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Abstract

This paper explores an algebraic relationship between two types of coefficients for a regression
with several predictors and a group structure. In a general regression, the regression coefficients
are allowed to be group-specific, the restricted regression imposes constant coefficients. The key
result is that the restricted coefficients are not necessarily a convex average of the group-specific
coefficients. In the context of regression with two independent variables and two groups, I show
that the coefficient of a regressor estimated from pooled data can be negative, even though the
separately estimated coefficients are positive in each group, providing an additional example of
Simpson’s paradox.
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1 Introduction

It is well understood that adding a third variable to a bivariate regression can change the sign of

the slope coefficient. Indeed this is a common definition of Simpson’s paradox Pearl (2014).1 An

alternative definition is broader: Simpson’s paradox refers then to a correlation that appears in

several groups of data but disappears or reverses when the groups are combined (Simpson, 1951).

The two definitions are closely related, since we can declare each specific value of the third variable

a group and “control for confounding” by running a separate bivariate regression for each of them.

The paradox emerges if the signs are opposite from that of a single bivariate regression on the entire

sample.

The purpose of this paper is to extend the scope of the paradox and provide an additional

explanation for sign reversal when comparing combined and group-level results, for the case where

there is more than a single regressor of interest, as in most practical applications: here, the focus will

be on group level heterogeneity, unimportant in the conventional argument above, but important

in a multivariate context. Heterogeneity manifests itself by varying coefficients in separate group-

level regressions. If, instead, a single regression is used for the pooled data, without allowing for

group-level interactions, coefficients can display sign reversal, simply due to the way multivariate

regression combines group-level coefficients. As it turns out, one of the surprising consequences is

that adding a variable to a bivariate regression can lead to a sign reversal even if that regressor is

unrelated to the outcome. This is impossible under standard omitted variable bias.

I provide general conditions under which neglected heterogeneity can give rise to sign reversal, or

other less extreme forms of “heterogeneity bias”, such as pooled coefficients that are a non-convex

combination of the group specific ones. When talking about “bias”, I treat the group specific

coefficients as meaningful, perhaps also from a causal perspective, and similarly the benchmark

of an average effect obtained by weighting the group-level effects by the respective group shares.

This seems reasonable in many but not all applications. In the language of causal modeling, it

requires the group variable to be exogenous, as would be the case if it is a pre-treatment variable

(see Pearl, 2014, for further discussion). However, the results I derive are based on algebraic

properties of regression and as such remain valid independently of any notion of causality and

1As Pearl (2014) points out, the notion of paradox comes from the fact that people tend to interpret any correlation

as a causal relationship, whereas a serious consideration of the two involved regressions would show that at most one

of them can be causal.
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“correct specification”.

To fix ideas, I consider a stylized regression with two regressors, x and z and a group indicator w

that, for simplicity of exposition, takes only two values, 0 and 1. Specifically, consider the following

three regressions: The pooled, or aggregate, regression without heterogeneity is

yi = b0 + bxxi + bzzi + bwwi + ei (1)

where wi ∈ {0, 1} and xi and zi can be scaled arbitrarily. The two group-specific regressions are

y0i = b00 + b0xx
0
i + b0zz

0
i + e0i (2)

for wi = 0, and

y1i = b10 + b1xx
1
i + b1zz

1
i + e1i (3)

for wi = 1.2 Below, I establish algebraic results for the relation between the coefficient of x in the

pooled regression, bx in (1), and the four group-specific coefficients b0x, b1x, b0z, and b1z.

Many applications in empirical economics can be condensed to this framework. For example,

in a panel data context, assume that there are two years of data, and let a year corresponds to

a group. Estimation is possible year-by-year, or by pooling the data over the two years.3 If a

few individual units, say firms, are observed for many time periods, (2) and (3) can be seen as a

set of seemingly unrelated regressions (e.g. Zellner, 1962) that are estimated separately for each

unit. Coefficient heterogeneity simply means that there is variation in firm level coefficients, and

one could be tempted to run a pooled firm level fixed effects regression in order to obtain average

effects (see for example Campello et al., 2019, and Breitung and Salish, 2021). Another application

is the estimation of treatment effects in a randomized controlled trial with several treatment arms,

when treatment takes place at several sites and site-specific factors both confound and modify the

treatment effects (e.g., Goldsmith-Pinkham et al., 2022).

The problem addressed in this paper is related to, but different from a sizeable literature on

heterogeneous partial effects and the question what linear constant-coefficients regression estimates

2As is well known, an equivalent representation is obtained from a fully interacted regression yi = a0 + a1xi +

a2zi + a3wi + a4xiwi + a5ziwi + ui, where, b00 = a0, b0x = a1, b0z = a2, b10 = a0 + a3, b1x = a1 + a4, and b1z = a2 + a5.

3Pooling is not limited to genuine panel data, it can also be applied to repeated cross-sections. The regression

properties of aggregation, when repeated observations on the same unit are collapsed to individual means in order to

run a between regression, or when going from monthly to annual data, are not considered in this paper.
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in such a case. For example, if regressors are normally distributed, the regression slope coincides

with the average partial effect for a general class of non-linear conditional expectation functions

(Stoker, 1986). Angrist (1998) shows that with effect heterogeneity in a model with a scalar binary

treatment and a single discrete confounder, OLS gives a variance-weighted average, thus precluding

a Simpson’s reversal (see also Yitzhaki, 1996).

