. However, the coalition never comprises more than six countries. More importantly,

the coalition is always smaller than m = m̃ + 2. Since the Stackelberg equilibrium and

BAU coincide for m = m̃, the emissions-reducing and welfare-enhancing effects of the

coalition size from Lemma 2 are negligible. In fact, the small coalitions stem from con-

straining the parameter space to ensure non-negative emissions form ∈ [2, n], which gives

11The function ⌊·⌋ maps its argument to the largest weakly smaller integer.
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Figure 3: Each coalition country’s minimal emissions (left-hand side figure) and the
internal stability condition (right-hand side figure) for m = 3 (solid curve) and for m = 4
(dashed curve) dependent on α with n = 100, a = 100, b = 1 and d = 1/4500.

an upper bound for d/b and, thus, for m̃. From Proposition 5, this upper bound increases

with the altruism parameter, which is the driving force for larger coalitions with than

without altruism.

We use a numerical example to demonstrate there are economies in which the coalition

is larger with than without altruism. Figure 3 depicts each coalition country’s minimal

emissions12 (left-hand side figure) and the internal stability condition (right-hand side

figure) for m = 3 (solid curve) and for m = 4 (dashed curve) dependent on α. In the

numerical example, each coalition country’s emissions are positive for all m ∈ [2, n].

Furthermore, m = 3 becomes stable for α ≥ 0.223, and m = 4 becomes stable for

α ≥ 0.839. Thus, there are economies in which the coalition is larger with than without

altruism. Finally, Figure 4 shows that global emissions decrease and global material

welfare increases with the altruism parameter in the numerical example. Furthermore, as

the coalition gets larger at α = 0.223 and at α = 0.839, global emissions jump downwards

and global material welfare jumps upwards, but these jumps are (almost) not visible.

12Using ec(m(α), α) with m(α) = argmin ec(m,α).
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Figure 4: Global emissions (left-hand side figure) and global material welfare (right-hand
side figure) dependent on α with n = 100, a = 100, b = 1 and d = 1/4500.

5 Conclusion

This paper analyses the effects of altruism on the formation of climate coalitions in the

standard two-stage game of self-enforcing international environmental agreements. In the

Nash [Stackelberg] game, altruism weakly decreases [increases] the coalition size. How-

ever, the coalition never comprises more than six countries, and the corresponding global

emissions and global welfare are close to the non-cooperative values. Nevertheless, al-

truism reduces global emissions and raises global welfare by narrowing the gap between

the individually optimal values and the socially optimal values. Altruism thus appears

to be more of a substitute than a complement for large climate coalitions. Consequently,

altruism may help explain why countries are willing to internalize their climate exter-

nalities onto other countries, but are unwilling to conclude a large and effective climate

agreement.

Our analysis can be extended in several directions. For example, one could analyse the

optimal strategic delegation of each country’s principal to a country’s agent with different

altruistic preferences between the first and the second stage of the game (Spycher and

Winkler, 2022). Furthermore, it may be interesting to replace the assumption of pure

altruism with the assumption of paternalistic or impure altruism. In the first case, one

could consider different altruistic parameters for other countries’ consumption benefits
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and climate damages. In the second case, one could add warm-glow transfers between

countries at a third stage of the game. Finally, the results at the first stage of the Nash

game and the Stackelberg game depend on the functional forms of the benefit function

and the damage function, such that it may be interesting to replace our linear-quadratic

specification with, e.g., an isoelastic specification (Nkuiya, 2020). These issues are beyond

the scope of the present paper but may represent interesting and important tasks for

future research.
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A Appendix

A.1 Business-as-usual scenario

The first-order condition of (1) reads

B′
i − [1 + α(n− 1)]D′ = 0, (A.1)

and the second-order condition reads

B′′
i − [1 + α(n− 1)]D′′ < 0, (A.2)

which is fulfilled. Differentiating (A.1) with respect to α yields

B′′
i
dei
dα

− [1 + α(n− 1)]D′′ de
dα

− (n− 1)D′ = 0

⇔ dei
dα

= [1 + α(n− 1)]D′′/B′′
i
de
dα

+ (n− 1)D′/B′′
i . (A.3)

Taking the sum over all i ∈ N and rearranging yields∑
i∈N

dei
dα

=
∑
i∈N

[1 + α(n− 1)]D′′/B′′
i
de
dα

+
∑
i∈N

(n− 1)D′/B′′
i

⇔ de
dα

=

∑
i∈N(n− 1)D′/B′′

i

1−
∑

i∈N [1 + α(n− 1)]D′′/B′′
i

< 0. (A.4)

Substituting into (A.3) yields

dei
dα

=
(n− 1)D′/B′′

i

1−
∑

i∈N [1 + α(n− 1)]D′′/B′′
i

< 0. (A.5)

Finally, differentiating W with respect to α and using (A.1) yields

∂W
∂α

=
∑
i∈N

B′
i
dei
dα

−
∑
i∈N

D′ de
dα

=
∑
i∈N

[1 + α(n− 1)]D′ dei
dα

−
∑
i∈N

D′ de
dα

= −(1− α)(n− 1)D′ de
dα
> 0. (A.6)

A.2 Nash game

A.2.1 Proof of Proposition 1

From (4), (5) and Θ := m
1+α(m−1)

, the equilibrium is characterized by

B′(ef ) = [1 + α(n− 1)]D′, (A.7)

B′(ec) = [1 + α(n− 1)]ΘD′, (A.8)
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e = mec + (n−m)ef . (A.9)

First differentiating (A.7), (A.8) and (A.9) with respect to Θ yields

B′′(ef )
def
dΘ

= [1 + α(n− 1)]D′′ de
dΘ
, (A.10)

B′′(ec)
dec
dΘ

= [1 + α(n− 1)]
[
ΘD′′ de

dΘ
+D′

]
, (A.11)

de
dΘ

= mdec
dΘ

+ (n−m)
def
dΘ
. (A.12)

Solving for de
dΘ

,
def
dΘ

and dec
dΘ

yields

def
dΘ

=
m[1 + α(n− 1)]2D′′D′

B′′(ec)B′′(ef )− [1 + α(n− 1)][(n−m)B′′(ec) +mΘB′′(ef )]D′′ > 0, (A.13)

dec
dΘ

= − [1 + α(n− 1)]{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}D′

B′′(ec)B′′(ef )− [1 + α(n− 1)][(n−m)B′′(ec) +mΘB′′(ef )]D′′ < 0, (A.14)

de
dΘ

=
m[1 + α(n− 1)]B′′(ef )D

′

B′′(ec)B′′(ef )− [1 + α(n− 1)][(n−m)B′′(ec) +mΘB′′(ef )]D′′ < 0. (A.15)

Note that Θ = 1 ⇐⇒ ef = ec = eBAU
i . Thus, Θ > 1 =⇒ ef > eBAU

i > ec ∧ eBAU > e.

