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Abstract

In this experiment, we analyse a threshold public goods game in which players
have varying benefits from public goods provision, motivated by the existence
of large heterogeneities between countries in international environmental coop-
eration. We find that provision is most frequent when players are symmetric.
While increasing the degree of asymmetry does not significantly hamper provi-
sion success, contributions become more volatile the more heterogeneous players
are. Analysing how players share contribution costs, we see that the extent of
asymmetry is not salient, leading to relatively constant burden-sharing across
treatments despite varied levels of inequity, often leading to allocations that
diverge from both our benchmarks of efficiency or fairness.
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1 Introduction

There exist many decision situations in which groups of people come together with the aim
of realising a joint project, which only materialises if enough effort or contributions towards
the common goal accrue. Crowdfunding is an example in which an organiser finances a
project by setting a funding goal, and then implements it if enough funds accumulate.
Often times in charity fundraising, the charity endeavour is only put into effect if there are
sufficient donations. Both of these examples have in common that they can be captured
by the structure of a threshold public goods game (TPGG). Players in this game contribute
towards reaching a threshold, and the public good is only provided if this threshold is
met. However, the public good can then be enjoyed by all players independently of their
contribution level. Essentially it is thus a game of group effort, in which the members of the
group might have varying preferences for the public good or different contribution costs,
but can only ensure provision if they work together. Particularly when heterogeneities exist
across players, it is not always trivial how the contribution burden should be split among
group members.

Another prominent example of a high stakes group effort game is the mitigation of an-
thropogenic climate change, which is a collective action problem that requires international
coordination and cooperation, a task impeded by the fact that no supranational entity can
enforce a fair and efficient outcome. Unsurprisingly, achieving a consensus that is impactful
has proven to be extremely difficult over the past decades. While it is scientifically undis-
puted that decisive and immediate action is needed to achieve the the widely pronounced
policy goal of net-zero emissions by mid-century, current mitigation efforts, as pledged in
the Paris Agreement, are not ambitious enough to achieve such a trajectory (UNEP 2022;
IPCC 2022). Due to the fact that mitigation of climate change is impeded by the public
goods property of greenhouse gas emission reductions and therefore plagued by freeriding
incentives, the challenging nature of international cooperation on environmental policy is
not surprising and we observe a constant underprovision of emission reductions. TPGGs
resemble the real-world collective action problem of climate change mitigation, in which
reaching a common target requires individual sacrifice whereas benefits only emerge if oth-
ers contribute as well (Milinski et al. 2008), and might therefore provide valuable insights
into how the global community could succeed in limiting the increase of surface temperatures
to below 1.5◦C above pre-industrial levels in due time.

Many scholars have, by means of experimental analyses of public goods games, attempted to
shed light on the relative importance of a variety of factors influencing the success of coop-
eration. One important aspect is the existence of large differences in the world community,
for example with regards to wealth or exposure and vulnerability to climate change. Thus,
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equity considerations are playing an important role in achieving an impactful consensus in
international environmental policy (Lange et al. 2010; Klinsky et al. 2017). One potential
way of addressing such concerns is by analysing the behaviour of heterogeneous players in
TPGGs. This paper thus discusses an experimental analysis of public goods provision, mo-
tivated by the difficulties of the international community in coordinating actions to mitigate
climate change stemming from asymmetry between involved agents. In this specific setup, I
analyse the effect of different preferences for the public good on whether the public good is
provided and how contributions toward the threshold are split between players depending
on the degree of asymmetry between them. In the one-shot two-player game, a continuum
of Nash equilibria emerge from a theoretical point of view. The experiment thus offers in-
sights into whether and on which equilibrium allocations players implicitly coordinate and
how this is affected by asymmetric preferences and varying social value of the public good.
Specifically I test how public goods preferences affect (i) the frequency of provision, (ii) the
equilibrium selection, and (iii) the resulting allocation once the potentially focal equal split
equilibrium is removed from the equilibrium set. I find that asymmetric players provide
the public good less frequently than symmetric players, where the degree of asymmetry
plays a less important role than hypothesised. Burden-sharing occurs in a way that can be
considered unjust, following both efficiency and fairness considerations, observing too high
contributions by “poorer” players and too low contributions by “richer” players. This im-
plies that there might be a biased perception of heterogeneities between agents in collective
action problems, leading to far from optimal burden-sharing in public goods provision.

TPGGs have been studied for a long time, both theoretically and experimentally. In the
standard setting of the game, players simultaneously choose their individual contribution
level. Public goods provision occurs, if a certain contribution threshold is reached. From a
theoretical point of view, Bagnoli and Lipman (1989) discuss the “one-streetlight-problem”,
in which a group of neighbours wants to set up a streetlight and collect funds to do so.
They essentially show that a “provision point mechanism” such as a TPGG achieves to
alleviate the free-rider problem of public goods provision to some extent. In another early
contribution, Palfrey and Rosenthal (1984) give the example of collecting money for a new
office coffee pot, discussing the effect of differing refunding rules if not sufficient funds accrue.

In experimental setups, the specific rules of the game are very diverse and therefore only
allow for limited comparison. To what extent contributions are multiplied in case of provi-
sion and whether contributions are wasted or (partially) refunded in case of non-provision,
therefore varies depending on the specific research question and context (for an overview of
early experiments see Croson and Marks 2000). Also, group sizes and whether games are
repeated or one-shot heavily vary and influence findings. Here I will focus on contributions
related to heterogeneity among players both in a general context as well as related to cli-
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mate change. Within-group heterogeneity has been found to influence player’s willingness
to contribute to collective goods (Rapoport and Suleiman 1993; McGinty and Milam 2013;
Fischbacher et al. 2014; Gavrilets 2015), where players can be unequal with respect to their
wealth (endowments), their contribution costs, as well as to how non-provision affects their
welfare. The degree to which heterogeneity affects successful provision strongly interacts
with the specific rules of the game and experiment design, where both positive and negative
effects are possible.

A very active and recent literature on TPGGs is specifically set in an environmental context,
mirroring the fact that costly mitigation pledges in international environmental agreements
are public goods and that there are uncertainties concerning the amount of contributions
necessary to make a treaty sufficiently stringent. While even with a known threshold co-
ordination among players proves to be difficult, threshold uncertainty has received a lot of
attention and is found to be detrimental to cooperation, since players tend to inaction when
contributions are more risky (McBride 2010; Barrett and Dannenberg 2012; Dannenberg
et al. 2015). Another complicating factor for coordination is players having differentiated
stakes in the game, which is is where we put our main focus.

