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Abstract

We use panel probit models with unobserved heterogeneity, state-
dependence and serially correlated errors in order to analyze the de-
terminants and the dynamics of current-account reversals for a panel
of developing and emerging countries. The likelihood-based inference
of these models requires high-dimensional integration for which we
use Efficient Importance Sampling (EIS). Our results suggest that
current account balance, terms of trades, foreign reserves and conces-
sional debt are important determinants of current-account reversal.
Furthermore, we find strong evidence for serial dependence in the
occurrence of reversals. While the likelihood criterion suggest that
state-dependence and serially correlated errors are essentially obser-
vationally equivalent, measures of predictive performance provide sup-
port for the hypothesis that the serial dependence is mainly due to
serially correlated country-specific shocks related to local political or
macroeconomic events.
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1 Introduction

The determinants of current account reversals and their consequences for coun-
tries” economic performance have received a lot of attention following the currency
crises of the 1990s. They have found renewed interest because of the huge US
current account deficit in recent years. The importance of the current account
comes from its interpretation as a restriction on countries’ expenditure capabili-
ties. Expenditure restrictions, generated by sudden stops and/or currency crises,
can generate current account reversals, worsen an economic crises or even trig-
ger one (see, e.g., Milesi-Ferretti and Razin, 1996, 1998, 2000, and Obstfeld and
Rogoff, 2004). Typical issues addressed in the recent literature are: The extent
to which current account reversals affect economic growth (Milesi-Ferretti and
Razin, 2000, and Edwards, 2004a,b); The sustainability of large current account
deficits for significant periods of time (Milesi-Ferretti and Razin, 2000); and pos-
sible causes for current account reversals (Milesi-Ferretti and Razin, 1998, and
Edwards, 2004a,b). Our paper proposes to analyze the latter issue in the context
of dynamic panel probit models, paying special attention to the potential serial
dependence inherent to the occurrence of current account reversals.

Milesi-Ferretti and Razin (1998) and Edwards (2004a,b) use panel probit mod-
els with time and country specific dummies in order to investigate the determi-
nants of current account reversals. While Milesi-Ferretti and Razin analyze a
panel of low- and middle-income countries, Edwards also includes industrialized
countries. These studies focus on tests of theoretical predictions relative to the
causes of current account reversals, which are mainly motivated by the need to
ensure that a country remains solvent. They paid less attention to potential inter-
temporal linkages among current account reversals and the duration of reversal
processes.

However, there are several reasons to expect serial persistence in current ac-
count reversals. For example, a full current account adjustment from a non-
sustainable towards a sustainable level might take several periods since responses
of international trade flows are characterized by a fairly high degree of inertia
(see, e.g., Junz and Rhomberg, 1973). Furthermore, past current account re-
versals might change the constraints and conditions relevant to the occurrence
of another reversal in the future, as argued, e.g., by Falcetti and Tudela (2006)

within the context of a panel analysis of currency crisis. Both scenarios would lead



to state dependence (lagged dependent variable), whereby a country’s propensity
to experience a reversal depends on wether or not it experienced a reversal in the
past (see, e.g., Heckman 1981). Following Falcetti and Tudela (2006), additional
potential sources of serial dependence are unobserved time-invariant heterogene-
ity (random country specific effects) reflecting differences in institutional, political
or economic factors across countries, as well as unobserved transitory differences
(serially correlated country-specific errors) which might be the result of omitted
serially correlated macroeconomic factors or serially correlated country-specific
shocks!.

However, unobserved and serially correlated transitory effects might be also
common to all countries (serially correlated time-specific effects). As such they
might reflect global shocks like oil and other commodity price shocks or, as we
shall argue below, contagion effects. In particular, following the financial turbu-
lences of the 1990s, it is recognized that spillover effects are important, especially
for emerging economies. Common causes of contagion include transmission of lo-
cal shocks such as currency crises through trade links, competitive devaluations,
and financial links (see, e.g., Dornbusch et al., 2000).

In the present paper, we analyze the determinants and dynamics of current
account reversals for a panel of developing and emerging countries considering
alternative sources of persistence. Our starting point consists of a panel probit
model with state dependence and random country specific effects (Section 4.1).
Next, we analyze the robustness of this model against the introduction of corre-
lated idiosyncratic error components (Section 4.2) or serially correlated common
time effects (Section 4.3). We pay special attention to the predictive perfor-
mance of these alternative specifications relative to the timing and the duration
of reversal episodes.

Likelihood evaluation of panel probit models with unobserved heterogeneity
and dynamic error components is complicated by the fact that the computation
of the choice probabilities requires high-dimensional interdependent integrations.
The dimension of such integrals is typically given by the number of time periods

(T'), or if one allows for interaction between country specific and time random ef-

I'The notion that serial dependence could be due to unobserved permanent differences as
well as transitory differences was already addressed by Keane (1993) within a model of labor
supply. Keane was one of the first to estimate a panel probit model including both sources of
serial dependence.



fects by T+ N, where N is the number of countries. Efficient likelihood estimation
of such models generally relies upon Monte-Carlo (MC) integration techniques
(see, e.g., Geweke and Keane, 2001 and the references therein). Here we use the
Efficient Importance Sampling (EIS) MC methodology developed by Richard and
Zhang (2007), which represents a powerful and generic high dimensional simula-
tion technique. It relies on simple auxiliary Least-Squares regressions designed
to maximize the numerical accuracy of the likelihood integral approximations.
As illustrated in Liesenfeld and Richard (2008a,b), EIS is particularly well suited
to handle unobserved heterogeneity and serially correlated errors in panel mod-
els for binary and multinomial variables. In particular, as shown in Liesenfeld
and Richard (2008b), EIS substantially improves the numerical efficiency of the
GHK procedure of Geweke (1991), Hajivassiliou (1990), and Keane (1994), which
represents the most popular MC procedure used for the evaluation of choice prob-
abilities under dynamic panel probit models — see, e.g., Hyslop (1999), Greene
(2004), and Falcetti and Tudela (2006).

In conclusion of our introduction, we note that there are a number of other
studies which empirically analyze discrete events (macroeconomic and/or finan-
cial crises) using non-linear panel models. See, e.g., Calvo et al. (2004) on sud-
den stops or Eichengreen et al. (1995) and Frankel and Rose (1996) on currency
crises. The study most closely related to our paper with respect to the empirical
methodology is that of Falcetti and Tudela (2006), who analyze the determinants
of currency crises using a dynamic panel probit model accounting for different
sources of intertemporal linkages. However, contrary to our study, they do not
consider specifications capturing possible spillover effects of crises and their esti-
mation strategy is based on the standard GHK procedure.

The remainder of this paper is organized as follows. In the next section we
discuss possible determinants of current account reversals and reasons to expect
serial persistence in reversals. In Section 3 we describe the data set and introduce
the technical definition of current account reversal used in our analysis. Section 4
presents the dynamic panel probit models used to analyze current account rever-
sals. ML-estimation results are discussed in Section 5. Predictive performances
are compared in Section 6 and conclusions are drawn in Section 7. Details of
the EIS implementation for the models under consideration are regrouped in an

Appendix.



2 Determinants and Dynamics of Current Ac-

count Reversals

2.1 Determinants

Milesi-Feretti and Razin (1998) argue that the most obvious reason for a country
to experience a current account reversal is the need to ensure solvency, which
they relate to the stabilization of the ratio of external liabilities to GDP. Let ¢b*
denote the trade balance needed to ensure the stabilization of this ratio and b
the trade balance before the reversal. Then, abstracting from equity and foreign
direct investment flows and stocks, the reversal needed to ensure solvency can be

according to Milesi-Feretti and Razin (1998) written as

REV = tb* —tb = (rint* —app™ — gr*) -d — tb (1)
= [(rint* — rint) — app® — gr*] - d — (s — 1),

where rint is the real interest rate on external debt, gr is the growth rate of the
economy, app is the rate of real appreciation, d is the ratio of external debt to
GDP, and s and i are the shares of domestic savings and investment to GDP.
The variables indexed by a star denote the post-reversal level and those without
a star the pre-reversal level.

