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Abstract

Consideration of latent heterogeneity is of special importance in non linear models for gauging

correctly the effect of explaining variables on the dependent variable. This paper adopts the

stratified model-based clustering approach for modeling latent heterogeneity for panel probit

models. Within a Bayesian framework an estimation algorithm dealing with the inherent label

switching problem is provided. Determination of the number of clusters is based on the marginal

likelihood and out-of-sample criteria. The ability to decide on the correct number of clusters

is assessed within a simulation study indicating high accuracy for both approaches. Different

concepts of marginal effects incorporating latent heterogeneity at different degrees arise within

the considered model setup and are directly at hand within Bayesian estimation via MCMC

methodology. An empirical illustration of the developed methodology indicates that consideration

of latent heterogeneity via latent clusters provides the preferred model specification compared to

a pooled and a random coefficient specification.
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1 Introduction

The consideration of latent heterogeneity in panel models with relative short time horizons is of

special importance in order to gauge correctly the influence of variables suggested by theory on

the dependent variable. The often adapted strategy for linear models of pooling and computation

of heteroscedastic or cluster robust variance estimates can not be applied to panel probit models

for several reasons. In the presence of latent heterogeneity the pooled estimator is not guaranteed

to be consistent, see Cameron and Trivedi (2005), and the computation of cluster robust variance

estimates requires a sufficiently large number of observations per cross section. Furthermore, the

natural approach of using fixed effects is often problematic since it causes the occurrence of an

incidental parameter problem, see Lancaster (2000) for a general review and Greene (2004a) for a

discussion focused on limited dependent variable models. Other common approaches to model latent

heterogeneity are random coefficient specifications, which employ distributional assumptions on the

heterogeneity and assume the orthogonality of latent heterogeneity and explaining variables, see

Revelt and Train (1998), Mehndiratta (1996) and Ben-Akiva and Bolduc (1996) for applications.1

Alternatively, Frühwirth-Schnatter and Kaufmann (2008) suggest a stratified model-based clustering

approach to deal with latent heterogeneity in the data generating process.2

Within this paper, the strategy to model latent heterogeneity via clustering, where the identifica-

tion of clusters and affiliation of panel members to clusters is simultaneously undergone to parameter

estimation, is provided for panel probit models. Latent clusters for panel probit models have been

considered by Greene (2004b) and Greene and Hensher (2003) in the context of maximum likelihood

estimation. However, maximum likelihood estimation possibly fails to provide an accurate assess-

ment of parameter uncertainty arising from genuine multimodality of the likelihood as discussed by

Celeux (1998).

Hence, within this paper a Bayesian estimation approach is pursued, which is able to gauge pa-

rameter uncertainty correctly in the presence of genuine multimodality via inspection of the posterior

distribution. These advantages of the Bayesian approach are accompanied by the difficulty of label

switching stemming from the invariance of the likelihood to relabeling of the clusters.3 As noted by

Stephens (2000) dealing with label switching in Bayesian estimation is often done via incorporation

of an identifiability constraint ensuring formal separation of the symmetric modes of the parameter

space. Unfortunately, an identifiability restriction will possibly not suppress label switching suffi-

1Note that latent heterogeneity can also be addressed in non-parametric estimation environments, which are not

subject of this paper.
2See Fraley and Raftery (2002) for a review of model based clustering in non-time series data.
3In a maximum likelihood approach this problem is avoided as a single maximum (out of all symmetric ones) is

regarded, thereby providing identification en passant.
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ciently, since separation of the parameter space may only be weak causing poor parameter estimates.

This paper employs a relabeling algorithm based on Stephens (2000) to deal with label switching,

which is extended to deal with the considered model feature of stratified cluster probabilities.4

A further advantage of Bayesian estimation via MCMC methodology is the direct accessibility

of a wide range of estimates of marginal effects incorporating latent heterogeneity at different de-

grees. Since the MCMC methodology provides draws from the posterior distributions of parameters,

estimates of marginal effects as moments thereof are easily calculated. In contrast to maximum like-

lihood based estimation also the distributions of the marginal effects are directly accessible allowing

to gauge the robustness of theoretical implications under latent heterogeneity.

Next to estimation conditionally on the number of clusters, the problem of determining the

number of clusters is addressed within this paper. Several strategies to determine the number of

cluster components are analyzed. Based on the MCMC output we use the marginal likelihood as a

natural benchmark for assessing model fit. However, computation of the marginal likelihood asks for

special efforts to ensure the accuracy of the involved numerical integration techniques. Therefore,

we contribute an easy implementable alternative approach to assess model fit via a cross validation

experiment.5 Thereby, our approach extends the range of available cluster strategies towards a

Bayesian analysis of multivariate panel probit mixture models. We provide a simulation study

highlighting the properties of these model selection devices.

Our results suggest via the conducted simulation study the ability of the marginal likelihood and

the cross validation approach to select the correct number of clusters. In the empirical application

using the data set of Bertschek and Lechner (1998) on firm innovation, we find that a model with

3 clusters is preferred and that it provides a better fit compared to a pooled or random coefficient

specification. Implications for gauging theoretical issues are discussed in the context of marginal

effects incorporation latent heterogeneity at different degrees.

This paper is hence organized as follows. Section 2 reviews the panel probit framework with

random coefficients and stratified model based clustering. In Section 3 the Bayesian estimation

methodology, the relabeling algorithm, the approach to calculate the marginal likelihood, and the

considered cross validation design for determining the number of clusters are provided. The methods

to identify the number of clusters are assessed within a simulation study in Section 4. An empirical

4See Handcock et al. (2007) for an application of the relabeling algorithm in the absence of meaningful identifiability

constraints.
5Procedures for determining the number of clusters in finite mixture models are discussed in related contexts. Chen

and Khalili (2008) discuss a penalized likelihood approach for univariate mixtures. Dunson et al. (2008) analyze a

semi-parametric approach for univariate mixture models without stratified cluster probabilities. Ihswaran et al. (2001)

employ approximate Bayes factors. Heard et al. (2006) contribute a hierarchical analysis for Bayesian curve fitting,

while Ray and Lindsay (2008) analyze determination with a non-parametric quadratic risk approach.
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illustration is given in Section 5, where the developed methodology is applied on the data set of

Bertschek and Lechner (1998). Section 6 concludes.

2 Model Formulation

The setup of a pooled panel probit model is given as follows. Let yit denote the observed dichotomous

variable, where i = 1, . . . , N , and t = 1, . . . , T . A link between observed explaining factors and the

observed binary variables is provided via the latent variable y∗it

yit =







1, if y∗it > 0,

0, if y∗it ≤ 0,
(1)

where

y∗it = Xitβ + eit (2)

and eit is an independent identically normal distributed error term with unit variance. Pooling yields

the likelihood

LP (Y |θ,X) =
N
∏

i=1

T
∏

t=1

Φ [(2yit − 1)Xitβ] , (3)

where Φ(·) denotes the cumulative distribution function of a standard normal distribution.

An often considered approach to account for latent heterogeneity is to model random coefficients,

see Train (2003). Hence β is modeled as unit specific random variable

βi
iid
∼ N (b,W ), (4)

where W denotes the covariance matrix of the random coefficients and b denotes the common mean

vector for all individuals. This results in a likelihood function given as

LRC(Y |θ,X) =
N
∏

i=1

∫

Rp

[

T
∏

t=1

Φ [(2yit − 1)Xitβi]

]

f(βi|b,W )dβi, (5)

where p denotes the dimension of the vector of random coefficients. We will refer to this kind

of modeling heterogeneity as a benchmark for modeling latent heterogeneity within the empirical

illustration.