Evidence on how heterogeneity across agents affects the likelihood of public goods provision
is also mixed in the environmental literature. Tavoni et al. (2011) show that inequality in
individual endowments hampers successful provision. While in their experiment the thresh-
old level is certain, damages from not reaching it materialise only with a probability of
50%. Additionally, they allow for communication in the form of pledges, which is shown to
promote coordination. However, they find that the “poor” subjects are not willing to com-
pensate for inaction of the “rich” and thus the paper underlines the importance for early
leadership by the wealthy. Waichman et al. (2021), to some extent contrasting the findings
from Tavoni et al. (2011), show that heterogeneity does not necessarily lead to lower suc-
cess rates in public goods provision. In their study, they differentiate between two types
of heterogeneity: wealth (endowment) and expected loss heterogeneity and find that in the
latter specification, the success rate in meeting the threshold is higher than under symmetry,
concluding that heterogeneity might not only be an obstacle. Burton-Chellew et al. (2013)
also investigate a double heterogeneity setting, however, suggest that if there exists hetero-
geneity in wealth, groups are less likely to reach the threshold if the poorer participant are
more heavily affected from climate damages. The experiment of Feige et al. (2018) analyses
the effect of a non-binding voting procedure, where players are heterogeneous with respect
to marginal contribution costs and play a repeated TPGG with an uncertain threshold in
groups of four. Similarly to my setup, multiple equilibria exist which differ in the way con-
tributions are split between players. They find that the predominant burden-share is that
of equal contribution costs, which in their experiment also coincides with equal payoffs.
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This paper adds a number of novel insights to the literature. To our knowledge we are
the first to analyse a TPGG with heterogeneous public good preferences in combination
with quadratic contribution costs. Also, analysing the effect of player heterogeneity in one-
shot games without communication allows for a detailed discussion of the isolated role of
asymmetric preferences as well as of varying social value of the public good. The convex cost
specification allows for the investigation of the trade-off experimental subjects face between
efficiency and equity. Even though convex contribution costs pose a conceptual challenge
to participants, this degree of complexity is within reason due to the provision of a payoff
calculator, which supports subjects in their understanding of the payoff structure. Finally,
from a methodological point of view, the application of a sequential matching procedure
is novel and renders it possible to generate a high number of observations compared to if
players were playing in groups.

2 Theoretical Background

I consider a threshold public goods game with a threshold level T that is known with
certainty. The game is played one-shot among two players called 1 and 2, in the following
indexed by i, j, where i ∈ {1, 2} and j 6= i. Players may have different benefits from public
goods provision, captured by the preference parameter θi, but they have identical quadratic
contribution costs. In case contributions are not sufficient to reach the threshold, players lose
a fraction q ∈ [0, 1] of their investment. The specific payoff functions are given as follows:

Ui(θi, xi) =

bTθi − 1
2cx

2
i if xi + xj ≥ T

q(−1
2cx

2
i ) otherwise

i, j = 1, 2, j 6= i, c > 0. (1)

If the contribution of the other player is above the threshold T , it is optimal for player i
to contribute zero. In case of xj < T , there exists a cut-off value xj which determines the
minimum contribution of the opponent player such that it’s a best response of agent i to
contribute a positive amount. Above the cut-off value, the best response is to contribute
such as to just reach the threshold. Below this cut-off value, the best response is not to
contribute. In summary:

xi =


0 if xj ≥ T

T − xj if xj ≤ xj < T

0 if xj < xj

i, j = 1, 2 j 6= i, (2)
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where the cut-off value is type-dependent and is implicitly defined as the contribution level
at which a player has a payoff of zero:

Ui(T − xj |’provision’) = Ui(0|’no provision’)

bTθi −
1
2c(T − xj)2 = 0, i, j = 1, 2 j 6= i. (3)

This leads to the following cutoff-values and maximum contribution levels of both players:

xi(θj) = T −

√
2b
c
Tθj , x̄i(θi) =

√
2b
c
Tθi i, j = 1, 2 j 6= i. (4)

Hence, there exists a continuum of equilibria, all of which just reach the threshold and, in
addition, the no contribution equilibrium (xi, xj) = (0, 0). The continuum is characterised
as follows:

C =
{

(xi, xj)
∣∣ xi ∈ {xi, x̄i}, xj ∈ {xj , x̄j}, xi + xj = T

}
. (5)

Figure 1 shows the equilibria of the game with symmetric players, that is θi = θj , indicated
by the fact that cut-off values are symmetric as well. The grey line illustrates the continuum
(5).

Figure 1: Illustration of the equilibrium interval and the no-contribution equilibrium.

The equilibrium interval narrows as the valuation of the public good decreases (lower values

5



of θ), as stated by (6) and (7).

Point A:
dxj(θi)
dθi

< 0 , dx̄i(θi)
dθi

> 0. (6)

Point B: dxi(θj)
dθj

< 0 , dx̄j(θj)
dθj

> 0. (7)

2.1 Focal points

While all the points on the interval are equilibria, some of them can be interpreted as
focal. In this section, I will highlight two such points, which are the efficient allocation that
maximises joint payoff as well as an allocation which can be considered as fair, since it
equally splits the gains from cooperation.

Efficiency

I define efficiency as the allocation that maximises joint payoff of players 1 and 2. Due to the
fact that both players have the same quadratic contribution costs, the efficient allocation is
given by the equal split allocation, that is xi = xj = T

2 , as long as the benefits of provision
outweigh the costs, that is when bT (θi +θj) > 2c(T

2 )2. This can be seen by maximising joint
payoffs given as follows:

max
xi,xj

2∑
i=1

Ui(θi, xi) = (θi + θj)bT − 1
2c(x

2
1 + x2

2) s.t. x1 + x2 ≥ T, (x1, x2) ∈ C (8)

Maximising joint payoff is a standard cost minimisation problem subject to the constraint
that the threshold is reached. First, it is efficient to reach the threshold with precision, since
any contribution beyond is wasteful. Second, the cost function C = 1

2c(x
2
1 + x2

2) reaches a
minimum at x1 = x2 and thus it is efficient for both to contribute half of the threshold.
However, throughout this paper, we will refer to the efficient Nash equilibrium as the effi-
cient allocation. Consequently, the equal split allocation is efficient, as long as it is in the
continuum C of Nash equilibrium.