This simple framework points to several determinants for the occurrence of
large reductions in the current-account imbalance. The size of the reversal needed
to ensure solvency grows with the initial trade imbalance. Given the initial trade
imbalance, the size of the required reversal is increasing in the level of external
liabilities as well as in the rate of interest on external debt, while it is decreasing
in the growth rate. Note also that an increase in the world interest rate lowers
the interest rate differential, increasing the required reversal size. In fact, any
change in rint* and gr* will affect a country’s intertemporal budget constraint
and its current-account imbalance.

Further potential determinants for current account reversals are obtained from
models developed to analyze the ability of a country to sustain a large current
account deficit for significant periods of time — see, e.g., Milesi-Feretti and Razin
(1996). They indicate that the sustainability of an external imbalance and, there-

fore, the probability of its reduction depend on factors such as a country’s degree



of openness, its international reserves, its terms of trade and fiscal environment.

While the solvency condition characterized by Equation (1) helps identifying
potential causes for the occurrence of current account reversals, it is static and,
therefore, not helpful to discuss the dynamics of reversals. However, as discussed
further below, there are several reasons to expect serial dependence in the occur-
rence of large reductions of current account deficits. Within a panel probit model
for the analysis of the determinants of reversals they imply state dependence

and /or serially correlated error terms.

2.2 State dependence

Assuming that the domestic economy grows at a rate below the real interest rate
(adjusted by the rate of real appreciation), the solvency condition (1) requires a
trade surplus. This surplus is often obtained by currency devaluations. However,
while changes in exchange rate can be abrupt, subsequent changes in trade can
be much slower. See, e.g., Junz and Rhomberg (1973) who analyze the response
of international trade flows to changes in the exchange rate, and conclude that
the effects of price changes on trade flows usually stretch out over more than
three years. In particular, they argue that agents react with lags and identify
the following sources for delayed responses: a recognition lag, which is the time
it takes for economic agents to become aware of changes in the competitive envi-
ronment; a decision lag, which lasts from the moment in which the new situation
has been recognized to the one in which an action is undertaken (producers need
to be convinced that the new opportunities are long lasting and profitable enough
to compensate for adjustment costs); and finally, mostly technical lags in pro-
duction, delivery and substitution of materials and equipments in response to
relative price changes.

In line with these arguments, Himarios (1989) finds that nominal devaluations
result in significant real devaluations that last for at least three years, and that
real devaluations induce significant trade flows that are distributed over a two-
to three-year period. Therefore, the full current account adjustment implied by
Equation (1) might take longer than one year, leading to a state dependence for
yearly data such as those used below. In order to account for the possibility
that a reversal process stretches over more than a year after it is triggered, we

include the lagged dependent variable among the regressors of our panel-probit



specifications.

2.3 Serially correlated error terms

Further potential sources of serial dependence in the occurrence of large reduc-
tions in the current account imbalance are differences in the propensity to ex-
perience large reductions across countries. Such heterogeneity might be due to
time-invariant differences in institutional, political or economic factors which can
not be controlled for. In order to take these differences into account, we use a
random effect approach with a country-specific time-invariant error component,
which induces a cross-period correlation of the overall error terms. An alterna-
tive approach to capture time-invariant differences would be to use a model with
fixed effect based upon country-specific dummy variables, such as the one used in
the studies of Milesi-Ferretti and Razin (1998) and Edwards (2004a,b). However,
such a model requires the estimation of a large number of parameters, leading
to a significant loss of degrees freedom. Furthermore, the ML-estimator does not
exist as soon as the dependent variable does not vary (as shown in Table 1, our
data set includes countries that never experienced a reversal).

Unobserved differences in the propensity to experience large reductions in
the current account deficit could also be serially correlated, rather than time-
invariant. As such they might reflect serially correlated shocks associated with
regional conflicts, uncertainty about government transition and political changes,
as well as regional commodity price shocks affecting the probability of experienc-
ing current account reversals. In order to take those effects into account, we
assume an AR(1) specification for the country specific transitory error compo-
nent.

Finally, unobserved and serially correlated transitory effects might also be
common to all countries reflecting either contagion effects or global shocks such
as oil or commodity price shocks. The former have received a lot of attention
following the currency crises of the 1990s which rapidly spread across emerging
countries (see, e.g., Edwards and Rigobon, 2002). A crisis in one country may
lead investors to withdraw their investments from other markets without taking
into account differences in economic fundamentals. In addition, a crisis in one
economy can also affect the fundamentals of other countries through trade links

and currency devaluations. Trading partners of a country in which a financial



crisis has induced a sharp currency depreciation could experience a deterioration
of the trade balance and current account resulting from a decline in exports and
an increase in imports (see Corsetti et al., 1999). In the words of the former
Managing Director of the IMF: “from the viewpoint of the international system,
the devaluations in Asia will lead to large current account surpluses in those
countries, damaging the competitive position of other countries and requiring
them to run current account deficit.” Fisher (1998).

Currency devaluations of countries that experience a crisis can often be seen
as a beggar-thy-neighbor policy in the sense that they incite output growth and
employment domestically at the expense of output growth, employment and cur-
rent account deficit abroad (Corsetti et al., 1999). Competitive devaluations also
happen in response to this process, as other economies may in turn try to avoid
competitiveness loss through devaluations of their own currency. This appears
to have happened during the East Asian crises in 1997 (Dornbusch et al., 2000).

If data are collected at short enough time intervals (monthly or quarterly
observations), such spill-over effects would become manifest in the dependence
of a country’s propensity to experience a reversal from lagged reversals by other
countries. However, with yearly data the time intervals are presumably not fine
enough to observe such short-run spill-over effects of one country on another and
contagion would more likely translate into a common time effect. Hence, we use
an AR(1) time-random effect which is common to all countries in order to account

for contagion effects together with global shocks.

3 The Data

Our data set consists of an unbalanced panel for 60 low and middle income
countries from Africa, Asia, and Latin America and the Caribbean. The complete
list of countries is given on Table 1. The time span of the data set ranges from
1975 to 2004, although the unavailability of some explanatory variables often
restrict the analysis to shorter time intervals. The minimum number of periods
for a country is 9, the maximum is 18 and the average is 16.5 for a total of 963
yearly observations. The initial values of the binary dependent variable indicating
the occurrence of a current account crisis are known for the initial time period
t = 0 for all countries. The sources of the data are the World Bank’s World



