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Abstract

From a banking supervisory perspective, this paper analyses aspects of market risk of an

aggregated trading portfolio comprised of the trading books of 11 German banks with a

regulatory approved internal market risk model. Based on real, clean pro�t and loss data

and Value-at-Risk estimates of the 11 banks, the paper speci�cally models and analyzes

the portfolio's dependence and diversi�cation structure, indispensable for �nancial stability

studies. The high sensitivity of market risk measurements with respect to the dependence

structure of the underlying portfolio is nowadays a well-known fact. However, only few tech-

niques for high-dimensional and hierarchical dependence analysis have been proposed and

studied in the �nancial literature so far. One reason is certainly the increasing complexity

of the statistical theory, which is commonly referred to as the curse of high-dimensionality.

The present paper develops and applies multidimensional (asymptotic) test statistics based

on the copula theory with the aim of detecting signi�cant long-term level changes in the

supervisory portfolio's dependence over time. Furthermore, a statistical hypothesis test is

proposed to identify the distinct contributions of sub-portfolios towards the overall depen-

dence level in a hierarchical manner. The utilized techniques are distribution-free and, in

particular, are invariant with respect to the marginal return distributions.

Keywords: Multivariate dependence modelling, multivariate Spearman's rho, time-varying

copula, asymptotic test theory, hierarchical testing, control chart theory

JEL classi�cation: C12, C13, C14
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Non-technical summary

The dependence structure between the returns of �nancial assets often changes during

market crisis towards a higher degree of co-movement. As a consequence, the pro�ts and

losses (P&L) across banks may exhibit stronger co-movement, too.

In this paper, two test procedures are developed in order to analyze the multivariate

dependence structure between �nancial asset returns. In particular, we investigate the de-

pendence structure between the daily P&L's of 11 German banks during the period from

2001 to 2006, while the corresponding daily Value-at-Risk estimates of the banks are also

included in the analysis. First, we discuss a test procedure which is designed to detect

possible structural change points of the dependence between the banks' P&L's over time,

that is, we analyze those points in time where the dependence has changed signi�cantly.

Second, another test procedure determines those groups of banks that have distinctively

contributed to the change of the dependence structure in the event of a structural change

point. In order to quantify the dependence structure, we use the dependence measure

Spearman's rho. In contrast to the common correlation coe�cient, Spearman's rho rep-

resents a nonparametric dependence measure. The test procedures are thus quite general

and, for example, no assumptions about the underlying marginal distributions have to be

made.

By means of the developed test procedures, we are able to identify three structural

change points of the dependence between the banks' P&L's. In April 2002, the high level

of dependence observed after the events of September 11 is signi�cantly decreasing. Along

with the uncertainty and the sideward trends of the European and US �nancial markets

at the beginning of the year 2004, the dependence signi�cantly increases in February 2004.

The clear upward trends of most stock markets in the world from 2005 onwards lead to a

decreasing dependence among the banks' P&L's, which turns out to be statistically signi�-

cant around April 2005. The second test procedure implies that in April 2002, for example,

the structural change in dependence is driven more by the large banks.
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Nichttechnische Zusammenfassung

In Krisenzeiten beobachtet man häu�g eine Änderung der Abhängigkeitsstruktur der Ren-

diten von Finanzanlagen; typischerweise bewegen sich die Renditen verstärkt gemeinsam

in eine Richtung. Dies kann dazu führen, dass auch die Eigenhandelsergebnisse (Pro�ts

& Losses, kurz P&L) der Banken untereinander sich stärker gemeinsam in eine Richtung

bewegen.

In diesem Paper werden zwei statistische Tests entwickelt, welche die multivariate Ab-

hängigkeitsstruktur der Renditen analysieren. Im Speziellen untersuchen wir die Abhän-

gigkeitsstruktur der täglichen P&L elf deutscher Banken über den Zeitraum von 2001 bis

2006. Zusätzlich zur P&L der Handelsbücher beziehen wir auch die täglichen Value-at-

Risk Schätzungen der Banken in die Analyse ein. Zum einen stellen wir einen Test auf

mögliche Strukturbrüche der Querschnittsabhängigkeit der P&L-Daten im zeitlichen Ver-

lauf vor, d.h. der Test untersucht Zeitpunkte, an denen sich die Abhängigkeitsstruktur der

P&L zwischen den Banken signi�kant geändert hat. Zum anderen wird in einem weiteren

Test diejenige Gruppe von Banken bestimmt, welche zum Zeitpunkt des Strukturbruchs

maÿgeblich zur Änderung der Abhängigkeit beigetragen haben. Zur Quanti�zierung der

Querschnittsabhängigkeit wird das Abhängigkeitsmaÿ Spearman's rho verwendet. Anders

als der übliche Korrelationskoe�zient stellt Spearman's rho ein nichtparametrisches Ab-

hängigkeitsmaÿ dar. Die entwickelten Tests sind somit allgemeiner Natur, und es müssen

zum Beispiel keine Annahmen über die zugrunde liegenden Randverteilungen getro�en wer-

den.

Mittels der Testverfahren können drei Strukturbrüche im Beobachtungszeitraum iden-

ti�ziert werden. Die nach den Ereignissen des 11. Septembers 2001 hohe Querschnittsab-

hängigkeit der P&L- Daten fällt im April 2002 signi�kant. Im Zuge der Seitwärtsbewegun-

gen an den europäischen und amerikanischen Aktienmärkten zu Beginn des Jahres 2004

steigt die Abhängigkeit im Februar 2004 wieder signi�kant an. Die Aufwärtsbewegungen

der meisten Aktienmärkte in der Welt von 2005 an führen zu einer Verringerung der Quer-

schnittsabhängigkeit, die sich im April 2005 als signi�kant erweist. Das zweite Testverfahren

zeigt, dass zum Beispiel im April 2002 der Strukturbruch der Querschnittsabhängigkeit

hauptsächlich durch die gröÿeren Banken ausgelöst wurde.

3



Contents

1 Introduction 1

2 Modelling the portfolio dependence structure 3

2.1 The data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The standardized pro�ts and losses . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 The dependence measure Spearman's rho . . . . . . . . . . . . . . . . . . . 6

3 Time-dynamic and hierarchical testing for long-term level shifts of Spear-
man's rho 8

3.1 General concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Detecting long-term changes in the level of Spearman's rho over time . . . . 12

3.3 Hierarchical testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 The Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Empirical results 18

4.1 Standardized returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Multivariate Spearman's rho of the supervisory portfolio . . . . . . . . . . . 21

4.3 Level changes of Spearman's rho of the supervisory portfolio over time . . . 23

4.4 Hierarchical considerations for the supervisory portfolio . . . . . . . . . . . 28

5 Conclusion 32

4



Time dynamic and hierarchical dependence modelling of an

aggregated portfolio of trading books �

a multivariate nonparametric approach1

1 Introduction

The analysis of the dependence structure of a portfolio of risky assets has attracted increas-

ing interest in the scienti�c literature as well as among practitioners over the last decade.

First, the globalizing and interdependence of �nancial markets require thorough portfolio

risk modelling and management that can react quickly to changing market situations. This

is particularly important when market conditions deteriorate and the dependence between

asset returns increases � which is also known as the `correlation breakdown', see, for exam-

ple, Karolyi and Stulz (1996), Longin and Solnik (2001), Campbell et al. (2002), Bae et al.

(2003), Patel (2005), Minderhoud (2006), Rodriguez (2007), or Bartram et al. (2007) � and

a proper understanding of the portfolio's cross correlation structure and diversi�cation may

be essential to preserve the �nancial stability of a bank or even an entire banking sector. Si-

multaneously, the rising awareness of modelling portfolio dependence may certainly be put

down to the recent market turbulence in the entire �nancial sector. A number of empirical

studies such as Duellmann et al. (2007) show, for example, that the Value-at-Risk (VaR)

� the best-established measure for assessing the market risk in a portfolio of risky assets �

reacts with particular sensitivity towards any changes of the cross-correlation structure in

the portfolio. It is thus essential for every �nancial or supervisory institution to properly

understand, model, and analyze the dependence structure in a given portfolio of interest.

Based on real pro�t and loss (in short: P&L) data and associated VaR estimates from

11 German banks having a regulatory approved internal market-risk model, the paper is

written from the perspective of a supervisor. The supervisor aggregates the respective bank

trading portfolios into a supervisory portfolio and analyzes the inherent systemic market

risk. Speci�cally, the paper's main focus lies on modelling and analyzing the portfolio's
1 The authors would like to thank Thilo Liebig and Friedrich Schmid for their support and stimulating

discussions. They gratefully acknowledge the hospitality and support of the Deutsche Bundesbank. The
views expressed in this paper represent the authors' personal opinions and does not necessarily re�ect the
views of the authors' associated institutions.
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dependence structure both over time and across banks. It represents one of the few papers

that are based on real P&L data and VaR forecasts from banks having a regulatory ap-

proved internal market-risk model. Berkowitz and O'Brien (2002) analyze the daily VaR

forecasts and corresponding P&L series of six large US banks to evaluate the performance

of the banks' VaR models, while Jaschke et al. (2003) provide a comparable analysis of VaR

forecasts and P&L series of 13 German banks having a regulatory approved internal market

model in the year 2001. The present paper is a sequel to Memmel and Wehn (2006), who

focus on the VaR estimation of a supervisory portfolio by using di�erent cross-correlation es-

timates under the assumption of normally distributed asset returns. By contrast, we utilize

copula theory which allows for a more sophisticated analysis of the portfolio's dependence

structure.

Copula techniques are frequently applied in the quantitative �nance literature. We men-

tion Embrechts et al. (2001), McNeil et al. (2005), O'Kane and Schloegl (2005), Charpentier

(2006), Patton (2006), Savu and Trede (2008), and Giacomini et al. (2008). We advocate

bivariate or multivariate versions of the dependence measure, Spearman's rho, in order

to quantify (the time variation of) the portfolio's dependence structure (cf. Schmid and

Schmidt (2007)). Being the best-known copula-based dependence measure in econometrics,

Spearman's rho represents the natural alternative to Pearson's correlation coe�cient. The

latter is known to be less appropriate when dealing with non-normal or, more generally,

non-elliptical distributions; cf. Embrechts et al. (2002) for a list of possible pitfalls. Regard-

ing the time-dynamic analysis of the dependence structure, our particular interest from the

supervisory perspective lies in detecting long-term level shifts of dependence over time. As

a result, possible level shifts should be detected as soon as new information arrives. We

develop a two-step test procedures which takes both aspects into account. It is of sequential

form and is based on the concept of control charts. For an overview of control chart theory

and of existing types of control charts; we refer to Schmid and Knoth (2001) and Wieringa

(1999). There is a large literature on detecting structural changes in time series; we refer

to Pawlak et al. (2004) and references therein. For example, Steland (2002) and Golosnoy

and Schmid (2007) utilize control chart techniques for �nancial risk and portfolio analysis.

Furthermore, we establish an (asymptotic) hypothesis test to analyze the hierarchical de-

pendence structure at some point in time. The proposed statistical test procedures and the

dependence measures have the following advantages: They are based solely on the copula

and, thus, invariant with respect to the marginal distribution functions. They support

2



a nonparametric approach, i.e. they are free of any distributional assumption. Based on

multivariate techniques, they also allow for a dependence analysis in high dimensions.

The rest of the paper is organized as follows. Section 2 describes the modelling approach

of the supervisory portfolio and introduces the notion of multivariate Spearman's rho to

measure portfolio dependence. In Section 3, the test procedures are developed and the

relevant theoretical results on Spearman's rho established. A nonparametric bootstrap

method is also discussed, which helps in the estimation and testing process. The theoretical

�ndings are applied to the supervisory portfolio in Section 4.

2 Modelling the portfolio dependence structure

2.1 The data

The empirical analysis is based on P&L data and VaR forecasts of the trading book of

these 11 German banks which had a regulatory approved internal market risk model during

the period from January 2001 to December 2006. The data, which are available on a daily

basis, are maintained by the banks and reported in the Basel II framework to the supervisor;

altogether we have 1, 435 observations. Throughout, we consider clean P&L data which,

in contrast to the economic P&L of a trading book, do not take commissions and fees,

intra-day gains and losses into account. According to regulations, the VaR forecasts are

calculated at a con�dence level of 99% and for a one-day horizon. Note that the data for

the year 2007 onwards have not been disclosed yet.