Alternatively, latent heterogeneity can be incorporated via latent clusters. Model-based clustering

assumes a given number of cluster, where members of a cluster share the same parameters. Define

S = {Si}
N
i=1, k = 1, . . . ,K indicating the cluster membership for each individual. Conditional on

the cluster membership the latent model is given as

y∗it = XitβSi
+ eit, (6)
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providing the joint density function

f(Y |θ,X, S) =

N
∏

i=1

T
∏

t=1

Φ [(2yit − 1)XitβSi
] . (7)

Frühwirth-Schnatter and Kaufmann (2008) propose two distinct ways in modeling the probabilis-

tic structure of cluster membership. An a priori ignorant approach is to assume

Pr(Si = k|η1, . . . , ηK) = ηk, (8)

where ηk, k = 1, . . . ,K − 1 and ηK = 1 −
∑K−1

k=1 ηk are the relative group sizes assumed to be

unknown parameters to be estimated. Alternatively, the probability of cluster membership may

depend on certain unit specific factors, hence the probability is parameterized as a multinomial logit

model given as

Pr(Si = k|{γk}
K−1
k=1 , zi) =

exp{ziγk}

1 +
∑K−1

k=1 exp{ziγk}
. (9)

The individual specific variables zi stratifies hence the probability for a panel unit to belong to

cluster k.6 The logit structures coincides with the unconditional approach, when zi includes only a

constant. Variables in zi may help to assign cluster membership. The model likelihood is given as

LC(Y |θ,X) =
N
∏

i=1

K
∑

k=1

[

T
∏

t=1

Φ ((2yit − 1)Xitβk) Pr(Si = k|{γk}
K−1
k=1 , zi)

]

. (10)

Given these possibilities to consider latent heterogeneity within probit models different concepts

for marginal effects arise. Conceptually, the marginal effect summarizing all parameters within θ is

given as

∂

∂x
Pr(y = 1|x = x, θ), (11)

where the function form of the derivative depends on the considered model structure for incorporation

of latent heterogeneity. For the pooled model specification, the marginal effect is well known to be

MEP = φ(xβ)β, (12)

where φ(·) denotes the density of the standard normal distribution. For the model specification

incorporating latent heterogeneity via random coefficients, the marginal effect takes the form

MERC =

∫

φ(xβi)βif(βi|b,W )dβi, (13)

6Note that for identification reasons only K − 1 parameter vectors are specified, see Train (2003) for a discussion.
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where the above given integral can be solved numerically or analytically, when assuming a normal

distribution for the distribution f(βi|b,W ).7 When latent heterogeneity is considered via modeling

of latent clusters, two concepts apply for assessment of marginal effects. First, a cluster specific

measure is given as

MECS = φ(xβk)βk, k = 1, . . . ,K, (14)

while a cluster robust concept is8

MECR =

K
∑

k=1

φ(xβk)βkPr(S = k|z, {γk}
K−1
k=1 ). (15)

This set of different concepts are derived as measures for marginal effects and allow to gauge the

influence of variables on the probability of an event under consideration of different forms of latent

heterogeneity.9

3 Model Estimation

The inclusion of model structures capturing latent heterogeneity provides estimation problems, which

are especially accessible to Bayesian estimation via MCMC methodology namely Gibbs sampling

including Metropolis-Hastings updates. Using data augmentation, see Tanner and Wong (1987), the

parameter vector is augmented to include the panel member specific cluster indices, which simplifies

sampling from all other full conditional distributions.

Genuine estimation problems in the context of the model based clustering framework as a special

type of mixture model are referred to in the literature as label switching and genuine multi modality,

see Stephens (2000) and Frühwirth-Schnatter (2004). Label switching refers to the invariance of the

likelihood under relabeling of clusters. The involved problem of label identification can be handled in

different ways. The first solution is based on setting an identifying restriction on the parameter space,

which hinders label switching. While the restrictions may be easily implemented it is important to

find a restrictions, which efficiently separates the parameter space. If one chooses a restriction on

parameters, which are almost identical within the clusters, the label switching problem is possibly still

7Note that the numerical solution is provided as a byproduct of the employed estimation routine, namely Gibbs

sampling. However, the analytical solution is to be preferred for reasons of storing capacities and prevention of

approximation errors.
8Alternatively to conditioning on a point z, the unconditional probability can be used (Pr(S = k) instead of

Pr(S = k|z)).
9Note that also individual specific marginal effects might be interest, which can readily calculated based on individual

specific expectation of the parameter vector.
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present especially within the multivariate clustering considered here.10 Alternatively, as suggested

by Stephens (2000), the output of the unconstrained Gibbs sampler can be post screened. These

relabeling algorithms provide a decision theoretic tool to decide on the identification of clusters.

While an identifiability constraint hindering label switching is not a priori known and hence chosen

arbitrarily, the use of an relabeling device for post screening is computationally more demanding,

but based on a decision theoretic criterion to deal with label switching.

Based on a finite sample argument, genuine multi modality is not accessibly to maximum like-

lihood estimation and would hinder a correct assessment of parameter uncertainty. In contrast,

posterior inference allows to display the occurrence of multimodality and hence provides a correct

assessment of sample uncertainty in estimation yielding a further advantage of a Bayesian estimation

approach.

The following sections provide the unconstrained sampler for the considered model framework.

Furthermore, the relabeling algorithm for post screening, and the computation of the marginal

likelihood using bridge sampling and the out-of-sample experiment are presented. One might argue

that the need for the additional calculation steps - the relabeling algorithm, the bridge sampler, and

for the out-of-sample experiment - to get interpretable parameter estimates and a model selection

device is a drawback of the Bayesian approach. It is true that relabeling is an additional complication

which is prevented by the use of maximum likelihood estimation techniques but model selection,

namely the determination of the number of clusters causes additional conceptional problems with

the maximum likelihood approach, too. Testing for the number of clusters within the maximum

likelihood approach would run into a nuisance parameter problem and e.g. the asymptotic χ2-

distribution for the LR test statistic would not be valid.11 These drawbacks of the frequentistic

approach have already been noted by Geisser and Eddy (1979) who introduce in the literature the

use of resampling strategies in a Bayesian context allowing for non-nested model comparison.

Furthermore, the Bayesian approach also allows direct comparison with non-nested models like

the comparison between a cluster and a random coefficient model.

10To soften the problem of choosing a restriction a priori, the empirical literature suggests hence to choose the

identifying restrictions on the basis of pre runs of the unconstrained Gibbs sampler.
11In contrast to the nuisance parameter problem occurring for structural break analysis where general asymptotic

results have been derive by e.g. Andrews and Ploberger (1994), derivation of general results for testing the number of

clusters is possibly hindered via the non availability of a natural ordering of clusters.
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3.1 Estimation algorithm

This section presents the analysis of the considered model framework for a given number of clus-

ters.12 Comparison of model specifications is then based on the marginal likelihood of different

models. Bayesian estimation is concerned about the posterior distribution of the parameter vector

θ summarizing all model parameters

p(θ|Y,X,Z) ∝ L(Y |X,Z, θ)π(θ), (16)

where π(θ) denotes the prior distribution. Assuming prior independence of parameters concerning

the conditional mean and parameters governing cluster membership allows to specify a multivariate

normal prior of the parameters concerning the conditional mean.

Given the cluster indices estimation of the parameters within a cluster corresponds to the case of

the pooled panel probit model which is straightforward to estimate in terms of the approach suggested

by Albert and Chib (1993). The posterior distribution is augmented to include the latent variable

y∗it. Given this augmentation Gibbs sampling can be applied to obtain draws from the posterior

distribution via iterative sampling from the closed form full conditional distributions. Additionally

for the cluster model the Gibbs sampler is enhanced by two steps where the cluster indices are

augmented and the parameters governing the cluster probabilities are drawn. The Gibbs sampling

scheme has the following structure.

Step I Sample the latent variable y∗it from a truncated normal with mean and variance

µy∗

it
= XitβSi

, σy∗

it
= 1, (17)

where the truncation sphere is (−∞, 0) if yit = 0 and (0,∞) if yit = 1. βk denotes the

parameter vector of cluster k, while individual i belongs to cluster k: βSi
= βk.

Step II Sample βk from the linear regression setup given by Y ∗
k = Xkβk +E from a multivariate normal

with moments

Σβk
= (X ′

kXk + Ω−1
βk

)−1, µβk
= Σ−1

βk
(X ′

kY
∗
k + Ω−1

βk
ψβk

), (18)

whereby Ωβk
denotes the prior variance covariance matrix of betak and ψβk

its prior mean

vector. Y ∗
k represents the latent variables of all individuals in cluster k. Step II is done for

each cluster.