Development Indicators (2005) and the Global Development Finance (2004).
Current account reversals are defined as in Milesi-Ferretti and Razin (1998).
According to this definition a current account reversal has to meet three require-
ments. The first is an average reduction of the current account deficit of at least
3 percentage points of GDP over a period of 3 years relative to the 3-year average
before the event. The second requirement is that the maximum deficit after the
reversal must be no larger than the minimum deficit in the 3 years preceding the
reversal. The last requirement is that the average current account deficit over the
3-year period starting with the event must be less than 10% of GDP. According
to this definition we find current account reversals for 100 individual periods in
44 countries (10% of the total number of observations). Defining the duration of
a reversal episode as the number of consecutive periods with a reversal we observe
66 episodes with an average duration of 1.52 years and a maximal duration of 4
years (see Figure 3 below for a plot of the relative frequencies of the durations).
As discussed in Section 2.1, the selection of the explanatory variables follows
mainly the study of Milesi-Ferretti and Razin (1998). We include lagged macroe-
conomic, external, debt and foreign variables. The macroeconomic variables are
the annual growth rate of GDP (AVGGROW), the share of investment to GDP
proxied by the ratio of gross capital formation to GDP (AVGINV), government
expenditure (GOV) and interest payments relative to GDP (INTPAY). The ex-
ternal variables are the current account balance as a fraction of GDP (AVGCA),
a terms of trade index set equal to 100 for the year 2000 (AVGTT), the share of
exports and imports of goods and services to GDP as a measure of trade open-
ness (OPEN), the rate of official transfers to GDP (OT) and the share of foreign
exchange reserves to imports (RES). The debt variable we include is the share
of consessional debt to total debt (CONCDEB). Foreign variables such as the
US real interest rate (USINT) and the real growth rates of the OECD countries
(GROWOECD) are also included to reflect the influence of the world economy.
As in Milesi-Ferretti and Razin (1998), the current account, growth, investment
and terms of trade variables are 3-years averages, in order to ensure consistency

with the way reversals are measured.



4 Empirical Specifications

Our baseline specification consists of a dynamic panel probit model of the form
yh =TT+ Kyt + e, vy =Ly, >0), i=1,..,N t=1..T, (2)

where I(y}, > 0) is an indicator function that transforms the latent continuous
variable ¥, for country ¢ in year ¢ into the binary variable y;;, indicating the oc-
currence of a current account reversal (y; = 1). The error term e; is assumed to
be normally distributed with zero mean and a fixed variance. Since Equation (2)
is only identified up to a positive multiplicative constant, a normalization condi-
tion will be required for each model variant (see Section 4.4 below). The vector
x; contains the observed macroeconomic, external, debt and foreign variables
which might affect the incidence of a reversal. The lagged dependent variable
on the right hand side captures possible state dependence. It implies that the
covariates in z;; have not only a contemporaneous but also a persistent effect on
the probability of a reversal.

The most restrictive version of the panel probit assumes that the error e;
is independent across time and countries and imposes the restriction x = 0.
This produces the standard pooled probit estimator which ignores possible serial
dependence and unobserved heterogeneity which cannot be attributed to the

variables in x;;.

4.1 Random country-specific effects

In order to account for unobserved time invariant heterogeneity across countries
we consider the random effect model proposed by Butler and Moffitt (1982). It

assumes the following specification for the error term in Equation (2):
e = Ti + €it, €ir ~ 1.i.d.N(0, 1), 7i ~11.d.N(0, 02). (3)

The country-specific term 7; captures potential permanent latent differences in
the propensity to experience a reversal. It is assumed that 7; and €; are inde-
pendent from the variables included in z;. If, however, x;; did contain variables
reflecting countries’ general susceptibility to current account crises, then 7; would

be correlated with z;;. We also assume that the observed initial states y;, are



non-random constants. This assumption eliminates an 'initial condition problem’
due to correlation between 7; and y; (see, e.g., Wooldridge, 2005). Since, how-
ever, ignoring correlation between 7; and x; and y;o would lead to inconsistent
estimates, we shall test below for such correlation.

Finally, note that the time-invariant heterogeneity component 7; implies a con-
stant cross-period correlation of the error term e; which is given by corr(e;, e;s)
= 02/(02+1) for t # s (see, e.g., Greene, 2003).

The Butler-Moffitt model (2) and (3) can be estimated by ML. Let y =
Hy ) WY 2 = {{z ) }Y, and 6 denote the parameter vector to be es-
timated. The likelihood function is given by L(0;y,z) = 1, I:(h), where I,
represents the likelihood contribution of country ¢. The latter has the form

]Z(Q) = /Rl H [@Z;t(l — @it)(l_yit)] fT(Ti)dTi7 (4)

where ®;; = O(x,m + Kyy—1 + 7)), P denotes the cdf of the standardized normal
distribution and f, the pdf of ;. In the application below, the one dimensional
integrals in 7; are evaluated using a Gauss-Hermite quadrature rule (see, e.g.,
Butler and Moffitt, 1982).

Once the parameters have been estimated, the Gauss-Hermite procedure can
also be used to compute estimates of the random country-specific effects 7; or
of functions thereof. Those estimates are instrumental for computing predicted
probabilities and average partial effects as well as for validating the orthogonality
conditions imposed on 7;. Let g(7;) denote a function of 7. Its conditional

expectation given the complete sample information (y,z) obtains as

f]Rl g(Tl)h<y7 TZ’&@? e)de
E 1 P 70 = — s
lg(7i)ly, ;0] S Wy, 7ilz;; 0)dr;

(5)

where % denotes the joint conditional pdf of y. = {ys}, and 7; given z; =
{zi}L |, as defined by the integrand of the likelihood (4). For the evaluation of
the numerator and denominator by Gauss-Hermite, the parameters 6 are set to
their ML-estimates.

Estimates 7; of the random effects obtain by setting ¢g(7;) = 7; in Equation

(5). An auxiliary regression of those estimates against the time average of the ex-

10



planatory variables and the initial conditions provides a direct test of the validity
of the orthogonality condition between 7; and (z;, ¥:0)-
Next, in order to obtain predicted probabilities and average marginal effects

we consider the conditional response probability
p(yir = Ui, Yir1, 7i) = P(2T + Kyi—1 + 73), (6)
and its partial derivative w.r.t. the kth (continuous) variable in x;

axitkp(yit = 1|fl‘z't7 Yit—1, Ti) = 7Tk¢($;t7T + KYir—1 + Ti)u (7)

where ¢ denotes the standardized Normal density and 7, the regression coefficient
of the covariate x;;. Both expressions represent functions of 7;, which can be
averaged across the conditional distribution of 7; given the sample information
(y,z), according to Equation (5). The average marginal effect of the kth covariate
then obtains as the sample mean across ¢ and t of the averaged partial derivatives
(7). Analogously, we compute the average partial effect of the binary lagged
dependent variable as the sample mean of the differences in the probabilities
p(yir = Uxi,yu—1 = 1,7) and p(yir = 1|z, yu—1 = 0,7;) averaged across the

conditional distribution of 7; given (y, z).

4.2 Serially correlated country-specific errors

We generalize the random effect specification introduced in Section 4.1 by as-
suming that €; in Equation (3) follows an idiosyncratic AR(1) process, capturing
persistent country-specific shocks and omitted macroeconomic or political factors.

Accordingly, Equation (3) is generalized into
it = Ti + €it, €it = PEit—1 + Nit, nie ~ 1.1.d.N(0, 1), (8)

where 7; and n;; are mutually independent. As before, they are also assumed to
be independent from the variables included in z; and w;,. In order to ensure
stationarity we assume that |p| < 1.

The computation of the likelihood contribution ;(0) for model (3) and (8) now
requires the evaluation of (T + 1)-dimensional integrals. Let )., = (i, €1, T;),

XNy = (€i1,7), and X, = (74, €1, ..., 7). Under the assumption that e = 0, the

11



likelihood contribution of a country is given by

wo- [Hwt@m] o), )
with

{ I(eir € Dit)op(€ir — peir—1), if t>1
I(eir € Di)o(en), if t=1,
D o { [_<:ult + Ti) ) 00)7 if Yit = 1
it = .
(—oo, —(na+ )], if yu =0,

where fu;y = T, ™ + Kyt

In order to evaluate the (truncated) Gaussian integral I;(¢) MC-integration
techniques can be used. The most popular MC approach for such integrals is
the GHK procedure of Geweke (1991), Hajivassiliou (1990), and Keane (1994),
belonging to the class of Importance Sampling techniques. However, as shown by
Lee (1997) and Geweke et al. (1997), GHK likelihood evaluation based upon com-
monly used simulation sample sizes can produce severely biased ML estimates,
especially, when serial correlation in the errors is strong and/or 7" is large. Hence,
we use instead the EIS procedure developed by Richard and Zhang (2007). As
shown in Liesenfeld and Richard (2008b), EIS covers the GHK procedure as a
special case and significantly improves the numerical accuracy of GHK. A descrip-
tion of the particular EIS implementation used for the likelihood (9) is provided
in the Appendix?.