Figure 2 illustrates that this corresponds to the intersection of the 45◦ line with the threshold
line. This allocation can be reached in equilibrium, as long as the equilibrium interval
covers this point. In case of sufficiently heterogeneous preferences for the public good, this
allocation, however, is not a Nash equilibrium. In this case, the most cost-efficient Nash
equilibrium is that at the boundary of the equilibrium closest to the 45◦ line. Lastly, if
public goods preferences are sufficiently small, the only and thus efficient equilibrium is the
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(a) Symmetry (b) (Strong) Asymmetry

Figure 2: Efficient allocation illustrated by ◦

no-contribution allocation. The efficient allocation, depending on the degree of preference
asymmetry can thus be summarised by:

(
xeff

1 , xeff
2

)
=



(
T
2 ,

T
2

)
if T

2 ∈ (xi, x̄i), i = 1, 2

(x̄1, T − x̄1) if T
2 6∈ (xi, x̄i), C 6= ∅, i = 1, 2 and θ2 > θ1

(T − x̄2, x̄2) if T
2 6∈ (xi, x̄i), C 6= ∅, i = 1, 2 and θ1 > θ2

(0, 0) otherwise.

(9)

Fairness

A possible conception of fairness is that players equally share the surplus generated from
reaching the threshold, which can be a second focal point. This is given by the center of
the equilibrium interval, given that it exists, as illustrated in Figure 3 and given by (10).
Otherwise, the fair allocation equals the no-contribution allocation.

(
xfair

1 , xfair
2

)
=


(

x̄1+x1
2 ,

x̄2+x2
2

)
if xi ≥ 0 i = 1, 2

(0, 0) otherwise
(10)

Considering Figures 2 and 3 we can see that while in the symmetric case the two points
overlap, as soon as there is preference asymmetry between the two players the values diverge.
Both focal points will be used as benchmarks in the analysis of the experimental data in
Section 4.
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(a) Symmetry (b) (Strong) Asymmetry

Figure 3: Fair allocation illustrated by ◦

Finally, note that there potentially exist different conceptions of fairness among players,
which would imply that this focal point is not the same for different players. One additional
example could be that of equal cost sharing, which in this specification would correspond to
equal contributions, coinciding with our definition of efficiency, as long as equal contribution
is a Nash equilibrium.

3 Experimental Design

In the experiment, two subjects interact as players 1 and 2, choosing contribution levels x1

and x2 with the goal of reaching a threshold level T . Each pair plays 25 rounds, where each
round differs with respect to assigned preference parameters for the public good θ1 and θ2.
The experiment can be interpreted as 25 rounds of one-shot games: players do not receive
any feedback on their co-player’s contribution and hence whether provision was successful
until after all 25 rounds have been played. By randomising the order of rounds, learning
and sequence effects are controlled for (see Section 4.1.2).

In the experimental setup, both T and b are normalised to 1 without loss of generality, while
the cost parameter c is set to 10. Further, we set q = 0.1, meaning that players lose 10% of
their contributions if the threshold is not reached. Contributions can be interpreted as per-
centage share of the investment. This simplifies the maximum contribution level according
to (4) as follows:

x̄i =
√

0.2θi, i = 1, 2. (11)
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Consequently:

xi = 1−
√

0.2θj , i, j = 1, 2, j 6= i. (12)

The equilibrium interval (5) thus becomes:

C =
{

(xi, xj)
∣∣∣ xi ∈

{
1−

√
0.2θj ,

√
0.2θi

}
, xj ∈

{
1−

√
0.2θi,

√
0.2θj

}
, xi + xj = T

}
.

(13)

This interval reduces to a single point if x̄1 = x̄2 = 0.5, which holds for θ1 = θ2 = 1.25.
Hence, if θi < 1.25, the equal split allocation is outside of the equilibrium interval. Con-
versely, the full diagonal would be part of the equilibrium interval if x̄1 = x̄2 = 1, which is
the case for θ1 = θ2 = 5.

The set of assigned preference parameters is given by θi ∈ {0.75, 1.25, 2.5, 3.75, 4.25}, where
all possible combinations among two subjects are played across the 25 rounds. This implies
three different types of treatments in terms of preference asymmetry (illustrated in Figure
4), defined as follows:

• Symmetry (5 rounds): θ1 = θ2,

• Asymmetry (12 rounds): θ1 6= θ2 and θi 6= 0.75 for i = 1, 2,

• Strong asymmetry (8 rounds): θ1 6= θ2 and θi = 0.75 for either i = 1, 2.

(a) Symmetry (b) Asymmetry (c) Strong Asymmetry

Figure 4: Treatment types

Furthermore, this specification allows to disentangle the effects of preference heterogeneity
and varying aggregate value of the public good. The latter relates to the fact that successful
provision is expected to be easier if players value the public good more on aggregate. In
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order to isolate the effect of preference heterogeneity, five treatments keep the aggregate
value of the public good constant at θ1 + θ2 = 5, and therefore constitute a special set of
games:

• Constant social value: θ1 + θ2 = 5
(θ1, θ2) = (2.5, 2.5), (0.75, 4.25), (1.25, 3.75), (3.75, 1.25), (4.25, 0.75)

Within this set, all three treatment types are represented. Note that for half of the remaining
20 treatments, the aggregate value of the public good is either higher or lower than 5. In
Table 5 in the Appendix, a full overview over the 25 games is provided.

3.1 Hypotheses

The general aim of the experiment is to determine:

(i) How often the threshold is reached (success rate) and with which precision (deviation
from threshold),

(ii) how contributions x1 and x2 compare (burden-sharing),

(iii) and how contributions compare to focal equilibrium points (deviation from fair/efficient).

I analyse how these insights are affected by the width and location of the equilibrium
interval (5). Successful public good provision implies some implicit coordination on how
to split contributions towards the threshold. This implicit coordination may be facilitated
by focal points, where both efficiency and fairness, as defined in Section 2.1, may serve as
such. As stated, under symmetry the two focal points coincide, while under asymmetry they
diverge, conceivably hindering coordination. On top of that, in strongly asymmetric games,
the equal split allocation is not available and thus no longer coincides with either of the two
focal points, making coordination even more difficult. This leads to the following hypothesis:

Hypothesis 1 (Coordination and Preference Asymmetry)
Coordination is easier in symmetric games than in asymmetric games, making successful
public good provision more frequent in symmetric games. Coordination is hardest and thus
provision least frequent in strongly asymmetric games.

