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LECTURES ON BIOECONOMICS
AND THE

MANAGEMENT OF RENEWABLE RESOURCES

PREFACE

This paper contains five lectures prepared as part of a short course
on mathematical ecology held at the International Centre for Theoretical
Physics, Trieste, Ttaly, November 16 through December 10, 1982, The lectures
review the relatively recent advances in dynamic modelling which attempt to
synthesize both the biological and economic aspects of commerclally exploited
renewable resources. The basic bioeconomic model and the two empirical
studies in Lecture V are concerned with the management of marine fisheries.
Time precluded a discussion of similar models that might be used for managing
other resources, such as timber, wildlife, and water.

in these lectures, time is partitioned into discrete intervals and the
necessary conditions for dynamic optimization are obtained through an ex-=
tension of the method of Langrange multipliers, It 1is possible (and perhaps
casier) to formulate the optimization problems in continuous time and solve
them using the maximum principal. The extension of the Lagrangian technique
from static to dynamic problems is perhaps more comprehensible for students
who have not been exposed to the calculus of variations 0T modern control
theory. A thorough continucus—-time treatment of the concepts in these lec-
tures may be found in Mathematical RBioeconomics: The O timal Management of
Renewable Resources by Colin C. Clark. :

The author wishes fo thank Tom Hallam for‘hiS'invitation to present
these lectures and Si Levin for his comments and encouragement. Both are
absolved of any errors oY incomprehensibilities that remaln.

Jon M. Conrad
Ithaca, New York

September, 1982
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LECTURES ON BIOECONOMICS
AND THE

MANAGEMENT OF RENEWABLE RESOURCES

I. BIQECONOMICS

Within the past decade many economists have hecome interestea in natu-
ral résource models which simultaneously consider economic flows, (such as
cost and revenue), and population dynamics. VResource management is often
cast as a problem in dynamic optimization where the management objective
may be to maximize the present value of net benefits subject to the stock
adjustments which result from growth, patural mortallty, and man's harvest-
ing activities. When the resource in question is a plant oF animal,
capable of regeneration, these resource models.are called bioeconomic models.

The basic bioceconomic model assumes that the renewable resource in
question can be adequately described by a single (state) variable measuring
biomass; for example, metric tons of fish of cubic board feet of timber.
While such models have the advantages of simplicity and mathematical tracta-
hility, they cannot take into account age OTr sex related attributes, nor
multispecies interactions. 1In spite of such shortcomings, the basic model
ig a useful vehicle to introduce various bieclogical and economic concepts.

With the resource stock described by a single state variable we could
characterize the change ip the resource by 4 differential or difference
equation. Because of the discrete nature of data encountered iIn most em
pirical studies we will choose to partition time into uniform intervals or
periods and the change in the stock of an unharvested resource will be given
by

X~ % 7 FAX)» (D



where Xt denotes the resource stock (biomass) in preriod t. ¥Hquation (1) im-
plies that the change in the stock from period t to period t+1 is dependent

on the stock in period t. The function F(Xt) will reflect factors affecting
net growth of the resource and environmental carrying capacity. A famous

specification for F(Xt) is the logistic growth function which takes the form

X - X o= rx (- Eﬁ? )
where r is a positive constant referred to as rhe intrinsic rate of growth
and K, also a positive constant, 1s the environmental carrying capacity. The
logistic function is g symmetric function with roots at Xt = 0 and Xt = K,
and with a maximum sustainable yield at Xt = K/2 (see Figure 1),

In a "pristine" 8ystem, undisturbed by man's harvesting activities, a
species subject to the dynamics of the logistic growth function would tend

toward the stable equilibrium at K. This is evident by examining (2) and

noting

(Xt+l - Xt) >0 for 0 < Xt < K
(X,,, = X) =0 for X, =K
(Xt+1 - Xt) < 0 for Xt > K

If X were not equal to K Initially it would approach K asymptotically as is
shown in Figure 2 where time path (a) is an approach path from an initiaj

X in excess of ¥ and time path (b) is an approach path from an Initial X less
than K. |

There are many alternative specifications for the function F(Xt). The



logistic function belongs to a family of functions that is said to be "purely
compensatory” and which generate a smooth and continuous yleld response

when the speciles is subject to commercial exploitation by man. The alterna-
tives to purely compensatory models are models which exhibit depensation or
critical depensation. These models.will not yield smooth yield functions

and admit the possibility of collapse and species extinction. Space pre-
cludes a discussion of these models and the interested reader is directed

to Clark (1976).

In summary, difference equation (1) describes the change in the re-
source stock for a species not commercially exploited by man. It is used to
characterize the population dynamics of the gspecies in its pristine, natu-
ral state. Commercial exploitation by man requires a modification of
equation {1} to account for man's harvesting activities.

A production function defines the maximum level of output obtainable
from a glven bundle of inputs. It is the economlst's way of characterizing
the technology whereby inputs produce output. in a single species fishery
the output from commercial fishing would be catch or yileld denoted by Yt'

The bundle of manmade inputs utilized in catching fish are assumed capable of
aggregation into a single input variable called "effort" and denoted by Et'
Fishing effort is directed at the fish stock Xt and results in a yield Yt

according to

- 3
Y, H(E,, X,) (3}

where H(Et, Xt) is the production function for the fishery. The partial
derivatives of H(-) are referred to as marginal products and assumed positive.