2.2 The standardized pro�ts and losses

For each bank i ∈ N, i ∈ {1, . . . , d}, the daily clean P&L of the trading book at discrete

time t is modelled by a random variable Gt,i. Since we do not consider economic P&L in this

paper, we shortly refer to the Gt,i as the P&L. Suppose wt,i = (w1
t,i, . . . , w

m
t,i)

′ represents

the positions of bank i on m �nancial instruments whose corresponding prices at time t are

modelled by the random vector Pt = (P 1
t , . . . , Pm

t )
′
. Then Gt,i takes the form

Gt,i =
m∑

j=1

wj
t−1,i(P

j
t − P j

t−1), i = 1, . . . , d. (1)

A central objective of a bank's internal risk model is to analyze and predict the future

P&L distribution of the trading book by taking all past information into account. If the
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information �ow available up to time t is modelled by the σ-algebra (Ft,i)t≥0, i = 1, . . . , d,

the interest lies thus in determining the conditional distribution function of Gt,i, denoted

by Ft,i(x) = IP(Gt,i ≤ x| Ft−1,i). If not stated otherwise, w.l.o.g. we assume that Ft,i(x)

has in�nite support. The Value-at-Risk (VaR) at con�dence level α, Vt,i, is then obtained

as the (1− α)-quantile of Ft,i, i.e.

Vt,i = F−1
t,i (1− α), i = 1, . . . , d. (2)

As already mentioned above, we consider data (Gt,i, Vt,i), i = 1, . . . , d, which arise within

a regulatory approved internal market-risk models. Hence, α is set to 0.99 in line with

the supervisory requirement for approval of internal market-risk models. Note that in this

setting, VaR is a negative number. For background reading on the VaR, we refer, for

instance, to Artzner et al. (1999) and Jorion (2006).

Assume that the random vector Gt = (Gt,1, . . . , Gt,d)
′
, with Gt,i as de�ned in (1), rep-

resents the set of bank P&Ls in the supervisory portfolio at time t. Consider the random

vector St = (St,1, ..., St,d)
′ de�ned by

St =
(
− Gt,1

Vt,1
, . . . ,−Gt,d

Vt,d

)′
= −VtGt (3)

with diagonal matrix Vt = diag{ 1
Vt,1

, . . . , 1
Vt,d

}. The P&Ls are standardized by dividing

each bank's P&L by the respective VaR forecast for that day; St is therefore commonly

referred to as the standardized P&L or returns at time t. As shown later, for our purposes

it su�ces to concentrate on the modelling of St.

Remark. The standardization in (3) is motivated by the following considerations: If,

conditional on the information Ft−1,i, the Gt,i are normally distributed, i.e. Gt,i | Ft−1,i ∼
N(0, σ2

t,i), the standardized returns St,i take the form St,i = −Gt,i/Vt,i = −{Φ−1(1 −
α)}−1Gt,i/σt,i. That is, the standardization is with respect to the P&L's time-varying

volatility in this case and any temporal dependence of the Gt,i which is induced by a

time-varying volatility (e.g. if asset prices follow a GARCH model) is removed. The stan-

dardized returns usually serve as a basis for the validation of a bank's VaR model, see , for

example, Jaschke et al. (2003).

Consider the (conditional) joint distribution function Ft,St(x) = IP(St ≤ x| Gt−1) of St

with marginal distribution functions Ft,St,i(x) = IP(St,i ≤ x| Gt−1), i = 1, . . . , d. Here, the

σ-algebra (Gt)t≥0 represents the information �ow available up to time t to the supervisor.
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Observe that, in general, Gt does not coincide with Ft,i, i = 1, . . . , d. Below, we always con-

sider conditional distribution functions, taking with respect to the σ-algebra (Gt)t≥0 since

we take the position of the supervisor; however, we will omit the condition for notational

reasons. We make the following two assumptions on St = (St,1, ..., St,d)
′
, which are also

supported by empirical analysis (see Section 4):

(A1) The standardized returns St are independent over time. Furthermore, for every

i = 1, . . . , d, the marginal distribution functions Ft,St,i are continuous and St,i is

identically distributed for all t; it follows that for every i we have Ft,St,i(x) = FSt,i(x).

(A2) The hypothesis of identical marginal distribution functions FSt,i, i = 1, . . . , d, is re-

jected, i.e. FSt,i 6= FSt,j for at least one pair (i, j) with i 6= j and i, j = 1, . . . , d.

Assumption (A2) requires an individual modelling of the marginal distribution functions

FSt,1, . . . , FSt,d in order to quantify the risk arising from each single bank as accurately as

possible. Thus, using the concept of copulas, we assume that Ft,St takes the form

Ft,St(x) = CS
t (FSt,1(x1), . . . , FSt,d(xd)), for all x ∈ Rd, (4)

with time-varying copula CS
t , which uniquely exists according to Sklar's Theorem (Sklar

(1959)) if the FSt,i are continuous functions. The copula CS
t splits the joint distribution

function into the univariate marginal distribution functions and the time-varying depen-

dence structure represented by CS
t . Hence, estimation of Ft,St breaks down into the esti-

mation of the margins FSt,1, . . . , FSt,d and the copula CS
t . See Nelsen (2006) for a general

overview on copulas. An elaboration of time-varying copulas in the context of Value-at-risk

calculations can, for example, be found in Giacomini et al. (2008).

It is important to note that the standardization of the P&L in (3) does not change the

dependence structure between the banks' P&Ls, as shown in the next corollary.

Corollary 1 Suppose St has joint distribution function Ft,St with copula CS
t as in (4) and

assume that Gt, de�ned in (1), has joint distribution Ft,Gt with copula CG
t and continuous

marginal distribution functions Ft,i(x) and in�nite support. Then, conditioned on the in-

formation up to time t − 1, CS
t = CG

t , i.e. the standardization of Gt does not change the

dependence structure represented by the copula CG
t .

Proof. Using the notation in (3) and the fact that Vt,i is strictly negative, the transformation

function αt,i(x) = −x/Vt,i is, conditioned on the information up to time t − 1, strictly
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increasing. According to Theorem 2.7 in Embrechts et al. (2001), each copula is invariant

with respect to strictly increasing transformations of the marginal distributions. ¤

2.3 The dependence measure Spearman's rho

We use the dependence measure Spearman's rho in order to quantify the dependence struc-

ture of the supervisory portfolio, which constitutes a direct functional of the copula. As

such, not only does it allow concentrating on the standardized returns St for an analysis of

the dependence structure between the banks according to Corollary 1, it also captures the

time variation of the portfolio dependence structure represented by the copula. A multivari-

ate generalization of (bivariate) Spearman's rho makes it possible to measure the portfolio's

dependence structure by either one single `key' parameter referring to the entire portfolio

or by multiple lower-dimensional parameters referring to sub-portfolios.

We de�ne Spearman's rho in a general setting and a time-static setting �rst. Con-

sider the d-dimensional random vector X = (X1, ..., Xd)
′ with continuous joint distribu-

tion function F and continuous univariate marginal distribution functions Fi, i = 1, . . . , d.

Think of X as representing the returns of d assets in a portfolio. Furthermore, F (x) =

C(F1(x1), ..., Fd(xd)) with unique copula C. Bivariate Spearman's rho of the two-dimensional

random vector (X, Y ) with copula C can be written as

ρ = 12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3. (5)

A natural d-dimensional extension of Spearman's rho for the d-dimensional random vector

X is given by

ρd,X = h(d)
{

2d

∫

[0,1]d
C(u) du− 1

}
(6)

with h(d) = d+1
2d−(d+1)

. This version was originally discussed in Ruymgaart and van Zuijlen

(1978); we also refer to Wol� (1980), Joe (1990), and Nelsen (1996). Later we also consider

sub-portfolios i.e. we are interested in quantifying the dependence structure of a portfolio

consisting of only those Xi where i ∈ I with index set I ⊆ {1, . . . , d} and cardinality

2 ≤ |I| ≤ d. Analogously to (6), we de�ne the |I|-dimensional Spearman's rho as

ρ|I|,X = h(|I|)
{

2|I|
∫

[0,1]|I|
Ci1,...,i|I|(u) du− 1

}
(7)

with I = {i1, . . . , i|I|}. Here, Ci1,...,i|I| refers to the |I|-dimensional copula which corre-

sponds to the i1, . . . , i|I|-margin of C. Obviously, for I = {1, . . . , d}, ρ|I|,X = ρd,X. If it is
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clear from the context, we will suppress the subindex X.

A nonparametric estimator for ρ|I| is obtained via the empirical copula, what has been

considered in Schmid and Schmidt (2007). We therefore assume that neither F or C nor

the marginal distribution functions Fi, i = 1, ..., d, of the d-dimensional random vector X

are known. Given a random sample of returns (Xj)j=1,...,n, the empirical copula is de�ned

as

Ĉn(u) =
1
n

n∑

j=1

d∏

i=1

1{Ûij,n≤ui} for u = (u1, . . . , ud) ∈ [0, 1]d

with Ûij,n = 1
n (rank of Xij in Xi1, . . . , Xin). Empirical copulas were �rst introduced and

studied by Deheuvels (1979) under the name of `empirical dependence functions'. Note

that the estimation is based on the ranks of the observations rather than on the actual

observations themselves. This yields the following nonparametric estimator for ρ|I|

ρ̂|I|,n = h(|I|)
{2|I|

n

n∑

j=1

[
(1− Ûi1j,n) . . . (1− Ûi|I|j,n)

]
− 1

}
. (8)

Details of the derivation of ρ̂|I|,n are provided in Appendix 5; the corresponding estimator

for ρd follows by setting I = {1, . . . , d}.

Observe that another multivariate version of |I|-dimensional Spearman's rho is given by

(see, for example, Kendall (1970))

ρ̃|I| = h(2)
{

22
∑
k<l

k,l∈I

(|I|
2

)−1 ∫

[0,1]2
Ckl(u, v)dudv − 1

}
(9)

where Ckl denotes the bivariate copula which corresponds to the kth and lth margin of C,

k, l ∈ I. ρ̃|I| describes the average of all pairwise Spearman's rho coe�cients (cf. formula

(5)) and a nonparametric estimator can be derived analogously as above via the empirical

copula (see Appendix 5 for details). We have

̂̃ρ|I|,n =
12
n

(|I|
2

)−1 ∑
k<l

k,l∈I

n∑

j=1

(1− Ûkj,n)(1− Ûlj,n)− 3. (10)

Multivariate Spearman's rho ρ̂|I|,n naturally decreases with increasing dimension owing to

the increasing dispersion of data points. This is illustrated by Figure 1 as opposed to the

average of all pairwise Spearman's rho coe�cients ̂̃ρ|I|,n. At the same time, the variance of

both estimators is considerably decreasing with increasing dimensions.
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Figure 1: Empirical mean and 95%-con�dence interval of the average of all pairwise Spear-

man's rho coe�cients ̂̃ρd,n (left) and multivariate Spearman's rho ρ̂d,n (right) for di�erent

dimensions d; the results were obtained by sampling: 10, 000 independent random sam-

ples of sample size n = 500 from a d-dimensional equi-correlated normal distribution with

pairwise linear correlation coe�cients are all equal to 0.3.

We concentrate below on multivariate Spearman's rho ρ|I| since it represents a real multi-

variate measure of concordance according to Joe (1990) and Nelsen (1996)(see also Úbeda-

Flores (2005) and Taylor (2007)). In particular, it accounts for multivariate concordance

ordering and ρ|I| = 0 if C = Π with Π the independence copula. In contrast, ρ̃|I| is

determined by the two-dimensional marginal copulas only. Above all, ρ̃|I| may be zero

even if all margins are pairwise stochastically independent. Various tests on independence

are, furthermore, often based on such multivariate versions, see, for example, Genest and

Rémillard (2004) and references therein. Note that all results established below hold for

the version ρ̃|I|, too.

3 Time-dynamic and hierarchical testing for long-term level
shifts of Spearman's rho

The adequate measurement and evaluation represents only a �rst step in the context of a

thorough and comprehensive analysis of a portfolio's dependence structure, allowing for an

initial identi�cation of salient features of dependency. However, a second step, verifying

whether these e�ects are really signi�cant, is mandatory.

8



The aim of this section is therefore twofold. First, we develop a time-dynamic two-step

test procedure to detect long-term level changes in portfolio dependence over time, which

uses the concept of control charts. Second, an asymptotic hypothesis test is developed to

analyze portfolio dependence in a hierarchical manner across all sub-portfolios at a given

point in time. We will refer to the latter as hierarchical testing in order to distinguish it

from the time-dynamic testing.