As in Section 4.1, we compute probability predictions and average marginal

effects from the corresponding response probability

p(yir = Uxie, Yir—1, Tis €it—1) = (T + Kyir—1 + 7 + peir—1), (12)

2Liesenfeld and Richard (2008b) consider the EIS likelihood evaluation for multiperiod multi-
nomial probit models with serially correlated errors but without unobserved random effects (7).
If we rewrote the likelihood in Equation (9) in terms of a T-dimensional integral in the composite
errors (eq,...,er)" (which follow according to Equation (8) a multivariate Gaussian distribu-
tion), we could directly apply the EIS implementation of Liesenfeld and Richard (2008b) to
the present binomial model. However, such an implementation would not directly deliver MC
estimates of the conditional expectation of the random effect 7, which we use to test the or-
thogonality conditions. Hence, we implement EIS for the (T + 1)-dimensional integral (9) in
(é1,...,er,T). See the Appendix for details.
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together with its partial derivatives w.r.t. the covariates, all of which are func-
tions of the latent variables 7; and €;_;. The EIS procedure for the likelihood
evaluation delivers as a by-product accurate MC-approximations of the condi-
tional expectation of these functions given the sample information, which obtain

as
. fRT+1 g(Tia eitfl) h(gla Azyim e)dAz

RT+1 g0 Ll fAY)

Here h(y,, A;|z;; ) denotes the joint conditional distribution of y. and ); given z;

as given by the integrand of the likelihood (9).

4.3 Serially correlated time-specific effects

Since the panel models introduced above ignore correlation across countries, they
do not account for potential spill-over effects and global shocks common to all
countries. In order to address this issue we consider next the following factor

specification for the error e; in the probit regression (2):
eir = T; + & + €, €t ~ 1.1.d.N(0, 1), 7 ~ 1.i.d.N(0, 02), (14)
with
& =0& 1+, v ~ 1.1.d.N(0, 07), (15)

where 7;, €;; and 1, are mutually independent and independent from x;; and y;q.
It is assumed that |6|] < 1. The common dynamic factor & represents unob-
served time-specific effects which induce correlation across countries, resulting
from spillover effects and common shocks. This is the same factor specification
as that used in Liesenfeld and Richard (2008a) for a microeconometric applica-
tion. It is similar to the linear panel factor model discussed, e.g., by Baltagi
(2005) and primarily used for the analysis of macroeconomic data.

The likelihood function for the random effect panel model consisting of Equa-
tions (2), (14), and (15) is given by

T

L0y, z) = /R x [H [Ti@Go 1 — Sz)] 0 | plr,)dr, dS,  (16)

=1 t=1
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where £ = {& oy, 7 = {7}y, 2 = @ + Ky + 75 + &, and p(7, §) denotes
the joint density of 7 and §.

Note that the presence of a time effect £ common to all countries prevents
us from factorizing the likelihood function into a product of integrals for each
individual country as above. However, we can still use the EIS technique for the
evaluation of the likelihood function (16). See Richard and Zhang (2007) and
Liesenfeld and Richard (2008a) for a detailed description of the EIS implemen-
tation for this likelihood function?.

Estimates for functions of the unobserved random effects are obtained as
above. In particular, the conditional expectation of such functions given the

sample information has the form

o S 9(1, &) By, T, €3 0)dédr
Bl &ly. 20 = = e T, s f)dedr.

(17)

where h denotes the joint conditional pdf of y, § and 7 given z, as given by the
integrand of the likelihood function (16). As before, we can construct probability

predictions and average marginal effects from the conditional response probability

p(yie = Uit Yir—1, 7, &) = @ + kY1 + 70 + &), (18)

and its partial derivatives w.r.t. the covariates.

4.4 A note on normalization

In Equations (3), (8), (14), (15) we followed the standard practice of normalizing
the probit equation (2) by setting the variance of the residual innovations €;
equal to 1. It follows that the variances of the composite error term e;; differ

across models, implying corresponding differences in the implicit normalization

3In contrast to the panel probit model (2), (14), and (15) assumed here, Richard and Zhang
(2007) and Liesenfeld and Richard (2008a) consider a similar panel logit specification where the
error component ¢;; in Equation (14) follows a logistic distribution. However, this difference
requires only a minor adjustment in the EIS implementation, whereby logistic cdfs are replaced
by probit cdfs.
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rule. The variances of e;; under the different specifications are given by

Equation (3) : ol=1+0o2
1
: : 2 _ 2
Equation (8) : O = 1 = + o
o2
Equations (14)+(15) : ol=1+02+ 7 552.

Predicted probabilities and estimated average marginal effects are invariant
with respect to the normalization rule. The estimated coefficients are not as
they are proportional to g.. We produce estimates of o, in order to facilitate

comparisons between estimated coefficients across models.

5 Empirical Results

5.1 Model 1: Pooled probit

Table 2 provides the ML estimates for the pooled probit model given by Equation
(2) (model 1) together with the corresponding estimated partial effects of the
explanatory variables on the probability of a current account reversal. The results
for the static model (k = 0) are reported in the left columns and those of the
dynamic specification (k # 0) in the right columns.

The parameter estimates for the covariates in x;; are all in line with the re-
sults in the empirical literature on current account crises (see Milesi-Ferretti and
Razin, 1998, and Edwards 2004a,b) and confirm the theoretical solvency and
sustainability considerations. Sharp reductions of the current-account deficit are
more likely in countries with a high current account deficits (AVGCA) and with
higher government expenditures (GOV). The significant effect of the current ac-
count deficit level is consistent with a need for sharp corrections in the trade
balance to ensure that the country remains solvent. Interpreting current account
as a constraint on expenditures, the positive impact of government expenditure
on the reversal probability can be attributed to fact that an increase of gov-
ernment expenditures leads to a deterioration of the current account. However,
the inclusion of the lagged dependent variable reduces this effect and renders it
non significant. This suggests that government expenditures might capture some

form of omitted serial dependence under the static specification. The marginal
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effect of foreign reserve (RES) is negative and significant which suggests that low
levels of reserves make it more difficult to sustain a large trade imbalance and
may also reduce foreign investors’ willingness to lend (Milesi-Ferretti and Razin,
1998). Also, reversals seem to be less common in countries with a high share
of concessional debt (CONCDEB). This would be consistent with the fact that
concessional debts tend to be higher in countries which have difficulties reducing
external imbalances. Finally, countries with a lower degree of openness (OPEN),
weaker terms of trade (AVGTT) and higher GDP growth (AVGGROW) seem
to face higher probabilities of reversals, especially when growth rate in OECD
countries (GROWOECD) and/or US interest rate (USINT) are higher — though
none of these five coefficients are statistically significant.

Note that the size of the estimated marginal effects for the significant eco-
nomic covariates on the probability of reversals are typically fairly small, ranging
from 0.004 to 0.026. Nevertheless, they are far from being negligible when ap-
plied to the low unconditional probability of experiencing a reversal which is
approximately 0.1.