1f catch per unit effort ig proportional to the fish stock one obtains the




FIGURE 1. THE LOGISTIC GROWTH FUNCTION
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production function

Yt = thXt (4)

where q is called the catchability coefficient, This production function
underlies much of the early work in fisheries economics and has been studied
extensively by Schaefer (1957),

When a fishery comes under commercial exploitation the equation de-

scribing population dynamics is modified to

Xip1 - X, = F(Xt) - H(Et, Xt) ‘ (5)

In words: yield is deducted from the natural change In biomass to determine
the net change in the fish stock., Attention is often focused on harvesting
regimes that are sustainable in perpetuity. ‘his will usually require at-

1 f : 11 i = = =
tainment of a steady state equilibrium where Xt X, Et E, and Yt Y for

all future periods. In such an equilibrium the left-hand-side of equation

(5) equals zero and
H(Et’ Xt) = F(Xt) (6)

For the logistic function and the catch per unit effort production function,

(eollectively referred to as the Gordon-Schaefer model), thig implieg:

qEX = rX{1 - X) (7)
K

If one were to solve equation (7) for X as a function E, and multiply both
sides by qE one would obtain a vield-effort curve exXpressing catch as a

function of effort which for the Gordon-Schaefer model becomes

Y = Y(E) = qREQ - qr) (8)
r



For our purposes we can arbitrarily set q = 1 and graph the resulting yield-
effort.curve'in Figure 3. It is also a symmetric curve with roots at E = 0
and ¥ = r and a maximum yield at E = r. As noted earlier, the compensatory
nature of the légistic function resulis in a smooth continuous yield-effort
curve where incremental changes in effort reéult in incremenfal changes in
yield. This is in contrast to yield-effort curves where an incremental in-
crease in effort may result in a fishery collapse with yield plummeting to
Zero.

To summarize, the yield-effort curve was derived for a fishery in
steady—-state equilibrium and was determined by the growth and production

functions that underlie the fishery. The reader should note in Figure 3 that

any positive yield level less than Y(r) = 1K can be generated by two levels

2 4
of effort. For example-? can be obtained with effort ﬁl’ and stock il or

with effort E, and stock iz where ﬁ2> él and %1 > ﬁz. (See Figure 1 as
well). The level of effort, stock, and yield which emerge in an open access

fishery and under an optimally managed fishery are discussed in the next two

sections.

1I. THE OPEN ACCESS FISHERY

In an open access fishery, where the fish stock 1s treated as a CoOmmon
property resource, fishermen and vessels will enter the industry until pro-
fits are driven to Zeroa. Suppose the cost of a unit‘of fishing effort is
constant and denoted by the letter c. If Et units of effort are directed
at the fish stock in period t then the total cost in period t would be given

by
¢ = cE (%




FIGURE 3. THE YIELD-EFFORT CURVE FOR THE
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Suppose further that the price per unit received by fiéhermen upon land-
ing their catch is denoted by the letter p. Then tétai revenue would equal
pY(Et) and for the Gordon-Schaefer model with q = 1 we obtain:

R = pY(B) = PKE (1 - E)) (10)
-
With p a given positive constant the revenue curve would look identical to
the vield-effort curve; only the scéle of the vertical axis will have changed
to measure revenues in dollars.

Profits or fishery rents are defined as

'Nt = Rt - Ct = pY(Et) - cEt {(11)

Under open access fishermen will enter until fishery rents are "dissipated”

or driven to zero at which point Rt = Ct or

?(Et) _ ¢

By

(12)

b

That is, yield per unit effort is equal to the cost/price ratio. Graphically
this situation is portrayed in Figure 4. The cost curve is shown as a ray
from the origin with slope c whille the revenue curve, similar in shape to
the yield-effort curve, is shown as a quadratic R = pY(E). Revenue equals
cost, resulting in zero profits, at E_. The significance of the subscript =
will be explained shortly.

In an open access fishery B will often be associated with excessive
capital, low fish stocks, and low yield. Open access stock denoted X_, may
be determined for the Gordon-Séhaefer model by noting that when Yt = thXt

dC ==¢cE_t
an t c ‘ hat
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t t (13)

Equation (13) is referred to as a cost function, which in this instance is

linear in Yt. The zero profilt or rent conditions may be restated as

N =R - C = pY =~ c¥Y =0 (14)
9%,

and for Yt > (0 this implies

X = £
After explaining how a competitively exploited open access fishery will
tend toward overcapitalization, depleted stocks, and low yields, early

fisheries economists suggested that the fishery should be managed so as to

maximize sustainable economic rent; that is, set effort so as to

max Nt = pY(Et) - cEt . (16)

This slituation is achieved when
pY'(Et) =c (n

or in words, when marginal revenue equals marginal cost, (note: Y'(Et) is
the derivative of the yield effort curve and pY'(Et) is marginal revenue).
This situation is shown graphically in Figure 4, where the level of effort
which maximizes sustainable economic rent is denoted by E_ and is determined
by the tangency of a line with slope ¢ and the revenue curve R = pY(E).

As it turns out neither‘Eo nor E_ will be optimal for a sogiety with a

positive but finite rate of time preference. The social rate of time
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preference, or society's discount rate, is the result of individuals' pre-
ferences for income now as compared to the same amount of income at a later
date. Teo get a typical individual to give up (invest) current income today
you usually need to repay that Income plus a premium or interest payment at
a later date. Soctety, comprised of many such individuals, will typically
reveal a collective preference for Income (or fish) today as compared to

an equivalent amount of income (or fish) tomorréw.