Second differentiating Vf , Wf , Vf − Vc and Wf −Wc with respect to Θ and using (4),

(5), (A.13), (A.14) and (A.15) yields

dVf

dΘ
= [1 + α(n−m− 1)]B′(ef )

def
dΘ

+ αmB′(ec)
dec
dΘ

− [1 + α(n− 1)]D′ de
dΘ

= [1 + α(n− 1)]D′
{
(1− α)

def
dΘ

+ α
[
(n−m)

def
dΘ

+mΘdec
dΘ

]
− de

dΘ

}
=

αm[1 + α(n− 1)]2{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}(D′)2

B′′(ec)B′′(ef )− [1 + α(n− 1)][(n−m)B′′(ec) +mΘB′′(ef )]D′′

{
m

1 + α(m− 1)

+
(1− α){[1− α(m− 1)(n−m− 1)][1 + α(n− 1)]D′′ −B′′(ef )}

α[1 + α(m− 1)]{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}
−Θ

}
, (A.16)

dWf

dΘ
= B′(ef )

def
dΘ

−D′ de
dΘ

= D′
{
[1 + α(n− 1)]

def
dΘ

− de
dΘ

}
=

m[1 + α(n− 1)]{[1 + α(n− 1)]2D′′ −B′(ef )}(D′)2

B′′(ec)B′′(ef )− [1 + α(n− 1)][(n−m)B′′(ec) +mΘB′′(ef )]D′′ > 0, (A.17)

d(Vf−Vc)

dΘ
= (1− α)

d(Wf−Wc)

dΘ
= (1− α)

[
B′(ef )

def
dΘ

−B′(ec)
dec
dΘ

]
> 0. (A.18)

(A.16) yields
dVf

dΘ
> 0 for α ≤ 1

(m−1)(n−m−1)

(
≥ 4

(n−2)2

)
and Θ ≤ m

1+α(m−1)
, which implies

Vf > V BAU
i for α ≤ 4

(n−2)2
. (A.17) implies Wf > W BAU

i . Finally, (A.18) implies Vf > Vc

and Wf > Wc.

Third suppose e ≤ eSO. Then, the right-hand sides of (4) and (5) would be smaller

than nD′(eSO), such that the left-hand sides would have to be smaller than B′(eSOi ),

implying ec, ef < eSOi and contradicting e ≤ eSO. Thus, e > eSO.
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A.2.2 Proof of Lemma 1

Totally differentiating (4), (5) and e = mec + (n−m)ef yields

B′′(ef ) def = [1 + α(n− 1)]D′′ de+ (n− 1)D′ dα, (A.19)

B′′(ec) dec =
1 + α(n− 1)

1 + α(m− 1)
mD′′ de+

(1− α)[1 + α(n− 1)]

[1 + α(m− 1)]2
D′ dm

+
n−m

[1 + α(m− 1)]2
mD′ dα, (A.20)

de = m dec + (n−m) def + (ec − ef ) dm. (A.21)

Solving for def , dec and de yields

Λ def

= {(1− α)[1 + α(n− 1)]mD′ − (ef − ec)[1 + α(m− 1)]2B′′(ec)}[1 + α(n− 1)]D′′ dm

− {m2(m− 1)[1 + α(n− 1)]2D′′ − (n− 1)[1 + α(m− 1)]2B′′(ec)}D′ dα, (A.22)

Λ dec

= {(1− α){[1 + α(n− 1)](n−m)D′′ −B′′(ef )}D′ + (ef − ec)[1 + α(m− 1)]mD′′

·B′′(ef )}[1 + α(n− 1)] dm−m(n−m){[1 + α(n− 1)]2(m− 1)D′′ +B′′(ef )}D′ dα,

(A.23)

Λ de

= {(1− α)[1 + α(n− 1)]mD′ − (ef − ec)[1 + α(m− 1)]2B′′(ec)}B′′(ef ) dm

+ (n−m){[1 + α(m− 1)]2(n− 1)B′′(ec) +m2B′′(ef )}D′ dα, (A.24)

where

Λ := −[1 + α(m− 1)]{[1 + α(m− 1)]{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}B′′(ec)

+m2[1 + α(n− 1)]D′′B′′(ef )} > 0.

First (A.22) [(A.24)] yields
def
dm

> 0 and
def
dα

< 0 [ de
dm

< 0 and de
dα
< 0].

Second differentiating Vf and Wf with respect to m and using (4), (5), (A.22), (A.23)

and (A.24) yields

dVf

dm
= [1 + α(n− 1)]D′

(1− α)
def
dm

+ α

[
(n−m)

def
dm

+
m2

1 + α(m− 1)
dec
dm

]
− de

dm


=

[1 + α(n− 1)]D′

[1 + α(m− 1)]Λ
{(1− α)[1 + α(n− 1)]2{[1− (m− 1)(n−m− 1)α][1 + α(n− 1)]D′′

−B′′(ef )}mD′ − (ef − ec)[1 + α(m− 1)]{[1 + α(n−m− 1)][1 + α(m− 1)]2[1 + α(n
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− 1)]D′′B′′(ec)− [1 + α(m− 1)]2B′′(ef )B
′′(ec) + α[1 + α(n− 1)]m3D′′B′′(ef )}},

(A.25)

dWf

dm
= D′

{
[1 + α(n− 1)]

def
dm

− de
dm

}
> 0, (A.26)

such that
dVf

dm
> 0 for α ≤ 1

(m−1)(n−m−1)

(
≥ 4

(n−2)2

)
.

Third differentiating W with respect to α and using (4), (5) and (A.21) yields

dW
dα

= D′

[1 + α(n− 1)]

[
(n−m)

def
dα

+
m2

1 + α(m− 1)
dec
dα

]
− n de

dα


= −(1− α)(n−m)

1 + α(m− 1)
D′

{
(m− 1)[1 + α(n− 1)]

def
dα

+ de
dα

}
> 0. (A.27)

A.2.3 Proof of Proposition 2

The linear-quadratic equilibrium is defined by

a− bef = [1 + α(n− 1)]de, (A.28)

a− bec =
1 + α(n− 1)

1 + α(m− 1)
mde, (A.29)

e = (n−m)ef +mec. (A.30)

Solving for ef , ec and e yields

ef =
1 + α(m− 1) +m(m− 1)(1− α)[1 + α(n− 1)]d

b

Ω

a

b
> 0, (A.31)

ec =
1 + α(m− 1) + (n−m)(m− 1)(1− α)[1 + α(n− 1)]d

b

Ω

a

b
, (A.32)

e =
1

Ω

na

b
> 0, (A.33)

where

Ω := [1 + α(m− 1)] + [1 + α(n− 1)]{[1 + α(m− 1)]n+ (1− α)m(m− 1)}d
b
> 0.

Note that ∂2ecΩ
∂m2 > 0. For α = 0, ecΩ is minimal at m = n−1

2
, and then ecΩ is non-negative

if and only if d
b
≤ 4

(n−1)2
, which is thus an upper bound for d

b
.