In addition, implicit coordination may be more difficult the larger the continuum C of Nash
equilibria, as there are more options to profitably deviate from one of the focal points.
However, at the same time a larger equilibrium interval also implies higher benefits (social
value) of successful public goods provision, which should facilitate reaching the threshold.
Therefore, we have two counteracting forces, which might harm or improve success rates,
leading to the second hypothesis:
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Hypothesis 2 (Coordination and Social Value)
The relation between increasing social value of the public good and the success rate of public
good provision is non-monotonic.

3.2 Implementation

The experiment was programmed by Expilab Research and consisted of four main phases. In
the first phase, participants expressed consent and commitment to participate in the study
and were then shown detailed instructions for the experiment and informed about compen-
sation (fixed fee of 5£, bonus payment depending on average payoff across 25 rounds). In the
next phase, participants had to complete three rounds of a tutorial aimed at testing their
grasp of the provided payoff calculator. The third and main phase of the study consisted
of the 25 rounds of the game. In each round, participants were given the parameters of the
game (which changed across rounds) as well as a payoff calculator, as depicted in Figure 5.
The payoff calculator provided two sliders for contribution levels x1 and x2 ranging from
0% to 100% in 1% increments. At the beginning of each round, the sliders were not set to
any value in order to avoid framing effects (as pictured in Figure 5b). This payoff calculator
allowed them to easily determine their own, their co-player’s and joint payoff depending on
contribution levels. For each round, players then had to choose an actual contribution level
xi and also indicate, what contribution xj they expect their co-player to make1.

(a) Game parameters (b) Payoff calculator

(c) Contribution choice xi (d) Expected contribution xj

Figure 5: Screenshots from main phase of experiment.

After the subjects completed 25 rounds of the game, the final phase followed in the form of a

1 Due to technical issues, the expectation of xj was not recorded throughout the experiment and can thus
not be used in the data analysis.
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questionnaire. Here, participants indicated demographic information and were asked about
various aspects of the game. An overview of questionnaire replies is given in Section 4.1.1.
Finally, participants received a completion code, which allowed them to retrieve compen-
sation for participating in the study. After rounds 8 and 16 attention checks were included
to ensure continuous attention of experimental subjects. The questions were completely un-
related to the experiment and concerned favourite fruits and cities. If a subject failed an
attention check, the experiment was discontinued, which occurred one time.

As players played 25 rounds of a one-shot game without feedback after each round, it was
not necessary for players to play the game simultaneously (as of calendar time) in pairs.
In order to determine each player’s payoff at the end of the 25 rounds, all players were
matched with the player who at their respective start time had most recently completed
the experiment. The contribution choices of this matched co-player thus served as j values
for player i. This, however, meant that some participants were chosen as the co-player
of multiple other subjects, giving their contribution choices a higher weight in the total
dataset, while some players’ contribution choices never appear as player j. While this was the
matching procedure relevant for the computation of the bonus payments, the data analysis
will be based on a randomised matching in which each player is randomly determined to be
one other participant’s co-player.

4 Results

The results of the experiment will be reported in three parts. First, an overview of the
subject pool will be provided with respect to demographics as well as detailing participants’
responses in the post-experiment questionnaire. Also, a potential learning effect over the
course of the experiment will be discussed. Second, a focus is put on symmetric treatments
in order to address the interaction of interval width and the success rate and thus Hypothesis
1. Third, I will discuss constant social value games, asymmetric games as well as strongly
asymmetric games separately in order to focus on the isolated effect of preference asymmetry
from different angles, addressing Hypothesis 2.

4.1 Overview

The experiment was conducted on 20 January 2023 on the platform Prolific with a subject
pool of 106 participants based in the United Kingdom.
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4.1.1 Subject Pool

The subject panel is balanced in terms of gender and highly educated, with more than 60%
of participants having completed higher education. Figure 6 details the exact distribution
of gender and education. The mean age is 42 years, with the youngest participant being 20
and the oldest 71 years old. 89% of participants indicated English to be their first language.

Figure 6: Gender and education distribution

In the post-experiment questionnaire, participants on average indicated the level of difficulty
to be slightly above average with a mean of 3.69 on a scale of 0 (extremely easy) to 6
(extremely difficult). When asked about risk attitudes, more than half of participants stated
to be between risk neutral to risk prone, with the average being at 2.9 on a scale from 0
(extremely risk prone) to 6 (extremely risk averse). This might seem surprisingly high,
however, it has to be kept in mind that these are self-reported values rather than deducted
from a lottery. The subject pool quite evenly distributed on a scale from “very rarely” to
“very often” when asked about whether they tend to trust people. Almost all participants
indicated to have donated to charity before, with a frequency evenly ranging from “monthly”
to “at most 5 times in my life”. Finally, when asked about their skills at working with
fractions, subjects averaged a score of 3.63 on a scale from 0 (not good at all) to 6 (extremely
good).

Participants were also asked about their strategies and their perception of several aspects of
the game. A majority of subjects (53%) indicate that the allocation they perceive as fair is
the one in which players choose contributions such as to maximise joint payoff. Interestingly,
this corresponds to what we define as the efficient focal point. However, as pointed out in
Section 2.1, this could also be interpreted as “cost fairness”. Roughly a quarter of subjects
(23%) consider the allocation which ensures similar payoffs to both players as fair, which
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is also our definition of the fair focal point. Furthermore, 57% think that contributions
should be such that both players have a positive payoff, if possible. When asked about
picking the most difficult aspect of the game, the most frequent answers were “grasping
the differences between rounds” (37%) and “guessing contribution X2” (32%). The most
important rationale for contribution decisions for most players (49%) was “group efficiency”,
which was defined as maximising the joint income of players, followed by “monetary self-
interest” (17%) and “avoiding risk” (14%), the latter being defined as avoiding being alone
with a high contribution, potentially risking not reaching the threshold. A more detailed
picture of the post-experiment survey can be found in the appendix.

