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Abstract

From time to time, economies undergo far-reaching structural changes.
In this paper we investigate the consequences of structural breaks
in the factor loadings for the specification and estimation of factor
models based on principal components and suggest test procedures
for structural breaks. It is shown that structural breaks severely in-
flate the number of factors identified by the usual information criteria.
Based on the strict factor model the hypothesis of a structural break
is tested by using Likelihood-Ratio, Lagrange-Multiplier and Wald
statistics. The LM test which is shown to perform best in our Monte
Carlo simulations, is generalized to factor models where the common
factors and idiosyncratic components are serially correlated. We also
apply the suggested test procedure to a US dataset used in Stock and
Watson (2005) and a euro-area dataset described in Altissimo et al.
(2007). We find evidence that the beginning of the so-called Great
Moderation in the US as well as the Maastricht treaty and the han-
dover of monetary policy from the European national central banks to
the ECB coincide with structural breaks in the factor loadings. Ignor-
ing these breaks may yield misleading results if the empirical analysis
focuses on the interpretation of common factors or on the transmission
of common shocks to the variables of interest.
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Economies, Frankfurt/Main, May 21, 2008 and at the International Conference on Factor
Structures for Panel and Multivariate Time Series Data, Maastricht, September 19–20,
2009. The authors would like to thank Joern Tenhofen for many helpful comments and
suggestions. Address: Joerg Breitung, University of Bonn, Institute of Econometrics,
53113 Bonn, Germany. Email: breitung@uni-bonn.de
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Non-technical summary 
 
Analyzing data sets with a large number of variables and time periods involves a 

severe risk that some of the model parameters are subject to structural breaks. 

Dynamic factor models may be more affected by this issue than other econometrics 

models, since factor models rely on large datasets. In this paper we investigate the 

consequences of structural breaks in the factor loadings for the specification and 

estimation of factor models based on principal components and suggest test 

procedures for structural breaks. In our theoretical analysis, we first consider the 

effects of structural breaks. It turns out that structural breaks in the factor loadings 

increase the dimension of the factor space. The reason is that in the case of a single 

structural break, two sets of common factors are needed to represent the common 

components in the two subsamples before and after the break. Thus, structural 

breaks in the factor loadings do not only lead to inconsistent estimates of the 

loadings but also to a larger dimension of the factor space. If we are only interested 

in decomposing variables into common and idiosyncratic components, it is 

sufficient to increase the number of factors such that the factor space is large 

enough to represent the different subspaces of the two regimes. However, if we are 

interested in a more parsimonious factor representation that allows us to recover the 

original factors, the estimation has to account for the structural breaks in the factor 

loadings. It is therefore very important to have tests at hand which inform us about 

whether or not structural breaks exist. 

 

Furthermore, we propose Chow type tests for structural breaks in factor models. It is 

shown that under the assumptions of an approximate factor model and if the number 

of variables is sufficiently large, the estimation error of the common factors does 

not affect the asymptotic distribution of the Chow statistics. In other words, the 

principal component estimator of the common factors is “super-consistent” with 

respect to the estimation of the factor loadings and, therefore, the usual Chow test 

can be applied to the factor model in a regression, where the unknown factors are 

replaced by principal components. Provided that the idiosyncratic components are 

mutually independent, i.e. under the assumption of a strict factor model, the 

variable-specific Chow statistics can be combined to test the joint null hypothesis of 

a common structural break. These tests can be generalized to dynamic factor models 



by adopting a GLS version of the test. This approach assumes a finite order 

autoregressive process for the idiosyncratic components, whereas no specific 

dynamic process needs to be specified for the common factors. Our Monte Carlo 

simulations suggest that the LM version outperforms the other variants of the test. 

 

The LM test procedure is applied to two different settings. Our first empirical 

application uses a large US macroeconomic dataset. We have tested whether the so 

called Great Moderation in the US (assuming the first quarter of 1984 as the starting 

date) coincides with structural breaks in the factor loadings. A lot of attention 

among researchers and policy makers has recently been directed to the Great 

Moderation. There is still some controversy about the sources (“good luck” versus 

structural changes including “good policy”), and we contribute to this debate. We 

find evidence of “dramatic changes” in the economy, reflected in significant breaks 

in the factor loadings, in the mid-1980s. By testing for breaks in the loadings of 

individual variables we can assess the underlying sources of the structural change. 

We find support for the hypothesis that not a single but various factors have played 

an important role. These factors are, according to our analysis, changes in the 

conduct of monetary policy, in inventory management as well as financial 

integration. 

 

In the second application we employ a large euro-area dataset to test whether 

structural breaks have occurred in the euro area around two major events, the 

signing of the Maastricht treaty in the second quarter of 1992 and the creation of the 

ECB in the first quarter of 1999. This setting is particularly interesting, since these 

events may have altered comovements between variables, and this would just be 

reflected in structural breaks in the factor loadings. We find evidence of structural 

breaks around both dates. The null hypothesis of no structural break was rejected for 

more variables when the ECB was created than when the Maastricht treaty was 

signed. It is equally likely that breaks have occurred exactly in 1999 and just before 

the creation of the ECB which may have been anticipated or due to prior 

adjustments. Breaks finally seem to have occurred around the two events relatively 

frequently in the loadings of variables capturing the Spanish and the Italian 

economies where the needs for convergence were largest. The creation of the ECB 

was associated with relatively frequent structural breaks in the loadings of nominal 



variables, whereas the signing of the Maastricht treaty seems to coincide with 

breaks in the factor loadings of industrial production series. 

 

 



 

 

Nichttechnische Zusammenfassung 

 

Die Analyse von Datensätzen mit einer Vielzahl an Variablen und Zeiträumen birgt 

das Risiko, dass einige der Modellparameter Strukturbrüchen unterworfen sind. 

Dynamische Faktormodelle können von diesem Problem stärker betroffen sein als 

andere ökonometrische Modelle, da Faktormodelle auf große Datensätze 

zurückgreifen.  

 

Im vorliegenden Papier untersuchen wir schwerpunktmäßig theoretisch die Folgen 

von Strukturbrüchen in den „Faktorladungen“ (welche das Ausmaß angeben, in dem 

Faktoren die Variablen beeinflussen) für die Spezifizierung und Schätzung von 

Faktormodellen auf Basis von Hauptkomponenten und schlagen Verfahren für Tests 

auf Strukturbrüche vor. Anschließend wenden wir die formalen Tests auf zwei 

empirische Fragestellungen an: die so genannte „Great Moderation“ in den USA und 

den europäischen Integrationsprozess.  

 

In unserer theoretischen Analyse betrachten wir zunächst die Auswirkungen von 

Strukturbrüchen. Es stellt sich heraus, dass Strukturbrüche in den Faktorladungen die 

Dimension des Faktorraums erweitern. Grund hierfür ist, dass im Falle eines 

einzelnen Strukturbruchs doppelt so viele gemeinsame Faktoren benötigt werden, um 

die gemeinsamen Komponenten in den beiden Teilstichproben vor und nach dem 

Bruch abzubilden. Somit führen Strukturbrüche in den Faktorladungen nicht nur zu 

inkonsistenten Schätzungen der Ladungen, sondern auch zu einer größeren 

Dimension des Faktorraums. Gilt unser Interesse nur der Zerlegung der Variablen in 

gemeinsame und in idiosynkratische (d.h. variablen-spezifische) Komponenten, so 

reicht es aus, die Zahl der Faktoren so weit zu erhöhen, dass der Faktorraum groß 

genug ist, um die verschiedenen Unterräume der beiden Regime darzustellen. Sind 

wir dagegen an einer einfacheren Faktordarstellung interessiert, die uns die 

Schätzung der Originalfaktoren ermöglicht, so sind in der Schätzung die 

Strukturbrüche in den Faktorladungen zu berücksichtigen. Daher ist es sehr wichtig, 

Tests zur Hand zu haben, die uns Auskunft darüber geben, ob ein Strukturbruch 

vorliegt oder nicht.  

 



 

Dementsprechend schlagen wir Chow-Tests auf Strukturbrüche in Faktormodellen 

vor. Es wird gezeigt, dass der Schätzfehler der gemeinsamen Faktoren unter der 

Annahme eines approximativen Faktormodells und der Voraussetzung einer 

hinreichend großen Anzahl an Variablen die asymptotische Verteilung der Chow-

Statistik nicht beeinflusst. Mit anderen Worten: Der Hauptkomponentenschätzer der 

gemeinsamen Faktoren ist „super-konsistent“ in Bezug auf die Schätzung der 

Faktorladungen, und daher kann der gewöhnliche Chow-Test in einer Regression, bei 

der die unbeobachteten Faktoren durch Hauptkomponenten ersetzt werden, auf das 

Faktormodell angewandt werden. Sofern die idiosynkratischen Komponenten 

gegenseitig unabhängig sind, d. h. unter der Annahme eines strikten Faktormodells, 

lassen sich die variablenspezifischen Chow-Statistiken zusammenfassen, um die 

gemeinsame Nullhypothese eines gemeinsamen Strukturbruchs zu testen. Diese Tests 

können durch den Einsatz einer GLS-Version des Tests verallgemeinert und auf 

dynamische Faktormodelle angewandt werden. Dieser Ansatz unterstellt für die 

idiosynkratischen Komponenten einen endlichen autoregressiven Prozess, während 

für die gemeinsamen Faktoren kein bestimmter dynamischer Prozess spezifiziert 

werden muss. Unsere Monte-Carlo-Simulationen sprechen dafür, dass die LM-

Version den anderen Varianten des Tests überlegen ist.   

 

Das LM-Testverfahren wird auf zwei unterschiedliche Fragestellungen angewandt. 

Bei unserer ersten empirischen Anwendung wird getestet, ob die sogenannte „Great 

Moderation“ in den Vereinigten Staaten, d.h. der Rückgang der Volatilität 

verschiedener makroökonomischer Größen, mit Strukturbrüchen in den 

Faktorladungen einhergeht. Das Phänomen der Great Moderation hat in der letzten 

Zeit große Aufmerksamkeit erfahren. Die Ursachen sind nach wie vor umstritten 

(„Glück“ oder strukturelle Veränderungen einschließlich „guter Politik“). Wir tragen 

zu dieser Debatte bei und finden Belege für generelle „dramatische Veränderungen“ 

in der Volkswirtschaft, die in signifikanten Brüchen in den Faktorladungen Mitte der 

Achtzigerjahre zum Ausdruck kommen. Mit Hilfe von Tests auf Brüche in den 

Ladungen einzelner Variablen können wir die zugrunde liegenden Ursachen der 

strukturellen Veränderungen feststellen. Wir finden Belege für die Hypothese, dass 

nicht ein einzelner, sondern verschiedene Faktoren eine wichtige Rolle gespielt 

haben. Hierzu zählen unserer Analyse zufolge Änderungen in der Durchführung der 

Geldpolitik, in der Lagerhaltung sowie die Finanzmarktintegration. 