Apart from least squares regression, numerous covariate adjustments methods exist that ac-

tually recover the average treatment effect under the conditional independence assumption (see

Wooldridge and Imbens, 2009, for a survey of such methods). For continuous, and potentially

multiple, regressors of interest, methods for consistent estimation of average partial effects are dis-

cussed in Wooldridge (2004) and Graham and Pinto (2022), among others. Goldsmith-Pinkham et

al. (2022) show how neglected heterogeneity in the effect of one regressor can “contaminate” the

effect estimation of another one.

While most of this literature is model-based, the current paper solely exploits algebraic properties

of ordinary least squares. Thus, results hold regardless of model assumptions, which may or may

not be valid. Also, they hold for purely descriptive regressions, and for any sample size as they do

not rely on asymptotic properties. On the other hand, this is not a framework to address questions

of causality, population estimands and efficiency.

2 Linear regression with group-specific heterogeneity

2.1 Matrix-weighted averaging

Before considering the two-regressors two-groups case in detail, it is useful to recall a general result

on pooled regressions, and its representation as a matrix-weighted average of subset regressions.

Suppose that there are K regressors and two groups of size N0 and N1, respectively. Let y0 be the

(N0× 1) vector of outcomes in group 0, and y1 be the (N1× 1) vector of outcomes in group 1. The

regression coefficient in group 0 is given by

b0 = (X ′0X0)
−1X0y0

where the group-specific constant has been partialed out, and therefore X0 is an (N0 ×K) matrix

with typical element {xik − x̄0k}, i = 1, . . . N0, k = 1, . . .K. Similarly, for group 1,

b1 = (X ′1X1)
−1X1y1
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with typical X1 element {xik − x̄1k}. Heterogeneity means that b0 6= b1. For the pooled regression,

assume that data are sorted, such that the first N0 observations pertain to group 0 and observations

N0 + 1, . . . , N0 + N1 to group 1. Correspondingly, we can define the vertically stacked outcome

vector and the vertically stacked regressor matrix as

y =

 y0

y1

 and X =

 X0

X1

 ,

where again, regressors are expressed as deviations from group specific means, which corresponds

to a pooled regression that includes an indicator variable for group membership and thus allows

for a group-specific constant.4 The pooled coefficient vector for the slopes of such a regression can

then be written as

b = (X ′X)−1X ′y

= (X ′0X0 +X ′1X1)
−1(X ′0 y0 +X ′1 y1)

= (H0 +H1)−1H0b0 + (H0 +H1)−1H1b1 (4)

where H0 = X ′0X0, H
1 = X ′1X1, b

0 = (H0)−1X ′0 y0 and b1 = (H1)−1X ′1 y1. Hence, the overall

vector of regression coefficients is a matrix-weighted average of subset specific regression coefficients.

The weights are proportional to the group-specific variance-covariance matrices of the regressors.

This is a mechanical property of ordinary least squares. In the context of Bayesian updating

for the normal linear model with homoskedastic errors, H0 is referred to as the precision matrix

of the prior location vector b0, while H1 is the precision matrix of the likelihood location vector

b1. Chamberlain and Leamer (1976) study the properties of this type of information pooling,

with the goal of deriving bounds for the posterior location parameter when the prior precision

matrix is unknown, and thus a kind of sensitivity analysis. Their key result is that without further

restrictions on the prior precision matrix (such as being diagonal, or proportional to H1), the

posterior coefficient can lie essentially anywhere. The reason is that a matrix-weighted average of

vectors does not mean that element-by-element, the pooled coefficients lie algebraically between b0

and b1.

In the present context, H0 is not arbitrary but rather an observed matrix, and therefore, it

becomes possible to study the specific properties of the element-by-element weighting and thus the

4The full regression therefore has 2+K coefficients, but the focus here is on the slopes, as obtained after partialing

out the two constants.
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relationship between elements of b and the heterogeneous coefficients collected in b0 and b1 for a

given dataset. Based on the results by Chamberlain and Leamer (1976), it is to be expected that

depending on H0 and H1, there can be situations where elements of b are arbitrarily far away from

a simple convexly weighted average of the corresponding elements in b0 and b1. The objective of

this paper is to derive conditions for such non-convex weighting.

I proceed in two steps. First, I consider the case of a single regressor and thereby replicate

results known from the literature (e.g. Angrist, 1998). In a second step, I extend the analysis

to the case of two regressors, and I will show that counterintuitive results are possible, including

Simpson’s reversals as defined above.

2.2 Special case: A single regressor

With a single x and a binary group variable w, the pooled model can be written as

yi = b0 + bxxi + bwwi + ei (5)

Directly applying (4) from the previous section, we obtain bx as a scalar average

bx =
(x0 − x̄0)′(x0 − x̄0) b0x + (x1 − x̄1)′(x1 − x̄1) b1x

(x0 − x̄0)′(x0 − x̄0) + (x1 − x̄1)′(x1 − x̄1)

=
N0σ̂

2
x,w=0

N0σ̂2x,w=0 +N1σ̂2x,w=1

b0x +
N1σ̂

2
x,w=1

N0σ̂2x,w=0 +N1σ̂2x,w=1

b1x

where b0x is the coefficient in a regression of yi on xi in group wi = 0, b1x is the corresponding

coefficient for group wi = 1, and

σ̂2x,w =
1

Nw

Nw∑
i=1

(xi − x̄w)2 w ∈ {0, 1}

are the within group variances of the regressor.