Step III Sample the cluster indicator Si for each individual from a discrete distribution, where the full

conditional probability is given as

Pr(Si = k|Y,X,Z, θ) ∝

[

T
∏

t=1

Φ ((2yit − 1)Xitβk)

]

exp{ziγk}

1 +
∑K−1

k=1 exp{ziγk}
. (19)

12Note that the Gibbs scheme for the random coefficient panel probit model is documented in Aßmann (2007).
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Step IV Simulation of the parameters governing the cluster probabilities is straightforward in case of

the ignorant setup. The full conditional distribution is proportional to a Dirichlet distribution

with parameters given as

p1 =

N
∑

i=1

I(Si = 1), . . . , pK = 1 −
K−1
∑

k=1

pk (20)

In case of the multinomial logit parameterization no direct sampling is possible. Hence, we

adopt a Metropolis-Hastings scheme, see Chib and Greenberg (1995) for an introductive re-

view, and use as a jumping distribution a normal distribution, where the mean µ∗is obtained

via maximization of the posterior distribution given by the implicit likelihood of cluster prob-

abilities and prior distribution over γ1, . . . , γK−1 and the covariance Σ∗ as the corresponding

inverted Hessian. Denote γ = (γ1, . . . , γK−1). A candidate draws is then accepted with prob-

ability

min











∏N
i=1

exp{ziγ
∗

Si
}

1+
∑K−1

k=1 exp{ziγ
∗

k
}

exp{−.5(γ∗ − ψγ)′Ω−1
γ (γ ∗ −ψγ) − .5(γ − µ∗)′Σ∗−1(γ − µ∗)}

∏N
i=1

exp{ziγk}

1+
∑K−1

k=1 exp{ziγk}
exp{−.5(γ − ψγ)′Ω−1

γ (γ − ψγ) − .5(γ∗ − µ∗)′Σ∗−1(γ∗ − µ∗)}
, 1











.(21)

This specific choice of the jumping distribution showed favorable acceptance rates compared

to simpler random walk chains and provided only moderate autocorrelation within the draws.

3.2 Relabeling algorithm

Relabeling algorithms have been introduced within the literature on finite mixture models by Celeux

(1998) and can be motivated via a decision theoretic approach. Relabeling is performed via min-

imizing the risk to misreport a draw from the Gibbs output. We adapt the relabeling algorithm

suggested by Stephens (2000) for clustering inference in the context of stratified clustering within

the panel probit model. Nevertheless, some discussion with respect to the severity of the label

switching problem shall be provided. Label switching is connected to the following stylized sam-

pling event. By incident two parameter vectors linked to two distinct clusters characteristics change,

i.e. denoting one as the first and one as second, the first reflects the properties of the second and vice

versa. The probability of such an event is the smaller the larger the parameter space is and the more

distinct the cluster characteristics are. Since the parameter vectors have changing characteristics,

individuals within the panel are regrouped into the clusters. Label switching can also be induced via

an incidental regrouping of individuals into clusters. However, the larger the number of individuals

is, the more unlikely is a complete regrouping of all members belonging to a certain cluster. Thus,

the larger the parameter space and the more panel members are considered the less frequent is label

switching to be observed within the Gibbs sampling sequences. Given this, we provide the relabeling
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algorithm in the following for the most general model specification, where latent heterogeneity is

modeled via clusters.

Let P (θ) denote the matrix of classification probabilities (pik(θ)) given as

pik(θ) = Pr(Si = k|Y,X,Z, θ) ∝

[

T
∏

t=1

Φ ((2yit − 1)Xitβk)

]

exp{ziγk}

1 +
∑K−1

k=1 exp{ziγk}
f(βk|bk,Wk). (22)

The Kullback-Leibler divergence is operationalized to measure the loss involved in reporting and

cluster assignment Q given as the matrix qik when the true distribution on clustering is P (θ). It has

the form

KL(Q; θ) =

n
∑

i=1

K
∑

k=1

pik(θ) log

{

pik(θ)

qik

}

. (23)

Given an initial choice of relabeling v1, . . . , vR, e.g. using the raw output from the Gibbs sampler,

the relabeling algorithm consists then out of the following steps.

Step 1: Choose Q as

Q = arg min
R

∑

r=1

n
∑

i=1

K
∑

k=1

pik(vr(θ
(r))) log

{

pik(vr(θ
(r)))

qik

}

, (24)

which is achieved via setting

qik =
1

R

R
∑

r=1

pik(vr(θ
(r))). (25)

Step 2: Choose vr to minimize

n
∑

i=1

K
∑

k=1

pik(vr(θ
(r))) log

{

pik(vr(θ
(r)))

qik

}

, (26)

which is achieved in the present context of application via consideration of all K! possibilities

for each vr, r = 1, . . . , R.

The algorithm converges to the optimal fix point in the present context, where 20 iterations are

found to ensure convergence. Some caveats apply with respect to storing requirements. Since the

full augmented parameter vector must be stored, storing capacities must be cautiously provided,

since the most general specification with shrinkage within clusters requires saving of R×N ×K × p

draws. Based on the relabeled and screened MCMC output, estimates of parameters and marginal

effects are directly available as averages from this output.
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3.3 Calculating the Marginal Likelihood via Bridge Sampling

Bridge sampling offers a conceptually straightforward method to calculate the Marginal Likelihood,

see Frühwirth-Schnatter (2004). It has its particular advantages in the presence of multimodality

and label switching as it does not depend on a certain density region of the posterior like the method

of Chib (1995) and Chib and Jeliazkov (2001). The Marginal Likelihood is the normalizing constant

of the posterior distribution of the model parameters. The non-normalized posterior can be denoted

as

p∗(θ|Y ) = L(Y |θ)π(θ), (27)

where L(Y |θ) represents the likelihood and π(θ) represents the prior. Then the normalized posterior

is given as

p(θ|Y ) =
p∗(θ|Y )

p(Y )
. (28)

Now assume q(θ) which is a simple approximation of the posterior p(θ|Y ) with known normalizing

constant. Furthermore, assume α(θ) to be an arbitrary function fulfilling:
∫

α(θ)p(θ|Y )q(θ)ν(dθ) > 0. (29)

Bridge-sampling is based on the following result:

1 =
Eq(α(θ)p(θ|Y ))

Ep(α(θ)q(θ))
, (30)

which can be transformed into

p(Y ) =
Eq(α(θ)p∗(θ|Y ))

Ep(α(θ)q(θ))
, (31)

due to Equation (28). A consistent estimator of the marginal likelihood is then given by

p̂(Y ) =
L−1

∑L
l=1 α(θ̃(l))p∗(θ̃(l)|Y )

M−1
∑M

m=1 α(θ(m))q(θ(m))
, (32)

where expectations are replaced by sample averages, θ̃(l) are draws from the auxiliary density q(θ)

and θ(m) are draws from the before noted posterior sampler namly the same draws of the MCMC-

Algorithm used for estimation of the model parameters. The estimator in Equation (32) is called a

general bridge-sampler. By chosing different functions α(·) some special cases arise.13 If one applies

α(θ) = 1/q(θ) the bridge-sampling estimator is an importance sampling estimator:

p̂(Y ) = L−1
L

∑

l=1

p∗(θ̃(l)|Y ))

q(θ̃(l))
. (33)

13The approach of Gelfand and Dey (1994) for calculating the marginal likelihood corresponds to the choice α(θ) =

1/p∗(θ|Y ).
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Meng and Wong (1996) discuss the asymptotically optimal choice of α(θ) and propose the use of

α(θ) ∝
1

Lq(θ) +Mp(θ|Y )
. (34)

While p(θ|Y ) is unknown as the marginal likelihood is unknown and has to be replaced by its

estimate Meng and Wong (1996) propose an iterative procedure to estimate the marginal likelihood

and thereby the posterior integrational constant. In the k-th step of the iteration the posterior is

estimated by

p̂(θ|Y ) =
p∗(θ|Y )

p̂k−1(Y )
, (35)

where p̂k−1(Y ) results from the following recursion:

p̂k(Y ) = p̂k−1(Y )
L−1

∑L
l=1

p̂(θ̃(l)|Y )

Lq(θ̃(l))+Mp̂(θ̃(l)|Y )

M−1
∑M

m=1
q(θ(m))

Lq(θ(m))+Mp̂(θ(m)|Y )

. (36)

The necessary importance density q(·) is constructed using Rao-Blackwellisation as proposed by

Gelfand and Smith (1990). This ensures the capability of the employed importance density to deal

with the possibly occurring multi-modality of the underlying function. It is hence given as

q(θ̃(l)) =
1

H

T
∑

h=1

K−1
∏

k=1

f(γ̃
(l)
k |m(h)

γk
)

K
∏

k=1

f(β̃
(l)
k |m

(h)
βk

), (37)

where f(·|·) denote the full conditional distribution and {m
(h)
γk
,m

(h)
βk

}H
h=1 denote a random resample

of the MCMC output to gain the all integrating constants of the of the full conditional distributions.