 

 

In der zweiten Anwendung ziehen wir einen umfangreichen Datensatz des Euro-

Währungsgebiets heran, um zu testen, ob es im Euroraum zur Zeit zweier 

bedeutender Ereignisse - der Unterzeichnung des Maastricht-Vertrags im zweiten 

Quartal 1992 und der Gründung der EZB im ersten Quartal 1999 – zu 

Strukturbrüchen kam. Diese Fragestellung ist besonders interessant, weil diese 

Ereignisse den Gleichlauf zwischen Variablen verändert haben könnten, was sich 

gerade in Strukturbrüchen in den Faktorladungen widerspiegeln würde. Wir finden 

Belege für Strukturbrüche um beide Zeitpunkte herum. Es scheint, dass mehr 

Strukturbrüche zur Zeit der Gründung der EZB aufgetreten sind als zum Zeitpunkt 

bei Unterzeichnung des Maastricht-Vertrags. Es ist dabei in etwa gleich 

wahrscheinlich, dass die Brüche sich genau im Jahr 1999 oder kurz vor Gründung 

der EZB ereigneten. Möglicherweise wurden das Ereignis von Marktteilnehmern 

antizipiert und entsprechende Anpassungen vorweggenommen. Schließlich traten die 

Brüche um die beiden Ereignisse herum offenbar relativ häufig in den Ladungen der 

Variablen auf, die die Volkswirtschaften Spaniens und Italiens abbilden, in denen die 

Notwendigkeit der Konvergenz auch am größten war. Die Gründung der EZB ging 

mit relativ häufigen Strukturbrüchen in den Ladungen nominaler Variablen einher, 

während die Unterzeichnung des Maastricht-Vertrags zeitlich mit Brüchen in den 

Faktorladungen der Industrieproduktionsreihen zusammenzufallen scheint.  
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1 Introduction

In recent years dynamic factor models have become popular for analyzing

and forecasting large macroeconomic datasets. These datasets include hun-

dreds of variables and span large time periods. Thus, there is a substantial

risk that the data generating process of a subset of variables or all variables

have undergone structural breaks during the sampling period. Stock and

Watson (2002) argue that factor models are able to cope with either breaks

in the factor loadings in a fraction of the series, or can account for moderate

parameter drift in all the series. However, in empirical applications param-

eters may change dramatically due to important economic events, such as

the collapse of the Bretton Woods system, or changes in the monetary policy

regime, such as the conduct of monetary policy in the 1980s in the US or the

formation of the European Monetary Union. There may also be more grad-

ual but nevertheless fundamental changes in economic structures that may

have led to significant changes in the comovements of variables, such as those

related to globalization and technological progress. The common factors may

become more (less) important for some of the variables and, therefore, the

loading coefficients attached to the common factors are expected to become

larger (smaller). If one is interested in estimating the common components

or assessing the transmission of common shocks to specific variables, ignoring

structural breaks may give misleading results.

Variations in dynamic factor loadings have been considered before. The

study most closely related to ours is Stock and Watson (2007) who study the

implications of structural breaks in the factor loadings. Consequently, we will

compare our with their testing approach. Del Negro and Otrok (2008) have

suggested a model where the factor loadings are modelled as random walks.

This comes, however, at the cost of having to estimate many parameters

which is computationally expensive and probably not feasible for such large

datasets we will use in our empirical applications below. Finally, Banerjee

and Marcellino (2008) have investigated the consequences of time-variation

in the factor loadings for forecasting based on Monte Carlo simulations and

find it to worsen the forecasts, in particular in small samples.

In our theoretical analysis, we first consider the effects of structural breaks

in section 2. It turns out that structural breaks in the factor loadings in-
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crease the dimension of the factor space. The reason is that in the case of a

single structural break, two sets of common factors are needed to represent

the common components in the two subsamples before and after the break.

Thus, structural breaks in the factor loadings do not only lead to inconsistent

estimates of the loadings but also to a larger dimension of the factor space.

If we are only interested in decomposing variables into common and idiosyn-

cratic components, it is sufficient to increase the number of factors such that

the factor space is large enough to represent the different subspaces of the

two regimes. However, if we are interested in a more parsimonious factor

representation that allows us to recover the original factors, the estimation

has to account for the structural breaks in the factor loadings.

In section 3, we consider alternative versions of a Chow-type test for a

structural break in a strict factor model, where the components are assumed

to be white noise. The idea is to treat the estimated factors as if they

were known. We show that under certain conditions on the relative rate

of N and T the estimation error of the common factors does not affect the

asymptotic distribution of the test statistic. Our Monte Carlo experiment

suggests that although the three versions of the test (Lagrange-Multiplier

(LM), Likelihood-Ratio (LR), and Wald (W)) are asymptotically equivalent,

these tests may perform quite differently in small samples, where the LM

statistic has the best size properties.

In section 4, the LM test procedure is generalized to allow for serially

correlated factors and idiosyncratic components. By adapting the GLS es-

timation procedure suggested by Breitung and Tenhofen (2008) we obtain a

test procedure that is robust to individual-specific dynamics of the compo-

nents. The LM version of the test is shown to have reliable size properties

whereas the OLS based test statistic with robust standard errors used in

Stock and Watson (2007) performs rather poorly in finite samples.

Two empirical applications of the test procedures are presented in sec-

tion 5. Based on a large US macroeconomic dataset provided by Stock and

Watson (2005), we examine whether January 1984 (which is usually associ-

ated with the beginning of the so called Great Moderation) coincides with

a structural break in the factor loadings. Based on the LM test, we find

clear evidence of a break at that date. By testing for shifts in the loadings

3
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of individual variables we are able to shed light on the sources of the break.

We also apply the LM test to a large euro-area dataset used in Altissimo

et al. (2007). We find evidence for breaks at the dates of the Maastricht

treaty and the creation of the European Central Bank (ECB). Breaks seem

to have occurred relatively frequently in the loadings of variables capturing

the Spanish and the Italian economies. The creation of the ECB was asso-

ciated with relatively frequent structural breaks in the loadings of nominal

variables, whereas evidence of structural breaks is mainly found for industrial

production series around the signing of the Maastricht treaty.

2 The effect of structural breaks on the num-

ber of factors

Consider a factor model with r factors1 ft = [f1t, . . . , frt]
′ that is subject to

a common break at time T ∗:

yit = f ′
tλ

(1)
i + εit for t = 1, . . . , T ∗ (1)

yit = f ′
tλ

(2)
i + εit for t = T ∗ + 1, . . . , T, (2)

where t = 1, . . . , T denotes the time period and i = 1, . . . , N indicates the

cross-section unit. The assumption of a common structural break at T ∗

is made for convenience only. A generalization to situations with variable-

specific break dates is straightforward but implies an additional notational

burden. The vector of idiosyncratic errors ε·t = [ε1t, . . . , εNt]
′ is assumed to

be i.i.d. with covariance matrix E(ε·tε′·t) = Σ, where Σ is a diagonal matrix.

Furthermore ft is assumed to be white noise with positive definite covariance

matrix E(ftf
′
t) = Φ. Let Λ(k) = [λ

(k)
1 , . . . , λ

(k)
N ]′, k = 1, 2, and τ = T ∗/T ∈

(0, 1) denotes the relative break date. The unconditional covariance matrix

of the vector y·t = [y1t, . . . , yNt]
′ results as

E

(
1

T

T∑
t=1

y·ty′
·t

)
= τΛ(1)ΦΛ(1)′ + (1 − τ)Λ(2)ΦΛ(2)′ + Σ

≡ Ψ + Σ.

1Note that the notation does not refer to a particular normalization of the (true)
common factors. In our asymptotic considerations we follow Bai (2003) and adopt a
particular normalization such that T−1

∑T
t=1 ftf

′
t

p→ Ir.

4
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Since the matrix Ψ = τΛ(1)ΦΛ(1)′ +(1−τ)Λ(2)ΦΛ(2)′ is a sum of two matrices

of rank r, the rank of the covariance matrix of the common component, Ψ,

is 2r in general. This is due to the fact that a break in the factor loadings

implies two linearly independent factors for the first and second subsample.

It follows that if the structural break in the factor loadings is ignored the

number of common factors is inflated by a factor of two. More generally, if

there are k structural breaks in the factor loadings of r common factors, the

number of factors for the whole sample is (k + 1)r, in general.

The practical implication of this result is that if one is only interested

in a decomposition of the time series yit into a common component and

an idiosyncratic component, then it is sufficient to increase the number of

common factors accordingly. However, if one is interested in a consistent

estimator of the factors and the factor loadings, then it is important to

account for the break of the factor loadings, e.g. by splitting the sample at T ∗

and re-estimating the factor model for the two subsamples. For illustration

consider the previous example with r = 1, T ∗ = T/2 and λ
(2)
i = λ

(1)
i + b.

Define an additional factor as

f ∗
t =

{
ft for t = 1, . . . , T ∗

−ft for t = T ∗ + 1, . . . , T.

It is not difficult to see that the factor model with a structural break can be

represented as

yit = λ∗
1ift + λ∗

2if
∗
t + εit (3)

where λ∗
1i = λ

(1)
i + (b/2) and λ∗

2i = −b/2. Note that the factors in this

representation are “orthogonal” in the sense that E(T−1
∑T

t=1 ftf
∗
t ) = 0.

This example demonstrates that a factor model with structural break admits

a factor representation with a higher dimensional factor space.

To investigate the effects of a structural break on the information criteria

suggested by Bai and Ng (2002) for selecting the number of common factors

a Monte Carlo experiment is performed. The data is generated by a factor

model yit = λitft+εit, where the single factor ft and idiosyncratic components

are i.i.d. with variances E(f 2
t ) = 1 and E(ε2

it) = σ2
i , where σi ∼ U(0.5, 1.5).

The structural break in the loadings is specified as

λit =

{
λi for t = 1, . . . , T/2
λi + b for t = T/2 + 1, . . . , T

5

4



and λi is drawn from a N (1, 1) distribution. Therefore, the parameter b

measures the importance of the structural break. Table 1 presents the average

of the number of factors selected by the ICp1 criterion suggested by Bai

and Ng (2002). The results show that if the break is large, the selection

procedure overestimates the number of common factors. Our theoretical

reasoning suggests that the empirical procedure tends to identify two factors

instead of the single factor that is used to generate the data. Thus, ignoring a

break in the factor loadings tends to identify too many factors in the sample.