The inclusion of the lagged current account reversal variable substantially
improves the fit of the model as indicated by the significant increase of the max-
imized log-likelihood value. The estimated coefficient kK measuring the impact of
the lagged dependent state variable is positive and significant at the 1% signif-
icance level with a large estimated partial effect of 0.21. This suggests that a
current account reversal significantly increases the probability of a further rever-
sal the following year. This would be consistent with the hypothesis that reversal
processes stretch over more than a year due to slow adjustments in international
trade flows (see, Junz and Rhomberg, 1973, and Himaraios, 1989).

In order to analyze the dynamic effects of a covariate x;; implied by the
model with lagged dependent variable we use the sample average of the [-step

ahead marginal effect, i.e.,

N T—¢
1
m ; tz; azmp(?/z‘urz = 1|€Ez‘t+£, ooy Lty yit—1)7 (=1,2,... (19)

The probability p(virre = 1|Tit1e, -, Tit, Yir—1) is obtained by considering the event
tree associated with all possible y;;-trajectories starting in period ¢ and ending in

period t 4 ¢ with y;; .o = 1. Analogously, the dynamic effects of the state variable
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is measured by

S

N T—¢
Z [ P\Yit+¢ = 1‘1Uit+e, vy Tigt 1, Yit = 1) (20)

i=1 t=1

—p(yuw = 1|l’,’t+e, ey Tt 1, Yit = 0) s E = 1, 2, e .

The upper left panel of Figure 1 plots the dynamic marginal effects for the sig-
nificant covariates (AVGCA, RES, CONCDEB) and the lagged state variable for
¢ =1,...,4, respectively. It reveals substantial long-run effects of the state vari-
able, whereby the occurrence of a current account reversal increases a country’s
propensity to experience further large reductions in the current account in subse-
quent years. This effect appears to stretch over a two-to-three-year period. This
would be in line with the result of Himarios (1989) showing that changes in trade
flows triggered by currency devaluations often used to correct the trade balance
are distributed over a time span of a about two or three years. However, note
that this long-run state dependence does not translate into significant long-run
effects of the covariates AVGCA, RES, and CONCDEB which is consistent with
the fact that their contemporaneous effects reported in Table 2 are already fairly

small.

5.2 Model 2: Random country-specific effects

Table 3 reports the estimates of the dynamic Butler-Moffitt model with random
country specific effects as specified by Equations (2) and (3) (model 2). The
ML-estimates are obtained using a 20-points Gauss-Hermite quadrature. The
estimate of the coefficient o, indicates that only 3% of the total variation in the
latent error is due to unobserved country-specific heterogeneity and this effect
is not statistically significant. Nevertheless, the maximized log-likelihood of the
random effect model is significantly larger than that of the dynamic pooled probit
model with a likelihood-ratio (LR) test statistic of 5.57. Since the parameter value
under the Null hypothesis o, = 0 lies at the boundary of the admissible parameter
space, the distribution of the LR-statistic under the Null is a (0.5)(%0) + 0.5)&1))—
distribution, where X%o) represents a degenerate distribution with all its mass at
origin (see, e.g., Harvey, 1989). Whence, the critical value for a significance level
of 1% is the 0.98-quantile of a X?I)—distribution which equals 5.41. All in all, the
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evidence in favor of the random effect specification for time-invariant differences
of institutional, political, and economic factors across countries is borderline.
Actually, the marginal effects as well as the predicted dynamic effects (see, upper
right panel of Figure 1) obtained under the random country-specific effect model
are very similar to those for the dynamic pooled model.

In order to check the assumption that 7; is independent of x;; and y;p we ran

the following auxiliary regression:

7A—i :¢O+j;¢1+y10¢2+<117 L= 1a"'7n7 (21)

where the vector ;. contains the mean values of the z;-variables over time (except
for the US interest rate and the OECD growth rate). The value of the F-statistic
for the null ¢; = 0 is 1.94 with critical values of 2.71 and 2.03 for the 1% and 5%
significance levels. The absolute value of the t-statistic for the null ¥, = 0 is 2.01
with critical values of 2.68 and 2.01 for the 1% and 5% levels. Whence, evidence

that 7; might be correlated with z; and ;o is inconclusive.

5.3 Model 3: AR(1) country-specific errors

We now turn to the ML-EIS estimates of the dynamic random effect model with
AR(1) idiosyncratic errors (model 3) as specified by Equations (2) and (8). It
ought to capture possible serially correlated shocks associated with regional politi-
cal changes or conflicts and persistent local macroeconomic events like commodity
price shocks. The ML-EIS estimation results based on a simulation sample size
of S = 100 are given in the left columns of Table 4 4.

The results indicate that the inclusion of a country-specific AR(1) error com-
ponent has significant effects on the dynamic structure of the model but only a
slight impact on the marginal effects of the x;-variables, which remain typically
very close to those of the pure random country-specific effect model in Table 3.
An exception is the effect of the terms of trade (AVGTT) which becomes signifi-

4We also estimated the parameters of model 3 using the standard GHK procedure based on
S = 100. The comparison of those estimates (not provided here) with the ML-EIS estimates
provided in Table 4 reveal that the parameter estimates for the explanatory variables are
generally similar for both procedures. However, the estimates of the parameters governing the
the dynamics (k, o, p) are noticeably different. This is fully in line with results of the MC-study
of Lee (1997), indicating that the ML-GHK estimates of those parameters are often severely
biased.
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cant at the 10% level. Also, while the parameter o, governing the time-invariant
heterogeneity remains statistically insignificant, the estimated coefficient x asso-
ciated with the lagged dependent variable and its partial effect are now much
smaller. This leads to a substantial attenuation of the long-run effect of the
lagged state variable (see lower left panel of Figure 1). The estimate of the per-
sistence parameter of the AR(1) error component p equals 0.35 and is statistically
significant at the 10% level. However, the corresponding LR-statistic equals 2.40
and is not significant. Hence, despite its impact on the dynamic structure of the
model, the inclusion of an AR(1) error component does not significantly improve
the overall fit.

Since a lagged dependent variable and a country-specific AR(1) error com-
ponent can generate similar looking patterns of persistence in the dependent
variable, these results suggest that the AR(1) error captures some of the serial
dependence which is captured by the lagged dependent variable under the pooled
probit and the pure random country-specific effect model. However, the small
likelihood improvement obtained by the inclusion of an AR(1) error together with
the fairly large standard errors of the estimates for x and p suggest that the model
has difficulties separating these two sources of serial dependence. In order to ver-
ify this conjecture, we re-estimated the model with the AR(1) country-specific
error component without state-dependence. The ML-EIS results are provided
in the right columns of Table 4 and confirm our conjecture. In fact, the esti-
mated AR coefficient p increases to 0.59 and is now highly significant according
to both the t- and LR-test statistics, while the maximized likelihood value are not
significantly different from those obtained for the models including either state-
dependence only (Table 3) or both state-dependence and an AR error component
(left columns of Table 4).

All in all, our results indicate that the data are ambiguous on the question
of whether the observed persistence in current account reversals is due to state
dependence associated with the hypothesis of slow adjustments in international
trade flows or due to serially correlated country-specific shocks related to local

political or macroeconomic events.
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5.4 Model 4: AR(1) time-specific effects

We now turn to the estimation results of the dynamic panel model given by
Equations (2), (14), and (15), allowing for unobserved random time-specific ef-
fects designed to capture potential spill-over effects and/or global shocks common
to all countries (model 4). The ML-EIS estimation results obtained using a sim-
ulation sample size of S = 100 are summarized in Table 5.