Since integrating constant is not known analytically for f(γ̃
(l)
k |·), it is approximated via the involved

MH-algorithm, compare Step IV, Section 3.1. Mind, the L draws (of S) to calculate the importance

density can be obtained by resampling the MCMC output. As Frühwirth-Schnatter (2004) points out

convergence is achieved quickly (after 5 iterations in our application), where starting values for the

recursion can be gained from the importance sampling approach. Formally, we assume convergence

achieved, when the difference in marginal likelihood values is less than 1e− 3.

3.4 Cross validation for determining the number of clusters

The marginal likelihood provides a consistent measure of the goodness of fit, which is adequate for

non-nested model comparison. However, the high dimensional integration problem arising within

the computation of the marginal likelihood, which is necessarily based on numerical approximations

via simulation methods, makes it attractive to consider alternative measures of goodness of fit. A

common approach is to use the predictive ability of a model to assess its fit.14 Typically, to forecast

14See e.g. Geisser and Eddy (1979).
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a binary variable in a probit model the cdf of the latent model (here: given the cluster indication,

see Equation 38) is calculated and checked whether it exceeds 0.5. If so the model predicts a one,

i.e.

I [Pr(y∗it ≥ 0|yit = 1, Si) = Φ(XitβSi
) > 0.5] (38)

By the ROC measure Egan (1975) provides an extension. Based on the predictive performance of

the model under consideration, it comprises the set {a(w), b(w)}, {w : 0 ≤ w ≤ 1}, where

a(w) = 1 −
1

NT

N
∑

i=1

T
∑

t=1

I [Pr(y∗it ≥ 0|yit = 1, Si) > w] (39)

b(w) =
1

NT

N
∑

i=1

T
∑

t=1

I [Pr(y∗it ≥ 0|yit = 0, Si) > w] . (40)

The ROC graph assesses therefore the predictive performance for alternative values of the prediction

threshold ranging from 0 to 1, and not just 0.5.15

We apply the simple forecasting criterion as well as the ROC in a cross validation setup to prevent

overfitting.16 This is done as follows: The sample is split along its time dimension into a estimation

and a prediction part. We run a modified Gibbs sampler where the distributions of the parameters

and the cluster indicators solely depend on the observations of the estimation part. Additionally

within each Gibbs run the values of the latent models of the observations of the prediction part

are calculated (given the current draw of the parameter vector as well as of the cluster indicators).

Afterwards, these values are averaged over all Gibbs runs and are than used to gain forecasts and

the ROC measure. Thereby, the problem of relabeling is prevented, as the value of the latent model

is unchanged by relabeling.

4 Simulation Study

We assess via a simulation study the accuracy of the marginal likelihood concept to identify the

correct number of clusters and compare it with an alternative model selection device based on

forecasting accuracy in an out-of-sample experiment. The simulation study is performed for two

panel sizes A and B. Within panel size A time dimension is T = 10 and the number of individuals

is N = 50, whereas panel size B is T = 5 and N = 500. For each of the two panel sizes we assume a

probit model with two explaining variables and a constant of the right hand side of the latent model,

i.e.

y∗it = XitβSi
+ eit, (41)

15In fact the above mentioned probabilities are replaced in empirical analysis by the relative frequencies obtained

via computation of the predictive probabilities for each single observations.
16See Stone (1974).
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with Xit = [1 x
(1)
it x

(2)
it ], where we generally assume that the individuals belong to either of three

unobservable clusters denoted by Si. All together, we generate for the two panel sizes 500 repe-

titions from 11 parameter scenarios. Thereby, the 11 parameter scenarios reflect different cluster

constellations ranging from a pooled scenario up to a scenario with 3 clusters and stratified cluster

probabilities. For each repetition in each parameter scenario we estimate panel probit models as-

suming 1 through 4 clusters. The prior assumptions employed throughout the simulation study are

given in Table (1).

The scenarios are generated in the following manner. For panel size A and B the corresponding

regressors x
(1)
it , x

(2)
it and zi are drawn once from standard normal distributions each. Firstly, we

draw from the logit distribution (with parameters {γk}
K−1
k=1 ) the cluster number of individual i.

After obtaining the cluster membership the dependent variable is drawn from the corresponding

probit model. By setting the cluster specific parameters in some scenarios to the same values the

number of clusters are reduced to one (pooled) and two clusters. We consider furthermore different

degrees of inhomogeneity between clusters to illustrate how much inhomogeneity is necessary for

proper identification of different clusters. We measure the degree of inhomogeneity present within

the data sets via computation of a global measure of inhomogeneity given as

IH =

con
∑

p=1

K
∑

k=1

(βp
k − β

p
)2ηk, (42)

where con denotes the number of regressors and ηi denotes unconditional cluster probability of cluster

i. However, to provide a more accurate view on the present latent heterogeneity, we accompany the

global measure of inhomogeneity via the set of pairwise inhomogeneity measures, i.e. the inhomogene-

ity between two distinct clusters. Note also in case of stratified cluster probabilities inhomogeneity

is present also within the parameters of these probabilities, which we assess similarly as above via

the logit coefficients.

4.1 Marginal Likelihood

Table (2) gives the results of the simulation study in terms of the relative frequency, the marginal

likelihood criterium chooses the corresponding number of clusters (1 through 4) for panel size A.

Column 10 gives the true number of clusters. In Scenario I the marginal likelihood estimate for

the true (pooled) model is in almost all cases higher than for the models with clusters. The model

selection approach is at least well suited to reject the hypotheses of clustered data. If the simulated

data is clustered the ability of the model selection approach to detect the right number of clusters is

mixed and depends on the degree of homogeneity between the clusters and on whether one regards

explaining variables for the (stratified) clustering.
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Data in Scenarios II through IV are simulated from two clusters. In almost all cases the right

number of clusters are estimated even when as in Scenario III and IV the heterogeneity between

clusters is rather low. In Scenario V three clusters exist, however the parameters β are identical for

two of them. Thus, these clusters are only different with respect to the logit part or the individuals

in two of the three cluster behave like each other but for different reasons. The model selection can

hardly detect the right number of clusters. It seems to be mainly driven by differences in β. In

Scenarios V I and V II three clusters different in γ and β are assumed. However, the heterogeneity

between two of theses clusters is rather low (MIH13 = compare to scenario III). Again the model

selection procedure identifies only two clusters in most cases, but results improve if the conditioning

information in the logit regression is taken into account. Thus it is advisable to do an one step

analysis instead of a two step procedure, where in the first step clusters are estimated and in a

second step logit parameters are estimated conditional on inferred states. This is even stressed in

the assessment of Scenarios V III and IX where the heterogeneity between the β coefficients of the

clusters is even lower, so that in a reasonable number of simulation runs (about 10 %) the marginal

likelihood criterium even favors a pooled model in both scenarios. In Scenario V III the true number

of clusters is detected only in very few simulation runs due to the high similarity between β1 and β2

(MIH12 = 0.015). In Scenario IX when the logit specification is taken into account the number of

right model selections rises above 50 %. Finally, Scenarios X and XI provide an analysis for three

rather heterogeneous cluster. Accordingly, the model selection procedure detects in almost all cases

the true number of cluster. Qualitatively these results do not heavily depend on the structure of the

data as the results for panel size B given in Table (3) show. They allow mainly the same conclusions

as the results given for panel size A.