Hence, the pooled coefficient bx is not the “average treatment effect”, defined asN0/(N0+N1)b
0
x+

N1/(N0 + N1)b
1
x. However, it is a convex average of b0x and b1x. The weights depend on relative

group sizes, N0 and N1, as well as on the within-group variances, σ̂2x,w=0 and σ̂2x,w=1. If the within-

group variances are identical, the pooled model indeed estimates the group-size weighted average.

A closely related population version of this result is given in Angrist (1998) who considers the

reverse situation where the regression coefficient of interest is that of a binary treatment indicator

and a multivalued, discrete or continuous, confounder is partialed out. Unfortunately, as the

next subsection will show, this simple weighting does not generalize when there are two or more

regressors.
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3 Results for two regressors and two groups

With two regressors of interest, from now on labeled x and z, and the same group indicator as

before, the pooled regression takes the form:

yi = b0 + bxxi + bzwi + bwwi + ei for i = 1, . . . , N (6)

where ei is a regression residual such that Cov(ei, xi) = Cov(ei, zi) = Cov(ei, wi) = 0. The

regressors x and z can be binary, discrete, or continuous, and it is assumed that there are two

groups only. Regression (6) allows the constant to shift depending on wi but imposes homogeneous

slopes bx and bz. After partialing out the constant and wi, we obtain the trivariate regression

yi = bx(xi − x̄w) + bz(zi − z̄w) + ui

where x̄0, x̄1, z̄0 and z̄1 are group-specific means. Define the following quantities:

S0
xx =

N0∑
i=1

(xi − x̄0)2 S0
zz =

N0∑
i=1

(zi − z̄0)2

S0
xy =

N0∑
i=1

(xi − x̄0)yi S0
zy =

N0∑
i=1

(zi − z̄0)yi

S0
zx =

N0∑
i=1

(zi − z̄0)(xi − x̄0)

and same for S1
xx, S

1
zz, etc. The pooled least squares coefficients b = (bx, bz)

′ in (6) are obtained as

b =

 S0
xx + S1

xx S0
xz + S1

xz

S0
zx + S1

zx S0
zz + S1

zz

−1 S0
xy + S1

xy

S0
zy + S1

zy

 (7)

As in (4), we can substitute the two identities Sw
xy

Sw
zy

 =

 Sw
xx Sw

xz

Sw
zx Sw

zz

 bw for w ∈ {0, 1} (8)

defining the group-specific, potentially heterogeneous, coefficients b0 and b1 to express b as a matrix-

weighted average of the group-level coefficients:

b = (H0 +H1)−1(H0 b0 +H1 b1) where Hw =

 Sw
xx Sw

xz

Sw
zx Sw

zz


In order to derive the element-by-element relationship between the two elements of b, bx and bz, and

the four group-level coefficients b0x, b1x, b0z and b1z, we need to solve the three systems of equations
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described by (7) and (8). For example, it is straightforward to show that the first element of the

pooled regression vector, bx is given by

bx =
(S0

zz + S1
zz)(S

0
xy + S1

xy)− (S0
xz + S1

xz)(S
0
zy + S1

zy)

(S0
xx + S1

xx)(S0
zz + S1

zz)− (S0
xz + S1

xz)
2

(9)

Similarly, the group-level coefficients can be written as

bwx =
Sw
zzS

w
xy − Sw

xzS
w
zy

Sw
xxS

w
zz − Sw

xzS
w
xz

(10)

and results for bz, b
0
z and b1z follow from symmetry.

3.1 Decomposing the regression coefficient bx

In the Appendix, I show how to express bx as a relatively simple function of the four group-level

coefficients. In particular, the numerator of (9) is equal to

(S0
xxS

0
zz − S0

xzS
0
xz + S1

zzS
0
xx − S1

xzS
0
xz)b

0
x + (S1

xxS
1
zz − S1

xzS
1
xz + S0

zzS
1
xx − S0

xzS
1
xz)b

1
x

+(S1
zzS

0
xz − S1

xzS
0
zz)b

0
z + (S0

zzS
1
xz − S0

xzS
1
zz)b

1
z

To obtain the aggregate bx coefficient, we need to divide this numerator by the original denominator

(S0
xx + S1

xx)(S0
zz + S1

zz)− (S0
xz + S1

xz)
2. Comparing coefficients, we can see that

bx =
Ab0x + Bb1x + C(b1z − b0z)

A+ B
(11)

where

A = S0
xx(S0

zz + S1
zz)− S0

xz(S
0
xz + S1

xz)

B = S1
xx(S0

zz + S1
zz)− S1

xz(S
0
xz + S1

xz)

and

C = S0
zzS

1
xz − S0

xzS
1
zz = S0

zzS
1
zz(g1 − g0)

and where g1 and g0 are the slopes of a regression of x on z in group 1 and group 0, respectively.

The decomposition (11) makes it clear that bx is in general not a simple convex average of

b0x and b1x. The aggregation of heterogeneous group-specific coefficients depends on three weights,

A/(A + B) and B/(A + B) for the own coefficients b0x and b1x, and C/(A + B) for heterogeneity in

the z-coefficients. The weights in turn are functions of products of variances and covariances of x
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and z in the two groups. Thus they do not depend on the outcome at all, and the weights can in

principle be computed from the “design matrix” of regressors, before the data are collected. Of

course, the heterogeneous coefficients themselves depend on the outcomes, and thus are not known

before those data are available.

As I will show, each of the weights can be negative or greater than one. For reasons, that will

become clear below, I refer to the first two weights as covariance weights. C/(A+ B) on the other

hand is a heterogeneity spillover weight. As (11) shows, non-convex weighting can occur even if

there is no heterogeneity in the z-coefficients, and, more surprisingly, even if the coefficient of z is

zero in both groups.