Both approaches utilize multivariate Spearman's rho, as introduced in (7), to measure

portfolio dependence. Thus, both procedures are free of any distributional assumption and

may be applied to general �nancial portfolios if the assumption of independent standardized

asset returns over time holds. The next section establishes some basic theoretical results

�rst.

3.1 General concepts

The following two-sample (asymptotic) test distribution for Spearman's rho can be estab-

lished. It extends results about the asymptotic normality of multivariate Spearman's rho

(as de�ned in (6)) given in Schmid and Schmidt (2007).

Theorem 2 Consider two stochastically independent random samples (Xs)s=1,...,n and (Ys)s=1,...,m

from the d-dimensional random vectors X and Y with d-dimensional distribution functions

FX and FY, continuous marginal distribution functions and copulas CX and CY. Assume

that the i-th partial derivatives of CX and CY exist and are continuous for i = 1, . . . , d.

Let J be the set of all subsets I of {1, . . . , d}. For A ⊆ J with cardinality |A| = k, suppose

that SA,n,X and SA,m,Y, respectively, denote the k-dimensional random vectors of all sample

versions ρ̂|I|,n,X and ρ̂|I|,m,Y of Spearman's rho with I ∈ A, as calculated from the above

random samples according to (8). Let also ρA,X and ρA,Y be the corresponding vectors of

the true values ρ|I|,X and ρ|I|,Y of Spearman's rho. We denote by || · || an arbitrary matrix

norm on the space [−1, 1]k.

Under the assumption that ρA,X = ρA,Y and with m := m(n) such that
√

n√
m(n)

→ c for

n →∞, we have

(i) for each A ⊆ J with A being a single set I
√

n
(
ρ̂|I|,n,X − ρ̂|I|,m(n),Y

)
d−→ Z ∼ N(0, σ2) as n →∞, (11)

9



with variance

σ2 = 22|I|h(|I|)2
∫

[0,1]d

∫

[0,1]d

[
IE{GCX

(u(I))GCX
(v(I))}

+ c2IE{GCY
(u(I))GCY

(v(I))}
]
dudv. (12)

Here, u(I) and v(I) refer to the d-dimensional vectors u and v, respectively, whose

components � except the ones with i ∈ I � are all 1. Moreover, GC(u) = BC(u) −
∑d

i=1 Di(u)BC(u(i)) and the process BC is a tight centered Gaussian process on [0, 1]d

with covariance function

E{BC(u)BC(v)} = C(u ∧ v)− C(u)C(v).

(ii) Furthermore, for each A ⊆ J, it follows that

√
n||SA,n,X − SA,m(n),Y|| w−→ W as n →∞,

with non-degenerated random variable W.

The proof is given in Appendix 5. ¤

Next, we derive two results which will be relevant for the time-dynamic considerations of

Spearman's rho. In these, a moving window estimation is considered to evaluate Spearman's

rho over time.

Theorem 3 Consider the random sample (Xt)t∈Z from the d-dimensional random vector

X with d-dimensional distribution function F and copula C whose marginal distribution

functions are assumed to be continuous. For an index set I ⊆ {1, . . . , d}, let ρ̂t
|I|,n denote

the corresponding estimator for Spearman's rho at time t as de�ned in (8), calculated based

on an (equally weighted) moving window of size n, i.e. Spearman's rho estimator is based

on the sample Xt−n+1, . . . ,Xt. We have

(i) for any �xed s ∈ N with s < n,

n
(
ρ̂ t
|I|,n − ρ̂ t−s

|I|,n
)

d−→ Zt,s
|I| as n →∞, (13)

with non-degenerated centered random variable Zt,s
|I| which is bounded with |Zt,s

|I|| ≤ s.

10



(ii) Furthermore,

n2 Cov
(
ρ̂ t
|I|,n − ρ̂ t−s

|I|,n , ρ̂ t−r
|I|,n − ρ̂ t−r−s

|I|,n
)
−→ 0 as n →∞ (14)

for �xed r, s ∈ N and n > r > s > 0. Moreover, the limiting variables Zt,s
|I| and Zt−r,s

|I|
are stochastically independent for n > r > s > 0.

The proof is given in Appendix 5. ¤

Consider a d-dimensional time series (Xt)t∈Z ful�lling assumption (A1) and (A2) as elab-

orated in Section 2.2 with joint distribution function Ft and copula Ct. The dependence

structure of Xt is described by the copula Ct. In general, it is di�cult to perform hypothe-

sis tests on the copula when no further structural assumptions are imposed. However, the

presumption of a parametric model would be too restrictive for our purposes. Therefore, we

assume that Spearman's rho determines the dependence structure and make the following

additional assumption:

(A3) At any time t, the dependence structure is completely described by (an adequate set

of |I|-dimensional) Spearman's rho (at time t).

Note that for the majority of parametric families of copulas, there exists a bijective rela-

tionship between the copula C and a set of |I|-dimensional Spearman's rho coe�cients ρ|I|,

which can be illustrated by three examples.

1. Let C be a member of the two-dimensional Farlie-Gumbel-Morgenstern family of

copulas with parameter θ ∈ [−1, 1]. Then, bivariate Spearman's rho ρ equals θ/3 (see

Nelsen (2006), p.168).

2. Let C be the d-dimensional Gaussian copula with correlation matrix Σ = (ri,j)1≤i,j≤d.

The copula can be fully described by considering the
(
d
2

)
-dimensional vector of all

bivariate Spearman's rho coe�cients ρi,j ,i < j. In particular, ρi,j = 6/π arcsin(ri,j/2).

3. Let C be a four-dimensional hierarchical Archimedean copula which is constructed

by coupling the two-dimensional Archimedean copulas C(1) and C(2), generated by

the (strict) generators φ(1) and φ(2), respectively, using a third (strict) generator φ(3).

11



Hence,

C(u1, u2, u3, u4) = C{C(1)(u1, u2), C(2)(u3, u4)}

= φ(3)
−1[φ(3) ◦ φ(1)

−1{φ(1)(u1) + φ(1)(u2)}

+φ(3) ◦ φ(2)
−1{φ(2)(u3) + φ(2)(u4)}]. (15)

Joe (1997), Section 4.2, states the conditions which need to be ful�lled so that con-

struction (15) is a copula function. For example, in case the φ(i), i = 1, 2, 3 are

generators of the Gumbel copula with parameters θi ≥ 1, then C is a copula if

θ3 < θ1 and θ3 < θ2. The dependence structure of C is then completely described

by the three-dimensional vector consisting of the pairwise Spearman's rho coe�cients

ρ(1) and ρ(2) corresponding to the marginal copulas C(1) and C(2), respectively, and

multivariate Spearman's rho ρ4 as de�ned in (6). We refer to Savu and Trede (2006)

and Hofert (2008) for further examples of hierarchical copulas and related estimation

and simulation techniques.

3.2 Detecting long-term changes in the level of Spearman's rho over time

This section elaborates a procedure to detect level changes in the portfolio dependence

over time by using multivariate Spearman's rho. Speci�cally, our interest lies in detecting

long-term level changes of Spearman's rho which, in addition, should be indicated as early

as possible, i.e. as soon as new information has arrived. The procedure is thus of sequential

form and consists of two (consecutive) steps, which are illustrated in Table 1: Being based

on a control chart for Spearman's rho, Phase 1 sequentially monitors the series in order to

detect level shifts of Spearman's rho. As far as possible long-term changes of dependence

are concerned, it acts as an early indication or warning system. After having been signalled,

a shift in dependence in Phase 1, Phase 2 veri�es whether a long-term rather than a short-

term change is experienced; naturally, further observations need to be awaited for this

purpose. The procedure in Phase 2 is therefore of static, retrospective form and can be

regarded as a kind of 'dependence backtesting'.

Let (Xt)t∈Z denote a d-dimensional time series ful�lling assumption (A1), (A2), and (A3)

as elaborated in Sections 2.2 and 3.1 with joint distribution function Ft and copula Ct.

For notational reasons, the description of the two phases is based on the |I|-dimensional

Spearman's rho coe�cient ρt
|I| for arbitrary index set I ⊆ {1, . . . , d}. (Note that the follow-

12



Table 1: Setup of test procedure.

Test type Test procedure

Early indication system of Phase 1: Control chart for Spearman's rho

change of dependence

Detection of sustainable change Phase 2: 'Dependence-backtesting'

of dependence

ing elaborations could be generalized to the case of an adequate vector of Spearman's rho

coe�cients, which should be considered otherwise, as discussed above; we also refer to the

hierarchical testing in Section 3.3). The corresponding series of estimators of Spearman's

rho based on an equally weighted moving window of size n is denoted by (ρ̂ t
|I|,n)t∈Z.

Phase 1. In this phase, a nonparametric control chart for detecting level changes in

multivariate Spearman's rho is developed. The concept of control charts represents one

of the most important tools of statistical process control and is often used to implement

sequential approaches. According to a prede�ned decision rule, a control chart compares

control statistics with given control limits at each time point. The value of the control

statistics is calculated based on the observations of the process to be monitored; if it lies

outside of the control limits, the control chart gives a signal, indicating that the monitored

process is 'out-of-control' in the sense speci�ed beforehand. See also Golosnoy and Schmid

(2007) for monitoring the optimal portfolio weights by means of control charts.

Let us therefore assume that, up to time t
′
, there are no changes in portfolio dependence.

Formally, ρ t
|I| = ρ for �xed but unknown parameter ρ and for all t ≤ t

′
. We �x a lag

parameter s ∈ N, s < n, which allows the choice of the time frequency (e.g. daily or weekly)

for monitoring Spearman's rho. At each time t = t
′
+ ks, k = 1, 2, 3, . . . , we then consider

the hypothesis

H0,t : ρ t
|I| = ρ versus H1,t : ρ t

|I| 6= ρ. (16)

We thereby reject the null hypothesis at time t if

n (ρ̂ t
|I|,n − ρ̂ t−s

|I|,n) > c2 or n (ρ̂ t
|I|,n − ρ̂ t−s

|I|,n) < c1 (17)

with prede�ned constant c1 and c2. Adopting the terminology of control charts, Yt :=
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n(ρ̂ t
|I|,n − ρ̂ t−s

|I|,n) represents the control statistics and the control limits are given by c1 and

c2. The process ρ̂ t
|I|,n is 'in control' as long as the null hypothesis is not rejected; if it is

rejected (i.e. the control chart gives a signal), it is concluded that the process is out of

control. Note that Yt represents an (asymptotic) unbiased estimator of n(ρt
|I|− ρt−s

|I| ) if the

process is in control, i.e. IE(Yt) is asymptotically zero in this case. We thus concentrate

on sequentially monitoring the mean or the location of the process ρ̂ t
|I|,n. In particular,

we reject the null hypothesis if Yt exceeds, or is less than, the level c2 or c1, respectively.

According to Theorem 3, part (i), Yt has a limiting distribution if the process is in control.

For a given signi�cance level, the control limits ci, i = 1, 2, can be chosen as the respective

quantiles of this distribution owing to the second part of Theorem 3 (see also the remark

at the end of this section).

Two phases must be distinguished when working with control charts. In a �rst step, the

control chart has to be calibrated, i.e. the control limits c1 and c2 must be determined

adequately. This is generally done based on a 'pre-sample' of the process, i.e. a sample of

past observations. Note that, in order to obtain reasonable control limits, the pre-sample

must stem from the in-control process. The second step comprises the actual usage of the

control chart to analyze and monitor new observations which are drawn sequentially from

the process.

Phase 2. The analysis in Phase 1 aims at identifying shifts of Spearman's rho. If, as

from the supervisory perspective, the focus lies in detecting long-term, sustaining (level)

changes in portfolio dependence, a second phase is added subsequently to the �rst phase.

In this, we understand by a long-term change that, after the shift indicated by Phase 1,

Spearman's rho stays at this level throughout a speci�ed period.

Assume, therefore, that Phase 1 gives a signal at time t? > t
′
. Based on further n? = n−s

observations of the process, Phase 2 compares Spearman's rho over distinct time periods

before and after t?. Speci�cally, we verify whether there is a signi�cant di�erence between

Spearman's rho calculated based on the periods [t?− n + 1, t?− s] and [t? + 1, t? + n?]. We

further assume that Spearman's rho does not change throughout the latter period.

At t?, we then consider the hypothesis

H0 : ρt?+n?

|I| = ρt?−s
|I| versus H1 : ρt?+n?

|I| 6= ρt?−s
|I| ,
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In this context, the statistics

T =

√
n(ρ̂t?+n?

|I|,n? − ρ̂t?−s
|I|,n?)