4.2 Cross validation approach

In this paragraph the results of the assessment of the marginal likelihood are compared to out-of-

sample prediction criteria for model selection. We run an out-of-sample prediction exercises. The

sample is spilt along time into an estimation sample containing 80 % of the observations of the

whole sample while the remaining 20 % are to be forecasted. To expand the number of forecasts this

partition (and thereby the forecasting exercise) is done five times in that way that all observations

are once part of the forecasting sample. Results are averaged over this five different partitions.

Note that this approach allows the use of the unrestricted Gibbs-Sampler without application of

relabeling to reach sensible results. In each Gibbs run we apply the set of sampled parameters on the

covariates of the observations to be forecasted to obtain a forecast of the binary variable in each run.17

17Mind, the observations as well as its covariates do not enter the other parts of the Gibbs sampler as there only
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The forecasting distributions are thus byproducts of the Gibbs output. If the estimated probability

exceeds 0.5, a one is taken as forecast for this observation and compared to the actually observed.

Additionally, the ROC measure is calculated allowing for different probability borders in forecasting

(hence, the popular approach with 0.5 is a special case of the ROC approach). The forecasts are

done for the same models and scenarios as in the case of the marginal likelihood assessment. The

number of clusters is then determined by the best model according to the forecasting and the ROC

criterion respectively. Tables (4) and (6) report the relative frequencies the above explained criteria

decide on the specific number of clusters in Panel size A.

Both, the forecasting and the ROC criterion provide very similar conclusions compared to the

marginal likelihood. Thus the case of homogenity with no clusters is detected almost with certainty

(scenario I). The same is true with two true clusters (scenarios II through IV ) and with three

true clusters if the heterogenity of the clusters is high enough (scenarios X and XI), whereby the

marginal likelihood shows considerable less dispersion in the two latter scenarios. In scenarios V

through V II both criteria give advice to two clusters in more than 90 percent of the cases. While

the marginal likelihood also has a high tendency to advice two clusters in these scenarios the rate of

true selections is higher than for both competitors. Finally, in scenarios V II and IX the the most

pronounced differences between the model selection criteria occur. The forecasting criterion has a

high tendency to neglect the heterogeneity in 63 percent and 36 percent, respectively, it tends to just

one cluster. The marginal likelihood and the ROC approach both have the same median: In scenario

V III both prefer two clusters mostly. Whereby the ROC approach has a higher dispersion. In 19

percent of the cases it chooses the right number of cluster, but in 26 percent of the cases it assumes

just one clsuter and in 10 percent even four clusters. In scenario IX the number of cases, where the

true cluster dimension is detected is with 58 percent similar to the marginal likelihood approach,

but here the ROC has a tendency to overfitting and more often signals four cluster. Tables (5) and

(7) provide the results for Panel size B. Qualitatively the results are mainly unchanged. To some

degree the dispersion of the decisions is a bit less and results are a bit improved in that sense for

the ROC approach.

5 Empirical Illustration

The usefullness of model based clustering for modeling latent heterogeneity shall be illustrated using

the data set studied in Bertschek and Lechner (1998). The data set is well known in the empirical

literature and Greene (2004b) documents the presence of a considerable degree of latent heterogeneity

within the data. The following listing gives the variables used for analysis, for a detailed description,

observations of the estimation sample are regarded.
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see Bertscheck and Lechner (1998):

yit = 1 if a product innovation was realized by firm i in year t, 0 otherwise; x2it
Log of industry

sales in DM; x3it
Import share=ratio of industry imports to (industry sales plus imports; x4it

Relative

firm size = ratio of employment in business unit to employment in the industry (times 30); x5it
FDI

share = Ratio of industry foreign direct investment to (industry sales plus imports); x6it
Productivity

= Ratio of industry value added to industry employment; x7it
Raw materials sector=1 if the firm is

in this sector; x8it
Investment goods sector=1 if the firm is in this sector.

The data set contains 1270 firms, where the time dimension covers the five years from 1984 to

1988. Based on the insight delivered by the simulation study in the previous section, we consider

the marginal likelihood analysis and the out-of-sample analysis with partitioning along the time

dimension for determination of the number of latent clusters. The results are provided in Table (8).

Comparison of the pooled specification with the specification incorporating random coefficients

via the marginal likelihood shows the random coefficients specification to be very strongly preferred

according to Jeffreys’ scale, see Jeffreys (1961). Consideration of latent heterogeneity via model based

clustering asks for specifying the number of clusters. Table (8) gives the corresponding marginal

likelihoods for models with two, three, and four clusters. For each number of cluster stratified and

non stratified cluster specific probabilities have been considered. The marginal likelihood reveals

that the consideration of three cluster in conjunction with non stratified cluster probabilities is the

preferred model specification.

A similar conclusion is drawn on the basis of the performed out-of-sample prediction experiment.

For both out-of-sample experiments with sample partitioning along the time dimension the ratio

of correctly predicted observations and the ROC measure is the highest for the model specification

incorporating latent heterogeneity via estimation of three latent clusters with non stratified cluster

probabilities. Thus, also the empirical illustration provides evidence for the accuracy of the here

proposed cross validation strategy for deciding on the preferred number of latent clusters.

To reveal the impact of the considered forms of latent heterogeneity on gauging the impact of

variables on the dependent variable firm innovation, we focus discussion on the implied different

marginal effects. With respect to empirical results, Table (9) provides the pooled estimation results.

All variables show significant influence on the dependent variable. Furthermore, marginal effects

show that higher sales, larger size, higher import ratio and foreign direct investment, as well as

membership in investment good branch have positive effect on the patent activity. Negative effects

on patent activity are documented for productivity and the raw materials sector.

Incorporation of latent heterogeneity via random coefficients provides some significant changes

with respect to the influence some variables exhibit on patent activity. Bayesian estimation results
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are shown in Table (10).18 In specific, the productivity of a firm has no longer positive influence on

the patent activity. The corresponding heterogeneity robust (in the sense of the random coefficient

specification) marginal effect is not different from zero at conventional levels. The marginal effect

for this specification using a numerical solution to the involved integral is computed as

˜̃
MERC =

1

R

R
∑

r=1

1

N

N
∑

i=1

φ(xβ
(r)
i )β

(r)
i , (43)

where β
(r)
i , r = 1, . . . , R denote the posterior draws including the random coefficients. Using an

analytical solution to the integration provides an estimate computed as

M̃ERC =
1

R

R
∑

r=1

exp{−.5(b(r)′W−1,(r)b(r)) − (W−1,(r)b(r))′[x′x+W−1,(r)]−1(W−1,(r)b(r)))}

(2π)−.5 det(W (r))−.5(det (x′x+W−1,(r))).5(x′x+W−1,(r))−1(W−1,(r)b(r)). (44)

The estimation results corresponding to the estimation of three clusters are given in Table (11).

Estimates are based on post screened Gibbs output. Figure (1) gives the posterior draws before post

screening exhibit potentially multimodality and label switching. The post screened Gibbs output

is given in Figure (2). It is seen that label switching has not been present in the Gibbs output,

however slight genuine multi modality might be present, as shown in Figure (3) displaying the

estimated posterior densities.19

With respect to empirical results, the preferred cluster specification provides an alternative ac-

count of latent heterogeneity and recommends alternative interpretation of results. Consideration of

latent heterogeneity via latent clusters allows to gain several insights with respect to the marginal ef-

fects when latent heterogeneity is present. At first, cluster specific marginal effects can be considered.

These can be readily derived from the screened Gibbs output as

M̃EC =
1

R

R
∑

r=1

φ(xβ
(r)
k )β

(r)
k , k = 1, . . . ,K (45)

and are based on cluster specific means xk. However, generally no knowledge on cluster membership

is available. Therefore, of interest is also the distribution of marginal effects within the whole sample.