Using (A.31), (A.32) and (A.33) yields

Vf = [1 + α(n−m− 1)]

[
aef −

b

2
e2f −

d

2
e2
]
+ αm

[
aec −

b

2
e2c −

d

2
e2
]
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=
a2

2bΩ2
[1 + α(n− 1)]{[1 + α(m− 1)]2 + (1− α)2[1 + α(n− 1)]m(m− 1){m2 + 2n

−m− α(m− 1)(n2 − nm− 2n+m)}d
b
− [1 + α(m− 1)][n2 − 2m2 − 2n+ 2m

+ α(n2m− 2nm2 − 3n2 + 4m2 + 4n− 4m)− 2α2(n− 1)(n−m)(m− 1)]

(
d

b

)2

},

(A.34)

Vc = [1 + α(n−m)]

[
aef −

b

2
e2f −

d

2
e2
]
+ [1 + α(m− 1)]

[
aec −

b

2
e2c −

d

2
e2
]

= Vf −
a2

2bΩ2
n2(m− 1)(1− α)2[1 + α(n− 1)]2[m+ 1 + α(m− 1)]

(
d

b

)2

. (A.35)

The internal stability condition reads

Vc(m)− Vf (m− 1) =
a2n2(m− 1)(1− α)2[1 + α(n− 1)]2

(
d
b

)2

2bΩ(m)2Ω(m− 1)2
Φ(m), (A.36)

where

Φ(m) := −[1 + α(m− 1)][m− 3 + α(m− 2)2]− [1 + α(n− 1)]{2[(n−m)(m− 1) + (m

− 3)3 + 6(m− 3)2 + 11(m− 3) + 4] + 2α{(n−m)[2(m− 2)2 + 5(m− 2) + 1]

+ (m− 2)[(m− 2)3 + 4(m− 2)2 + 6(m− 2) + 2]}+ α2(m− 2)[2(n−m)(m2

+m− 3) + (m− 1)(m− 2)] + 2α3(n−m)(m− 1)(m− 2)2}d
b
− [1 + α(n− 1)]2

· {[n(m+ 1) +m(m− 1)2][n+m(m− 3)] + α{(n−m)2[2(m− 2)2 + 10(m− 2)

+ 3] + 2(n−m)[(m− 2)4 + 7(m− 2)3 + 16(m− 2)2 + 14(m− 2) + 2] +m2(m

− 2)2}+ α2(n−m)(m− 2){(n−m)[(m− 2)2 + 9(m− 2) + 6] + 2(m− 2)3 + 8

· (m− 2)2 + 12(m− 2) + 4}+ α3(n−m)(2n− 2m+ 1)(m− 1)(m− 2)2}
(
d

b

)2

< 0 ⇐= m ≥ 3, (A.37)

such that all coalitions m ≥ 3 are internally unstable, which proves the first bullet of the

proposition. Furthermore,

Φ(2)|α=0 = 1− 2(n− 4)
d

b
− (n− 2)(3n+ 2)

(
d

b

)2

=

[
1− (n− 1)2

4

d

b

]2

+
(n− 12)2 + 18(n− 12) + 89

2

[
1− (n− 1)2

4

d

b

]
d

b

+
(n− 12)4 + 36(n− 12)3 + 438(n− 12)2 + 1860(n− 12) + 817

16

(
d

b

)2

> 0 ⇐= n ≥ 12, (A.38)
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such that m = 2 is internally stable for α = 0 and n ≥ 12, which proves the second bullet

of the proposition. Finally,

Φ(2)

1 + α
= 1− 2[n− 4 + α(n− 2)]

(1 + α)/[1 + α(n− 1)]

d

b
− (n− 2)[3n+ 2 + α(3n− 2)]

(1 + α)/[1 + α(n− 1)]2

(
d

b

)2

, (A.39)

where

∂
(

Φ(2)
1+α

)
∂( d

b )
< 0 ⇐= n ≥ 4, (A.40)

∂
(

Φ(2)
1+α

)
∂α

= −2(n− 2)[(n+ 1)(3n− 4) + (2 + α)α(n− 1)(3n− 2)]

(1 + α)2/[1 + α(n− 1)]

(
d

b

)2

− 2(n− 2)[n− 3 + (2 + α)α(n− 1)]

(1 + α)2
d

b
< 0 ⇐= n ≥ 3, (A.41)

∂
(

Φ(2)
1+α

)
∂n

= −2[3n− 2 + 6α(n2 − n− 1) + α2(6n2 − 15n+ 8)]

(1 + α)/[1 + α(n− 1)]

(
d

b

)2

− 2[1 + 2α(n− 2) + α2(2n− 3)]

(1 + α)

d

b
< 0 ⇐= n ≥ 2, (A.42)

such that m = 2 is internally stable if d
b
, α and n are sufficiently small, which proves the

third bullet of the proposition.

A.2.4 Effects of altruism on the internal stability condition

From (9), the direct effect of altruism on the internal stability condition reads

∂[Vc(m)−Vf (m−1)]
∂α

=
[
(m− 1)Wc(m) + (n−m)Wf (m)

]
−
[
(m− 1)Wc(m− 1) + (n−m)Wf (m− 1)

]
,

(A.43)

which is positive if (m− 1)dWc(m)
dm

+ (n−m)
dWf (m)

dm
> 0. Using (4), (5) and (A.21) yields

(m− 1)dWc(m)
dm

+ (n−m)
dWf (m)

dm

= (m− 1)
[
B′(ec)

dec
dm

−D′ de
dm

]
+ (n−m)

[
B′(ef )

def
dm

−D′ de
dm

]
= D′

{
(m− 1)

[
1 + α(n− 1)

1 + α(m− 1)
mdec

dm
− de

dm

]
+ (n−m)

[
[1 + α(n− 1)]

def
dm

− de
dm

]}

=
(m− 1)(ef − ec) + (n−m)

{
[2−m+ α(m− 1)]

def
dm

− [1 + α(n− 1)]−1 de
dm

}
[1 + α(n− 1)]−1[1 + α(m− 1)]/D′ , (A.44)

such that
∂[Vc(m)−Vf (m−1)]

∂α
> 0 for m ∈ {2, n}. Using the linear-quadratic specification

(7), it can be shown that
∂[Vc(m)−Vf (m−1)]

∂α
> 0 for m ∈ [2, n]. The corresponding Maple
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file is available on request.

From (10), the indirect effects of altruism on the internal stability condition read

(1− α)dWc(m)
dα

+ αdW (m)
dα

−
[
(1− α)

dWf (m−1)

dα
+ αdW (m−1)

dα

]
. (A.45)

Using (4), (5) and (A.21) yields

(1− α)dWc(m)
dα

+ αdW (m)
dα

= (1− α)
[
B′(ec(m))dec(m)

dα
−D′ de(m)

dα

]
+ α

[
mB′(ec(m))dec(m)

dα
+ (n−m)B′(ef (m))

def (m)

dα
− nD′ de(m)

dα

]
= [1 + α(n− 1)]D′

[
mdec(m)

dα
+ α(n−m)

def (m)

dα
− de(m)

dα

]
= −(1− α)[1 + α(n− 1)](n−m)D′ def (m)

dα
> 0 (A.46)

and

(1− α)
dWf (m−1)

dα
+ αdW (m−1)

dα

= (1− α)
[
B′(ef (m− 1))

def (m−1)

dα
−D′ de(m−1)

dα

]
+ α

[
(m− 1)B′(ec(m− 1))dec(m−1)

dα
+ (n−m+ 1)B′(ef (m− 1))

def (m−1)

dα
− nD′ de(m−1)

dα

]
= [1 + α(n− 1)]D′

{
[1 + α(n−m)]

def (m−1)

dα
+

α(m− 1)2

1 + α(m− 2)
dec(m−1)

dα
− de(m−1)

dα

}

= −(1− α)[1 + α(n− 1)]D′

1 + α(m− 2)