3.2 Covariance weighting

To understand the interpretation of the terms A and B, consider the auxiliary regression of x on

z and w for the pooled data. The slope after partialing out of w is equal to Sxz/Szz, and the

covariance between residuals ui = (xi − x̄w)− Sxz/Szz(zi − z̄w) and xi for group 0 can be written

as

Cov0(ui, xi) =
1

N0

N0∑
i=1

(
(xi − x̄0)−

Sxz
Szz

(zi − z̄0)
)
Xi

=
S0
xx(S0

zz + S1
zz)− (S0

xz + S1
xz)S

0
xz

N0(S0
zz + S1

zz)
=

A
N0Szz

Thus, A is proportional to a group-specific covariance. This is a fundamental difference to the

single regressor case, discussed in Section 2.2, where A was proportional to a conditional variance,

and thus necessarily positive.

The weighting in the two-regressor case depends on covariances rather than variances, because

ui = xi − x̂i is not orthogonal to x̂i in the wi = 0 subset, and hence Cov(xi − x̂i, xi|wi = 0)

6= Cov(xi − x̂i, xi − x̂i|wi = 0). Subset-orthogonality of ui and x̂i fails, because the auxiliary

regression omits the interaction between z and w and is thus not “saturated” in W .5 Adding the

interaction would be equivalent to separate group-wise regressions of x on z, which would restore

orthogonality of ui and x̂i in each group. But this does not correspond to the regression equation

(6) under consideration.

We can now state conditions under which the covariance, and hence A and the weight A/(A+B),

5Angrist (1998) also noted that the variance-weighting result for the case of a single predictor requires a partialing

out regression saturated in the confounder. By definition, a binary confounder as in (5) satisfies this requirement.
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are negative. Since A = S0
xxSzz − S0

xzSxz, we obtain

A < 0 ⇐⇒ 1− S0
xzSxz
S0
xxSzz

< 0 ⇐⇒ Sxz
Szz

S0
xz

S0
xx

> 1 (12)

Similarly

B < 0 ⇐⇒ 1− S1
xzSxz
S1
xxSzz

< 0 ⇐⇒ Sxz
Szz

S1
xz

S1
xx

> 1 (13)

For instance, A is negative if the product of the full-sample x-on-z-and-w regression slope and the

group 0 (inverse) z-on-x regression slope exceeds 1. This can be easily checked in the data. A

negative A implies that the weight A/(A+ B) is negative, since A+ B = SxxSzz − S2
xz > 0 due to

the Cauchy-Schwarz inequality. It also follows that either A or B can be negative, but not both,

as their sum must be positive.

A necessary and sufficient conditions for convex weighting is that both A and B are positive.

This is for example the case if the reverse regression slopes Sw
xz/S

w
xx are equal in the two groups.

The argument is by contradiction: suppose S0
xz/S

0
xx is such that (12) holds. With equal slopes,

(13) holds as well, but this is not possible because A and B cannot be both negative. Hence,

with equal slopes, A and B must be both positive. If x and z are uncorrelated in both groups,

A/(A+B) = S0
xx/(S

0
xx +S1

xx) and the weighting is proportional to the within group variances and

hence always convex.

An illustration using simulated data

Consider the following generation of pseudo random numbers: There are two groups of equal size,

N0 = N1 = 1000; z is drawn from a standard normal distribution in both groups. In group 0,

x0i = z0i + 0.1 × Normal(0, 1); in group 1, x1i = θrz
1
i + 0.1 × Normal(0, 1), where θr increases in

steps of 0.01 from -4 to +4. Figure 1 plots, for each value of θr, the implied covariance weights

A/(A + B) and B/(A + B) against the implied slope of the pooled partialing out regression of

x on z and w. For example, for θr = 1.1, we obtain S0
xz/S

0
xx = 0.997, Sxz/Szz = 1.048, and

A/(A + B) = −1.780. Figure 1 also shows the pooled slope coefficient bx (solid black line), based

on outcome data generated from the process y = 0.5x+ xw. For θr = 1.1, it is equal to 3.280.

The data generating process (DGP) is quite simple. There is no effect of z on the outcome in

either group, and all that is changing is the covariance between x and z in the two groups. Yet the

relationship between Sxz/Szz and bx is non-monotonic, and asymmetrical around the value of 1,

which is approximately the value of the reverse regression of z on x in group 0. On the left of this

9



point, A/(A+B) is always positive, and B/(A+B) always below 1; on the right, A/(A+B) is always

negative, and B/(A + B) above 1. The pooled regression coefficients reflect the movements of the

weights and vary between a minimum of -1.3 to a maximum of +3.8. Thus, the pooled regression

of y on x, z and w produces highly misleading estimates of bx that can be far away from the group

size-weighted averages of the heterogenous x coefficients, here 1/2×0.5+1/2×1.5 = 1. Moreover, in

about 7% of simulated datasets, there is full Simpson’s reversal, i.e., a negative regression coefficient

when the two groups are combined, although both separately estimated coefficients are positive.

Figure 1: Covariance weighting of heterogeneous coefficients.