4.1.2 Sequence Effect

The different variants of the game were played in a randomised order for each subject, which
allows us to interpret each game as a one-shot game. However, it could theoretically be pos-
sible that subjects (i) experience a learning effect from playing the game and therefore their
performance might systematically improve over the rounds, or that (ii) player’s attention
or motivation decreases, leading to deteriorating performances. This is not what we see in
the data, illustrated by Figure 7.

(a) Deviation from fair (b) Success rate

Figure 7: No sequence effect over rounds.

Figure 7a shows the distribution of deviations from the fair contribution in each round of
the game, a measure comparable across different treatments, with the black dots indicating
means per round. Due to the fact that the order of games was randomised, in each round
a random mix of games was played. If there was a sequence effect from playing the game
for 25 rounds, we could expect to see a trend, which is not what is depicted. This visual
impression is confirmed by one-way ANOVA tests, with the null hypotheses being that there
is no difference between means across rounds. The null hypothesis is clearly not rejected (p =
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0.890). The same exercise can be done with the deviation from the efficient contribution,
where a one-way ANOVA test also clearly indicates that means are not significantly different
(p = 0.594), see Figure 30 in Appendix C. A second variable of interest is the success rate,
which is computed as the percentage share of games in which the threshold was successfully
reached. If subjects experienced a sequence effect, they might have reached the threshold
more or less frequently as rounds progressed. Figure 7b depicts average success rates per
round, the difference between which is not statistically significant (one-way ANOVA, p =
0.304). We therefore conclude that there is no significant sequence effect during the course
of the study.

4.2 Symmetry

In this section, I will focus on the five symmetric games, which will be referred to as games
S1–S5. Note that the preference parameters in S1 are so low that an efficient provision
of the public good is not possible. In S2, only the equal split and the no contribution
allocations ensure non-negative payoffs. For the remaining three games, it is efficient and
fair to choose the equal split allocation. Table 1 provides summary statistics. We can see
that for games S3–S5, the mean and medium contribution levels of player i are practicially
indistinguishable, which is confirmed by pairwise two-sided Wilcoxon rank-sum (WRS) tests
(S3 & S4 p = 0.176, S3 & S5 p = 0.842, S4 & S5 p = 0.241). Furthermore, the spread of
contributions in games S1 and S2 is visibly higher, as seen in Figure 8. Note that the mean
is indicated with a cross, where the bar corresponds to the median.

Table 1: Summary statistics for symmetric treatments

Game Type (θi, θj) mean xi median xi sd xi

S1 S (0.75, 0.75) 0.1578 0.0700 0.2107
S2 S (1.25, 1.25) 0.2728 0.2500 0.2301
S3 S (2.5, 2.5) 0.4873 0.5000 0.1623
S4 S (3.75, 3.75) 0.5102 0.5000 0.1701
S5 S (4.25, 4.25) 0.4929 0.5000 0.1904

The equal split allocation in symmetric games corresponds to the fair and efficient focal
point when available part of the equilibrium interval. In Game 1, only a contribution of zero
ensures a non-negative payoff, which is chosen most frequently (xi = 0 with 38.7%). For the
other four games, a contribution of 0.5 is on the equilibrium interval and as illustrated in
Figure 9 is focal. Note that in S2, contributions of zero and the equal split are equivalent
in terms of payoffs, that is, both equal to zero. Indeed, participants chose those two levels
with similar frequency (xi = 0 with 22.6%).
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(a) Contributions xi (b) Total contributions xi + xj

Figure 8: Distribution of contributions in symmetric games.

(a) S2: xi = 0.5 with 30.2% (b) S3: xi = 0.5 with 47.2%

(c) S4: xi = 0.5 with 48.1% (d) S5: xi = 0.5 with 40.6%

Figure 9: Contribution frequencies in the 5 symmetric games.
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Figure 10 illustrates the success rates for the symmetric games. Remember that in S1 it is
not possible to reach the threshold without incurring a negative joint payoff, where in S2
only the equal split allocation ensures a non-negative joint payoff, justifying the low success
rates. We can see that the success rate increases up until S4, but then decreases for S5. The
difference in the success rate, however, is not statistically significant between games S4 and
S5 (one-sided WRS test, p = 0.100). Increasing stakes, that is higher social value, tend to
increase provision success more than a narrower interval seems to facilitate coordination.
Still, it is notable that the success rate does not further increase after S4, despite the fact
that all focal points coincide, suggesting a potential non-linear relationship between the
interval width and the success rate, as suggested in Hypothesis 2.

Figure 10: Success rate in symmetric games.

Figure 11b depicts the groups which failed to meet the threshold and indicates the distance
distribution from total contributions to the threshold. The substantial distance in S1 and
S2 is not surprising, but interestingly in S5 the threshold was missed by more on average
than in the two other games (means S3–S5: −0.2223, −0.2094, −0.2479), even though in
this game the social value of the public good was the highest.

(a) Distance to threshold if succeeded (b) Distance to threshold if failed

Figure 11: Success and failure in symmetric games.
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Figure 11a analogously show the distribution of distances to the threshold for successful
groups. Note that the surprisingly high value for S1 can be attributed to the fact that
success in this game only occurred five times and thus is based on outlier values. The spread
of S2 contributions is very low and most values close to zero, mirroring the fact that only
the equal split yields non-negative payoffs. For S3–S5, the mean overshoot ranges from 0.114
to 0.145.

4.3 Effect of Asymmetry

This section highlights the effect of asymmetry from three different angles. First, keeping the
social value of the public good constant, I investigate how different degrees of asymmetry af-
fected success rates and burden-sharing among players. Second, focussing on the asymmetric
treatment type, I discuss how increasing one player’s stake in the game affects success and
contributions. Finally, the same exercise will be conducted for strongly asymmetric games.

4.3.1 Constant Social Value Games

We define the constant social value (CSV) treatments as the five games in which the sum of
θ values is equal to 5, and therefore the games in which the effect of asymmetry is isolated.
Note that CSV3 is identical to game S3 discussed in the previous section. The summary
statistics of the five games are given in Table 2 and contribution levels are illustrated in
Figure 12. In all five games it is possible to reach the threshold with a positive joint payoff.2

Table 2: Summary statistics for CSV treatments

Game Type (θi, θj) mean xi median xi sd xi

CSV1 SAS (0.75, 4.25) 0.3279 0.3000 0.2597
CSV2 AS (1.25, 3.75) 0.3663 0.3400 0.2277
CSV3 S (2.5, 2.5) 0.4873 0.5000 0.1623
CSV4 AS (3.75, 1.25) 0.5173 0.5100 0.2308
CSV5 SAS (4.25, 0.75) 0.5055 0.5250 0.2833

Figure 12a essentially pictures two groups of games between which contribution levels clearly
differ, that is games CSV1 and CSV2 in which asymmetry is against player i and the
remaining games CSV3–CSV5. The mean contribution level also significantly varies within

2 Note that theoretically speaking, games CSV1/CSV5 and CSV2/CSV4 are mirror games. However, be-
cause subjects did not play in fixed pairs, results based on xi and xj are not exactly identical for mirror
games. Example: Player a played CSV1 with their co-player b, but player b played CSV5 with their co-
player c.