The estimated marginal effects for all explanatory x;;-variables and the esti-
mated variance parameter o, of the time-invariant heterogeneity are very similar
to those obtained under the models discussed above. Here again, we find no
conclusive evidence for correlation between 7; and (Z;., y;,0). The results show a
large and highly significant state-dependence effect similar to that found under
the pure random country-specific effect model in Table 3. The variance param-
eter of the time factor o¢ and its autoregressive parameter o are both highly
significant, indicating that there are significant common dynamic time-specific
effects in addition to state dependence. Hence, in contrast to the specification
with state dependence and an AR country-specific error component, the model
seems to be able to separate the two sources of persistence. Also, the estimated
autocorrelation parameter of -0.89 implies a strong mean reversion in the com-
mon time-specific factor. This mean-reverting tendency in the common factor
affects the common probability of experiencing a current account reversal across
all countries and is, therefore, fully consistent with a global accounting restriction
requiring that deficits and surpluses across all national current accounts need to
be balanced. In particular, one would expect that a temporary simultaneous
increase in the propensities to experience a large reduction in current account
deficits is immediately reverted in order to guarantee a global balance in deficits
and surpluses, rather than a persistent and long-lasting increase in individual
propensities.

Although the time-specific factor capturing global shocks and/or contagion
effects is significant, it appears to be quantitatively fairly small. In fact, the
fraction of error variance due to the time-specific effect in only 3.5%. Therefore,
it is not surprising that the overall fit of the model and its predicted dynamic
effects (see, the lower right panel of Figure 1) do not change significantly relative
to the pure random country-specific effect model in Table 3 which leaves out the

time-specific effect.
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Finally, we note that the quantitatively low impact of the common time-
specific factor might be due to the implicit restriction that the loading w.r.t. that
factor is the same across all countries. Hence, a natural extension of the model
would be to allow for factor loadings, which differ across countries (whether
randomly or deterministically). However, due to a substantial increase in the
number of parameters or the dimension of the integration problem associated
with the likelihood evaluation the statistical inference of such an extension is

non-trivial without further restrictions and is left to future research.

6 Predictive Performance

Models 2 to 4 are essentially observationally equivalent with log-likelihood values
ranging from -253.1 to -255.2. However, log-likelihood comparisons provide an
incomplete picture of the overall quality of a binary model. Hence, we compare
next models 2 to 4 on two predictive benchmarks: the proportion of correctly pre-
dicted binary outcomes and predicted duration distribution of reversal episodes.

Assessing the predictive performance of an estimated binary model requires
selecting a threshold ¢ whereby success (current account reversal) is predicted
iff the predicted probability is larger than c, i.e., 7y = p(yu|Tit, yir—1) > ¢. The

corresponding classification error probabilities are given by
a(c) =1—=p(ri >clyp =1) and  B(c) =p(ra > clya =0),  (22)

which can be approximated by the corresponding relative frequencies of misclas-
sification. Since the sample portion II of success is only of the order of 0.1, it does
not make sense to select a threshold ¢ which minimizes the unconditional proba-
bility of misclassification p(c) = Ila(c)+ (1 —1II)5(c). Following Winkelmann and
Boes (2006), we first computed for each model the threshold ¢, which minimizes
the sum of classification error probabilities a(c) + 3(c¢). We also computed their
Receiver Operating Characteristic (ROC) curves, defined as the curves plotting
1 — a(c) against [(c), as well as the areas under these ROC curves. These areas
have a minimum of 0.5 (complete randomness) and a maximum of 1 (errorless
classification). The ROC curves are displayed in Figure 2 and associated results
for the optimal threshold c¢,, classification error probabilities for ¢, and ROC

areas are reported in Table 6.
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Note that ¢, ranges from 0.08 to 0.11, which are close to the sample proportion
IT of 0.10. Model 3 with AR(1) country-specific errors without state-dependence
has the best predictive performance with a(c,) + f(c) = 0.27 and a ROC area
of 0.91 (the corresponding figures for the other models range from 0.36 to 0.43
and 0.85 to 0.88, respectively). Also its ROC curve dominates those of the other
models. Based on the optimal threshold it correctly predicts 91% of the observed
reversals and 82% of the non-reversals.

We also used each estimated model to simulate 20,000 fictitious panel data
sets of the binary outcome conditional on the observed x; variables in order to
obtain accurate MC approximations of the predictive distributions of the duration
of reversal episodes to be compared with the frequency distribution observed for
the data (see Figure 3, and Table 6 for predicted average durations). It appears
that models 2 and 4 have a better performance than model 3 with a better
fit to the empirical distribution and predicted average durations closer to the
observed average of 1.52. However, the differences across the models seem to be
not large enough to overturn the ROC ranking. Thus, if the likelihood criterion,
which by itself is fairly uninformative about the source of serial dependence,
is supplemented by measures of predictive performance, the model with AR(1)
country-specific shocks and without state-dependence appears to be the preferred

specification.

7 Conclusion

This paper uses different non-linear panel data specifications in order to inves-
tigate the causes and dynamics of current account reversals in low- and middle-
income countries. In particular, we analyze four sources of serial persistence:
(i) a country-specific random effect reflecting time-invariant differences in in-
stitutional, political or economic factors; (ii) serially correlated transitory error
component capturing persistent country-specific shocks; (iii) dynamic common
time-specific factor effects, designed to account for potential spill-over effects and
global shocks to all countries; and (iv) a state dependence component to control
for the effect of previous events of current account reversal and to capture slow
adjustments in international trade flows.

The likelihood evaluation of the panel models with country-specific random
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heterogeneity and serially correlated error components requires high-dimensional
integration for which we use a generic Monte-Carlo integration technique known
as Efficient Importance Sampling (EIS).

Our empirical results indicate that the static pooled probit model is strongly
dominated by the alternative models with serial dependence. However, state-
dependence and transitory country-specific errors are essentially observationally
equivalent. Only if we include random time-specific effects into the model with
state-dependence, we find that both sources of serial dependence are significant,
even though the time-specific effect is small with limited effect on the overall fit
of the model. On the other hand, our assessment of the ability to predict current
account reversals provides strong support for the model with transitory country-
specific errors and without state-dependence, which appears to present the best
compromise between log-likelihood fit and predictive performance. Also, we do
not find conclusive evidence for the existence of random country-specific effects.

Overall, our results relative to the determinants of current account reversals
are in line with the those in the empirical literature on current account crises
and confirm the empirical relevance of theoretical solvency and sustainability
considerations w.r.t. a country’s trade balance. In particular, countries with high
current account imbalances, low foreign reserves, a small fraction of concessional
debt, and unfavorable terms of trades are more likely to experience a current
account reversal. These results are fairly robust against the dynamic specification
of the model.
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Appendix: EIS for random effects and serially

correlated errors

This appendix details the implementation of the EIS procedure for the panel
probit model (2) and (8) to obtain MC estimates for the likelihood contribution
I;(0) given by equation (9) (for a detailed description of the EIS principle, see
Richard and Zhang, 2007). In order to simplify the following presentation it
proves convenient to omit the country index ¢ and to relabel 7 as A\g. Then the

likelihood integral in Equation (9) can be rewritten as

10 = [ Ten (A1)

where @o(Xo) = f-(7). Next, we partition ) into (e, ) with n_ = (&1, )

for t > 1, ny = Ao and n_; = (). EIS is based upon a sequence of auxiliary

importance sampling densities of the form

ki(A;a
mt(€t|ﬂt_1;a/t) — M

= ,  with ;a :/ ke(Ay; at)dey, A-2
xil,_ia) il ) = [ Fldsedea, (A2

for t =0,....,T, where {ki(\;; a;); a; € A} denotes a (pre-selected) class of aux-
iliary parametric density kernels with analytical integrating factor in ¢ given
(n,_,» @) denoted by x:(n, ,;az).