−1 0 1 2

−
2

−
1

0
1

2
3

4

Slope in regression of X on Z and W

A/(A+B)
B/(A+B)
b (y on x,z,and w)
b (y on x and w)

In this DGP, z is not part of the outcome equation, so it would be much better to just drop it

from the regression. The result would be a variance weighted combination of the two group-specific

coefficients, as described in Section 2.2. This average is depicted by the green, dotted line in Figure

1. Values are bounded between the estimated values of b0x and b1x, so approximately between 0.5

and 1.5, the two group-specific coefficients. The within-group-0 variance of x is always around 1

in this DGP, whereas the within-group-1 variance moves from (−4)2 + 0.12 to a minimum of 0.12

and back to 42 + 0.12. Hence, in the far left and right areas of the plot, almost all weight goes to

the group-1 coefficient of 1.5 based on the much higher within-group variance, and the minimum

is observed when θr = 0, which corresponds to a residual slope value of Sxz/Szz = 0.5.

Different x-coefficients would have been obtained for a regression of y on x, z, w and wz. In
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this case the partialing out equation is fully saturated in w, and weights are proportional to the

conditional-on-z-and-w covariances. For this specific DGP, conditioning on z means that variances

in both groups are equal to the variance of the error term, 0.11, and this symmetry implies that

the least squares coefficient, not shown in Figure 1, are close to 1, the average of 0.5 and 1.5, in all

cases.

The above example is admittedly somewhat unrealistic since x and z are highy collinear in both

subgroups. This gives coefficients for the reverse regressions of zw on xw that are close to the

inverse regression coefficients of xw on zw and, the conditions for negative values of A or B in (12)

and (13) are more likely satisfied.6 For example, if the errors were standard normal instead, all

covariance weights are between zero and one. In applications, the problem of non-convex weighting

due to negative covariances will therefore tend to arise less frequently than is suggested by the

illustration above, unless the degree of multicollinearity is high.

3.3 Heterogeneity spillover

From (11), the heterogeneity spill-over term is given by

C(b1z − b0z)
A+ B

=
S0
zzS

1
zz(g1 − g0)(b1z − b0z)

(S0
xx + S1

xx)(S0
zz + S1

zz)− (S0
xz + S1

xz)
2

where g1 and g0 are the slopes of a regression of x on z in group 1 and group 0, respectively, and

b1z and b0z are the coefficients of z in the group-wise trivariate regrssion of yw on xw and zw.

Since A+ B > 0, the sign of the spillover depends on the sign of the product (g1 − g0)(b1z − b0z).

It is positive if the group with the greater x-on-z slope has also the greater slope of z in the group-

specific outcome equation. Only the difference in slopes, i.e., the heterogeneity, matters for the

spillover effect, not the absolute values. Clearly, there is no spillover effect if either b0z = b1z (no

heterogeneity in the z-coefficient) or g1 = g0, or both.7

The two leading examples for g0 = g1 are as follows. First, x and z could be uncorrelated in

both groups, such that S0
xz = S1

xz = 0. This assumption is unlikely to hold in applications. For

example, in the case of two mutually exclusive treatment arms (when x and z are both dummy

6It does not matter whether the correlation between x0 and z0 is close to +1 or close to -1. For x0
i = −z0i + 0.1×

Normal(0, 1), the graphs in Figure 1 are mirrored at 0, such that extreme values of bx are observed for partialing-out

regression slopes of around -1.

7In the previous section, equality of the reverse regression slopes Sw
xz/S

w
xx was shown to be a sufficient condition

for the absence of negative covariance weighting.

11



variables), z = 0 whenever x = 1 and vice versa, so x and z cannot be uncorrelated. Moreover, in

many applications z is included exactly because it is a confounder, and thus necessarily correlated

with x.

A second possibility is that the regressors are the same in both groups, for example S0
zz = S1

zz etc.

A leading example is that of a stratified randomized controlled trial, where each group represents a

stratum, there are multiple treatment arms, and the proportion treated is equal in each stratum. In

this case, there is no heterogeneity spillover effect, and in fact, one can show that bx in a regression

of the outcome on the treatment indicators and strata fixed effects is equal to the average treatment

effect, i.e., the weighted mean of b0x and b1x, where weights are proportional to the strata shares.

In general, however, the aggregate x-coefficient in the regression of y on x, z and w depends

directly on the heterogeneous coefficients of the other regressor z. Thus, there can be a spill-over

of neglected heterogeneity, or a “contamination” as described recently by Goldsmith-Pinkham et

al. (2022). Even if both sub-sample coefficients of x are zero, the estimated overall effect bx can be

non-zero, because the z-coefficients matter as well, another possible reason for a Simpson’s reversal.

An illustration using simulated data

The following numerical example illustrates the potential for contamination bias. As in the simula-

tion results of the previous section, data are generated for two groups with N = 1000 observations

each. In the context of heterogeneity spillovers, it is important that the association between xw

and zw differs between the two groups. Therefore, I generate z0, z1, and z0 as i.i.d standard normal

random variables, whereas in group 1, x1 and z1 are related by the equation

x1 = g1z
1 +Normal(0, 1)

where g1 increases stepwise from −2 to +2. Since x0 and z0 are uncorrelated, g1 = g1−g0 indicates

the differential “response” of x to z in group 1 relative to group 0.8 Outcome data are generated

using the equation

y = 1 + w + 0.05x+ 2 z w

This means that the true coefficient of x, equal to 0.05, is the same in both groups, whereas there

is heterogeneity in the z coefficient, since b1z − b1z = 2.