σ̂B
|I|

(18)

is � under the null hypothesis � asymptotically standard normally distributed according to

Theorem 2. Here, (σ̂B
|I|)

2 represents the consistent bootstrap estimator for the variance of
√

n(ρ̂t?+n?

|I|,n? − ρ̂t?−s
|I|,n?) which is introduced in Section 3.4. We thus reject H0 at t? at level

α if |T | > z1−α/2, where z1−α/2 denotes the (1 − α/2)-quantile of the standard normal

distribution. Note that, by excluding the time point t? from the analysis and choosing the

window size n?, it is guaranteed that the above test is independent of Phase 1.

Finally, it is concluded that ρ̂t
|I|,n is out-of-control at time t if

(B1) both Phase 1 and Phase 2 give a signal at time t and

(B2) the control statistics of Phase 1 and the test statistics T of Phase 2 have the same

sign.

We refer to such events ful�lling (B1) and (B2) simply as signals; an event signalled in

Phase 1 is called 'alarm' below. The described procedure is applied to the supervisory

portfolio in Section 4.3 for s = 1 and I = {1, . . . , d}.

Remark. Concentrating in Phase 1 on the di�erences ρ̂ t
|I|,n − ρ̂ t−s

|I|,n rather than on the

actual series ρ̂t
|I|,n itself o�ers several advantages. First, the latter approach would yield

a control statistics involving the parameter ρ, leaving us with an additional parameter to

estimate in order to set up the control chart. Furthermore, note that the series ρ̂ t
|I|,n exhibit

a very high serial correlation. In the context of a sequential test, the control limits would

therefore have to be adapted and are generally more di�cult to determine (see, for instance,

Golosnoy and Schmid (2007) for the determination of the control limits in this situation

in a parametric context). In contrast, the second part of Theorem 3 guarantees that the

di�erences are (asymptotically) independent, making it possible to obtain the limits c1 and

c2 by probabilistic considerations. For completeness, we refer to Pawlak et al. (2004) who

mention another basic approach that determines the control limits dependent on the size

of the jump which one seeks to detect with high probability.
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3.3 Hierarchical testing

In contrast to the time-dynamic approach in the previous section, we now consider a static

approach. By �xing a particular time point t, the key question is whether there is a

signi�cant di�erence in the dependence level before and after t. The approach di�ers from

Phase 2 above insofar as we now include all sub-portfolios of the overall portfolio in the

analysis. In doing so, we may be able to identify the 'dependence-drivers', namely those

sub-portfolios which show a change of dependence around time point t.

As usual, let (Xt)t∈Z denote a d-dimensional time series ful�lling assumption (A1), (A2),

and (A3) as elaborated in Sections 2.2 and 3.1. For l ∈ N with 1 ≤ l ≤ d − 1, let also J

be the set of all subsets I of the index set {1, . . . , d} with cardinality |I| > l . We de�ne

by ρt
J the vector of all |I|-dimensional Spearman's rho coe�cients ρt

|I| at time t ∈ Z with

I ∈ J. An estimator of the latter is given by ρ̂t
J,n based on samples Xt−n+1, . . . ,Xt in a

moving window with window size n.

In order to detect whether there is a level change of dependence at time t, we compare

the values of Spearman's rho of all sub-portfolio combinations in J between the adjacent

and non-overlapping windows of �xed size n before and after t. Let us therefore assume

that, throughout both periods, Spearman's rho does not change for any I ∈ J, respectively.

We then consider the hypothesis

H0 : ρt−1
J = ρt+n−1

J versus H1 : ρt−1
J 6= ρt+n−1

J . (19)

For each I ∈ J, we would reject the null hypothesis of identical Spearman's rho in the

respective time periods at level αI if |Qt
I,n| > z1−αI/2 with

Qt
I,n =

√
n(ρ̂t+n−1

|I|,n − ρ̂t−1
|I|,n)

σ̂B
|I|

.

Here, (σ̂B
I )2 represents the consistent bootstrap estimator of the variance of √n(ρ̂t+n−1

|I|,n −
ρ̂t−1
|I|,n) as introduced in Section 3.4. Qt

I,n is, under the null hypothesis, (asymptotically)

standard normally distributed according to Theorem 2 (cf. also formula (18)) since ρ̂t+n−1
|I|,n

and ρ̂t−1
|I|,n are based on independent samples.

The null hypothesis in (19) is rejected at signi�cance level βl if |Qt
I,n| > z1−αI/2 for some
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I ∈ J, that is

IP
( ⋃

I∈J
|I|>l

{
|Qt
I,n| > z1−αI/2

})
= βl. (20)

The interrelationship between βl and α is complicated � however, it may be approximated

by Bonferroni's method as carried out in Section 4.4. For convenience, we choose αI = α

for all I and obtain

IP
( ⋃

I∈J
|I|>l

{
|Qt
I,n| > z1−α/2

})
= IP( sup

I∈J
|I|>l

|Qt
I,n| > z1−α/2) = βl

with sup{I∈J , |I|>l} |Qt
I,n| = max{I∈J , |I|>l} |Qt

I,n| as J is �nite. Hence, a test statistics for

H0 is given by max{I∈J , |I|>l} |Qt
I,n| which has a limiting distribution according to Theo-

rem 2 with ||.|| being the maximum norm ||.||∞. By changing the parameter l one can move

from one portfolio's hierarchy level to another one. Note that, for small hierarchical level

l, the power of the test will decrease owing to the inclusion of a larger set of sub-portfolios.

The hierarchical test procedure is applied to the supervisory portfolio in Section 4.4.

3.4 The Bootstrap

A nonparametric bootstrap is used in order to estimate the distribution of the limiting

variable W in Theorem 2 since it generally cannot be derived explicitly and depends on

the choice of the matrix norm. We refer to Shao and Tu (1995) and Efron and Tibshirani

(1993) for background reading on the nonparametric bootstrap and to Van der Vaart and

Wellner (1996) and Fermanian et al. (2004) for details on the bootstrap in the context of

empirical processes.

The next theorem �rst veri�es that the nonparametric bootstrap method works.

Theorem 4 Let (XB
l )l=1,...,n and (YB

l )l=1,...,m denote the bootstrap sample which is ob-

tained by sampling from the independent random samples (Xl)l=1,...,n and (Yl)l=1,...,m with

replacement, respectively. For A ⊆ J, let further SA,n,X, SA,m,Y be the vector of sample

versions of Spearman's rho as given in Theorem 2 and let SB
A,n,X, SB

A,m,Y denote the corre-

sponding estimators for the bootstrap samples (XB
l )l=1,...,n and (YB

l )l=1,...,m. Then, under

the assumptions of Theorems 2 and with m := m(n) such that
√

n√
m(n)

→ c for n →∞, the
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sequences √n||SB
A,n,X−SB

A,m(n),Y− (SA,n,X−SA,m(n),Y)|| converge weakly to the same limit

as √n||SA,n,X − SA,m(n),Y|| with probability one.

Even if, in case |A| = 1, asymptotic normality of √n
(
ρ̂|I|,n,X − ρ̂|I|,n,Y

)
can be shown

in Theorem 2, the asymptotic variance of the limiting variable is usually of complicated

form (cf. Schmid and Schmidt (2006) for the explicit calculation of the asymptotic variance

of multivariate Spearman's rho for some copulas). Therefore, the variance is determined

by the above-described bootstrap method in this case, and we denote the corresponding

consistent bootstrap variance estimator by (σ̂B
|I|)

2.

Our assumption of independent standardized sample returns justi�es the application of

the bootstrap method with replacement; otherwise, di�erent methods must be applied (see,

for instance, Davison and Hinkley (1997)). Regarding the number of bootstrap replications,

B = 500 and B = 2500 are generally considered to be large enough to give good estimates of

the variance and the empirical distribution, respectively (cf. Efron and Tibshirani (1993)).

Schmid and Schmidt (2006) also show that the bootstrap variance estimator for multivariate

Spearman's rho performs well in �nite samples.

4 Empirical results

Before analyzing the dependence structure of the supervisory portfolio by means of the

presented methods above, we brie�y examine the standardized returns St of the supervisory

portfolio introduced in Section 2.2.

4.1 Standardized returns

We start with the veri�cation of the assumptions (A1) and (A2) in Section 2.2; further

empirical analysis of the banks' individual standardized returns can be found in Memmel

and Wehn (2006) for the years 2001 to 2004 and Jaschke et al. (2003) for the year 2001.

The squared standardized returns contain only minor serial correlation; for illustration,

Figure 2 gives the autocorrelation function across all banks; the same holds for the stan-

dardized returns themselves, too. Thus, assumption (A1) of serial independence of the

standardized returns can be justi�ed. Note that this is also consistent with the literature

on volatility modelling; see Andersen et al. (2006) for an overview. According to the rea-
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Figure 2: Autocorrelation function of the squared standardized returns of each bank of the

supervisory portfolio.
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soning in Section 2.2, this con�rms that the VaR models used by the banks work quite

accurately over the considered data time horizon (cf. Jaschke et al. (2003)).

Table 2 reports the �rst four moments of the distribution of the standardized returns across

all 11 banks. The results show that the kurtosis varies from bank to bank, ranging from

3.79 to 13.39. In order to verify whether those di�erences are statistically signi�cant, we

perform several pairwise tests on equal kurtosis, which are based on a bootstrap procedure.

More speci�cally, we draw (with replacement) a bootstrap sample from St, t = 1, . . . , T,

and determine for all pairs of banks the empirical con�dence interval for the di�erence in

kurtosis; an extract is given in Table 3. The table shows that the di�erence in kurtosis

of 32 out of 55 possible pairs of banks is signi�cantly di�erent from zero, which justi�es

assumption (A2) of di�ering marginal distribution functions of the standardized returns.

Table 2: Descriptive statistics of the standardized returns for each bank of the supervisory

portfolio.

Bank Mean St. deviation Skewness Kurtosis

1 0.0419 0.3225 -0.2422 13.3883

2 0.084 0.3721 0.1502 4.3238

3 0.0115 0.3805 -0.1155 4.5387

4 0.0905 0.3796 0.0284 4.2795

5 0.0046 0.2728 -0.0657 4.5791

6 0.0141 0.3523 -0.0659 4.2136

7 -0.0012 0.2741 -0.1607 5.6778

8 0.0125 0.4344 -0.2966 6.638

9 -0.011 0.4363 -0.3023 8.3636

10 0.0256 0.2786 0.0639 3.7949

11 -0.0532 0.3199 -0.323 5.7466
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Table 3: 90% bootstrap con�dence (ĉB
l , ĉB

u ) intervals for the di�erence in kurtosis for those

pairs of banks where the di�erence is statistically di�erent from 0, based on 10, 000 bootstrap

replications.

Bank Bank ĉB
l ĉB

u Bank Bank ĉB
l ĉB

u

1 2 3.2529 13.8552 4 8 -5.1587 -0.1354

1 3 2.9961 13.6637 4 9 -6.2071 -1.6245

1 4 3.2552 13.9064 4 11 -2.4966 -0.3446

1 5 2.9149 13.6022 5 9 -5.771 -1.4653

1 6 3.3427 13.9024 5 10 0.0943 1.4968

1 7 1.8224 12.6234 5 11 -2.149 -0.1508

1 8 0.4997 12.1646 6 7 -2.6159 -0.3265

1 10 3.7619 14.3313 6 8 -5.1781 -0.2711

1 11 1.7493 12.4315 6 9 -6.1313 -1.7594

2 7 -2.5906 -0.1189 6 11 -2.3826 -0.6456

2 8 -5.1116 -0.1101 7 9 -4.9096 -0.0857

2 9 -6.1154 -1.5992 7 10 0.7575 3.0069

2 11 -2.4091 -0.335 8 10 0.7036 5.5623

3 9 -5.9475 -1.3387 9 10 2.2056 6.5528

3 11 -2.3295 -0.0193 9 11 0.1447 4.7268

4 7 -2.668 -0.1946 10 11 -2.8096 -1.0732

4.2 Multivariate Spearman's rho of the supervisory portfolio

Figure 3 (left panel) illustrates the evolution of multivariate Spearman's of the standardized

returns of the supervisory portfolio; the estimation is based on a window size of n = 150.