{
[α(m− 2)(n−m)− 1]

def (m−1)

dα
+ de(m−1)

dα

}
, (A.47)

such that (1 − α)dWc(m)
dα

+ αdW (m)
dα

> 0 and (1 − α)
dWf (2−1)

dα
+ αdW (2−1)

dα
= [1 + α(n −

1)]
dWBAU

i

dα
> 0 from Appendix A.1. Using the linear-quadratic specification (7), it can be

shown that (1−α)
dWf (m−1)

dα
+αdW (m−1)

dα
> 0 for m ∈ [2, n− 2]. The corresponding Maple

file is available on request.

A.2.5 Proof of Proposition 3

Without altruistic preferences at the second stage of the game, the emissions for a given

coalition size are given by substituting α = 0 into (A.31), (A.32) and (A.33), and the

material welfare levels for a given coalition size are given by substituting α = 0 into

(A.34) and (A.35). Using these results, the internal stability condition reads

Vc(m)− Vf (m− 1) = (1− α)Wc(m) + αW (m)−
[
(1− α)Wf (m− 1) + αW (m− 1)

]
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=
(1 + 2α)n2(m− 1)a

2

2b

(
d
b

)2

[
1 + (m2 + n− 3m+ 2)d

b

]2 [
1 + (m2 + n−m)d

b

]2φ(m), (A.48)

where

φ(m) :=
α

1 + 2α

{
4N3 + 3 + 2[2N2

3 +N3(2M
2
2 + 4M2 + 13) + 2M3

2 + 9M2
2 + 7M2 + 9]

d

b

+ [7N2
3 +N3[4M

3
2 + 22M2

2 + 22M2 + 34] + 4M5
2 + 23M4

2 + 54M3
2 + 85M2

2

+ 50M2 + 27]

(
d

b

)2
}

−

{
m− 3 + 2[(n−m)(m− 1) + (m− 3)(m2 + 2) + 4]

d

b

+ [n−m+m(m− 2)][(n−m)(m+ 1) +m(m2 −m+ 2)]

(
d

b

)2
}
, (A.49)

where Ni := n− i and Mi := m− i. From (A.37) and (A.49), Φ(m)|α=0 = φ(m)|α=0, and

from the proof of Proposition 2, Φ(2)|α=0 > 0 for n ≥ 12, which proves the second bullet

of the proposition. From (A.49), φ(m) increases with α
1+2α

and, thus, with α, which

proves the third bullet of the proposition. Furthermore,

φ(n) =
2N2 + 1

1 + 2α

[
α− 1

2
+

3

2(2N2 + 1)

][
1− (n− 1)2

4

d

b

]2

+
10N3

2 + 33N2
2 + 36N2 + 9

2(1 + 2α)

·

[
α− 1

2
+

7N2
2 + 22N2 + 27

2(10N3
2 + 33N2

2 + 36N2 + 9)

][
1− (n− 1)2

4

d

b

]
d

b

+
50N5

2 + 305N4
2 + 720N3

2 + 790N2
2 + 358N2 + 17

16(1 + 2α)

·

[
α− 4

7
+

N3(5N
2
3 + 24N3 + 8)

7(10N3
3 + 55N2

3 + 100N3 + 56)

](
d

b

)2

, (A.50)

such that m = n is internally stable for α ≥ 4/7, which proves the third bullet of the

proposition. Furthermore,

∂φ(m)
∂m

=

{
1 + 2(n−m+ 3m2 − 7m+ 3)

d

b
+ [(n−m)2 + (6m2 − 6m− 2)(n−m) + 5m4

− 14m3 + 14m2 − 8m]

(
d

b

)2
}/{

m− 3 + 2[(m− 1)(n−m) + (m− 3)(m2 + 2)

+ 4]
d

b
+ [n−m+m(m− 2)][(m+ 1)(n−m) +m(m2 −m+ 2)]

(
d

b

)2
}
φ(m)−Ψ,

(A.51)
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where Ψ > 0 for n ≥ 4 and m ≥ 3. The corresponding Maple file is available on

request. φ(
¯
m) ≤ 0 for some

¯
m ≥ 3 implies

∂φ(
¯
m)

∂m
< 0 and, thus, φ(m̄) < 0 for all m̄ ≥

¯
m.

Furthermore, φ(m) ≥ 0 ⇐⇒ Vc(m)−Vf (m−1) ≥ 0 ⇐⇒ Vf (m−1)−Vc(m) ≤ 0. Thus, an

internally stable coalitionm implies an externally unstable coalitionm−1. Consequently,

there is at most one internally and externally stable coalition, which proves the first bullet

of the proposition. Finally, note that

W =
{b2 − b[n(n− 2)− 2m(m− 1)]d−m(m− 1)2(n−m)d2}na2

2b[b+ (m2 + n−m)d]2
, (A.52)

∂W
∂m

=
[(4m− 2)(n−m) + (m− 1)2]n2ad2

2[b+ (m2 + n−m)d]2
ec +

(m− 1)4n2(n− 2)a2d3

2(n− 1)2b[b+ (m2 + n−m)d]3

·

[
2

(
n−m

m− 1

)3

+ (4n− 1)

(
n−m

m− 1

)2

+ (n− 1)

(
n−m

m− 1

)
+

n2

n− 2

]
> 0, (A.53)

such that [1 + α(n− 1)]∂W
∂m

= ∂V
∂m

> 0.

A.3 Stackelberg game

A.3.1 Derivation of (12)

The first-order condition of (3) reads

[1 + α(m− 1)]

{
B′(ec)−

m[1 + α(n− 1)]

1 + α(m− 1)
D′

[
1 +

d(n−m)ef
dec

]
+

αm(n−m)

1 + α(m− 1)
B′(ef )

def
dec

}
= 0.