8By construction, an increase in the absolute value of g1 also affects the group-1 variance of x, since Var(x1) =

g21 + 1. This explains the parabolic shape of the covarianc weights A/(A+ B) and B/(A+ B) in Figure 2.
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Figure 2: Heterogeneity spillover.
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Figure 2 shows the three aggregation weights, together with the pooled regression coefficient bx

(solid, back line), as functions of g1 − g0. We know that there is no heterogeneity in the effect of x

on y, so the covariance weights A/(A+B) and B/(A+B) do not contribute to departures of bx from

the true average coefficient of 0.05. Nevertheless, observed values of bx take values between -0.45

and +0.55 which is entirely due to heterogeneity spillovers. The large group-1 specific effect of z (in

combination with no effect in group 0) enters the estimation of bx with positive or negative weight,

depending on the sign of g1. In many instances, this leads to Simpson’s reversal: the coefficient of

x in separate groupwise regressions is positive in both groups, but negative, when the two groups

are combined.

4 Generalizations

In practice, one will rarely encounter an application with two regressors and two groups only, and

the question arises whether any algebraic results can be derived for more complex regressions.

In particular, what happens as the number of regressors or the number of groups is increased?

Increasing the number of groups does not change the nature of the argument. For instance, with
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K groups, where K ≥ 2, (4) generalizes to

b =

(
K∑
k=1

Hk

)−1 K∑
k=1

Hk bk

where the weight matrices Hk and the subset regression coefficients bk, k ∈ {1, . . . ,K} are defined

as before. It becomes, however, practically impossible to derive closed form results on the relation

between single elements of b and the single elements of the subset coefficients bk, as the number of

terms in the numerator and denominator of the element-wise equation increases quadratically in

the number of groups.

Similar issues arise if the number of groups is kept at two but the dimensionality of the regressor

vector is increased. While the trivariate problem studied above was manageable, higher order

regressions are less so. One exception is the case where the additional variables are group-wise

orthogonal to the included ones. In this case, the Hk matrices are block-diagonal, and the above

results still apply, as heterogeneity of the additional regressors cannot “spill over” to estimation of

the other coefficients when groups are combined in a single pooled regression. This consideration can

apply, for example, in a randomized controlled trial with multiple treatment arms, where additional

regressors are included simply in order to soak up residual variation and increase precision.

5 Real data examples

While it is straightforward to produce numerical examples of Simpson’s reversal due to neglected

heterogeneity in artificially generated data, it turns out that finding examples in actual applied

work is more difficult. In the end, such an extreme form of heterogeneity bias is perhaps more of

theoretical than of practical importance. However, non-convex weighting of heterogeneous coeffi-

cients occurs quite regularly when examining concrete dataset used in economics. In this section,

I provide two examples, both based on publicly available textbook datasets.

The first one is the estimation of an investment equation, using times series data collected for

two firms. This application fits exactly the theoretical decomposition results derived in this paper

since there are two regressors, capital stock and market value, and two groups, in this case the two

firms. Hence, it is possible to compute the covariance weights as well as the heterogeneity spillover

weights in order to trace out, why, as will be the case, the pooled value coefficient is not a convex

average of the firm-specific value coefficients.

The second example follows the spirit of the neglected heterogeneity problem, but applies it
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to a wage regression with many covariates, where either two subset regressions are run using

male/female as the group variable, or alternatively a combined regression with a male dummy only,

using data from the 1976 Current Population Survey. In order to document the combined effect

of potentially negative covariance weightings and heterogeneity spillovers, I report the implicit

overall own-coefficient weights, by comparing for each regressor the three coefficients bpooledk , bmale
k

and bfemale
k . It turns out that the implicit weights are outside the (0,1) interval for 6 out of 21

regression coefficients.

5.1 An investment equation (Grunfeld data)

This example considers time-series regressions of investment on market value and capital stock

for two major U.S. corporations at the time, Union Oil and General Motors, using historical data

for the years 1935-1954 obtained from the Grunfeld data distribution.9. The first two columns

of Table 1 show the heterogenous coefficients obtained from separate, firm-level regressions. The

coefficients of the combined regression that includes the two regressors as well as a firm dummy

(General Motors yes/no), are shown in the third column of the Table.

Table 1: Grunfeld investment equation

Dependent Union Oil General Motors Pooled

Variable: Investment b0 b1 b

Market value/100 8.75 11.93 12.27

Capital stock/100 12.38 37.14 35.98

General Motors (yes/no) -73.07

Constant -4.50 -149.78 -84.09

Number of observations 20 20 40

Generally speaking, Union Oil’s investment behavior seems to be less responsive to market value

and capital stock than that of General Motors. Here, bx = 12.27 correspond to the coefficient of

market capitalization in the combined regression. We see that it is a non-convex combination of

the firm level coefficients of b0x = 8.75 for Union Oil and b1x = 11.93 for General Motors.

We can now compute the two covariance weights as well as the heterogeneity spill-over weight

for this example. Specifically, A/(A + B) = 0.002, B/(A + B) = 0.998, and C/(A + B) = 0.014.

So the pooled coefficient puts almost all its weight on the General Motors coefficient for market

9See Kleiber and Zeileis (2010) for further information, and https://www.zeileis.org/grunfeld/ for a download link.
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capitalization. This in itself is an interesting result, since both firms contribute the same number of

observations to the combined sample, but the regression weights are highly unequal. If it was not

for heterogeneity spillover, the pooled coefficient would be a convex combination of the firm-level

coefficients, since both covariance weights are positive. However, there is heterogeneity spillover,

and it can be computed as C(b1z − b0z)/(A+B) = 0.014(37.14− 12.38) = 0.347. Adding 0.347 to the

otherwise convex combination of 11.923 yields the combined coefficient of 12.27 that is displayed

in Table 1.