In addition, the horizontal line illustrates the average (multivariate) Spearman's rho over

the entire time horizon. The �gure shows that Spearman's rho �uctuates over time: The

situation of deteriorating �nancial markets after the events of September 11 is accompanied

by a steady increase in Spearman's rho. This is consistent with the observations of high

asset volatilities and correlations during this time period and an increase in medium-term

interest rates from October 2001 onwards (Jaschke et al. (2003)). After its �rst peak at
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the beginning of 2002, Spearman's rho falls sharply. Thereafter, a period of relatively low

portfolio dependence is observable, which was characterized by medium-term interest rates

at an all-time low and stabilizing markets. The year 2004 reveals an initially steady, then

sudden rise in Spearman's rho to its second peak in December 2004. During 2005, which

proved to be a �nancial year of rising markets, Spearman's rho peaks o� and remains

relatively low for the rest of the observation period.

 

2002 2003 2004 2005 2006 2007

0.
0

0.
01

0.
02

0.
03

0.
04

 

2002 2003 2004 2005 2006 2007

-0
.0

5
0.

0
0.

05
0.

10
0.

15

Figure 3: Time-varying (dashed line) and average (solid line) multivariate Spearman's rho

ρ̂11,S (left panel) and average of all pairwise Spearman's rho coe�cients ̂̃ρ11,S (right panel)

of the standardized returns of the supervisory portfolio, based on a moving window of size

n = 150.
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Figure 4: Exponentially weighted multivariate Spearman's rho with decay factor λ = 0.985,

based on a moving window of size n = 150.

Some developments are particularly noticeable, such as the sudden upward movement of
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Spearman's rho on 6 February 2002 and on 13 October 2004. On these two days, the P&L

or standardized returns, respectively, of all banks in the portfolio proved to be negative,

i.e. all banks simultaneously realized losses. For comparison, we provide in Figure 3 (right

panel) the average of all pairwise Spearman's rho coe�cients (see also Memmel and Wehn

(2006) for an analysis of the supervisory portfolio's VaR based on the average linear cor-

relation coe�cient). While the multivariate Spearman's rho reacts sensitive to these days

of simultaneous negative movements, the average of all pairwise Spearman's rho shows a

more gradual and steady increase and does not emphasize those extreme events. However,

those events may be of particular interest to the supervisor in general, especially as the

simultaneous realization of losses across all banks happened only on four days altogether

during the observation period and these days revealed the by far highest losses.

The sudden decrease in Spearman's rho in September 2002 must be put down to the nature

of the moving window approach. For benchmarking, we calculate multivariate Spearman's

rho anew, but this time, allocate di�erent, exponentially decreasing weights to the obser-

vations (see Figure 4). This approach is analogous to the exponentially weighted moving

window approach (EWMA) by RiskMetrics. As the �gure implies, it emphasizes those days

where the banks' P&L simultaneously move in the same direction, like in October 2004.

Though the exponentially weighted version of multivariate Spearman's rho represents an

alternative estimator, its statistical properties are more di�cult to establish. All further

analysis is based on an equally weighted moving window of size n = 150.

4.3 Level changes of Spearman's rho of the supervisory portfolio over
time

The time-dynamic test procedure proposed in Section 3.2 is applied to the supervisory

portfolio. We set s = 1 and thus focus on monitoring Spearman's rho of the supervisory

portfolio daily.

The main motivation of the control chart design in Phase 1 is the fact that the �rst dif-

ferences of Spearman's rho estimates ρ̂ t
d,n are (asymptotically) serially uncorrelated. The

sample autocorrelation functions of the original time series and the �rst di�erence are given

in Figure 5. For calibrating the control chart in Phase 1, we use the �rst 150 observations

23



(denoted as pre-sample) of the series {n(ρ̂t
d,n − ρ̂t−1

d,n )} to determine the control limits c1

and c2, according to the procedure described in Section 3.2 and in line with the window

size n = 150.
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Figure 5: Sample autocorrelation function of the time series of Spearman's rho estimates

ρ̂ t
d,n (upper panel) and of the �rst di�erences ρ̂t

d,n − ρ̂t−1
d,n (lower panel) of the supervisory

portfolio with window size n = 150.

Estimates ĉ1 and ĉ2 of the control limits c1 and c2 are given as the empirical α/2- and

(1 − α/2)-quantiles of the pre-sample; the con�dence level α is set to 0.05 in both Phase

1 and Phase 2. The control chart of Phase 1 as well as the results of the test procedure

are given in Figure 6. Here, ĉ1 and ĉ2 are −0.03962 and 0.28709, respectively; altogether,

we observe 241 alarms in Phase 1. Proceeding with Phase 2, where the estimation of the

bootstrap variance is based on 500 bootstrap replications, we obtain two signals at time

t = 308 and t = 1038. The corresponding values of the test statistics are provided in the

table of Figure 6. It becomes clear from Figure 3 that both signals occur at the respective

global downward movements of Spearman's rho at the beginning of the years 2002 and

2005.

After an alarm has been triggered in Phase 1 and, thus, an early warning of level change

in dependence has occurred, market-relevant factors and events should be analyzed around

the time the alarm occurred in order to �nd a possible economic interpretation for the shift

in dependency. As elaborated above, the next observations (in our case, 149 observations)
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Phase 1 Phase 2

t date [ĉ1, ĉ2] n(ρ̂t
d,n − ρ̂t−1

d,n ) T p-value

308 12.04.2002 [−0.03962, 0.28709] -0.05490001 -2.73087 0.00632

1038 26.04.2005 [−0.03962, 0.28709] -0.08792838 -2.06398 0.03902

Figure 6: Upper panel: Control chart in Phase 1 of di�erences n(ρ̂t
d,n − ρ̂t−1

d,n ) with the

estimated control limits ĉ1 and ĉ2 (horizontal lines); lower panel: Summary of the test

statistics including those dates with signi�cant signals. Here, T refers to the test statistics

given in (18). The results are based on α = 0.05, 500 bootstrap replications, and window

size n = 150.

are then to be awaited in Phase 2 in order to test for a signi�cant long-term level change of

dependence. Note, however, that by leaving the control limits unchanged throughout the

whole period, we would not use the information provided by the test procedure, i.e. that a

signal has occurred.

Therefore, we apply the test procedure anew � only, this time, we recalibrate the control

chart of Phase 1 each time after a signal has been observed: The control limits are re-

estimated based on the 150 observations following (and including) the signal, and the chart

is restarted. The corresponding output is given in Figure 7. We provide the corresponding

control chart of Phase 1 together with the re-estimated control limits whose values are

explicitly given in the table. This time, 230 alarms are obtained in Phase 1, leaving us with

three signals in Phase 2. Hence, in addition to the signals obtained from the control chart

without re-calibration, we observe a signal at t = 755. As Figure 7 shows, this new signal
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t date [ĉ1, ĉ2] n(ρ̂t
d,n − ρ̂t−1

d,n ) T p-value

308 12.04.2002 [−0.03962, 0.28709] -0.05490001 -2.73087 0.00632

755 23.02.2004 [−0.04952, 0.11975] 0.18811689 2.74026 0.00614

1038 26.04.2005 [−0.01370, 0.12654] -0.08792838 -2.06398 0.03902

>26.04.2005 [−0.05506, 0.09861]

Figure 7: Upper left panel: Control chart in Phase 1 of di�erences n(ρ̂t
d,n − ρ̂t−1

d,n ) with

the estimated control limits ĉ1 and ĉ2 (horizontal lines); upper right panel: multivariate

Spearman's rho with signals (vertical lines); lower panel: Summary of the test statistics

including those dates with signi�cant signals. Here, T refers to the test statistics given

in (18). The results are based on α = 0.05, 500 bootstrap replications, and window size

n = 150.

occurs at the global increase of Spearman's rho at the beginning of the year 2004.

Below we discuss an alternative approach concerning the calibration of the control chart

in Phase 1. To reduce the volatility of the estimation of the control limits, we now adopt

the following procedure: By means of the nonparametric bootstrap method introduced in

Section 3.4, we determine for each t the α/2- and (1 − α/2)-quantiles of the bootstrap

distribution of the control process Yt as introduced in Section 3.2. The control limits are

then estimated as the median of the respective quantile estimates of the 150 observation in

the pre-sample. We only provide the results of the test procedure including re-calibration of

the control limits since this seems the natural approach according to our discussion above;

the number of bootstrap replications to estimate the control limits is set to 2500.

26



 

2003 2004 2005 2006 2007

-1
.0

-0
.5

0.
0

0.
5

1.
0

 

2002 2003 2004 2005 2006 2007

0.
0

0.
01

0.
02

0.
03

0.
04

Phase 1 Phase 2

t date [ĉ1, ĉ2] n(ρ̂t
d,n − ρ̂t−1

d,n ) T p-value

313 19.04.2002 [−0.06369, 0.06914] -0.088354 -2.69338 0.00707

755 23.02.2004 [−0.04931, 0.08124] 0.18811689 2.74026 0.00614

1038 26.04.2005 [−0.08226, 0.05006] -0.08792838 -2.06398 0.03902

>26.04.2005 [−0.05463, 0.06977]

Figure 8: Upper left panel: Control chart in Phase 1 of di�erences n(ρ̂t
d,n − ρ̂t−1

d,n ) with

the estimated control limits ĉ1 and ĉ2 (horizontal lines); upper right panel: multivariate

Spearman's rho with signals (vertical lines); lower panel: Summary of the test statistics

including those dates with signi�cant signals. Here, T refers to the test statistics given in

(18). The results are based on α = 0.05, 2500 (calibration of control limits in Phase 1) and

500 (variance estimation in Phase 2) bootstrap replications, and window size n = 150.

The estimates of the control limits are shown in the table of Figure 8. At the beginning,

ĉ1 = −0.06369 and ĉ2 = 0.06914; observe that, in most cases, the bootstrap yields smaller

values for ĉ2 than the previous calibration method. The alternative method yields signals

at almost the same time points. Only the �rst signal now occurs slightly later at time

t = 313 instead of t = 308, but still identi�es the global decrease in Spearman's rho. Since

the alternative calibration method yields more robust estimates of the control limits, it

might be even possible to reduce the number of required observations in the pre-sample.

The impact of reducing the sample size is illustrated in Figure 9, where the estimates of

the control limits are calculated depending on the size of the pre-sample. The solid vertical

line represents the actual choice of n = 150, implying that a smaller sample size does not
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seem to be reasonable.
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Figure 9: Estimated control limits (at α = 0.05) as a function of the size of the pre-sample.

The solid vertical line represents the sample size of n = 150.

Summarizing the above �ndings, the test procedure based on control chart theory (dis-

cussed in Section 3.2) helps to identify the global level changes of Spearman's rho. The high

level of dependence between the banks' returns, as observed after the events of September

11 (cf. Section 4.2), is signi�cantly decreasing after April 2002, as detected by our statis-

tical tests. Along with the uncertainty and the sideward trends of the European and US

�nancial markets at the beginning of the year 2004, the dependence signi�cantly increases

after February 2004. Finally, the clear upward trends of most stock markets in the world

from 2005 onwards lead to a decreasing dependence among the banks' returns, which is sta-

tistically signi�cant around April 2005. A detailed analysis of the banks' trading portfolios

would now enable a further explanation of the evolution of the dependence.

4.4 Hierarchical considerations for the supervisory portfolio

The hierarchical testing described in Section 3.3 answers the question as to which groups

of banks of the supervisory portfolio show a signi�cant change of dependence around a

prede�ned time point when applied to its standardized returns.

According to Bonferroni's inequality, we have

IP
( ⋃

I∈J
|I|>l

{
|Qt
I,n| > z1−α/2

})
≤

∑
I∈J
|I|>l

IP(|Qt
I,n| > z1−α/2) = βl,
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and we may choose α in such a way that

α

d∑
k=l
|I|=k

(
d

k

)
= βl,

and thus, α = βl/{2d −∑l−1
k=0

(
d
k

)}.

Table 4: Output of the hierarchical testing for the supervisory portfolio at the time points

t = 313 (19.04.2002), t = 755 (23.02.2004), and t = 1038 (26.04.2005) for l = 8. Value of

the test statistics max I∈J
|I|>8

|Qt
I,n| for testing the overall null hypothesis (19). Calculations

are based on 500 bootstrap replications and β8 = 0.1.

t date max I∈J
|I|>8

|Qt
I,n| z1−α/2

313 19.04.2002 4.53089 3.176131

755 23.02.2004 3.46422 3.176131

1038 26.04.2005 2.71896 3.176131

For the supervisory portfolio, d = 11 and we set the overall test level βl to 0.1 and l = 8.