18



the first group (one-sided WRS test, p = 0.043) as well as between CSV4 and the two others
(pairwise one-sided WRS test, CSV3 & CSV4 p = 0.015, CSV3 & CSV5 p = 0.041). The
spread of contributions is lowest in the symmetric game.

(a) Contributions xi (b) Total contributions xi + xj

Figure 12: Distribution of contributions in CSV games.

As seen in Figure 12b, on average, total contributions are highest in the symmetric game
CSV3, with the difference being significantly different to all four games (pairwise one-sided
WRS test, highest p = 0.014).
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(a) CSV1: xi = 0.5 with 5.7% (b) CSV2: xi = 0.5 with 13.2%

(c) CSV4: xi = 0.5 with 16.0% (d) CSV5: xi = 0.5 with 11.3%

Figure 13: Contribution frequencies in the asymmetric constant social value games.

The equal split contribution is less frequent than in AS and SAS games than in CSV3,
as seen by comparing the frequency of xi = 0.5 contributions between Figure 9b and 13.
While, with the exception of CSV1, the equal split is still the contribution level with the
highest count in asymmetric games, however, only with a maximum share of 16% compared
to 47.2% in Game CSV3.

The difference in success rates between symmetric and asymmetric/strongly asymmetric
games is statistically significant (two-sided WRS test, pair-wise between all games, max. p =
0.0093). The difference between AS and SAS games is, however, not statistically significant
(two-sided WRS test, CSV1 & CSV2 p = 0.7773, CSV4 & CSV5 p = 0.8899). This implies
that while the first part of Hypothesis 1 can be confirmed, the second is rejected.

Yet, the success rate only gives an average over the whole sample, without detailing by how
much the threshold was missed or overshot. Figure 15 illustrates these average distances to
the threshold for the five CSV games. We can see that values for CSV2 and CSV4 (AS)
are less noisy than for CSV1 and CSV5 (SAS). Interestingly, the mean overshoot for the
strongly asymmetric games is 0.226 and 0.190 and the mean “miss” is by 0.386 and 0.401
respectively, all higher in absolute terms than for the asymmetric games. This indicates that
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Figure 14: Success rates in CSV games.

even though there is no discernible difference in success rates, play in SAS games was more
erratic than in AS games. This U-shape (reverse U-shape) is completed by the values for
CSV3, where both overshoot and miss are closest to zero.

(a) Distance to threshold if succeeded (b) Distance to threshold if failed

Figure 15: Success and failure in CSV games.

Burden-sharing is usually defined by the the relative size of one player’s contribution level to
total contributions (see e.g. Waichman et al. 2021). However, in our quadratic cost setup, the
actual burden a player faces is the contribution cost, the share of which does not correspond
to the contribution share as in a linear setting. We therefore define the burden-share of player
i as the relative share of their costs to total costs as given by:

sharei = c(xi)
c(xi) + c(xj) = 5x2

i

5x2
i + 5x2

j

(14)

Figure 16 illustrates the distribution of cost shares across the five games. The mean contri-
bution share in the symmetric game is significantly different to the asymmetric and strongly
asymmetric games (pairwise one-sided WRS tests, highest p = 0.0004) whereas the means
between CSV1 and CSV2 as well as CSV3 and CSV4 do not differ significantly. However, the
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cost shares differ with respect to their spread: in strongly asymmetric games, contribution
shares have a higher variance, also indicated visually by the wider box.

Figure 16: Distribution of cost shares in CSV games.

We can also compare the cost shares between successful and unsuccessful games, plotting
them against the cost shares corresponding to the fair and efficient focal points, as defined in
Section 2.1. Figure 17 illustrates this for all five CSV games. For the symmetric game CSV3
(see Figure 17c) we can see that the burden share between the successful and unsuccessful
groups was practically identical (means 0.4977 and 0.4992), both at the focal points of
efficiency and fairness. The main difference between the success and failure groups, however,
lies in the spread of the contribution shares, with the standard deviation being much higher
for failed groups (see sds for successful and sdf for failed groups). This implies that while
on average the contribution share was fair and efficient, individual contribution levels were
more erratic, leading to threshold misses.

A similar picture follows for asymmetric and strongly asymmetric games, that is, the mean
contribution share does not differ largely between successful and failed groups, whereas the
variance does. The most striking difference between asymmetric games CSV2 and CS4 and
strongly asymmetric games CSV1 and CSV5 lies in the fact that in the former group, cost
sharing is too equal compared to what would be both fair or efficient, whereas in the latter
group, cost shares lie in between the two focal points. This implies that players seem to
play both types of games very similarly, which leads to especially unequal burden-sharing
in the case of strongly asymmetric games. Note that the efficient focal point for SAS games
implies that the “richer” player receives the full surplus from cooperation, and we see that
on average, poor players contribute even beyond this point.
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(a) CSV1: sds = 0.2605, sdf = 0.3907 (b) CSV2: sds = 0.2347, sdf = 0.3488

(c) CSV3: sds = 0.1195, sdf = 0.3004

(d) CSV4: sds = 0.2309, sdf = 0.3483 (e) CSV5: sds = 0.2523, sdf = 0.3857

Figure 17: Burden sharing in success vs. failure games
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4.3.2 Asymmetric Games

The treatment type of asymmetric games is characterised by the existence of an equilibrium
interval in which the equal split allocation is contained. Henceforth we will divide them into
four subgroups, keeping the preference parameter of player i fixed and analyse contribution
levels and success rates accordingly. Table 3 provides summary statistics.

Table 3: Summary statistics asymmetric treatments.