5.2 Wages of men and women (CPS)

In the second example, I use a textbook dataset on wages and worker’s characteristics from

Wooldridge (2012), an extract from the 1976 Current Population Survey.10 The dependent vari-

able is the logarithm of average hourly earnings. Explanatory variables include years of education,

years of potential experience and its square, years with current employer and its square, number of

dependents, indicators for being nonwhite, married, living in a metropolitan area, as well as three

regional and nine industry dummies. Thus, there is a total of 21 regressors and the dataset pro-

vides 526 observations. As group variable of interest, I consider here the gender of the worker. This

choice is of course somewhat arbitrary, but wage related regression analyses that do not stratify by

gender have been conducted in the literature (e.g. Oreopolous, 2006).

To estimate the group-specific, heterogeneous coefficients, the sample is split and two regressions

are conducted, one using the subset of 274 men and one the using the subset of 252 women. Results

are shown in Table 2. For 6 out of 21 coefficients, the aggregation weights are non-convex. This is

seen in the last column of Table 2, where the equation bx = α×bmen
x +(1−α)×bwomen

x is solved for

α. In three instances, this weight is negative (for tenure, for the number of dependents and for the

wholesale dummy). In another three instances, it is greater than one (for tenure squared, services

and professional occupations). This can lead to quite counterintuitive results. For instance, if one

were to use these results to rank industries by their wage differentials, some reversals would occur.

For example, for both genders, services pays higher wages than trade, ceteris paribus. Yet, in the

aggregate, trade wages are estimated to lie above those of service workers.

10The data file ”wage1” can be obtained from the R-repository, package name ”wooldridge”: https://cran.r-

project.org/web/packages/wooldridge/wooldridge.pdf.
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Table 2: Wages of U.S. workers

Dependent variable: logarithmic hourly wage

b bmen bwomen weight

years of education 0.047 0.052 0.043 0.41

experience 0.025 0.032 0.020 0.44

experience squared -0.001 -0.001 0.000 0.48

tenure 0.022 0.025 0.024 -4.82

tenure squared 0.000 0.000 -0.001 1.06

nonwhite -0.004 0.051 -0.093 0.62

married 0.056 0.159 -0.054 0.52

number of dependents -0.022 -0.032 -0.022 -0.09

lives in SMSA 0.139 0.142 0.101 0.91

lives in north central U.S -0.058 -0.118 -0.023 0.37

lives in southern region -0.044 -0.112 0.013 0.46

lives in western region 0.055 0.018 0.067 0.26

construc. indus. -0.053 0.026 -0.081 0.26

nondur. manuf. indus. -0.107 -0.060 -0.109 0.03

trans, commun, pub ut -0.096 -0.073 -0.142 0.67

trade (wholesale or retail) -0.303 -0.271 -0.271 -771.9

services indus. -0.309 -0.255 -0.236 3.83

prof. serv. indus. -0.095 -0.172 0.013 0.58

profess. occupation 0.225 0.215 0.193 1.44

clerical occupation 0.038 0.115 0.022 0.18

service occupation -0.094 -0.087 -0.149 0.88

female -0.268

Note that this crude assessment of non-convex weighting cannot discriminate between the two

sources of non-convexity. So we do not know whether it is primarily due to heterogeneity spillover,

or to covariance-weighting of own heterogeneous coefficient contrasts, or both. Since the formulae

derived in this paper only dealt with the two-regressor-case, and not with a high-dimensional

regressor vector as presently, such a decomposition is not feasible.

6 Discussion

The purpose of this paper was pointing out an algebraic relationship for heterogeneous effects, not

to address inference. Estimated sub-group coefficients will never be identical in practice, which begs

the question whether their difference is “statistically significant”. Such tests are widely available

and straightforward to implement (e.g., Chow, 1960, Breitung and Salish, 2021). But in terms of

point estimates, the presented results hold regardless of the outcomes of such a test: estimated

coefficients in a regression with multiple regressors are not necessarily convex combinations of the
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group-level coefficients, and sign reversal is possible.

The non-convexity result follows directly from regression algebra: subgroup regression coeffi-

cients are aggregated using matrix level variance-covariance weighting, but this does not imply

element by element convex aggregation. With several regressors of interest, non-convex weighting

can arise due to two reasons. The first one is technical, since residuals in the partialing out equa-

tion cannot be mean independent, implying covariance-weighted averaging; the second reason is

substantive, as coefficients in general suffer from spill-overs, or contamination, from heterogeneous

coefficients of other regressors. In theory, such non-convex weighting can easily lead to a Simpson’s

reversal: a group-level association may switch its sign once the two groups are combined and a

single regression is performed.

An application to estimating a wage regression illustrated that non-convex weights arise quite

commonly in practice. When enforcing identical coefficients on 21 regressors, rather than letting

them vary by gender, six out of these 21 estimates do not lie between the female and the male

estimates.

As a remedy to these problems, one should better conduct group-wise (i.e. fully interacted)

regressions, from where one can obtain average coefficients, for example by weighting the heteroge-

neous coefficients by their relative group sizes. In the context of panel data, this is straightforward

as long as the number of years or the number of individual units is small. If the regression ad-

justment is made in order to satisfy a conditional independence assumption, the situation is more

complicated, as there are usually many confounders that may interact with the treatment effect in

complicated ways. For example, regarding the model considered in this paper, the treatment effect

of x could also vary with z, not only with w. In such cases, matching estimators can be preferable

as they avoid the weighting issues inherent to regression (see, e.g. Imbens and Wooldridge, 2009).