(A.54)

Substituting (4) and rearranging yields (11). Differentiating (4) with respect to ec yields

B′′(ef )
def
dec

− [1 + α(n− 1)]D′′
[
1 +

d(n−m)ef
dec

]
= 0. (A.55)

Solving for
d(n−m)ef

dec
yields (12). The second-order condition of (3) reads

[1 + α(m− 1)]

{
B′′(ec)−

m[1 + α(n− 1)]

1 + α(m− 1)
D′′

[
1 +

d(n−m)ef
dec

]2
+

αm(n−m)

1 + α(m− 1)
B′′(ef )

(
def
dec

)2

− m

1 + α(m− 1)
{[1 + α(n− 1)]D′ − αB′(ef )}

(n−m)[1 + α(n− 1)]

{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}2

·
[
B′′(ef )D

′′′
[
1 +

d(n−m)ef
dec

]
−D′′B′′′(ef )

def
dec

]}
< 0, (A.56)

which is fulfilled if D′′′ ≤ 0, B′′′ ≥ 0.
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A.3.2 Proof of Proposition 4

From (4), (11) and (12), the equilibrium is characterized by

B′(ef ) = [1 + α(n− 1)]D′, (A.57)

B′(ec) = [1 + α(n− 1)]θD′, (A.58)

e = mec + (n−m)ef . (A.59)

First differentiating (A.57), (A.58) and (A.59) with respect to θ yields

B′′(ef )
def
dθ

= [1 + α(n− 1)]D′′ de
dθ
, (A.60)

B′′(ec)
dec
dθ

= [1 + α(n− 1)]
[
θD′′ de

dθ
+D′

]
, (A.61)

de
dθ

= mdec
dθ

+ (n−m)
def
dθ
. (A.62)

Solving for de
dθ
,

def
dθ

and dec
dθ

yields

def
dθ

=
m[1 + α(n− 1)]2D′′D′

B′′(ec)B′′(ef )− [1 + α(n− 1)][(n−m)B′′(ec) +mθB′′(ef )]D′′ > 0, (A.63)

dec
dθ

= − [1 + α(n− 1)]{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}D′

B′′(ec)B′′(ef )− [1 + α(n− 1)][(n−m)B′′(ec) +mθB′′(ef )]D′′ < 0, (A.64)

de
dθ

=
m[1 + α(n− 1)]B′′(ef )D

′

B′′(ec)B′′(ef )− [1 + α(n− 1)][(n−m)B′′(ec) +mθB′′(ef )]D′′ < 0. (A.65)

Note that θ = 1 ⇐⇒ ef = ec = eBAU
i . Thus, θ ⋛ 1 ⇐⇒ ef ⋛ eBAU

i ⋛ ec ∧ eBAU ⋛ e.

Second differentiating Vi and Wi with respect to θ and using (4), (11), (12), (A.63),

(A.64) and (A.65) yields

dVf

dθ
= [1 + α(n−m− 1)]B′(ef )

def
dθ

+ αmB′(ec)
dec
dθ

− [1 + α(n− 1)]D′ de
dθ

= [1 + α(n− 1)]D′
{
(1− α)

def
dθ

+ α
[
(n−m)

def
dθ

+mθ dec
dθ

]
− de

dθ

}
=

αm[1 + α(n− 1)]2{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}(D′)2

B′′(ec)B′′(ef )− [1 + α(n− 1)][(n−m)B′′(ec) +mθB′′(ef )]D′′

·

{
(1− α){[1 + α(n− 1)]D′′ −B′′(ef )}
α{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}

+ 1− θ

}
(A.66)

=
αm[1 + α(n− 1)]2{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}(D′)2

B′′(ec)B′′(ef )− [1 + α(n− 1)][(n−m)B′′(ec) +mθB′′(ef )]D′′

·

{
(1− α){[1 + α(n− 1)]2D′′ −B′′(ef )}

α[1 + α(m− 1)]{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}
+ θ̃ − θ

}
, (A.67)

dVc

dθ
= α(n−m)B′(ef )

def
dθ

+ [1 + α(m− 1)]B′(ec)
dec
dθ

− [1 + α(n− 1)]D′ de
dθ

32



= [1 + α(n− 1)]D′
{
(1− α)θ dec

dθ
+ α

[
(n−m)

def
dθ

+mθ dec
dθ

]
− de

dθ

}
=

[1 + α(m− 1)][1 + α(n− 1)]2{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}(D′)2(θ̃ − θ)

B′′(ec)B′′(ef )− [1 + α(n− 1)][(n−m)B′′(ec) +mθB′′(ef )]D′′ ,

(A.68)

dV
dθ

= [1 + α(n− 1)]dW
dθ

= [1 + α(n− 1)]
{
(n−m)B′(ef )

def
dθ

+mB′(ec)
dec
dθ

− nD′ de
dθ

}
= [1 + α(n− 1)]D′

{
[1 + α(n− 1)]

[
(n−m)

def
dθ

+mθ dec
dθ

]
− nde

dθ

}
=

m[1 + α(n− 1)]3{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}(D′)2

B′′(ec)B′′(ef )− [1 + α(n− 1)][(n−m)B′′(ec) +mθB′′(ef )]D′′

·

{
− (1− α)(n− 1)B′′(ef )

[1 + α(n− 1)]{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}
+ 1− θ

}
(A.69)

=
m[1 + α(n− 1)]3{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}(D′)2

B′′(ec)B′′(ef )− [1 + α(n− 1)][(n−m)B′′(ec) +mθB′′(ef )]D′′

·

{
(1− α)(n−m){[1 + α(n− 1)]2D′′ −B′′(ef )}

[1 + α(m− 1)][1 + α(n− 1)]{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}
+ θ̃ − θ

}
,

(A.70)

dWf

dθ
= B′(ef )

def
dθ

−D′ de
dθ
> 0, (A.71)

dWc

dθ
= B′(ec)

dec
dθ

−D′ de
dθ

= D′
{
[1 + α(n− 1)]θ dec

dθ
− de

dθ

}
=

[1 + α(n− 1)]2{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}(D′)2

B′′(ec)B′′(ef )− [1 + α(n− 1)][(n−m)B′′(ec) +mθB′′(ef )]D′′

·

{
− αm(n−m){(n−m)[1 + α(n− 1)]2D′′ −B′′(ef )}
[1 + α(n− 1)]{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}

+ θ̃ − θ

}
, (A.72)

d(Vf−Vc)

dθ
= (1− α)

d(Wf−Wc)

dθ
= (1− α)

[
B′(ef )

def
dθ

−B′(ec)
dec
dθ

]
> 0. (A.73)

(A.66) [(A.69)] yields
dVf

dθ
> 0

[
dV
dθ

> 0 and dW
dθ

> 0
]
for θ ≤ 1, which implies Vf < V BAU

i

[V < V BAU and W < W BAU] for θ̃ < 1. (A.67) [(A.70)] yields
dVf

dθ
> 0

[
dV
dθ

> 0 and

dW
dθ

> 0
]
for θ ≤ θ̃, which implies Vf > V BAU

i [V > V BAU and W > W BAU] for θ̃ > 1.

(A.68) yields dVc

dθ
⋛ 0 for θ ⋚ θ̃, which implies Vc > V BAU

i for θ̃ ̸= 1. (A.71) implies

Wf ⋛ W BAU
i for θ̃ ⋛ 1. (A.72) yields dWc

dθ
< 0 for θ ≥ θ̃, which implies Wc > W BAU

i for

θ̃ < 1. Finally, (A.73) implies Vf ⋛ Vc and Wf ⋛ Wc for θ̃ ⋛ 1.