This may be misleading and a result of structural breaks.

It is interesting to note that the situation is comparable to the problem

of estimating a dynamic factor model within a static framework. As argued

by Stock and Watson (2002), lags of the original factors can be accounted

for by including additional factors. If one is merely interested in a decom-

position into common and idiosyncratic components (e.g. in forecasting),

then it is sufficient to estimate the static representation with a larger num-

ber of factors. However, if one is interested in the original (“primitive” or

“dynamic”2) factors, then the static factors are inappropriate as they involve

linear combinations of current and lagged values of the original factors.

3 The static factor model

Consider a model with a common structural break at period T ∗ as given in

(1) and (2). Under the null hypothesis we assume

H0 : λ
(1)
i = λ

(2)
i . (4)

To test this null hypothesis, the usual Chow test statistics are formed by

replacing the unknown vector of common factors, ft, by its principal compo-

nents (PC) estimator, f̂t. Applying the likelihood ratio principle for testing

the i’th variable gives rise to the statistic

lri = T
[
log(S0i) − log(S1i + S2i)

]
,

2See Bai and Ng (2007) and Amengual and Watson (2007).

6
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where

S0i =
T∑

t=1

(yit − f̂ ′
tλ̂i)

2

S1i =
T ∗∑
t=1

(
yit − f̂ ′

tλ̂
(1)
i

)2

S2i =
T∑

t=T ∗+1

(
yit − f̂ ′

tλ̂
(2)
i

)2

,

λ̂i denotes the PC estimator for the vector of factor loadings, whereas λ̂
(1)
i

and λ̂
(2)
i denote the two estimates obtained as the OLS estimates from a

regression of yit on f̂t for two subsamples according to t = 1, . . . , T ∗ and

t = T ∗ + 1, . . . , T .3

The second statistic is the Wald test of the hypothesis ψi = 0 in the

regression

yit = λ′
if̂t + ψ′

if̂
∗
t + vit, t = 1, . . . , T, (5)

where

f̂∗
t =

{
0 for t = 1, . . . , T ∗

f̂t for t = T ∗ + 1, . . . , T.
(6)

The resulting test statistic is denoted by wi.

The LM (score) statistic, indicated by si is obtained from running a re-

gression of the form

ε̂it = θ′if̂t + φ′
if̂

∗
t + eit , (7)

where ε̂it = yit − λ̂′
if̂t denotes the estimated idiosyncratic component. The

score statistic is denoted by si = T R2
i , where R2

i denotes the R2 of the i’th

regression.

To study the limiting null distributions of the three test statistics we first

invoke the usual assumptions of the approximate factor model.

3Alternatively, the subsample estimates may be obtained from two separate PC estima-
tions. The resulting test is asymptotically equivalent to the version suggested here, since
the asymptotic properties of the regression are not affected by the estimation error of f̂t.
However, the analysis of the former estimator is complicated by the fact that not only
the estimated loadings are different under the null and alternative hypothesis but also the
estimated factors. We therefore focus on the simpler regression version which performs
very similar to the test based on two separate PC estimations.
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Assumption 1: Let yit be generated by the factor model yit = λ′
ift+εit, where

it is assumed that λi, ft, and εit satisfy Assumptions A–G of Bai (2003).

This set of assumptions allows for some weak serial and cross-section depen-

dence and heteroskedasticity among the idiosyncratic components εit. Fur-

thermore, the factors and idiosyncratic components are allowed to be weakly

correlated such that

E

⎛⎝ 1

N

N∑
i=1

∣∣∣∣∣
∣∣∣∣∣ 1√

T

T∑
t=1

ftεit

∣∣∣∣∣
∣∣∣∣∣
2
⎞⎠ < ∞.

Under assumption 1 and
√

T/N → 0 the estimation error in the regressor f̂t

does not affect the asymptotic distribution of the test statistic. To establish

the usual asymptotic χ2 distribution of the Chow test, a more restrictive set

of assumptions is required:

Assumption 2: (i) For all t = 1, . . . , T , E(ε2
it) = σ2

i and E(εitεis) = 0 for

t 	= s. (ii) ft is independent of εis for all i, t, s.

The null distributions of the test statistics are presented in the following

theorem.

Theorem 1: Under Assumptions 1 and 2, T → ∞, N → ∞, and
√

T/N →
0, the statistics si, wi and lri have a χ2 limiting distribution with r degrees

of freedom.

Remark A: The individual tests can be combined by constructing the pooled

test statistics

LR∗ =

(∑N
i=1 lri

)
− rN

√
2rN

, W∗ =

(∑N
i=1 wi

)
− rN

√
2rN

, LM∗ =

(∑N
i=1 si

)
− rN

√
2rN

,

which are the standardized versions of the average test statistics. The correc-

tions are due to the fact that the χ2 distribution with r degrees of freedom

has expectation r and variance 2r. Under the additional assumption that

εit and εjt are independent for all i 	= j, the pooled test statistics have a

standard normal limiting distribution.

Remark B: It is important to select the appropriate number of common

factors as otherwise the test may lack power. If the number of common
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factors is determined from the entire sample, the identification criteria tend

to select a larger number of common factors. As has been argued in section 2,

a factor model with a structural break admits a (parameter constant) factor

representation with a larger number of factors. Therefore, the number of

factors should be selected by applying the information criteria of Bai and Ng

(2002) to the subsamples before and after the break.4

To investigate the finite sample properties of the test statistics, a Monte

Carlo experiment is performed. We simulate data according to the single

factor model yit = λ
(k)
i ft +εit, where the factor and idiosyncratic components

are generated as in section 2. The empirical sizes of the three different test

statistics LR∗, W ∗, and LM∗ are presented for various sample sizes in Table

2. It turns out that for all N and T the actual size of the LM statistic is

close to the nominal size of 0.05. On the other hand, the LR statistic shows

a tendency to reject the null hypothesis slightly too often, whereas the size

bias of the Wald test tends to increase with fixed T and N → ∞.

Table 3 presents the empirical power of the test statistics for T ∈ {100, 200}
and N ∈ {50, 100, 200}. The structural break is again modeled as a shift of

size b in the mean of the factor loadings (see section 2). Note that the LR and

Wald statistics have a moderate size bias that is accounted for by presenting

the size-adjusted power. It turns out that the LM and Wald statistics are

substantially more powerful than the LR statistic, whereas the former two

test statistics perform very similar. Since our simulation experiment (based

also on models with more factors and other data generating mechanisms)

clearly favors the LM tests, we focus on this test statistic in what follows.

4 Dynamic factor models

In the previous section we have considered the framework of a static factor

model, where the common and idiosyncratic components are white noise. In

many practical situations, however, the variables are generated by dynamic

processes. In this section we therefore generalize the factor model and assume

that the idiosyncratic components in the model yit = λ′
ift +uit are generated

4We are grateful to Peter Boswijk who has pointed out this problem during the con-
ference.
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by individual specific AR(pi) processes

uit = 
i,1ui,t−1 + · · · + 
i,pi
ui,t−pi

+ εit (8)


i(L)uit = εit, (9)

where 
i(L) = 1−
i,1L−· · ·−
i,pi
Lpi . To analyze the asymptotic properties

of the tests in a dynamic factor model we make the following assumption.

Assumption 3: (i) The idiosyncratic components are generated by (9),

where all roots of the autoregressive polynomial 
i(z) are outside the unit

circle. (ii) For all t E(ε2
it) = σ2

i and E(εitεis) = 0 for t 	= s. (iii) ft is

independent of εis for all i, t, s.

The dynamic process for the vector of common factors is left unspecified. We

only assume that the second moments are finite, i.e., the limit T−1
∑T

t=1 ftf
′
t

p→
Σf is a finite positive definite matrix (see Assumption A in Bai (2003)).

To test for structural breaks, Stock and Watson (2007) suggest to apply

conventional Chow tests for each variable yit, where the unobserved factors

are replaced by estimates obtained from applying principal components. A

possible serial correlation of the errors is accounted for by using heteroskedas-

ticity and autocorrelation consistent (HAC) estimators for the standard er-

rors of the coefficients (cf. Newey and West 1987). This approach has,

however, two important drawbacks. First, since the OLS estimator is ineffi-

cient in the presence of autocorrelated errors, the resulting test suffers from

a loss of power relative to a test based on a GLS estimator. Second, it is well

known that the HAC estimator may perform poorly in small samples. This

problem may be amplified when forming a joint test for all variables, since

the joint test results from the sum of N test statistics. Indeed, this is what

we observe in our Monte Carlo simulation presented below.

To sidestep these difficulties, we follow Breitung and Tenhofen (2008) and

compute the test statistic based on a GLS estimation of the model. The GLS

transformed model results as


i(L)yit = λ′
i[
i(L)f̂t] + ψ′

i[
i(L)f̂ ∗
t ] + νit, (10)

where f̂t denotes the PC estimator of the common factors, f̂ ∗
t = f̂t for t =

T ∗+1, . . . , T and f̂ ∗
t = 0 otherwise. The lag polynomials 
i(L), i = 1, . . . , N ,
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can be estimated by running least squares regressions

ûit = 
i,1ûi,t−1 + · · · + 
i,pi
ûi,t−pi

+ eit , (11)

where ûit is the PC estimator of the idiosyncratic component. The lag length

pi can be determined by employing the usual information criteria. To test

the hypothesis of no structural break at T ∗, the LM statistic for ψi = 0 is

computed. The resulting test statistic is denoted by s̃i. We focus on the LM

statistic as this statistic possesses the best size properties among all tests

considered in section 3. The following theorem states that the asymptotic

null distribution of the resulting LM test statistic is the same as in Theorem

1.

Theorem 2: Let s̃i denote the LM statistic for ψi = 0 in the regression


̂i(L)yit = λ′
i[
̂i(L)f̂t] + ψ′

i[
̂i(L)f̂ ∗
t ] + ν̂it, t = pi + 1, . . . , T. (12)

Under Assumptions 1 and 3, T → ∞, N → ∞, and
√

T/N → 0, s̃i is

asymptotically χ2 distributed with r degrees of freedom.