The concept of social time preference'or discounting raises numerous
technical and ethical issues beyond the scope of these lectures. TFor our
purpose it will be assumed that somé positive but finite rate of discount is
appropriate when society is considering how to allocate its resources over
time. Within the simple fishery model developed thus far, the open access
egquilibrium level of effort will be optimal.when society's rate of discount
is infinite. The maximum sustainable rent level of éffort will be socially
optimal when society'’s rate of discount is zero. TFor a positive but finite
rate of discount the eoptimal level of fishing effort will usually lie some-
where between EO and E_. Thus the open access and sustainable rent maxi-
mizing Jevels of effort, while in general not optimal, do sérve to bracket
the socially optimal level of effort which will depend on cost, price, the
parameters of the growth and the production functions, and the discount rate.
Determination of the optimal level for fish stock, yield, and effort will be

examined next.

III. THBE OPTIMALLY MANAGED FISHERY

A convenient persona for inquiring into the optimal management of a

fishery is the sole owner. The sole owner has exclusive harvesting rights
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to a resource and it is possible to formulate a management problem for the
sole owner which conforms to how the fishery should be managed from a social
point of view.
Suppose 6 represents the soclal rate of discount. Then N{1+§) would
be the amount of momey one would have to pay an individual to obtain a loan
of N dollars for one period, (say, a year). By analogous reasoning, the
value of a note promising to pay N dollars one year [from now would be
discounted to a value N . From another point of view § may be thought
(1+8) :
of as the opportunity cost of investment or capital funds. It is the amount
of money which could be earned on a dollar invested elsewhere in the economy.
A single net cash payment Nt realized at period t in the future could be ex-
pressed as a present value equal to ptNt, where p = T_}_m) is referred to
148

as a discount factor. The present value of a stream of net cash flows over

the interval [0,T] would be calculated according to

N N : N T
=N + + + ...t =
N =N i 2 T . ptNt (18)

(1+9) (+8)° (TFo) " -0

Suppose the sole owner 1s a price taker in that his level of fishing
effort and yield do not affect per unit cost ¢ ot the per unit price p. In
this case the cost Function, (equation [13]), may be written in the more

general form

C = c¥ = C(Xt) Yt (19)

where c(Xt) is a stock dependent average cost funetion. Since larger stocks

can be expected to reduce average harvest costs the first derivative of
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c(Xt), denoted as c'(Xt), will be negative. The net revenues from harvest Yt

may he written as

N, o= pY, - (X)) Y, = [p - e(x)] ¥, (20)

and the present value of all future net revenues becomes:

t

N= I, ¢

‘ [p - cXD] Y, (21)

A logical objective for the sole owner, (and in this instance a desirable one
for society asg well), would be to maximize the present value of net revenues
subject to the equation describing the change in the fish stock which may be

rewritten as:

Xt+l = Xt + F(Xt) - Yt (22)

In this form the sole owner's management problem is an example of a broader
class of problems referred to as control problems. Specifically, the sole
owner seeks to control the fish stock through harvesting so as to maximize

the present value of net revenues. A solution to this problem may be achieved
by an extension of the method of Lagrange multipliers. This method introduces
a set of artificial variables, (called multipliers), and adds the product of
each constraint with 1ts multiplier to the objective functional to form a
Lagrangian expression. For the management problem confronting our sole owner,

the Lagrangian ezpression takes the form:

t
o {Ip - C(Xt)] Yo+ rAy [Xt TFEXD) -Y - X 1} (23)

t+1

-
1
I 18

=0

where lt is the Lagrangian multiplier assoclated with the constraint which

+1
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defines Xt+1' Because the Lagrangian multiplier will indicate the value of
an additional unit of the fish stock in period t+1, and given that we wish to
maximize the present net value represented by L, At+l is premultiplied by o
to yvield the term.pt+lkt+l which can be interpreted as the present value of
an additional unit of the fish stock in period t+1.

Necessary conditions for a maximum require that the partial derivatives

of L be set equal to zero, demanding that

_— t - —
L =p {lp - C(Xt)] pAt+l} =0 (24)
Y

t
L = ofie TR Y. + ok, LL+ FT(X)IY - oA =0 (25)
ﬁ t t t+1 t t

t

_ t+1 _

e AL X} =0 (26)
%

e+l

These conditions may be simplified somewhat and rewritten as:

p=c (Xt) + pkt+1 (27)
A= c (X} Y, + Proip (L + F’(Xt)] (28)
Xt+l = xt + F(Xt) - Yt. (29)

Equation (27) requires that the marginal value of a fish harvested today,
{p), equal the sum of marginal harvesting cost and user cost, (c(Xt) + pkt+1).
This latter term represents the discounted value of an additional unit of the

resource next period. Thus, the marginal condition governing the harvest of the
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fish stock requires a balancing of current market value with harvest and user
eosts.

The Lagrange multiplier, (kt), may be interpreted as the marginal value
of an additional unit of the fish stock in period t. It is sometimes referred

to as a shadow price. Equation (28) requires that stock be maintained so that

the shadow price in period t equals the sum of marginal stock induced re-
ductlions in average costs (note mc'(Xt) > 0), plus the discounted future
value of a unit of the resource plus growth in period t+1. Thus, the cﬁrrent
shadow price must equal current marginal stock induced cost savings plus the
discounted value of an additional unit and associated growth in the next
period.

In deriving the yileld-effort curve we defined a steady-state as an
equilibrium for a dynamic system where variables within the sysfem are un-
changing through time. A steady-state for the fishery under sole ownership
would occur when Xt = X, lt = A and Yt = Y for all {future t, (note Et =& dig
also unchanging). While an unchanging physical or economic environment is
unusual for any protracted pericd of time, the concept of a steady-state
equilibrium 1s useful in identifying the long term effects of a change in
important biological or economic parameters. Tn more complex, adaptive models
of fishery management short run decisions might be based on prevailing esti-
mates of a steady-state equilibrium, with later decisions based on updated
or revised estimates of steady-state. Thus the concept is fundamental to
many stochastic models as well.