Let {i(j) = {iij)}tT:O}le be S independent trajectories drawn from the auxil-
iary sampler m(Ala) = [/, my(€|n, ;i ar). The corresponding Importance Sam-

pling MC estimate of I() obtains as:

s T N2 ~(5).
= 1 0 Ay ) X1 (775 arg)
Is(0) = Xo(%)g S OITT OB : (A-3)
j=1 |t=0 k(A5 ar)

An Efficient Importance Sampler is one which minimizes the MC sampling vari-
ances of the ratios ¢;x;v1/k: w.r.t. the auxiliary parameters {a;}]_, under such
draws. An approximate solution to this minimization problem, say {a;}~,, ob-

tains by a sequence of T'+ 1 back recursive regressions. In particular, in each
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period t =T, ..., 0 one needs to regress

()

A\ - a,41)] on: intercept, Ink,(},”,ar), (A-4)

Infeor (A7) xe1 (77,
where {A(j)}le are drawn from an initial sampler m(A|ap). As an initial sam-
pler we use the GHK sampling densities and the EIS sequence is iterated until
obtainment of a fixed point in {a;}7_,.

The kernel k;();; a;) in Equation (A-2) is selected to be a parametric extension
of the period-t integrand ¢, in Equation (A-1). The latter includes a (truncated)

Gaussian kernel in \,. Hence, k; is specified as

k(A5 ar) = @i(Ny) - Ge(Ag; a), (A-5)

where (; is itself a gaussian kernel in \,. It follows that ¢; cancels out in the EIS
regression (A-4). For the truncated Gaussian kernel k; given in Equation (A-5)

we use the following parametrization:

]I(Gt € D?)
vV 2T

where Df = (—oo , v + &), with v = 2y, — 1)y and 6, = (2y, — 1). The

EIS parameter a; consists of the six lower diagonal elements of P, and the three

1 !/ /
ki(Ag; ar) = exp{—5 (A PiA, + 2240}, (A-6)

elements in ¢;. In what follows we make use of the Cholesky decomposition of P;
into

Pt = LtAtL:w (A_7>

where L; = {l;;;} is a lower triangular matrix with ones on the diagonal and A,

is diagonal matrix with diagonal elements d;, > 0. Let

ll,t - (l21,t7 l31,t)/7 l2,t - (17 l32,t),- (A_8)

The key step in our EIS implementation consists of finding the analytical expres-
sion of the integrating factor y; (ﬂtf % ay) associated with the density kernel (A-6).

It is the object of the following lemma.
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Lemma 1. The integral of ki(\;; ar) w.r.t. € is of the form

Xt(ﬂt_l; ar) = kai (Ao ar) [P (o + 522_1) : kl,t(ﬂt_l; at)], (A-9)

together with

1
kl’t(ﬁt—l; ) = eXp{_é(d2’tﬂl—1l27tll27tﬂt—1 + 2@2_112,tm2,t)}, (A—lO)
1
k2,t()\0; ) = eXP{—g(ds,tAg + 2m3,t)\0>} * Tty (A‘ll)
where
m
oy = \/st(% + d—lt), B = V dl,t(ll,t + 5tb), (A‘12>
1,t
1 1 m%t 1
ry = exp{=——=t, my={my} =L "q, =1(0,1). A-13
t \/E p 9 d17t } t { ,t} t qt ( ) ( )

Proof. The proof is straightforward under the Cholesky factorization introduced
in (A-7), deleting the index ¢ for the ease of notation. First we introduce the
transformation z = L'\, whereby z; = € + l,lﬂ_p 29 = l’zﬁ_l, and z3 = ).

Whence,

3

x(n_ ;7)) = eXP{ - %Z(diZer?miZi)}

=2

1 1
XE /;* exp{—§(d1zf + 2my21) fdz,

where D}* = (—oo, v+ (ll,t‘{’étb)/ﬂil]- Next, we complete the quadratic form in
z; under the integral sign and introduce the transformation v = \/d; [z1+(m1 /dy)].

The result immediately follows.O

Next, we provide the full details of the recursive EIS implementation.
- Period t = T: With yry1 = 1, the only component of kr is o itself.
Whence,
Pr=e,e, and ¢pr=0, with e, =(1,—p,0). (A-14)

- Periodt (T >t > 1): Given Equation (A-9) in lemma 1, the product ¢;- x¢11

comprises the following factors: ¢; as defined in Equation (10), k411 as given by
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Equation (A-10) and ®(avi1 + Bi147,), where (i1, Bi41) are defined in Equation
(A-12). The first two factors are already gaussian kernels. Furthermore, the term
®(-) depends on ), only through the linear combination 8;,,n,. Whence, ¢; in
Equation (A-5) is defined as

1

G(Apy ar) = kl,t+1(ﬂt; ) exp{ ) [al,t(ﬁ£+1ﬂt)2 + 2a2,t(ﬁ£+1ﬂt)i| }> (A-15)

with a; = (@14, a9;). It follows that ky,4q also cancels out in the auxiliary EIS
regressions (A-4) which simplifies into OLS of In ®(cw41 + B1,4m,) on Bi,m, and
(5, +1ﬂt)2 together with a constant. From these EIS regressions one obtains esti-

mated EIS values for (ay,,as;). Note that n, can be written as

100
— A\, with A= . A-16
L= A2 W (0 0 1) (A-16)

It follows that the parameters of the EIS kernel k; in Equation (A-6) are given
by

Pt = epelp —|— d27t+1A/l2’t+1l/27t+1A —I— alytA'ﬁtHﬁ;HA (A—]_?)
QG = AllQ,t+1m2,t+1 + ag 1 A B (A-18)

Its integrating factor x:(n,;a;) follows by application of lemma 1.

- Period t = 1: The same principle as above applies to period 1, but requires
adjustments in order to account for the initial condition. Specifically, we have
A =1, = (e1,20)s Ao = mo (= 7). This amounts to replacing A by I in
Equations (A-16) to (A-18). Whence, the kernel k1(Ay, a;) needs only be bivariate
with

P = eie] +daslaplyy + 11025 (A-19)
@1 = laamaog + a1, (A-20)

with €] = (1,0). Essentially, P, and ¢; have lost their middle row and/or column.

To avoid changing notation in lemma 1, the Cholesky decomposition of P; is
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parameterized as

1 0 d 0
L= , D= b s b=, (A-21)
l3171 1 0 dS,l

while dy 5 and Iy are now zero. Under these adjustments in notation, lemma 1

still applies with ko(no;-) = 1 and /31 reduced to the scalar

B = /dii(lig +01). (A-22)

- Period t = 0 (untruncated integral w.r.t. A\o = 7): Accounting for the back
transfer of {kq;(No;-)}1;, all of which are gaussian kernels, the Ao-kernel is given
by

T
1,. .
ko(Aos+) = fr(Ao) - H kot (No;+) - eXP{—§ (a1,075 + 2a2,0)0) }, (A-23)
t=1

where (G0, G2) are the coefficients of the EIS approximation of In ®(ay + 51 \g).
Note that kg is the product of T'+ 2 gaussian kernels in \y and is, therefore, itself
a gaussian kernel, whose mean mg and variance v3 trivially obtain by addition
from Equation (A-23).
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Table 2. ML-estimates of Model 1:

Pooled probit

Static Dynamic
Variable Estimate Marg. Eff. Estimate Marg. Eff.
Constant —1.993*** —1.955%**
(0.474) (0.493)
AVGCA —0.060***  —0.009 —0.060"**  —0.009
(0.012) (0.012)
AVGGROW 0.008 0.001 0.009 0.001
(0.021) (0.021)
AVGINV —0.002 —0.0003 0.001 0.0001
(0.010) (0.011)
AVGTT —0.108 —0.017 —0.109 —0.016
(0.066) (0.069)
GOV 0.026** 0.004 0.018 0.003
(0.012) (0.012)
oT —0.011 —0.002 —0.011 —0.002
(0.010) (0.010)
OPEN —0.058 —0.009 —0.085 —0.012
(0.087) (0.090)
USINT 0.108 0.017 0.107 0.015
(0.073) (0.075)
GROWOECD 0.084 0.013 0.042 0.006
(0.086) (0.090)
INTPAY 0.024 0.004 0.021 0.003
(0.029) (0.030)
RES —0.074** —0.011 —0.074** —0.011
(0.030) (0.030)
CONCDEB —0.165** —0.026 —0.152** —0.022
(0.068) (0.071)
K 0.981*** 0.209
(0.158)
Log-likelihood —276.13 —257.26

Note: The estimated model is given by Equation (2) assuming that the errors are independent
across countries and time. The asymptotic standard errors are given in parentheses and

* kk

obtained from the inverse Hessian. *,**, and *** indicates statistical significance at the 10%,

5% and 1% significance level.
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Table 3. ML-estimates of Model 2: Random country-specific effects

Variable Estimate Marg. Eff.

Constant —1.880***
(0.534)

AVGCA —0.064*** —0.009
(0.015)

AVGGROW 0.010 0.001
(0.021)

AVGINV —0.0001 —0.00001
(0.011)

AVGTT —0.122 —0.017
(0.084)

GOV 0.018 0.003
(0.012)

oT —0.011 —0.002
(0.011)

OPEN —0.069 —0.010
(0.093)

USINT 0.083 0.012
(0.075)

GROWOECD 0.073 0.010
(0.090)

INTPAY 0.014 0.002
(0.031)

RES —-0.073** —0.010
(0.035)

CONCDEB —0.159** —0.023
(0.078)

K 0.982%** 0.206
(0.154)

or 0.162
(0.210)

Oe 1.013

Log-likelihood —254.47

LR-statistic for Hy : 0 =0 5.57

F-statistic for exogeneity of x;; 1.94

t-statistic for exogeneity of ;o —2.01

Note: The estimated model is given by Equations (2) and (3). The asymptotic standard
errors are given in parentheses and obtained from the inverse Hessian. *,**, and *** indicates
statistical significance at the 10%, 5% and 1% significance level. The 1% and 5% critical
values of the LR-statistic for Hy : o = 0 are 5.41 and 2.71. The 1% and 5% critical values of

the F-statistic (¢-statistic) are 2.71 and 2.03 (2.68 and 2.01).
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Table 4. ML-EIS estimates of Model 3: AR(1) country-specific errors.

Dynamic Static

Variable Estimate Marg. Eff. Estimate Marg. Eff.

Constant —1.795%** —1.512**
(0.567) (0.677)

AVGCA —0.072***  —0.010 —0.087***  —0.012
(0.018) (0.021)

AVGGROW 0.007 0.001 0.0001 0.00001
(0.024) (0.027)

AVGINV 0.004 0.001 0.010 0.001
(0.013) (0.017)

AVGTT —0.161* —0.022 —0.251** —0.034
(0.093) (0.116)

GOV 0.018 0.002 0.016 0.002
(0.014) (0.018)

oT —0.010 —0.001 —0.009 —0.001
(0.012) (0.014)

OPEN —0.108 —0.015 —0.175 —0.023
(0.109) (0.136)

USINT 0.097 0.013 0.119 0.016
(0.075) (0.082)

GROWOECD 0.057 0.008 0.038 0.005
(0.087) (0.095)

INTPAY 0.029 0.004 0.045 0.006
(0.035) (0.037)

RES —0.097** —0.013 —0.143***  —0.019
(0.046) (0.054)

CONCDEB —0.190** —0.026 —0.261"**  —0.035
(0.088) (0.099)

K 0.520* 0.088
(0.297)

o, 0.142 0.194
(0.322) (0.403)

P 0.349* 0.590***
(0.198) (0.090)

Oe 1.077 1.254

Log-likelihood —253.27 —255.17

LR-statistic for Hy : p=0 2.40 36.65

F-statistic for exogeneity of 2.16 2.54

t-statistic for exogeneity of y; —1.84

Note: The estimated model is given by Equations (2) and (8). The ML-EIS estimation are
based on a MC sample size of § = 100. The asymptotic standard errors are given in
parentheses and obtained from the inverse Hessian. *,**, and *** indicates statistical

significance at the 10%, 5% and 1% significance level. The 1%, 5%, and 10% percent critical
values of the LR-statistic for Hy : p = 0 are 6.63, 3.84, and 2.71. The 1% and 5% critical
values of the F-statistic (¢-statistic) are 2.71 and 2.03 (2.68 and 2.01).
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Table 5. ML-EIS estimates of Model 4: AR(1) time-specific effects

Variable Estimate Marg. Eff.

Constant —1.967"**
(0.677)

AVGCA —0.064*** —0.009
(0.014)

AVGGROW 0.013 0.002
(0.022)

AVGINV —0.001 —0.0001
(0.011)

AVGTT —0.122 —0.017
(0.075)

GOV 0.018 0.003
(0.012)

oT —0.010 —0.001
(0.011)

OPEN —0.065 —0.009
(0.095)

USINT 0.070 0.010
(0.071)

GROWOECD 0.113 0.016
(0.097)

INTPAY 0.011 0.002
(0.032)

RES —0.073** —0.010
(0.035)

CONCDEB —0.163** —0.023
(0.074)

K 1.013*** 0.210
(0.139)

or 0.154
(0.201)

) —0.888***
(0.041)

o¢ 0.089**
(0.048)

Oe¢ 1.030

Log-likelihood —253.13

F-statistic for exogeneity of x;; 2.09

t-statistic for exogeneity of y;o —1.98

Note: The estimated model is given by Equations (2), (14), and (15). The ML-EIS estimation

are based on a MC sample size of S = 100. The asymptotic standard errors are given in

* Kk
)

significance at the 10%, 5% and 1% significance level. The 1% and 5% critical values of the
F-statistic (t-statistic) are 2.71 and 2.03 (2.68 and 2.01).

parentheses and obtained from the inverse Hessian. , and *** indicates statistical
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Table 6. Classification errors and predicted average duration in years

ROC  average

Cx afcy) Ples) area  duration
Model 2: Random country-specific 0.11 ~ 0.25  0.18  0.85 1.68
effects (0.12)
Model 3: AR(1) country-specific 012 0.09 018 091 1.77
errors (static) (0.14)
Model 3: AR(1) country-specific 0.09 011 025 0.88 1.80
errors (dynamic) (0.14)
Model 4: AR(1) time-specific 0.08 013 0.28 0.86 1.66
effects (0.12)

Note: Estimated standard deviation of the predicted average duration are given in

parentheses. The observed average duration is 1.52 years.
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Model 1: Pooled model (dynamic)
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Figure 1: Average (-step ahead marginal effects of the covariates AVGCA, RES, CON-
CDEB and the lagged binary state variable computed according to Equations (19) and

(20).
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Model 2: Random country—specific effects
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Figure 2: Receiver Operating Characteristic curves for models 2 to 4.
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Model 2: Random country—specific effects Model 3: AR(1) country—specific errors (static)
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Figure 3: Observed and predicted relative frequencies for the duration of reversal
episodes for models 2 to 4. The observed average duration is 1.52 years.
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