Remark C: Assumption 3 rules out temporal heteroskedasticity of the id-

iosyncratic components. It is well known that the Chow test is not robust

against a break in the variances. To obtain a robust statistic in the case of

serial heteroskedasticity, the approach of White (1980) can be adopted. Al-

ternatively, a GLS variant of the test statistic that is robust against a break

in the variance at T ∗ can be constructed as

for t = 1, . . . , T ∗ :

1

σ̂
(1)
i


i(L)yit = λ′
i

[
1

σ̂
(1)
i


i(L)f̂t

]
+ ψ′

i

[
1

σ̂
(1)
i


i(L)f̂∗
t

]
+ ν̃it

for t = T ∗ + 1, . . . , T :

1

σ̂
(2)
i


i(L)yit = λ′
i

[
1

σ̂
(2)
i


i(L)f̂t

]
+ ψ′

i

[
1

σ̂
(2)
i


i(L)f̂∗
t

]
+ ν̃it.
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Remark D: As in Remark A the variable-specific test statistics can be

combined to obtain the pooled test statistics:

L̃M
∗

=

(∑N
i=1 s̃i

)
− rN

√
2rN

Under similar assumptions as in Remark A, the test statistics have a standard

normal limiting distribution.

To investigate the small sample properties of the test, we generate the

factor as ft = 0.8ft−1 + νt.
5 The idiosyncratic errors are generated by the

model

uit = 
ui,t−1 + εit

for all i = 1, . . . , N . For the variances we set E(ν2
t ) = 1 and E(ε2

it) = σ2
i ,

where σi ∼ U(0.5, 1.5). The factor loadings are obtained from independent

draws of a N (1, 1) distribution. Table 4 presents the empirical sizes for the

joint LM test and Table 5 reports the mean rejection rates for the individual

tests s̃i. The tests assume that the break occurs at period T ∗ = T/2.

To assess the size bias that results from ignoring the serial correlation of

the idiosyncratic component we first present the ordinary LM statistic that

assumes white noise errors. As can be seen from the first column of Table

4, the rejection rates of the test are far from the nominal size of 0.05 even

if the autoregressive coefficient is fairly small. In contrast, the actual size of

the LM statistic computed from the GLS regression is close to the nominal

size for all values of 
. The columns labelled as HAC(k) report the actual

sizes of the OLS-based t-statistics employing robust standard errors, where

the truncation lag is specified by applying the rule

�T (k) = k(T/100)2/5 with k ∈ {4, 12}. (13)

Since we found that the sizes are more reliable if the test is computed us-

ing the LM principle, we also compute the HAC standard errors from the

residuals of the restricted regression (i.e. where we have imposed the null

hypothesis). The resulting test statistics are indicated by HAC0(k).

5Since the data generating process for ft is irrelevant for the asymptotic properties of
the test, we do not present the results for other values of the autoregressive coefficient.
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From the results presented in Table 4 it turns out that the test statistics

based on HAC standard errors perform very poorly in small samples. The

test based on the restricted residuals (HAC0(k)) performs much better but

still has a considerable size bias. To demonstrate that the size bias of these

tests is indeed a small sample phenomenon, we repeat the simulations for

T = 500 and T = 1000. The results show that if T increases, the empirical

sizes of the original HAC(k) slowly tend to the nominal size. Comparing the

results for the joint test (Table 4) and the individual tests (Table 5) it turns

out that the individual tests are more robust to small sample distortions

than the joint tests. Additional simulation experiments suggest that the

distortions become even more severe if the break date moves towards the

beginning or end of the sample.

5 Empirical applications

Our test procedure is applied to two settings. In subsection 5.1, we investigate

whether the mid-1980s in the US can be associated with structural breaks in

the loadings. In subsection 5.2., we consider possible breaks in the euro-area

economies due to the two major events in the 1990s, the Maastricht treaty

and the creation of the ECB.

5.1 The US economy in the mid-1980s

In this section we apply our test procedure to the dataset constructed by

Stock and Watson (2005) and provided on Mark Watson’s web page. The

dataset contains 132 monthly US series including measures of real economic

activity, prices, interest rates, money and credit aggregates, stock prices, and

exchange rates. It spans 1960 to 2003.6 We investigate whether the mid-1980s

in the US can be associated with structural breaks in the factor loadings. We

also address important issues that typically arise in applications.

We start by considering a single break in 1984:01. That date has been

associated with the beginning of the so called Great Moderation, i.e. the de-

cline in the volatility of output growth and inflation (Kim and Nelson 1999,

6The original dataset is provided for the period 1959 to 2003. Some observations are,
however, missing in 1959. We therefore decided to use a balanced dataset starting in 1960.
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McConnell and Perez-Quiros 2000, Stock and Watson 2007). The focus on

the 1984:01-break date and the use of the dataset is mainly motivated by the

empirical application presented in Stock and Watson (2007) to which we can

compare our results. Stock and Watson (2007) also test for structural breaks

in the factor loadings in 1984:01 and use a very similar dataset. The main

difference is that their dataset is quarterly and also covers more recent years

(up to 2006). Another motivation of our application is that the sources of

the Great Moderation are still controversial. Previous papers have applied

structural break tests to univariate linear and univariate Markov-Switching

models or, more recently, structural VAR models with time-varying param-

eters to tackle this question. They have come up with various explanations,

and it is still unclear to what extent either “good luck” or structural changes

including “good policy” have contributed to the volatility decline (cf. Gali

and Gambetti 2008 as well as Stock and Watson 2003 and references therein).

“Good luck” is based on the observation that smaller shocks hit the economy

after the considered break date (cf. Benati and Mumtaz 2007). “Good pol-

icy” on the other hand emphasizes the fact that monetary policy has put more

weight on inflation relative to output stabilization since the 1980s (Clarida

et al. 2000), improved inventory management mainly in the durable goods

sector (McConnell and Perez-Quiros 2000, Davis and Kahn 2008) as well as

financial innovation and better risk sharing, which was spurred by financial

deregulation (IMF 2008). Therefore we believe that analyzing the mid-1980s

in the US with a new methodology is useful. Our data-rich framework en-

ables us not only to test the joint hypothesis of a break in all loadings and

thus to identify “dramatic” changes in the economy, but also to investigate

whether breaks in the loadings associated to individual variables or groups

of variables have occurred. This may help to shed some light on the sources

of possible structural changes.

Factor analysis requires some pre-treatment of the data. We proceed

exactly as in Stock and Watson (2005). Non-stationary raw data (which were

already available to us in seasonally adjusted form) are differenced until they

are stationary. We remove outliers and normalize the series to have means of

zero and variances of one. The reader is referred to Stock and Watson (2005)

for details on the composition and the treatment of the dataset. Following
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Stock and Watson (2005), our benchmark estimation is based on r = 9

factors. The Bai and Ng (2002) ICp1 criterion only indicates r = 7, but, as

already pointed out in Stock and Watson (2005), we find the criterion to be

flat for r = 6 to 10. We therefore also consider r = 6 to 8 factors below.7

Among the tests suggested in section 3, the LM test has been shown to

perform best in the simulations. For this reason, we focus on the LM test

in our application. We test the null hypothesis of no break in the factor

loadings in 1984:01. We generally allow for a break in the variance of the

idiosyncratic component as suggested in Remark C. Table 6 shows the ver-

sion of the LM-statistic which is robust with respect to time-variation in

variance of the factor innovations together with the corresponding p-value

and the log likelihood. This allows us to concentrate on structural changes

in the common component as a source of the Great Moderation as opposed

to “good luck” which will at least partly be reflected in the variance of factor

innovations. The table also provides the rejection rates, i.e. the shares of

the 132 variables for which a structural break is found, estimated with the

LM test and, in comparison, with the OLS based test statistic with HAC

(robust) standard errors. For the former test, we allow for 6 autoregressive

lags of the idiosyncratic components, and for the latter test, the number of

autoregressive lags for the Newey-West correction is set to 7 according to the

formula (13) with k = 4.

A clear structural break is identified at 1984:01. Based on r = 9, the LM

test yields a rejection rate of 0.55. The rejection rate suggested by the HAC

test procedure considered in section 4 is even larger (0.62), consistent with

our simulation results which have illustrated that the HAC test procedure

tends to reject too often the null hypothesis of no structural breaks. That

7As noted in Remark B, the number of factors should be determined by using the
subsamples before and after the break. Indeed we found that the information criteria
tend to suggest a smaller number of factors for the subsamples than for the whole sample.
However, since the test for structural breaks is applied to a range of possible break dates,
this would mean that the number of factors have to be re-estimated for all time periods
under consideration. Furthermore, the information criteria tend to choose different num-
bers of factors for the two subsamples. We therefore decided to employ the same number
of factors that was used in the earlier literature. Note that if the number of factors is
over-specified, the tests tend to have low power. Since in our applications all of the tests
reject the null hypothesis, we conclude that a possible loss of power is not a problem in
our case.
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share also exceeds the share estimated by Stock and Watson (2007), who find

that 35% of the variables exhibited structural breaks in the loadings. The

reason is that Stock and Watson (2007) rely on fewer (three or four) factors

in that paper. When we re-do the tests based on fewer factors, we obtain

rejection rates comparable with those presented by the authors.

As shown in section 2, the number of common factors may be overesti-

mated in the case of a structural break. We therefore split the sample into

two subsamples: 1960:01 to 1983:12 and 1984:01 to 2003:12 and re-estimated

r for each subsample. The Bai and Ng (2002) ICp1 test suggests r = 4 for

the first subsample and r = 6 factors for the second subsample supporting

our theoretical considerations and our finding of a structural break based on

r = 9. Unlike in the simulations, the estimated numbers of factors in the two

subsamples are not equal nor are they equal to the half the number of factors

estimated based on the total sample. The loadings of some of the variables

or those associated with some of the factors may not exhibit a structural

break. Other explanations may be that the size of the break is moderate (see

our Monte Carlo simulations of section 2) or that variables’ loadings shift at

different points in time. If we were interested in estimating the factors, we

would need to split the sample and estimate the factors based on smaller r.

However, our objective is to test for a structural break. In order to consider

all factors, we keep on working with 9 factors.

We next investigate whether the break has occurred exactly in 1984:01

and whether it is the only structural break during the sample period. We

apply the LM test for each possible break point, after having discarded the

lower and upper 5 percentiles of the observations. The solid lines in Figures

1 and 2 show the pooled LM test statistic suggested in Remark D and the

relative rejection frequencies of the individual tests. The test rejects the null

hypothesis of no structural break at almost all points in time and particularly

high rejection rates are found around 1985. Figures 1 and 2 also show that

it may matter whether one allows for a break in the variance. The test that

assumes a constant variance is represented by the dotted lines. This version of

the test tends to yield smaller test statistics compared to the robust version

and has a somewhat different shape, but still clearly indicates structural

breaks during most of the period.
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From Figures 1 and 2 it is also apparent that the statistics clearly exhibit

a hump-shaped pattern which reflects that the test has relatively low power

at the beginning and the end of the sample, something which is well-known.