In steady-state equations (27) - (29) become a system of three equations

in three unknowns; specifically:

w
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p = c(X) + pA (30)
A1 - plr+ XD = -¢ (%)Y (31)
v = F(X) ' (32)

The left—-hand-side (LHS) of equation (31) can be manipulated to become:

pA(l + 6 -1~ FP (X)) = pi(6 - F'(X)). From equation (30) we note:

pA = p - c(X). Qubstituting into the 1HS of (3L) and solving for Y yields:

Yy = [F'(X) -~ 8] [p- cI= $(X) (33)
e’ (X)

Equation (33) is referred to as the catch locus, (see Could 1972). In the
positive orthant, (X > 0, Y > 0), the catrch locus will typically have a posi-
tive slope, (dY > 0), and may be graphed along with the growth function

Y = F(X) to igintify the steady-state optimum. The precise position and
shape of the catch locus will depend on the various biloeconomic parameters
used to specify F(X} and c(X) as well as P and &. Three situations are shown
in Figure 5.

The intersection of catch locus one, (¢1(X)), and the growth function
occurs at X =0, ¥ = 0 implying that on purely economic grounds 1t is optimal
to harvest the resource LO extinction. Such a situation might arise if the
intrinsic growth rate for the species is relatively low, the discount rate is
high, and the cost of harvesting the last unit of the resource 1s finite and
less than the market price, (c(0) < p)- Clark (1973} discusses in greater
detail the situation where commercial harvesting can lead to extinction.

x %
In the second case the intersection of ¢2(X) and T(X) occurs at (XZ’ Yz).

In this situation the optimal stock actually exceeds Xmsy = K/2. Such a stock
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level might be justified on the basis of cost savings which result from ﬁigher
stock levels.

In the third case the intersection of ¢3(X) and the X-axis occuls to the
right of K {the species environmental maximum) . In this instance the cost of
harvesting is so high relative to the market price that it is Eggconomic to
commercially harvest the population, and the species goes unexploited by man.
The majority of fish species would be described by this latter case.

The catch locus and growth function are gimply a system of two equations
in two unknowns. One could substitute Y = F(X) into equation (33) to obtain
a single equation for the optimal steady-state stock. This equation is com-
monly written as:

F'(X) - ' (NFE = ¢ (34)
[p - c(X)]

(see, for instance, clark 1976, p. 40), and requires that the steady-state
stock equate the sum of the marginal growth rate and stock effect to the dis-
count rate. Thus, in steady-state the stock which is being maintained is pro-
viding returns in the fishery, (in the form of growth and cost savings), wﬁich
precisely equal the rate of return obtainable on other capital assets else-
where in the economy, (equal to &). With the exception of extinction or no
commercial exploitation, equation (34) can be golved for the optimal stock
¥ > 0.

Up to this point, we have cdnfined our discussion to steady-state
equilibrium and have ignored the issue of Egggglggg‘dznamics. 1f the initial
stock XO is not equal to the optimal stock X*, what should be the optimal

approach path for Xt? In general, the approach path will be asymptotic; that

is, a more or less gradual approach to equilibrium with the 1im'Xt - X*.
troe
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Under certain circumstances, the approach to equilibrium 1g optimal if it
iS,EEEEAEEEEQF Spence (1974) has shown that a most rapid approach path
(MRAP) is optimal {if the objective function may be written as g quasi4concave
and separable function of Xt and Xt+l' The objective of the sole owner was
to maxiﬁize the present value of net revenues (see equation [211). The

expression for net revenues in period t was

Nt = [p - c(Xt)j Yt. : (35)

Solving the difference equation

Xt+l - Xt = F(Xt) - Yt’ {36)

for Yt and substituting into equation (35) we obtain what Spence and Starrett

(1975) call the derived utility function:

N = W(Xt, Xt+1) = [p - C(Xt)J {F(Xt) X X, 0. (37)

t b+l

1f W(Xt, Xt+l) is additively separable in Xt and Xt+l’ it may be written ag -

WX X ) = AX ) + BE 1) (38)
and the present value of net benéfits may be written ag:
N = A(XO) + ¥ ptV(Xt). : (39)

t=1
If V(Xt) is quasi-concave MRAP is optimal.
Spence and Starrett (1975) discuss several problems where the above
separability and quasi-concavity conditions may hold. For the fishery manage—
ment problem, harvesting along a MRAP would be determined by the relationship

%
of Xt to X such that
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*
Ith>X,Yt=YmaX
*
< =
Lf X, X,¥ =0 (40)
* *
IFX =X ,Y, =Y
t t

Thus, if the initial stock were in excess of the optimal stock, one would wish
3
to reduce it to X as rapidly as possible by harvesting fish at the maximum Ymax'
If the initial stock were jess than the optimal stock, one would impose a
i
moratorium (Yt = 0) until the stock reached X . If, by happenstance, the
initial stock equalled the optimal stock, one would commence harvesting at
3 *
¥y = F(X ) and stay there forever.
Figure 6 shows the difference between the most rapld approach path (MRAP)
*
and the asymptotic approach path for XO < X . Along the MRAP, Yt = 0 for
% * %
0 <t <t,until X = X at t =t , at which time ¥, =¥ = F(X') for t > t_-
m t m t m
Along the asymptotic approach path, harvest 1s positive (Yt > 0), but less
* .
than net mnatural growth, allowing the stock to slowly appreach X : thus, as
* %
t ro, X+ X and ¥ -~ Y .
t t
Most rapid approach paths are relatively easy to calculate (one calculates
*
Xt+l = Xt + F(Xt) - Yt, where Yt = Ymax or Yt = 0, until Xt+l = X ). Asympto-
tic approach paths are more difficult and would require the introduction of a

transversality condition and solution of a two point boundary problem. A dis~

cussion of these concepts and procedures 1is beyond the scope of these lectures.