Game Type (θi, θj) mean xi median xi sd xi

AS1 AS (1.25, 2.5) 0.3717 0.4000 0.1960
AS2 AS (1.25, 3.75) 0.3663 0.3400 0.2277
AS3 AS (1.25, 4.25) 0.3524 0.3100 0.2190
AS4 AS (2.5, 1.25) 0.4507 0.5000 0.2340
AS5 AS (2.5, 3.75) 0.4567 0.4600 0.2054
AS6 AS (2.5, 4.25) 0.4154 0.4000 0.1756
AS7 AS (3.75, 1.25) 0.5173 0.5100 0.2308
AS8 AS (3.75, 2.5) 0.5025 0.5000 0.2014
AS9 AS (3.75, 4.25) 0.4924 0.5000 0.1820
AS10 AS (4.25, 1.25) 0.5331 0.5450 0.2323
AS11 AS (4.25, 2.5) 0.5374 0.5450 0.1984
AS12 AS (4.25, 3.75) 0.5020 0.5000 0.1686

Figure 18a illustrates contribution levels, which we would expect to decrease from both
AS1–AS3 and from AS4–AS6. Mean contributions do not significantly decrease from AS1–
AS3 (pairwise one-sided WRS, lowest p = 0.076), where average contributions in AS6, which
is the most asymmetric game in this subgroup, is significantly lower than in AS4 and AS5
(pairwise one-sided WRS, highest p = 0.044). Figure 18b analogously depicts the third and
fourth subgroup, where we would expect contributions to decrease from AS7–AS9 as well as
from AS10–AS12. The only statistically signifcant mean difference is between AS7 and AS9
(one-sided WRS, p = 0.034). Note that the most asymmetric games, that is AS3 and AS10,
have among the highest contribution spreads, mirroring the more erratic play as asymmetry
is increased.
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(a) AS1–AS6 (b) AS7–AS12

Figure 18: Contribution distribution in asymmetric games.

When looking at success rates, we have to consider two forces at play: the social value
of the public good and the degree of asymmetry. We hypothesise that increasing the first
should facilitate provision and increasing the latter is expected to hamper success. In the
first subgroup, illustrated in Figure 19a, the two forces counteract each other (higher stakes
combined with higher asymmetry) and therefore, it is unclear which effect will prevail, which
shows in no statistically significant differences in success rates within games AS1–AS3. In
the second subgroup, the success rate of AS4 is significantly lower compared to the other
two (pairwise one-sided WRS, highest p = 0.045), which is unsurprising due to the low
stakes. The difference between AS5 and AS6 is not significant, but the decreasing success
rate hints at the existence of a harmful effect of asymmetry. The other two subgroups are
depicted in Figure 19b. The success rates are significantly different between AS7 and AS9
(one-sided WRS, p = 0.037) and between AS12 and the other two (pairwise one-sided WRS,
highest p = 0.037), the latter difference confirming that a simultaneous increase in stakes
and decrease in asymmetry facilitates provision.

(a) AS1–AS6 (b) AS7–AS12

Figure 19: Success rates in asymmetric games.
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4.3.3 Strongly Asymmetric Games

By definition, strongly asymmetric games are those in which one of the two players has
a preference parameter of 0.75, meaning that the equal split allocation is not part of the
equilibrium interval. Therefore, in these games, in order to reach the threshold, the player
with the higher preference parameter would have to step up and contribute significantly
more than half of the threshold. Note that in SAS1 and SAS5 provision is never efficient,
since the “richer” player does not have sufficiently high benefits in order to contribute
enough to reach the threshold in a way that both players have a non-negative payoff. Table
4 provides summary statistics for the two subgroups of this treatment type, where in SAS1–
SAS4 asymmetry is against player i and in SAS5–SAS8 asymmetry is in favour of player i.
Note that the efficient contribution split in strongly asymmetric games would be 0.387/0.613
for the poorer and richer player respectively.

Table 4: Summary statistics for strongly asymmetric treatments.

Game Type (θi, θj) mean xi median xi sd xi

SAS1 SAS (0.75, 1.25) 0.2010 0.0900 0.2379
SAS2 SAS (0.75, 2.5) 0.2899 0.3000 0.2525
SAS3 SAS (0.75, 3.75) 0.3120 0.3000 0.2295
SAS4 SAS (0.75, 4.25) 0.3279 0.3000 0.2597
SAS5 SAS (1.25, 0.75) 0.2034 0.0850 0.2539
SAS6 SAS (2.5, 0.75) 0.3626 0.4000 0.2799
SAS7 SAS (3.75, 0.75) 0.4893 0.5000 0.2628
SAS8 SAS (4.25, 0.75) 0.5250 0.5055 0.2833

We can see that while means are significantly lower in SAS1 and SAS5 compared to the
other games, average contributions are clearly positive, while median contributions are sig-
nificantly lower, implying that this relatively high average is driven by few players who
contributed highly above their means. The standard deviation is substantial across all 8
games. We can also see that in the game in which asymmetry is most in favour of player i,
that is SAS8, they on average only contribute slightly above the equal split, which is not
enough to ensure a provision combined with a non-negative payoff by their co-player. Figure
20a illustrates these facts.

Figure 20b picture success rates across the 8 games. Finally, note that the two groups SAS1–
SAS4 (asymmetry against i) and SAS5–SAS8 (asymmetry in favour of i) consist of pairwise
mirror games and therefore illustrate the same trend: keeping one preference parameter at
0.75, increasing stakes similarly lift the success rate.
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(a) Contribution distribution (b) Success rates

Figure 20: Contribution and success rates in strongly asymmetric games.

5 Conclusion

This paper discusses a one-shot threshold public goods game played in groups of two, in
which players have varying preferences for the public good. This gives rise to three treatment
types: symmetric, asymmetric and strongly asymmetric games, the last being characterised
by the fact that the equal split allocation is not feasible. For sufficiently high preference
parameters, an equilibrium interval emerges on the threshold line. Two potential focal equi-
librium points are discussed: the efficient equilibrium ensures minimised contribution costs
across players, whereas the fair equilibrium equally splits the surplus generated from pro-
vision. Furthermore, if on the equilibrium interval, the allocation in which both players
contribute half of the threshold level, is expected to be a focal point.