Given our previous finding of breaks in the factor loadings, the log likelihood

helps us to identify the most likely timing of the break. Figure 3 shows that

the log-likelihood8 achieves its maximum at exactly 1984:01. Moreover, there

is clear evidence for heteroscedasticity as the log-likelihood function increases

substantially if the model allows for a break in variances.

Giordani (2007) has pointed out that, although some series may be I(1) in

the total period, they may be stationary in subperiods and differencing them

would result in an overdifferencing. To avoid overdifferencing, we consider

an alternative dataset where inflation, interest rates, money growth, capacity

utilization and the unemployment rate enter in levels rather than in growth

rates as before (and as in Stock and Watson 2005, 2007). Results do not

change much, and we make them available upon request.

To investigate the reasons for the structural break, it may be instructive

to apply the test to individual variables. We focus on several key macroeco-

nomic variables which are of general interest, but also on variables which are

particularly interesting against the background of the Great Moderation and

its possible sources such as monetary policy variables, inventory management

and the production of durable and non-durable goods as well as consump-

tion and financial variables. Breaks or the lack of breaks in the loadings of

these variables would support or contradict some of the conjectures on the

sources of the Great Moderation discussed above. We provide results for the

heteroscedasticity-robust version of the test. Table 7 suggests that not all

variables exhibited breaks at 1984:01. Of the key macroeconomic variables,

there seems to be a break for CPI inflation and consumer expectations, but

not for commodity prices and for total industrial production only at the 10%

significance level. Of the variables which may provide information on the

sources of the changes, breaks are found in the loadings of inventory man-

agement, the production of material, and durable consumer goods, but not

8The log-likelihood value is obtained by inserting the parameter estimates in the Gaus-
sian log-likelihood function assuming i.i.d. errors εit. Note that under the assumptions of
a strict factor model, the PC estimator is asymptotically equivalent to the ML estimator
as N → ∞. Therefore, the log-likelihood function can be used as measure of fit.
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of the production of non-durable consumer goods, strongly supporting the

hypothesis that inventory management has changed and major changes in

the durable goods sector advocated by McConnell and Perez-Quiros (2000).

The LM test also rejects the null hypothesis of no structural break for the

Federal funds rate giving some role for changes in the conduct of monetary

policy. Breaks are also found for most financial variables (long-term interest

rates, stock prices, and effective exchange rates) which would support the

hypothesis that financial integration has led to shifts in the economy. How-

ever, the loadings of consumption do not seem to have shifted, although the

hypothesis would have been that financial integration has led to consump-

tion smoothing and therefore to a reduced response of consumption to shocks

which would probably be reflected in the consumption loadings. Notice also

that the commonality is high for all variables shown in Table 7: the factors

explain at least half of the variation in each variable and almost all of the

variance in industrial production variables, consumption, and CPI inflation.

To summarize, we find clear support for “dramatic changes” in the US

economy around the data that is generally associated with the Great Mod-

eration in the US, 1984:01, i.e. the null hypothesis of no structural breaks

in all factor loadings cannot be rejected. Our analysis further suggests that

various structural changes can explain this result. We find some support for a

different conduct of monetary policy and inventory management (possibly in

the durable goods sector) to having caused the break. There is also evidence

of changes due to financial integration in the 1980s, although the loadings of

consumption appear to have remained stable.

5.2 Have the Maastricht treaty and the creation of the
ECB led to structural breaks in the euro area?

Our second application is concerned with possible changes in comovements

that may have occurred in the euro area in the 1990s due to two impor-

tant events. The first event is the Maastricht treaty, which was signed in

1992:02. With the treaty, a timetable for the economic and monetary union

(EMU) was prepared and conditions for countries to become members of

EMU were fixed. These include low inflation rates, converged interest rates,

stable exchange rates, and solid fiscal budgets. The second event was the
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creation of the ECB and with it the changeover to a single monetary policy

in 1999:01. This setting is particularly interesting, since these events may

have altered the comovement between variables as noted, and this will just

be reflected in breaks in the loadings. It is still not entirely clear how these

two events have affected the comovements of business cycles and other vari-

ables in euro-area countries. Some arguments point to greater comovements,

some to smaller comovements. Also it is unclear whether changes have oc-

curred at exactly the dates of or before or after these two events. On the one

hand, the Maastricht treaty and accession prospects have forced countries

to improve their fiscal situation and to carry out structural reforms in order

to qualify for EMU membership. Greater structural and political similarity

could lead to long-run convergence and a greater synchronization of busi-

ness cycles, possibly already before the creation of the ECB. On the other

hand, these requirements have limited the scope for national fiscal policy to

stabilize the economy. Similarly, the handover of monetary policy from the

national central banks to the ECB implied a loss for individual EMU mem-

ber countries of an important stabilization tool, which they could previously

apply in response to asymmetric shocks. Both effects may have lowered busi-

ness cycle synchronization before and after the events, respectively. There is,

however, an argument stressing the ”endogeneity of optimum currency area

criteria” (including the synchronization of business cycles) (Frankel and Rose

1998): as a consequence of the events, transaction costs have declined, and

this should spur the processes of greater trade and financial integration and

hence greater business cycle comovements (cf. Imbs 2004, Kose et al. 2003,

Baxter and Kouparitsas 2005).

Given the ambiguity of these arguments, it remains to be tackled empiri-

cally whether and to what extent the two events have led to structural breaks

and what has been the exact timing of structural breaks if there were any.

Our empirical application is most closely related to Canova et al. (2006),

who also investigate to what extent these two events have affected business

cycles and their (and other real variables’) comovements in the euro area.

Based on a panel VAR index model, the authors find some changes in the co-

movements of business cycles in the 1990s and in the transmission of shocks,

but no evidence of clear structural break dates that coincide with the two
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events.

We apply the LM test procedure presented in sections 2 and 3 to a dataset

used in Altissimo et al. (2007).9 This dataset has originally been compiled

to construct the Eurocoin indicator provided by the Banca d’ Italia and pub-

lished on the CEPR’s web page. This indicator has become a benchmark

for dating business cycle phases in the euro area. It has been developed

further resulting in the so called New Eurocoin indicator, which is presented

in Altissimo et a. (2007) and to which we refer to for details. The dataset

spans 1987:01 to 2007:06 and includes 209 macroeconomic variables from

EMU member countries, the euro area as a whole, and a few external vari-

ables.10 This data-rich framework is particularly useful since the two events

may have led to drastic changes in various countries of EMU and through-

out individual economies’ various sectors and industries. Series which were

not already in seasonally adjusted form were seasonally adjusted by using

the Census X12 procedure. Outliers were removed and non-stationary series

were transformed to stationary series as in Altissimo et al. (2007). Variables

such as inflation and interest rates enter in levels. Therefore, there is no need

to consider an additional transformation of the data as in the previous ap-

plication. Finally, as before, the series were demeaned and divided by their

standard deviations. For details on the data and the transformations, see

Altissimo et al. (2007).

Based on the entire dataset and the ICp1 criterion of Bai and Ng (2002),

r is estimated to be 9. We also split the dataset into three subsamples, pre-

Maastricht, post-Maastricht and pre-EMU, and post-EMU. The ICp1 crite-

rion selects r = 3 for the first, r = 4 for the second, and r = 5 for the third

subsample, which is perhaps a first indication of a structural break. The

autoregressive order of the idiosyncratic components is, again, set to 6, and

the lag length for the Newey West correction to 5.

Results for r = 9 are provided in Table 8. The null hypothesis of no

9We are grateful to Giovanni Veronese for providing us with an updated version of that
dataset.

10The New Eurocoin indicator is constructed based on 145 variables. The underlying
dataset is larger. In their paper, Altissimo et al. (2007) select 145 series based on three
criteria: a large time span, a high correlation and leading properties with respect to GDP
growth and timely releases by statistical agencies. For our purposes, it is sufficient to use
a balanced panel (between 1987:01 to 2007:06) which leaves us with 209 variables.

20

19



structural break is clearly rejected for both events by (the heteroscedasticity-

robust version of) the LM test. Interestingly, the numbers tend to be larger

for creatuib of the ECB than for the signing of the Maastricht treaty. The

rejections rates are 0.18 and 0.63 for Maastricht and 0.40 and 0.60 for EMU

when the tests are based on the LM and HAC test procedure, respectively.

Have linkages become tighter or looser? We compare the commonality be-

tween the pre-Maastricht, post-Maastricht and pre-EMU and the post-EMU

periods and find no major change between the first and the second period

when 9 factors explain 53.7% and 53.8% of the total variance, respectively.

By contrast, the commonality increases to 55.7% in the third period which

supports our finding of a more likely break in 1999:01 than in 1992:02.

We can, again, assess whether the breaks have occurred only at the dates

of the two specific events or before or after these dates. As shown in Figure 4,

the null hypothesis of no structural break is, again, rejected for most of the

sample period. The heteroscedasticity-robust version of the test indicates

that the rejection rate is indeed highest (at 0.40) in 1999:01 (Figure 5).

Figure 6 shows that the log likelihood reaches its global maximum around

1996/97, but values between 1996 and 1999 are barely distinguishable. One

possible interpretation is that reforms and other public measures in the run-

up of EMU may have altered comovements. Also, EMU has been anticipated

and private agents may have adjusted their behaviour prior to the event. A

third explanation is that the mid-1990s are also associated with a general

worldwide acceleration of globalization, which may have tightened cyclical

linkages between countries. Finally, as in the previous application, we find

again a evidence for considerable heteroscedasticity in the factors.

Next, we investigate whether the events have affected certain countries

more than others. We also formed groups of variables with similar eco-

nomic content11 and examine whether certain groups of variables have expe-

rienced structural breaks in the loadings while the loadings of other variables’

groups have remained stable. Table 9 shows the rejection rates for individ-

11“Industrial production” includes, besides industrial production, also retail sales, or-
ders, export, imports, inventories, and car registrations. The “Inflation” group summarizes
PPI as well as export and import price inflation. “Monetary and financial variables” con-
tain interest rates, monetary aggregates, exchange rates, and stock prices. “Labor market”
summarizes employment variables and wages as well as unit labor costs. Finally, survey
expectations form the group “Surveys”.
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ual countries. We only consider countries of which more than 10 variables

were included in the dataset. Rejection rates are relatively high for both

events for Spain and Italy, which are the countries with the lowest initial

(1992) incomes12 and the highest inflation and long-term interest rates13 of

the countries considered and, hence, the greatest needs to converge. Italy’s

public debt was, in addition, quite elevated, compared to other countries.14

Table 9 also reports rejection rates for groups of variables. As for the overall

tests, rejections rates for all groups are higher for EMU than for Maastricht.