1V. MANAGEMENT FROM A BIOECONOMIC PERSPECTIVE

Up until the 1970s, the discussion of how commercial fisheries should be
managed was almost exclusively dominated by biologists. With the development

and application of dynamic optimization techniques, economists, while still in
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FIGURE 6. MOST RAPID AND ASYMPTOTIC APPROACH PATHS
TO THE OPTIMAL STOCK X*
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the minority, have begun to exert influence over the types of policies em-
ployed to manage marine fisheries. Let us examine some of the more traditiomal,
often biologically based management policies, and then proceed to the policy
implications of the basic bioeconomic model.

Traditional management policies have included closed seasons, gear
regtrictions, quotas, énd limited entry.

Closed Seasons: This policy 1imits fishing to certain times during
the year. 1t may be justified on a biological basis in terms of protecting
the species during a critical period, such as spawning. A gimilar vrationale
might be used in prohibiting fishing in a particular area, (for example,
commercial salmon fishing in rivers or streams). Closed seasons can result
in idle capital, (vessels and processing equipment), and fishermen while the
gseason is closed. A tremendous amount of fishing effort is often expended
during.the open season. In some commercial fisheries seasons have been
limited to a few weeks. Excess capacity may be directed elsewhere; perhaps
exacerbating the management of qther depelted specles.

ggggrRestrictions: This policy attempts to reduce the effectiveness of
harvesting units by prohibiting the use of certain techmologies. This has
the effect of raising (or maintaining) cost per unit effort and making the
fishery less attractive financiaily. (For example, the State of Maryland re-
stricts commercial harvest of oysters to vessels powered by sail.) Gear
restrictions, while limiting the use of one input, might cause fishermen to
use othér inputs more iptensively with little or no reduction in effective
effort and yield.

Quotas: This policy establishes a maximum quantity that may be harvested

per period. Quotas might be collective, setting a fleet limit, or assigned
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individually to each vessel, If the quota is collective, there 1is a strong
incentive for an individual vessel to attempt to catch the largest share of
the quota possible before the fishery is closed down (when the collective
quota 1s reached). If assigned individually, each vessel has an upper
limit to the amount of fish caught per period. Uniform quotas assigned
individually, but based on vessel characteristics, are sometimes felt to
penalize the most efficient fishermen, restricting their catch while reserv—
ing stock for harvest by higher cost (less efficiently run) vessels. (Trans-—

ferable quotas will theoretically avoid this shortcoming and will be discussed

in more detail,)

Limited Entry: Thig policy restricts harvesting to vessels which are

licensed and controlled by the management agency. Licenses are often allocated
to boats harvesting the resource at the time the limited entry program is ip-
troduced. The number of licensed boats may be reduced over time by attrition
and subsequent licenses allocated by lottery. A yearly fee, (sometimes sub-
stantial) is charged for a license. Current holders are often allowed to
sell (transfer) their license to other potential fishermen. Allowing sale
of licenses woula theoretically result in only the most efficient boats gaining
access to the fishery (they can pay the most for a license in a compefitive
situation). In addition to license fees, fleet or individual quotas may be
imposed.

The traditional management policies are thus oriented at protecting the
resource during cfitical periods in its life cycle and at reduéing effort and
catch. Such policiles are usually of limited success. While they may reduce

the degree of biological overfishing (the extent to which stock 1s less than

XMSY) they may exacerbate the problem of economic overfishing (zero fishery
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rents). Missing from these policies is an understanding of user cost.

{n the analysls of an open-access fishery we saw that effort would be
expended to the point where fishery rents were driven to zero. The open
access equilibrium may be denoted as (Em, Xm, Ym). Open access wWas in-
efficient because there typically exists a bioeconomic optimum, denoted

x Kk _k % * ‘ %
(B, X, YY) such that B < E_, X > X and Y > ¥ which is capable of

producing income (rents) that could make some fishermen better off without

making anyone worse off. 1In the cordon-Schaefer model, open access occurred

when
= _ &
N=lp- x 'm0 (41)
C (o
with ¥ > 0, we note = or X = —" .
o ’ P aX ©  qp

The bioeconomlc optimum was derived from the perspective of a sole owner who,
for the Gordon-Schaefer model, would seek an equilibrium such that

Pt P (42)

where pk* was defined as user cost, equal to the present value of an additional
figh (in the water) tomorrow. The user cost term plays a key role in defining
fishery management policies that can correct for economic overfishing. Quite
simply, the economist would like to establish policiles which would create 2
real cost comparable to QA*, and induce flshermen to take 1t into account.