Note that an heterogeneity robust average effect can be computed based on weighted averages of

18The random coefficient model has two blocks of parameters. The first block are the means of the random parameters

and the second its variances. For the first block of parameters we assume a priori a multivariate normal distribution

and for the second block we assume a Wishart distribution, the prior moments are given in Table (1). The Gibbs

sampler is used to get inference on parameters and marginal effects.
19Numerical optimization routines to perform a Maximum Likelihood estimation yield differing results depending

on their starting conditions. It can hardly be guaranteed to reach the global maximum with a low number of trials.
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the draws given as

M̃ECR =
1

R

R
∑

r=1

K
∑

k=1

w
(r)
k φ(xβ

(r)
k )β

(r)
k , (46)

where w
(r)
k denotes the fraction of individuals in cluster k in Gibbs iteration r. Alternatively to w

(r)
k

a conditional probability can be used, for example Pr(Si = k|x, {γ
(r)
k }K−1

k=1 ). Draws of the cluster

specific marginal effects are hence weighted with the number of individuals, which are in this cluster

for the considered draw. Table (12) gives the corresponding results.

While both, the random coefficient and the model-based clustering approach aim at a general

representation of latent heterogeneity, several differences between the two specification are revealed,

when comparing marginal effects. While within the population robust marginal effects given in Table

(12) based on the latent cluster specification only log sales, relative firm size, and investment good

sector have substantial influence on firm innovation, the random coefficient approach also exhibits

substantial effect of imports and foreign direct investment. Furthermore, besides these qualitative

differences, also quantitative differences for relative size and imports are revealed. In contrast very

similar marginal effects are documented for log sales and the investment good sector indicator, see

also the pooled specification in Table (9). These findings suggest that not all variables capture latent

heterogeneity to the same extent. When looking at cluster specific marginal effects with estimation

results being provided in Table (13), these provide insight into to what extent the clusters are

distinct. Interestingly, within the cluster labeled as second all variables show substantial influence

on firm innovation, however at a quantitative level differing from the pooled specification. For the

first cluster only log sales and relative firm size are documented to have substantial impact, while

for the third cluster log sales and the investment good sector influence firm innovation substantially.

These different patterns provide insight into different latent cluster specific firm types, for which a

pooled specification does not provide valid inference of the relationship between firm innovation and

economic determinants thereof.

Given the latent cluster specification being the preferred model, comparison between cluster

specific and random coefficient marginal effects suggests that the underlying normal distribution for

latent heterogeneity does not allow to represent the full extent of the latent heterogeneity present

within the considered empirical illustration. Thus, the empirical example reveals the importance to

consider modeling latent heterogeneity in different manners.

6 Conclusion

This paper provides Bayesian estimation procedures for panel probit models incorporating model

based clustering. Based on the different forms of incorporating latent heterogeneity, we provide

18



a discussion of different concepts of marginal effects. Furthermore, we discuss the issue of model

selection with respect to the number of clusters. While the marginal likelihood is typically the

preferred device for model selection in a Bayesian framework we propose the use of a cross-validation

approach based on the ROC measure. The latter approach is less demanding than the marginal

likelihood as it only needs the implementation of the Gibbs sampler and no further algorithms

like the bridge sampler which is used for calculating the marginal likelihood. The results of a

simulation study show that given the presence of a certain degree of inhomogeneity, both concepts

correctly identifies the true number of latent clusters. Due to the high degree of complication in

calculation marginal likelihoods for panel probit models the cross-validation approach seems to be a

reasonable model selection tool. As a side result we find that stratified cluster probabilities perform

overall better than non-stratified cluster probabilities, thus a one step procedure is preferred against

possible two step procedures, where in a first step clusters are determined and in a second step a

multinomial model is estimated.

Within the chosen empirical application we find strong evidence for latent heterogeneity captured

via latent clusters. Based on the different forms of latent heterogeneity one arrives at different

conclusions concerning the impact of explaining variables on the dependent variable conceptualized

via marginal effects. This is a strong case for the class of models applied here and for the Bayesian

approach to handle this class of models, as the Bayesian approach is able to deal with genuine multi

modality and provides a consistent tool for model selection.
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Tables

Table 1: Prior distributions

parameter

pooled specification

β N 0 10I

random coefficient specification

b N 0 10I

Wb IW k + 1 I

clustered specification

βk, k = 1, . . . ,K N 0 10I

γk, k = 1, . . . ,K N 0 1I
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Table 2: Simulation Study - Model selection via marginal likelihood - Panel size A

Scenario 1 2 3 4 MIH/GIH MIH12/GIH12 MIH13/GIH13 MIH23/GIH23 K true stratified

I 0.990 0.010 0 0 0/– – – – 1 no

II 0 0.991 0.010 0 1.325 / 0 1.325/ 0 –/– –/– 2 no

III 0 1.000 0 0 2.250 /0.116 2.250/ 0.116 –/– –/– 2 no

IV 0 0.998 0.002 0 2.250 / 0.373 2.250/ 0.373 –/– –/– 2 yes

V 0 0.952 0.048 0 2.270 / 0.1342 0 / 0.420 2.250/0.250 2.250/0.260 3 yes

V I 0 0.948 0.052 0 1.251 /0 1.290 / 0 0.125 / 0 1.165 / 0 3 no

V II 0 0.782 0.216 0.002 1.251 /0.097 1.290 / 0.123 0.125 /0.023 1.165 / 0.040 3 yes

V III 0.102 0.890 0.008 0 0.240 /0 0.0150/0 0.0900 /0 0.1050 /0 3 no

IX 0.098 0.326 0.574 0.002 0.240 /0.097 0.045 / 0.123 0.270 / 0.023 0.315 /0.040 3 yes

X 0 0 1.000 0 1.500 /0 1.313/0 0.750/0 1.313 /0 3 no

XI 0 0.008 0.990 0.002 0.606 /0.1333 0.250 / 0.123 0.750 / 0.023 0.500 / 0.040 3 yes

Notes: Simulation of 500 data sets for each scenario I–XI. Scenarios are described in Section xx. For each scenario the columns denotes the relative

frequency the marginal likelihood decided for a specific number of clusters. K true denotes the true number of clusters within the scenarios. IH denotes

the inhomogeneity of the specified cluster specific parameters.
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Table 3: Simulation Study - Model selection via marginal likelihood - Panel size B

Scenario 1 2 3 4 MIH/GIH MIH12/GIH12 MIH13/GIH13 MIH23/GIH23 K true stratified

I 0.990 0.010 0 0 0/0 0/0 0/0 0/0 1 no

II 0 0.996 0.004 0 0.3874/- -/- -/- -/- 2 no

III 0 1.000 0 0 0.0556 /- 0/- 0.7500/- 0.7500/- 2 no

IV 0 0.996 0.004 0 0.0556 /0.2068 0/0 0.7500/0.1863 0.7500/0.1863 2 yes

V 0 0.972 0.024 0.004 0.0556 /0.1311 0/0.2050 0.7500/0.1250 0.7500/0.1350 3 yes

V I 0 0.738 0.262 0 0.3840 /- 0.4300/- 0.0417 /- 0.3883/- 3 no

V II 0 0.510 0.490 0 0.3840 /0.1327 0.4300/0.0612 0.0417 /0.0113 0.3883/ 0.0200 3 yes

V III 0.046 0.904 0.050 0 0.0783 /- 0.0150/- 0.0900 /- 0.1050 /- 3 no

IX 0.006 0.226 0.768 0 0.0783 /0.1327 0.0150/0.0612 0.0900 /0.0113 0.1050 /0.0200 3 yes

X 0 0 0.994 0.006 0.4815 /- 0.4375/- 0.2500/- 0.4375/- 3 no

XI 0 0 0.994 0.006 0.2528 /0.1327 0.0833/0.0612 0.2500 /0.0113 0.1667/0.0200 3 yes