Our main finding is that, at the date of the creation of the ECB, rejection

rates are relatively high for inflation as well as monetary and financial vari-

ables. After all, EMU is a monetary event, and this result may therefore not

be surprising. Maastricht has mainly caused breaks in industrial production

series. Our results are insofar in line with Canova et al. (2006) that we also

find some changes in the loadings which have occurred at the dates of the

two events but also around these two events. By contrast, we identify clear

structural breaks unlike Canova et al. (2006). The fact that their dataset

does not include nominal variables may explain this difference between our

and their finding. After all, the null hypothesis of no structural break is, at

least for EMU, rejected relatively frequently for nominal variables.

6 Conclusions

Analyzing data sets with a large number of variables and time periods in-

volves a severe risk that some of the model parameters are subject to struc-

tural breaks. We show that structural breaks in the factor loadings may

12GDP per capita amounted to 25,536 and 21,103 US$ for Italy and Spain in 1992 and
to 27,725, 26,608, 27,116, 28,168 US$ for Germany, France, Belgium, and the Netherlands,
respectively, according to The Conference Board and Groningen Growth and Development
Centre, Total Economy Database, January 2008.

13In 1992, year-on-year CPI inflation was at 5.3% and 5.9% in Italy and Spain and
at 5.1%, 2.4%, 2.4%, 3.2% in Germany, France, Belgium, and the Netherlands, respec-
tively. In 1992, the long-term interest rates were at 13.3% and 11.7% for Italy and Spain
and at 7.9%, 8.6%, 8.7% and 8.1% for Germany, France, Belgium, and the Netherlands,
respectively. Source: Economic Outlook, OECD.

14In 1992 the gross public debt as a percentage of GDP according to the Maastricht
criterion as at 105.3% for Italy and at 45.9%, 42.1%, 38.8%, 128.5%, 77.4% for Spain,
Germany, France, Belgium and the Netherlands, respectively. Source: Economic Outlook,
OECD.
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inflate the number of factors identified by the usual information criteria.

Furthermore, we propose Chow type tests for structural breaks in factor

models. It is shown that under the assumptions of an approximate factor

model and if the number of variables is sufficiently large, the estimation er-

ror of the common factors does not affect the asymptotic distribution of the

Chow statistics. In other words, the PC estimator of the common factors

is “super-consistent” with respect to the estimation of the factor loadings

and, therefore, the usual Chow test can be applied to the factor model in a

regression, where the unknown factors are replaced by principal components.

Provided that the idiosyncratic components are mutually independent, i.e.

under the assumption of a strict factor model, the variable-specific Chow

statistics can be combined to test the joint null hypothesis of a common

structural break. These tests can be generalized to dynamic factor models

by adopting a GLS version of the test. This approach assumes a finite order

autoregressive process for the idiosyncratic components, whereas no specific

dynamic process needs to be specified for the common factors. Our Monte

Carlo simulations suggest that the LM version outperforms the other variants

of the test.

The LM test procedure is applied to two different settings. Our first em-

pirical application uses a large US macroeconomic dataset provided by Stock

and Watson (2005). We have tested whether the so called Great Moderation

in the US (assuming the first quarter of 1984 as the starting date) coin-

cides with structural breaks in the factor loadings. A lot of attention among

researchers and policy makers has recently been directed to the Great Moder-

ation. There is still some controversy about the sources (“good luck” versus

structural changes including “good policy”), and we contribute to this de-

bate. We find evidence of “dramatic changes” in the economy, reflected in

significant breaks in the factor loadings, in the mid-1980s. By testing for

breaks in the loadings of individual variables such as the Federal funds rate,

inventories, industrial production in the durable and non-durable sectors,

personal consumption expenditure and financial variables, we can assess the

underlying sources of the structural change. We find support for the hypothe-

sis that not a single but various factors have played an important role. These

factors are, according to our analysis, changes in the conduct of monetary
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policy and in inventory management as well as financial integration.

In the second application we employ a large euro-area dataset used in Al-

tissimo et al. (2007) to test whether structural breaks have occurred in the

euro area around two major events, the signing of the Maastricht treaty in

the second quarter of 1992 and the creation of the ECB in the first quarter of

1999. This setting is particularly interesting, since these events may have al-

tered comovements between variables as noted, and this will just be reflected

in structural breaks in the factor loadings. We find evidence of structural

breaks around both dates, with higher rejection rates for the creation of the

ECB than for the signing of the Maastricht treaty. It is equally likely that

breaks have occurred exactly in 1999 and just before the creation of the ECB

which may have been anticipated or due to prior adjustments. Breaks finally

seem to have occurred relatively frequently in the loadings of variables cap-

turing the Spanish and the Italian economies. The creation of the ECB was

associated with relatively frequent structural breaks in the loadings of nomi-

nal variables, whereas the signing of the Maastricht treaty seems to coincide

with breaks in the factor loadings of industrial production series.

Appendix

Proof of Theorem 1:

First, consider the LM statistic. Let εi = [εi1, . . . , εiT ]′. The residuals are

obtained as M
bF εi, where F̂ = [f̂1, . . . , f̂T ]′ and M

bF = IT − F̂ (F̂ ′F̂ )−1F̂ ′. The

individual LM statistic results as

si =
ε′iM bF F̂2(F̂

′
2M bF F̂2)

−1F̂ ′
2M bF εi

ε′iM bF εi/T
, (14)

where F̂2 = [0, . . . , 0, f̂T ∗+1, . . . , f̂T ]′. Following Bai (2003) we re-normalize

the matrix of common factors F 0 = [f 0
1 , . . . , f 0

T ]′ as F = [f1, . . . , fT ]′ = F 0H,

where H = TΛ0′Λ0F 0′F̂ (F̂ ′Y Y ′F̂ )−1 and Y ′ = (yit) is the N × T matrix of

observations. Accordingly, we define Λ = Λ0H
′−1.

Using Lemma B.3 of Bai (2003) and Lemma A.1 (ii) of Breitung and

Tenhofen (2008) it follows that

T−1F̂ ′F̂ = T−1F ′F + Op(δ
−2
NT ),
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where δNT = min(
√

N,
√

T ). The following Lemma shows that a similar

result holds for T−1F̂ ′
2F̂2:

Lemma A.1: Let F2 = [0, . . . , 0, fT ∗+1, . . . , fT ]′. Under assumptions A–F of

Bai (2003) we have

(i)
1

T
F̂ ′

2F̂2 − 1

T
F ′

2F2 =
1

T
F̂ ′

2F̂ − 1

T
F ′

2F = Op(δ
−2
NT )

(ii)
1

T
(F̂2 − F2)

′εi = Op(δ
−2
NT )

Proof: (i) Since the upper block of F2 is a matrix of zeros we have F ′
2F =

F ′
2F2 and F̂ ′

2F̂ = F̂ ′
2F̂2. Consider

1

T

(
F̂ ′

2F̂2 − F ′
2F2

)
=

1

T
(F̂ − F )′F2 +

1

T
F ′(F̂2 − F2) +

1

T
(F̂ − F )′(F̂2 − F2)

= I + II + III.

Following Bai (2003) we start from the representation

f̂t − ft =
1

NT
V −1

NT

(
F̂ ′FΛ′ε·t + F̂ ′εΛft + F̂ ′εε·t

)
,

where ε·t = [ε1t, . . . , εNt]
′, ε = [ε·1, . . . , ε·T ], and VNT is a r × r diagonal

matrix of the r largest eigenvalues of (NT )−1Y Y ′. We first analyze

1

T
(F̂ − F )′F2 =

1

NT 2
V −1

NT

(
F̂ ′FΛ′

T∑
t=T ∗+1

ε·tf ′
t + F̂ ′εΛ

T∑
t=T ∗+1

ftf
′
t + F̂ ′ε

T∑
t=T ∗+1

ε·tf ′
t

)
= a + b + c.

From Assumption F (2.) of Bai (2003) it follows that

Λ′
T∑

t=T ∗+1

ε·tf ′
t = Op(

√
NT ),

and T−1F̂ ′F − T−1F ′F = T−1(F̂ − F )′F = Op(δ
−2
NT ) (cf. Bai, Lemma A.2).

Thus, we obtain

a = V −1
NT (T−1F̂ ′F )

(
1√
NT

Λ′
T∑

t=T ∗+1

ε·tf ′
t

)
1√
NT

= Op

(
1√
NT

)
.
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Next consider

Λ′ε′F̂ = Λ′
T∑

t=1

ε·tf ′
t + Λ′

T∑
t=1

ε·t(f̂t − ft)
′.

As shown by Bai (2003, p. 160)

1

NT
Λ′

T∑
t=1

ε·tf ′
t = Op

(
1√
NT

)
1

NT
Λ′

T∑
t=1

ε·t(f̂t − ft)
′ = Op

(
1

δNT

√
N

)
.

Using T−1F ′
2F2 = Op(1) we obtain

b = V −1
NT

(
1

NT
F̂ ′εΛ

) (
1

T

T∑
t=T ∗+1

ftf
′
t

)
=

[
Op

(
1√
NT

)
+ Op

(
1

δNT

√
N
√

N

)]
Op(1).

As in Bai (2003, p. 164f), we obtain for the remaining term

1

NT 2
F̂ ′ε

T∑
t=T ∗+1

ε·tf ′
t =

1

NT 2

T∑
s=1

T∑
t=T ∗+1

ε′·sε·tf̂sf
′
t

=
1

T 2

T∑
s=1

T∑
t=T ∗+1

f̂sf
′
tζNT (s, t) +

1

T 2

T∑
s=1

T∑
t=T ∗+1

f̂sf
′
tγN(s, t)

= Op

(
1

δNT

√
T

)
+ Op

(
1

δNT

√
N

)
where

ζN(s, t) = ε′·sε·t/N − γN(s, t)

γN(s, t) = E(ε′·sε·t/N).

Thus,

c = V −1
NT

[
Op

(
1

δNT

√
T

)
+ Op

(
1

δNT

√
N

)]
.

Collecting these results we obtain

I = a+b+c = Op

(
1√
NT

)
+Op

(
1

δNT

√
T

)
+Op

(
1

δNT

√
N

)
= Op

(
1

δ2
NT

)
.
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Using the same arguments it follows that II = Op(δ
−2
NT ). Finally, follow-

ing closely the proof of Theorem 1 in Bai and Ng (2002) we obtain III =

Op(δ
−2
NT ).