Transferable Quotas and Landinps Taxes

Suppose a team of biologilsts and cconomists could estimate (or assign)
values to the parameters of the Gordon-Schaefer model (p, ¢, &, ¥, K, and q)
* % _k
and determine the bioeconcemic optimum (g , X,Y Y., Assume that the resource

%
stock was moved from XO to X . 'The management team would now allow a total
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: % * %
effort of E , resulting in a yield of Y . The total quota, Y , might be
assigned to an arbitrary group of fishermen in, say, metric ton units, Any
initial assignee could choose to harvest the permitted number of metric toms

of fish or he could sell it to another fisherman. The fact that the individual

quota is transferable to another creates an opportunity cost for its initial
owner, te must decide whether the net revenues from harvesting his quota
exceeds the amount he could get if he would sell it to another. Presumably,

a market would develop for individual quotas, with fishermen who could harvest
at least cost being able to cutbid less efficient tishermen. What would the
going price be for the right to harvest a metric ton of fish? If prices,
costs and other bioeconomic parameters were expected to remain unchanged, the

economists would predict a per ton quota price of

*

Q (43)

* *
where PQ is the per ton quota price and pA is user cost. This relationship

x *
would result because at (Y , X )

*
p - a%*‘ = PQ* = pX . (44)

That is, at the bioceconomic optlmum, each metric ton harvested would vield a
net revenue of plﬁ. In deciding whether to '"fish or sell,” the rational
fishermen would subtract the opportunity cost of holding the permit along with
the per unit harvest costs to determine the "real" value of fishing. By
defining exclusive but transferable rights of harvest, the management team
would create incentives that (a) lead to the efficient (least cost) harvest

of the total quota, Y*, and (b) cause fishermen to individually consider the

opportunity cost (equal to user cost) of harvesting another unit of the resource.
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There is another way of establishing and maintaining the bioeconomic
X x %
optimum (£ , X, Y ). The management team (or authority) could simply notify

all fishermen that their catch had to be landed at certain locations and a

per ton tax of

& %
T = pA ‘ (45)

would be levied on their catch. TFrom a net revenue point of view, fishermen

would harvest an additional metric ton until

P v = 0. (46)

‘The per unit landings tax allows the introduction of an additional unit cost
*
which in equilibrium would equal user cost. Lf initially XO < X , a tax set

% %
at T = phx would actually choke off fishing effort until the stock increasad

%
(thereby reducing costs) to the optimum X .
The landings tax bas the advantage (from the management authority's point

of view)of generating tax revenues equal to

* &

RT =1 Y (47)

in equilibrium. These revenues might be earmarked for administration, enforce-
ment and research efforts by the management authority. Fishermem,‘of course,
would much prefer freely assigned quotas to a landings tax. In theory, the
management authority could employ both, and in equilibrium we would expect

the following relationship:

. .
P* =pA - T, (48)
Q k
that is, the price emerging from the quota market would equal net revenue
* *
{(prh =p - E%*) less the landings tax rate. Note that as T pA PQ* -+ 03

%
that is, as the landings tax is increased from zero to user cost {(pX ), the
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market price for the right to harvest a metric ton will decline toward zero.
#

At some tax rate T < pA , the authority can generate some revenues to support

their activities and still leave positive fishery rents to be captured by

fishermen.

V. TWO APPLICATIONS: YELLOWFIN TUNA AND BLUE WHALES

To 1llustrate some of the concepts presented in the preceding lectures
we will examine two empirical studies. The first is a study of yellowfin
tuna in the Eastern Tropical Atlantic (ETA) and employs the Gordon-Schaefer
model (see equation [7]). The second is a study of the blue whale and will

employ an alternative specification attributable to Spence (1974).

Yellowfin Tuna in the Eastern Tropical Atlantic (ETA)

In seeking to optimally manage a single species fishery we formulated
a dynamic optimization problem that sought to maximize the present value of
net revenues subject to a difference equation describing the change in the
fish stock. A Lagrangian expression was formed and the first order (necessary)
conditions derived. In steady-state these conditions lead to a system of

. . * & * . %
three equations in three unknowns (X , Y s A~ )s We could eliminate ) from
the system leaving a twe equation system consisting of the catch locus and
grow curve (see equations }[32] and [33]). Further substitution led to a
*
single equation in X (see equation [34]). For the Gordon-Schaefer model
% % % % ‘ . . . .

with c(X ) = ¢/gX and Y = X (1 - X /K) this single equation is a quadratic

*
in X and the optimal stock level will equal the positive root according to:

* Ki, c § c o
X'= FC—= + 1 - 3 4 J——" + 1 -82 8cd (49)
4[qpk v’ gpk r) -+ (pKr .



If one had estimates of the biceconomic parameters r, K, q, ¢, P, and &, one

. .
could estimate the optimal stock X as well as yield and effort according to

% *
Y = F(X), (50)
and
* Y*
= —v-—-*-
E X {(51)

Estimates of these parameters for the yellowfin tuna fishery in the ETA were
obtained by Adu-Asamoah and Conrad (1982) based on data from the International
Commission for the Conservation of Atlantic Tuna (ICCAT), the National Marine
Tisheries Service (NMFS) of the U.S. Department of Commerce, and earlier
economic studies of purseseiners, baitboats, and longliners. The values of
the parameters used to calculate maximum sustainable vield (MSY), open access,

and the bioeconomic optimum were

r = 1.2883
K = 351.2244 x 107 MI
. -2
q=1.372 % 10
p = $1,300/MI 52
¢ = $2,000; $2,500; $3,000; $3,500/standard day at sea
§ = 0.00, 0.05, 0.10, 0.15, 0.20.