Hence, α = 0.00149 and z1−α/2 = 3.176131, in this case. Furthermore, we concentrate on

the three time points identi�ed as level changes of portfolio dependence in the previous

section, though any other time point might be possible, too. The value of the test statistics

max{I∈J , |I|>8} |Qt
I,n| at those three time points is given in Table 4. It follows that the

null hypothesis (19) has to be rejected at level β8 at the time points t = 313 and t = 755,

implying that dependency has signi�cantly changed in a period before and after the time

points among the portfolios with dimension greater than 8. By contrast, we cannot reject

the null hypothesis at the time point t = 1038.

For the time points t = 313 and t = 755, Table 5 further provides all sub-portfolios with

dimension greater than 8, showing a signi�cant change of Spearman's rho at level α at the

respective time points. Altogether, there are 23 sub-portfolios with dimension 9 or 10 at

t = 313 with the 9-dimensional sub-portfolio consisting of the banks 2, 3, 4, 5, 6, 7, 8, 10, and

11 having the smallest p-value. At t = 755, only sub-portfolios with dimension 9 turn out

to have a signi�cant change in Spearman's rho at level α at this time point. Here, the sub-

portfolio consisting of the banks 1, 2, 3, 4, 6, 8, 9, 10, and 11 has the smallest p-value. For
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Table 5: Output of the hierarchical testing for the supervisory portfolio at the time points

t = 313 (19.04.2002) and t = 755 (23.02.2004) for l = 8. Signi�cant sub-portfolio combina-

tions I, corresponding value of the statistics Qt
I,n, and p-value. Calculations are based on

500 bootstrap replications and βl = 0.1.

t=313 t=755

I Qt
I,n p-value I Qt

I,n p-value

1 2 3 4 5 6 7 8 10 11 -3.39774 0.00068 1 2 3 4 5 6 8 9 10 3.35484 0.00079

2 3 4 5 6 7 8 9 10 11 -3.82334 0.00013 1 2 3 4 5 6 9 10 11 3.36225 0.00077

1 2 3 4 5 6 7 8 9 -3.23098 0.00123 1 2 3 4 6 7 8 9 11 3.23002 0.00124

1 2 3 4 5 6 7 8 10 -4.25733 0.00002 1 2 3 4 6 8 9 10 11 3.46422 0.00053

1 2 3 4 5 6 7 10 11 -3.54487 0.00039 1 2 3 4 7 8 9 10 11 3.2428 0.00118

1 2 3 4 5 6 8 10 11 -3.60147 0.00032 2 3 4 5 6 8 9 10 11 3.28402 0.00102

1 2 3 4 5 7 8 10 11 -3.33302 0.00086 2 3 4 6 7 8 9 10 11 3.37724 0.00073

1 2 3 4 6 7 8 10 11 -4.00944 0.00006

1 2 3 5 6 7 8 10 11 -3.99211 0.00007

1 2 4 5 6 7 8 9 10 -3.29191 0.001

1 2 4 5 6 7 8 10 11 -4.25264 0.00002

1 2 5 6 7 8 9 10 11 -3.19147 0.00142

1 3 4 5 6 7 8 10 11 -3.67182 0.00024

2 3 4 5 6 7 8 9 10 -3.35125 0.0008

2 3 4 5 6 7 8 9 11 -3.77839 0.00016

2 3 4 5 6 7 8 10 11 -4.53089 0.00001

2 3 4 5 6 7 9 10 11 -3.66836 0.00024

2 3 4 5 6 8 9 10 11 -3.58624 0.00034

2 3 4 5 7 8 9 10 11 -3.29662 0.00098

2 3 4 6 7 8 9 10 11 -3.92365 0.00009

2 3 5 6 7 8 9 10 11 -3.9123 0.00009

2 4 5 6 7 8 9 10 11 -4.13888 0.00003

3 4 5 6 7 8 9 10 11 -3.6275 0.00029
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illustration, Figure 10 illustrates, at the two time points, the evolution of Spearman's rho of

the sub-portfolio showing the highest signi�cant change in Spearman's rho in contrast to the

sub-portfolio of the same dimension having the largest p-value. In general, considerably

converse developments are observable around the respective time points. Note that, at

t = 313, the two smallest banks, bank 1 and 9 (as measured in terms of average VaR),

appear considerably less often than any other bank. This may imply that dependence

around t = 313 is driven more by the larger banks. If more information about the banks

were available, possible common factors driving dependency might be identi�ed in the

respective time period.

The result of the hierarchical testing does not imply that there is no signi�cant change of

dependence at time point t = 1038 at all; however, there is none among the sub-portfolios

with dimension greater than 8. Furthermore, the fact that more than three times as many

sub-portfolios with dimension greater than 8 showing a signi�cant change in dependence

could be observed at t = 313 than at t = 755 might provide an indication of the stability of

the �nancial markets around that time � the more so as �nancial markets indeed displayed

a more volatile behaviour in 2002 than at the beginning of 2004.
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Figure 10: Development of Spearman's rho of sub-portfolios. Left panel: Sub-portfolio of

banks 2, 3, 4, 5, 6, 7, 8, 10, and 11 (solid line) against sub-portfolio of banks 1, 2, 3, 4, 6, 7, 8, 9,

and 11 (dotted line) with the vertical line representing the time point t = 313 (19.04.2002);

Right panel: Sub-portfolio of banks 1, 2, 3, 4, 6, 8, 9, 10, and 11 (solid line) against sub-

portfolio of banks 1, 2, 3, 4, 5, 6, 7, 8, and 10 (dotted line) with the vertical line representing

the time point t = 755 (23.02.2004).
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5 Conclusion

A multivariate version of the copula-based dependence measure Spearman's rho is proposed

for modelling the (time-dynamic) dependence structure of the supervisory portfolio. Several

important theoretical results on the asymptotic behaviour of Spearman's rho thus allow a

thorough analysis of the portfolio's dependence structure in two ways. A time-dynamic

two-step test procedure � partly based on a nonparametric control chart for Spearman's

rho � detects (sustaining) level shifts of the portfolio's dependence over time, while the hier-

archical testing serves to identify sub-portfolios causing a signi�cant change in dependence

around some speci�c time point. The proposed methods are general and can be applied

to any series of multivariate asset returns in �nance where the assumption of independent

standardized returns holds.

Our empirical study of the supervisory portfolio identi�es signi�cant changes in the de-

pendence level at three time points during the period from 2001 to 2006. At two of those

time points the hierarchical analysis reveals a signi�cant change in dependence for all sub-

portfolios comprising more than eight banks.

Appendix

Details on the derivation of the estimators ρ̂|I|,n and ̂̃ρ|I|,n

The estimation of the |I|-dimensional versions of Spearman's rho ρ|I| and ρ̃|I| as de�ned

in formula (7) and (9), respectively, is based on the empirical copula, which is derived as

follows.

Consider a random sample (Xj)j=1,...,n from the d-dimensional random vector X with joint

distribution function F, continuous marginal distribution functions FXi , i = 1, . . . , d, and

copula C which are assumed to be unknown. The univariate marginal distribution functions

FXi are estimated by their empirical distribution functions

F̂i,n(x) =
1
n

n∑

j=1

1{Xij≤x}, for i = 1, . . . , d and x ∈ R.

Furthermore, let F̂n(x) = 1
n

∑n
j=1 Πd

i=11{Xij≤xi},x ∈ Rd, denote the multivariate em-

pirical distribution function. Standardizing the margins with Ûij,n := F̂i,n(Xij) for i =
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1, . . . , d, j = 1, . . . , n, and Ûj,n = (Û1j,n, . . . , Ûdj,n) yields the empirical copula of C

Ĉn(u) =
1
n

n∑

j=1

d∏

i=1

1{Ûij,n≤ui} for u = (u1, . . . , ud) ∈ [0, 1]d. (21)

By replacing the copulas in the de�nitions (7) and (9) by their empirical counterparts, we

obtain the following estimators

ρ̂|I|,n = h(|I|)
{

2|I|
∫

[0,1]|I|
Ĉi1,...,i|I|,n(u) du− 1

}

= h(|I|)
{2|I|

n

n∑

j=1

[
(1− Ûi1j,n) . . . (1− Ûi|I|j,n)

]
− 1

}
.

and

̂̃ρ|I|,n = h(2)
{

22
∑
k<l

k,l∈I

(|I|
2

)−1 ∫

[0,1]2
Ĉkl,n(u, v)dudv − 1

}

=
12
n

(|I|
2

)−1 ∑
k<l

k,l∈I

n∑

j=1

(1− Ûkj,n)(1− Ûlj,n)− 3.

Proofs of Theorems

The proof of Theorem 2 utilizes the asymptotic properties of the empirical copula process
√

n{Ĉn(u) − C(u)}, which has been studied in di�erent settings; we refer, for example,

to Rüschendorf (1976), Stute (1984), Van der Vaart and Wellner (1996), Fermanian et al.

(2004), and Tsukahara (2005). The asymptotic result on which our derivations are based

is given in the next theorem; a proof is given in Fermanian et al. (2004), Theorem 3.

Theorem 5 Let F be a continuous d-dimensional distribution function with copula C. Un-

der the additional assumption that the i-th partial derivatives DiC(u) exist and are contin-

uous for i = 1, . . . , d, we have

√
n{Ĉn(u)− C(u)} w→ GC(u).

Weak convergence takes place in `∞([0, 1]d) and

GC(u) = BC(u)−
d∑

i=1

DiC(u)BC(u(i)).

The vector u(i) denotes the vector where all coordinates, except the i-th coordinate of u, are

replaced by 1. The process BC is a tight centered Gaussian process on [0, 1]d with covariance
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function

E{BC(u)BC(v)} = C(u ∧ v)− C(u)C(v),

i.e. BC is a d-dimensional Brownian Bridge.

Proof of Theorem 2.

(i) Given the theorem's prerequisites, the combination of Theorem 5 above and Theorem 3

in Schmid and Schmidt (2007) yields that, for a single index set I,

√
n(ρ̂|I|,n,X − ρ|I|,X) d−→ WX ∼ N(0, σ2

X)

and
√

m(n)(ρ̂|I|,m(n),Y − ρ|I|,Y) d−→ WY ∼ N(0, σ2
Y)

for n →∞, with

σ2
X = 22|I|h(|I|)2

∫

[0,1]d

∫

[0,1]d
IE{GCX

(u(I))GCX
(v(I))}dudv.

and

σ2
Y = 22|I|h(|I|)2

∫

[0,1]d

∫

[0,1]d
IE{GCY

(u(I))GCY
(v(I))}dudv.

respectively. Under the assumption that ρ|I|,X = ρ|I|,Y, we have

√
n
(
ρ̂|I|,n,X − ρ̂|I|,m(n),Y

)
=
√

n
(
ρ̂|I|,n,X − ρ|I|,X

)
−

√
n√

m(n)

√
m(n)

(
ρ̂|I|,m(n),Y − ρ|I|,Y

)

and the assertion follows owing to Slutsky's theorem (see, for instance, Shao (1999), The-

orem 1.11) and the fact that ρ̂|I|,n,X and ρ̂|I|,n,Y are based on stochastically independent

samples.

(ii) Let Ĉn,X(u) and Ĉm,Y,u ∈ [0, 1]d, denote the empirical copula of the random sample

(Xl)l=1,...,n and (Yl)l=1,...,m, respectively. For A ⊆ J with |A| = k and m = m(n), consider

the k-dimensional random vectors SA,n,X and SA,m(n),Y which linearly map the empirical

copulas Ĉn,X and Ĉm(n),Y into the k-dimensional Euclidean space Rk, respectively. Thus,

an application of the generalized continuous-mapping theorem (see , for example, Theorem

1.3.6 in Van der Vaart and Wellner (1996)) together with Theorem 5 yields the weak

convergence of √n{SA,n,X−ρA,X} and
√

m(n){SA,m(n),Y −ρA,Y} on the space Rk. Since,

in addition, SA,n,X and SA,m(n),Y are based on independent samples, joint weak convergence

of (√
n{SA,n,X − ρA,X},

√
m(n){SA,m(n),Y − ρA,Y}

)′
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on the product space R2k is obtained for n → ∞. Finally, the fact that the matrix-norm

|| · || is also a continuous mapping from the space R2k into R and another application of the

continuous mapping theorem yields the asserted result. ¤

Proof of Theorem 3.

(i) Let Ĉt
n(u),u ∈ [0, 1]d, denote the empirical copula of the random sample Xt−n+1, . . . ,Xt,

t ∈ Z, and F̂ t
n(x) the corresponding d-dimensional empirical distribution function. Then,

the di�erence ρ̂t
|I|,n − ρ̂t−s

|I|,n(s < n) can be written as

ρ̂t
|I|,n − ρ̂t−s

|I|,n = h(|I|)2|I|
∫

[0,1]d

{
Ĉt

n(u(I))− Ĉt−s
n (u(I))

}
du.