(ii) The proof is similar to (i). We therefore present the main steps only.

Consider

1

T

T∑
t=T ∗+1

(f̂t − ft)εit

=
1

NT 2
V −1

NT

(
F̂ ′FΛ′

T∑
t=T ∗+1

ε·tεit + F̂ ′εΛ
T∑

t=T ∗+1

ftεit + F̂ ′ε
T∑

t=T ∗+1

ε·tεit

)
= ai + bi + ci.

The term ai results as

ai = V −1
NT

(
1

T
F̂ ′F

) (
1

NT
Λ′

T∑
t=T ∗+1

ε·tεit

)
= Op(1)

[
Op

(
1√
NT

)
+ Op

(
1

N

)]
(cf. Bai 2003, B.1). For the second term we obtain

bi = V −1
NT

(
1

NT
F̂ ′εΛ

) (
1

T

T∑
t=T ∗+1

ftεit

)
= Op

(
1

δNT

√
N

)
Op

(
1√
T

)
.

Finally we have

ci = V −1
NT

(
1

T 2

T∑
s=1

T∑
t=T ∗+1

fsεit(N
−1ε′·sε·t)

)
= Op

(
1

δNT

√
T

)
+Op

(
1

δNT

√
N

)
(cf. Bai (2003, p. 163)). Collecting these results we have

ai+bi+ci = Op

(
1√
NT

)
+Op

(
1

N

)
+Op

(
1

δNT

√
T

)
+Op

(
1

δNT

√
N

)
= Op

(
1

δ2
NT

)
�

Using these results, we obtain

T−1F̂ ′
2M bF F̂2 = T−1F ′

2MF F2 + Op(δ
−2
NT ),
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where MF = IT − F (F ′F )−1F ′. Using Lemma A.1 (i) and (ii) and Lemma

B.1 of Bai (2003) we obtain in a similar manner

T−1/2ε′iM bF F̂2 = T−1/2ε′iF2 + T−1/2ε′i(F̂2 − F2) −
(
T−1/2ε′iF̂

) (
1

T
F̂ ′F̂2

)
= T−1/2ε′iF2 −

(
T−1/2ε′iF̂

) (
1

T
F ′F2

)
+ Op(

√
T/δ2

NT )

= T−1/2ε′iMF F2 + Op(
√

T/δ2
NT ).

Finally eq. (10) of Bai and Ng (2002) implies

T−1ε′iM bF εi = T−1ε′iMF εi + Op(δ
−2
NT ).

From these results it follows that

si =
ε′iMF F2(F

′
2MF F2)

−1F ′
2MF εi

ε′iMF εi/T
+ Op(

√
T/δ2

NT )

= s0
i + Op(

√
T/δ2

NT ).

Note that s0
i is the LM statistic obtained from the (infeasible) regression that

uses F instead of F̂ . Under Assumption 2 s0
i has a χ2 limiting distribution

as T → ∞.

To derive the limiting distribution of the Wald statistic wi we first note

that the only difference to the LM statistic is that the variance estimator in

the denominator of (14) is computed by using the sum of squared residuals

from a regression of M
bF εi on M

bF F2. Denote the resulting residual vector as

ε̂∗i . From standard regression theory it is well known that

ε′iM bF εi = ε̂∗
′

i ε̂∗i + ε′iM bF F̂2(F̂
′
2M bF F̂2)

−1F̂ ′
2M bF εit.

Using the same results obtained for the LM statistic, we have

T−1(ε′iM bF εi − ε̂∗
′

i ε̂∗i ) = T−1ε′iMF F2(F
′
2MF F2)

−1F ′
2MF εi + Op(δ

−2
NT ).

The first term on the r.h.s. is +Op(T
−1) and therefore the difference between

the variance estimator based on the restricted and unrestricted model is pos-

itive and Op(T
−1). Therefore, wi ≥ si and wi = s0

i +Op(T
−1)+Op(

√
T/δ2

NT ).
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Using a first order Taylor expansion, we obtain for the LR statistic

T [log(S0i) − log(S1i + S2i)] =
S0i − S1i − S2i

(S1i + S2i)/T
+ Op(T

−1)

=
ε′iM bF F̂2(F̂

′
2M bF F̂2)

−1F̂ ′
2M bF εi

ε′iM bF εi/T + Op(T−1)
+ Op(T

−1)

= si + Op(T
−1).

Therefore,

lr = s0
i + Op

(
1

T

)
+ Op

(√
T

δ2
NT

)
.

Proof of Theorem 2

To derive the limiting distribution of the feasible GLS version of the LM test,

we make use of the following two lemmas:

Lemma A.2: It holds for any fixed m and k ≤ m that

(i) T−1

T∑
t=m+1

(f̂t − ft)f
′
t−k = Op(δ

−2
NT ), T−1

T∑
t=m+1

(f̂t − ft)f̂
′
t−k = Op(δ

−2
NT )

(ii) T−1

T∑
t=m+1

f̂tf̂
′
t−k = T−1

T∑
t=m+1

ftf
′
t−k + Op(δ

−2
NT )

(iii) T−1

T∑
t=m+1

(f̂t − ft)ui,t−k = Op(δ
−2
NT ).

Proof: For m = pi these results are shown in Breitung and Tenhofen (2008,

Lemma A.1). For m = T ∗ the proof can be modified straightforwardly

according to Lemma A.1.

Lemma A.3: Let 
(i) = [
i,1, . . . , 
i,pi
]′ and 
̂(i) = [
̂i,1, . . . , 
̂i,pi

]′ denote the

least-squares estimates from (11). Under Assumption 1 we have as (N, T ) →
∞


̂(i) = 
(i) + Op(T
−1/2) + Op(δ

−2
NT ).

Proof: The proof is given in Breitung and Tenhofen (2008, Lemma 1).
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To simplify notation, we focus on the AR(1) model uit = 
iui,t−1 + εit.

The extension to AR(p) models is straightforward but implies a considerable

additional notational burden.

The LM statistic can be written as

s̃i = ψ′
i,21Ψ

−1
i,22ψi,21/ψi,11,

where

ψi,21 = G̃′
i,2M eGi

ε̃i

Ψi,22 = G̃′
i,2M eGi

G̃i,2

ψi,11 = ε̃′iM eGi
ε̃i/T,

and

G̃i = [f̂2 − 
̂if̂1, . . . , f̂t − 
̂if̂T−1]
′

G̃i,2 = [0, . . . , 0, f̂T ∗+1 − 
̂if̂T ∗ , . . . , f̂t − 
̂if̂T−1]
′

ε̃i = [u2 − 
̂iu1, . . . , uT − 
̂iuT−1]

M
eGi

= IT−1 − G̃i(G̃
′
iG̃i)

−1G̃′
i.

Using Lemma A.2 (ii) and Lemma A.3, we obtain:

1

T
G̃′

i,2G̃i =
1

T

T∑
t=T ∗+1

(f̂t − 
̂if̂t−1)(f̂t − 
̂if̂t−1)
′

=
1

T

T∑
t=T ∗+1

(f̂t − 
if̂t−1)(f̂t − 
if̂t−1)
′ + Op

(
1√
T

)
+ Op

(
1

δ2
NT

)

=
1

T

T∑
t=T ∗+1

(ft − 
ift−1)(ft − 
ift−1)
′ + Op

(
1√
T

)
+ Op

(
1

δ2
NT

)
,

1

T
G̃′

iG̃i =
1

T

T∑
t=2

(ft − 
ift−1)(ft − 
ift−1)
′ + Op

(
1√
T

)
+ Op

(
1

δ2
NT

)
,
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and

1√
T

G̃′
iε̃i =

1√
T

T∑
t=2

(f̂t − 
̂if̂t−1)(uit − 
̂iui,t−1)

=
1√
T

T∑
t=2

[f̂t − 
if̂t−1 + (
i − 
̂i)f̂t−1](εit + (
i − 
̂i)ut−1)

=
1√
T

T∑
t=2

(f̂t − 
if̂t−1)εit + A + B1 + B2 + C,

where û·t = [û1t, . . . , ûNt]
′,

A =
1√
T

T∑
t=2

(
i − 
̂i)f̂t−1εit

=
√

T (
i − 
̂i)

(
1

T

T∑
t=2

ft−1εit + (f̂t−1 − ft−1)εit

)

=
√

T (
i − 
̂i)

(
1

T

T∑
t=2

ft−1εit + Op(δ
−2
NT )

)

= Op(1)
[
Op(T

−1/2) + Op(δ
−2
NT )

]
.

Next, using Lemma A.2 (iii) we obtain

B1 =
1√
T

(
i − 
̂i)
T∑

t=2

f̂tut−1

=
√

T (
i − 
̂i)

[
1

T

T∑
t=2

ftui,t−1 + Op(δ
−2
NT )

]
= Op(1)

[
Op(T

−1/2) + Op(δ
−2
NT )

]
and, similarly,

B2 = − 1√
T


i(
i − 
̂i)
T∑

t=2

f̂t−1ut−1

= Op(T
−1/2) + Op(δ

−2
NT ).
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For the last term we have

C =
1√
T

(
i − 
̂i)
2

T∑
t=2

f̂t−1ut−1

=
[
Op(T

−1) + Op(T
−1/2δ−2

NT ) + Op(δ
−4
NT )

](
1√
T

T∑
t=2

f̂t−1ut−1)

)
= Op(δ

−2
NT ).

Using Lemma A.2 (iii) it follows that

1√
T

T∑
t=2

(ft − 
ift−1)εit + Op

(√
T

δ2
NT

)
.

Collecting these results gives

T−1/2ψ1,21 =
1√
T

G′
i,2MGi

εi + Op

(
1√
T

)
+ Op

(√
T

δ2
NT

)
,

where

Gi = [F2 − 
iF1, . . . , ft − 
ifT−1]
′

Gi,2 = [0, . . . , 0, fT ∗+1 − 
ifT ∗ , . . . , ft − 
ifT−1]
′

MGi
= IT−1 − Gi(G

′
iGi)

−1G′
i.

Furthermore

1

T
Ψi,22 =

1

T
G′

i,2MGi
Gi,2 + Op

(
1√
T

)
+ Op

(
1

δ2
NT

)
and

1

T
ψi,11 =

1

T
ε′iMGi

εi + Op

(
1√
T

)
+ Op

(
1

δ2
NT

)
.

It follows that

s̃i = s̃0
i + Op

(
1√
T

)
+ Op

(√
T

δ2
NT

)
,

where

s̃0
i =

ε′iMGi
Gi,2(G

′
i,2MGi

Gi,2)
−1G′

i,2MGi
εi

ε′iMGi
εi/T

.