The values for stock (XlO3 M), vield (X103 MT) and effort (Xle standard
day at sea) for the various equilibria are shown in Table 1. Maximum sus-

tainable yield is Y = rK/4 = 113,121 MT occurring at XMSY = 175,612 MI and

MSY

EMSY = 46,950 SDS. Open access stock, where net revenues are Zero, occurs

at X
w = cp/q. The four values of ¢ used to test sensitivity to cost produced

the estimates of open access equilibria at the bottom of Table 1. Bioceconomic
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TABLE 1: MSY, BIOECONOMIC9 AND OPEN ACCESS EQUILIBRTA FOR YELLOWFIN TUNA TN THE ETA

...2 .
Yellowfin Parameters: p = $1300, g = 1.372 X 10 °, r = 1.2883, K = 351.2244

Maximum Sustainable: XMSY = 175.61, YMSY = 113,12, EMSY = 46,9495

5 ¢ = $2,000 C = $2,500 ¢ = $3,000 ¢ = $3,500
B
é X* = 231.68 X* =245, 70 X* = 259.71 X* = 273,73
g 0.00 | Y* = 101.59 Y* = 95 10 Y* = g7.18 Y* = 77.81
ﬁ E* = 31.96 E* = 28,21 E* = 24.47 E* = 20.72
3 X* = 228.21 X* =242.81 X* = 457 35 X*¥ = 471.83
é 0.05 | Y* = 102.97 ¥* = 96,56 Y¥ = 8861 Y = 79.16
e E* = 32,89 E* = 28,98 E* =" 25,10 E¥ = 21.23
Q
? X* = 224.85 X* =240,02 X* = 255 07 X* = 270.00
% 0.10 | Y* = 104.23 Y* = 97.90 Y* = 89,96 Y* = 80,44
E E* = 33.79 E* = 29,73 E* = 25.71 E* = 21.71
i X* = 221.58 X* =237, 32 A* = 252,87 K* = 268.24
0.15 { Y* =105.37 Y*= 99,15 Y* =" 91 23 Y5 = 81.65
E* = 34,66 E* = 30,45 E* = 26,30 E¥ = 25.19
X* = 218,41 X*=234.7) X* = 250,74 £¥ = 266,54
0.20 | Y* =106,40 Y% =100.31 Y* = 92,47 Y* = g2 80
E* = 35,51 E*= 31.15 E¥ = 26.87 E* = 22,64
OPEN X, =112.13 X, =140.17 Xo = 168.20 Ao = 196.23
ACCESS | 5w | v = 98.34 Y, =108.51 V. = 112,02 Y. = 111.56
E, = 63.92 E,= 56.43 E, = 48.93 Eo = 4l.44

"Stocks (X¥s) and Yields (Ys) are measured in 103 metric tons. Effort is measured
in 103 standard days at sea per year.
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equilibria for various combinations of ¢ and § are shown in the body of the
table. Four aspects of these equilibria should be noted. First, for a given
discount rate increased costs result in increased stocks. Within the context
of Figure 5, increases in c cause the catch locus to shift to the right.

Second, for a given cost, increases in the discount rate result in lower
optimal stocks. Increases in ¢ tend to shift the catch locus to the left.

Third, the optimal stock for all combinations of c¢ and § are in excess
of XMSY' The marginal stock effect (that is, the second term on the LHS of
equation [34]) exceeds even the high value of & = 0.20 resulting in optimal
stocks to the right of XMSY' This situation is similar to the Iintersection
of @2(X) and F(X) in Figure 5 where Xz > XMSY’ and the stock induced cost-
savings exceed the interest costs.

Finally, with the exception of the lowest cost estimate, the open access

stock is in excess of XM . For ¢ > $2,000/standard day the yellowfin stock

SY

would not be subject to biological overfishing (i.e., X = XMSY) but would be

*
subject to economic overfishing (i.e., X > X ).

Blue Whales

One of the first attempts to apply control theory to a problem of re-
newable resourcé management was the biceconomic analysis of the blue whale
(Balenopt era musculus) by Spence (1974). Wnile the techniques of analysis are
similar to those encountered in previous lectures, Spence did not employ the
Gordon-Schaefer specification but rather an alternative formulation for growth

and production within the basic biloeconomic model. Let

s
il

the blue whale population in year t

=
il

the number of fully equipped whale boats in year t.
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Spence assumes that the growth function takes the following form:

3 .
X4 = F(Xt) - Y, = AKX - Y, (53)

where A > 1 and 0 < a < 1. This results in a concave (from below) growth
function similar to the curve drawn in Figure 7.
Fishing effort is directed at the stock of blue whales and yield is as-

sumed to be some fraction of next vear's stock, i.e.,

bE bE

Y = F(Xt)[i - e t] (54)

— a —_— -
: t] = AXt 1 - e

bE

where the term [1 - e = t] determines the proportion of next vear's stock

harvested this year. Assuming 0 < b < 1, we note
",

]
.

7
A

0 /=0
U] | >0

[1 - e—bEt] {; { when E (55)
=1

=

£ ]
Lt
1f one substitutes equaticn (54) into equation (53), a simplified ex-

pression for Xt+l results:

a ewbEt. (56)

Denoting the average price of a blue whale as p and the vearly cost of
operating a whaling vessel as ¢, the net revenues from the harvest of blue

whales may be written as
N = pY - cEt = pAXi - e_bEt] - cEtn (57)