Notes: Simulation of 500 data sets for each scenario I–XI. Scenarios are described in Section xx. For each scenario the columns denotes the relative

frequency the marginal likelihood decided for a specific number of clusters. K true denotes the true number of clusters within the scenarios. IH denotes

the inhomogeneity of the specified cluster specific parameters.
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Table 4: Simulation Study - Model selection via Forecasting Criterion (T) - Panel size A

Scenario 1 2 3 4 MIH/GIH MIH12/GIH12 MIH13/GIH13 MIH23/GIH23 K true stratified

I 0.9900 0.0100 0 0 0/– – – – 1 no

II 0 0.9950 0.0050 0 1.325 / 0 1.325/ 0 –/– –/– 2 no

III 0 1.0000 0 0 2.250 /0.116 2.250/ 0.116 –/– –/– 2 no

IV 0 1.0000 0 0 2.250 / 0.373 2.250/ 0.373 –/– –/– 2 yes

V 0 0.9800 0.0200 0 2.270 / 0.1342 0 / 0.420 2.250/0.250 2.250/0.260 3 yes

V I 0 0.9850 0.0150 0 1.251 /0 1.290 / 0 0.125 / 0 1.165 / 0 3 no

V II 0 0.9000 0.0900 0.0100 1.251 /0.097 1.290 / 0.123 0.125 /0.023 1.165 / 0.040 3 yes

V III 0.6300 0.2450 0.0800 0.0450 0.240 /0 0.0150/0 0.0900 /0 0.1050 /0 3 no

IX 0.3600 0.0450 0.3950 0.2000 0.240 /0.097 0.045 / 0.123 0.270 / 0.023 0.315 /0.040 3 yes

X 0 0 0.9900 0.0100 1.500 /0 1.313/0 0.750/0 1.313 /0 3 no

XI 0.0150 0.0050 0.9100 0.0700 0.606 /0.1333 0.250 / 0.123 0.750 / 0.023 0.500 / 0.040 3 yes

Notes: Simulation of 500 data sets for each scenario I–XI. Scenarios are described in Section xx. For each scenario the columns denotes the relative

frequency the marginal likelihood decided for a specific number of clusters. K true denotes the true number of clusters within the scenarios. IH denotes

the inhomogeneity of the specified cluster specific parameters.
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Table 5: Simulation Study - Model selection via Forecasting Criterion (T) - Panel size B

Scenario 1 2 3 4 MIH/GIH MIH12/GIH12 MIH13/GIH13 MIH23/GIH23 K true stratified

I 1.0000 0 0 0 0/– – – – 1 no

II 0 0.9938 0 0.0062 1.325 / 0 1.325/ 0 –/– –/– 2 no

III 0 0.9877 0.0123 0 2.250 /0.116 2.250/ 0.116 –/– –/– 2 no

IV 0 0.9630 0.0309 0.0062 2.250 / 0.373 2.250/ 0.373 –/– –/– 2 yes

V 0 0.9691 0.0309 0 2.270 / 0.1342 0 / 0.420 2.250/0.250 2.250/0.260 3 yes

V I 0 0.8704 0.1235 0.0062 1.251 /0 1.290 / 0 0.125 / 0 1.165 / 0 3 no

V II 0 0.7346 0.2284 0.0370 1.251 /0.097 1.290 / 0.123 0.125 /0.023 1.165 / 0.040 3 yes

V III 0.3272 0.5000 0.1111 0.0617 0.240 /0 0.0150/0 0.0900 /0 0.1050 /0 3 no

IX 0.1049 0.0802 0.5617 0.2531 0.240 /0.097 0.045 / 0.123 0.270 / 0.023 0.315 /0.040 3 yes

X 0 0 0.9938 0.0062 1.500 /0 1.313/0 0.750/0 1.313 /0 3 no

XI 0 0 0.9630 0.0370 0.606 /0.1333 0.250 / 0.123 0.750 / 0.023 0.500 / 0.040 3 yes

Notes: Simulation of 500 data sets for each scenario I–XI. Scenarios are described in Section xx. For each scenario the columns denotes the relative

frequency the marginal likelihood decided for a specific number of clusters. K true denotes the true number of clusters within the scenarios. IH denotes

the inhomogeneity of the specified cluster specific parameters.
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Table 6: Simulation Study - Model selection via ROC Graph - Panel size A

Scenario 1 2 3 4 MIH/GIH MIH12/GIH12 MIH13/GIH13 MIH23/GIH23 K true stratified

I 1.0000 0 0 0 0/– – – – 1 no

II 0 1.0000 0 0 1.325 / 0 1.325/ 0 –/– –/– 2 no

III 0 1.0000 0 0 2.250 /0.116 2.250/ 0.116 –/– –/– 2 no

IV 0 1.0000 0 0 2.250 / 0.373 2.250/ 0.373 –/– –/– 2 yes

V 0 0.9800 0.0200 0 2.270 / 0.1342 0 / 0.420 2.250/0.250 2.250/0.260 3 yes

V I 0 1.0000 0 0 1.251 /0 1.290 / 0 0.125 / 0 1.165 / 0 3 no

V II 0 0.9500 0.0450 0.0050 1.251 /0.097 1.290 / 0.123 0.125 /0.023 1.165 / 0.040 3 yes

V III 0.2600 0.4550 0.1850 0.1000 0.240 /0 0.0150/0 0.0900 /0 0.1050 /0 3 no

IX 0.0950 0.0250 0.5800 0.3000 0.240 /0.097 0.045 / 0.123 0.270 / 0.023 0.315 /0.040 3 yes

X 0 0 0.9850 0.0150 1.500 /0 1.313/0 0.750/0 1.313 /0 3 no

XI 0.0100 0.0100 0.8850 0.0950 0.606 /0.1333 0.250 / 0.123 0.750 / 0.023 0.500 / 0.040 3 yes

Notes: Simulation of 500 data sets for each scenario I–XI. Scenarios are described in Section xx. For each scenario the columns denotes the relative

frequency the marginal likelihood decided for a specific number of clusters. K true denotes the true number of clusters within the scenarios. IH denotes

the inhomogeneity of the specified cluster specific parameters.
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Table 7: Simulation Study - Model selection via ROC Graph - Panel size B

Scenario 1 2 3 4 MIH/GIH MIH12/GIH12 MIH13/GIH13 MIH23/GIH23 K true stratified

I 1.0000 0 0 0 0/– – – – 1 no

II 0 1.0000 0 0 1.325 / 0 1.325/ 0 –/– –/– 2 no

III 0 1.0000 0 0 2.250 /0.116 2.250/ 0.116 –/– –/– 2 no

IV 0 1.0000 0 0 2.250 / 0.373 2.250/ 0.373 –/– –/– 2 yes

V 0 0.9877 0.0123 0 2.270 / 0.1342 0 / 0.420 2.250/0.250 2.250/0.260 3 yes

V I 0 0.9753 0.0247 0 1.251 /0 1.290 / 0 0.125 / 0 1.165 / 0 3 no

V II 0 0.9074 0.0802 0.0123 1.251 /0.097 1.290 / 0.123 0.125 /0.023 1.165 / 0.040 3 yes

V III 0.0679 0.5926 0.1852 0.1543 0.240 /0 0.0150/0 0.0900 /0 0.1050 /0 3 no

IX 0.0062 0.0988 0.6728 0.2222 0.240 /0.097 0.045 / 0.123 0.270 / 0.023 0.315 /0.040 3 yes

X 0 0 1.0000 0 1.500 /0 1.313/0 0.750/0 1.313 /0 3 no

XI 0 0.0185 0.9198 0.0617 0.606 /0.1333 0.250 / 0.123 0.750 / 0.023 0.500 / 0.040 3 yes

Notes: Simulation of 500 data sets for each scenario I–XI. Scenarios are described in Section xx. For each scenario the columns denotes the relative

frequency the marginal likelihood decided for a specific number of clusters. K true denotes the true number of clusters within the scenarios. IH denotes

the inhomogeneity of the specified cluster specific parameters.
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Table 8: Model Comparison – Log Marginal Likelihood and Out-of-Sample Prediction