Third suppose e ≤ eSO. Then, the right-hand sides of (4) and (11) would be smaller

than nD′(eSO), such that the left-hand sides would have to be smaller than B′(eSOi ),

implying ec, ef < eSOi and contradicting e ≤ eSO. Thus, e > eSO.
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A.3.3 Proof of Proposition 5

Totally differentiating (4), (11) and e = mec + (n−m)ef yields

B′′(ef ) def = [1 + α(n− 1)]D′′ de+ (n− 1)D′ dα, (A.74)

B′′(ec) dec = λe de− λef def + λm dm+ λα dα, (A.75)

de = m dec + (n−m) def + (ec − ef ) dm, (A.76)

where

λe :=
1 + α(n− 1)

1 + α(m− 1)
mD′′α(n−m)[1 + α(n− 1)]D′′ −B′′(ef )

(n−m)[1 + α(n− 1)]D′′ −B′′(ef )

+
1 + α(n− 1)

1 + α(m− 1)
mD′ (1− α)(n−m)[1 + α(n− 1)]B′′(ef )

[(n−m)[1 + α(n− 1)]D′′ −B′′(ef )]2
D′′′ > 0 ⇐= D′′′ ≤ 0,

λef :=
1 + α(n− 1)

1 + α(m− 1)
mD′ (1− α)(n−m)[1 + α(n− 1)]D′′

[(n−m)[1 + α(n− 1)]D′′ −B′′(ef )]2
B′′′(ef ) ⋛ 0 ⇐⇒ B′′′ ⋛ 0,

λm :=
1 + α(n− 1)

[1 + α(m− 1)]2
D′ 1− α

[(n−m)[1 + α(n− 1)]D′′ −B′′(ef )]2
{α(n−m)2[1 + α(n− 1)]2

· [D′′]2 − [n+ α(m2 + n− 2m)][1 + α(n− 1)]D′′B′′(ef ) + [B′′(ef )]
2]} > 0,

λα :=
n−m

[1 + α(m− 1)]2
mD′ 1

[(n−m)[1 + α(n− 1)]D′′ −B′′(ef )]2
{[1 + α(n− 1)][1 + α(m

− 1)][1 + 2α(n− 1) + α2(n− 1)(m− 1)][(n−m)[1 + α(n− 1)]D′′ −B′′(ef )]D
′′(1

− θ̃)/(1− α) + [1 + α(n− 1)][1 + α(n− 1)(m2 − 1) + α(n− 1)(m+ 2)]D′′B′′(ef )

+ [B′′(ef )]
2} > 0 ⇐= θ̃ ≤ 1.

Solving for def , dec and de yields

λ def

= [1 + α(n− 1)]D′′[mλm − (ef − ec)B
′′(ec)] dm

− {(n− 1)[mλe −B′′(ec)]D
′ −m[1 + α(n− 1)]D′′λα} dα, (A.77)

λ dec

= −{[1 + α(n− 1)]D′′[(n−m)λm + (ec − ef )λef ]−B′′(ef )[λm + (ec − ef )λe]} dm

+ {(n− 1)[(n−m)λe − λef ]D
′ − {(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}λα} dα,

(A.78)

λ de

= B′′(ef )[mλm − (ef − ec)B
′′(ec)] dm

− {(n− 1)[mλef − (n−m)B′′(ec)]D
′ −mB′′(ef )λα} dα, (A.79)
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where

λ := [1 + α(n− 1)]D′′[mλef − (n−m)B′′(ec)]− [mλe −B′′(ec)]B
′′(ef ) > 0

⇐= D′′′ ≤ 0, B′′′ ≥ 0.

First differentiating (13) with respect to m and using (A.77) and (A.79) yields

dθ̃
dm

= − 1

[1 + α(n− 1)][1 + α(m− 1)]λ{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}2D′

· {(n−m)λm{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}{[1 + α(m− 1)]{(n−m)[1 + α

· (n− 1)]D′′ −B′′(ef )}2B′′(ec) +m2[1 + α(n− 1)]{α(n−m)[1 + α(n− 1)]D′′

−B′′(ef )}D′′B′′(ef )} − (ec − ef )(1− α)m(n−m)[1 + α(n− 1)]2B′′(ec){[B′′(ef )]
2

·D′′′ − [1 + α(n− 1)]D′′B′′′(ef )}D′}, (A.80)

such that ec ≥ ef ⇐⇒ θ̃ ≤ 1 =⇒ dθ̃
dm

> 0 if D′′′ ≤ 0, B′′′ ≥ 0. θ̃ ≤ 1 =⇒ dθ̃
dm

> 0

implies that θ̃(
¯
m) ≥ 1 =⇒ θ̃(m̄) > 1 for m̄ >

¯
m. Thus, (13) implicitly defines m̃ with

m ⋚ m̃⇐⇒ θ̃ ⋚ 1 if D′′′ ≤ 0, B′′′ ≥ 0. Using θ̃ = 1 in (13) and solving for m yields (14).

Second differentiating (14) with respect to α yields

dm̃
dα

= − (n− 1)2D′′(eBAU)B′′(eBAU
i )

{[1 + α(n− 1)]D′′(eBAU)−B′′(eBAU
i )}2

− (n− 1)[1 + α(n− 1)]B′′(eBAU
i )D′′′(eBAU)

{[1 + α(n− 1)]D′′(eBAU)−B′′(eBAU
i )}2

deBAU

dα

+
(n− 1)[1 + α(n− 1)]D′′(eBAU)B′′′(eBAU

i )

{[1 + α(n− 1)]D′′(eBAU)−B′′(eBAU
i )}2

deBAU
i

dα
, (A.81)

where deBAU

dα
=

dneBAU
i

dα
< 0 from Appendix A.1. Thus, dm̃

dα
> 0 if D′′′ ≤ 0, B′′′ ≤ 0.

A.3.4 Proof of Lemma 2

First (A.77) [(A.79)] yields
def
dm

> 0 [ de
dm

< 0] for ef ≥ ec ⇐⇒ m ≥ m̃, and (A.78) yields
dec
dm

< 0 for ec ≥ ef ⇐⇒ m ≤ m̃ if D′′′ ≤ 0, B′′′ ≥ 0. Furthermore, using (13) in (A.77)

yields

− (n− 1)mλe|D′′′=0D
′ +m[1 + α(n− 1)]D′′λα

= − m2[1 + α(n− 1)]D′D′′

(1− α)2(m− 1)[1 + α(m− 1)][(n−m)[1 + α(n− 1)]D′′ −B′′(ef )]2
{(1− α)3(n− 1)

· [1 + α(n− 1)](n−m)2[D′′]2 + (1− α)[(1− α)2(n+m− 1) + 2α(1− α)nm+ α2nm]

· (n−m)D′′[(n−m)[1 + α(n− 1)]D′′ −B′′(ef )](θ̃ − 1) + [1 + α(m− 1)][(n−m)[1

+ α(n− 1)]D′′ −B′′(ef )]
2(θ̃ − 1)2} < 0 ⇐= θ̃ ≥ 1,
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such that
def
dα

< 0 for ef ≥ ec ⇐⇒ m ≥ m̃, and (A.79) yields de
dα

< 0 for ec ≥ ef ⇐⇒
m ≤ m̃ if D′′′ ≤ 0, B′′′ ≥ 0.