18



7 References

Angrist, J.D. (1998) Estimating the labor market impact of voluntary military service using social

security data on military applicants, Econometrica 66, 249-288.

Breitung, J. and N. Salish (2021) Estimation of heterogeneous panels with systematic slope vari-

ations, Journal of Econometrics 220, 399-415.

Campello, M., A. Galvao and T. Juhl (2019) Testing for slope heterogeneity bias in panel data

models, Journal of Business Economics and Statistics, 2019 (37), 749-760.

Chamberlain, G. and E.E. Leamer (1976) Matrix weighted averages and posterior bounds, Journal

of the Royal Statistical Society B, 38, 73-84.

Chow, G. (1960) Tests of equality between sets of coefficients in two linear regressions, Economet-

rica 28, 591-605.

Goldsmith-Pinkham, P., P. Hull and M. Kolesar (2022) Contamination bias in linear regressions,

Working Paper, https://arxiv.org/abs/2106.05024

Graham, B.S., and C.C. Pinto (2022) Semi-parametrically efficient estimation of the average linear

regression function, Journal of Econometrics 226 (1), 115-138.

Imbens, G.W. and J.M. Wooldridge (2009) Recent developments in the econometrics of program

evaluation, Journal of Economic Literature, 47, 5-86.

Kleiber C. and A. Zeileis (2010) The Grunfeld Data at 50, German Economic Review, 11(4),

404-417.

Oreopoulos, P. (2006) Estimating average and local average treatment effects of education when

compulsory schooling laws really matter, American Economic Review 96, 152-175.

Pearl, J. (2014) Comment: Understanding Simpson’s Paradox, The American Statistician, 68,

8-13.

Simpson, E. (1951) The interpretation of interaction in contingency tables, Journal of the Royal

Statistical Society, Series B 13, 238-241.

Stoker, T.M. (1986) Consistent estimation of scaled coefficients, Econometrica 54, 1461-1481.

19



Wooldridge, J.M. (2004) Estimating average partial effects under conditional moment indepen-

dence assumptions, CeMMAP working papers CWP03/04.

Wooldridge, J.M. (2012) Introductory Econometrics: A Modern Approach, 5th edition.

Yitzhaki, S. (1996) On using linear regressions in welfare economics, Journal of Business & Eco-

nomic Statistics, 14(4), 478-486.

Zellner, A. (1962) An efficient method of estimating seemingly unrelated regressions and tests for

aggregation bias, Journal of the American Statistical Association, 57, 348-368.

20



Appendix

Deriving equation (11)

All notation is as defined in the main text. It holds that bx is defined by the following fraction.

bx =
(S0

zz + S1
zz)(S

0
xy + S1

xy)− (S0
xz + S1

xz)(S
0
zy + S1

zy)

(S0
xx + S1

xx)(S0
zz + S1

zz)− (S0
xz + S1

xz)
2

(14)

The numerator can be re-written by multiplying out and re-ordering terms first into those

involving group 0 and group 1 only, followed by all mixed terms:

S0
zzS

0
xy − S0

xzS
0
zy + S1

zzS
1
xy − S1

xzS
1
zy + S0

zzS
1
xy + S1

zzS
0
xy − S0

xzS
1
zy − S1

xzS
0
zy

= (S0
xxS

0
zz − S0

xzS
0
xz)b

0
x + (S1

xxS
1
zz − S1

xzS
1
xz)b

1
x + S0

zzS
1
xy + S1

zzS
0
xy − S0

xzS
1
zy − S1

xzS
0
zy

where we have substituted

Sw
zzS

w
xy − Sw

xzS
w
zy = (Sw

xxS
w
zz − Sw

xzS
w
xz)b

w
x

using equation (10). Next, consider the mixed terms in the numerator of (14):

S0
zzS

1
xy + S1

zzS
0
xy − S0

xzS
1
zy − S1

xzS
0
zy

We can substitute all covariance terms involving y using short-long regression algebra. For instance

S1
xy = S1

xx(b1x + S1
xz/S

1
xxb

1
z)

where the term in parentheses is the coefficient of the bivariate subset regression of y1 on x1

expressed in terms of the direct effect of x1 plus the effect of 1 on z1 times the direct effect of z1 in

the trivariate regression. Hence, for instance,

S0
zzS

1
xy = S0

zzS
1
xxb

1
x + S0

zzS
1
xzb

1
z

etc.; In conclusion, the mixed terms can be written as

S0
zzS

1
xxb

1
x + S0

zzS
1
xzb

1
z + S1

zzS
0
xxb

0
x + S1

zzS
0
xzb

0
z − S0

xzS
1
zzb

1
z − S0

xzS
1
xzb

1
x − S1

xzS
0
zzb

0
z − S1

xzS
0
xzb

0
x

Putting things back into (14) and collecting terms, we can write the numerator as an explicit

function of the four group-specific, heterogeneous effects of X and Z:

(S0
xxS

0
zz − S0

xzS
0
xz + S1

zzS
0
xx − S1

xzS
0
xz)b

0
x + (S1

xxS
1
zz − S1

xzS
1
xz + S0

zzS
1
xx − S0

xzS
1
xz)b

1
x (15)

+(S1
zzS

0
xz − S1

xzS
0
zz)b

0
z + (S0

zzS
1
xz − S0

xzS
1
zz)b

1
z

To obtain the aggregate bx coefficient, simply divide the numerator (15) by the original denominator

(S0
xx + S1

xx)(S0
zz + S1

zz)− (S0
xz + S1

xz)
2.
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