Under Assumption 2 we therefore have s̃i
d→ χ2

(r) as N, T → ∞ and√
T/N → 0.
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Table 1: Average of the estimated number of common factors

T = 50 T = 100 T = 200 T = 300
b N = 50

0.0 1.000 1.000 1.000 1.000
0.3 1.003 1.001 1.000 1.000
0.5 1.100 1.197 1.325 1.398
0.7 1.436 1.729 1.894 1.945
1.0 1.804 1.965 1.999 1.999
b N = 100

0.0 1.000 1.000 1.000 1.000
0.3 1.000 1.000 1.002 1.001
0.5 1.126 1.369 1.739 1.866
0.7 1.525 1.888 1.994 2.000
1.0 1.881 1.995 2.000 2.000
b N = 200

0.0 1.000 1.000 1.000 1.000
0.3 1.001 1.002 1.032 1.074
0.5 1.166 1.531 1.968 1.998
0.7 1.596 1.969 2.000 2.000
1.0 1.926 2.000 2.000 2.000
b N = 300

0.0 1.000 1.000 1.000 1.000
0.3 1.002 1.008 1.063 1.274
0.5 1.165 1.657 1.992 2.000
0.7 1.620 1.980 2.000 2.000
1.0 1.942 2.000 2.000 2.000

Note: This table presents the average of the estimated number of common
factors selected by the ICp1 criterion suggested of Bai and Ng (2002). The
results are based on 1000 replications of the model with a structural break of
size b.
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Table 2: Empirical sizes

T = 50 T = 100
N LR∗ W∗ LM∗ LR∗ W∗ LM∗

20 0.080 0.085 0.052 0.056 0.049 0.040
50 0.070 0.088 0.045 0.072 0.070 0.046
100 0.065 0.123 0.041 0.085 0.089 0.052
150 0.074 0.157 0.049 0.069 0.089 0.044
200 0.073 0.169 0.046 0.064 0.086 0.041

T = 150 T = 200
N LR∗ LM∗ W∗ LR∗ LM∗ W∗

20 0.067 0.043 0.058 0.086 0.064 0.075
50 0.072 0.039 0.058 0.071 0.050 0.061
100 0.072 0.052 0.065 0.073 0.047 0.061
150 0.073 0.042 0.072 0.071 0.056 0.072
200 0.075 0.046 0.078 0.068 0.051 0.075

Note: The entries report the rejection frequencies obtained from 1000
replications of the factor model without structural break. The test statis-
tics are the standardized sum of the individual test statistics. The nom-
inal size is 0.05 and the critical values ±1.645 are applied.

Table 3: Size adjusted power against a break at T ∗ = T/2

N = 50, T = 100, N = 100, T = 100
b LR∗ W∗ LM∗ LR∗ W∗ LM∗

0.10 0.123 0.186 0.179 0.153 0.272 0.280
0.15 0.259 0.435 0.403 0.387 0.647 0.646
0.20 0.446 0.707 0.688 0.698 0.924 0.922
0.25 0.700 0.899 0.883 0.919 0.991 0.9930

N = 100, T = 200, N = 200, T = 100
b LR∗ W∗ LM∗ LR∗ W∗ LM∗

0.10 0.343 0.624 0.617 0.283 0.393 0.426
0.15 0.818 0.965 0.966 0.625 0.844 0.876
0.20 0.985 1.000 1.000 0.895 0.989 0.989
0.25 1.000 1.000 1.000 0.996 1.000 1.000

Note: The entries report the rejection frequencies obtained from 1000
replications of the factor model with a structural break of size b. See
table 2 for further information.
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Table 4: Empirical sizes in the dynamic model: Joint tests


 LM(stat) LM(dyn) HAC(4) HAC(12) HAC0(4) HAC0(12)
N = 100, T = 100

0.2 0.662 0.055 0.847 0.994 0.130 0.079
0.5 0.999 0.055 0.977 1.000 0.537 0.202
0.9 1.000 0.056 0.978 0.991 0.909 0.645
–0.2 0.000 0.052 0.428 0.958 0.020 0.028
–0.5 0.000 0.039 0.129 0.860 0.000 0.006

 N = 100, T = 500

0.2 0.726 0.047 0.311 0.523 0.092 0.064
0.5 1.000 0.046 0.541 0.616 0.272 0.111
0.9 1.000 0.049 0.961 0.884 0.885 0.355
–0.2 0.000 0.043 0.094 0.379 0.024 0.033
–0.5 0.000 0.050 0.032 0.273 0.007 0.027


 N = 100, T = 1000
0.2 0.726 0.056 0.192 0.296 0.080 0.057
0.5 1.000 0.058 0.328 0.371 0.188 0.084
0.9 1.000 0.059 0.864 0.663 0.740 0.252
–0.2 0.000 0.051 0.069 0.213 0.034 0.040
–0.5 0.000 0.046 0.032 0.153 0.012 0.028

Note: Entries report the empirical sizes of a joint test for a structural break at T ∗ =
T/2 computed from 1000 replications of the dynamic model without structural break.
The nominal size is 0.05. The column LM(stat) presents the rejection rates for an
LM test that ignores the serial correlation in the idiosyncratic component. LM(dyn)
indicates the test based on a GLS regression considered in Theorem 2. HAC(k)
denotes an OLS based test using robust (HAC) standard errors with truncation lag
computed from (13). HAC0(k) is the LM variant of the test statistic based on the
residuals of the restricted regression.
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Table 5: Empirical sizes in the dynamic model: Individual tests

N = 100, T = 100

 lmi(dyn) HAC(4) HAC(12) HAC0(4) HAC0(12)

0.2 0.050 0.106 0.149 0.051 0.031
0.5 0.051 0.141 0.174 0.072 0.037
0.9 0.050 0.261 0.247 0.160 0.056
–0.2 0.049 0.078 0.127 0.037 0.026
–0.5 0.048 0.056 0.108 0.028 0.022

 N = 100, T = 500

0.2 0.050 0.068 0.081 0.054 0.048
0.5 0.049 0.083 0.088 0.066 0.053
0.9 0.049 0.143 0.113 0.116 0.067
–0.2 0.049 0.056 0.073 0.044 0.045
–0.5 0.050 0.046 0.068 0.037 0.043


 N = 100, T = 1000
0.2 0.050 0.062 0.069 0.053 0.050
0.5 0.050 0.112 0.090 0.096 0.064
0.9 0.050 0.112 0.090 0.096 0.064
–0.2 0.049 0.053 0.065 0.046 0.047
–0.5 0.049 0.047 0.061 0.041 0.045

Note: This table presents the average rejection rates of the individual
tests. The nominal size is 0.05 and the critical values are taken from a
χ2 distribution with r = 1 degrees of freedom. See Table 4 for further
information.
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Table 6: Tests for structural breaks (US data)

r = 6 r = 7 r = 8 r = 9
LM statistic 2238.1 2643.9 2945.4 3273.5
p-value 0.000 0.000 0.000 0.000
log-like 40014 42446 43607 44217
rej % LM 0.48 0.52 0.54 0.55
rej % HAC 0.50 0.58 0.64 0.62

Note: The first row denotes the LM statistic of a joint test for a struc-
tural break at 1984(i) for different numbers of factors r. The second row
present the respective p-values with respect to a χ2(rN) distribution.
“log-like” is the log-likelihood conditional on the estimated factors. “rej
% LM” is the relative rejection rate of the N individual LM statistics
and “rej % HAC” is the respective rejection rate of the OLS based test
procedure with HAC standard errors, where the truncation lag results
from (13) with k = 4.

Table 7: Tests for specific variables (US data)

Variable p-value Commonality
Industrial production (IP) 0.06 1.00
IP durable cons. goods 0.04 1.00
IP non-dur. cons. goods 0.72 0.99
IP durable mat. goods 0.00 1.00
IP non-dur. mat. goods 0.04 0.98
Inventory 0.00 0.50
Consumption 0.15 1.00
CPI 0.00 0.99
FFR 0.01 0.74
Cons. expectations 0.00 0.67
10y gvt bond yields 0.01 0.71
S&P 500 0.03 0.95
Effective exch. rate 0.00 0.76
Commodity prices 0.12 0.49

Note: The p-values are the marginal significance levels of the individual
LM test. The commonality is equivalent to the R2 of the regression of
the variable on the common factors. Variables were transformed as in
Stock and Watson (2005).
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Table 8: Tests for structural breaks (r = 9)

Maastricht EMU
LM statistic 2546.1 3426.1
p-value 0.000 0.000
log-like 25979 27494
rej % LM 0.18 0.40
rej % HAC 0.63 0.60

Note: See Table 6.

Table 9: Tests for specific variables

Country Maastricht EMU # variables
DEU 0.14 0.31 42
BEL 0.13 0.19 16
ESP 0.25 0.67 24
FRA 0.03 0.36 33
ITA 0.26 0.48 27
NLD 0.24 0.38 21
Variables
Ind. prod. 0.24 0.31 62
Inflation 0.21 0.44 43
Mon. and fin. var. 0.15 0.53 59
Labor markets 0.17 0.39 23
Surveys 0.05 0.23 22

Note: This table presents the rejection frequencies for various
groups of variables. The last column presents the number of vari-
ables in the group.
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Figure 1: LM test statistic (US data)
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Note: The 5% critical value is 1269.3. The vertical line presents the supposed starting
date of the Great Moderation. Dotted line: LM statistic based on constant variances.
Solid line: LM statistic that assumes a break in variances.

42

41



Figure 2: Relative frequencies of rejections (US data)
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Note: The vertical line presents the supposed starting date of the Great Moderation.
Dotted line: LM statistic based on constant variances. Solid line: LM statistic that
assumes a break in variances.

43

42



Figure 3: Log likelihood (US data)
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Note: Dotted line: LM statistic based on constant variances. Solid line: LM statistic
that assumes a break in variances.
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Figure 4: LM test statistic (EMU data)
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Note: Dotted line: LM statistic based on constant variances. Solid line: LM statistic
that assumes a break in variances.
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Figure 5: Relative frequencies of rejections (EMU data)
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Note: The 5% critical value is 1269.3. The first vertical line indicates the signing date
of the Maastricht treaty and the second vertical line marks the starting date of the EMU.
Dotted line: LM statistic based on constant variances. Solid line: LM statistic that
assumes a break in variances.
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Figure 6: Log likelihood (EMU data)
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Note: The first vertical line indicates the signing date of the Maastricht treaty and the
second vertical line marks the starting date of the EMU. Dotted line: LM statistic based
on constant variances. Solid line: LM statistic that assumes a break in variances.
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