Since C = φ(F ) and Ĉt
n = φ(F̂ t

n) with Hadamard-di�erentiable map φ (see Fermanian et al.

(2004) and Van der Vaart and Wellner (1996) for the relevant de�nitions and background

reading), this yields

ρ̂t
|I|,n − ρ̂t−s

|I|,n = h(|I|)2|I|
∫

[0,1]d

{
φ(F̂ t

n)(u(I))− φ(F̂ t−s
n )(u(I))

}
du.

Furthermore, observe that

n
{

F̂ t
n(x(I))− F̂ t−s

n (x(I))
}

=
t∑

j=t−s+1

d∏
i=1
i∈I

1{Xij≤xi} −
t−n∑

j=t−n−s+1

d∏
i=1
i∈I

1{Xij≤xi}
d= Y t,s(x(I)),(22)

the latter distribution being independent of n. An application of the Delta-method given

in Theorem 3.9.4 in Van der Vaart and Wellner (1996) leads to

n
{

Ĉt
n(u(I))− Ĉt−s

n (u(I))
}

= n
{

φ(F̂ t
n)(u(I))− φ(F̂ t−s

n )(u(I))
}

d−→ φ′(Y t,s)(u(I)). (23)

Finally, the continuous mapping theorem yields

n
{

ρ̂t
|I|,n − ρ̂t−s

|I|,n
}

d−→ h(|I|)2|I|
∫

[0,1]d
φ′(Y t,s)(u(I))du = Zt,s

|I|. (24)

(ii) We start by proving that n{Ĉt
n(u(I))− Ĉt−s

n (u(I))} is uniformly bounded in u ∈ [0, 1]d

for �xed s < n. Observe that

n{Ĉt
n(u(I))− Ĉt−s

n (u(I))} =
t∑

j=t−s+1

d∏
i=1
i∈I

1{Ût
ij,n≤ui} −

−
t−s∑

j=t−n+1

( d∏
i=1
i∈I

1{Ût
ij,n≤ui} −

d∏
i=1
i∈I

1{Ût−s
ij,n≤ui}

)
−

t−n∑

j=t−s−n+1

d∏
i=1
i∈I

1{Ût−s
ij,n≤ui}, (25)
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where Û t
ij,n = 1

n (rank of Xij in Xi(t−n+1), . . . , Xit), based on the sample Xt−n+1, . . . ,Xt,

and Û t−s
ij,n = 1

n (rank of Xij in Xi(t−s−n+1), . . . , Xi(t−s)), which are based on the sample

Xt−s−n+1, . . . ,Xt−s, respectively.

Note that the random variables Û t
ij,n and Û t−s

ij,n in the middle term of (25) deviate by a

maximum of s/n only since the underlying rank order statistics are based on the (n−s−1)

common random variables Xt−n+1, . . . ,Xt−s for all i ∈ I. For each �xed u ∈ [0, 1]d, there

exists at most s index value j1, . . . , js ∈ {t−n+1, . . . , t−s} for which the middle term does

not equal zero owing to the bijective mapping of Û t
ij,n and Û t−s

ij,n onto { 1
n , . . . , n

n}. Thus,

∣∣∣
t−s∑

j=t−n+1

( d∏
i=1
i∈I

1{Ût
ij,n≤ui} −

d∏
i=1
i∈I

1{Ût−s
ij,n≤ui}

)∣∣∣ ≤ s (26)

for each u ∈ [0, 1]d. Including the other terms of formula (25) yields

|n{Ĉt
n(u(I))− Ĉt−s

n (u(I))}| ≤ 3s

and, consequently,

|n{ρ̂t
|I|,n − ρ̂t−s

|I|,n}| ≤ 3s2|I|h(|I|)

Thus, the bounded convergence theorem (see, for example, Theorem 10.32 in Wheeden and

Zygmund (1977)) together with part (i) of the theorem yields

n2 Cov
(
ρ̂ t
|I|,n − ρ̂ t−s

|I|,n , ρ̂ t−r
|I|,n − ρ̂ t−r−s

|I|,n
)
−→ Cov

(
Zt,s
|I|, Z

t−r,s
|I|

)
.

Finally, formula (22) together with formula (23) shows that the limiting variables Zt,s
|I| and

Zt−r,s
|I| are stochastically independent and are thus uncorrelated for n > r > s > 0. ¤

Proof of Theorem 4. Let ĈB
n,X(u) and ĈB

m,Y(u),u ∈ [0, 1]d, denote the empirical copula

of the independent random sample (XB
l )l=1,...,n and (YB

l )l=1,...,m, obtained by sampling

from the independent random samples (Xl)l=1,...,n and (Yl)l=1,...,m with replacement, re-

spectively.

With m := m(n) such that
√

n√
m(n)

→ c for n → ∞, Theorem 5 in Fermanian et al. (2004)

implies that √n(ĈB
n,X − Ĉn,X) and √n(Ĉn,X −CX) as well as

√
m(n)(ĈB

m(n),Y − Ĉm(n),Y)

and
√

m(n)(Ĉm(n),Y − CY) converge weakly to the same Gaussian limit with probability

1, respectively, for n → ∞. The application of the continuous mapping theorem yields

that √n{SB
A,n,X − SA,n,X} and √n{SA,n,X − ρA,X}, and

√
m(n){SB

A,m(n),Y − SA,m(n),Y}
and

√
m(n){SA,m(n),Y − ρA,Y} converge to the same limit, respectively, with probability
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1. With the assumption that ρA,X = ρA,Y, the assertion follows according to the same

reasoning as in the proof for Theorem 2, part (ii). ¤

References

Andersen, T.G., T. Bollerslev, P.F. Christo�ersen, and F.X Diebold, 2005, Practical Volatil-

ity and Correlation Modeling for Financial Market Risk Management, in: Risks of Finan-

cial Institutions, eds. M. Carey and R. Stultz , University of Chicago Press for NBER,

513�548.

Artzner, P.F., F. Delbaen, J.-M. Eber, and D. Heath, 1999, Coherent Measures of Risk,

Mathematical Finance 9, 203�228.

Bae, K.H., G.A. Karolyi, and R.M. Stulz, 2003, A new approach to measure �nancial

contagion, Review of Financial Studies 16, 717�763.

Berkowitz, J., and J. O'Brien, 2002, How accurate are Value-at-Risk Models at Commercial

Banks?, Journal of Finance 57, 1093�1111.

Bartram, S.M., S.J. Taylor, and Y.H. Wang, 2007, The Euro and European �nancial market

dependence, Journal of Banking and Finance 31 (5), 1461�1481.

Campbell, R., K. Koedijk, and P. Kofman, 2002, Increased Correlation in Bear Markets,

Financial Analysts Journal Jan-Feb, 87�94.

Charpentier, A., 2006, Dependence structure and limiting results: some applica-

tions in �nance and insurance, PhD thesis Universiteit Leuven, Retrievable from:

http://www.crest.fr/pageperso/charpent/phd.htm.

Davison, A.C., and D.V. Hinkley, 1997, Bootstrap Methods and their Applications, Cam-

bridge University Press.

Deheuvels, P., 1979, La fonction de dépendance empirique et ses propriétés. Un test non

paramétrique d'indépendence, Acad. Roy. Belg., Bull. Cl. Sci. 65(5), 274�292.

Duellmann, K., M. Scheicher, and C. Schmieder, 2007, Asset correlations and credit port-

folio risk - An empirical analysis, Discussion Paper, Series 2: Banking and Fiancial

Studies, 2007/13, Deutsche Bundesbank.

37



Embrechts, P., F. Lindskog, and A. McNeil, 2001, Modelling Dependence with Copulas

and Applications to Risk Management, in: Handbook of Heavy Tailed Distributions in

Finance, ed. S. Rachev, Elsevier, Chapter 8, 329-384.

Embrechts, P., A. McNeil, and D. Straumann, 2002, Correlation and Dependency in Risk

Management: Properties and Pitfalls, in: Risk Management: Value at Risk and Beyond,

M.A.H. Dempster (ed.), Cambridge University Press, Cambridge, 176�223.

Efron, B., and R. J. Tibshirani, 1993, An Introduction to Bootstrap, Chapman & Hall, New

York, London.

Fermanian, J-D., D. Radulovic, and M. Wegkamp, 2004, Weak convergence of empirical

copula processes, Bernoulli 10 (5), 847�860.

Genest, C., and B. Rémillard, 2004, Tests of Independence and Randomness Based on the

Empirical Copula Process, Test 13(2), 335�369.

Giacomini, E., W. Härdle, and V. Spokoiny, 2008, Inhomogeneous Dependency Modelling

with Time Varying Copulae, J. Business and Economic Statistics, forthcoming.

Golosnoy, V., and W. Schmid, 2007, EWMA Control Charts for Monitoring Optimal Port-

folio Weights, Sequential Analysis 26, 195�224.

Hofert, M., 2008, Sampling Archimedean copulas, Computational Statistics & Data Analysis

52(12), 5163�5174.

Jaschke, S., G. Stahl, and R. Stehle, 2003, Evaluating VaR Forecasts under Stress - The

German Experience, CFS Working Paper Series, 2003/32, Center for Financial Studies.

Joe, H., 1990, Multivariate Concordance, Journal of Multivariate Analysis 35, 12�30.

Joe, H., 1997, Multivariate Models and Dependence Concepts, Chapman & Hall.

Jorion, P., 2006, Value at Risk, 3rd. edn, McGraw-Hill, New York.

Karolyi, G.A. and R.M. Stulz, 1996, Why Do Markets Move Together? An Investigation

of U.S.-Japan Stock Return Co-movements, Journal of Finance 51, 951�989.

Kendall, M.G., 1970, Rank Correlation methods, Gri�n, London.

38



Longin, F., and B. Solnik, 2001, Extreme Correlation of International Equity Markets,

Journal of Finance LVI, 649�676.

McNeil, A.J., Frey, R. and Embrechts, P., 2005, Quantitative risk management: concepts,

techniques and tools, Princeton Series in Finance, Princeton University Press.

Memmel, C., and C. Wehn, 2006, Supervisor's portfolio: The market price risk of German

banks from 2001 to 2004: Analysis and models for risk aggregation, Journal of Banking

Regulation 7, 3/4, 310 � 325 .

Minderhoud, K., 2006, Systemic Risk in the Dutch Financial Sector, De Economist 154(2),

177�195.

Nelsen, Roger B., 1996, Nonparametric measures of multivariate association, in: Distribu-

tion with Fixed Marginals and Related Topics, IMS Lecture Notes - Monograph Series

28, 223�232.

Nelsen, R.B., 2006, An Introduction to Copulas, 2nd edn., Springer Verlag New York, Inc.

O'Kane, D., and L. Schloegl, 2005, The large homogeneous portfolio approximation with

the Student-t copula, Finance and Stochastics 4, 577�584.

Patel, N., 2005, Crisis of correlation, Risk Magazine, June.

Patton, A., 2006, Modelling asymmetric exchange rate dependence, International Economic

Review 47(2), 527�556.

Pawlak, M., E. Rafajlowicz, and A. Steland, 2004, On detecting jumps in time series:

nonparametric setting, Journal of Nonparametric Statistic 16, Numbers 3-4, 329�347.

Rodriguez, J.C., 2007, Measuring Financial Contagion: A Copula approach, Journal of

Empirical Finance 14 (3), 401�423.

Rüschendorf, L., 1976, Asymptotic normality of multivariate rank order statistics, Annals

of Statistics 4, 912�923.

Ruymgaart, F.H., and M.C.A. van Zuijlen, 1978, Asymptotic normality of multivariate

linear rank statistics in the non-i.i.d. case, Annals of Statistics 6 (3), 588�602.

Savu, C., and M. Trede 2006, Hierarchical Archimedean Copulas, working paper, Institute

of Econometrics, University of Münster.

39



Savu, C., and M. Trede 2008, Goodness-of-�t Tests for Parametric Families of Archimedean

Copulas, Quantitative Finance 8, 109�116.

Schmid, W., and S. Knoth, 2001, Control Charts for Time Series: A Review, Discussion

paper, No 173, Europe-University Frankfurt (Oder).

Schmid, F., and R. Schmidt, 2007, Multivariate Extensions of Spearman's Rho and Related

Statistics, Statistics and Probability Letters 77 (4), 407�416.

Schmid, F., and R. Schmidt, 2006, Bootstrapping Spearman's Multivariate Rho, COMP-

STAT, Proceedings in Computational Statistics, edited by Alfredo Rizzi and Maurizio

Vichi.