Maximization of the present value of net revenues subject to equation

(56) can be accomplished by forming the Lagraangian
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FIGURE 7. GROWTH IN SPENCE’S MODEL OF THE BLUE WHALE

xi‘+t

45°

a
Xpe = AXG

A> 1, 0<g<I

¥
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LAX? e PP _x 13 (58)

t+1

-bE
— —_ +
i e t] cEt pkt+l

i . . , .
Recall p = 16 is our discrete time discount factor, and § is the discount
rate. In the appendix to this lecture, we derive the first order necessary
conditions and ultimately a single equation defining the optimal stock of

blue whales. The equation takes the form

abax” ~ a(e/p) = (1 + &) (59)
[bX - c/pl

where a, A, and b are parameters of the growth and production functions which

Spence estimates using data from International Whaling Statistics, ¢/p is the

ratio of yearly cost to price per average whale, and 8 is the aforementioned
discount rate. Spence obtained the following estimates: a = 0.8204, A = 8.3560,
and b = 0.0019. He set § = 0.05 and then solved for the optimal stock of

blue whales as a function of (c/p). His results are shown in Table 2. Spence
admits to having limited data on the costs of operating a whaling vessel and

thus wanted to examine the sensitivity ot the optimal stock, X*, to the cost/
price ratio. Even for low c/p ratios, it is optimal to require relatively

large standing stocks, much greater than the current estimate of 5,000 blue

whales.

Given the functional forms employed by Spence, it is also possible to
show that the approach path is most rapid (i.e., MRAP is optimal). 1n 1973,
= 1,639. Since XO < X* for any of

the bioceconomic optima in Table 2, MRAP would call for a moratorium on com—

the estimated stock of blue whales was XO

mercial harvest of blue whales. How long? Spence calculates the length of

*
time for the stock to grow from X, to X by iteratiig

0
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4
I

AX (60)

until Xt+l > X* the length of the moratorium will depend on this optimal stock,
with larger stocks requiring a longer moratorium. Yhe length of moratorium
for § = 0.05 and for four values of (c/p) is shown in Table 3. Depending on
the cost/price ratio, the moratoriqm.would extend from 5 to 17 years.

As in the ETA tuna study discussed earlier, the estimates of a, A, and
b should be regarded as preliminary. Spenge rightfully suggests that the
blue whale stock should be monitored during the moratorium to see if it is
growing according Lo our estimates of a and A, If not, these parameters
should be revised and new optima and moratoria calculated.

$pence concludes by noting that for the blue whale, extinction is not
optimal on economic grounds and, given the large standing stocks at steady-
state, there does not appear to be any conflict between economic and environ—

mental objectives,
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TABLE 2: Optimal Stock of Blue Whales, Boats, and Catch
for § = 0.05 and Alternative Values of (c/p).

* * * % * P
(c/p) - X E 4 Y /E N /e
(boats) (catch/boat) (profits per year
per $ of operat-
ing cost)
0 34,421 129 9,635 74.6 —
9 40,000 115 9,834 85.5 8.34
18 45,000 104 9,890 95.1 4.21
28 50,000 95 9,845 104 2.70
49 60,000 77 9,501 122 1.47
73 70,000 63 8,870 141 0.94
98 80,000 50 8,002 159 0.63
124 90,000 39 6,930 177 0.43
151 1u0,000 29 5,681 195 0.29
180 110,000 20 4,276 213 0.19
209 123,000 12 2,732 277 0.09
240 136,000 4.3 1,062 246 0.025
250 136,000 0 0 : —— —
*Table modified from Spence (1974},
TABLE 3: Length of Moratorium on Blue Whales
for § = 0.05, X, = 1,639, p = 6,000, gnd Four
Alternative Values for (c/p).
* ® *  Years with Profjt per year
(c/p) X £ ¥ no whaling at X {(millions
of §)
0 34,421 129 9,635 5 57.8
28 50,000 95 9,845 7 57.4
124 90,000 39 6,930 12 41.5

209 120,000 12 2,732 17 16.4

*
Table modified from Spence (1974).
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Biceconomics of' the Blue Whale:

Mathematical Appendix

Maximization of the present value of net revenues for the growth and
production functions used by Spence (1974) to characterize the blue whale

led to the following Lagrangian:

_o® t a ~ -bE . a -bE_ _
L ~t§0 P {pAXt [1-e t] cEt + pxt+lLAXt e t Xt+l]} (A.1)
I'he first order conditions require:
3L _ t a —-bE a -bE_, _ :
aEt =p {prXte t - c bpkt+lAXt e ti=20 (A.2)
oL _  t a-1.. -bhE - a-1 -bk t, _
axt =p {apAXt [1-e t]+ apkt+lAXt et} p At =0 (a.3)
%%' = pt+l{AXi e‘bht - Xt+l} = Q {(a.4)
t+1

Equations (A.1) through (A.4) may be rewritten as

bei ePEelp - Phyq] = (A.5)
apAXi_l - ani"le”bEt [p = oA yq) = 2 = O (A.b)
e - X g = 0 (A7)
In steady state:
[p - prl = P (A.8)
bAX e
apra_l - aAXa_le—bE[p - oA} - A= 0, (A.9)

AX e = X. (A.10)
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Solving (A.8) for X and using (A.10) yields:

A=148 {p - —S— e} = (146) {p -~ S} (A.11)
bax?e bE bX

Substituting (A.8) and (A.11) into (A.9) vields

apAXa~~1 _ aAXaPl e—bE 7 ;_:EE”’_ {1+68) P - Eé%:}'= 0,
e

bX
apAXé_l %%
"be - c] — 0% - et = (),
| bX [ bX J

or finally,

abAX" - a(c/p) = (1+6) (A.12)
[bX - ¢/p]

Given the bioeconomic parameters a, A, b, (¢/p) and & one can "iterate"
(A.12) to solve for the optimal stock of blue whales. This was done by
Spence for various values of (c/p) with § = 0.05 and the previously noted
estimates of a, A, and b based on IWC data. This equation was used to

%
generate the values of X shown in Tables 2 and 3 in the text of this lecture.
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