Log Marginal Likelihood ROC Prediction

pooled pooled pooled

-4143.8 0.5383 0.6203

random coefficient – diagonal random coefficient – diagonal random coefficient – diagonal

-3608.4 0.7506 0.7378

K cluster cluster–stratified cluster cluster–stratified cluster cluster–stratified

2 -3663.4 -3655.2 0.7208 0.7279 0.7509 0.7528

3 -3590.8 -3593.9 0.7762 0.7420 0.7549 0.7543

4 -3611.5 -3609.0 0.7526 0.7533 0.7542 0.7541

30



Table 9: Pooled Specification

estimates ∂Pr(yit = 1|x)/∂x

variable mean std 95% HDI mean std 95% HDI

constant -1.9402 0.2354 [−2.3997;−1.4775] – – –

log sales 0.1742 0.0227 [0.1295; 0.2182] 0.0671 0.0087 [0.0500; 0.0840]

rel size 1.0702 0.1380 [0.8042; 1.3495] 0.4122 0.0530 [0.3099; 0.5197]

imports 1.1339 0.1503 [0.8429; 1.4298] 0.4368 0.0579 [0.3248; 0.5508]

FDI 2.8039 0.4004 [2.0304; 3.5987] 1.0801 0.1541 [0.7816; 1.3851]

Prod. -2.1993 0.7086 [−3.5946;−0.8125] -0.8472 0.2729 [−1.3858;−0.3131]

Raw. Mtl. -0.2875 0.0794 [−0.4435;−0.1319] -0.1108 0.0306 [−0.1709;−0.0509]

Inv. good 0.1897 0.0389 [0.1117; 0.2643] 0.0731 0.0150 [0.0430; 0.1020]
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Table 10: Random Coefficient Specification – diagonal

variable mean 95% HDI variance 95% HDI

constant −3.1453
0.6629

[−4.4234;−1.8718] 0.1622
0.0534

[0.0849; 0.2975]

log sales 0.2687
0.0648

[0.1432; 0.3963] 0.0160
0.0012

[0.0137; 0.0185]

rel size 3.0470
0.7205

[1.7504; 4.2945] 7.0640
4.3072

[0.9063; 17.5230]

imports 1.8798
0.3931

[1.0837; 2.6329] 0.4842
0.2219

[0.1913; 1.0648]

FDI 2.7348
1.0269

[0.7468; 4.7695] 1.5251
2.0589

[0.2649; 8.5134]

Prod. −2.0111
1.7093

[−5.4175; 1.3175] 0.6597
0.5082

[0.1718; 2.1504]

Raw. Mtl. −0.5696
0.2336

[−1.0208;−0.1009] 0.4461
0.2043

[0.1686; 0.9843]

Inv. good 0.3956
0.1179

[0.1654; 0.6270] 0.1979
0.0632

[0.0994; 0.3425]

marginal effect 95% HDI marginal effect 95% HDI

–
˜̃
MERC M̃ERC

log sales 0.0565
0.0147

[0.0277; 0.0855] 0.0531
0.0141

[0.0257; 0.0807]

rel size 0.6829
0.1557

[0.3974; 0.9680] 0.6496
0.1490

[0.3774; 0.9200]

imports 0.4300
0.0902

[0.2481; 0.6036] 0.4079
0.0855

[0.2354; 0.5722]

FDI 0.6293
0.2375

[0.1708; 1.1050] 0.5977
0.2257

[0.1620; 1.0469]

Prod. −0.4670
0.3957

[−1.2622; 0.3048] −0.4439
0.3760

[−1.2008; 0.2888]

Raw. Mtl. −0.1328
0.0535

[−0.2358;−0.0258] −0.1262
0.0511

[−0.2246;−0.0239]

Inv. good 0.0878
0.0267

[0.0350; 0.1397] 0.0833
0.0257

[0.0328; 0.1334]
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Table 11: Parameter Estimates Cluster Specification – K = 3

k = 1 k = 2 k = 3

variable mean / std 95% HDI mean / std 95% HDI mean / std 95% HDI

constant −2.0456
0.7034

[−3.4881;−0.7273] −2.4621
0.7340

[−3.8931;−1.0214] −6.3776
1.4934

[−9.8281;−3.8364]

log sales 0.2650
0.0706

[0.1315; 0.4092] 0.1661
0.0659

[0.0353; 0.2937] 0.3601
0.1227

[0.1375; 0.6265]

rel size 4.6454
1.0988

[2.8024; 7.1186] 0.8793
0.4529

[0.1927; 2.0339] 1.2375
0.6160

[0.1941; 2.5098]

imports 0.8145
0.4472

[−0.0596; 1.6886] 2.2386
0.5168

[1.2560; 3.2895] 1.5618
1.3235

[−1.3657; 3.6694]

FDI 1.1766
1.4908

[−1.7619; 4.2059] 2.2670
1.3647

[0.1173; 5.7940] 3.2779
2.9830

[−3.6103; 7.9629]

Prod. −1.0736
2.6381

[−6.0471; 4.0568] −1.6256
2.5424

[−7.3004; 1.9024] 0.1337
2.2981

[−4.5534; 5.2717]

Raw. Mtl. −0.3785
0.2245

[−0.8244; 0.0430] −0.9065
0.3909

[−1.7077;−0.2057] 0.6109
1.1467

[−2.5092; 2.8301]

Inv. good 0.1725
0.1274

[−0.0830; 0.4233] 0.4355
0.1291

[0.1833; 0.6896] 0.7598
0.5579

[0.1884; 2.8471]

γ1/γ2/γ3 0.4597
0.0449

[0.3687; 0.5441] 0.3387
0.0385

[0.2640; 0.4144] 0.2016
0.0340

[0.1316; 0.2666]
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Table 12: Marginal Effects in Population

marginal effect 95% HDI

constant – –

log sales 0.0550
0.0183

[0.0193; 0.0898]

rel size 0.1922
0.0955

[0.0362; 0.3861]

imports 0.2712
0.1665

[−0.0654; 0.5680]

FDI 0.6361
0.4553

[−0.3405; 1.4273]

Prod. 0.0023
0.3433

[−0.6755; 0.8056]

Raw. Mtl. 0.1102
0.1152

[−0.0944; 0.3345]

Inv. good 0.0922
0.0330

[0.0293; 0.1581]
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Table 13: Cluster Specific Marginal Effects – K = 3

k = 1 k = 2 k = 3

variable mean / std 95% HDI mean / std 95% HDI mean / std 95% HDI

constant −0.3157
0.1082

[−0.5234;−0.1017] −0.9766
0.2861

[−1.5493;−0.4234] −0.5672
0.2870

[−1.0147;−0.0500]

log sales 0.0406
0.0112

[0.0186; 0.0619] 0.0635
0.0252

[0.0147; 0.1129] 0.0320
0.0182

[0.0017; 0.0644]

rel size 0.7132
0.1190

[0.4770; 0.9391] 0.3442
0.1652

[0.0925; 0.7422] 0.1135
0.0790

[−0.0148; 0.2680]

imports 0.1280
0.0675

[−0.0010; 0.2660] 0.8921
0.1879

[0.5253; 1.2609] 0.1557
0.1347

[−0.0593; 0.4086]

FDI 0.1886
0.2135

[−0.2018; 0.6451] 0.8580
0.5052

[0.0491; 2.0094] 0.3023
0.3551

[−0.2702; 1.0138]

Prod. −0.1921
0.4089

[−1.0165; 0.5783] −0.5491
0.9490

[−2.7600; 0.7454] 0.0193
0.2293

[−0.4603; 0.5594]

Raw. Mtl. −0.0562
0.0305

[−0.1179; 0.0043] −0.3319
0.1430

[−0.6459;−0.0837] 0.0364
0.0959

[−0.1945; 0.2123]

Inv. good 0.0276
0.0187

[−0.0091; 0.0638] 0.1724
0.0478

[0.0787; 0.2660] 0.0614
0.0285

[0.0113; 0.1192]
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Figure 1: MCMC output before relabeling - 3 clusters
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Figure 2: MCMC output after relabeling - 3 clusters
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Figure 3: MCMC output after relabeling - 3 clusters
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