Our specific experimental specification implies that in symmetric treatments, all three focal
points of equal split, efficiency and fairness coincide. In asymmetric treatments, the fair
focal point diverges and furthermore for strongly asymmetric treatments, the equal split is
no longer an equilibrium. We thus hypothesise that provision success decreases in the degree
of asymmetry. Indeed we find that groups with symmetric players have a significantly higher
success rate in reaching the threshold than other treatment types. Surprisingly, the specific
degree of asymmetry has no effect on average provision success, yet when considering the
distribution of contributions, we see that volatility increases with stronger asymmetry. This
also leads to the fact that successful groups on average overshoot the threshold by most
in strongly asymmetric games, and analogously miss the threshold most clearly in failed
groups.

Within a subgroup of treatments in which the social value of the public good is constant,
burden-sharing between the two players is analysed. Results suggest that while experimen-
tal subjects notice and act on asymmetry, the degree of asymmetry is less salient than
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anticipated. This shows in relatively stable burden-sharing across a variety of asymmetric
specifications, resulting in the fact that “poor” players tend to contribute too much and
“rich” players too little compared to both the fair and efficient benchmark. This result hints
at a potentially biased perception of asymmetries, both from the perspective of the advan-
taged and disadvantaged players, leading to both relatively low success rates and unjust
cost sharing in asymmetric specifications. Re-contextualising this finding to the motivat-
ing example of international cooperation on climate change mitigation, this would imply
that wealthier nations might underestimate the degree to which their contributions have to
exceed that of poorer countries when aiming for either efficient or fair outcomes.
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Appendix

A Specifications

Table 5: Game Specifications

Game Type Name (θi, θj) Social value Efficient xi Fair xi

1 S S1 (0.75, 0.75) 1.5 0 0

2 SAS SAS1 (0.75, 1.25) 2 0 0

3 SAS SAS2 (0.75, 2.5) 3.25 0.387 0.340

4 SAS SAS3 (0.75, 3.75) 4.5 0.387 0.261

5 SAS CSV1/SAS4 (0.75, 4.25) 5 0.387 0.233

6 SAS SAS5 (1.25, 0.75) 2 0 0

7 S S2 (1.25, 1.25) 2.5 0 / 0.5 0.5

8 AS AS1 (1.25, 2.5) 3.75 0.5 0.396

9 AS CSV2/AS2 (1.25, 3.75) 5 0.5 0.317

10 AS AS3 (1.25, 4.25) 5.5 0.5 0.289

11 SAS SAS6 (2.5, 0.75) 3.25 0.613 0.660

12 AS AS4 (2.5, 1.25) 3.75 0.5 0.604

13 S S3/CSV3 (2.5, 2.5) 5 0.5 0.5

14 AS AS7 (2.5, 3.75) 6.25 0.5 0.421

15 AS AS8 (2.5, 4.25) 6.75 0.5 0.393

16 SAS SAS7 (3.75, 0.75) 4.5 0.613 0.739

17 AS CSV4/AS5 (3.75, 1.25) 5 0.5 0.683

18 AS AS9 (3.75, 2.5) 6.25 0.5 0.579

19 S S4 (3.75, 3.75) 7.5 0.5 0.500

20 AS AS11 (3.75, 4.25) 8 0.5 0.472

21 SAS CSV5/SAS8 (4.25, 0.75) 5 0.613 0.767

22 AS AS6 (4.25, 1.25) 5.5 0.5 0.711

23 AS AS10 (4.25, 2.5) 6.75 0.5 0.607

24 AS AS12 (4.25, 3.75) 8 0.5 0.528

25 S S5 (4.25, 4.25) 8.5 0.5 0.5
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B Subject Pool Demographics

Question: Was the experiment difficult to understand?

Figure 21: Difficulty

Question: Are you generally a person who is fully prepared to take risks (risk prone) or do
you try to avoid taking risks (risk averse)?

Figure 22: Risk attitude

Question: Generally speaking, how often do you trust others?

Figure 23: Trust

Choices “never” and “always” were never selected.
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Question: How good are you at working with fractions (e.g. “one fifth of something”) or
percentages (e.g. “20% of something”)?

Figure 24: Fraction skills

Question: Have you ever donated money or goods to a charitable organisation? If yes, how
frequently?

Figure 25: Donations

Question: Which of the following guiding principles best describes your understanding of
fairness in the context of the experiment you took part in (the 25 rounds you played before)?

Answers:

(a) The player with the highest benefit from contributing to the project should invest
more in it, such that payoffs are roughly the same for both players.

(b) Both players should choose 50%, irrespective of relative benefit numbers.

(c) Both players should choose 0%, irrespective of relative benefit numbers.

(d) Both players should choose what’s in their own best interest, i.e. maximizes own
payoffs.

(e) Players should choose the values of X1 and X2 that maximize the joint payoffs (i.e.
the sum of the payoff from player 1 and player 2)
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Figure 26: Understanding of fairness

Question: Assume that benefit numbers are such that joint payoff can be positive. Which
of the following statements do you agree with most?

Answers:

(a) Players should choose contributions such that both players have a positive payoff.

(b) Players should prioritize reaching the threshold, irrespective of whether individual
payoffs are positive.

(c) Both players should contribute their fair share in order to reach the threshold.

(d) The threshold should be met with precision such as to not waste any investments.

Figure 27: Statements
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Question: Please pick the MOST difficult aspect of the experiment.

Answers:

(a) None

(b) Using the payoff calculator

(c) Guessing contribution X2

(d) Choosing contribution X1

(e) Grasping the differences between rounds.

(f) Something else

Figure 28: Most difficult aspect

Question: What was the MOST important rationale for your decisions during the experi-
ment?

Answers:

(a) Monetary self-interest (i.e. maximising own income)

(b) Group efficiency (i.e. maximising joint income of both players)

(c) Minimise time spent on the task

(d) Avoiding risk (i.e. avoiding being the “sucker” who contributes a high fraction when
co-player contributes little, potentially risking not reaching the threshold)

(e) Reciprocity (i.e. contributing a similar fraction to the one that the co-player was
expected to contribute)
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(f) Outperforming the co-player (i.e. earning a higher income than s/he)

(g) Contributing a bit extra as a precaution, such as to increase the likelihood of reaching
the threshold

(h) Other

Figure 29: Most important rationale

C Further Results

Sequence effects

Note that for Figures 7a and 30, the games for which a clear fair or efficient allocation
cannot be defined, have been removed from the dataset, which are games 1, 2, 6, 7 for fair
and game 7 for efficient.

Figure 30: Deviation from efficient
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