Second differentiating Vi and Wi with respect to m and using (4), (11), (12), (A.77),

(A.78) and (A.79) yields

dVf

dm
= [1 + α(n− 1)]D′

{
(1− α)

def
dm

+ α
[
(n−m)

def
dm

+mθ dec
dm

]
− de

dm

}
=

[1 + α(n− 1)]D′

[1 + α(m− 1)]λ{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}
· {(1− α)m{[1 + α(n− 1)]2D′′ −B′′(ef )}{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}λm
+ (ef − ec){αm2{α(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}{[1 + α(n− 1)]D′′λef −B′′(ef )

· λe}B′′(ef )} − [1 + α(m− 1)]{[1 + α(n−m− 1)][1 + α(n− 1)]D′′ −B′′(ef )}{(n

−m)[1 + α(n− 1)]D′′ −B′′(ef )}B′′(ec)}, (A.82)

dVc

dm
= [1 + α(n− 1)]D′

{
(1− α)θ dec

dm
+ α

[
(n−m)

def
dm

+mθ dec
dm

]
− de

dm

}
=

(ef − ec)[1 + α(n− 1)]D′{α(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}
λ{(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}

· {m{[1 + α(n− 1)]D′′λef −B′′(ef )λe} − {(n−m)[1 + α(n− 1)]D′′ −B′′(ef )}B′′(ec)},
(A.83)

dWf

dm
= D′

{
[1 + α(n− 1)]

def
dm

− de
dm

}
, (A.84)

dWc

dm
= D′

{
[1 + α(n− 1)]θ dec

dm
− de

dm

}
= − D′

[1 + α(m− 1)]λ
{αm(n−m){[1 + α(n− 1)]2D′′ −B′′(ef )}λm + (ec − ef )[1 + α(m

− 1)]{[1 + α(n− 1)]θ{[1 + α(n− 1)]D′′λef −B′′(ef )λe}+B′′(ef )B
′′(ec)}}, (A.85)

such that
dVf

dm
> 0 for ef ≥ ec ⇐⇒ m ≥ m̃, and dVc

dm
⋛ 0 for ef ⋛ ec ⇐⇒ m ⋛ m̃ if

D′′′ ≤ 0, B′′′ ≥ 0. Furthermore,
def
dm

> 0 and de
dm

< 0 implies
dWf

dm
> 0 for m ≥ m̃, and

ec ≥ ef implies dWc

dm
< 0 for m ≤ m̃.

Third differentiating W with respect to α and using (4), (11), (12), (A.77), (A.78)

and (A.79) yields

dW
dα

= (n−m)
def
dα

+mB′(ec)
dec
dα

− nD′ de
dα

= D′
{
(n−m)[1 + α(n− 1)]

def
dα

+m[1 + α(n− 1)]θ dec
dα

− n de
dα

}
=

(n− 1)(D′)2

λ

{
(θ − 1)m2(n−m)2(1− α)[1 + α(n− 1)]3B′′(ef )D

′D′′′

[1 + α(m− 1)][(n−m)[1 + α(n− 1)]D′′ −B′′(ef )]2

− (1− α)(n− 1)(n−m)B′′(ec) +m{n− [1 + α(n− 1)]θ}λef

+
m2(n−m)(1− α)[1 + α(n− 1)]3(D′′)3

(n− 1)(m− 1)3[1 + α(m− 1)][(n−m)[1 + α(n− 1)]D′′ −B′′(ef )]2
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· {(n− 1)2(n−m)2[1 + α(m2 − 1)] + (n− 1)(n−m)[1 + α(m− 1)][3n− 2m− 1 + α

· (n− 1)(m2 − 1)]ψ + {3(n−m)2 + 2(m− 1)(n−m) + (m− 1)3 + α(n− 1)(m− 1)

· [(m2 − 1)(n−m)α + (m− 1)3α + 4(n−m) + 2(m− 1)2]}ψ2 + (n−m)[1 + α(m

− 1)]ψ3}

}
> 0 ⇐= θ̃ ≥ 1, D′′′ ≤ 0, B′′′ ≥ 0, (A.86)

where ψ :=
(θ̃−1){(n−m)[1+α(n−1)]D′′−B′′(ef )}

(1−α)[1+α(n−1)]D′′ , such that dW
dα

> 0 for ef ≥ ec ⇐⇒ m ≥ m̃ if

D′′′ ≤ 0, B′′′ ≥ 0.

A.3.5 Prove of Proposition 6

The linear-quadratic equilibrium is defined by

a− bef = [1 + α(n− 1)]de, (A.87)

a− bec =
1 + α(n− 1)

1 + α(m− 1)
mde

[
1− (1− α)

(n−m)[1 + α(n− 1)]d

(n−m)[1 + α(n− 1)]d− b

]
, (A.88)

e = (n−m)ef +mec. (A.89)

Solving for ef , ec and e yields

ef =
a

bω

{
1 + α(m− 1) + [1 + α(n− 1)]{(n−m)[1 + α(m− 1)] + (1− α)m(m− 1)}d

b

−m(n−m)(1− α)[1 + α(n− 1)]2
(
d

b

)2
}
, (A.90)

ec =
a

bω

{
1 + α(m− 1)− [1 + α(n− 1)](n−m){m− 2− 2α(m− 1)}d

b

+ (n−m)2(1− α)[1 + α(n− 1)]2
(
d

b

)2
}
> 0 ⇐= α ≥ 1

2
, (A.91)

e =
a

bω
n[1 + α(m− 1)]

{
1 + (n−m)[1 + α(n− 1)]

d

b

}
> 0, (A.92)

where

ω := 1 + α(m− 1) + [1 + α(n− 1)]{2(n−m)[1 + α(m− 1)] +m2}d
b

+ (n−m)[1 + α(n− 1)]2{(1− α)(n−m) + αnm}
(
d

b

)2

> 0.

Note that ∂2ecω
∂m2 > 0 for a ≤ 1

2
. For α = 0, ecΩ is minimal at m = n+2

2
+ n−2

2
d

b+d
, and then

ecΩ is non-negative if and only if d
b
≤ 4

n(n−4)
, which is thus an upper bound for d

b
. It can

37



be shown that efΩ is positive for m ∈ [2, n] and α ∈ [0, 1] if d
b
≤ 4

n(n−4)
and n ≥ 6. The

corresponding Maple file is available on request.

Using (A.90), (A.91) and (A.92) yields

Vf = [1 + α(n−m− 1)]

[
aef −

b

2
e2f −

d

2
e2
]
+ αm

[
aec −

b

2
e2c −

d

2
e2
]

= Vc +
a2

2bω2
n2(m− m̃)(1− α)2[1 + α(n− 1)]2

{
1 + [1 + α(n− 1)]

d

b

}{
m+ 1

+ α(m− 1) + (n−m)[1 + α(n− 1)][1 + α(2m− 1)]
d

b

}(
d

b

)2

, (A.93)

Vc = [1 + α(n−m)]

[
aef −

b

2
e2f −

d

2
e2
]
+ [1 + α(m− 1)]

[
aec −

b

2
e2c −

d

2
e2
]

=
a2

2bω
[1 + α(n− 1)]

{
1 + α(m− 1)− (n−m){n+m− 2− 2α2(n− 1)(m− 1)

+ α(nm− 3n− 3m+ 4)}d
b
+ (n−m)2(1− α)2[1 + α(n− 1)]

(
d

b

)2
}
, (A.94)

where m̃ = 1+n[1+α(n−1)]d/b
1+[1+α(n−1)]d/b

.