Shao, Jun, 1999, Mathematical Statistics, Springer Verlag New York, Inc.

Shao, J., and D. Tu, 1993, The Jacknife and Bootstrap, Springer Verlag, New York, Inc.

Sklar, A., 1959, Fonctions de rèpartition à n dimensions et leur marges, Publ. Inst. Statist.

Univ. Paris 8, 229�231.

Steland, A., 2002, Sequential credit risk: Can we bene�t from sequential nonparametric

control?, Selected Papers Operation Research Proceedings 43, 337�344.

Stute, W., 1984, The oscillation behavior of empirical processes: The multivariate case,

Annals of Probability 12, 361�379.

Taylor, M.D., 2007, Multivariate measures of concordance, Annals of the Institute of Sta-

tistical Mathematics 59(4), 789�806.

Tsukahara, H., 2005, Semiparametric estimation in copula models,Canadian Journal of

Statistics 33(3), 357�375.

Úbeda-Flores, M., 2005, Multivariate versions of Blomqvist's beta and Spearman's footrule,

Annals of the Institute of Statistical Mathematics 57(4), 781�788.

Van der Vaart, A.W., and J.A. Wellner, 1996, Weak Convergence and Empirical Processes,

Springer Verlag, New York.

Wheeden, R.L., and A. Zygmund, 1977, Measure and Integral: An Introduction to Real

Analysis, Marcel Dekker, Inc., New York.

40



Wieringa, J. E., 1999, Statistical process control for serially corre-

lated data, PhD thesis University of Groningen, retrievable from

http://dissertations.ub.rug.nl/faculties/eco/1999/j.e.wieringa/.

Wol�, E.F., 1980, N -dimensional measures of dependence, Stochastica 4 (3), 175�188.

41



 

 

42

The following Discussion Papers have been published since 2008: 

Series 1: Economic Studies 
 

 01 2008 Can capacity constraints explain 
   asymmetries of the business cycle? Malte Knüppel 
 
 02 2008 Communication, decision-making and the 
   optimal degree of transparency of monetary 
   policy committees Anke Weber 
 
 03 2008 The impact of thin-capitalization rules on Buettner, Overesch 
   multinationals’ financing and investment decisions Schreiber, Wamser 
 
 04 2008 Comparing the DSGE model with the factor model:  
   an out-of-sample forecasting experiment Mu-Chun Wang 
 
 05 2008 Financial markets and the current account – Sabine Herrmann 
   emerging Europe versus emerging Asia Adalbert Winkler 
 
 06 2008 The German sub-national government bond Alexander Schulz 
   market: evolution, yields and liquidity Guntram B. Wolff 
 
 07 2008 Integration of financial markets and national Mathias Hoffmann 
   price levels: the role of exchange rate volatility Peter Tillmann 
 
 08 2008 Business cycle evidence on firm entry Vivien Lewis 
 
 09 2008 Panel estimation of state dependent adjustment 
   when the target is unobserved Ulf von Kalckreuth 
 
 10 2008 Nonlinear oil price dynamics – Stefan Reitz 
   a tale of heterogeneous speculators? Ulf Slopek 
 
 11 2008 Financing constraints, firm level adjustment 
   of capital and aggregate implications Ulf von Kalckreuth 
 
 



 

 

43

 
 12 2008 Sovereign bond market integration: Alexander Schulz 
   the euro, trading platforms and globalization Guntram B. Wolff 
 
 13 2008 Great moderation at the firm level? Claudia M. Buch 
   Unconditional versus conditional output Jörg Döpke 
   volatility Kerstin Stahn 
 
 14 2008 How informative are macroeconomic 
   risk forecasts? An examination of the  Malte Knüppel 
   Bank of England’s inflation forecasts Guido Schultefrankenfeld 
 
 15 2008 Foreign (in)direct investment and 
   corporate taxation Georg Wamser 
 
 16 2008 The global dimension of inflation – evidence Sandra Eickmeier 
   from factor-augmented Phillips curves Katharina Moll 
 
 17 2008 Global business cycles: M. Ayhan Kose 
   convergence or decoupling? Christopher Otrok, Ewar Prasad 
 
 18 2008 Restrictive immigration policy Gabriel Felbermayr 
   in Germany: pains and gains Wido Geis 
   foregone? Wilhelm Kohler 
 
 19 2008 International portfolios, capital Nicolas Coeurdacier 
   accumulation and foreign assets Robert Kollmann 
   dynamics Philippe Martin 
 
 20 2008 Financial globalization and Michael B. Devereux 
   monetary policy Alan Sutherland 
 
 21 2008 Banking globalization, monetary Nicola Cetorelli 
   transmission and the lending channel Linda S. Goldberg 
 
 22 2008 Financial exchange rates and international Philip R. Lane 
   currency exposures Jay C. Shambaugh 



 

 

44

 
 23 2008 Financial integration, specialization F. Fecht, H. P. Grüner 
   and systemic risk P. Hartmann 
 
 24 2008 Sectoral differences in wage freezes and Daniel Radowski 
   wage cuts: evidence from a new firm survey Holger Bonin 
 
 25 2008 Liquidity and the dynamic pattern of Ansgar Belke 
   price adjustment: a global view Walter Orth, Ralph Setzer 
 
 26 2008 Employment protection and Florian Baumann 
   temporary work agencies Mario Mechtel, Nikolai Stähler 
 
 27 2008 International financial markets’ influence 
   on the welfare performance of alternative 
   exchange rate regimes Mathias Hoffmann 
 
 28 2008 Does regional redistribution spur growth? M. Koetter, M. Wedow 
 
 29 2008 International financial competitiveness 
   and incentives to foreign direct investment Axel Jochem 
 
 30 2008 The price of liquidity: bank characteristics Falko Fecht 
   and market conditions Kjell G. Nyborg, Jörg Rocholl 
 
 01 2009 Spillover effects of minimum wages Christoph Moser 
   in a two-sector search model Nikolai Stähler 
 
 02 2009 Who is afraid of political risk? Multinational Iris Kesternich 
   firms and their choice of capital structure Monika Schnitzer 
 
 03 2009 Pooling versus model selection for Vladimir Kuzin 
   nowcasting with many predictors: Massimiliano Marcellino 
   an application to German GDP Christian Schumacher 
 
 
 



 

 

45

 
 04 2009 Fiscal sustainability and Balassone, Cunha, Langenus 
   policy implications for the euro area Manzke, Pavot, Prammer 
    Tommasino 
 
 05 2009 Testing for structural breaks Jörg Breitung 
   in dynamic factor models Sandra Eickmeier 
 
 06 2009 Price convergence in the EMU? 
   Evidence from micro data Christoph Fischer 
 
 07 2009 MIDAS versus mixed-frequency VAR: V. Kuzin, M. Marcellino 
   nowcasting GDP in the euro area C. Schumacher 
 
 08 2009 Time-dependent pricing and 
   New Keynesian Phillips curve Fang Yao 
 
 09 2009 Knowledge sourcing: Tobias Schmidt 
   legitimacy deficits for MNC subsidiaries? Wolfgang Sofka 
 
 10 2009 Factor forecasting using international 
   targeted predictors: the case of German GDP Christian Schumacher 
 
 11 2009 Forecasting national activity using lots of 
   international predictors: an application to Sandra Eickmeier 
   New Zealand Tim Ng 
 
 12 2009 Opting out of the great inflation: Andreas Beyer, Vitor Gaspar 
   German monetary policy after the Christina Gerberding 
   breakdown of Bretton Woods Otmar Issing 
 
 13 2009 Financial intermediation and the role Stefan Reitz 
   of price discrimination in a two-tier market Markus A. Schmidt, Mark P. Taylor 



 

 

46

Series 2: Banking and Financial Studies 
 
 01 2008 Analyzing the interest rate risk of banks  
   using time series of accounting-based data: O. Entrop, C. Memmel 
   evidence from Germany  M. Wilkens, A. Zeisler 
 
 02 2008 Bank mergers and the dynamics of Ben R. Craig 
   deposit interest rates  Valeriya Dinger 
 
 03 2008 Monetary policy and bank distress: F. de Graeve 
   an integrated micro-macro approach T. Kick, M. Koetter 
 
 04 2008 Estimating asset correlations from stock prices K. Düllmann 
   or default rates – which method is superior? J. Küll, M. Kunisch 
 
 05 2008 Rollover risk in commercial paper markets 
   and firms’ debt maturity choice Felix Thierfelder 
 
 06 2008 The success of bank mergers revisited – Andreas Behr 
   an assessment based on a matching strategy Frank Heid 
 
 07 2008 Which interest rate scenario is the worst one for 
   a bank? Evidence from a tracking bank approach 
   for German savings and cooperative banks Christoph Memmel 
 
 08 2008 Market conditions, default risk and Dragon Yongjun Tang 
   credit spreads  Hong Yan 
 
 09 2008 The pricing of correlated default risk: Nikola Tarashev 
   evidence from the credit derivatives market Haibin Zhu 
 
 10 2008 Determinants of European banks’ Christina E. Bannier 
   engagement in loan securitization Dennis N. Hänsel 
 
 11 2008 Interaction of market and credit risk: an analysis Klaus Böcker 
   of inter-risk correlation and risk aggregation Martin Hillebrand 
 



 

 

47

 
 12 2008 A value at risk analysis of credit default swaps B. Raunig, M. Scheicher 
 
 13 2008 Systemic bank risk in Brazil: an assessment of 
   correlated market, credit, sovereign and inter- 
   bank risk in an environment with stochastic Theodore M. Barnhill, Jr. 
   volatilities and correlations  Marcos Rietti Souto 
 
 14 2008 Regulatory capital for market and credit risk inter- T. Breuer, M. Jandačka 
   action: is current regulation always conservative? K. Rheinberger, M. Summer 
 
 15 2008 The implications of latent technology regimes Michael Koetter 
   for competition and efficiency in banking Tigran Poghosyan 
 
 16 2008 The impact of downward rating momentum  André Güttler 
   on credit portfolio risk  Peter Raupach 
 
 17 2008 Stress testing of real credit portfolios F. Mager, C. Schmieder 
 
 18 2008 Real estate markets and bank distress M. Koetter, T. Poghosyan 
 
 19 2008 Stochastic frontier analysis by means of maxi- Andreas Behr 
   mum likelihood and the method of moments Sebastian Tente 
 
 20 2008 Sturm und Drang in money market funds: Stehpan Jank 
   when money market funds cease to be narrow Michael Wedow 
 
 01 2009 Dominating estimators for the global Gabriel Frahm 
   minimum variance portfolio  Christoph Memmel 
 
 02 2009 Stress testing German banks in a Klaus Düllmann 
   downturn in the automobile industry Martin Erdelmeier 
 
 03 2009 The effects of privatization and consolidation E. Fiorentino 
   on bank productivity: comparative evidence A. De Vincenzo, F. Heid 
   from Italy and Germany  A. Karmann, M. Koetter 
 



 

 

48

 
 04 2009 Shocks at large banks and banking sector Sven Blank, Claudia M. Buch 
   distress: the Banking Granular Residual Katja Neugebauer 
 
 05 2009 Why do savings banks transform sight 
   deposits into illiquid assets less intensively Dorothee Holl 
   than the regulation allows?  Andrea Schertler 
 
 06 2009 Does banks’ size distort market prices? Manja Völz 
   Evidence for too-big-to-fail in the CDS market Michael Wedow 
 
 07 2009 Time dynamic and hierarchical dependence Sandra Gaisser 
   modelling of an aggregated portfolio of Christoph Memmel 
   trading books – a multivariate nonparametric Rafael Schmidt 
   approach  Carsten Wehn 



 

 

49

Visiting researcher at the Deutsche Bundesbank 

 
 
The Deutsche Bundesbank in Frankfurt is looking for a visiting researcher. Among others 
under certain conditions visiting researchers have access to a wide range of data in the 
Bundesbank. They include micro data on firms and banks not available in the public. 
Visitors should prepare a research project during their stay at the Bundesbank. Candidates 
must hold a PhD and be engaged in the field of either macroeconomics and monetary 
economics, financial markets or international economics. Proposed research projects 
should be from these fields. The visiting term will be from 3 to 6 months. Salary is 
commensurate with experience. 
 
Applicants are requested to send a CV, copies of recent papers, letters of reference and a 
proposal for a research project to: 
 
 
Deutsche Bundesbank 
Personalabteilung 
Wilhelm-Epstein-Str. 14 
 
60431 Frankfurt 
GERMANY 
 