The internal stability condition reads

Vc(m)− Vf (m− 1) =
a2n2(1− α)2[1 + α(n− 1)]2

(
d
b

)2

2bω(m)ω(m− 1)2
ϕ(m), (A.95)

where

ϕ(m) := −(m− 1)[m− 3 + α(m− 2)2]− (m− 1)[1 + α(n− 1)]{[(4m2 − 12m+ 4)(n

−m) +m3 − 2m2 − 4m+ 2]α2 + [(2m2 − 2m− 10)(n−m) + 2m3 − 5m2 − 6]α

· (1− α) + [(2(m− 3))(n−m) +m3 − 3m2 + 4m− 8](1− α)2}d
b
− [1 + α(n

− 1)]2{(m− 1)[(5m2 − 17m+ 6)(n−m)2 + (3m3 − 6m2 − 12m+ 6)(n−m)

+m3 − 5m2 + 1]α2 + (m− 1)[(m2 + 2m− 17)(n−m)2 + (3m3 − 9m2 + 4m

− 20)(n−m) + 2m3 − 8m2 + 2m− 5]α(1− α) + [(m2 − 4m+ 2)(n−m)2 − 8

· (m− 1)(n−m)−m2 − 4m+ 5](1− α)2}
(
d

b

)2

+ (n−m+ 1)[1 + α(n− 1)]3

· {(m− 1)[(2m2 − 10m+ 4)(n−m)2 + (2m3 − 8m2 −m+ 2)(n−m)− 2m2

+m]α2 + (m− 1)[(2m− 12)(n−m)2 − (2m2 + 9)(n−m)− 2m2 − 1]α(1− α)

− [2(n−m)2 + (m2 − 1)(n−m) +m2 − 1](1− α)2}
(
d

b

)3

+ (n−m)(n−m

+ 1)2[1 + α(n− 1)]4{n(2m2 − 3m+ 1)α2 + (3n− 2m+ 1)(m− 1)α(1− α) + (n
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−m)(1− α)2}
(
d

b

)4

. (A.96)

Substituting m = 1
1+β

(m̃+2)+ β
1+β

n, n = N7+7, α = 1
1+γ

, d
b
= 1

1+δ
4

n(n−4)
with β, γ, δ ≥ 0

yields ϕ
(

1
1+β

(m̃+ 2) + β
1+β

n
)
< 0, which implies ϕ(m) < 0 for m ≥ m̃ + 2. The

corresponding Maple file is available on request. Consequently, all coalitions m ≥ m̃+ 2

are internally unstable, while all coalitionsm ≤ m̃ are externally unstable from Lemma 3.

Suppose m̃ is an integer. Then, m = m̃ is externally unstable and m = m̃+2 is internally

unstable, m = m̃+1 is internally and externally stable from Lemma 3. Suppose m̃ is not

an integer. Then,m = ⌊m̃⌋ is externally unstable andm = ⌊m̃+ 3⌋ is internally unstable,

such that m = ⌊m̃+ 1⌋ is internally stable from Lemma 3 and m = ⌊m̃+ 2⌋ is externally
stable. If m = ⌊m̃+ 1⌋ is externally stable [unstable], then m = ⌊m̃+ 2⌋ is internally

stable [unstable], such that some unique coalition m ∈ (m̃, m̃+ 2) is stable. This proves

the first bullet of the proposition. Furthermore, ∂m̃
∂(d/b)

= (n−1)[1+α(n−1)]
{1+[1+α(n−1)]d/b}2 > 0, such that

substituting d
b
= 4

n(n−4)
into m̃ yields an upper bound ¯̃m:

m̃ ≤ ¯̃m :=
n[n+ 4α(n− 1)]

(n− 2)2 + 4α(n− 1)
, (A.97)

where

∂ ¯̃m
∂α

=
4n(n− 1)2(n− 4)

[(n− 2)2 + 4α(n− 1)]2
⋛ 0 ⇐⇒ n ⋛ 4, (A.98)

∂ ¯̃m
∂n

=
16α(n− 1)2 − 8α(n− 1)(n− 2)− 4n(n− 2)

[(n− 2)2 + 4α(n− 1)]2
⋛ 0

⇐⇒ α ⋛
n− 2 +

√
(n− 2)(5n− 2)

4(n− 1)
∈ [0.576, 0.809]. (A.99)

Thus, ¯̃m is minimal for α = 0 and n = 7 with ¯̃m = 1.96, and it is maximal for α = 1

and n → ∞ with ¯̃m = 5. m ∈ (m̃, m̃ + 2) and m̃ ≤ ¯̃m then imply m ∈ {2, 3} for α = 0

and m ∈ {2, 3, 4, 5, 6} for α > 0. This proves the second bullet of the proposition and

the fourth bullet of the proposition, respectively. Furthermore,

ϕ(3)|α=0 = −8
d

b
+ (n2 + 10n− 23)

(
d

b

)2

+ 2(n− 1)2(n− 2)

(
d

b

)3

+ (n− 2)2(n− 3)2
(
d

b

)4

= −8
d

b

[
1− n(n− 4)

4

d

b

]3
− (5N2

26 + 226N26 + 2519)

(
d

b

)2 [
1− n(n− 4)

4

d

b

]2
− 0.5(2N4

26 + 174N3
26 + 5587N2

26 + 78148N26 + 399316)

(
d

b

)3 [
1− n(n− 4)

4

d

b

]
− 0.0625(N6

26 + 122N5
26 + 5951N4

26 + 145224N3
26 + 1778248N2

26 + 8867520N26

+ 2064240)

(
d

b

)4

, (A.100)
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Figure 5: Derivative of d/b with respect to α for n ∈ [7, 25].

such that m = 3 is internally unstable for α = 0 and n ≥ 26. Finally,

ϕ(3) = −2α− 2[1 + α(n− 1)][4 + (2n− 11)α + (2n− 6)α2]
d

b
+ [1 + α(n− 1)]2[n2 + 10n

− 23 + (2n2 − 28n+ 68)α− (3n2 − 24n+ 29)α2]

(
d

b

)2

+ (n− 2)[1 + α(n− 1)]3

· [2(n− 1)2 + (8n2 − 10n− 20)α + (n− 3)(6n− 26)α2]

(
d

b

)3

+ (n− 3)(n− 2)2

· [1 + α(n− 1)]4[n− 3 + 4(n− 1)α + (5n+ 7)α2]

(
d

b

)4

, (A.101)

such that ϕ(3) decreases with d/b, and increases with (d/b)3 and (d/b)4, which implies

that ϕ(3) is positive if and only if d/b is greater than some unique threshold d/b =

[arg ϕ(3) = 0]. Figure 5 shows that the derivative of this threshold with respect to α is

negative for n ∈ [7, 25]. This proves the third bullet of the proposition.
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